
DEPENDENCYVIS: HELPING DEVELOPERS VISUALIZE SOFTWARE

DEPENDENCY INFORMATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Nathan Lui

June 2021

© 2021

Nathan Lui

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: DependencyVis: Helping Developers Visu-

alize Software Dependency Information

AUTHOR: Nathan Lui

DATE SUBMITTED: June 2021

COMMITTEE CHAIR: Bruno da Silva, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Ayaan Kazerounmi, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Phoenix Fang, Ph.D.

Professor of Computer Science

iii

ABSTRACT

DependencyVis: Helping Developers Visualize Software Dependency Information

Nathan Lui

The use of dependencies have been increasing in popularity over the past decade,

especially as package managers such as JavaScript’s npm has made getting these

packages a simple command to run. However, while incidents such as the left-pad

incident [1] has increased awareness of how vulnerable relying on these packages are,

there is still some work to be done when it comes to getting developers to take the

extra research step to determine if a package is up to standards. Finding metrics

of different packages and comparing them is always a difficult and time consuming

task, especially since potential vulnerabilities are not the only metric to consider. For

example, considering how popular and how actively maintained the package is also

just as important [8].

Therefore, we propose a visualization tool called DependencyVis that is specific to

JavaScript projects and npm packages as a solution by analyzing a project’s depen-

dencies in order to help developers by looking up the many basic metrics that can

address a dependency’s popularity, activeness, and vulnerabilities such as the num-

ber of GitHub stars, forks, and issues as well as security advisory information from

npm audit. This thesis then proposes many use cases for DependencyVis to help

users compare dependencies by displaying the dependencies in a graph with metrics

represented by aspects such as node color or node size.

iv

ACKNOWLEDGMENTS

I would like to acknowledge and thank my thesis advisor, Dr. Bruno da Silva, for an

entire year of his guidance, advising, and assistance for this thesis work. I also would

like to extend my gratitude to my committee members, Dr. Ayaan Kazerounmi and

Dr. Phoenix Fang, for spending the time and energy in reviewing my thesis and as

teachers in my graduate classes. Over the course of many graduate classes, I have

had many classmates to share our accomplishments and concerns with. I thank these

classmates for sticking by my side in the emotional roller coaster of learning to push

ourselves in our field of interest together.

I also would like to thank my mother and father for their constant support and

understanding. They have both worked hard to give me a life where I am free to try

out a wide variety of subjects and ultimately be free to pursue my passions. I also

appreciate my sister for pulling me out of my chair from time to time for her food

adventures. Also, many thanks to Cindy Do for providing the love and companionship

I needed to get through this stage of my life, especially given the circumstances of

this year.

Also thanks to Andrew Guenther, for providing the LATEX template for this thesis.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

CHAPTER

1 Introduction . 1

1.1 Objective . 3

1.2 Overview . 4

2 Background . 5

2.1 Dependencies . 5

2.1.1 Categorizing Dependency Information 6

2.1.2 Package Managers . 7

2.1.3 Dependency Tree or Graph? 9

2.2 Software Visualization . 10

3 Implementation . 14

3.1 Metrics . 16

3.1.1 Popularity . 17

3.1.2 Activeness . 19

3.1.3 Vulnerabilities . 22

3.1.4 License . 23

3.2 Simulating Adding Dependencies . 24

3.3 Accessing GitHub API . 26

3.4 Accessing npm API . 28

3.5 Visualizing Data . 29

3.6 Storing Data in a Database . 32

vi

3.7 Deploying Online . 34

4 Use Cases . 36

4.1 General Uses . 36

4.2 Finding Specific Metrics . 38

4.3 Comparing Dependencies . 41

5 Related Work . 48

5.1 Determining a Good Dependency . 48

5.1.1 Addressing Vulnerabilities . 48

5.1.2 Addressing Maintenance . 49

5.2 Other Software Visualizations . 50

6 Conclusion . 53

6.1 Implications . 54

6.2 Future Work . 55

6.2.1 More Metrics . 55

6.2.2 Potential Case Studies . 57

BIBLIOGRAPHY . 60

vii

LIST OF FIGURES

Figure Page

2.1 Definitions of words in relation to “Project” 6

2.2 Radial Visualization of Dependency Usage [18] 12

2.3 Node-edge Visualization [9] . 12

3.1 General Library Architecture . 15

3.2 Labeled Title Screen of DependencyVis. 17

3.3 Labeled DependencyVis After Title Screen. 18

4.1 Flowchart for using DependencyVis 37

4.2 Use Case 1: DependencyVis Output 38

4.3 Use Case 2: Adding a Library . 39

4.4 Use Case 2: Full Dependency Graph 39

4.5 Use Cases 3, 4, 5: Axios.js Dependency Graph with Audit and Stars 42

4.6 Use Case 6: Hovering over serve-static 43

4.7 Use Case 8: Selecting the License Option for d3.js 43

4.8 Use Case 9: d3.js Dependency Graph 46

4.9 Use Case 9: vis.js Dependency Graph 46

4.10 Use Case 10: Comparing vis.js and d3.js by Forks and License . 47

viii

Chapter 1

INTRODUCTION

Decades ago, reusing software systematically was simply a dream that would have

taken more effort than it was worth it at the time to achieve [27, 14]. Today, software

reuse via external packages has become so common to a point that developers barely

take the time to consider what code they are reusing for their projects [8]. These

packages of code made for developers to reuse in their projects are called libraries.

When these libraries are used in a project, they are considered dependencies to that

project. In this thesis, libraries and dependencies will be used interchangeably.

Dependencies have many benefits. They save a lot of time, essentially offloading the

work of one chunk of code to another developer or group of developers to both develop

and maintain this dependency. This prevents a lot of developers from repeating the

development of a common functionality simply relying on dependencies to do the work

instead. This gives the opportunity of using more robust code as multiple developers

have likely checked and tested the code in a dependency then if a developer was

to write the code itself. The developers of dependencies can also help maintain

the dependencies, updating them in case of bugs, implementing more features and

enhancements —essentially providing robust code [27].

However, while it has become easy to systematically reuse software by importing

external libraries as dependencies, it has also become riskier in different ways, since

this is essentially an activity of incorporating external pieces software to the software

under development. This operation may add maintainability and security burden

as well if dependencies are not carefully analyzed. For instance, it is unlikely that

1

the maintainers are people we know, so we must trust people we do not have a

relation with to be on top of updating and fixing a library. Therefore, it is possible

to depend on a library that may not ever be updated anymore (or not enhanced with

the frequency you would expect) or have bugs that might not be fixed anytime soon.

If any of these bugs are found to be exploitable by users, then depending on that

library would be introducing vulnerabilities to the program. Incidents such as the

Equifax data breach and the leftpad package removal are good examples of problems

with dependencies [16]. Even if a library has no vulnerability problems, it could

also be possible that the library itself has a dependency that does. Dependencies of

dependencies are called indirect dependencies or transitive dependencies and can be

another serious point of consideration when looking at libraries.

This introduces the problem that developers are not taking the time to research de-

pendencies to see if they can find vulnerabilities associated with them and if they

are being constantly updated [32, 24]. Pashchenko et al. [32] performed a qualitative

study on developers to find that many of them focus on the functionality support of a

library rather than the security and occasionally check licenses when in an enterprise

to avoid legal issues. And who is to blame them? There are so many aspects to

consider for a dependency that developers would rather just get started instead of

worrying about every detail of their dependencies. Cox [8] provides an overview of

many of the metrics that developers should be considering. Therefore, in this work

we have approached this problem by offering a tool for accessing information concern-

ing dependencies in a project which includes the aggregation of useful dependency

attributes in visual and textual format.

2

1.1 Objective

The ability to visualize software is a very helpful tool for understanding information

about a software project or a library quickly. They can help in identifying patterns,

finding problems, and exploring potential trends [12]. As software projects become

more and more complex with object-oriented programming, functional programming,

testing, dependencies, and more, it is becoming increasingly difficult to keep track

of all the different aspects of software projects today. This overwhelming amount

of information needed for developers to develop and evolve software makes software

visualizations a valuable tool and technique for organizing all information quickly and

supporting developers in their tasks.

When it comes to reuse software by incorporating dependencies a lot of information

need to be considered. Therefore, the objective of this thesis is an interactive software

visualization tool called DependencyVis1 to gather and display this information, so

that developers would only need to go to one place to analyze a majority of the metrics

recommended to decide if a dependency is desirable to them. DependencyVis is meant

to assist developers in making an informed decision about their dependencies —not

to make a decision for them.

Starting with a public repository on Github, DependencyVis will gather information

that could be useful in deciding if a dependency is suitable or not. This information

would relate to categories such as popularity, activeness of maintainers, vulnerabili-

ties, and licenses. All mentioned in the article by Cox [8]. DependencyVis will then

display this on a graph of nodes and edges where the nodes represent libraries and the

edges represent dependencies between those libraries. The information would be rep-

resented by the size and color of the nodes for easy comparison between the different

1http://dependencyvis.herokuapp.com/

3

http://dependencyvis.herokuapp.com/

libraries. On top of the visualization, DependencyVis also shows dependency data

as well such as licenses, vulnerabilities info, and activeness and popularity metrics as

possible inverse indicators of maintainability risks. We then provide many use cases

in order to demonstrate how such a representation would help developers make an

informed decision about their dependencies.

