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ABSTRACT 

A Method for Visualizing the Structural Complexity of Organizational Architectures 

Jacob King 

 To achieve a high level of performance and efficiency, contemporary aerospace 

system must become increasingly complex.  While complexity management traditionally 

focuses on a product’s components and their interconnectedness, organizational 

representation in complexity analysis is just as essential.  This thesis addresses this 

organizational aspect of complexity through an Organizational Complexity Metric (OCM) 

to aid complexity management.  The OCM augments Sinha’s structural complexity 

metric for product architectures into a metric that can be applied to organizations.  

Utilizing nested numerical design structure matrices (DSMs), a compact visual 

representation of organizational complexity was developed.  Within the nested numerical 

DSM are existing organizational datasets used to quantify the complexity of both 

organizational system components and their interfaces.  The OCM was applied to a 

hypothetical system example, as well as an existing aerospace organizational 

architecture.  Through the development of the OCM, this thesis assumed that each 

dataset was collected in a statistically sufficient manner and has a reasonable 

correlation to system complexity.  This thesis recognizes the lack of complete human 

representation and aims to provide a platform for expansion.  Before a true 

organizational complexity metric can be applied to real systems, additional human 

considerations should be considered.  These limitations differ from organization to 

organization and should be taken into consideration before implementation into a 

working system.  The visualization of organizational complexity uses a color gradient to 

show the relative complexity density of different parts of the organization. 

Keywords: Structural Complexity, Design Structure Matrix, Organizational Metric 
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NOMENCLATURE 

𝐴𝑖,𝑗 adjacency matrix of i , j elements 

𝐶 total structural complexity 

𝐶1 component complexity 

𝐶2 interface complexity 

𝐶3 topological complexity 

𝐹𝑐 complexity factor 

𝑅(𝑖) vector of component characteristic ranks 

𝑋𝑘
(𝑖,𝑗)

 vector of component characteristics 

𝑐(𝑘) interface type characterization 

𝑓𝑖 percentile rank of the ith value (discrete) 

𝑓𝑗 percentile rank of" jth value (continuous) 

𝑟𝑗
(𝑖)

 percent rank w.r.t. variable 𝑥𝑗
(𝑖) 

𝑤𝑗
(𝑖)

 weight assigned to jth factor for ith component 

𝑥𝑗
(𝑖)

 characteristics vector of interface i , j 

𝑦𝑖,𝑗 development cost/performance of ith and jth component 

𝑧𝑖,𝑗
(𝑘)

 interface development cost/performance of ith and jth interface type 

𝛼𝑖 component complexity of component i 

𝛽𝑖,𝑗 interface complexity of interface i , j 

𝜎2 standard deviation 

µ distributions mean 

𝐸(𝐴) matrix energy of matrix A 

𝐿 number of data values that are less than the jth value 

𝑁 number of total data values 

𝑇𝑅𝐿 technology readiness level 



1 

 

Chapter 1  

INTRODUCTION 

Aerospace systems provide a unique challenge in the systems engineering domain 

as they can be complex. Managing complexity has become a key focus of development 

teams, as there is a direct relationship between developing complex systems and cost 

overrun. System complexity is derived from a system’s large number of components and 

their interwoven interactions. As aerospace systems grow larger, system complexity 

inherently increases.  In 2014, Dr. Kaushik Sinha addressed quantitative complexity 

analysis by considering system structure and arrangement to develop a structural 

complexity metric. Sinha’s structural complexity metric considers the size and geometry 

of the information interfaces, as well as the complexities associated with individual 

subsystems/components (Sinha, 2014). Additionally, Sinha’s structural complexity metric 

considers the modularity of system structures and accounts for their integrations by 

showing the scalability of the complexity metric (Sinha, 2014). 

This thesis expands upon Sinha’s product architecture structural complexity metric to 

develop an organizational complexity metric (OCM). With the aim of managing 

complexity throughout the life cycle process, the organization of human resources plays 

an essential role in system conception, development, and utilization. While Sinha used 

engineered products as the basis for the metric, many parallels can be drawn between 

product architectures and organizational architectures.  Having teams consisting of 

complex human individuals interacting within diverse organizational structures, 

mismanaging information flow could contribute to overall system complexity.  Using a 

human-centered approach along with the application of the modified complexity metric to 

organizational systems could help manage the ever-growing complexity of modern 

aerospace systems. 
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1.1 Statement of Purpose 

The purpose of this thesis is to investigate the legitimacy of applying a modified 

complexity metric to organizational architectures.  With differing team organization 

methodologies varying from industry to industry, this thesis aims apply the organizational 

complexity metric (OCM) to organizations of differing sizes and arrangements.  This 

thesis will test the legitimacy of taking an organizations topology, interfaces, and 

individuals into account when attempting to analyze complexity.   

1.2 Purpose of Study 

The underlying premise of this thesis is the relation of large costs overruns and 

overall system complexity.  With system complexity studies focusing on the engineered 

product itself, there is an equal importance tied to the organizational architecture of the 

engineering teams that develop these products.  With human interactions showing 

complex properties that reflect those of the products they are developing, understanding 

human influence is essential to analyzing system complexity.  This thesis will investigate 

the need for human and organizational considerations when attempting to understand 

system complexity. 
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Chapter 2 

LITERATURE REVIEW 

Complexity management will be discussed in the context of engineering systems.  

More specifically, structural complexity in an organizational context and how structural 

complexity is managed will be explored.  An overview of Bearden’s ranking system and 

Sinha’s product architecture complexity metric will supplement the proposed OCM 

methodology in Chapter 3.  Lastly, an important aspect of the OCM is how a system is to 

be represented.  For the OCM, nested numerical DSMs will be implemented to better 

communicate the relative complexity densities throughout the organization.  These areas 

of high complexity provide insight into potential problem areas within an organization.  

Once these problem areas are identified, it is the job of systems engineers to monitor 

and support these areas as needed. 

2.1 Complexity in Engineering Systems 

As stated before, the challenges with contemporary systems are a result of being 

complex.  However, complexity in a systems sense is more than sheer size and scale.  

Complexity in modern engineering systems can be attributed to the interdependence of 

components and their interactions.  In the context of this thesis, a system that is large in 

scale, interlaced, and can exhibit unpredicted behavior is considered complex.  For 

example, an automobile, while complex, shows fewer unpredictable tendencies than a 

system such as an extremely intelligent software system.  While an automobile is made 

up of numerous components from differing disciplines, the operation of an automobile is 

relatively linear and predictable.  As for a grand software system, different modules have 

the capability of running in parallel, while exchanging information between the modules.  

This nonlinear interdependence is a large contributor to unpredictability and, therefore, is 

considered complex.  This complexity grows in aerospace systems, as the systems are 

an amalgamation of both complex physical and cyber systems.  Because of the scale of 
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these systems, only the organization of individuals (or teams) can bring systems such as 

these into existence.  Complexity is defined by the unpredictability or emergence of 

certain system behaviors due to the interwoven components and their overlapping 

responsibilities.  This emergent behavior makes it difficult to predict system development 

and performance contributing to reductions in reliability and robustness (Sinha, 2014). 

System complexity is not inherently negative.  System complexity can improve 

performance and system robustness and is often necessary to meet minimum 

acceptable operational requirements.  This can be seen directly with the advancement in 

technology over the past century.  As time passes, systems are asked to do more tasks 

more effectively than ever before and are becoming more complex.  Much like other 

engineering metrics, balancing complexity with performance and functionality is 

assigned to the systems engineer.  A systems engineer must manage complexity within 

a system while meeting a minimum performance requirement.  Complexity can be 

directly related to organizational environments, as an increase in organizational 

complexity could affect communication capability.  The connection between 

communication and increased complexity, as well as exploring ways of quantifying and 

contextualizing this complexity are the focus of this thesis. 

2.2 Structural Complexity in Organizational Systems 

Along with the need for managing the technical elements of engineering systems, 

interfaces and relationships between people must be managed.  The limitations and 

structures of development teams typically echo the structures of the products they are 

developing (Madni, 2011).  Therefore, having inefficient organizational structures can 

lead to inefficient product architectures.  While managing product architectures has its 

own challenges, due to products having technical rationale driving design, managing 

humans within an organization is far more difficult.  Although humans can be modelled 

as logical beings, this is not necessarily the case.  Humans rely on both conscious and 
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subconscious thought processes that drive decisions, making emergent behavior a 

concern when conceptualizing numerous interdisciplinary development teams (Madni, 

2011).  Individuals within a team have differing cognitive capacities, biases, and access 

to information that can contribute to the structural inefficiency of these organizations 

(Madni, 2011). 

With access to information never truly being complete, cognitive capabilities having 

limits and time constraints, decisions are forced to be made before an individual is 

ready.  This issue is only compounded as complexity increases, since the amount of 

necessary information increases with system complexity (Madni, 2011).  An increase in 

information leads to an increase in time needed and as a result, decisions made are less 

likely to be supported with sufficient backing.  As a result, it becomes challenging to 

intuitively manage complex problems (Madni, 2011). 

2.3 Managing Structural Complexity Through Modularity 

One way of addressing system complexity is through proper system representation.  

System elements and organization elements can be modelled through network graphs, 

matrices, and other numerical and graphical representations to better understand the 

interconnections between these elements.  Even a simple method of graphical 

representation provides an avenue for managing this complexity.  Specifically, 

interdependence and modularity become easily measurable.  These interdependencies 

and modular characteristics directly correlate to technical subsystem and organizational 

development team conception. 

