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Abstract

Non-unique topological sofic entropy and a von

Neumann algebra multiplicative ergodic theorem

Yuqing Lin, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Lewis Bowen

A sofic approximation to a countable group is a sequence of partial actions on finite sets

that asymptotically approximates the action of the group on itself by left-translations. A

group is sofic if it admits a sofic approximation. Sofic entropy theory is a generalization of

classical entropy theory in dynamics to actions by sofic groups. However, the sofic entropy

of an action may depend on a choice of sofic approximation. All previously known examples

showing this dependence rely on degenerate behavior. In joint work with D. Airey and L.

Bowen an explicit example is exhibited of a mixing subshift of finite type with two different

positive sofic entropies. The example is inspired by statistical physics literature on 2-colorings

of random hyper-graphs. Also, in joint work with L. Bowen and B. Hayes, the classical

Multiplicative Ergodic Theorem (MET) of Oseledets is generalized to cocycles taking values

in a type II von Neumann algebra. This appears to be the first MET involving operators

with continuous spectrum.
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Chapter 1

Introduction

1.1 General introduction to “A topological dynamical

system with two different positive sofic entropies”

Shannon entropy

Suppose we have a random variable X taking values in a finite set A, and suppose that

we seek a function giving a quantitative representation of how much information one would

obtain, or how “surprised” one would be, to learn of a particular outcome in A. Suppose

we want this function to depend only on the probability of an outcome. Naturally, the rarer

the outcome the more surprising its occurrence would be. On the other hand if an outcome

has probability 1, then its occurrence holds no information or surprise. Another reasonable

assumption is that one learns the same amount of information from the simultaneous oc-

currence of two independent events as from the separate occurrence of these events. This

leads us to a function I : (0, 1]→ [0,∞) such that I is monotone decreasing, I(1) = 0, and

I(xy) = I(x) + I(y). A natural candidate is then I(x) = − log(x). The above is a sim-

plified account of the approach that Claude Shannon took when he introduced information

entropy in [Sha48]. The motivation for Shannon’s work was in data communication - he

showed that entropy is a theoretical limit to how efficiently data can be coded without losing

any information. This Shannon entropy H(X) is defined to be the expected value of the
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information one learns from X, i.e. -

H(X) = −
∑
a∈A

pa log pa

where pa is the probability that X has outcome a ∈ A. By continuity we let 0 log 0 = 0. It

can be deduced that H is maximized when all outcomes are equally likely.

The history of entropy can be traced back to thermodynamics in 1854, when Rudolf

Clausius ([Cla56]) gave the first mathematical formulation of entropy. In the 1870s Boltzman

and Gibbs introduced a statistical mechanical view of entropy. We give a brief illustration

found in Petersen ([Pet89]) of the connection to Shannon entropy. Suppose there are n

molecules and states s1, ..., sk, and we have a system where pi proportion of the particles are in

state i. Then the number of ways for the particles to be in such a distribution is
(

n
p1n,p2n,...,pkn

)
.

Using Stirling’s formula, this number is approximately enH(p), where H(p) = −
∑
pi log pi

as seen earlier. Thus higher entropy is related to a larger number of possibilities, which

can be interpreted as higher uncertainty or randomness. This statistical mechanical view of

counting the exponential growth rate of “microstates” turns out to be the approach taken

in sofic entropy.

Entropy rate

Suppose now that we have a stationary stochastic process X = (X1, X2, ...) and we

want to quantify the amount of information per unit of time that we learn from this process.

Let h(X) = limn→∞
1
n
H(X1, ..., Xn). This is the notion of entropy rate. A stochastic

process is stationary if the law of the shifted process (X2, X3, ...) is the same as the law of X.

Assuming stationarity, all random variables in the sequence have the same law, and therefore

the same Shannon entropy. The entropy rate of the process is in general less than or equal

to the Shannon entropy of any single random variable Xi since knowledge of the past values

allows one to make better predictions of the future.

For example, Shannon ([Sha51]) tried to estimate the entropy of the English language.

Using standard tables the Shannon entropy of a single letter, chosen uniformly at random

from amongst pieces of typical English prose, assuming a twenty-seven letter alphabet (in-

cluding spaces), is about 4.03 bits (i.e. if log base 2 is used in the formula for entropy).

On the other hand, by asking English speakers to predict the letters of an unfamiliar En-
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glish passage, Shannon estimated the entropy rate of English prose to be about 1 bit per

letter. This is because of the many redundancies formed by many rules, at various scales

from the spelling of a single word to sentence and paragraph and composition structure, of

English prose. Thus theoretically on average a very long piece of English writing could be

compressed to a quarter of its length and still retain all of its information content. On the

other hand, a mathematics paper can be thought of as having high entropy - even a single

equation may contain a lot of information, but an error at a single symbol can also easily

confuse the reader.

Intuitively, if after observing the process for a finite period of time one can almost

surely predict the value of the next outcome, then the process can be thought of as de-

terministic and has entropy rate zero. On the other extreme, an independent and iden-

tically distributed process (iid) always outputs completely new information, so the entropy

rate is the same as the Shannon entropy of each individual random variable in the pro-

cess. For example, let X = (X1, X2, ...) represent a sequence of iid fair coin tosses. Then

(X1, ..., Xn) is uniformly distributed amongst 2n outcomes, so that H(X1, ..., Xn) = n log 2,

and so h(X) = log 2.