1.2 Overview

The rest of this thesis is organized in the following way. Chapter 2 provides the

background necessary for the thesis and understanding DependencyVis. Chapter 3

presents the approach used to develop the tool DependencyVis. Chapter 4 proposes

use cases for the tool. Chapter 5 presents related work. Finally, Chapter 6 discusses

the implications behind the use cases and possible future work for DependencyVis

and concludes this thesis work.

4

Chapter 2

BACKGROUND

This thesis showcases DependencyVis which is a software visualization tool that dis-

plays information about dependencies within the domain of a specific package man-

ager known as npm. This makes it important to understand the potential of software

visualizations, the definitions of different kinds of dependencies, and the prevalence

of package managers.

2.1 Dependencies

As defined in Chapter 1, libraries are packages of code designed for reuse. When

a software project depends on the library, the library would be called a software

dependency which we will simplify by calling it a dependency. However, dependencies

of a project can have their own dependencies otherwise known as indirect dependencies

or transitive dependencies to the project. This means that a direct dependency is the

libraries that the project explicitly depends on. A dependency graph is a project

and all of its dependencies and how they connect. We describe the intricacies of a

dependency graph in 2.1.3. A layer is all the dependencies that are the same distance

from the project. For example, layer 1 would be all the direct dependencies as they

are all one edge away from project. Figure 2.1 diagrams these definitions in relation to

a project. The arrows point to the library that is being dependent on. For example,

Project points to Library 1 and Library 2. This means that Project directly depends

on Library 1 and Library 2. It is also important to note that here on out, package is

5

defined to be a npm library and project is defined to be a personal repository created

by a user of DependencyVis.

Figure 2.1: Definitions of words in relation to “Project”

2.1.1 Categorizing Dependency Information

Cox [8] clearly defines many categories that should be considered when determining

a good dependency. These categories are listed below along with questions that Cox

[8] asks to help guide developers in determining if a dependency fulfills that category.

• Design/Documentation - How readable is the documentation/API?

• Code Quality - Is the code well written? Basically, is the code consistent, avoids

warnings, and unsafe practices?

• Testing - Does the code have tests? Are they runnable and do they pass?

6

• Debugging - Does the code have a lot of known bugs? Are most of them fixed?

Are they fixed recently?

• Maintenance - How long has the code been actively maintained? How many

people are working on the project?

• Usage/Popularity - How many people use or depend on this code?

• Security - Does the code have a history of problems?

• Licensing - Is the code properly licensed? Is the license compatible?

• Dependencies - Does the code have dependencies? Do these dependencies have

flaws?

In this thesis, we propose DependencyVis as a software visualization approach of

software dependencies that will help developers in analyzing the suitability of depen-

dencies in their projects. Due to the wide variety of these categories, we decided to

focus on the latter six and narrow them down further by putting them in a context

of being a dependency. This redefines the categories into the following.

• Popularity - How well known is the dependency?

• Activeness - How active are the maintainers of the dependency

• Vulnerabilities - How many vulnerabilities are known about the dependency?

• License - What license does the dependency has?

2.1.2 Package Managers

What caused dependencies to be so easy to implement that even the smallest of

libraries are considered to be worth depending on? One of the main factors is the rise

7

of package managers. Package managers are systems used to install, uninstall, and

manage software packages in software projects. This simplifies package installations

and updates to running a single command. Then, all a developer has to do is add

a single line of code to their files in order to import the installed package to their

projects and development environments.

In the JavaScript landscape, one of the most popular package managers is called

npm. Npm is a package manager specifically for the Node.js runtime environment.

Node.js is an environment that allows JavaScript to run outside of the standard

HTML environment. Npm allows Node.js projects to run simple commands such as

the following to install and uninstall packages.

npm install {package_name}

npm uninstall {package_name}

Where {package name} is the name of the package that the developer wants to add

to their project.

In order to keep track of all the dependencies for a project, npm creates and manages

a package.json file. This package.json file stores all versions, script information to

run the project, and dependencies. This makes the package.json a good source of

information about both the project and its dependencies. Versions in npm are stored

in the format of x.x.x where the first x represents the major number, the second

x represents the minor number, and the last x represents the patch number. For

example, 3.5.2 could be a version number where the major version number is 3, the

minor version is 5, and the patch is 2. This distinction allows for quick identification of

how likely going from one version to the next is going to break the code. For example,

updating from 3.5.2 to 4.0.1 is a significant difference compared to updating from 3.0.3

to 3.5.2. In the package.json file, versions are stored with one of two symbols marked

8

before them: ˆ or ∼. The first symbol means that the highest minor number will be

used whereas the second symbol means the highest patch number will be used.

Because npm will automatically use the highest number as specified by the symbol

in the package.json file, installing a library with dependencies at higher versions

than intended can cause unintended breaking changes. Luckily, npm projects also

have the ability to specify the exact version of dependencies used. This information

is stored in a package-lock.json file and can prevent the problem of accidentally

installing a higher version number by locking the dependencies to specific versions.

This separation is important because it allows the package.json to specify the bare

minimum versions of dependencies and all important information to a project while

package-lock.json will specify the exact version of each dependency installed during

development. This means that package.json is good for providing an overview of the

packages, while package-lock.json helps reconstruct the exact dependency graph

that was used for the package’s development. However, the package-lock.json file

is not required to install a package, so not all repositories have it. Therefore, it was

not used as a source of information for this thesis.

2.1.3 Dependency Tree or Graph?

In graph theory, a directed tree is defined to be a directed acyclic graph (DAG) with

only one edge between nodes. This means that there cannot be any cycles in the

graph produced in order to be considered a tree, so the denotation of a dependency

tree may not be an accurate term for all the nodes and edges in DependencyVis.

Theoretically, it could be possible for libraries to depend on each other. This might

be achieved if there are two published packages, and the first package depends on the

second package, but the second package updates to depend on the first package. There

9

was no explicit documentation in npm that we could find addressing this potential

issue. When researching this issue, most sources talk about the issue of cyclic depen-

dencies within a project1. This means that one file or object within a project has a

circular dependency with another file or object in the same project. One source [5]

did mention the possibility of circular dependencies in packages; however, the book

is talking about a different context from the npm ecosystem that DependencyVis

covers.

The closest source to talking about npm dependencies is in King’s blog post [17].

King simply uses the term dependency tree and describes the other problem with

dependencies which involves different versions of a dependency are depended on in

the same project. But because we cannot confirm or deny the existence of cycles in

npm packages, we will use the term dependency graph in this thesis.

Even though we address these issues in this thesis, DependencyVis neither takes in

account different versions nor the possibility of cycles in the npm ecosystem as we do

not know any examples of packages in the npm ecosystem with this problem. These

can be potential improvements in the future.

2.2 Software Visualization

The term software visualization is defined as “the art and science of generating visual

representations of various aspects of software and its development process” [12]. The

general goal of software visualization is to help to comprehend software systems and

to improve the productivity of the software development process [12]. These visual-

izations can be anything from diagrams to interactive, analysis programs as long as

the information being displayed helps in the development of software. Merino et al.

1https://www.sciencedirect.com/topics/computer-science/cyclic-dependency

10

https://www.sciencedirect.com/topics/computer-science/cyclic-dependency

[21] performed a mapping study in classifying 65 software visualization design papers

in order to provide an in depth classification of how software visualization has been

used to help the software development process. One classification Merino et al. [21]

used for the software visualization papers is the task that the papers are trying to

support with visualization. These tasks are categorized into the following.

• Debugging

• Maintenance

• Programming

• Reverse Engineering

• Software Process Management

• Testing

Figure 2.2 and Figure 2.3 shows two examples of visualizations classified by Merino

et al. [21] that address dependencies. Figure 2.2 was classified as Maintenance as

it demonstrates a radial visualization to show how dependencies evolve overtime in

a project using symbols and colors to represent different statuses of dependencies.

This is intended to help maintainers prioritize certain dependencies over others when

it comes to updating, removing, or adding dependencies [18]. Figure 2.3 shows a

node-edge visualization tool classified as Reverse Engineering as it was intended to

help simplify reverse engineering tools by making them easier to understand through

a visualization [9].

Based on these categories, we can see that software visualization is very useful and

can help in a wide variety of tasks for software developers. This thesis hopes to

11

Figure 2.2: Radial Visualization of Dependency Usage [18]

Figure 2.3: Node-edge Visualization [9]

12

tackle the idea of Maintenance by helping developers manage their dependencies and

dependency choices.

The software visualization strategy we use for DependencyVis is a graph made up

of nodes and edges otherwise known as a network. Networks can be used to portray

a lot of different connections as each node can represent and object and each edge

represents a connection between those objects. For DependencyVis, nodes represent

libraries and edges show which library depends on the other. An additional advantage

of using networks is that it can be used to portray many different metrics at once on

top of the nodes and edges. This is achieved by varying many different aspects of the

graph such as node size and node color, which are the main parts that DependencyVis

uses.

13

Chapter 3

IMPLEMENTATION

In this chapter, we discuss details on how DependencyVis is implemented. We begin

with the libraries used, decisions made in the types of projects DependencyVis sup-

ports, all the metrics, databases that DependencyVis retrieves and stores information

from, and how DependencyVis was deployed online.

DependencyVis uses a lot of libraries in order to gather, access, and display all the

information from NPM open source repositories. Figure 3.1 displays the general

dependency architecture of DependencyVis. Express.js manages all the code in the

server side while React.js manages all the code in the client side. Axios.js is a

library that makes it easy to make HTTP requests. This is helpful as it allows the

DependencyVis client to communicate with the DependencyVis server. The arrows

in Figure 3.1 point to what libraries the client and server side are using while the

dashed lines indicate a network request and response between the two nodes.