Modularity is an essential tool for managing complexity.  Modularity is defined as a 

continuum describing the degree to which a system’s components may be separated 

and recombined (Schilling, 2000).  In an organizational context, modularity “within and 

among organizations mirror the degree of product modularity, with the main 

consequence that independent companies may develop, produce and deliver self-
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contained modules consistent with the scope and depth of their core competences” 

(Campagnolo and Camuffo, 2010).  This emphasizes that modularity is not only a 

product characteristic, but also an organizational characteristic.  Efforts have been made 

to improve modularity and manage complexity through the implementation of distributed 

organizational hierarchies and interface mechanisms.  This is further emphasized by 

Campagnolo and Camuffo: 

 

Integral products should be developed by integral organizations (tightly connected  

organizational units to maximize ease of communication and minimize the risk of 

opportunism). Modular products should be developed by autonomous, loosely 

coupled, easily reconfigurable organizations. Indeed, the adoption of standards 

reduces the level of asset specificity (Argyres, 1999) and, in turn, the need to 

exercise managerial authority. Product modularity also reduces the need for 

communication due to information hiding, whereby knowledge about the ‘interior’ of 

each module does not need to be shared. (Campagnolo and Camuffo, 2010).   

 

This highlights that the management of modularity is an underlying characteristic of 

existing tools, such as, work breakdown structures.  However, the challenges associated 

with modularity can lead to inefficiencies and unpredictability.  If a system’s modules are 

not correctly interwoven, these inefficiencies begin to surface as developmental and 

operational shortcomings. 

2.4 System Representation Through Design Structure Matrices (DSMs) 

An obvious contributor to product conception, development, and utilization 

success are adequate project and program managers facilitating information across 

different development teams (Heaslip, 2015).  Managers must struggle with the balance 

of allowing the free flow of information while avoiding information overload.  For 
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example, some employees are asked to manage hundreds of communication channels 

from varying sources.  This presents a potential disconnect between the sender and the 

receiver of the information.  The sender may assume they completed an information 

exchange that was fully understood, while the receiver may have missed the message 

and/or read and misinterpreted the information.  In some ways, this form of 

communication disconnect can be more harmful to system development, as a 

misunderstanding is buried in the interwoven nature of organizational teams (Heaslip, 

2015).  One way to combat this disconnect are frequent meetings; however, meetings 

can be time consuming and interrupt productive working hours.  As a result, it is 

important for managers to design organizational architectures with purposeful structure.  

Properly managing these information channels and anticipating potential communication 

shortcomings could be contextualized through complexity management (Heaslip, 2015). 

2.4.1 Introduction to Organizational Architecture DSMs 

An organizational architecture is the structuring of people to work together to 

accomplish tasks (Eppinger, 2012).  Figure 1 shows how organizational architectures 

can be broken down into three components: business units, departments, and 

individuals.  Traditionally these components are modelled in organization charts or by an 

organization breakdown structure (OBS); however, OBSs primarily focus on the 

decomposition units, leaving out valuable information regarding the rest of the 

organization structure (Eppinger, 2012).  DSMs provide the benefits of decomposition 

and defined roles while maintaining unit and lateral relationship information.  

Organizational DSMs can capture key workplace breakdown information, as well as 

interunit relationships while maintaining visibly efficient interpretation (Eppinger, 2012).   
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Figure 1. Organizational Architecture Representation (Eppinger, 2012) 

Figure 2 shows an organizational architecture captured within a DSM.  Within the 

DSM, the rows (i) and columns (j) of the matrix are filled with individuals (i = j) with their 

given communication interfaces (i, j) represented with a binary assignment.  Additional 

department or development team modulization is captured through the pink boundary 

encapsulating the individuals. 
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Figure 2. Organizational Architecture within a DSM (Eppinger, 2012) 

These boundaries have subjectivity, as it is the job of the systems engineer to 

represent the organization effectively using a DSM.  Although subjective, the nature of 

the DSM is the highlighting of organizational interactions.  A DSM can be sequenced 

and modularized to better group individuals based on the frequency of interaction.  In 

other words, those found within a module interact with one another more frequently than 

those outside of the module.  This characteristic of DSMs provides valuable insight in an 

organizational context, as communication across these module boundaries carry 

significantly more weight than internal communications.  To better explain the 

significance, imagine an individual communicates with their team daily, but meets 

biweekly with an individual with another team to discuss integration.  If the individual 
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were to miscommunicate within the team, a problem can be fixed (hypothetically) within 

the next day.  As for a miscommunication with an individual in another module, a 

mistake might not be acknowledged until the next meeting (or longer).  The increase in 

time between meetings compounds the miscommunication.  As a result, the organization 

loses out financially, due to reworks and schedule delays.  Because of this extreme 

weight associated with inter-team, interdisciplinary, and interorganizational 

communication, having a management tool to signal these potential problem areas is 

extremely useful.  Traditional organizational structures tend to promote internal 

communication but struggle to define external communication pathways.  The ability to 

model and manage the internal and external communication channels and their 

integrations are essential as it allows for the modification of existing structures to 

account for deficiencies (Eppinger, 2012).  This is a strength of the DSM, which can be 

scaled up or down depending on the desired fidelity.  Additionally, DSMs promote 

modular representation and allow for additional analysis of internal-external 

relationships. 

Communication interfaces within these organizational networks greatly outpace 

the number of individuals leading to the management of these interfaces becoming 

increasingly challenging.  The conception of misinformation can be attributed to these 

interfaces and only grows with complexity (Eppinger, 2012).  This misinformation can 

lead to delays, recalls, and even cancellations.  Building on the DSM model, managing 

organizational complexity could become more procedural for a systems engineer or 

project manager. 

2.4.2 Implementation of Nested Numerical DSMs 

The DSM presents key organizational information needed for the calculation of 

organizational complexity.  A system’s topological arrangement, interfaces, and 

individual components are all presented in an easily understandable matrix.  
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Compounding the initial benefits a DSM provides for system representation, additional 

numerical information can be stored within these matrices for further organizational 

analysis.  To maintain the locality of data and its ease of access, nested matrices will be 

implemented.  Nested numerical DSMs allow for surface level complexity metrics to be 

presented, with the option to show a more detailed view of complexity using a denser 

DSM.  An example of this method can be seen in Figure 3 where an individual ‘A’ has its 

overall complexity contribution displayed; however, within this matrix representation are 

higher fidelity matrices showing the sub-contributors of complexity.  In other words, an 

“average” complexity of individual ‘A’ can be viewed on the surface, while the complexity 

portfolio can be viewed within the cell, upon further inspection. 

 

Figure 3. Example of Nested DSM for Data Storage and Representation 

2.5 Bearden’s Complexity Index and Ranking System 

Bearden’s complexity index uses performance, mass, power, and technological 

choices to determine the representation of a system’s complexity for purposeful 

comparison (Sarsfield, 1996).  The complexity contribution uses a matrix of system 



12 

 

characteristics and performance data to develop a complexity measure based on the 

baseline data (Bearden, 2000).  Data within the matrix can be both subjective and 

objective in nature.  Everything from reusability to mass is quantifiable and is only limited 

by the amount of data available. 

At its core, the complexity contribution is simply defined.  The process for 

measuring a system’s complexity is as such (Aerospace Corp, 1977): 

1. Identifying the parameters that drive spacecraft design. 

2. Quantify the identified parameters. 

The quantification of these parameters is determined by whether the data is 

continuous or discrete.  If a system must decide on a finite system characteristic (such 

as fuel type, number of engines, et cetera), there are a discrete number of possibilities 

that can be summed and averaged based on their assigned values.  Discrete choices 

are defined as: 

(0, 1) 

𝑓𝑖 = (0,
1

2
, 1) 

𝑖 = 1…𝑚 

 For two options 

 

 For three options, et cetera 

 

𝑚 ≡ the number of discrete choices 

𝑓𝑖  ≡ percentile rank of 𝑖𝑡ℎ value (discrete) 

For continuous datasets, a percentile rank calculation is employed.  This function is used 

to determine the relative standing of the value within the dataset.  Continuous choices 

are defined as: 

𝑓𝑗 = ( 
𝐿𝑗

𝑁 − 1
 ) (100) ;  𝑗 = 1…𝑁  

𝑓𝑗  ≡ percentile rank of 𝑗𝑡ℎ value (continuous) 

𝐿 ≡ number of data values that are less than the 𝑗𝑡ℎ value 

𝑁 ≡ number of total data values 
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3. Combine these parameters into an aggregated complexity contribution. 

Combining both discrete and continuous datasets define the complexity factor, 

Fc.  Eq. (1) defines this factor as: 

𝐹𝑐 = (∑𝑓𝑖 + ∑𝑓𝑗) / (𝑚 + 𝑛) (1) 

The mean of the complexity factor is determined by the average of individual factors, 

while the minimum and maximum values are taken from the extremums in the dataset.  

Each datapoint is weighted equally to remove a parameter from dominating complexity 

but can be expanded upon.  This factor uses the minimum and maximum values to 

produce a normalized complexity metric between 0 and 1. 