Kolmogorov-Sinai entropy

For a measure-preserving dynamical system (X,T, µ), the entropy rate (or Kolmogorov-

Sinai entropy) h(X,T, µ) was carried into ergodic theory by Kolmogorov and Sinai ([Kol59],

[Sin59]) about 10 years after Shannon’s work. Kolmogorov-Sinai entropy is important for

classification purposes in ergodic theory. Let B(p1, ..., pk) denote the iid process (also called

Bernoulli shift) where each random variable has outcome k with probability pk. Before

Kolmogorov and Sinai, it was unknown whether B(1/2, 1/2) is isomorphic (in the category of

measure-preserving dynamical systems) to B(1/3, 1/3, 1/3). However the above question has

been resolved in the negative because Kolmogorov-Sinai entropy is an isomorphism invariant

and H(1/2, 1/2) = log 2 while H(1/3, 1/3, 1/3) = log 3. Important theorems in this area in-

clude Sinai’s Factor theorem, Shannon-McMillan-Breiman theorem, and Kreiger Generator

theorem. Another celebrated achievement in this area is Ornstein’s isomorphism theorem

([Orn70]), which states that entropy is in fact a complete isomorphism invariant for Bernoulli

shifts.

Topological entropy and symbolic dynamics
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A topological dynamical system is a pair (X,T ) where X is a compact metrizable

Hausdorff space and T : X → X a homeomorphism. Topological entropy, h(X,T ),

first defined in [AKM65] is an isomorphism invariant of topological dynamical systems. It

is related to measure-theoretic entropy via the variational principle, which states that

h(X,T ) = supµ h(X,T, µ) where µ varies over all probability measures that make (X,T, µ)

measure-preserving. Note that the Krylov-Bogolyubov theorem guarantees that invariant

measures always exist for topological dynamical systems.

A special case of topological dynamics is symbolic dynamics, where X ⊂ AZ for

a finite set A with the product topology on AZ and T = σ is the shift map σ(x)n = xn+1.

Usually we think of A = 0, 1 so that X consists of a bi-infinite sequence of 0s and 1s.

Assume that X is closed and σ-invariant (a subshift). In this setting topological entropy

has a particular simple description - h(X, σ) = limn→∞
1
n

logWn(X) where Wn(X) is the

number of blocks of length n that can appear in X. Consider the following examples:

• h(AZ, σ) = log |A|. This is sometimes called the full |A|-shift over Z

• If X1 ⊂ {0, 1}Z is defined by the rule that a 0 must follow any 1, then it can be shown

that h(X1, σ) = log 1+
√

5
2

• If X2 ⊂ {0, 1}Z is defined by the rule that any x ∈ X2 can have at most ten 0s, then

h(X2, σ) = 0. This is because Wn(X2) is only growing polynomially but entropy only

measures exponential growth rate.

Entropy for general group actions

Entropy theory was extended to actions of countable amenable groups by [Kie75],

[MO85], and [OW80]. There are many equivalent definitions of amenability; we mention one

of them commonly used in ergodic theory - a group Γ is amenable if there exists a sequence of

finite sets Fn ⊂ Γ with the Folner property - for every g ∈ Γ, limn→∞
|gFn∆Fn|
|Fn| = 0. Such a

sequence is called a Folner sequence. For example the sequence Fn = {1, 2, ..., n} is a Folner

sequence for Z. A Folner sequence can also be thought of as having small boundary compared

to volume, allowing for one to replace averaging over {1, ..., n} by averaging over Folner

sequences and still obtain an isomorphism invariant in both the topological and measure-

theoretic setting. Important theorems such as Ornstein isomorphism theorem, Sinai’s factor
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theorem, and the variational principle continue to hold in the amenable setting.

Remark 1. As an aside, amenable groups were introduced by von Neumann in response to

the Banach-Tarski paradox. Indeed, another characterization of amenability involves the

property of non-paradoxicality - that amenable groups are those that cannot be used to

produce something akin to the Banach-Tarski paradox.

In the case of symbolic dynamics, given an amenable group Γ with Folner sequence

Fn, AΓ with the Γ- shift action σg(x)h = xg−1h for every g ∈ Γ, and X ⊂ AΓ closed

and invariant under σg for every g, one can define the topological entropy h(X, σ) =

limn→∞
1
|Fn| logWFn(X), where WFn(X) is now the number of patterns with coordinates

in Fn that can appear in X. It can be shown that such a definition does not depend on

the choice of Folner sequence. On the other hand, much less is understood for an analogous

question in the generalization of entropy theory to actions of countable sofic groups, which

will be discussed soon and is the motivation behind our work.

The class of amenable groups includes Zd, solvable groups, virtually nilpotent groups,

and all groups of subexponential growth. However, Fn for n ≥ 2 is nonamenable, where

Fn is the free group on n generators. In contrast to averaging over Folner sequences, a

naive definition of entropy by averaging over any sequence of finite sets of a nonamenable

group does not lead to an isomorphism invariant. Furthermore, an example by Ornstein-

Weiss in [OW87] showed that the full 2-shift over F2 contains the full 4-shift over F2 as a

factor, whereas in classical entropy theory, entropy could only decrease under factor maps,

suggesting another obstruction to generalizing entropy theory to actions of nonamenable

groups.

Nevertheless, the work of L. Bowen in [Bow10] in fact began the extension of en-

tropy theory to sofic group (see following remark) actions. Given Γ a sofic group with

sofic approximation Σ and Γy(X,µ) a probability-measure-preserving group action, a value

hΣ(Γy(X,µ)) ∈ −∞ ∪ [0,∞] was defined, now commonly known as sofic measure en-

tropy, such that

• It is also an isomorphism invariant of measure-preserving Γ-dynamical systems.

• It agrees with classical entropy when Γ is Z or amenable.
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• The entropy of a Bernoulli shift over Γ is also equal to the Shannon entropy of its base.

Remark 2. Informally, a sofic approximation Σ to a countable group Γ is a sequence

of approximate Γ-actions on finite graphs that approximate Γ acting on its Cayley graph.

A group is sofic if it has a sofic approximation, but in general there could be many sofic

approximations to a given group. All amenable groups and residually finite groups are sofic,

including nonabelian free groups and countable linear groups. In fact whether all countable

groups are sofic is a significant open question . Thus sofic entropy indeed extends classical

entropy to a much larger class of systems.