Ideally, DependencyVis would be able to access all npm libraries and all public

GitHub repositories; however, at the moment, DependencyVis is only able to directly

access public GitHub repositories with a package.json file. This covers a majority

of npm open-source libraries as well as any public repositories that someone makes

using the npm which would provide a package.json. The easiest way to verify if a

GitHub repository can be accessed by DependencyVis is to make sure the repository

has a package.json somewhere in it. Once that is verified, the user can put the

owner name and repository name in input fields (1) and (2) of DependencyVis as

seen in Figure 3.2.

14

Figure 3.1: General Library Architecture

If a GitHub repository has multiple package.json files indicating multiple subpro-

jects relying on npm, then entering the path of the specific folder to input field (3)

as seen in Figure 3.2 allows the user to control which package.json file to analyze.

The path of the specific folder should be entered in relation to the root directory. For

example, if the package.json was in a folder called server which is inside a folder

called project1 and that project1 folder was in the root directory of the repository,

then the path of the specific folder should be entered as “project1/server”. Other-

wise, DependencyVis will find the first package.json based on lexicographical order

of the path. For example, if a repository has two package.json files found with the

paths “client/package.json” and “server/package.json”, DependencyVis will choose

“client/package.json” to analyze if no folder is specified on field (3).

15

The checkbox (4) in Figure 3.2 determines whether or not DependencyVis will use its

own database information for the visualization. The DependencyVis database is up-

dated by previous runs of DependencyVis which will update the database under two

conditions: unchecking the checkbox or if the database does not have the repository

it is searching for. When either of those conditions occur, DependencyVis will gather

all its data from the GitHub and npm API sources and then update its own database

accordingly. More detail on how DependencyVis stores its data can be found in 3.6.

There are a few main advantages to using the database instead of always generating

the data on the spot. First, the database is significantly faster than making all the

API calls and waiting for responses. This can help curb the impatience users will

likely have when using this program. Second, GitHub has a limit to the amount of

calls it allows per account, so using the database to offset the amount of calls required

to populate the visualization helps prevent DependencyVis from hitting this limit.

Finally, the database allows the ability to simulate the program in a specific point

in time. This can potentially be used to conduct studies on the validity of these

kinds of programs or studies to see how people react to a certain set of data through

visualization.

After getting through the title screen, there are a number of UI elements that appear.

Figure 3.3 shows DependencyVis after entering the Axios.js library into it.

3.1 Metrics

There are a number of metrics that DependencyVis can retrieve and display about a

dependency. These metrics can be organized into the different categories mentioned

in 2.1.1. As a reminder, these categories are: Popularity, Activeness, Vulnerabilities,

and License.

16

Figure 3.2: Labeled Title Screen of DependencyVis.

(1) Text field for entering owner name. (2) Text field for entering repository name.
(3) Text field for entering the name of the subfolder. (4) Checkbox for whether or

not to use DependencyVis database.

3.1.1 Popularity

When determining if a library is good or not, it is important to consider how “popular”

it is. Popularity is the measure of how much attention the library has gotten, meaning

popularity can be a way of measuring how many people rely on the library. So if the

library fails in some way, then the failure will more likely be addressed by others and

be addressed faster. A higher popularity can also mean that the developers are less

likely to abandon the library and would instead be more motivated to maintain the

library. Even if the developers do abandon the project, the more popular a library is,

the more likely other people can revive it [2]. Not only that, more people using the

library would lead to more questions and answers on how to use the library, ultimately

providing better documentation and examples.

DependencyVis provides two simple GitHub metrics that represent how popular a

library is:

17

Figure 3.3: Labeled DependencyVis After Title Screen.

(1) Sidebar containing dropdown menus full of metric information for the
corresponding node. (2) Button to hide all dropdown menus. (3) Button to load
next layer of dependencies. (4) Legend for what the colors represent. (5) Options
Panel for selecting different visualization options. (6) Text field for adding a new

direct dependency by name. (7) Node-Edge graph. (8) Buttons for hiding the
panels they are next to.

• Stars - the number of people who have saved the GitHub repository to their list

of Starred repos.

• Watchers - the number of people who receive notifications about updates to the

GitHub repository.

In order to collect these metrics, DependencyVis takes the owner name and reposi-

tory name that the user inputs and makes request to the “repos” access point in the

GitHub API as explained in Section 3.3 for the default repository information. This

default information is provided in a .json that includes a “stargazers count” prop-

erty and a “subscribers count” property that correspond to “stars” and “watchers”

18

respectively. It is important to note that the “watchers count” property returned

does not correspond to “watchers” in the GitHub repository and instead provides

the same number as the “stargazers count” property. The GitHub documentation

specifies that this is the case for backwards compatibility purposes as “watchers” and

“stars” used to be the same:

“In August 2012, we changed the way watching works on GitHub. Many

API client applications may be using the original “watcher” endpoints for

accessing this data. You can now start using the “star” endpoints instead”

3.1.2 Activeness

Popularity is a good starting attribute to consider when deciding on a good depen-

dency, but sometimes it helps to get a little more in depth on how maintained a

library is. A library might be more likely to have active developers when it is pop-

ular, but how “active” are they really? In order to answer this question quickly,

DependencyVis provides six metrics from GitHub that help determine how active

the developers of a project are:

• Forks - the number of forks

• Open Issues - the current number of open issues

• Open PRs - the current number of open pull requests

• Closed PRs (30 days) - the number of pull requests closed within the last 30

days.

• Mean Time PR Review - the average amount of time it took for closing pull

requests within the last 30 days.

19

The number of forks indicates how many people have copied the repository. These

people usually fall under two groups: people who are trying to help maintain and

update the repository and people who are saving a copy of it for personal use. This

makes the number of forks arguably both a popularity metric and an activeness metric

as the number of people who are saving a copy shows how popular the repository

is whereas the number of people helping to maintain the repository by submitting

pull requests from their forked repository are active developers. We chose to put

this metric as an activeness metric because of the possibility that people who fork

a repository can become active developers or are already active developers for the

library.

If a repository uses GitHub to keep track of bugs, issues, and other tasks necessary to

update and maintain the repository, then the repository will likely have open issues,

open PRs, and closed PRs. A repository can be considered more active when they

have greater numbers in all these metrics. However, having more open issues might

simply amount to either more popularity or developers not actually completing the

issues which would actually indicate less activeness. Open PRs will have a similar

problem where having a lot may indicate a lot of people trying to help, but no actual

maintainers are taking the time to approve them. That makes it important to consider

the number of closed PRs as well. Due to the shear volume of closed PRs and that

GitHub does not directly provide the number, DependencyVis provides the amount of

closed PRs that closed within the last 30 days with a cap of 100 PRs. If a repository

has a relatively high number of close PRs and a low number of open PRs, then it

can imply the possibility of the developers updating the library very often within the

last 30 days, indicating a high recent activeness. But because this might not directly

correlate to active developers, DependencyVis provides one last activeness metric:

Mean Time PR Review.

20

The Mean Time PR Review is essentially how many days it takes for a PR to be

reviewed. In order to calculate it, DependencyVis’s server takes all closed PRs that

are counted in the closed PR metric and requests the open and close time. Then the

server subtracts the close time with the open time and sums up all the differences

before dividing that sum with the number of closed PRs to get the average time in

milliseconds. The client then converts this number to days in order to make it more

readable. This metric probably provides the most accurate information on how active

a repository is. The lower the Mean Time PR Review, the faster it took for developers

of the repository to approve a PR, thus indicating more activeness.

To be more accurate about the calculations, “last 30 days” can be misleading as it is

calculated by taking the current time and subtracting one from the month number.

This can indicate inconsistencies from month to month due to a month having any-

where from 28-31 days. However, saying “last 30 days” has less confusion compared

to “last month” which implies either starting calculations in the beginning of the

current month or the way DependencyVis calculates it.

There are few reasons for calculating the number of closed PRs and the Mean Time

PR Review with the last 30 days. First, limiting the time frame to a month can give

a more solid comparison of recent activity as opposed to the entire project’s lifespan.

Second, GitHub has a limit of 100 PRs they can send per request. This means that

there will be a lot of requests required to calculate all the PRs of a project, so the

calculation is capped at the most recent 100 PRs and will not request for anymore.

Thus a month was considered a good balance as it is not that likely to exceed 100

PRs within a month.

21

3.1.3 Vulnerabilities

As Open-Source Software becomes more and more prevalent, vulnerabilities found in

dependencies or indirect dependencies are becoming more and more likely. Hejderup

found in his thesis study [15] that one third of the modules in npm have vulnerable

dependencies based on advisory information and half of them can be fixed through

updates.

Vulnerabilities should probably be one of the biggest factors when considering a de-

pendency. Many databases keep track of vulnerabilities found in libraries. Some of

the most prominent are the Common Vulnerabilities and Exposures (CVE) list and

the National Vulnerabilities Database (NVD). However, going through all the advi-

sory data of these databases is tedious as a developer cannot simply enter a library

name into either of the search engines for CVE or NVD. Doing so will result in an

entire list of vulnerabilities unrelated to the library in question or nothing at all.