The uses of the complexity contribution are flexible and can be applied to a myriad of 

predictive functions.  However, Bearden’s complexity contribution will be expanded upon 

in the following section and will define the use of the complexity contribution and ranking 

system in terms of structural complexity. 

2.6 Existing Structural Complexity Metric for Product Architectures 

As alluded to previously, product complexity and organizational complexity mirror 

one another, due to the close relationship between those developing the systems and 

the systems themselves.  In this section, Dr. Kaushik Sinha’s metric will be discussed in 

detail, as Sinha’s metric acts as the basis for the proposed OCM. 

2.6.1 Overviewing Structural Complexity Quantification of Product Architectures 

Structural complexity is a measurable characteristic and is attributed to the internal 

complexities of system components, the interactions between these components, as well 

as the organization and arrangement of these elements, and their connections.  Sinha’s 

metric for estimating structural complexity is defined as such: 

𝐶 = (𝐶1) + (𝐶2)(𝐶3) (2) 
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Component Complexity, C1, relates to the component engineering activity within 

a system development effort and does not involve architectural information (Sinha, 

2014).  Interface Complexity, C2, represents the number of pair-wise interactions, along 

with the number of these interactions and how it relates to interface management (Sinha, 

2014).  Lastly, Topological Complexity, C3, expresses the arrangement of interfaces with 

respect to the system’s top-level architecture.  C3 is used to simulate the difficulties 

associated with system integration (Sinha, 2014). 

2.6.2 Functional Form of the Structural Complexity Metric 

Expanding Eq. (2), the analytical form of the structural complexity metric is as 

follows: 

𝐶(𝑛,𝑚, 𝐴) = (∑𝛼𝑖

𝑛

𝑖=1

) + (∑∑𝛽𝑖,𝑗𝐴𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

)(
𝐸(𝐴)

𝑛
) (3) 

 The component complexities, 𝛼𝑖, are attached to their corresponding 

compositional elements; therefore, localized to their element.  𝛽𝑖,𝑗 represents the pair-

wise interfaces and their complexities. The third term, 𝐸(𝐴), represents the underlying 

connectivity structure through the implementation of the matrix energy (Sinha, 2014) 

associated with the system’s adjacency matrix (A) of n components with m interfaces.  

This connectivity complexity is defined as topological complexity, which generally scales 

with architecture size and integration.  Higher topological complexity will likely signal the 

lengthening of system integration efforts and represents a global property of the system. 

2.6.2.1 Estimating Component Complexity, C1 

When characterizing component complexity, it is important to note that the 

localized complexity of a system’s elements is domain dependent.  What this indicates is 

a need for domain information, data, or other forms of insight to make correct 
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estimations.  Component complexity is dependent on the technical design and 

development difficulty with the component alone, not including its interfaces (Sinha, 

2014).  As the available data varies from project to project, estimation methodologies 

depend on the readily available information.  As a result, three methods are suggested: 

1) estimation based on technological maturity, 2) estimation of component complexity 

with expert opinion, and 3) estimation of component complexity with data analytics 

(Sinha, 2014). 

2.6.2.1.1 Estimating Component Complexity Using Technological Maturity 

Using technological maturity as a metric assumes the proportionality of 

technology readiness to component complexity (𝛼𝑖).  If a technology has been 

developed over a relatively long period of time, it is assumed that the processes and 

operating principles have been matured as well (Sinha, 2014).  This leads to the 

proposed implementation of a scaled technology readiness level (TRL) (Sadin et al., 

1988): 

𝛼𝑖 = 5(
𝑇𝑅𝐿𝑚𝑎𝑥 − 𝑇𝑅𝐿𝑖
𝑇𝑅𝐿𝑚𝑎𝑥− 𝑇𝑅𝐿𝑚𝑖𝑛

) (4) 

With the interval defined as [TRLmin, TRLmax] for calculating the ith component in a 

system.  Component complexity is then scaled from the TRL to a continuous interval of 

[0, 5] with a higher component complexity value denoting a higher component 

complexity (Sinha, 2014).  This method for defining component complexity is beneficial 

specifically for companies with rigorous definitions of TRL. 

2.6.2.1.2 Estimation Component Complexity Using Expert Opinion 

Using expert opinion to estimate component complexity is valuable when no 

significant databases are available.  When eliciting expert opinions, a structured 

approach to capturing the subject matter expert’s knowledge quantitatively is needed.  
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With only a limited data sample, a triangular distribution is useful when an expert has a 

certain confidence level for estimations (Sinha, 2014).  Information gathered from the 

expert can be captured in the triangular distribution given a range of minimum (L) and 

maximum values (H ) and a most likely case (M).  Figure 4 represents that distribution 

and is supplemented by Eq’s. (7) and (8) for the distributions mean (µ) and standard 

deviation (𝜎2). 

 

𝑓(𝑥) =
2(𝑥 − 𝐿)

(𝑀 − 𝐿)(𝐻 − 𝐿)
;  𝐿 ≤ 𝑥 ≤ 𝑀 (5) 

𝑓(𝑥) =
2(𝐻 − 𝑥)

(𝐻 −𝑀)(𝐻 − 𝐿)
;  𝑀 ≤ 𝑥 ≤ 𝐻 (6) 

𝜇 =  
𝐿 + 𝑀 + 𝐻

3
 (7) 

𝜎2 = (
𝐿2 + 𝑀2 + 𝐻2 − 𝐿𝑀 − 𝐿𝐻 −𝑀𝐻

18
) (8) 

Figure 4. Triangular Distribution Using Expert Elicitation (Sinha, 2014) 

2.6.2.1.3 Estimation Component Complexity Using Data Analytics 

Lastly, if sufficient data is available, the implementation of component data would 

be implemented.  Applications of Sinha’s method use the statistical model of form 𝛼 =

 𝑓(𝑋) = 𝑓(𝑥1, … , 𝑥𝑖) relating component complexity with a vector of component 

characteristics, X (Sinha, 2014).  This vector can be adjusted from system to system, but 

is suggested as follows (Sinha, 2014): 

1. Measure of performance tolerance, 𝒙𝟏: Components with extremely tight 

performance tolerance requirements tends to have increased complexity. 

2. Measure of performance level, 𝒙𝟐: A higher level of component 

performance introduces higher levels of complexity in its components. 
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3. Component “size” indicator, 𝒙𝟑: Components that are large in “size” 

typically indicate higher complexity.  However, this should be taken within the 

correct context, as hardware and software size-complexity correlations do not 

necessarily relate. 

4. Number of coupled disciplines involved, 𝒙𝟒: If a component involves 

multiple disciplines, it typically is more complex. 

5. Number of variables and physical processes involved, 𝒙𝟓: An increase in 

variables and physical processes typically lead to an increase in complexity. 

6. Component reliability measure, 𝑥6: Components with high reliability 

typically indicate higher complexity. 

7. Existing knowledge of operating principles, 𝒙𝟕: Existing knowledge about 

an operating procedure reduces complexity. 

8. Extent of Reuse/heritage indicator, 𝒙𝟖: Reusability of an existing 

component reduces the complexity of that component. 

Building off the weighted, rank measure developed by Bearden (Bearden, 2000, 

2004), the component characteristic vector, X, is combined with Bearden’s procedure for 

computing ranks.  This combination creates a new vector of component characteristic 

ranks, 𝑅(𝑖), and is defined as follows: 
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𝑅(𝑖) = 

{
 
 
 
 

 
 
 
 

performance tolerance rank

performance level rank

component 'size' rank

coupled disciplines rank

variables involved rank
component reliability rank

existing knowledge rank

extent of reuse/heritage rank}
 
 
 
 

 
 
 
 

 = 

{
 
 
 
 
 

 
 
 
 
 𝑟1

(𝑖)

𝑟2
(𝑖)

𝑟3
(𝑖)

𝑟4
(𝑖)

𝑟5
(𝑖)

𝑟6
(𝑖)

𝑟7
(𝑖)

𝑟8
(𝑖)
}
 
 
 
 
 

 
 
 
 
 

 

𝑟𝑗
(𝑖)
≡ percent rank wrt variable 𝑥𝑗

(𝑖)
 

From this list, weights are assigned to each component characteristic used to compute 

the component complexity with: 

𝑤𝑗
(𝑖)
=

representative coefficient of 𝑥𝑗
(𝑖)

min [representative coefficient of 𝑥𝑗
(𝑖)]

 (9) 

𝑤𝑗
(𝑖)
≡ weight assigned to j

th
 factor for i

th
 component 

Using the weight and rank definitions, component complexity can be computed as: 

𝛼𝑖 =
1

𝑚
 ∑𝑤𝑗

(𝑖)
𝑟𝑗
(𝑖)
;  𝑚 ≡ number of ranks in vector 𝑅(𝑖)

𝑚

𝑗=1

 (10) 

2.6.2.2 Estimating Interface Complexity, C2 

The interface complexity metric, 𝛽𝑖,𝑗, is a function of the component complexities 

of the interfacing elements, as well as the type of interface (k).  This interface complexity 

can be represented as: 

𝛽𝑖,𝑗 = 𝑓(𝑐
(𝑘), 𝛼𝑖 , 𝛼𝑗) (11) 

To better apply this metric into the overall complexity metric, the functional equation for 

interface complexity is defined as follows: 
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𝛽𝑖,𝑗 =
max(𝛼𝑖, 𝛼𝑗)

𝑐(𝑘)
 (12) 

𝑐(𝑘) ≡ interface type characterization 

 Estimating the interface type characterization leverages existing data regarding 

development cost or performance.  Interface type characterization can be defined as: 

𝑐(𝑘) = 𝑚𝑒𝑎𝑛 [
max(𝑦𝑖 , 𝑦𝑗)

𝑧𝑖,𝑗
(𝑘)

] (13) 

𝑦𝑖,𝑗 ≡ development cost/performance of i
th

 and j
th

 component  

𝑧𝑖,𝑗
(𝑘)

≡ interface development cost/performance of i
th

 and j
th

 interface type 

In the original metric, the suggested primary interface types and suggested subtypes are 

found in Table 1. 

