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ABSTRACT

Brain Tumor Detection and Classification from MRI images

Anjaneya Teja Sarma Kalvakolanu

A brain tumor is detected and classified by biopsy that is conducted after the brain

surgery. Advancement in technology and machine learning techniques could help

radiologists in the diagnosis of tumors without any invasive measures. We utilized

a deep learning-based approach to detect and classify the tumor into Meningioma,

Glioma, Pituitary tumors. We used registration and segmentation-based skull strip-

ping mechanism to remove the skull from the MRI images and the grab cut method

to verify whether the skull stripped MRI masks retained the features of the tumor

for accurate classification. In this research, we proposed a transfer learning based ap-

proach in conjunction with discriminative learning rates to perform the classification

of brain tumors. The data set used is a 3064 T MRI images dataset that contains

T1 flair MRI images. We achieved a classification accuracy of 98.83%, 96.26%, and

95.18% for training, validation, and test sets and an F1 score of 0.96 on the T1 Flair

MRI dataset.
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Chapter 1

INTRODUCTION

The number of persons infected by brain tumors increases every year. Tumors are

caused by abnormal growth of cells. Brain tumors can be benign (noncancerous

tumors) or malignant (cancerous). They are also classified as primary and secondary.

Primary tumors start in the brain or Central Nervous Systems whereas the secondary

tumors spread from other body parts into the brain. Depending on the degree of

abnormality of brain tissue, the tumors are typecast into four grading levels. Tumors

with 1 and 2 are low grades which are less dangerous. 3 and 4 grade tumors are

high-grade tumors that are highly susceptible to cancer.

Primary tumors have several types amongst 36.1% all primary tumors are referred to

as meningioma that is found near the top and outer curve of the brain. Meningioma

is a slowly growing non-cancerous tumor that causes seizures and visual problems.

Glioma is an abnormal growth in glial cells present around the neurons in the brain.

Pituitary tumors grow in pituitary glands that affect body functions. Meningioma

is iso-dense dural-based masses developed at the meninges of the three layers of pro-

tecting tissue of the brain and spinal cord, whose diagnosis depends on its anatomical

location, shape, and appearance of cells. Pituitary tumors are abnormal mass growth

in cells around the surface of the pituitary gland located at the base of the skull.

Early detection of primary brain tumors is highly complex because of their position,

shape, and diversity. Non-invasive imaging techniques are based on the absorption

properties of tissues. The delineation of absorption rates is very important for the

precise imaging of tumors. The three types of tumors concentrated on this case study
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are not much discriminative in terms of their absorption levels (Pixel gray level).

Hence the shape of the tumors will play a major role in classifying them.

Deep learning has evolved in recent years and is very successful in problems that

involve pattern recognition or shape detection. Transfer learning made its way into

Deep Learning which reduced the hectic work of training the models from scratch.

For this reason, we opted for transfer learning with Resnet 50 that is pre-trained with

an Image Net database that consists of more than 1000 different target classes. To

make it suitable for brain tumor detection we utilized Discriminative Learning rates

with Grab Cut and Skull stripping in pre-processing that allows the final layers to be

only trained based on the MRI data while the basic pattern recognition is retained

from the Resnet50 by using pre-trained weights.

1.1 Brain Tumor

The brain is a vital organ in the human body and responsible for control and decision

making. As the managing center of nervous systems, this part is very essential to be

protected from any harm and illness. Tumors are the predominant infections caused

by abnormal growth of cells that damages the Brain. Meningioma, Glioma, and

Pituitary are brain tumors as opposed to the other types. Meningiomas are mostly

a non-cancerous class of tumors that often develop in the narrow walls that usually

surround the brain [22]. Brain tumors are one of the life-threatening diseases that can

directly affect human lives. The correct understanding of brain tumor stages is an

important task for the prevention and cure of illness. To do so, Magnetic Resonance

Imaging (MRI) is widely used by radiologists to analyze brain tumors. The result of

this analysis reveals whether the brain is normal or abnormal. On the other hand, it

identifies the type of tumor in the case of abnormality[35]. With the advent of machine
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learning, the processing of MR images to have a for fast and accurate detection of

brain tumors matter.

1.2 Machine Learning and Feature Extraction

In the beginning, approaches consisted of three steps: pre-processing of MR images,

, feature generation, and extraction and classification. The median filter was used

for the improvement of image quality and preserving the edges in the pre-processing

stage [37]. Segmentation of images with clustering methods such as k-means, fuzzy

C-means, etc. generates beneficial features from images. Image segmentation plays

an essential role in analyzing and interpreting images. It has vast applications in brain

imaging, such as tissue classification, tumor location, tumor volume estimation, blood

cell delineation, surgical planning, matching. In [17], a brain tumor segmentation is

applied by using a CNN to 3D MR images. Automatic detection of the anatomical

structure of the brain with a deep neural network is proposed in [33]. In a voting

technique for an ensemble of visual appearances such as intensity and adaptive shape

modes using a combination of discrete Gaussian and higher-order patterns such as

Markov-Gibbs, random field classification is used. A hybrid deep auto-encoder with

Bayesian fuzzy clustering-based segmentation approach is developed in [32]. In this

work, after denoising with a non-local mean filter, a Bayesian fuzzy clustering ap-

proach is utilized for the segmentation of brain tumors. In [11] the 2D MRI mages

are partitioned into the left and right hemisphere and statistical features such as

mean, homogeneity, absolute value, and inertia are computed for the Support Vector

Machine (SVM) classifier. Due to the vast number of features in step two, most stud-

ies consist of a further step to extract features with more valuable information using

algorithms like principal component analysis (PCA) or SIFT detectors and SURF

descriptors [18]. In [10] after a hybrid feature extraction with a covariance matrix, a
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regularized extreme learning is used to classify brain abnormality. Evolutionary algo-

rithms like particle swarm optimization (PSO) also used in [30] for selecting from a

fusion of features. Classification method such as k-nearest neighbors, decision trees,

Support Vector Machine (SVM), the Naive Bayes, expectation-maximization, and

the random forest is the popular machine learning technique on image analysis [38].