Because of this difficulty, many companies have developed centralized ways of reveal-

ing vulnerabilities in the dependency graph. GitHub has their Dependabot – an AI

that analyzes all repositories for vulnerabilities in out of date dependencies and then

creates pull requests for the repository to update them. On the other hand, npm

has introduced the tool npm audit that informs npm users how many vulnerabilities

and how severe their Node.js projects are, even whether or not an update would fix

them.

In order to demonstrate the possibilities of using a tool like DependencyVis for vi-

sualizing how many vulnerabilities and how severe they are within a repository’s de-

pendency graph, DependencyVis provides an Audit option that uses the npm audit

for data.

22

Getting the information of npm audit programmatically proved to be a difficult task.

There was no clear documentation on how to access the information and even if

DependencyVis used the command line tool, DependencyVis would not be able to

get any information other than for its own repository due to the inability to specify

a specific repository for the command. Luckily, there was a hidden access point in

the npm API that was found by Gorav Singal [29]. Using his method that imported

npm-registry-fetch, DependencyVis is able to get npm audit information about

one dependency at a time. This deviates from the behavior of running the com-

mand npm audit as the command will search the entire dependency graph whereas

DependencyVis will only display the vulnerabilities of each dependency individually.

So, as long as all outer layers are loaded, then all the vulnerabilities will be displayed.

DependencyVis is also given the info behind the vulnerabilities from the npm API.

This means full description of each vulnerability is accessible to DependencyVis.

Currently, DependencyVis does not display the vulnerability specific information

anywhere. However, when the user hovers their mouse over a dependency with

vulnerabilities, a tooltip will display listing out the vulnerability ID and how se-

vere it is. This vulnerability ID corresponds to npm’s own advisory database’s

IDs. For example, if 134 was listed in the tooltip in DependencyVis, then go-

ing to https://www.npmjs.com/advisories/134 would result in all the information

DependencyVis receives from the npm API.

3.1.4 License

One final metric included in DependencyVis is the license of each library. The license

is probably one of the most overlooked metric as it is a complex system in itself that

is difficult to consider as it does not fall under a numeric or ordinal scale, making

it difficult to compare licenses visually. However, licenses are important as they

23

https://www.npmjs.com/advisories/134

are required for an open-source library to be considered open-source and should be

approved by the Open Source Initiative (OSI) [19]. Also, due to the prevalence of

depending on many different libraries for software projects, it is important to consider

whether or not the licenses of the dependencies are compatible, since licenses indicate

how source code or binaries can be modified, reused, and redistributed [31].

Projects that have components of different licenses are called multi-licensed projects.

Already a good portion of multi-licensed projects tend to have compatibility issues

between licenses [22]. So if a user knows what licenses are compatible with each

other, DependencyVis can help them find incompatibilities or stray licenses in their

project’s dependency graph.

DependencyVis helps users visualize their project’s and dependencies’ licenses by as-

sociating a color to each license. This color is determined during runtime where

the first license that DependencyVis encounters gets assigned the first predeter-

mined color. Currently, there is a maximum of 13 predetermined colors limiting

DependencyVis to work with a maximum of 13 different licenses at a time. This

maximum can easily be increased by adding more colors to the predetermined list,

but seems sufficient at the moment. Ideally, we would autogenerate these colors as

so far it is known for a project to have up to 256 licenses [22]. The only criteria for

picking predetermined colors was to pick colors that decently differed from each other

and was not used in the other metrics.

3.2 Simulating Adding Dependencies

So far, we have covered how DependencyVis makes finding information within a sin-

gle project or library very easy; however, if DependencyVis was only able to show one

library and its dependencies at a time, then comparing two libraries’ numerical met-

24

rics that are not on the same dependency graph would be difficult. This is because

DependencyVis represents numerical metrics as the node size. In order to accom-

modate different numerical scales, DependencyVis will adjust the numbers so that

the highest number and lowest number will scale a predetermined max node size and

minimum node size. Though scaling the sizes is not perfect, it is to ensure that giant

nodes do not clutter the screen. Therefore, looking up one library in DependencyVis

and seeing a small node size for the number of forks in the central node then looking

up another library in a separate instance of DependencyVis and seeing a large node

size for the number of forks in the central node does not mean that the first library

has fewer nodes than the second.

So, to make the comparisons easier, DependencyVis supports adding a library as a

dependency to the central node. This will force the node sizes to use the same scale

allowing for a visual comparison between the library and the project as well as all

the dependencies both the library and the project have. If the user wants to decide

between two similar libraries, adding both to their project on DependencyVis can

give a visual comparison of all the metrics supported by DependencyVis for both of

the libraries without having to actually install them to their project. The ability to

add dependencies also lets the user know what their dependency graph will look like

if they add a dependency.

To implement this feature, DependencyVis has an input field on the bottom right

of the visualization where the user can input the name of the npm package they

wish to add as a dependency to the central node. Then DependencyVis will use this

name to search for the package the same way as mentioned in 3.4. Once the search

is performed, DependencyVis will connect a side node to the central node. If that

node is grey when the Loaded option is selected, then that means that the node has

dependencies that are not loaded in yet. Otherwise, the node will be light blue if the

25

package has no dependencies. To resolve any grey nodes, the user should press the

“Load Next Layer” button for DependencyVis to load all the grey nodes currently

in the graph. If more grey nodes appear, the user can simply press the same button

again until no more appear to complete the dependency graph. Then the user can

compare metrics by selecting the metrics on the Options Panel as before. Examples

of comparing dependencies with and without this feature are provided in 4.3.

3.3 Accessing GitHub API

A majority of the metrics from DependencyVis come from the GitHub API. So ac-

cessing this API is very important. When the user enters an owner and repository

name, the DependencyVis client will send that information to the DependencyVis

server through the /lookup access point. The DependencyVis server will then gener-

ate the corresponding GitHub URLs and use its own GitHub authentication token to

request information from the GitHub API before compiling it all into a single pack-

aged response for the DependencyVis client. For each repository, the URLs generated

to request information are

• https://api.github.com/repos/{owner}/{repo}

• https://api.github.com/repos/{owner}/{repo}/pulls?state=open&per page=100

• https://api.github.com/repos/{owner}/{repo}/pulls?state=closed&per page=100

• https://api.github.com/repos/{owner}/{repo}/git/trees/{default branch}?recursive=1

• https://api.github.com/repos/{owner}/{repo}/contents/{path}

where the variables are defined as follows:

• {owner} - the owner as entered by the user

26

• {repo} - the repository as entered by the user

• {default branch} - the name of the default branch set for the GitHub reposi-

tory. This is usually either “master” or “main”.

• {path} - the path to the package.json file.

The first URL is used for a majority of the metric information as it provides an

overview of the repository. This request alone provides the number of stars, watchers,

forks, open issues, and license. The second URL simply provides the number of open

PRs with a maximum of 100. The third URL provides the number of closed PRs and

enough information about each PR to calculate the Mean Time PR Review metric.

The fourth URL gets the file tree of the repository. This is how DependencyVis finds

the path to the package.json to be used for the fifth URL. The fifth URL returns

the contents of the package.json which allows DependencyVis to know what the

repository depends on which is necessary to draw the visualization and make further

requests for dependency information which uses the npm API as explained in 3.4.

As an example, if the user entered “visjs” for the owner and “vis-network” for the

repository, the resulting URLs generated would be

• https://api.github.com/repos/visjs/vis-network

• https://api.github.com/repos/visjs/vis-network/pulls?state=open&per_page=100

• https://api.github.com/repos/visjs/vis-network/pulls?state=closed&per_page=100

• https://api.github.com/repos/visjs/vis-network/git/trees/master?recursive=1

• https://api.github.com/repos/visjs/vis-network/contents/package.json

This means that for every repository, DependencyVis needs to make five GitHub API

requests in order to generate all the information the visualization supports. Having all

27

https://api.github.com/repos/visjs/vis-network
https://api.github.com/repos/visjs/vis-network/pulls?state=open&per_page=100
https://api.github.com/repos/visjs/vis-network/pulls?state=closed&per_page=100
https://api.github.com/repos/visjs/vis-network/git/trees/master?recursive=1
https://api.github.com/repos/visjs/vis-network/contents/package.json

these requests slows down DependencyVis and justifies the need for its own database

to cache this information. Ideally, this would just be a single request, but this did not

seem possible with just the Github API. In the future, it would be ideal to explore

other databases to see what database can provide all the information needed in the

fewest requests possible while still being reliable.

It is also important to note that all this URL building and requests to the GitHub API

for DependencyVis is done through a light-weight API wrapper called github-api

as it simplifies a lot of this into a few commands.

3.4 Accessing npm API

The GitHub API does almost everything DependencyVis needs on its own. However,

when searching for information about the dependencies, DependencyVis only has the

name and the version number of the dependency to go off of. The name does not

necessarily correspond to the repository name and even if it did, DependencyVis will

still be missing the name of the owner. In an older version of DependencyVis, the

name of the dependency was used in a GitHub search query 1 to find the repository,

but this also did not guarantee that DependencyVis would get the correct GitHub

repository. Therefore, the DependencyVis client must ask the DependencyVis server

to request the package.json file of the dependency from the npm API instead of

using the GitHub API.

Once DependencyVis receives the package.json, DependencyVis will scan the file

for any GitHub URL and extract the owner and the repository name from the URL.

This allows DependencyVis to request the rest of the information on the repository

from the GitHub API using the first three URLs as explained in 3.3. The last two

1https://docs.github.com/en/rest/reference/search

28

https://docs.github.com/en/rest/reference/search

URLs are for extracting the package.json file which DependencyVis already has

from the npm API.