Table 1. Primary Product Interfaces and Subtypes (Sinha, 2014). 

Primary 
Interface Types 

Interface Subtypes 

Physical Load transfer, translational, spatial, alignment, positional proximity 

Flow Fluid flow, solid flow, mixture flow, plasma flow 

Energy 
Mechanical, thermal, hydraulic, elastic, pneumatic, electrical, 
magnetic, electromagnetic, acoustic, chemical, biological, human 

Information Control signal, status signal, information processing 
 

These interface types may not be applicable to all scenarios and act as a suggestion.   

 Vector, 𝑋𝑘
(𝑖,𝑗)

 is a collection of interface ranks placed in a vector for convenient 

representation.  Like the component complexity’s use of existing datasets, the interface 

complexity leverages a characteristics vector, 𝑋𝑘
(𝑖,𝑗)

, and is suggested as follows (Sinha, 

2014): 
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𝑋𝑘
(𝑖,𝑗)

 = 

{
 
 

 
 

magnitude of 'entity' transfer

tolerance requirement indicator

knowledge of interface mechanism

disciplines involved

reliability requirement indicator

extent of reuse/heritage rank }
 
 

 
 

 = 

{
 
 
 
 

 
 
 
 𝑥1

(𝑖,𝑗)

𝑥2
(𝑖,𝑗)

𝑥3
(𝑖,𝑗)

𝑥4
(𝑖,𝑗)

𝑥5
(𝑖,𝑗)

𝑥6
(𝑖,𝑗)

}
 
 
 
 

 
 
 
 

 

1. Magnitude of ‘entity’ transfer, 𝒙𝟏
(𝒊,𝒋)

: Interfaces with large ‘entity’ transfer are 

typically more complex. 

2. Interface tolerance requirement, 𝒙𝟐
(𝒊,𝒋)

: Interfaces with tighter tolerance 

requirements tend to have higher complexity. 

3. Existing knowledge of interface mechanism, 𝒙𝟑
(𝒊,𝒋)

: Existing knowledge of an 

interface typically lowers complexity. 

4. Number of disciplines involved, 𝒙𝟒
(𝒊,𝒋)

: Typically, the more disciplines involved, 

the higher the complexity. 

5. Interface reliability requirement, 𝒙𝟓
(𝒊,𝒋)

: Interfaces with high reliability are 

typically more complex. 

6. Extent of Reuse/heritage indicator, 𝒙𝟔
(𝒊,𝒋)

: Any extent of reusability reduces 

complexity. 

2.6.2.3 Quantifying Topological Complexity, C3 

As discussed with the use of DSMs, any system with components and connections 

can be represented graphically (Ulrich 1995, Lindemann et al. 2008).  These interactions 

between components influence a system’s behavior and the architectural pattern leads 

to the inherent structural complexity of that system.  A systems architecture is an 

abstract representation of the compositional entities and their interactions.  These 

interactions are dependent on the constraints and requirements assigned to a system to 
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satisfy.  This architecture can be represented in a variety of ways, either via node 

diagrams, DSMs, or other graphical methods.  This architectural pattern is a system 

characteristic that can be measured. 

When contextualizing topology, low topological complexity implies a more centralized 

scheme while those with high topological complexity imply a decentralized scheme.  To 

meet the modern demands of aerospace systems, a minimum system complexity is 

needed.  An example of this increase in baseline complexity is reflected in the evolution 

of jet engine architectures (Frey et al. 2007) showing how the rise in demands is met 

while maintaining performance levels.  While an increased topological complexity may 

help to meet the demands of modern engineered systems, the increased complexity of 

more decentralized structures may prove more harmful than beneficial. 

Translating graph structures to system architectural patterns, the topological 

complexity metric can indicate the arrangement based on the adjacency matrix energy 

value.  Figure 5 supplements this characteristic of the metric by representing the 

relationship between differing structural arrangements and their place on the topological 

spectrum.  The topological complexity spectrum is a gradient measure of a system’s 

structure and can represent the system in one of the three distinct categories, as well as 

in an intermediate/transition classification.  In other words, the topological complexity 

spectrum defines where system’s classification generally falls, either centralized, 

hierarchical, or decentralized.  This is due to the numerical nature of topological 

complexity, as all complexity considerations are taken from the topological value and 

implemented into structural complexity calculation.   

As an organizational structures increases its interdependencies, complexity also 

increases.  Having the ability to determine a large organizations structure through a 

single metric provides a simple and easy way to trade organizational structures, as well 

as assist complexity management.  Topological complexity (𝐶3) is an essential 
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characteristic of the OCM, as it is a modifier of the interface complexities (𝐶2) within the 

system [𝐶 = (𝐶1) + (𝑪𝟐)(𝑪𝟑)]. 

 

Figure 5. How to Characterize Varying Topological Arrangements 
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Chapter 3 

METHODOLOGY 

Complexity theory in an organizational context highlights that organizations must 

adapt to uncertain environments.  The environment both internal and external to the 

organization plays a role in complexity and prioritizing adaptable structures helps with 

unpredictability.  This is contrasted by processes that are more rigid and structured in 

mature and well-established organizations.  Since complexity management and 

organizational success go hand in hand, it is important to find tools that improve, 

augment, and/or supplement an organization’s structure, topology, and reporting 

relationships. 

Before developing the base ranks for the structural complexity metric in 

organizations, it is important to look at how certain aspects of organizations affect 

complexity.  Of course, similarities can be drawn between the complexity realizations 

found in product architectures and organizational architectures; however, discussion is 

still necessary, as organizational architectures involve their own unique challenges.   

Some of the translatable characteristics from Sinha’s product architecture metric 

include a system’s size, modularity, and reliability.  While not a direct comparison to 

products, organizational elements share these properties at varying semblances.  For 

example, the ‘size’ of an architectural element is essentially identical between products 

and organizations, while quantifying the reliability of a product component and an 

individual pose their own challenges but have the same effect on complexity.  These 

similarities will be discussed case-by-case in the following section. 

In terms of uniquely organizational considerations, component support and 

interfacing can be built off the benefits of topological arrangement.  While empowerment 

and adaptability were addressed with topology, an organization’s structure needs other 

processes and measures to enact these characteristics at a component and interface 
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level.  In other words, arranging an organization to be adaptable opens the possibility for 

an empowering environment and to effectively measure its complexity, key aspects 

should be captured in an analytical ranking system. 

When discussing the internal or component processes and characteristics that 

promote productivity and effectiveness, having a proper support system is essential.  

Ways of quantifying such support can be found with assessing available tools, training 

and career progression aid, implementation of incentives, and the level of understanding 

shared within an organization (Hoopes and Postrel 1999; Browning et al. 2006).  As for 

the external interactions, organizational interface mechanisms provide valuable means 

for quantifying intercommunication effectiveness.  Assessing the overall visibility of an 

organization’s project goal, the effectiveness of coordination, boundary objects, and 

common processes, as well as the use of interface mediators (Star and Griesemer 1989; 

Bernstein 2001; Steward 2000; Browning et al. 2006) provide the flexibility necessary to 

manage system complexity.  As no two complex systems are identical, having the ability 

to adapt the organizational complexity metric (OCM) to differing datasets and techniques 

is essential.  In addition to the need for strong datasets as the foundation for the OCM, 

the OCM should reflect the iterative nature of the organizations it is modelling.  As an 

organization’s structure forms and changes through the conceptualization, production, 

and operational phases of the lifecycle, the OCM should reflect these changes.  The 

OCM was designed to model a structural snapshot of an organization and should be 

iterated on.  The frequency of this iteration is at the will of the systems engineer and 

should be considered on a team to team, project to project, and organization to 

organization basis. 