In [14] feature extraction is used for hybrid Functional Near-Infra Red Spectroscopy

(fNIRS) and Electro Encephalo Graphy (EEG) brain-computer interface and classi-

fied with SVM and Linear Discriminant Analysis (LDA). Nowadays, Convolutional

Neural Networks (CNN) become popular in terms of feature extraction in different

studies such as medical images, video analysis, and natural language processing. The

main aspect of CNN is the ability to recognize the foremost patterns and information

from the training images. For instance, VGGNet[31], GoogleNet [36], and AlexNet

[19] are successful architectures in image classification that widely used for medical

images like brain abnormality detection. In [4] pre-processing and data-preparation

with 3D filters and CNNs with multi-path and cascade architectures are studied. A

pixel CNN architecture is applied to produce a variety of new portraits of a person

with different expressions and poses. In [39] cascade CNNs are iteratively generating a

room decoration from scratch. Since CNN has a high computational cost, researchers

try to discover new computationally simple models with accurate tumor classifica-

tion.A typical approach is to use an ensemble of small collaborative learners instead

of a complex network, to meet fast training execution and convergence. The learning

process of these peer networks can be independent of each other or have a mutual

dependency. One of the popular challenges in machine learning task is to estimate

the distribution of data. For example, there are hard-coded correlations among im-

age pixel and its neighbors, where is difficult to find without prior information. The

auto-regressive models are data-driven estimators that find such correlations with

general data. The generated output of these models is improved images conditioned
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on noisy or incomplete data. An admissible density estimator likely solves a variety

of classification, regression, missing data, and similar problems.

1.3 Paper Organization

This paper is organized as follows, Background is introduced in Chapter 2 with an

in-depth explanation of techniques used in this thesis, followed by related work which

includes the work that is related to this thesis described in Chapter 3, proposed

methodology and system diagram is discussed in Chapter 4. Experimental Setup is

described in Chapter 5 followed by results in Chapter 6, Chapter 8 contains future

work, and Chapter 9 is used for the conclusion.
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Chapter 2

BACKGROUND

2.1 Registration and Segmentation for Skull Stripping

Extraction of the cerebrum, cerebellum, and brain stem from MR images is an im-

portant initial step in neuroimaging. We used an algorithm [7] that solve this difficult

problem, often referred to as skull stripping, which is novel for its use of registration,

segmentation, and morphological operations. In most previous approaches, the goal

of skull stripping was to segment out Grey Matter(GM) and White Matter(WM)

from all other tissues, without any concern for an accurate representation of the GM

boundary with the Cerebrospinal Fluid (CSF) and other non-WM tissue. As such,

we wish to remove the skull, meninges, and other tissues without excising any cortical

surface GM or WM. The CSF surrounding the cortical surface is important to define

the GM boundary, and the method we used consistently includes a thin layer of CSF

around the brain.

The Grey Matter and White Matter we are interested in are connected by the scheme

that there is a path connecting any two GM/WM Voxels such that from the point of

highest intensity along the path to either endpoint the intensity is never increasing.

Voxels are considered to be connected if they are on the same peak [7].

This can be understood by taking a slice of an MRI dataset and using the intensities

as height information. With this representation, Voxles are connected if they are

on the same hill and disconnected if they are separated by a valley, see 2.1 for an

illustration.
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The heights and color schemes are derived from the image intensities [7]

Figure 2.1: Voxels mapping vs intensity
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With this concept it becomes apparent that if we can reasonably isolate the WM

(hill peaks) we can perform a morphological dilation based on descending this hill

to the valley represented by the CSF and image background. We will also add an

appropriate stopping criterion in those instances when we are traversing a plane, with

respect to image intensities.

As the first step, to identify the crest of the hill corresponding to the GM/WM

connected component an ABA registration [26] between the subject brain and the

atlases are performed. Here, an atlas is the combination of an intensity image and

its segmented image that the algorithm uses for registration. ABA registration max-

imizes mutual information with an underlying deformation field modeled on radially

symmetric basis functions.

A mask for each atlas is then transformed into the subject space based on the output

of the registration. The mask is a representation of the cerebral cortex, cerebellum,

and brain stem. We then generate a probability mask given in the subject space at

voxel i as,

Pi = (No of Masks that include i)/N , see Fig 2.2(a).

In addition, a tissue segmentation of the whole head MRI using FANTASM [25] is

generated. It is a tissue classification algorithm that is an extension of the adaptive

fuzzy c-means algorithm. We use four classes within FANTASM, two of these classes

(λ2 and λ3) are an approximate representation of WM and GM. other tissue classes

break down into a class made up of CSF, bone, and background (λ1) and another

(λ4) dominated by the skin and adipose tissue and a small number of WM voxels.

Fig. 2.2(b) shows all four tissue classes for a particular dataset. The algorithm then

combines the registration and segmentation in order to have the best of what either
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Figure 2.2: Steps of skull stripping
For a given data set we show (a) the probability mask (b) the tissue clas-
sification, (c) the original image, (d) the initial mask, (e) the mask after
erosion and retaining the largest connected component, (f) the mask prior
to the modified morphological closing, (g) Mask obtained and (h) Original
Mask. [7]
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has to offer. So the initial mask M is produced using the 2.1 criterion based on both

the registration and segmentation:

{i|i ∈ Γ3, Pi ≥
N − 1

N
} ∪ {i|i ∈ Γ2, Pi = 1} (2.1)

This initial segmentation provides a representation of the WM and subcortical GM

with a high degree of confidence 2.2(c). There are two problems with this initial mask:

tissue from the neck and around the base of the brain stem included in the mask,

secondly we can have gross errors in the registration that lead to portions of dura

and skull being included. To deal with these problems, An aggressive morphological

erosion operation on the current mask with a structuring element of 3x3x3 voxels

is performed. This erosion is performed twice and the largest 6-connected compo-

nent is found. That component remains in the mask and excises all other connected

components from the mask, shown in Fig. 2.2(e).

The next major step is to perform our hill decent in a reasonable manner, using both

the registration and segmentation. Starting from the eroded initial mask, we add

voxel i on the boundary to our mask M if it meets either of the two following criteria

2.2 and 2.3:

i ∈ Γ2 ∪ Γ3, Ij ≥ Ii, Pi ≥
1

N
forj ∈M ∪ Γ2 ∪ Γ3andi ∈ N18(j) (2.2)

i ∈ Γ1 ∪ Γ2 ∪ Γ3, Ij > Ii forj ∈M ∪ Γ2 ∪ Γ3andi ∈ N18(j) (2.3)

where Ii denotes the intensity of voxel i and N18(j) is the 18-connected neighborhood of voxel j.