The npm API does not really have much documentation on it as it is intended for

just the npm command to access it. However, there are already some people that

have spent the time to figure out the corresponding URLs and built libraries that will

access the npm API. The library that DependencyVis uses is called npm-api. This

library follows a similar style as github-api.

3.5 Visualizing Data

Being a visualization tool, DependencyVis needed to have the ability to display an

interactive graph that could change overtime, so DependencyVis uses a visualization

library called d3.js. This library makes it easy to display data in any graph, from

bar graphs to pie graphs to the node and edge graph seen in DependencyVis. All that

is needed to get the basic graph up is to define what a node looks like, define what

an edge is, then pass d3.js the data to display and an HTML5 canvas to display it

on.

There are two types of nodes in DependencyVis: the central node and side nodes.

The main difference between the two is that the central node represents the repository

the user entered whereas the side nodes represents all dependencies to the repository.

The central node is also centered on by d3.js and will be the only node that has both

the owner and repository name to identify it; all the side nodes will be associated with

the a dependency and therefore have just the name of the dependency to identify it.

Finally, because DependencyVis stores its nodes in a node array, the central node is

guaranteed to be the first node in that array or more specifically the node at index 0.

29

Here is an example of the central node if the user entered “expressjs” as the owner

and “express” as the repository name.

{

all: {...},

clicked: true,

color: "blue",

details: {...},

id: "expressjs/express",

isCentral: true,

loaded: {...},

radius: 10,

x: 508,

y: 351

}

A side node example to express.js would be:

{

all: {...},

audit: [...],

clicked: true,

color: "lightblue",

details: {...},

id: "qs",

loaded: {...},

radius: 8,

source: "api.github.com/repos/ljharb/qs",

x: 397,

y: 412

}

For nodes, d3.js only cares about the following properties

• color - color of the node

• id - the text next to the node displayed as the name

• radius - the size of the node

30

• x - the x position of the node where the origin is on the top left of the canvas

• y - the y position of the node where the origin is on the top left of the canvas

The x and y properties are automatically generated by d3.js. The color and radius

are modified by DependencyVis based on the display options that the user chooses.

React.js will detect this modification and reload d3.js. Ideally this update would

just be handled by d3.js, but as explained later on in this section, d3.js is difficult

to work with when inside React.js.

The id and index properties are set by DependencyVis in the beginning and never

changed afterwards. The id is used both as the text displayed next to the node

and as an identifier for d3.js to differentiate between nodes. This means d3.js

does not support multiple nodes with the same id and will print a warning that

the behavior is undefined. If DependencyVis was improved to have different nodes

representing different versions of a dependency, then using both a version property

and id property to differentiate nodes would be better.

The all, audit, details, and loaded properties all store data about the node itself.

All information that would be stored in the database will be in the all property. If the

information was successfully retrieved from the database, then the all property will

have an object with a id property. This id property corresponds to the document

id that is generated in the database. The audit property stores an array if there are

vulnerabilities found through npm audit. Each index in this array will correspond to

a vulnerability, so the length of the array is the number of vulnerabilities found. The

details property corresponds to the details listed in the Sidebar of DependencyVis.

So any information put in the details property is listed in the Sidebar in the default

format of “property-name”: “value”. The loaded property stores information about

31

the load status, the color, and the tooltip information for the node when the “Load

Status” option is selected.

A typical edge otherwise known as a link between the previous two nodes is simply:

{

source: "expressjs/express",

target: "qs"

}

For edges, d3.js is set up to draw an arrow from the source node to the target node.

The DependencyVis client is run using React.js as a base as seen in Figure 3.1. This

makes generating a dynamic, component-based user interface much easier; however,

React.js does not work very cleanly with d3.js. All of the tutorials and docu-

mentation of d3.js run on pure HTML, so the code must be converted to run with

React.js. The basics of this conversion are mentioned in an article by Stenius [30],

but in order to implement complicated features such as tooltips into DependencyVis,

a lot of trial and error was required.

3.6 Storing Data in a Database

DependencyVis works just fine gathering all the data from the GitHub API and the

npm API when the user requests it; however, it is a slow process as each repository

will either take five GitHub API requests and one npm API request or at best three

GitHub API requests and two npm API requests. Because DependencyVis does not

have a loading screen yet, the user will have to stare at the title screen for a few

seconds before DependencyVis will be able to display its visualization.

By storing the information in a separate database, DependencyVis can remove a

majority of this lag time by reducing the number of requests to just one as long as

32

DependencyVis has encountered the dependency before. This will also help circum-

vent the limited number of requests that the GitHub API allows. And as mentioned in

the beginning of this chapter, the database can allow studies that use DependencyVis

to simulate and control the data by modifying the database.

For example, if a researcher wanted to study people’s reactions to certain dependen-

cies and wanted to make sure that each participant saw the exact same data, then

the researcher just needs to uncheck the checkbox in the title screen, load up all the

dependencies in question in order to update the database, then ensure that all partic-

ipants use the database. As long as the database was not changed during the study,

then all participants will see the same data as the researcher saw when the researcher

first loaded up all the dependencies. Ideally in the future, DependencyVis will have

a client for researchers and a client for participants in order to support such a study.

Currently, DependencyVis uses MongoDB for its personal cache database. MongoDB

is a document-based database that stores and returns .json files. Because ob-

jects in JavaScript are inherently represented by the JSON (as JSON stands for

JavaScript Object Notation), using MongoDB in DependencyVis is simple as it does

not require any object conversions to read the data. In order to access the database,

DependencyVis has been given a username and password to access and modify the

database using the mongodb library. This library provides the MongoClient object

that has functions for connecting to the database when given the proper credentials.

DependencyVis can then insert entire JavaScript objects to update or add more

documents to the database.

33

3.7 Deploying Online

A tool like DependencyVis would need to be convenient for a software developer to

use. Because DependencyVis focuses on public GitHub repositories, it would be ideal

to make DependencyVis a GitHub add-on. However, due to how limited GitHub add-

ons are, we had to go with the next best method which is to simply get DependencyVis

online. This makes DependencyVis at the very least accessible online.

In order to get DependencyVis online, we chose a free cloud server provider called

heroku. Heroku seamlessly attaches to git projects by creating separate remote for

deployment. This means that to update heroku, all it took was choosing the heroku

remote when pushing to the default branch. One caveat to using heroku is that the

repository must have a package.json in the root directory. This required a reformat

of the DependencyVis directories from splitting the server and client into their own

folders to having the server be pulled out into the root directory, which was not ideal

for owner. Also, because React.js and express.js deploy differently, there are quite

a few extra steps that was needed to make express.js output the React.js when the

heroku site was accessed. Following Ceddia’s directions in a blog post [4], we added

modifications to both the server’s and the client’s package.json for DependencyVis.

The other problem with deploying DependencyVis is that all the credentials for ac-

cessing the GitHub API and the MongoDB database was stored in a .env file that

did not get pushed to GitHub as it would make such credentials publicly available,

which would not be desirable for security reasons. Normally, this file would simply be

read in by the dotenv library, but as the file did not exist on the heroku server, the

dotenv library would not be able to get the credentials necessary for DependencyVis

to function. Luckily, heroku supports this in their settings. By going into the heroku

server’s settings on their web interface and adding all variables that was in the .env

34

file to the “Config Vars” setting, DependencyVis was able to be deployed with all the

credentials necessary to run.

35

Chapter 4

USE CASES

This chapter describes use cases to demonstrate how DependencyVis can be used for

many different scenarios. Figure 4.1 shows a decision flowchart to provide a basis of

how DependencyVis can be used to compare dependencies. We begin with general

use cases that go over the usage of DependencyVis, then we go over use cases for

finding metrics, and end with use cases that compare these metrics. Please note that

all of these use cases should have been written in the beginning of February 2021.

4.1 General Uses

1. Visualizing Dependencies: Suppose a user was considering the library Axios.js

to manage their promises for accessing other APIs and wanted to know what ad-

ditional dependencies Axios.js comes with. By entering into DependencyVis

the owner name (axios) and the library repository name (axios), the user will

immediately see that Axios.js has one dependency: follow-redirects. The

DependencyVis output is shown in Figure 4.2.

2. Adding a Dependency: Suppose a user happened to be working on a project

called axios and wanted to add a npm library called d3.js to their project to see

how it would affect their dependency graph. By entering into DependencyVis

the owner and repository name of their project and then entering into the

bottom right input field “d3”, the user will see DependencyVis add a new d3

node to axios as seen in Figure 4.3. However, the node is grey which means that

none of the dependencies for that node are loaded. So, the user can press the

36

Figure 4.1: Flowchart for using DependencyVis

37

“Load Next Layer” button until all nodes are lightblue which means all their

dependencies are loaded, as seen in Figure 4.4. The user can now see the entire

dependency graph for after d3.js is added.

Figure 4.2: Use Case 1: DependencyVis Output

4.2 Finding Specific Metrics

3. Popularity: Suppose that a user wanted to see how “popular” Axios.js is. By

clicking on “axios/axios” on the Sidebar on the left side of the application, the

user can see that Axios.js has over 1200 watchers and over 80,000 stars. By

clicking the Stars option or the Watchers option, the user can see that Axios.js

has far more watchers and stars than its dependency follow-redirects as a

reference point. Figure 4.5 shows how Axios.js appears on DependencyVis

when the Stars option is selected as well as the metrics shown on the Sidebar

and Figure 3.3 shows node sizes for when the Watchers option is selected.