Topological sofic entropy was also defined in [KL11]. As before symbolic dynamics is

the setting where the definition of topological sofic entropy is relatively simple - count the

exponential growth rate of configurations on the vertices of the finite graphs that approximate

valid configurations in the subshift well.

Versions of some properties in classical entropy theory continue to hold for sofic

entropy (e.g. Ornstein’s isomorphism theorem ([Bow12],[Sew18a]), Sinai’s factor theorem

([Sew18b]), and the variational principle ([KL11], while others no longer hold (including, as

shown previously by Ornstein-Weiss, entropy no longer being monotonically decreasing un-

der factor maps). Our contribution is in the investigation of the dependence of sofic entropy

on sofic approximation.

If Γ is amenable, then sofic entropy does not depend on the choice of sofic approx-

imation (we will informally call this non-dependence “unique sofic entropy”). When Γ

is nonamenable, certain dynamical systems with strong properties have been shown to have

unique sofic entropy (e.g. Bernoulli shifts in [Bow10], certain algebraic dynamical systems

in [Hay16], and Gibbs measures with strong spatial mixing in [AP18]).

However, in both the measure and topological case, in general it could be that

hΣ1(ΓyX) 6= hΣ2(ΓyX) where everything is held constant except for the two sofic ap-

proximations Σ1, Σ2 to the same group Γ . But until now all known examples of nonunique

sofic entropy are based on actions where hΣ1(ΓyX) = −∞ (which we consider to be degen-

erate) and hΣ2(ΓyX) = 0.

Using a random hypergraph 2-coloring model adapted from statistical physics (in

particular from the work of [COZ11] and [AM06]), we construct an explicit example in the
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topological (more specifically, symbolic) case:

Theorem 2.1.1 There exists a sofic group Γ, X a mixing subshift of finite type, and

sofic approximations Σ1,Σ2 such that 0 < hΣ1(ΓyX) < hΣ2(ΓyX) <∞.

We will discuss how [COZ11] and [AM06] relates to our work after introducing random

hypergraph 2-coloring.

Random hypergraph 2-coloring

Given a graph, can one color each the vertex with one of two colors so that no edge of

G is monochromatic? This property, called 2-colorability, is equivalent to asking whether

the graph is bipartite, which has a fast (linear) algorithmic solution.

A much harder problem is to replace graphs with hypergraphs, in which edges are

replaced by hyperedges, which can be subsets of the vertices of any size. This problem

was introduced by Bernstein in 1908 ([Ber07]) and studied and popularized by Erdos, who

gave the property of being 2-colorable the name “Property B”, in the 1960s. A common

hypothesis is that the hypergraph is k-uniform - all hyperedges have size k. Dinur-Regev-

Smyth showed that even for 3-uniform 2-colorable hypergraphs, finding such a coloring is an

NP-hard problem.

The motivation behind [COZ11] is to study random k-uniform hypergraph 2-coloring.

In this setting the random hypergraph Hk(n,m) has n vertices and m hyperedges each of

size k, but all
((nk)
m

)
possible choices of edge sets are equally likely to occur. We informally

call this the “uniform” model. Let r = m/n be the edge density ratio. Hk(n,m) is said to

have a property P with high probability (w.h.p.) if the probability that Hk(n,m) has

P converges to 1 as n → ∞. The question that [COZ11], [AM06], and various others have

studied is “for what values of r is Hk(n, drne) 2-colorable w.h.p?”

Hypergraph coloring can be viewed as part of the class of constraint satisfaction

problems, which includes problems such as k-SAT, k-NAESAT, k-XORSAT. These prob-

lems have been studied not only in combinatorics and computer science but also in statistical

physics ([MZ97],[KMRT+07]) as “diluted mean field models”. Here (non-rigorous) frame-

works such as “condensation transition” and “replica symmetry breaking” often provide

intuition and predictions.

As is a feature of many properties of random graph models, a conjecture is that

there exists a sharp threshold for rsat such that Hk(n, drne) is 2-colorable w.h.p. for r <
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rsat and not 2-colorable w.h.p. if r > rsat. Common methods of bounding rsat include

the first moment method, which uses Markov’s inequality on the expected number of

monochromatic (or proper) colorings, E(Z), to provide an upper bound rfirst ≥ rsat, and the

second moment method (first used by [AM06]), which uses the Paley-Zygmund inequality

to provide a lower bound rsecond ≤ rsat.

Unfortunately, there is a strict gap between rfirst and rsecond. In particular, for r >

rsecond, the Paley-Zygmund inequality breaks down because E(Z2) = exp(Ω(n))E(Z)2. A

computation also shows that this implies that there is another random hypergraph model

called the “planted model” such that Eplanted(Z) = exp(Ω(n))E(Z). One of the contributions

of [COZ11] is to improve the lower bound from rsecond to rcond ≈ rsecond + 0.153 by using an

“enhanced second moment method”.

How our work uses the above ideas and results is the following:

• Fix large integers d and k, which correspond to the vertex degree and hyperedge size,

respectively. Let Γ be the d-fold free product of Z/kZ.

• We modify versions of the “uniform” and “planted” random hypergraph models from

the literature to obtain “random sofic approximations”, from which we eventually

extract deterministic sofic approximations Σ1 and Σ2 to Γ.

• Γ acts on the subshift X ⊂ {0, 1}Γ, where X is the set of all “proper colorings” in the

Cayley hypergraph of Γ. Entropy is then related to the exponential growth rate of the

number of proper 2-colorings in the finite approximations.

• Just as in the literature, first and second moment calculations show that the exponen-

tial growth rate of the expected number of proper colorings is positive for both uniform

and planted models, and strictly larger for the platned model for edge densities (which

is also equal to d/k) between rsecond and rfirst.