The first condition allows growing the mask in regions of non-increasing intensity

assuming the appropriate tissue classes and the probability mask encouraging us to
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grow. While in the second condition we can add a CSF voxel to the mask only if its

neighbor is GM/WM and we are strictly descending an image intensity, thus the GM

boundary is dilated, but only by one voxel.

The mask is allowed to dilate to voxels meeting the above provisions until the number

of voxels it has added in a single sweep through the mask is less 0than 0.333% of the

total volume of the MRI data set· There are voxels that still may not be included in

the mask during the dilation because they are local intensity peaks, even though they

are areas with an appropriate tissue class and a high probability they would have us

ascending an intensity hill and so are excluded at this stage, Fig. 2(f).

To correct for these situations, a one voxel dilation, a hole filling, and a one voxel

erosion are performed to our current mask, This is referred to as a modified morpho-

logical closing. The hole-filling finds the largest 6-connected component that is the

background and sets all other background components to be part of the mask. We

perform the dilation and erosion, simply to avoid situations where the intensity peaks

may be 6-connected to the background.

The mask obtained by this algorithm is shown in 2.2(g) while the original mask is

shown in 2.2(h).

Overall, The algorithm [7] that we used first performs a fast non-linear registration

based on the Adaptive Bases Algorithm (ABA) [26] from multiple atlases to the

subject. It also generates a tissue classification on the subject using FANTASM [25].

The registration and segmentation are combined to initialize a GM/WM region within

the subject, Two morphological operations follow to ensure we have not included any

of the image intensity, segmentation, and registration results as part of a dilation

operation to descend the GM/WM hill to the CSF boundary.
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2.2 Grab Cut Segmentation

The techniques designed for solving that general matting problem are effective when

there is separation of foreground and background color distributions. The Grab Cut

approach [6] is initially based on the handling of segmentation. They have two en-

hancements to the graph cuts mechanism: “iterative estimation” and “incomplete

labeling” which together allow a considerably reduced degree of user interaction for

a given quality of the result. This allows GrabCut to put a light load on the user,

whose interaction consists simply of dragging a rectangle around the desired object.

In doing so, the user is indicating a region of background, and there is no need to

mark a foreground region. Secondly, it has a mechanism for alpha computation, used

for border matting, whereby alpha values are regularised to reduce visible artifacts.

The Grabcut algorithm by Rother et al. [6] builds upon the idea presented by Shi

and Malik. It uses a similar graph structure, where each node represents a pixel.

Each node is connected to the nodes representing its pixel neighbors, and also to

the foreground and background node. After performing mincut [5] on the graph, the

nodes connected to the foreground node will indicate the foreground pixels, and the

nodes connected to the background node will indicate the background pixels. Mincut

algorithm cuts the edges with the minimum weights.

The important part of the algorithm lies in the way the weights of the edges are

assigned, as that is the information that the mincut algorithm uses to partition the

graph. For the rest of the discussion, we will consider unary weights to be the weights

of the edges from each node to the foreground/background node, and pairwise weights

to be the weights on the edges connecting neighboring pixels.
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The model described by Rother et al.[6] uses Gaussian Mixture Models (GMMs)

to represent the color space in the images. We have two GMMs in play, one that

represents the foreground and one that represents the background. The number of

components in each GMM is set such that the variability in the foreground/back-

ground can be captured appropriately. For example, if the background is composed

of two colors, yellow and red, one component of the GMM would fit on the yellow

pixels, while the other one will fit on the red. To initialize these GMMs, the algo-

rithm uses K-means clustering, as it is relatively fast and clusters similar colors into a

single component. This algorithm also uses a fixed number of Gaussian components,

namely five, as this seems to work well on a vast number of images.

The algorithm first uses the bounding box supplied by the user to set initial foreground

and background pixels. Inside the bounding box is considered to be foreground and

outside is considered to be the background. Two GMMs are created by running

K-Means clustering on the initial segmentation.

The algorithm then goes through an iterative process of improving the segmentation.

We first assign each pixel a component from the background and the foreground

GMM. This is done by simply checking which gaussian component in each of the

GMMs returns the highest probability for any given pixel. Next, using our current

segmentation (from the previous iteration, or from the bounding box for the first

iteration) we recompute the parameters of each GMM. Basically, we take all the

pixels currently segmented as foreground and update the mean and covariance of the

foreground GMM, and similarly, we use the background pixels for the background

GMM.

We then assign the weights to the edges of the graph as follows: The unary weights

come from each of the Gaussian. They are computed as the negative of the log prob-

ability of a pixel belonging to the GMM. To reduce computational overhead, the grab
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cut paper suggests that we compute the probability of only the assigned component

for every pixel. Let uf represent the weight from the foreground GMM and ub repre-

sent the weight from the background GMM. The pairwise weights, p(i,j) are computed

from the difference between the two pixels. Specifically, p(i,j) = γ exp−β‖zi − zj‖2,

where zi and zj represent the pixel indexed by i and j. γ here is set to 50 from empir-

ical observations, while β is computed from the expected difference between pairs of

pixels from the image. Note that a higher similarity between the nodes would result

in a bigger pairwise term. The example graph in 2.3 shows how the weights are set

for each node.

Figure 2.3: Simplified illustration of grabcut’s internal graph representa-
tion
Red nodes indicate pixels inside the bounding box. Blue nodes represent a pixel
outside the bounding box (i.e. definitely background). Green nodes represent special
foreground and background nodes respectively (i.e. source and sink) [6]
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For the nodes inside the bounding box i.e red nodes, a unary term from foreground

GMM is assigned to the edge between a node and the background node and vice versa.

This is done because the unary terms are negative log probabilities and a lower value

indicated higher probability i,e if ub is lower then the node has a higher probability

of being in the background and the min cut algorithm will cut ub to make the node

partition with the background node. For the nodes outside the bounding box (blue

nodes), we assign 0 weight to the edge to the foreground node, and λ weight to the

edge to the background node. The idea is to set λ to a very high value so that the

edge weighted 0 is always cut, and the node is always assigned as background.

The pairwise terms propagate the information given by the unary terms. For example,

if we know a node is definitely background, and a neighboring node is connected with

a high pairwise weight, we would like the mincut algorithm to not cut this edge, as

the neighbor is probably a part of the background.