38

Figure 4.3: Use Case 2: Adding a Library

Figure 4.4: Use Case 2: Full Dependency Graph

39

4. Activeness: Suppose that a user wanted to see how “active” the maintainers

of Axios.js are. By clicking on “axios/axios” on the sidebar on the left side of

the application, the user can see as shown by Figure 4.5 that Axios.js has over

7000 forks, over 70 open PRs, and 6 closed PRs in the past month which took

an average of 19.3 days to close from when they were first created. The user

can also see that the project was last updated on 2021-01-14 (Jan 14, 2021). So

Axios.js has still been active in the past month.

5. Visualizing Vulnerabilities: Suppose that a user wanted to see how vulnera-

ble both Axios.js and its dependency (follow-redirect) are. By clicking on

the Audit option under Color in the Options panel, the user will see that both

the nodes are green as shown by Figure 4.5 which means that npm audit has

no vulnerability cases for the most recent version of Axios.js and the versions

of follow-redirects that Axios.js relies on.

6. Vulnerability Details: Suppose a user wanted to see how vulnerable the de-

pendency graph of express.js is and wanted to see the details of any vulnera-

bilities the user finds. By entering “expressjs” and “express” for the owner and

repository name into DependencyVis, the user can press “Load Next Layer”

button three times to see the full dependency graph. Then, by selecting the

Audit option, the user can see that there are some dependencies that have

vulnerabilities. By hovering over serve-static, the user would see a tooltip

appear with a vulnerability ID of 35 and the severity of “low” associated with

it as seen in Figure 4.6. Hovering over the Audit option will provide a tooltip

that describes a URL based on the ID for more information on the vulnera-

bility: https://www.npmjs.com/advisories/<id>. The user can then fill in

the URL to get: https://www.npmjs.com/advisories/35. Going to this URL

40

https://www.npmjs.com/advisories/35

will provide all the information known about the vulnerability with ID 35. The

user can then repeat this process for all vulnerabilities in the dependency graph.

7. License: Suppose that a user wanted to see what license Axios.js has in order

to determine if the user can use it in their project. By clicking on the License

option the right side of the application, the user can see that Axios.js has the

color associated with an MIT License as described by the Legend as portrayed

by Figure 3.3.

8. All Licenses: Suppose that a user decides to add d3.js to their project and

wants to know all the licenses in the dependency graph of d3.js to check

if they are compatible with the MIT License. The user can enter “d3” into

both the owner and repository box, click the “Load Next Layer” button until

all nodes are loaded, and then click the License option to see all licenses in the

dependency graph of d3.js. As seen in Figure 4.7, the user can see four licenses

through the program: BSD 3-Clause “New” or “Revised” License, ISC License,

MIT License, and Other. The user will just need to check if the BSD 3-Clause

“New” or “Revised” License and ISC License are compatible with MIT License.

To be more thorough, the user can see that rw and a few d3 nodes have “Other”

as their license. The user may click on the rw node to open up more info on the

sidebar and go to the url indicated in the “source” to quickly get to the github

page of the library and manually figure out the license from there.

4.3 Comparing Dependencies

Here we provide two use cases. The first one compares libraries on separate instances

of DependencyVis and the second one provides a method of comparing libraries in

41

Figure 4.5: Use Cases 3, 4, 5: Axios.js Dependency Graph with Audit
and Stars

42

Figure 4.6: Use Case 6: Hovering over serve-static

Figure 4.7: Use Case 8: Selecting the License Option for d3.js

43

the same instance. This provides an example for the benefits of being able to add

dependencies as mentioned in 3.2.

9. Comparing Libraries Independently: Suppose a user wanted to use a vi-

sualization library to manage how their graphs are drawn for their Node.js

project. They found two visualization libraries: d3.js and vis.js. In order

to decide between the two, the user wants to determine how “attractive” the

libraries are compared to each other. “Attractiveness” will be split into three

categories: “how popular”, “how active”, and “how secure”.

To begin comparing, the user can run two instances of DependencyVis, then

enter “d3” into both owner and repo boxes for the first instance and “visjs”

into the owner box and “vis-network” into the repo box for the second instance.

The user can then look at the sidebar and compare the amount of forks (d3:

22449, vis.js: 169), watchers (d3.js: 3967, vis.js: 23), and stars (d3.js:

95278, vis.js: 1223) to see that d3.js appears to be more “popular” based

on those 3 metrics.

To compare “how active” each library is, the user can look at the “date last up-

dated” (d3.js: 2021-01-14, vis.js: 2021-02-04), “date created” (d3.js: 2010-

09-27, vis.js: 2019-07-16), and “pr mean time” (d3.js: not listed, vis.js:

0.3 days) to see that vis.js was updated more recently by a single month,

d3.js is much older by 9 years, d3.js did not have any pull requests closed

within the last 30 month.

To compare “how secure” they are, the user can look at the visualization and

select the Audit option to see that they do not have any npm audit vulnerabil-

ities. Then the user can see through the graph that vis.js does not have any

dependencies, but d3.js has a lot of dependencies of mostly d3 sub libraries.

44

When clicking the load next layer button, the user can see that d3.js indirectly

depends on delaunator, commander, iconv-lite, and rw.

In summary the user will have the basic idea that d3.js is more popular and

older compared with vis.js which has fewer dependencies and more recent pull

requests which might indicate more activeness. The user can then decide which

aspects of the dependencies is more valuable.

10. Comparing Libraries Together: Suppose a user wanted to analyze d3.js

and vis.js in the previous use case, but without having to directly compare

the numbers DependencyVis provides.

To compare d3.js and vis.js visually, the user can run DependencyVis and

enter “visjs” into the owner box and “vis-network” into the repo box. Then

the user can add d3.js by entering “d3” into the bottom right input field. By

clicking on the Forks, Watchers, and Stars options, the user can see that d3.js

appears larger than vis.js for all three metrics making d3.js appear more

popular. Figure 4.10 shows how DependencyVis appears when the user clicks

on the License and Forks options.

In this case, the user cannot compare “how active” each library is visually

because d3.js does not have any recently closed PRs and thus no Mean Time

PR Review to calculate. To indicate this, these two metrics are missing from

d3.js in the sidebar of DependencyVis. Thus the user has to compare them

the same way as in Use Case 9. Comparing “how secure” the two libraries are,

will also be the same process as in Use Case 9 as long as the user clicks on the

“Load Next Layer” button until no more nodes loads.

45

Figure 4.8: Use Case 9: d3.js Dependency Graph

Figure 4.9: Use Case 9: vis.js Dependency Graph

46

Figure 4.10: Use Case 10: Comparing vis.js and d3.js by Forks and
License

47

Chapter 5

RELATED WORK

There have not been a lot of works that combine the idea of visualizing software

and analyzing dependencies. However, the separate ideas of visualizing data and

analyzing dependencies are not new. For analyzing, there have been many papers

researching what makes a good dependency and have gone from determining what

metrics about each dependency is important to look at to building actual programs

that would do the analysis automatically for developers. Some papers investigate

answers to a single question such as “why do developers use trivial packages?” [1].

Other papers provide an overview of the situation as well as their suggestions on what

to look for in dependencies [8]. In terms of visualization, papers have ranged from

building graphs for function calls within a project [3] to building 3D Visualizations

in virtual reality environments [20].

5.1 Determining a Good Dependency

5.1.1 Addressing Vulnerabilities

One of the biggest reasons dependencies are a big deal is the vulnerabilities they can

introduce. Vulnerabilities are constantly found and usually patched very often so a

developer would have to keep making sure that they are updating all their dependen-

cies in a timely manner. Vulnerabilities are even worse when left undiscovered or not

patched. Pashchenko et al. [24] found that 81% of the vulnerable dependencies they

analyzed can fix their vulnerability by simply updating their dependencies. Vulnera-

48

bilities are even worse when left undiscovered or not patched. Decan et al. [11] found

that many vulnerabilities tend to take a long time to discover and another long time

to fix. Decan et al. [11] also found that a large percentage of packages have not even

updated or are improperly using their dependencies thus keeping many found and

already fixed vulnerabilities active.

One paper went another route and investigated the idea of trivial packages [1]. A

trivial package is essentially a package that the developer could easily code themselves.

These trivial packages are generally considered bad to use as they introduce more

factors for the developer to consider such as maintaining the package and increased

vulnerability risks. The paper found that more than 11% of the trivial packages

studied had at least 20 dependencies, greatly increasing the vulnerability risks. Given

the extra overhead of adding trivial packages on top of the increased possibility of

vulnerabilities, it is surprising that the paper found that over 50% of the developers

they surveyed considered these packages as beneficial and safe.

5.1.2 Addressing Maintenance

Some papers have taken the approach of studying the concept of truck factors [13][2].

The idea of the truck factor essentially came from the question of how many people

would need to get hit by a truck in order for a project to no longer be developed

and updated. So a project’s truck factor helps determine how stable the project is.

There are many algorithms concerning Truck Factor. Ferreira et al. [13] compares

each algorithm in order to determine the best ones for the most scenarios. Avelino

et al. [2] takes it a step farther by using those algorithms to determine when Truck

Factor developers detachment (TFDD) occurs which essentially is when Truck Factor

hits zero. The paper found that 16% of the studied projects were abandoned and

49

41% of those were revived by new developers. This is a good metric to look at when

trying to figure out how well-maintained a project is.