• In a similar fashion as in the literature, an enhanced second moment method shows

concentration about the expectation in the uniform model for edge densities less than

rcond. Thus between rsecond and rcond, we are able to conclude non-unique sofic entropy.

Further directions
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Two limitations of note exist with our example:

1. It is not uniquely ergodic, so it does not give as a corollary a nondegenerate example

of nonunique measure-theoretic sofic entropy.

2. It is not minimal, so it is still possible that our example contains a closed subsystem

exhibiting degenerate nonunique sofic entropy, albeit not in any obvious fashion.

So the following two questions could be asked:

Question 1. Does there exist a measure-preserving system Γy(X,µ) and Σ1,Σ2 sofic ap-

proximations such that 0 < hΣ1(Γy(X,µ)) < hΣ2(Γy(X,µ) <∞?

Regarding the above question, the next natural class of measures after Bernoulli shifts

to study is invariant Markov chains (over say the free group). To this end, our above work

inspires us to study the f -invariant over m-fold self joinings of a Markov measure, which

can be shown to be equivalent to the growth rate of the mth moment of the number of

“good models”. We may be able to draw inspiration from other models and methods from

statistical physics, for example the property of replica symmetry breaking may imply relevant

information about various moments. Also, [DSS16] on independent sets of random regular

graphs seems to contain relevant ideas, such as the “frozen model” for encoding clusters.

Question 2. Does there exist a minimal topological dynamical system ΓyX and Σ1,Σ2 sofic

approximations such that 0 < hΣ1(ΓyX) < hΣ2(ΓyX) <∞?

To begin, it may be useful to study B. Weiss’s construction of a universal minimal Γ

action for every countable group Γ ([Wei12]).

Our example is also highly specific. So one might investigate the flexibility of our

methods under perturbations.

Question 3. Can we still obtain a result if Γ =< s1, ..., sd|sk(i)
i = 1 >, with k a function of

i? What if we perturb X to require colorings with a general range of color distributions for

each edge, or we allow more than two colorings? Studies of hypergraph q-coloring exist in

the literature (e.g. [ACOG15]).

More generally, perhaps one can define the notion of a topological tail and conjecture

that any subshift of finite type over a (virtually) free group Γ with trivial topological tail

has unique sofic entropy.

Statement of contribution
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The dissertator has participated substantially in discussions, development, writing, or

revisions in the following sections: 3, part of 4, 6.1, 6.2, 8.2, 9, Appendix A, Appendix B.

This paper has recently received positive reviews from the Transactions of the AMS and is

undergoing revisions.

1.2 General introduction to “A The multiplicative er-

godic theorem for von Neumann algebra valued co-

cycles”

Overview Oseledets’ multiplicative ergodic theorem can be viewed in multiple ways: as a

dynamical or random version of the Jordan normal form, as a noncommutative or matrix

version of Birkhoff’s pointwise ergodic theorem (which itself can be viewed as a more general

version of the strong law of large numbers). It is applicable to nonlinear perturbations of

linear differential equations.

Suppose we are given a sequence of d×d random matrices A1, A2, .... Let Bn = An...A1

and we want to describe the properties of (Bn)
1
n for large n. This geometric mean of a random

product can be compared to the better known problem of taking the arithmetic mean of a

random sum.

In the case d = 1 with each Ai positive and independent and identically distributed

(iid), by taking logarithms the problem reduces to the strong law of large numbers.

However, in higher dimensions more interesting phenomenon arise. Consider an ex-

ample of Furstenberg-Kesten([FK60]). Let each Ai be iid with P(Ai = ( 2 0
0 1 )) = 1/2 and

P(Ai = ( 0 1
1 0 )) = 1/2

Then Bn oscillates between
(

2a 0
0 2b

)
and

(
0 2d
2c 0

)
for some a,b,c,d.

In particular the coefficients of Bn do not converge.

Early works studying this problem include those of Bellman ([Bel54]) and Furstenberg-

Kesten . They worked in the setting of stationary stochastic processes. Assuming all entries

of each Ai are positive, with certain additional conditions they obtained asymptotic re-

sults for individual entries of Bn - i.e. that limn→∞
1
n
E(log(Bn)i,j) exists. Another result

of Furstenberg-Kesten, which will be built upon by later researchers in proving the multi-
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plicative ergodic theorem, is the existence of limn→∞
1
n

log ‖Bn‖. Furstenberg-Kesten also

obtained a central limit theorem type of result which is beyond our scope here.

Classical MET

Perhaps a more interesting question would be to ask about the spectral properties of

Bn. The major classical result, in the setting of dynamical systems, is the multiplicative

ergodic theorem, first proven by Oseledets in ([Ose68]), a version of which is given below.

Let (X,µ, f) be a measure-preserving system. Let A : X → GL(d,R) be a measurable

map. Let Bn(x) = A(fn−1x)A(fn−2x)...A(x). Suppose∫
log+ ‖A(x)‖ dµ(x) <∞,

Then

lim
n→∞

[Bn(x)∗Bn(x)]
1
2n = Λ(x)

exists, where Λ(x) is positive definite and symmetric. Furthermore,

• Let λ1 > ... > λk be distinct eigenvalues of Λ. For each i let χi = log λi. The χi are

known as Lyapunov exponents.

• Let U1, ..., Uk be eigenspaces of dimension corresponding to λ1, ..., λk. Let Vi =
⊕

j≥i Uj.

The Vi are known as Oseledets subspaces or the Lyapunov filtration.

• Growth rates: For each i, and any v ∈ Vi \ Vi+1, limn→∞
1
n

log ‖Bn(x)v‖ = χi

• Equivariance of subspaces: For each i, B(x)Vi(x) = Vi(fx).

• Invariance of Lyapunov exponents: For each i, χi(fx) = χi(x).

• Regularity: limn→∞
1
n

log | det(Bn(x))| =
∑k

i=1 miχi where mi is the dimension of Ui.