To sum up the grab cut method, two GMMs are created by taking the user bounding

box as input While the area inside the bounding box is foreground the area outside

is background. A graph is created with pairwise weights and unary weights mapping

each pixel node to neighbor nodes and the special foreground and background nodes.

We use mincut algorithm on unary weights to classify the pixel as foreground or

background. This process is continued until convergence. We then run mincut on

this graph, and use the resulting partition to assign each pixel to either the foreground

or the background, and re-iterate until convergence.

2.3 Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that

can take in an input image, assign importance (learnable weights and biases) to var-
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ious aspects/objects in the image, and be able to differentiate one from the other.

The pre-processing required in a ConvNet is much lower as compared to other clas-

sification algorithms. While in primitive methods filters are hand-engineered, with

enough training, ConvNets have the ability to learn these filters/characteristics. The

architecture of a ConvNet ?? is similar to that of the connectivity pattern of Neurons

in the human brain.

An example of CNN structure [28]

Figure 2.4: Convolutional neural network

A ConvNet is able to capture the spatial and temporal dependencies in an image

through the application of relevant filters. The architecture performs a better fitting

to the image dataset due to the reduction in the number of parameters involved and

the reusability of weights. In other words, the network can be trained to understand

the sophistication of the image better.

The objective of the convolution operation is to extract high-level features such as

edges from the input image. ConvNets need not be limited to only one convolutional

layer. Conventionally, the first ConvLayer is responsible for capturing the Low-Level
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features such as edges, color, gradient orientation, etc. With added layers, the ar-

chitecture adapts to the high-level features as well, giving us a network that has a

wholesome understanding of images in the dataset, similar to how we would. There

are two types of results to the operation — one in which the convolved feature is

reduced in dimensionality as compared to the input, and the other in which the di-

mensionality is either increased or remains the same. This is done by applying Valid

Padding in case of the former, or the Same Padding in the case of the latter.

Figure 2.5: Pooling

Similar to the convolutional layer, the pooling layer is responsible for reducing the

spatial size of the convolved feature. This is to decrease the computational power

required to process the data through dimensionality reduction. Furthermore, it is

useful for extracting dominant features which are rotational and positional invariant,

thus maintaining the process of effectively training of the model. There are two

types of Pooling: Max Pooling and Average Pooling 2.5. Max Pooling returns the

maximum value from the portion of the image covered by the Kernel. On the other
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hand, Average Pooling returns the average of all the values from the portion of the

image covered by the Kernel.

Max Pooling also performs as a Noise Suppressant. It discards the noisy activations

altogether and also performs de-noising along with dimensionality reduction. On the

other hand, Average Pooling simply performs dimensionality reduction as a noise

suppressing mechanism. Hence, we can say that Max Pooling performs a lot better

than Average Pooling.

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a

Convolutional Neural Network. Depending on the complexities in the images, the

number of such layers may be increased for capturing low-levels details even further,

but at the cost of more computational power.

The final output is flattened and feed it to a regular Neural Network for classification

purposes. Adding a Fully-Connected layer 2.6 is a usual way of learning non-linear

Figure 2.6: CNN classification - fully connected layer
CNN classification layer description [28]
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combinations of the high-level features as represented by the output of the convolu-

tional layer. The Fully-Connected layer is learning a possibly non-linear function in

that space.

Now that we have converted our input image into a suitable form, we shall flatten

the image into a column vector. The flattened output is fed to a feed-forward neural

network and backpropagation applied to every iteration of training. Over a series

of epochs, the model is able to distinguish between dominating and certain low-level

features in images and classify them using the softmax classification technique.

2.4 ResNet

In General, to solve complex problems we use deep neural networks with a large no

of layers. The reason behind this is that these layers progressively learn complex

features. In the case of recognizing features the first layers may learn to detect edges,

the consequent layers may learn to identify textures, and so on. But the maximum

threshold for depth with a traditional convolutional neural network (CNN) poses

limitations to the number of layers that can be added. Because as the number of

layers increases the accuracy decreases with traditional CNN.

This problem of training very deep networks has been alleviated with the introduction

of ResNet or residual networks and these Resnets are made up from residual blocks

2.7. The core idea of ResNet is introducing a so-called “identity shortcut connection”

that skips one or more layers,

it is argued by [13] that stacking layers shouldn’t degrade the network performance

because we could simply stack identity mappings (layer that doesn’t do anything)

upon the current network, and the resulting architecture would perform the same.
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Figure 2.7: Residual connection

This indicates that the deeper model should not produce a training error higher

than its shallower counterparts. They hypothesize that letting the stacked layers

fit a residual mapping is easier than letting them directly fit the desired underlying

mapping. And the residual block above in 2.7 explicitly allows it to do precisely that.

ResNet was not the first to make use of shortcut connections, Highway Network

introduced gated shortcut connections. These parameterized gates control how much

information is allowed to flow across the shortcut. A similar idea can be found in the

Long Term Short Memory (LSTM) [29] cell, in which there is a parameterized forget

gate that controls how much information will flow to the next time step. Therefore,

ResNet can be thought of as a special case of Highway Network. However, experiments

show that Highway Network performs no better than ResNet, which is kind of strange

because the solution space of Highway Network contains ResNet, therefore it should

perform at least as well as ResNet. This suggests that it is more important to keep

these “gradient highways” clear than to go for larger solution space.
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Figure 2.8: Resnet architecture
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Following this intuition, the authors of [?] refined the residual block and proposed

a pre-activation variant of the residual block [?], in which the gradients can flow

through the shortcut connections to any other earlier layer unimpededly. In fact,

using the original residual block in [?], training a 1202-layer ResNet resulted in worse

performance than its 110-layer counterpart. Some of the variants of residual blocks

are shown in 2.9.

Figure 2.9: ResNet block variants

2.5 Discriminative Learning Rates

The discriminative learning rate is when you set different learning rates for different

layers, usually lower learning rates at early layers and higher learning rates at later

layers.

So, for the convolutional neural network, we know that the layers at the beginning

are good at learning general features whereas the layers towards the end of the ar-

chitecture learn specific features. When we unfreeze all the layers and are ready to

update the weights, we can set the learning rate to be different for different layers.
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Specifically, we want the first layer to have the lowest learning rate and the final layer

to have the highest learning rate. The layers in between should have a learning rate

ranging between the lowest and the highest learning rate.

The reason for the different learning rates for different layers is because layers at the

beginning require very little fine-tuning since they mainly capture general features.