Coelho et al. [6] took a more general approach by developing a machine learning solu-

tion in order to tackle the problem of determining how maintained a Github repository

is. They used a lot of metrics including number of forks, number of commits, num-

ber of issues, number of pull requests, number of new and distinct contributors, and

project owner’s history in projects. The accuracy of this machine learning solution

was evaluated based on surveys with key project developers, developers in general,

and the descriptions of the README files in order to determine whether or not a

project was actually still maintained, getting new features, or deprecated. As their

evaluations show that their solution has a decent accuracy, this machine learning so-

lution has been implemented as a Google Chrome extension called isMaintained for

the public to use.

5.2 Other Software Visualizations

Plenty of work has been done using many different kinds of visualizations to portray

software. Merino et al. [21] performed a mapping study in classifying 65 software

visualization design papers in order to provide an in depth classification of how soft-

ware visualization has been used to help the software development process. Problem

domain classifications include debugging, history, performance, reverse engineering,

and dependencies.

There was a period of time where visualizing coupling between classes were quite

popular through visualizations such as the function call graphs. Function call graphs

showed the connections between classes and functions providing a visualization that

lets developers watch how their code flow in order to find where problems and bugs

50

lie in their code. This visualization also helps developers organize code and make sure

that classes and are as decoupled as possible. Bohnet & Dollner [3] built a tool that

will analyze C/C++ code in order to display the function call graph that helps in

understanding how features are implemented into the system and identifying where

new features can be implemented in the structure.

Hejderup et al. [16] takes this idea a step further by proposing a function call graph

that would traverse dependencies to display how code flows through different depen-

dencies and what functions are used the most in dependencies. This would essentially

allow developers to see how their code traverses the libraries and how calling one func-

tion in a library might go much deeper in the dependency graph than is expected.

One paper even took dependency visualization to the next level by using AR and

VR devices to display the metrics [20]. This paper wanted to address the problem of

many 3D visualizations only displayed on a 2D screen. They found that AR and VR

technologies do help in easing 3D visualization problems; however, selecting and text

readability remain an issue for this domain.

Back in 2.2, Figure 2.2 shows a visualization tool fairly similar to DependencyVis.

Kula et al. [18] intended for this radial visualization to help novice maintainers of

a library learn the history of how the library’s dependencies have been maintained.

For example, a novice maintainer can generally see what dependencies have been

consistently updated and which dependencies should be kept at older versions.

DependencyVis defers from this radial design in that it provides more specific infor-

mation about each and every dependency in order to judge many different aspects

ranging from popularity to vulnerabilities. This variety also sets DependencyVis

apart from many of the other works mentioned in this chapter as DependencyVis can

potentially provide one location to find everything a developer or maintainer could

51

want to know about a project or library and the entire corresponding dependency

graph.

52

Chapter 6

CONCLUSION

Thanks to package managers, the ease of software reuse has made software developers

today give little to no thought about the libraries they depend on. Libraries are

generally trusted for their benefits of saving time and having groups of people manage

and critique the code in the library resulting in better code than what a developer can

write by themselves. However, this inherent trust of libraries can make developers

fail to consider the downsides of depending on essentially strangers to manage code

the developer is using, especially considering that one of the main points of software

reuse is to save time, yet developers have to spend time to research if a dependency

should be trusted?

The objective of this thesis is to establish an interactive software visualization tool

called DependencyVis for gathering and displaying information about a software

project and its dependencies in order to save time spent on researching dependencies

while alleviating the issue of developers not taking into consideration the problems

and vulnerabilities that come with each and every library their project depends on.

DependencyVis gathers and displays information from the npm ecosystem by follow-

ing each dependencies’ package.json file in order to produce the dependency graph

of a library.

There are many use cases for DependencyVis and some of them are described in

Chapter 4. A user can use DependencyVis to get the basic information of a library

such as number of forks, pull requests, and npm audit vulnerabilities on top of the

dependency graph. A user can have DependencyVis analyze their own project in

53

order to see all their project’s dependency information. This can help if the user

wishes to find potential problems in the dependency graph such as license conflicts or

possible vulnerability points as well as what dependencies are easy to be removed or

replaced due to indirect dependencies. A user can also simulate adding dependencies

to their project in DependencyVis in order to visually compare dependencies between

each other.

6.1 Implications

DependencyVis is a good demonstration of how it is possible to gather a lot of in-

formation related to dependencies and display them in a graph to help developers

quickly decide how good a dependency is without having to lookup all the details

themselves in separate screens and through different services and tools. The visu-

alization can also help developers to compare and contrast libraries by comparing

sizes of the nodes in different metrics. Our tool or the approach behind it can also

be incorporated in online services such as GitHub. GitHub itself has attempted to

provide dependency information to repositories hosted in the platform1. However, it

lacks visualization features and additional information that we gather and provide

with DependencyVis, such as npm advisory data. Also, software teams and software

organizations could use our approach to help their developers design and implement

software systems with dependency analysis in mind and reduce risks in dependencies

incorporation. Finally, we believe researchers could benefit from DependencyVis by

using this tool to conduct empirical assessments about dependency analysis in soft-

ware development. The tool concept can be extended by adding new metrics or even

being adapted to analyze private GitHub repositories.

1https://docs.github.com/en/github/visualizing-repository-data-with-graphs/

about-the-dependency-graph

54

https://docs.github.com/en/github/visualizing-repository-data-with-graphs/about-the-dependency-graph
https://docs.github.com/en/github/visualizing-repository-data-with-graphs/about-the-dependency-graph

6.2 Future Work

This thesis work is the groundwork for developing a tool to help developers make

more informed decisions about dependencies. The following are more improvements

to DependencyVis and this thesis.

To start, DependencyVis has a limited scope with the requirement of every library

or project having a public GitHub repository and a package.json file in the reposi-

tory. Ideally, DependencyVis will be able to read the package-lock.json file if the

repository has it and allow users to choose between the two files. DependencyVis is

also limited to the npm ecosystem. In order to become more flexible, DependencyVis

should support more package managers such as pip, yarn, and gems. This would

also move DependencyVis away from analyzing purely the JavaScript language as

well, further increasing the scope of what DependencyVis can analyze. This will ul-

timately let all developers be able to analyze their dependencies regardless of their

programming language or package manager of choice.

In terms of user interface, more consideration should be given to the colors of the

nodes in DependencyVis. People with different levels of blindness may not be able

to tell the difference between some colors —namely red and green. This might prove

a problem if DependencyVis is to be as inclusive as possible to all developers.

6.2.1 More Metrics

DependencyVis implements a lot of metrics but there are more to be covered. The

number of forks, issues, and PRs, are all numbers that may help developers to de-

termine if a dependency is desirable or not. Still, DependencyVis can benefit from

the addition of many more metrics. For example, Cox [8] mentions how develop-

55

ers should consider whether or not a dependency is tested. In order to cover this,

DependencyVis could find and show whether or not there is a Continuous Integration

(CI) workflow in the dependency. More metrics related to the CI can be added as

well such as the Mean Time to Resolution (average time for the CI builds of a library

to become green once it has a build failure) and the Mean Time Between Failure

(average time for the CI builds of a library to become red again after the build has

been fixed). On top of this, DependencyVis could also display how long it takes for

the CI workflow to execute. According to Powell Stahnke [26] from CircleCI, the

ideal Mean Time to Resolution should be under an hour and the CI workflow should

execute somewhere under 5-10 minutes.

Also, DependencyVis currently displays npm audit information as a vulnerabilities

metric. However, there are a lot of advisory databases with this information updated

by different organizations and companies such as the Common Vulnerabilities and

Exposures (CVE)2 database managed by the MITRE corporation with the intentions

of a community effort, the National Vulnerabilities Database (NVD)3 managed by

the government organization called National Institute of Standards and Technology

(NIST), and private databases like Snyk.io4. All of these would provide more in-

depth information for developers on the vulnerability status of their dependencies. On

top of adding more databases, DependencyVis should show vulnerabilities of specific

versions of dependencies. Currently, DependencyVis shows all the vulnerabilities

found for all versions of a dependency, so being specific about whether or not the

vulnerability affects the current version of the library that the user’s project depends

on would improve the ability for users to know where security problems might occur.

2https://cve.mitre.org/index.html

3https://nvd.nist.gov/

4https://snyk.io/

56

https://cve.mitre.org/index.html
https://nvd.nist.gov/
https://snyk.io/

As mentioned in 5.1.2, Ferreira et al. [13] and Avelino et al. [2] brought up the idea

of truck factor and truck factor developers detachment (TFDD) and how to calculate

them. These are useful metrics to include in DependencyVis for determining the

number of key maintainers in a library. By calculating these metrics for software

developers, there would be no need to research a library’s maintainers and figure out

how much has each maintainer contributed to the library recently, saving a lot of time

in figuring out a valuable metric.

Not only are new metrics a good addition to DependencyVis, but the limitation of

30 days for the Closed PRs metric and Mean Time PR Review metric should be

adjustable. Libraries could be stable or just happen to not be updated recently, so

being able to adjust the 30 day limitation would give users more flexibility on how

they want to evaluate the Closed PRs metric and Mean Time PR Review metric.

6.2.2 Potential Case Studies

Finally, a case study to show the usefulness of DependencyVis would be a great

improvement to this work. In order to provide empirical evidence on how and to what

extent DependencyVis can be useful in the real world, it would be helpful to study

how real developers use DependencyVis. There are many kinds of case studies that

can be performed for DependencyVis, but they would generally answer overarching

questions such as

• How helpful is the visualization approach of DependencyVis?