3.1 Visualizing Structural Complexity in Organizations 

Building off Sinha’s original metric and the implementation of nested numerical 

DSMs, a method for visualizing complexity within organizations is proposed.  Figure 6 
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represents the flowchart of the proposed OCM.  Beginning with an allocation of available 

human resources, a systems engineer and/or program manager will construct an 

organizational arrangement.  Within this structure, topology is inherently defined.  Using 

the suggested method for data collection or organization-specific data definition, 

interface and human resource information is stored in a convenient, singular 

organizational DSM.  From this singular location, the structural complexity of the 

organization can now be analyzed.  At this stage, the OCM is executed on the nested 

numerical DSM.  The output from this process will be a metric to measure the current 

structural complexity based on the chosen hierarchy, available data, and interface 

definition.  From here, the output metric can be used to trade between differing 

organizational arrangements with the same organizational dataset or the implementation 

of Sinha’s “complexity pool” can be used to optimize an organizations arrangement 

based on a pre-allocated complexity value. 
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Figure 6. Methodology for Visualizing Structural Complexity within an Organization 

 

 

 

 



27 

 

3.2 Relating Organizational Architectures to the Product Architecture Metric 

To translate a product architecture structural complexity metric to organizational 

architectures, the three complexity categories must be altered to conform to the unique 

challenges associated with organizational architectures.  System topology translates 

directly, as it is an inherent property of the systems adjacency matrix and is independent 

of the system observer.  Additionally, topology can be directly related to organizational 

hierarchies and development team structures.  Component and interface complexity do 

not transfer as easily, and characterization should be evaluated from system to 

system.  As expected, attempting to characterize individuals is nearly impossible to do at 

the most detailed level.  From this lack of full definition, a single methodology for defining 

individual complexity cannot be achieved.  Data collection and/or performance 

measurements must be tailored to meet the desired scope of complexity for a given 

system’s complexity analysis.  As for the interface complexity, unless there are rigid 

organizational procedures that make the flow of information easy to define and trace, a 

series of interface mechanisms will be introduced to combat inherent 

unpredictability.  From these mechanisms, a systems engineer can appropriately 

characterize communication interfaces from project to project.  As a result, the 

complexity metric is not meant for comparing organizations with differing methodologies, 

rather the OCM is meant for trading different arrangements within a project.   

In this section, each complexity metric will be discussed in an organizational context.  

This modification of Sinha’s structural complexity metric is presented as a metric for 

organizational complexity quantification and is meant to guide complexity management 

and design exploration.  For individual and interface complexity, some solutions for 

defining complexity are presented, but again, should be evaluated from system to 

system. 
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3.3 Introduction to Organizational Complexity Metric Example 

To better communicate the OCM methodology, a hypothetical example was 

developed.  Within the example, each aspect of the structural complexity metric will be 

calculated and contextualized.  This example will consist of five individuals apart of 

‘Team Y’ within ‘Organization Z’ and is structured as seen in Figure 7. 

 

Figure 7. Organizational Structure of Team ‘Y’ 

Team Y is involved in an internal, interdisciplinary engineering project.  Section 3.5 

will walk through defining component complexity through created datasets represented 

by six ‘rank’ categories: 

𝑅(𝑖) = 

{
 
 

 
 

communication pathways rank

 individual performance rank

 coupled disciplines rank

 organizational processes rank

 indiviudal reliability rank

 indiviudal experience rank }
 
 

 
 

 = 

{
 
 
 
 

 
 
 
 𝑟1

(𝑖)

𝑟2
(𝑖)

𝑟3
(𝑖)

𝑟4
(𝑖)

𝑟5
(𝑖)

𝑟6
(𝑖)
}
 
 
 
 

 
 
 
 

 

A similar process will be conducted for interface definition and is explored in Section 

3.6.  Interface ranks are defined as such: 
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𝑋𝑘
(𝑖,𝑗)

 = 

{
 
 

 
 

information of critical importance

deadline tolerance/leadtime sensitivity

interorganizational interfacing

interdisciplinary communications

project goal commonality }
 
 

 
 

 = 

{
  
 

  
 𝑥1

(𝑖,𝑗)

𝑥2
(𝑖,𝑗)

𝑥3
(𝑖,𝑗)

𝑥4
(𝑖,𝑗)

𝑥5
(𝑖,𝑗)

}
  
 

  
 

 

These ranks represent data that Organization Z finds valuable and essential to 

approximating system complexity.  This collection of characterized component properties 

can be presented as either a vector or, for the sake of the OCM, distributed throughout 

the nested numerical DSM.  An example of how these ranks is presented within a nested 

numerical DSM can be found in Figure 8 and Figure 9.  Figure 8 shows a snapshot of an 

organizational DSM and focuses on the interactions between individual ‘A’, individual ‘B’, 

and individual ‘C’.  Within the white and gray squares (or interfaces) are the interface 

characteristic ranks, while the black squares represent the internal component/individual 

characteristic ranks.  To better communicate each individual rank throughout the 

example, each rank is presented in a singular DSM that only contains the data relevant 

to that rank. 
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Figure 8. Individual and Interface Ranks Within a Nested Numerical DSM (Low-Fidelity)
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Figure 9. Individual and Interface Ranks Within a Nested Numerical DSM (High Fidelity)
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3.4 Estimating individual Complexity in Organizational Architectures 

In this section, the proposed example component complexity ranks will be expanded 

upon and applied to Team Y.  These component ranks are based on fictional, existing 

datasets belonging to Organization Z.  The six datasets are then evaluated and 

converted to a complexity metric to be used to aid complexity management.  The six 

ranks are discussed as such: 

1. Individual ‘Communication Pathways’ Rank 

When considering a component’s system influence in an organizational context, it is 

important to note the communication load an individual is experiencing.  The easiest way 

to quantify this reach and influence is the number of communication pathways (such as 

the use of communication tools, engineering software tools, team meetings, et cetera 

between the same two or more individuals)  an individual has responsibility for.  While it 

appears that this characteristic could be associated with the interface(s) of the 

component, that is not necessarily true.  The number of pathways does not relate to the 

interface, directly, rather, the number of pathways associated with an individual reflects 

on the complexity of the processes assigned to the individual.  An individual with many 

communication pathways has a higher organizational complexity requirement.  This can 

be contributed to a potential loss in information within these pathways and an increase in 

pathways compounds this complexity. 

Figure 10 shows Team Y and its individuals assigned with the number of 

communication pathways.  For simplicity, each component only has the capability of 

having a maximum of two pathways between other components.  An empty cell denotes 

a nonexistent pathway, while a ‘1’ or ‘2’ denote the number of communication pathways 

existing.  For example, individual A has 2 outgoing pathways to individual B, as well as 2 

incoming pathways from the same individual. 



33 

 

 

Figure 10. Hypothetical Organizational DSM (Communication Pathway Definition) 

For the first rank, the method for converting the available data to its contribution to 

complexity is shown as such: 

Step 1: Define minimum and maximum ‘size’ values. 

A:  𝒔𝒖𝒎(𝒊, ∶) + 𝒔𝒖𝒎(: , 𝒋) = 𝟏𝟏 (maximum) 

B:  𝑠𝑢𝑚(𝑖, ∶) + 𝑠𝑢𝑚(: , 𝑗) = 8 

C:  𝑠𝑢𝑚(𝑖, ∶) + 𝑠𝑢𝑚(: , 𝑗) = 9 

D:  𝒔𝒖𝒎(𝒊, ∶) + 𝒔𝒖𝒎(: , 𝒋) = 𝟑 (minimum) 

E:  𝑠𝑢𝑚(𝑖, ∶) + 𝑠𝑢𝑚(: , 𝑗) = 7 
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Step 2: Use Bearden’s system to rank each datapoint. 

𝑓𝐴 = 
4

4
 = 1.0 

𝑓𝐵 = 
2

4
 = 0.5 

𝑓𝐶 = 
3

4
 = 0.75 

𝑓𝐷 = 
0

4
 = 0.0 

𝑓𝐸 = 
1

4
 = 0.25 

Step 3 and 4: Create aggregated complexity contribution and scale to [0, 5] to 

establish numeric contribution to complexity. 

Employing Eq. (1), the complexity contribution is as follows:  

Table 2. Communication Pathways Ranks and Complexity Contribution 

Individual Communication 
Pathways 

Rank ( 𝒇𝒋 ) Complexity Contribution 

A 11 1.0 5.0 

B 8 0.5 2.5 

C 9 0.75 3.75 

D 3 0.0 0.0 

E 7 0.25 1.25 
 

This scaling factor of 5 is carried over from Sinha’s complexity calculations, as it is the 

suggested value to better integrate with the other aspects of the structural complexity 

metric.  As a result, the contribution to complexity of each rank is five times the percent 

rank.  Additionally, scaling the ranks in accordance with weight could be employed here, 

but is not present in the example. 

2. Individual Performance Rank 

An obvious contributor to system performance, efficiency, and complexity is the 

performance of the system constituents, themselves.  While product architectures have 

requirements, tolerances, and other metrics to help align subsystem performance with 
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desired system performance, managers use similar benchmarks to measure employees.  

For example, Apple Inc. uses a simple performance measuring strategy.  Each 

employee is assessed within three categories: teamwork, innovation, and results.  Within 

these categories, an employee is assigned a performance level of either “needs 

improvement”, “met expectations”, or “exceeded expectations” (Anonymous, 2015).  For 

the sake of the existing example, each of the five individuals was assessed using 

Apple’s 3-tier assessment.  With a decrease in performance contributing to an increase 

in unpredictability, risk, and potential for mistakes, complexity scales inversely to 

performance.  Therefore, an employee who “needs improvement” will garner a ‘3’, while 

an “exceeds expectation” grants a ‘1’.  An equally weighted average was taken between 

the three categories.  Table 3 shows the results of the assessment and how they can be 

stored within a DSM in Figure 11.  Figure 11 shows the ability of displaying different data 

information based on how deep in the nested DSM the observer is located.  In other 

words, the average performance assessment score is displayed at the surface level, but 

the more comprehensive information is located within the averaged cell (black).  The 

results of the complexity contribution are found in Table 4. 