The activation for different layers from initial to end is captured and is shown in2.10.

It is observed that end layers are more activated than initial layers.

Figure 2.10: Activations of different layers with time on x-axis
Each plot corresponds to a single layer and the initial layer is at the top and final at the bottom [15]

As different layers capture different types of information they should be fine-tuned to

different extents. We used a novel fine-tuning method called discriminative fine-tuning

[15]. Instead of using the same learning rate for all layers of the model, discriminative

fine-tuning allows us to tune each layer with different learning rates. For context, the

regular stochastic gradient descent (SGD) update of a model’s parameters at time

step t looks like equation (2.4):

θt = θt−1 − η.∆θJ(θ) (2.4)
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where η is the learning rate and ∆θJ(θ) is the gradient with regard to the model’s

objective function. For discriminative fine-tuning, we split the parameters θ into θ1,

. . . , θL where θl contains the parameters of the model at the l-th layer and L is

the number of layers of the model. Similarly, we obtain η1 , . . . ,ηL where ηl is

the learning rate of the l-th layer. The SGD update with discriminative finetuning is

then the (2.5) :

θlt = θlt−1 − ηl.∆θtJ(θ) (2.5)

It is empirically found to work well to first choose the learning rate ηl of the last

layer by fine-tuning only the last layer and using ηl−1 = ηl/2.6 as the learning rate for

lower layers. For adapting its parameters to task-specific features and for the model

to quickly converge to a suitable region of the parameter space at the beginning of

training and then refine its parameters.

Using the same learning rate (LR) throughout training is not the best way to achieve

this behavior. Instead, slanted triangular learning rates (STLR) [15] is used, which

first linearly increases the learning rate and then linearly decays it according to the

following update schedule, which can be seen in 2.11

cut = [T.cut frac] (2.6)

p =


t/cut, ift < cut

1− t−cut
cut.( 1

cut frac−1
)
, otherwise

(2.7)

ηt = ηmax.
1 + p.(ratio− 1)

ratio
(2.8)

24



Figure 2.11: Slanted traingular learning rate
The slanted triangular learning rate schedule used as a function of the
number of training iterations [15]

where T is the number of training iterations, cut frac is the fraction of iterations we

increase the LR, cut is the iteration when we switch from increasing to decreasing the

LR, p is the fraction of the number of iterations we have increased or will decrease the

LR respectively, ratio specifies how much smaller the lowest LR is from the maximum

LR ηmax, and etat is the learning rate at iteration t. Generally cut frac = 0.1, ratio

= 32 and ηmax = 0.01 is used.

The techniques used in this research are described in this chapter starting with skull

stripping followed by grab cut and discriminative learning rates. In the next chapter

we discuss the related works to this research and draw out some similarities and

differences to our work.
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Chapter 3

RELATED WORK

This chapter describes the approaches that are related to our work. The work by

Naser et al. [24] uses a combination of CNN based on U-Net to segment the tumors

into different grades of glioma. The research by begum et al. [3] proposed a system

with RNN and optical wavelet statistical features to perform segmentation to get

the region of interest and then classification. This work also included noise removal

techniques in pre-processing. Hashem et al. [12] proposed a method that uses two

CNNs and a join distribution is created using NADE and the output segmentation

is a combination of two CNNs. The research work [20] uses a two-level classification

one into benign and malignant tumors and then malignant is classified into glioma

and meningioma. They used AlexNet and GoogleNet respectively for classification.

The work [34] used transfer learning on VGG by using a block-based hyperparameter

tuning in which they divided the neural net into six blocks and fine-tuning is done in

each block with previous blocks frozen.

3.1 Brain tumor segmentation and grading of lower-grade glioma using

transfer learning

Glioma tumors have different grades which help in estimating the survival rates of

the patients. In this work [24] they used a combination of CNN based on the U-Net

to segment the tumors. They used a transfer learning-based approach with Vgg16

as the base model. This work used T1 flair images of 110 patients of Lower Grade

Glioma(LGG). The model classified LGG into grade II and grade III with an accuracy
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of 89% for MRI images and 95% for patients. The results achieved in this work proved

that transfer learning can be used for tumor segmentation and classification. In our

work, we used transfer learning for classifying different types of tumor while in this

work they used it to classify into different grades of Glioma tumor. This work also

used segmentation combined with classification since the Grades of the tumor mostly

dependent on the shape of the tumor. In our work, we did not use segmentation to

get the masks and use masks to classify because the three different types of tumors

can also be differentiated based on their position, Using the masks restrict the model

only to make use of the shape and texture.

3.2 Combining optimal wavelet statistical texture and recurrent neural

network for tumor detection

This Research [3] proposed a system with a combination of optimal wavelet statisti-

cal features and recurrent neural network (RNN). The system includes noise removal,

feature extraction, feature selection, classification, and segmentation. For noise re-

moval, they used a Gaussian filter for better classification and segmentation. In

Feature extraction, the number of features is reduced based on Oppositional Gravita-

tional Search Algorithm (OGSA). The classifier uses selected features that are input

into Recurrent Neural Network(RNN) to classify an image into having or not having

a tumor. After classification Images having tumors are segmented to get the Region

of interest with a modified growing algorithm (MRG). They achieved an accuracy of

95%.In our approach since we are using skull stripping which contains Morphological

operations in the output mask the noise is not retained which is also verified by the

grab cut method. The combination of Morphological Dilation and Erosion is proven

in [16] to remove noise to a great extent.
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3.3 Detection of brain tumors from MRI images base on deep learning

using hybrid model CNN and NADE

In this paper [12] they used MRI images to train a paradigm that consists of a neural

autoregressive distribution estimation (NADE) and a convolutional neural network

(CNN). They have four partitions in architecture two CNNs, a distribution estimation,

There are four partitions in models’ architecture including two CNNs, a distribution

estimator, and a fully connected network. A joint distribution is found to help feature

extraction. NADE helps in identifying the brain cell placement which is useful to

identify the shapes of the tumor. Similar to this method where two CNNs learn

features independently and output to autoregressive model the Grab Cut Method also

uses two GMMs one for tumor and the other for background. The main difference

is that here the outputs of two CNNs are complemented while in Grab Cut the two

GMMs one estimates the tumor pixels and the other estimates the background pixels.