• How well do DependencyVis and its metrics help a developer determine an

acceptable dependency?

57

These overarching questions can be broken down into further into research questions

such as:

• Does showing vulnerability levels help developers choose acceptable dependen-

cies?

• Does showing vulnerability levels help developers maintain their dependencies?

• Does showing popularity metrics help developers choose acceptable dependen-

cies?

• Does showing activeness metrics help developers choose acceptable dependen-

cies?

• Do developers prefer a visualization program over searching for the information

themselves?

• Are developers from large companies more likely to prefer a visualization pro-

gram?

Here, acceptable dependencies can be defined by either participants of the case study

(based on their perceptions of whether or not the metrics help) or in a separate study

to define a boundary between acceptable and not acceptable dependencies.

One method to answer the questions above would be to have two groups of software

engineers. These groups might be easier to find in a software engineering classroom,

but can also come from contacting developers of libraries and projects directly. Both

groups will be given the same list of objectives. These objectives would provide the

name of some dependencies and ask the participants to find out metrics such as vul-

nerabilities or number of forks. One group will be given DependencyVis whereas the

other group will either have to research on their own or be given links to databases to

58

simulate developers who are aware of where to find metrics. Then all the participants

would be asked to compare libraries that fulfill similar purposes based on the metrics

they have found and give why they made such decisions. For example, vis.js and

d3.js are both libraries that fulfill the purpose of creating visualizations, so seeing

software engineers’ preference would help establish what metrics do they value. Of

course, they would need to be asked if they already are familiar with one or both

of the libraries as that would most likely skew results. In order to determine if

DependencyVis saved any time, it will be important to keep track of how long it

took for the participants to complete each task. Once participants perform all these

tasks, a survey at the end would help gauge the perceptions of the participants. The

survey may include questions such as “how frustrating was it to find the metrics?”.

The group that used DependencyVis might be asked questions relating to how useful

did they find the tool and whether or not they would use the tool. The group that

did not use DependencyVis might be asked questions relating to whether or not they

want the process automated and whether or not they would like a visualization pro-

gram to help them compare the metrics. To finalize this case study would be to have

both groups switch whether or not they use DependencyVis to see if perceptions of

DependencyVis improve or stay the same.

Such a study can be simplified to a simple demonstration of DependencyVis and its

use cases in the form of either a video or a class in front of software engineers and

then survey the participants on how useful do they see DependencyVis and whether

or not they see themselves using DependencyVis in the future.

59

BIBLIOGRAPHY

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab. Why do

developers use trivial packages? an empirical case study on npm. In

Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, page 385–395, New York, NY, USA, 2017.

Association for Computing Machinery.

[2] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik. On the

abandonment and survival of open source projects: An empirical

investigation. In 2019 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), pages 1–12, 2019.

[3] J. Bohnet and J. Döllner. Visual exploration of function call graphs for feature

location in complex software systems. In Proceedings of the 2006 ACM

Symposium on Software Visualization, SoftVis ’06, page 95–104, New York,

NY, USA, 2006. Association for Computing Machinery.

[4] D. Ceddia. Deploy react and express to heroku, May 2018.

[5] M. J. Chonoles. Chapter 8 - packages and namespaces. In M. J. Chonoles,

editor, OCUP Certification Guide, page 144. Morgan Kaufmann, Boston,

2018.

[6] J. Coelho, M. Valente, L. Milen, and L. Silva. Is this github project

maintained? measuring the level of maintenance activity of open-source

projects. Information and Software Technology, 02 2020.

[7] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser. Measuring dependency

freshness in software systems. In Proceedings of the 37th International

60

Conference on Software Engineering - Volume 2, ICSE ’15, page 109–118.

IEEE Press, 2015.

[8] R. Cox. Surviving software dependencies: Software reuse is finally here but

comes with risks. Queue, 17(2):24–47, Apr. 2019.

[9] D. T. Daniel, E. Wuchner, K. Sokolov, M. Stal, and P. Liggesmeyer.

Polyptychon: A hierarchically-constrained classified dependencies

visualization. In 2014 Second IEEE Working Conference on Software

Visualization, pages 83–86, 2014.

[10] A. Decan, T. Mens, and M. Claes. An empirical comparison of dependency

issues in oss packaging ecosystems. In 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER),

pages 2–12, 2017.

[11] A. Decan, T. Mens, and E. Constantinou. On the impact of security

vulnerabilities in the npm package dependency network. In Proceedings of

the 15th International Conference on Mining Software Repositories, MSR

’18, page 181–191, New York, NY, USA, 2018. Association for Computing

Machinery.

[12] S. Diehl. Software Visualization Visualizing the Structure, Behaviour, and

Evolution of Software. Springer, 2007.

[13] M. Ferreira, G. Avelino, M. T. Valente, and K. A. M. Ferreira. A comparative

study of algorithms for estimating truck factor. In 2016 X Brazilian

Symposium on Software Components, Architectures and Reuse (SBCARS),

pages 91–100, 2016.

61

[14] M. L. Griss. Software reuse architecture, process, and organization for business

success. In Proceedings of the Eighth Israeli Conference on Computer

Systems and Software Engineering, pages 86–89, 1997.

[15] J. Hejderup. In Dependencies We Trust: How vulnerable are dependencies in

software modules? PhD thesis, 05 2015.

[16] J. Hejderup, A. v. Deursen, and G. Gousios. Software ecosystem call graph for

dependency management. In 2018 IEEE/ACM 40th International

Conference on Software Engineering: New Ideas and Emerging Technologies

Results (ICSE-NIER), pages 101–104, 2018.

[17] A. King. Understanding the npm dependency model, Aug 2016.

[18] R. G. Kula, C. De Roover, D. German, T. Ishio, and K. Inoue. Visualizing the

evolution of systems and their library dependencies. In 2014 Second IEEE

Working Conference on Software Visualization, pages 127–136, 2014.

[19] R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, and D. M.

German. Understanding the usage, impact, and adoption of non-osi

approved licenses. In 2018 IEEE/ACM 15th International Conference on

Mining Software Repositories (MSR), pages 270–280, 2018.

[20] L. Merino, A. Bergel, and O. Nierstrasz. Overcoming issues of 3d software

visualization through immersive augmented reality. In 2018 IEEE Working

Conference on Software Visualization (VISSOFT), pages 54–64, 2018.

[21] L. Merino, M. Ghafari, and O. Nierstrasz. Towards actionable visualisation in

software development. In 2016 IEEE Working Conference on Software

Visualization (VISSOFT), pages 61–70, 2016.

62

[22] J. P. Moraes, I. Polato, I. Wiese, F. Saraiva, and G. Pinto. From one to

hundreds: Multi-licensing in the javascript ecosystem, 2020.

[23] A. Pano, D. Graziotin, and P. Abrahamsson. Factors and actors leading to the

adoption of a javascript framework. Empirical Software Engineering, 03

2018.

[24] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci. Vulnerable

open source dependencies: Counting those that matter. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM ’18, New York, NY, USA, 2018.

Association for Computing Machinery.

[25] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza. Visualizing evolving software

cities. pages 22–26, 09 2020.

[26] R. Powell and M. Stahnke. The 2020 state of software delivery, 2020.

[27] D. C. Schmidt. Why software reuse has failed and how to make it work for you.

[28] D. Seider, A. Schreiber, T. Marquardt, and M. Brüggemann. Visualizing

modules and dependencies of osgi-based applications. pages 96–100, 10

2016.

[29] G. Singal. How to use an npm rest api to get npm audit results - dzone

integration, Sep 2019.

[30] M. Stenius. How to get started with d3 and react, Jun 2019.

[31] C. Vendome, D. German, M. Di Penta, G. Bavota, M. Linares-Vásquez, and

D. Poshyvanyk. To distribute or not to distribute? why licensing bugs

matter. In 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE), pages 268–279, 2018.

63

[32] D.-L. Vu. A qualitative study of dependency management and its security

implications. 07 2020.

[33] E. Wittern, P. Suter, and S. Rajagopalan. A look at the dynamics of the

javascript package ecosystem. In Proceedings of the 13th International

Conference on Mining Software Repositories, MSR ’16, page 351–361, New

York, NY, USA, 2016. Association for Computing Machinery.

64

	LIST OF FIGURES
	1 Introduction
	1.1 Objective
	1.2 Overview

	2 Background
	2.1 Dependencies
	2.1.1 Categorizing Dependency Information
	2.1.2 Package Managers
	2.1.3 Dependency Tree or Graph?

	2.2 Software Visualization

	3 Implementation
	3.1 Metrics
	3.1.1 Popularity
	3.1.2 Activeness
	3.1.3 Vulnerabilities
	3.1.4 License

	3.2 Simulating Adding Dependencies
	3.3 Accessing GitHub API
	3.4 Accessing npm API
	3.5 Visualizing Data
	3.6 Storing Data in a Database
	3.7 Deploying Online

	4 Use Cases
	4.1 General Uses
	4.2 Finding Specific Metrics
	4.3 Comparing Dependencies

	5 Related Work
	5.1 Determining a Good Dependency
	5.1.1 Addressing Vulnerabilities
	5.1.2 Addressing Maintenance

	5.2 Other Software Visualizations

	6 Conclusion
	6.1 Implications
	6.2 Future Work
	6.2.1 More Metrics
	6.2.2 Potential Case Studies

	BIBLIOGRAPHY