Remark 3. There is also a version of the above MET for measure preserving flows, which

can be found in Oseledets’ original paper or in [Rue79].

Remark 4. There are various versions of the MET depending on whether one assumes that

the dynamics (f : X → X) is invertible and whether the random matrices are invertible.

The assumptions used here of noninvertible dynamics and invertible matrices are the

ones most suitable for our contribution to a new MET, which will be discussed later.

11



Remark 5. If f is the identity map, i.e. if there are no dynamics, then Bn(x) = (A(x))n,

and the conclusions of the MET can be obtained by using the Jordan normal form.

Motivation

We now provide some motivation for the MET, mostly following Barreira and Pesin

([BP02]). The origin of the attribution “Lyapunov” exponents comes from Lyapunov’s 1892

work ([Lya92]) on stability theory of solutions of ordinary differential equations. Consider

a differential equation of the form dx
dt

= A(t)(x), where x ∈ Rd, and A(t) is a matrix. Let

vy(t) be a solution of the differential equation with initial condition y ∈ Rd. Suppose now

that χ+(y) := lim supt→∞
1
t

log ‖vy(t)‖ < 0 for all y (it turns out that χ+ only attains finitely

many distinct values). Then every solution vy(t) converges to 0 at an exponential rate as

t→∞ - i.e. the trivial solution v0 ≡ 0 is exponentially stable.

Now suppose there is a small nonlinear perturbation of dx
dt

= A(t)(x)- i.e. the equation

du
dt

= A(t)u + f(t, u). This equation is often more representative of problems encountered

in the real world. The question arises of whether the linearized system, which is simpler to

analyze, can be used to provide information about any small enough nonlinear perturbation.

In particular, does χ+ < 0 from the linear system imply that every solution of the nonlinear

system with initial conditions close to 0 converges to 0 at an exponential rate as t → ∞?

The answer turns out to be negative in general ([Per30]). However, Lyapunov introduced the

notion of regularity; under such an additional assumption one can guarantee exponential

stability even in nonlinear perturbations. Regularity is often difficult to verify directly, but

it turns out to be equivalent to the regularity that is guaranteed almost everywhere by the

MET.

Building upon Lyapunov stability theory, Pesin’s theory of (nonuniformly) hyperbolic

systems involves a measure-preserving diffeomorphism or flow (including those generated by

an ordinary differential equation) on a smooth Riemannian manifold. This is a vast area

of research for which ([BP07]) is a detailed reference. The following is a brief description

in the discrete case: let f : M → M be a diffeomorphism of a Riemannian manifold M

with f−invariant measure µ. Let A(x) = Dxf . Then Bn(x) = Dxf
n, and the MET applies

to show that the asymptotic infinitesimal data at almost every point on the manifold is

well-defined and in some sense “regular.”
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From this infinitesimal data, the analogous stability theory developed is known as

local stable and unstable manifolds. Assuming that Lyapunov exponents are nonzero, along

with some other weak (in the sense of being widely satisfiable) conditions, nonuniform hyper-

bolicity theory further deduces even global data such as the existence of strong topological

and ergodicity properties and a formula for the measure-theoretic Kolmogorov Sinai entropy

of the system based on the positive Lyapunov exponents for systems preserving a Sinai-

Ruelle-Bowen measure (a physically important class of measures). The results of this theory

has seen connections to various other areas of research such as geometry, rigidity theory, and

partial differential equations.

Proof methods of the classical MET

Many approaches to proving the MET exist in the literature. Our work takes the

geometric approach of Kaimanovich and Karlsson Margulis.

Oseledets’ original proof of the MET involves, via conjugation, reducing the matrices

to lower triangular ones. A more popular proof approach, used in many later infinite-

dimensional generalizations of the MET, originated from Ragunathan in [Rag79]. This proof

involves showing that the eigenvalues of |Bn(x)| := (Bn(x)∗Bn(x))1/2 have a well defined

asymptotic exponential growth rate, and then that the eigenspaces of |Bn(x)| also converge

in some sense. The convergence of eigenvalues uses multilinear algebra and Kingman’s

subadditive ergodic theorem while the convergence of eigenspaces involves highly technical

linear algebra.

A third major approach, originating from Kaimanovich ([Kau87]) and later generalized

by Karlsson-Margulis ([KM99]) and others, involves the geometric idea of viewing GL(d,R)

as acting by isometries on P (d,R), the space of positive definite symmetric matrices given

a suitable metric making it a non-positively curved (in fact CAT(0)) space. The theorem

in this setting is that (for almost every x ∈ X) starting from any point y ∈ P (d,R) (in

particular we can take y = I), the result of the action of Bn(x) on y is asymptotically

close to a certain geodesic ray γ(·, x) starting from y. This geodesic ray in fact contains the

information to recover the limit Λ(x) described in the MET. Our work takes this geometric

approach.

Generalizations

Generalizations of the MET to bounded operators on Hilbert and Banach spaces have
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appeared in the literature ([Rue82, Mn83, Blu16, LL10, Thi87, GTQ15, Sch91]). Corre-

spondingly there have also been some results generalizing nonuniform hyperbolicity theory

to infinite dimensions ([Rue82, LY12]). However, all of the above results are assume that

the operators Bn(x) satisfy some sort of quasi-compactness condition and so limit operators

have discrete spectrum.

We now elaborate on generalizing the geometric approach to the MET. The metric on

P (d,R) making it into a non-positively curved space is given by d(a, b) = ‖ log(b−1/2ab−1/2)‖2,

where for a matrix A, ‖A‖2 =
√
tr(A∗A). This is known as the Frobenius or Hilbert-Schimdt

norm on matrices. This norm can also be defined for bounded operators on a separable

Hilbert space H with the standard trace tr(A∗A) =
∑

i ‖Aei‖2 (with ei a orthonormal basis

for H) whenever it is finite (i.e. on the set of Hilbert-Schmidt operators). In fact just as

in the finite-dimensional setting this allows one to show that there is an associated non-

positively curved associated space of positive operators on which the geometric approach

can be used to obtain an MET.