They used cross-entropy loss function and trained on the 3064 T1-weighted images

which are in the same line with our research work. The accuracy achieved is 95 %

with 6 cross-fold validation.

3.4 A framework for Brain Tumor segmentation and classification using

Deep Learning

This work [20] proposes a framework for brain tumor detection that includes Skull

stripping and tumor segmentation. They used transfer learning with two differ-

ent models AlexNet and GoogleNet and implemented a hierarchy for classification.

AlexNet to classify into Malignant and Benign Tumors and Google Net to classify

into Glioma and Meningioma for tumors that are classified as Malignant. The pre-

processing includes Data Augmentation of Rotating and Flipping. They achieved a
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precision of 0.9375, recall of 1, and f-measure of 0.96 for classification in to malignant

and benign. They achieved a precision of 0.95, recall of 1, f-measure of 0.9743, and

accuracy of 0.9750 for classification of Malignant tumors into Glioma and Menin-

gioma using GoogleNet. While in our method we employed only a single level of

classification into Meningioma, Glioma, and Pituitary Tumors this work is similar to

our work in terms of the sequence of steps. We added a step for verification of Skull

Stripping using the Grab cut Method to make sure that the T1-Flair properties are

retained in the output masks of skull stripping.

3.5 Brain tumor classification for MR images using transfer learning and

fine-tuning

In this work, [34] the authors used transfer learning with pre-trained CNN as the

base model. Since the dataset available in the medical analysis is generally small

transfer learning will be of great advantage. They proposed a block-wise fine-tuning

strategy based on transfer learning. The VGG is divided into six blocks and the

fine-tuning is done from the last block and all other blocks are frozen. If in case of

fine-tuning the last two blocks all other layers before them are frozen. They evaluated

the proposed method on 3064 T1 weighted magnetic resonance images benchmark

data set. They achieved an accuracy of 94.42% for five-fold cross-validation. Our

approach also includes transfer learning but instead, we used discriminative learning

for fine-tuning. Although our core idea is to retain the weights of the initial layers

as they are good in recognizing the basic features we used slanted triangular learning

rates distribution instead of linear learning rate distribution.

This chapter summarizes the previous approaches related to our thesis. The work by

Naser et al. [24] followed segmentation to get the masks and then used masks for

29



classification since they are dealing with the same type of tumor but different grades.

We did not follow this approach our classification is for different types of tumors. The

work by Begum et al. [3] followed some noise removal techniques to clean MRI images.

Since we are performing skull stripping which involves morphological operations we

did not perform any additional noise removal techniques. Hashem et al. [12] proposed

a method that uses two CNNs and a join distribution for segmentation which is

similar to the grab cut algorithm but instead it uses GMMs to get the foreground

and background pixels. The work [34] used transfer learning on Vgg19 by using a

block-based hyperparameter tuning to get better results. Instead, in our work, we

used discriminative learning rates for hyperparameter tuning.
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Chapter 4

METHODOLOGY

This chapter describes the methodology and system diagram that we used for the

classification of brain tumors.

Figure 4.1: System diagram

4.1 Pre-Processing

The pre-processing involves Skull stripping to remove the skull from the MRI images,

the Grab cut method to verify the mask obtained in the skull stripping, and Data

Augmentation.
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4.1.1 Skull Stripping

The skull is present around the outer area of the MRI image. To achieve better

classification the skull is removed since the shape of the skull does not affect the

outcome of the classification. Grey Matter (GM) and White Matter (WM) are the

things we are interested in. They are connected in such a way that the point from

high intensity to either endpoint is connected. The height information is represented

by intensity and voxels are said to be connected if they are on the same peak and

disconnected if they are on different peaks or separated by a valley. The steps in the

order performed in skull stripping are

• A registration based on the Adaptive Bases Algorithm (ABA) [26] between the

subject brain and atlases is performed. Atlases are a combination of an intensity

image and its segmented image that the algorithm uses for registration

• The mask for each atlas is then transformed into the subject space based on

the output of the registration. The mask is a representation of the cerebral

cortex, cerebellum, and brain stem. We then generate a probability mask given

in the subject space at voxel i as, Pi = (No of Masks that include i)/N, see Fig.

2.2(a).

• We also generate a tissue segmentation of the whole MRI using FANTASM [25]

which has two classes Γ2, Γ3 an approximation of WM and GM along with dura,

skull, and adipose tissue.

• The other tissue classes break down into a class made up of CSF, bone, and

background (Γ1) and another (Γ4) dominated by the skin and adipose tissue

and a small number of WM voxels.
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• This initial segmentation provides a representation of the WM, and subcortical

GM with a high degree of confidence.

• The segmentation and registration are combined to obtain the final mask using

criteria in equation 2.1.

• This mask includes tissue from the neck and the base of the brain stem and also

contains some errors in registration that led to dura and skull being included.

• To overcome this morphological erosion is performed which means the value

of output pixel is the minimum of all pixels. A pixel is set to 0 if any of

the neighboring pixels have the value 0. Overall this operation only keeps

substantive objects. This erosion is done twice and the largest 6-connected

component is found.

• Using both the outputs of registration and segmentation hill descent is per-

formed when the voxels meet the criteria in equation 2.2 or equation 2.3 they

are included.

• There are voxels that still may not be included in the mask during the dilation

because they are local intensity peaks

• To correct for these situations, a one voxel dilation, a hole filling, and a one

voxel erosion is performed to our current mask, The hole-filling finds the largest

6-connected component that is the background and sets all other background

components to be part of the mask. We perform the dilation and erosion,

simply to avoid situations where the intensity peaks may be 6-connected to the

background.

The obtained mask does not contain the skull. But because of morphological opera-

tions we performed need to verify whether the masks retain the features to classify
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the tumor, To verify this we use the grab cut algorithm that takes the mask and the

part of the tumor mask and it should obtain the complete tumor mask to consider

the mask in the dataset.

4.1.2 Grab Cut

Grab cut is used in our system to verify whether the mask obtained from skull strip-

ping contains features for the tumor to be detected. The Grabcut algorithm by Rother

et al. [6] builds upon the idea presented by Shi and Malik. It uses a similar graph

structure, where each node represents a pixel. Each node is connected to the nodes

representing its pixel neighbors, and also to the foreground and background node.

The idea is that after performing min-cut on the graph, the nodes connected to the

foreground node will indicate the pixels in the foreground, and the nodes connected

to the background node will indicate the pixels in the background.