Table 3. Individual Performance Assessment Results 

Individual Teamwork Innovation Results 

A 1 1 2 

B 2 1 3 

C 2 2 1 

D 1 3 3 

E 1 1 1 
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Figure 11. Individual Performance DSM Data Storage 

Table 4. Individual Performance Ranks and Complexity Contribution 

Individual Value Rank Complexity Contribution 

A 1.3 0.25 1.25 

B 2.0 0.75 3.75 

C 1.7 0.5 2.5 

D 2.3 1.0 5 

E 1.0 0.0 0 
 

3. Coupled Disciplines Rank 

The communication between differing disciplines parallels that of product 

architecture.  The more disciplines involved, as well as the subject matter gap between 

disciplines implies an increase in complexity.  The identification of coupled 

interdisciplinary resources could lead to the implementation of integration specialists or 

other aids.  Individuals within a team could face interdisciplinary communication both 

internally and externally.  Characterizing individual roles and classifications defines the 

interdisciplinary boundary, as a result.  This rank is directly related to the preparation 

needed to communicate between interdisciplinary boundaries and remains local in terms 

of complexity calculation.  For implementation into the ranking system developed by 

Bearden and implemented by Sinha, the initial definition of an interdisciplinary boundary 
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would be binary with bounds [0, 1].  If an interdisciplinary boundary exists, the rank 

associated would be a value of 1 and a nonexistent boundary would equate to a 0.  The 

coupled disciplines rank would similarly reflect a system’s adjacency matrix and is 

symmetric; however, certain relationships will be excluded, since not all relationships 

involve interdisciplinary communication.  Additionally, this metric could be expanded up 

to include the number of interdisciplinary relationships, strength of the relationship, et 

cetera. 

Figure 12 represents these interdisciplinary relationships within the hypothetical 

system.  The results of the ranking and associated complexity contribution can be seen 

in Table 5. 

 

Figure 12. Hypothetical Organizational DSM (Interdisciplinary Couples) 

Table 5. Interdisciplinary Couples Ranks and Complexity Contribution 

Individual Value Rank Complexity Contribution 

A 4 0.5 2.5 

B 4 0.5 2.5 

C 3 0.25 1.25 

D 1 0.0 0.0 

E 4 0.5 2.5 
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4. Organizational Processes Rank 

One can equate the number of processes to organizational processes, checkpoints, 

et cetera to an organization’s complexity.  Many organizational processes vary from 

position to position along with scope of work and the responsibilities associated with an 

individual.  In a broader context, the flow of information within an individual’s scope of 

work may differ based on how that information is being transferred.  For example, 

information that is being prepared to travel upwards within a reporting relationship may 

have to undergo a different set of processes, as compared to information transferred 

between a horizontal interaction network.  A direct example of this could be the idea of 

decision gates (INCOSE, 2015).  Although a team’s collaborative contribution develops 

the information to be discussed at a decision gate, there are differing processes needed 

to prepare the information.  For this, someone higher in the organizational hierarchy may 

have more interconnected processes and challenges than a technical engineer or other 

component of an organization.  These challenges and intricacies contribute to the 

potential for emergent behaviors to appear within the organizational system, resulting in 

an increase in complexity.  A parallel example can be drawn between an increase in 

intricateness within software processes and an increase in complexity (Banker, 1993). 

Applying this to Team Y, a hypothetical numerical system is developed to determine 

the difficulty associated with of information transfer in the example organizational 

architecture.  This scale ranges from 0 to 3 with an increasing number denoting a higher 

difficulty associated with the processes involved in the transfer of information.  This 

difficulty can be associated with the potential of information loss or risk due to the 

processes the information must undergo.  An increase in difficulty can be associated 

with an increase in complexity, as miscommunications are more likely to occur.  Figure 

13 represents a numerical DSM of the five components and the respective process 
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difficulty.  The results of the ranking and associated complexity contribution can be seen 

in Table 6. 

 

Figure 13. Hypothetical Organizational DSM (Process Definition) 

Table 6. Organizational Processes Ranks and Complexity Contribution 

Individual Value Rank Complexity Contribution 

A 24 1 5 

B 10 0.25 1.25 

C 13 0.75 3.75 

D 9 0 0 

E 12 0.5 2.5 
 

5. Individual Reliability Rank 

Miscommunication and information loss can be contributed to structural 

arrangements and processes; however, the responsibility of properly interpreting 

information and communicating it clearly ultimately falls on the individual.  With the 

increase in system demand, those developing the system are demanded more, as well.  

Without proper management of information by the individual, these demands can 

become overwhelming and lead to information being buried.  Individual performance 

within an organization is dynamic and difficult to quantify.  Reliability is often viewed 
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narrowly and do not include a wide breadth of antisocial metrics that indicate potential 

unreliable behavior.  Reliability changes from day-to-day and is determined by an 

individual’s engagement in a process or project.  Although dynamic, ways of measuring 

this reliability can be found with metrics, such as, read rates, communication reach, et 

cetera. 

For Team Y, email read rates were assessed and converted into complexity 

contributions. Figure 14 represents the read rates within a DSM while Table 7 represents 

the resulting ranks and complexity contributions.  The higher the response rate 

contributes to a lower complexity contribution and vice versa. 

 

Figure 14. Individual Read Rates 

Table 7. Individual Reliability Rank and Complexity Contribution 

Individual Value Rank Complexity Contribution 

A 0.94 0.25 1.25 

B 0.97 0 0.0 

C 0.79 1 5.0 

D 0.85 0.50 2.5 

E 0.82 0.75 3.75 
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6. Existing Knowledge Rank 

Existing knowledge of operating procedures refers to the organizations preexisting 

experience with organizational procedures.  In an organizational context, specific years 

of experience can be substituted for a numeric representation of prior knowledge.  An 

individual with more years of experience with a process implies a more predictable 

working environment.  In terms of communication, having an overall greater scope of 

understanding reduces some of the communication challenges someone without that 

perspective may face.  This would lead to a decrease in complexity. 

Applying this to Team Y, each of the five individuals have varying experience with 

the project.  Figure 15 represents the numerical DSM storing the years of experience 

associated with similar interdisciplinary projects.  Results of the rankings can be found in 

Table 8. 

 

Figure 15. Years of Experience with Processes Associated with the Project 
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Table 8. Years of Experience Ranks and Complexity Contribution 

Individual Value Rank Complexity Contribution 

A 25 1.0 5 

B 17 0.75 3.75 

C 13 0.5 2.5 

D 1 0.0 0.0 

E 7 0.25 1.25 
 

 Following the individual complexity quantification, each complexity 

characterization can be tabulated and stored in a nested numerical DSM for ease of 

representation.  Table 9 represents the tabulated results of the individual complexity 

study of Team Y.  These results are then stored in the organizational complexity metric 

DSM shown in Figure 16. 

Table 9. Summary of Component Complexities 

 𝑪𝟏,𝒑𝒂𝒕𝒉𝒘𝒂𝒚𝒔 𝑪𝟏,𝒑𝒆𝒓𝒇 𝑪𝟏,𝒄𝒐𝒖𝒑 𝑪𝟏,𝑶𝑷 𝑪𝟏,𝒓𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑪𝟏,𝒆𝒙𝒑 𝑪𝟏,𝒊 
A 5.0 1.25 2.5 5 1.25 5 20.0 

B 2.5 3.75 2.5 1.25 0.0 3.75 13.75 

C 3.75 2.5 1.25 3.75 5.0 2.5 18.75 

D 0.0 5 0.0 0.0 2.5 0.0 7.5 

E 1.25 0 2.5 2.5 3.75 1.25 11.25 
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Figure 16. Individual Complexity Contributions of Team Y
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3.5 Estimating Interface Complexity in Organizational Architectures 

The main challenge with managing interpersonal and organizational interfaces is the 

lack of true consistency throughout a system.  Modern aerospace systems are 

developed by large groups of interdisciplinary teams, organizational departments, and 

companies collaborating with one another.  This variety brings the potential for 

conflicting interests, project goals, and communication styles.  Sinha’s original 

methodology for quantifying interface complexity within a product architecture was to use 

cost and performance characteristics of typical interfaces normalized with the cost and 

performance metric of the components the interface was ‘connecting’.  Revisiting Eq. 

(13), the methodology for quantifying organizational interfaces can be translated using 

the same performance comparison.  Much like the original metric, interface definition is 

highly dependent on available data and/or the employment of expert opinions.  Much like 

the individual ranking system, unique organizational interface characteristics are 

suggested as such: 

1. Information of Critical Importance, 𝑥1
(𝑖,𝑗)

 

Defining the information that is flowing between individuals through the interfaces is 

essential for determining the complexity of the organizational processes involved.  

Information that is more critical to project success tends to have greater security 

measure and involve additional processes.  These additional steps lead to an increase in 

complexity that needs to be managed. 

2. Deadline tolerance / Leadtime sensitivity, 𝑥2
(𝑖,𝑗)

 

Certain information is more sensitive to deadlines and require close monitoring to 

avoid delays and overrun.  Information that is more sensitive to these deadlines tend to 

increase the complexity within an organizational structure. 
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3. Interorganizational Interfacing, 𝑥3
(𝑖,𝑗)

 

Alluded to previously, information that crosses department or organization 

boundaries tend to require additional preparations or security considerations.  

Additionally, miscommunication and information loss are more likely when crossing an 

organizational boundary.  Therefore, information crossing these boundaries tend to 

increase the complexity of the system. 