The discussion above leads one to consider whether there are more general settings

where a notion of trace allows one to obtain the objects and properties necessary to apply

the geometric approach. Thus we are led to the setting of von Neumann algebras, viewed

as a *-subalgebra of bounded operators on a Hilbert space closed under the strong operator

topology, equipped with a faithful normal semifinite trace. This trace is a positive linear

functional with additional properties, which are satisfied by the standard trace on a sep-

arable Hilbert space but also allow for more general phenomenon. For example, whereas

the standard trace only takes a discrete values on projection operators, The space L∞(X,µ)

acting on L2(X,µ) for some (nonatomic) measure space (X,µ) is a von Neumann algebra

with trace τ(f) =
∫
X
fdµ which can take on continuum values on indicator functions. The

trace of a projection operator can also be interpreted as giving a notion of dimension of

the subspace associated with the projection. In general von Neumann algebras are noncom-

mutative, but having a faithful normal trace allows one to define many notions and perform

analysis analogous to classical measure theory such as Lp spaces and convergence in measure.

The space of positive operators of a von Neumann algebra with a faithful normal

finite trace has already been studied by Andruchow-Larontoda ([AL06]) and shown to be a

nonpositively curved incomplete metric space. However, the theorem of Karlsson-Margulis
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that we eventually use includes in its hypothesis that the metric space be complete. Com-

pleting the metric space in order to apply the Karlsson-Margulis theorem is a major part of

our work, requiring us to deal with unbounded operators affiliated with the von Neumman

algebra. The space of such operators is suggestively called “L0”.

The results we obtain include a limit operator (Theorem 3.1.1), versions of Lyapunov

distribution and equivariance of subspaces (Theorem 3.1.2), growth rates (Theorem 3.1.4,

and regularity (Theorem 3.1.3). Many of our results are weaker than in the classical setting

because of complications arising in infinite dimensions such as continuous spectrum and the

nonequivalence of the many topologies on operators, taken for granted to be equivalent in

the finite-dimensional setting, that one works with in the course of proving the MET. These

include the operator norm topology, the L2 topology defined by the trace, the strong and

weak operator topologies, and the convergence in measure topology.

Further directions

If clearer definitions and stronger results could be obtained on such notions as growth

rates and regularity, perhaps one could embark on a project of extending the theory of

infinite-dimensional nonuniform hyperbolicity to operators with continuous spectrum.

Our work can be compared to results of Haagerup-Schultz ([HS09]), where their moti-

vation is to study the invariant subspace problem. They obtain a similar convergence result

for powers of a single operator (i.e. when the dynamics is trivial) in a II1 factor, but in

the strong operator topology and not assuming invertibility of the operators. Studying their

work and also the work of Dykema and others ([DNZ18]) on norm convergence may provide

further insights in our setting.

Another direction of study would be to generalize results in the literature concerning

non-invertibile and semi-invertible versions of the MET (see [GTQ15]) and stability under

perturbations of the cocycle (see [FGTQ19] and [BNV10]).

Statement of contribution

The dissertator’s main contribution to this project is in generalizing the results, ob-

tained by L. Bowen and B. Hayes in the setting of von Neumann algebras with finite trace,

to the setting of von Neumann algebras with semifinite trace.
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Chapter 2

A topological dynamical system with

two different positive sofic entropies

Coauthors: Dylan Airey, Lewis Bowen 1, and Yuqing (Frank) Lin

2.1 Introduction

The topological entropy of a homeomorphism T : X → X of a compact Hausdorff space X

was introduced in [AKM65]. It was generalized to actions of amenable groups via Følner

sequences in the 1970s [MO85] and to certain non-amenable groups via sofic approximations

more recently [KL11]. It plays a major role in the classification and structure theory of

topological dynamical systems.

To explain further, suppose Γ is a countable group with identity 1Γ and σ : Γ →
sym(V ) is a map where V is a finite set and sym(V ) is the group of permutations of V . It

is not required that σ is a homomorphism. Let D b Γ be finite and δ > 0. Then σ is called

• (D, δ)-multiplicative if

#{v ∈ V : σ(gh)v = σ(g)σ(h)v ∀g, h ∈ D} > (1− δ)|V |,
1supported in part by NSF grant DMS-1500389, NSF CAREER Award DMS-0954606

16



• (D, δ)-trace preserving if

#{v ∈ V : σ(f)v 6= v ∀f ∈ D \ {1Γ}} > (1− δ)|V |,

• (D, δ)-sofic if it is both (D, δ)-multiplicative and (D, δ)-trace preserving.

A sofic approximation to Γ consists of a sequence Σ = {σi}i∈N of maps σi : Γ→ sym(Vi)

such that for all finite D ⊂ Γ, δ > 0 and all but finitely many i, σi is (D, δ)-sofic. A group

is sofic if it admits a sofic approximation. In this paper we will usually assume |Vi| = i.

If Γ acts by homeomorphisms on a compact Hausdorff space X and a sofic approxima-

tion Σ to Γ is given then the Σ-entropy of the action is a topological conjugacy invariant,

denoted by hΣ(ΓyX) ∈ {−∞} ∪ [0,∞]. It is also called sofic entropy if Σ is understood.

It was first defined in [KL11] where the authors obtain a variational principle connecting

it with the previously introduced notion of sofic measure entropy [Bow10]. It is monotone

under embeddings and additive under direct products but not monotone under factor maps.

See [Bow17] for a survey.