It uses Gaussian Mixture Models to represent the color space in the images. We have

two GMMs in play, one that represents the foreground and one that represents the

background. The number of components in each GMM is set such that the variability

in the foreground/background can be captured appropriately. This algorithm uses K-

means, as it is relatively fast and clusters similar colors into a single component. It

also uses only five gaussian components.

The Grab cut based tumor detection Algorithm is described as:

• Step1-MRI Image is taken and segmented into tumor as foreground and all

other parts as the background image.

• Step 2-Assign label = 1 for tumor region obtained from bounding box and label

= 0 for non-tumor region.
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• Step 3-Two sets of GMM parameters mean, co-variance are estimated using

Gaussian components model one for tumor and the other for background region.

• Step 4-Apply Expectation-Maximization algorithm to get better iterative seg-

mentation by energy minimization function.

• Step 5-Tumor region is extracted from background image by taking the color of

foreground pixel and assigning those pixels around the boundary extraction to

reduce the blurriness in pixel.

We verify that the features to detect the tumor are still retained if the output of the

grab cut matches the original tumor mask. In this case, the image is retained, or else

the image is considered to be high in noise or lost its features to detect the tumor

and removed from the dataset.

4.1.3 Dataset and Augmentation

The dataset used is the 3064 -T dataset [8] which contains T1 flair MRI images.

The tumor is of 3 different classes namely Meningioma, Glioma, and Pituitary. The

dataset in Mat format is converted to the .npy array list and the data is transformed

into 8 images of sets (0-45 degrees),(45-90 degrees) . . . (325-360 degrees). The labels

are modified accordingly for the training and validation and test set. After augmen-

tation the no of MRI images in dataset is increased by 8 times.

4.2 Transfer Learning and Training

We used ResNet50 [13] as the base model. ResNet is trained with Imagenet [9] dataset.

The model is initially trained by freezing all the layers except the last 2 layers with
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the training data. Hyperparameter tuning is done to find the optimal learning rate to

train with. After training the last two layers then the model is unfrozen and hyper-

parameter tuning is done once again and the layers are trained with discriminative

learning rates to make sure that the initial layers do not change by much while the

last years change the most. The Slanted triangular learning rates described in chapter

2 are used for hyperparameter tuning. This is done based on the assumption that

the pre-trained ResNet is better at recognizing initial features and large data is not

required for training.

4.2.1 Loss Function

The loss function we used is Cross-entropy. Cross-entropy is a measure of the dif-

ference between two probability distributions for a given random variable or set of

events. Entropy is the number of bits required to transmit a randomly selected event

from a probability distribution. A skewed distribution has low entropy, whereas a

Figure 4.2: Cross entropy

distribution where events have equal probability has a larger entropy. Cross-entropy

builds upon the idea of entropy from information theory and calculates the number

of bits required to represent or transmit an average event from one distribution com-

pared to another distribution. In this case, one distribution is the final dense layer

output of the input image and the other is the final dense layer output of the target

image.
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Chapter 5

EXPERIMENTAL SETUP

5.1 Dataset

This brain tumor dataset obtained from Figure Share [8] contains 3064 T1-weighted

contrast-enhanced images from 233 patients with three kinds of brain tumor: menin-

gioma (708 slices), glioma (1426 slices), and pituitary tumor (930 slices). Due to the

file size limit of the repository, the whole dataset is split into 4 subsets, and archive in

4 .zip files with each .zip file containing 766 slices. The 5-fold cross-validation indices

are also provided.

This data is organized in matlab data format. Each file stores a struct containing the

following fields for an image:

• cjdata.label: 1 for meningioma, 2 for glioma, 3 for pituitary tumor

• cjdata.PID: patient ID

• cjdata.image: image data

• cjdata.tumorBorder: a vector storing the coordinates of discrete points on tumor

border. For example, [x1, y1, x2, y2,...] in which x1, y1 are planar coordinates

on tumor border. It was generated by manually delineating the tumor border.

So we can use it to generate binary image of tumor mask.

• cjdata.tumorMask: a binary image with 1s indicating tumor region
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Figure 5.1: Dataset in different axial planes

5.2 Baselines

The Dataset is divided into Training, Validation, and Test Set of 70%, 15%, and

15%. The Accuracy and F1 score are calculated. The accuracy and loss graphs are

plotted for training and validation data, A classification report is generated with

macro average and weighted average of precision, recall, and f1 score. The accuracy

and f1 score are compared with other research works of Afshar et al. [?], Vimal Kurup

et al. [21], Srinivasan et al.[1], Swati et al. [35] and Hashemzehi et al. [12] on the

same dataset.

5.3 Hardware Specifications

The hardware specifications are

• 16 GB DDR4 RAM;
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• 12 GB NVidia Tesla K40 GPU

• 50 GB of Non-Persistent Storage
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Chapter 6

RESULTS

The results obtained were presented in this chapter. The results are discussed and

interpretations from the results are made. The results are compared with the other

works in 6.1 and discussion about results are done in 6.2.

The Dataset is divided into Training, Validation, and Test Set. The training data is

70%, Test data is 15% and validation data is 15%. The output classes are Meningioma,

Glioma, and Pituitary tumors. The precision (equation 6.1), recall (equation 6.2) and

f1 score (equation 6.3) are calculated for each target class. The overall accuracy is

calculated for the training test and a validation dataset is also obtained.

Precision =
TruePositive

TruePositive+ FalsePositive
(6.1)

Recall =
TruePositive

TruePositive+ FalseNegative
(6.2)

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

(6.3)

After performing data augmentation the samples in each train, validation, and test

data are 17152, 3680, and 3680 respectively. The loss function used is Cross-Entropy

Loss and the optimizer used is Stochastic Gradient Descent(SGD) with a momentum

of 0.9. Hyperparameter tuning for learning rate is performed to find that 3e-4 is a
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good learning rate. This is used as the last layer’s learning rate and the remaining

layers learning rate is obtained by dividing it by 2.7. The batch size used is 4.

The precision, recall, and f1 score for each of the classes is reported in the 6.1. The

F1 score for the 3 target classes is reported as 0.93, 0.97, 0.97 respectively for the

test dataset. The accuracy for Train, Validation, and Test set is represented in 6.2

which is 98.83 percent for training data 95.26 percent for validation data, and 95.18

for Testing data.