4. Interdisciplinary Communications, 𝑥4
(𝑖,𝑗)

 

Much like product interfaces, organizational interfaces that involve more than one 

discipline involved in the interaction tend to increase the complexity of the system. 

5. Project Goal Commonality, 𝑥5
(𝑖,𝑗)

 

Project goals and requirements need to be aligned to ensure proper communication 

and understanding exists between the interfaces.  Visibility and understanding of these 

goals can become clouded or obscured both internally and externally to the organization.  

The more indifferences between two individuals leads to an increase in an organization’s 

complexity. 

Continuing with the application of the OCM to Team Y, the different interface types 

were defined between the five individuals.  Table 10 represents the interface 

characterizations, as well as important performance metrics used to quantify the 

interfaces.  All interface types are present within Team Y; however, as they are working 

intra-organizationally, no complexity due to interorganizational communication is 

present.  After calculating the interface complexity, Figure 17 represents the interface 

definition DSM and their corresponding complexity contributions.  
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Table 10. Example Interface Definition 

Interface Type 𝒄(𝒌) 
Information of Critical Importance 0.67 

Leadtime Sensitivity 2.14 

Interdisciplinary Communication 6.2 

Interorganizational Communication 4.42 

Project Goal Commonality 1.22 
 

 These complexity contributions are calculated by taking the maximum individual 

complexity within the row and column and dividing it by the interface that is being 

analyzed.  A sample calculation for the interface of ‘Information of Critical Importance’ 

between Individual ‘A’ going to Individual ‘B’: 

𝐶2,(𝑖,𝑗) =
max(𝐶1,𝑖, 𝐶1,𝑗 )

𝑐(𝑘)
 

𝐶2(𝐴,𝐵) =
max(20.0, 13.75)

0.67
 

𝑪𝟐(𝑨,𝑩) = 𝟐𝟗. 𝟖𝟓 

Using the hypothetical interface characteristics and their quantities, each 

interface’s complexity contribution is calculated and stored in the nested numerical DSM 

found in Figure 17.



47 

 

 

Figure 17. Interface Complexity Contributions of Team Y
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3.6 Quantifying Topological Complexity in Organizational Architectures 

Aside from the metric application, organizational topology can provide more insight 

about the structure of the organization, the empowerment of its individuals, as well as 

how adaptable the structure is.  While not the only organizational characteristics affected 

by the topological structure of the organization, these characteristics have shown 

benefits to organizational success and efficiency. 

When discussing individual empowerment, this refers to giving individuals the ability 

to make decisions related to their tasks.  This could include personal and collective 

decision-making, access to information for decision-making, and promoting engagement, 

education, and the exchange of information (Adler, 1993; Nonaka, 2007).  A common 

strategy for promoting empowerment within an organization is through the arrangement 

of the organization, itself.  By shifting traditional hierarchical structures towards a more 

decentralized arrangement, individuals are granted the ability to collaborate and 

communicate on a level interaction network.  An additional benefit of decentralization is 

an organizations ability to adapt.  With modern markets and technology evolving rapidly, 

uncertainty arises leading to the need for adaptable organizations.  Again, 

decentralization is a suggested strategy within organizational structures (Foss, 2003; 

Heckscher and Donnellon, 1994; Ouchi, 1980; Torbert, 1974; Volberda, 1996) and its 

effect on the flexibility of the structure.  As hypothesized, this adaptability promotes 

organizational effectiveness in everchanging environments (Birkinshaw, Hamel, & Mol, 

2008; Foss, 2003; Zenger and Hesterly, 1997).   

While complete flexibility and empowerment are not the only properties of successful 

organizations, both are important characteristics to manage and analyze.  However, the 

idea of decentralization brings more complexity into a system.  Much like other aspects 

of structural complexity, this must also be balanced to maximize effectiveness.  Using 

topological complexity as identifier within the structural complexity, these two 
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characteristics become easier to visualize.  Figure 18 relates differing organizational 

arrangements and their effects on complexity.  With an increase in decentralization 

comes an increase in topological complexity.  Although topological complexity translates 

directly from Sinha’s original metric (as it is an inherent characteristic of a system’s 

adjacency matrix), the organizational implications discussed above provide new insights 

that were not considered in the original product architecture application. 

 

Figure 18. Structural Arrangement and Complexity Relationship 

 Applying the topological complexity metric to Team Y, the matrix energy of the 

organization’s adjacency matrix was calculated and divided by the number of individuals. 

3.7 Compiling the Organizational Complexity Metric of the Example Organization 

With all the complexity components accounted for, Table 11 shows the summary 

of the completed structural complexity metric. 

Table 11. Summary of Example Complexity Calculations 

Individual C1 ∑C𝟐 C3 

A 20.0 

761.9 

 

1.46 

B 13.75 

C 18.75 

D 7.5 

E 11.25 

Organization 71.25 

Structural Complexity 1184 
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Reviewing the results shown in Table 11 provides an additional tool for trading 

and organizing team structures and human resources.  Taking aspects from networking 

diagrams and existing organization breakdown structures, the complexity metric and its 

constituent components provides a simple, numerical visualization of the traded 

organization.  Looking at the component complexities (C1) attributed to the individuals 

within the organization allows for a snapshot of the complexity distribution throughout the 

organization.  This allows for potential rework or additional resource allocation 

considerations to support more ‘complex’ areas of an organization.  As for the interface 

complexities (C2) and topological complexity (C3), these metric are representative of the 

organization’s arrangement and how much influence this arrangement has on the 

chosen cost/performance metrics that define them.  With a 1.46 value for topological 

complexity, this indicates a more traditional hierarchical organizational structure (1 < C3 

< 2).  This indicates a stronger influence of interfacing on the complexity metric.  This 

information could lead to the implementation of additional interface mechanisms and 

processes to relieve the challenges associated within complex interface and 

communication challenges. 

Applying this tabulation of organizational complexity into a DSM, two DSMs with 

differing fidelity are available to aid complexity analysis and management.  Figure 19 

represents the overall complexities of each individual and their interfaces, while Figure 

20 represents a breakdown of each complexity contributor and characterization.  In other 

words, Figure 19 show the sum of the more detailed Figure 20.  To strengthen the visual 

nature of the DSM, a color gradient is applied to the DSM to highlight areas of high 

complexity within the organization.  Within both DSMs, outliers are highlighted in red 

color tones, while lower complexity interfaces are colored in the green scale.  This color 

scale is self-referential and does not indicate that an interface of green is not highly 
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complex, rather, comparatively, it is less complex than other aspects of the organization.  

This DSM is meant to bring attention to extreme cases, allowing for the systems 

engineer or program manager to reallocate support and resources to these areas of 

complexity.  
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Figure 19.  Visualizing the Relative Complexity Density of Team Y (Low-Fidelity)
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Figure 20. Visualizing the Relative Complexity Density of Team Y (High-Fidelity)
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Chapter 4 

ORGANIZATIONAL COMPLEXITY METRIC APPLIED TO NASA ISS 

In this section, an existing organizational structure will be explored and expanded 

upon using the proposed OCM methodology.  The organizational architecture is in the 

desired numerical DSM format with data relatable to the proposed organizational 

characterizations.  However, due to the lack of full definition in terms of available 

organization analytics, the implementation of the structural complexity metric is limited to 

the small dataset.  The relevance of each dataset and how it relates to an organization’s 

complexity will be discussed and interpreted to fit the proposed methodology for 

quantifying structural complexity.  The addition of the complexity metric within the 

context of the system is meant to supplement system representation and the already 

existing numerical DSM format.  This additional example will provide insight on how the 

methodology scales with an organization of different size, arrangement, and data 

collection methodology. 

4.1 Program Overview - NASA ISS Sustaining Engineering Example 

The International Space Station (ISS) began construction in 1998 and has been 

continuously inhabited with human operators since November 2000.  As a result of the 

ISS’s continued success, NASA began planning necessary sustaining operations 

needed to maintain the station.  In 2003, Tim Brady was assigned the task of developing 

a list of the necessary engineering sustainment tasks needed to achieve NASA’s goal. 

4.1.1 Data Collection - NASA ISS Sustaining Engineering Example 

Over the course of 4 months, Brady reviewed ISS documentation and 

interviewed current and former ISS engineers to develop a list of tasks based on 

necessary skills needed to maintain the ISS.  The following DSMs represent 

organizational responsibilities, information sharing, knowledge capture, and the 

interactions between teams that support the ISS. 
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4.1.2 Organizational Model - NASA ISS Sustaining Engineering Example 

Thirty-six critical functions performed by various teams within the ISS 

organization were identified to represent the scope of effort to support operations 

(Eppinger, 2012).  These operations were then placed on a DSM and their 

interdependencies were defined within the interconnecting cells.  A ‘0’ defined no 

dependency, a ‘1’ for moderate dependency, and a ‘2’ for high dependency.  Figure 21 

represents the initial dependency DSM.  To better help visualize the differences in 

dependencies, a ‘0’ cell is white, a ‘1’ cell is purple, and a ‘2’ cell is light blue.
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Figure 21. Organization DSM for ISS Sustaining Engineering Operations (Eppinger, 2012)
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 A second DSM was developed to capture the importance of critical skills 

retention within the organization.  Each of the 36 functions was assigned a weighting 

factor representing the critical skills value.  A ‘1’ defines a function that requires general 

engineering or project skill, a ‘2’ requires skills unique to NASA, while a ‘3’ requires an 

ISS-unique skillset (Eppinger, 2012).  Figure 22 represented the critical skills distribution 

within a DSM.  Within Figure 22, the color scheme reflects the severity of the critical 

skills needed.  In other words, if a cell is green, comparatively, the skills needed is lower 

than a cell that is yellow, as well as a cell that is orange requires more skill than that of a 

yellow cell.
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Figure 22. Critical skills DSM for ISS Sustaining Engineering Operations (Eppinger, 2012)
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 Lastly, a second analysis was conducted on the ISS organization and defined 

potential communication and coordination issues between functions.  Like the critical 

skills valuation, a communication penalty was designated to each of the 36 functions.  