A curious feature of this new entropy is that it may depend on the choice of sofic

approximation. This is not always the case; for example, if Γ is amenable then sofic entropy

and classical entropy always agree. However, there are examples of actions ΓyX by non-

amenable groups Γ with sofic approximations Σ1,Σ2 satisfying

hΣ1(ΓyX) = −∞ < hΣ2(ΓyX).

See [Bow17, Theorem 4.1]. The case hΣ1(ΓyX) = −∞ is considered degenerate: it implies

that there are no good models for the action with respect to the given sofic approximation.

Until this paper, it was an open problem whether a mixing action could have two different

non-negative values of sofic entropy. Our main result is:

Theorem 2.1.1. There exists a countable group Γ, a mixing action ΓyX by homeomor-

phisms on a compact metrizable space X and two sofic approximations Σ1,Σ2 to Γ such

that

0 < hΣ1(ΓyX) < hΣ2(ΓyX) <∞.
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Remark 6. The range of sofic entropies for an action ΓyX is the set of all non-negative

numbers of the form hΣ(ΓyX) as Σ varies over all sofic approximations to Γ. By taking

disjoint unions of copies of sofic approximations, it is possible to show the range of sofic

entropies is an interval (which may be empty or a singleton). So for the example of Theorem

2.1.1, the range of sofic entropies is uncountable.

Remark 7. It remains an open problem whether there is a measure-preserving action Γy(X,µ)

with two different non-negative sofic entropies. Theorem 2.1.1 does not settle this problem

because it is entirely possible that any invariant measure µ on X with hΣ2(Γy(X,µ)) >

hΣ1(ΓyX) satisfies hΣ1(Γy(X,µ)) = −∞.

In this paper we often assume Vn = [n] := {1, 2, ..., n}

2.1.1 Random sofic approximations

We do not know of any explicit sofic approximations to Γ which are amenable to analysis.

Instead, we study random sofic approximations. For the purposes of this paper, these are

sequences {Pn}n of probability measures Pn on spaces of homomorphisms Hom(Γ, sym(n))

such that, for any finite D ⊂ Γ and δ > 0 there is an ε > 0 such that

Pn(σ is (D, δ)-sofic) > 1− n−εn

for all sufficiently large n. Because n−εn decays super-exponentially, if Ωn ⊂ Hom(Γ, sym(n))

is any sequence with an exponential lower bound of the form Pn(Ωn) > e−cn (for some

constant c > 0) then there exists a sofic approximation Σ = {σn} with σn ∈ Ωn for all n.

It is this non-constructive existence result that enables us to use random sofic approx-

imations to prove Theorem 2.1.1.

2.1.2 Proper colorings of random hyper-graphs from a statistical

physics viewpoint

The idea for main construction comes from studies of proper colorings of random hyper-

graphs. Although these studies have very different motivations than those that inspired this
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paper, the examples that they provide are roughly the same as the examples used to prove

Theorem 2.1.1. The relevant literature and an outline is presented next.

A hyper-graph is a pair G = (V,E) where E is a collection of subsets of V . Elements

of E are called hyper-edges but we will call them edges for brevity’s sake. G is k-uniform

if every edge e ∈ E has cardinality k.

A 2-coloring of G is a map χ : V → {0, 1}. An edge e ∈ E is monochromatic for

χ if |χ(e)| = 1. A coloring is proper if it has no monochromatic edges.

Let Hk(n,m) denote a hyper-graph chosen uniformly among all
((nk)
m

)
k-uniform hyper-

graphs with n vertices and m edges. We will consider the number of proper 2-colorings of

Hk(n,m) when k is large but fixed, and the ratio of edges to vertices r := m/n is bounded

above and below by constants.

This random hyper-graph model was studied in [AM06, COZ11, COZ12]. These

works are motivated by the satisfiability conjecture. To explain, the lower satisfiability

threshold r−sat = r−sat(k) is the supremum over all r such that

lim
n→∞

Prob[Hk(n, drne) is properly 2-colorable] = 1.

The upper satisfiability threshold r+
sat = r+

sat(k) is the infimum over all r such that

lim
n→∞

Prob[Hk(n, drne) is properly 2-colorable] = 0.

The satisfiability conjecture posits that r−sat = r+
sat. It is still open.

Bounds on these thresholds were first obtained in [AM06] as follows. Let Z(G) be the

number of proper 2-colorings of a hyper-graph G. A first moment computation shows that

fk(r) = lim
n→∞

n−1 logE[Z(Hk(n, drne))]

where fk(r) := log(2) + r log(1 − 21−k). Let rfirst = rfirst(k) be such that fk(rfirst) = 0. If

r > rfirst then fk(r) < 0. Therefore r+
sat ≤ rfirst.

Let rsecond be the supremum over numbers r ≥ 0 such that the second moment

E[Z(Hk(n, drne))2] is equal to E[Z(Hk(n, drne))]2 up to sub-exponential factors. The Paley-

Zygmund inequality gives the bound rsecond ≤ r−sat.
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In [AM06], it is shown that

rfirst =
log(2)

2
2k − log(2)

2
+O(2−k),

rsecond =
log(2)

2
2k − log(2) + 1

2
+O(2−k).

So there is a constant-sized gap between the two thresholds.

A more detailed view of the second moment is illuminating. But before explaining,

we need some terminology. Let [n] be the set of natural numbers {1, 2, .., n}. A coloring χ of

[n] is equitable if |χ−1(0)| = |χ−1(1)|. We will assume from now on that n is even so that

equitable colorings of [n] exist. Let Ze(G) be the number of equitable proper colorings of a

hyper-graph G. A computation shows that E[Z(Hk(n, drne))] equals E[Ze(Hk(n, drne))] up

to sub-exponential factors. This enables us to work with equitable proper colorings in place

of all proper colorings. This reduces the computations because there is only one equitable

coloring up to the action of the symmetric group sym(n).