There could be a possibility that the test set contains mostly a single class and our

model might be biased towards that and predicts the same class for most of the

inputs. To prove that the test set is unbiased and our model is not predicting the

same class for all the inputs. We calculated macro average and the weighted average

for precision, recall, and f1-score in 6.1 both have the same f1 score that is 0.96 which

implies that the dataset is unbiased and all the classes are fairly weighted.

Figure 6.1: Classification Report

We also plotted the loss graph for validation and training dataset in 6.4. The loss

plot indicates that the training loss decreased as the number of epochs increased while

the validation loss went up and down. From the validation loss graph, we can see
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Figure 6.2: Accuracy

that we did not settle for local minima for validation loss, trained a little further.

Overfitting occurs if validation loss is increasing while the training loss is decreasing.

We imply that overfitting does not occur from the plot as both the training and

validation loss are decreasing before converging. We also plotted the accuracy plot in

6.3 which conveys the same that both validation and training accuracy is increasing

at the same time. If validation accuracy is decreasing at the cost of increasing in

training accuracy in that case we can say overfitting occurs.

Figure 6.3: Accuracy plot
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Figure 6.4: Loss plot

43



Figure 6.5: Confusion matrix

The Confusion matrix 6.5 is also plotted to check for the misclassified labels and

correctly classified labels. class 1 is correctly labeled for 843 instances, class 2 is cor-

rectly labeled for 1655 instances and 1031 instances of class 3 are classified correctly.

It can be observed in the scale that the misclassified instances are comparatively low

in the case of Pituitary tumors because their spatial distribution is very constrained

and limited in comparison to Meningioma and Glioma which have very wide spatial

distribution.

6.1 Comparision

The results obtained using this method are compared with recently published papers

in 6.1. In comparison with work by Hashemi et al.[12] that used NADE and CNN,
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Results Comparision
Reference Data Division Accuracy F1 score
Afshar [2] Not stated 86.56 NA
Vimal Kurup
[21]

80 % in training and 20 %
in test

92.60 0.91

Srinivasan [1] 75% in training and 25 % in
test

93.30 NA

Hashemezehi et
al. [12]

Not stated 95% 0.94

Swati et al. [35] Not stated 94.42% 0.91
Proposed
Method

70 % in training ,15% in val-
idation and 15% in test

95.26% 0.96

Table 6.1: Comparision of results

our transfer learning method performed better because of the size of the dataset. We

performed data augmentation which increased the size of the dataset and exposed

our model to various possible shapes of the tumor. Transfer learning models are

good at detecting low-level features and require less data compared to non-transfer

learning-based approaches. In comparison with work by Swati et al. [35], even though

both of the works used transfer learning approach we performed skull stripping which

eliminated features of the skull that are not useful to detect tumors, and also used

discriminative learning instead of block-based hyperparameter tuning which helped

us in getting better results and also achieved the results with fewer epochs. The work

by Afshar et al. [2] uses a capsule network to first segment the region of interest and

then detect the tumor. Even though they achieved better accuracy compared to other

CNN-based models the transfer learning approaches in general performed better.

6.2 Discussion

The main reason for misclassification is because of variability in brain tumor sizes and

locations of tumor tissues belonging to Meningioma and Glioma brain tumor classes.
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The similarity of the distribution in sizes across the data set of Meningioma and

Glioma tumor classes is also an added reason. This collectively indicates the difficulty

any deep learning neural network would have distinguishing between Meningioma

and Glioma tumor classes based on size and location alone in this data set. In

addition, transfer learning approaches perform better in the case of small datasets.

It is because of the base model’s ability to detect the low-level features well and we

only need to train for high-level features. In addition methods like skull stripping and

data augmentation seems to provide better results as the model will be exposed to

fewer unimportant features and different shapes of tumors. However, there are many

improvements that can be made to our existing methodology which pointed in future

works. The future works are discussed in the next chapter.
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Chapter 7

FUTURE WORKS

The real-world problems require proper addressing in the domain of medical image

analysis that has been external to the domain of computer vision. The computational

complexity in handling MR image modalities at a single instance is the major chal-

lenge in imaging and pre-processing techniques. During MR image scan for diagnosis

correct tuning of parameters and motion applied to images, are areas that can be

explored in the future. The time taken for processing and segmenting is considerably

high which makes it difficult to process in real-time situations. The classification

using transfer learning while proven effective and takes fewer resources to train it has

some bias because of the datasets that are used to pre-train the models. This should

be addressed in future works to make the system more efficient. The current meth-

ods that deal with the noise in the MRI images are also responsible for reducing the

features in the MRI images. Therefore models with better Noise removal techniques

that don’t flatten the images can further increase the model’s accuracy. Techniques

like semi-supervised learning can be used to augment the size of the dataset.
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Chapter 8

CONTRIBUTION

In this work the main contributions are:

• A system that classifies tumors into 3 different types with more accuracy than

current non-transfer learning methods.

• Provide sufficient evidence that transfer learning can be used for domains like

Medical images even though the model is pre-trained with data that does not

contain the domain.

• Usage of discriminative learning rates in case of transfer learning to make more

efficient models and makes it easier to train with fewer resources.

• Classification can be more effective when appropriate pre-processing steps like

grab cut and skull stripping methods are paired to achieve better results.
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Chapter 9

CONCLUSION

The proposed methodology successfully segments the MRI images into three tumors

with an accuracy of 95.18%. In comparison with the other recently published works

in which the models are trained from the scratch, our model was built using transfer

learning using Resnet50 as a base model and trained with discriminative learning

rates performed better. We used registration and segmentation-based skull stripping

to remove the skull portion and the grab cut method to verify whether the tumor

features are retained after removing skull data. After training for 10 epochs we

achieved 95.26 % accuracy for the validation and 95.18 % for the test set and 98.86

% for the training set and surpassed those previous models. The f1 score achieved is

0.96 macro average. For individual classes f1 score are 0.93, 0.97, 0.97 respectively.

Even though the developed system classifies the tumor with reasonably good accuracy

there is still a need for medical experts to confirm the results as there is a probability

of error. This system can be used for preliminary analysis for brain tumor detection

before it can be sent to the experts. In comparison, with the accuracy of the medical

experts in diagnosing the tumor which is found to be 69% in a survey [23] the proposed

system performs better. The model can be furthermore trained or additional data

can be used to train to increase the accuracy as it is not close to overfitting.
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