With eight different organizational units involved in the ISS’s maintenance, if a function 

were performed within the same unit, the value would remain the same as Figure 22.  If 

the function were performed between differing units, the value would be multiplied by 5.  

A cell that is colored red has a significant communication penalty, while a green cell has 

less of a communication penalty, comparatively.  Figure 23 represents the 

communication penalty within an organizational DSM.



60 

 

 

Figure 23. Communication Penalty DSM for ISS Sustaining Engineering Operations (Eppinger, 2012)
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4.1.3 Visualizing Complexity in the NASA ISS Maintenance Organization 

For the data presented in the ISS study to conform to the visualization method, 

interpretations on how each dataset affects complexity must be established.  When 

categorizing the presented data, determining a correlation with complexity is needed.  

Additionally, the datasets must be designated as either component or interface. For this 

example, the breakdown of complexity definitions and correlations are summarized in 

Table 12.  Since the OCM methodology does not employ weights, each dataset will be 

weighed equally.  Again, due to the ISS study only having three datasets, the ISS 

example is meant to provide an additional example of application and may show skewed 

complexity results. 

Table 12. Summary of Dataset Assignment 

Dataset Characterization Correlation 

Function Dependency Interface Positive 

Critical Skills Value Component Positive 

Communication Penalty Interface Positive 
 

Starting with Figure 21 and the communication dependency dataset, the 

relationship between the metric assigned to dependency can be positively correlated to 

structural complexity.  This inference is based on a study done by Alison M. Konrad and 

Deborah W. Brown (Brown, 1996) that showed a positive relationship between task 

instability and organizational dependency.  As for the characterization of the data, 

function dependency is independent of internal function characteristics and should be 

characterized as interface-valuable data.  For the critical skills value dataset, it is implied 

that an increase in specific engineering skills needed for a function denotes an increase 

in complexity within that function’s tasks.  As inferred, this dataset will be characterized 

as component-valuable data that is positively correlated with complexity.  Lastly, the 

communication penalty highlights the potential for miscommunication, information loss, 

et cetera.  From this, another positive relationship between the penalty dataset and 
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complexity can be inferred, as these communication mistakes increase the chance of 

emergent behaviors and therefore complexity.  As the communication penalty defines 

the penalty between two functions, the dataset will be viewed as interface-valuable data 

that has a positive relationship. 

Figure 24 represents a section of the nested numerical DSM and how the 

information can be stored in a single, centralized DSM.  Reflecting the color schemes 

from the existing ISS DSMs, the purple cells identify the ‘dependency’ category, the red 

cells identify the ‘communication penalty’ data, and the black represent the ‘critical skills 

needed’ for the position.  Below the initial DSM is the complexity contributions of that 

section of the organization.  The full component complexity contributions due to the 

organizational functions can be seen in Table 13 and the summary of all complexity 

contributions can be seen in Table 14.  Lastly, similarly to the example shown in Chapter 

3, the final snapshot of the OCM DSM is shown in Figure 25 with the overall visualization 

of complexity shown in Figure 26.  These DSMs follow the same coloring methodology, 

as the red color scale shows self-referencing, high complexity interfaces, while the green 

color scale show lesser complex interfaces. 
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Figure 24. Snapshot of Nested Numerical DSM with Original Dataset 
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Table 13. Summary of Function (Critical Skills Value) Complexity Contributions 

Function Rank Complexity Contribution 

A 0 0 

B 0.03 0.15 

C 0.424 2.12 

D 0.242 1.21 

E 0.061 0.305 

F 0.091 0.455 

G 0.333 1.665 

H 0.364 1.82 

I 0.697 3.485 

J 0.727 3.635 

K 0.515 2.575 

L 0.909 4.545 

M 0.121 0.605 

N 0.818 4.09 

O 0.879 4.395 

P 0.97 4.85 

Q 0.636 3.18 

R 0.788 3.94 

S 0.909 4.545 

T 0.273 1.365 

U 0.455 2.275 

V 0.667 3.335 

W 0.606 3.03 

X 0.545 2.725 

Y 0.394 1.97 

Z 1 5 

AA 0.485 2.425 

AB 0.212 1.06 

AC 0.273 1.365 

AD 0.182 0.91 

AE 0.727 3.635 

AF 0.576 2.88 

AG 0.848 4.24 

AH 0.152 0.76 
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Figure 25. ISS Complexity Contributions (M to Q Snapshot) 

Reviewing the results shown in Table 14 provides another example of the OCM 

being applied to an organizational architecture with appropriate datasets.  While the 

NASA ISS Maintenance Program highlighted a single organizational configuration, the 

potential for trading and additional organization structures and human resources is made 

simpler with comparable complexity metrics.  The complexity metric provides a simple, 

numerical visualization of the any organization and its arrangement.  Again, looking at 

the component complexities (C1) attributed to the functions provides an easily 

understandable metric to help aid in decision making.  As for the interface complexities 

(C2) and topological complexity (C3), these metrics are representative of the 

organization’s arrangement and how much influence this arrangement has on the 

chosen cost/performance metrics that define them.  The topological complexity value of 

2.67 strongly indicates a decentralized organizational structure (C3 > 2).  While not 
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inherently a negative organizational characteristic, this information reinforces the need 

for interface management through interface mechanisms.  As expected with 

decentralized systems, the interface complexity overwhelms the component complexities 

(359, 344.4 > 84.5).  One thing to note is that the interface datasets outweigh the 

component datasets 2 to 1.  With an increase in available datasets, as well as, the 

creation of datasets tailored for the OCM, a more robust and complete organizational 

analysis can be made.
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Figure 26. ISS Complexity Visualization 
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Table 14. Summary of the Structural Complexity of the ISS Maintenance Program 

Function C1 ∑C 𝟐.𝟏 ∑C 𝟐.𝟐 C3 

A 0 

359.0 344.4 2.67 

B 0.15 

C 2.12 

D 1.21 

E 0.305 

F 0.455 

G 1.665 

H 1.82 

I 3.485 

J 3.635 

K 2.575 

L 4.545 

M 0.605 

N 4.09 

O 4.395 

P 4.85 

Q 3.18 

R 3.94 

S 4.545 

T 1.365 

U 2.275 

V 3.335 

W 3.03 

X 2.725 

Y 1.97 

Z 5 

AA 2.425 

AB 1.06 

AC 1.365 

AD 0.91 

AE 3.635 

AF 2.88 

AG 4.24 

AH 0.76 

Org. 84.5 

Structural Complexity 1962.6 
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Chapter 5 

CONCLUSION AND FUTURE WORKS 

 Aerospace systems prove to be difficult to manage when it comes to 

complexity.  While efforts have been made to manage the product complexity, the 

human element present in these systems must also be accounted for.  From the need 

for a better way of visualizing the complexity within organizational structures, the 

proposed organizational complexity metric methodology was developed and presented.  

The method takes advantage of quantifiable human and interface datasets and relates 

them to complexity.  This complexity metric is normalized to better compare, and trade 

differing organizational arrangements and is visualized in a single, centralized DSM for 

ease of representation.  The Organizational Complexity Metric (OCM) DSM that 

leverages a color gradient was developed to aid in complexity analysis and 

management.  This all-encompassing DSM shows quantifiable human data, as well as 

the complexity of the individuals and their communication interfaces.  Along with the 

nested DSM visual aid, applying the OCM allows for the arrangement and complexity of 

any system to be displayed and represented with a concise complexity table.   

Applying the OCM to the ISS, the ISS’s organizational arrangement is now easily 

discernible.  With a topological complexity of 2.67, the ISS organization is easily seen as 

a decentralized architecture (C3 > 2).  This arrangement information would normally be 

difficult to discern with a convoluted network diagram and even a DSM.  The ability to 

quickly determine whether a system’s organization is centralized, hierarchal, or 

decentralized allows systems engineers and program managers to better manage 

human resources and communication interfaces.  The OCM also allows systems 

engineers to easily visualize the relative complexity density throughout the organization.  

The centralized storage of complexity information, whether it is individual contributions or 



70 

 

interface contributions, provides a single location for organizational complexity 

information. 

To expand upon the presented OCM it is suggested that a further understanding 

of quantifiable organizational datasets should be explored.  This thesis assumes that all 

data presented is statistically sufficient and has a strong correlation to system 

complexity.  Additionally, the implementation of weights is suggested if there is sufficient 

research and backing to support the data’s relation to complexity.  Weighting component 

and interface characterizations would allow for refinement when calculating complexity.  

In its current state, the OCM assumes that all complexity contributors are viewed as 

equally important in complexity quantification.   
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