A computation shows that the second moment factorizes as

E[Ze(Hk(n,m))2] = E[Ze(Hk(n,m))]E[Ze(Hk(n,m))|χ is proper]

where χ : [n]→ {0, 1} is any equitable 2-coloring. Let Hχ
k (n,m) be the random hyper-graph

chosen by conditioning Hk(n,m) on the event that χ is a proper 2-coloring. This is called

the planted model and χ is the planted coloring. So computing the second moment of

Ze(Hk(n,m)) reduces to computing the first moment of Ze(H
χ
k (n,m)).

The normalized Hamming distance between colorings χ, χ′ : [n]→ {0, 1} is

dn(χ, χ′) = n−1#{v ∈ [n] : χ(v) 6= χ′(v)}.

Let Zχ(δ) be the number of equitable proper colorings χ′ with dn(χ, χ′) = δ. Then

Ze(H
χ
k (n,m)) =

∑
δ

Zχ(δ).

In [AM06], it is shown that E[Zχ(δ)|χ is proper] is equal to exp(nψ(δ)) (up to sub-exponential
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factors) where ψ is an explicit function.

Note that ψ(δ) = ψ(1−δ) (since if χ′ is a proper equitable coloring then so is 1−χ′ and

dn(χ, 1−χ′) = 1− dn(χ, χ′)). A computation shows ψ(1/2) = fk(r). If r < rsecond then ψ(δ)

is uniquely maximized at δ = 1/2. However, if r > rsecond then the maximum of ψ is attained

in the interval δ ∈ [0, 2−k/2]. In fact, ψ(δ) is negative for δ ∈ [2−k/2, 1/2−2−k/2]. So with high

probability, there are no proper equitable colorings χ′ with dn(χ, χ′) ∈ [2−k/2, 1/2 − 2−k/2].

This motivates defining the local cluster, denoted C(χ), to be the set of all proper equitable

2-colorings χ′ with dn(χ, χ′) ≤ 2−k/2.

The papers [COZ11, COZ12] obtain a stronger lower bound on the lower satisfiability

threshold using an argument they call the enhanced second moment method. To explain, we

need some terminology. We say a proper equitable coloring χ is good if the size of the local

cluster |C(χ)| is bounded by E[Ze(Hk(n,m))]. One of the main results of [COZ11, COZ12]

is that Pr[χ is good|χ is proper] tends to 1 as n → ∞ with m = rn + O(1) and r <

rsecond + 1−log(2)
2

+ ok(1). An application of the Paley-Zygmund inequality to the number of

good colorings yields the improved lower bound

rsecond +
1− log(2)

2
+ ok(1) ≤ r−sat.

The argument showing Pr[χ is good|χ is proper] → 1 is combinatorial. It is shown

that (with high probability) there is a set R ⊂ [n] with cardinality |R| ≈ (1 − 2−k)n which

is rigid in the following sense: if χ′ : [n] → {0, 1} is any proper equitable 2-coloring then

either: the restriction of χ′ to R is the same as the restriction of χ to R or dn(χ′, χ) is at

least cn/kt for some constants c, t > 0. This rigid set is constructed explicitly in terms of

local combinatorial data of the coloring χ on Hχ
k (n,m).

In summary, these papers study two random models Hk(n,m) and Hχ
k (n,m). When

r = m/n is in the interval (rsecond, rsecond + 1−log(2)
2

), the typical number of proper colorings

of Hk(n,m) grows exponentially in n but is smaller (by an exponential factor) than the

expected number of proper colorings of Hχ
k (n,m). It is these facts that we will generalize,

by replacing Hk(n,m), Hχ(n,m) with random sofic approximations to a group Γ so that the

exponential growth rate of the number of proper colorings roughly corresponds with sofic

entropy.
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Although the models that we study in this paper are similar to the models in [AM06,

COZ11, COZ12], they are different enough that we develop all results from scratch. More-

over, although the strategies we employ are roughly same, the proof details differ substan-

tially. The reader need not be familiar with these papers to read this paper.

2.1.3 The action

In the rest of this introduction, we introduce the action ΓyX in Theorem 2.1.1 and outline

the first steps of its proof. So fix positive integers k, d. Let

Γ = 〈s1, . . . , sd : sk1 = sk2 = · · · = skd = 1〉

be the free product of d copies of Z/kZ.

The Cayley hyper-tree of Γ, denoted G = (V,E), has vertex set V = Γ. The

edges are the left-cosets of the generator subgroups. That is, each edge e ∈ E has the form

e = {gsji : 0 ≤ j ≤ k − 1} for some g ∈ Γ and 1 ≤ i ≤ d.

Remark 8. It can be shown by considering each element of Γ as a reduced word in the

generators s1, ..., sd that G is a hyper-tree in the sense that there exists a unique “hyper-

path” between any two vertices. More precisely, for any v, w ∈ V , there exists a unique

sequence of edges e1, .., el such that v ∈ e1, w ∈ el, |ei ∩ ei+1| = 1, ei 6= ej for any i 6= j, and

v /∈ e2, w /∈ el−1. More intuitively, there are no “hyper-loops” in G.

The group Γ acts on {0, 1}Γ by (gx)f = xg−1f for g, f ∈ Γ, x ∈ {0, 1}Γ. LetX ⊂ {0, 1}Γ

be the subset of proper 2-colorings. It is a closed Γ-invariant subspace. Furthermore, ΓyX

is topologically mixing:

Claim 1. For any nonempty open sets A, B in X, there exists N such that for any g ∈ Γ

with |g| > N , gA ∩B 6= ∅. Here |g| denotes the shortest word length of representations of g

by generators s1, ..., sd.

Proof. It suffices to show the claim for A,B being cylinder sets. We make a further simpli-

fication by assuming each A, B is a cylinder set on a union of hyperedges, and a yet further

simplification that each A, B is a cylinder set on a connected union hyperedges. Informally,
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by shifting the “coordinates” on which A depends so that they are far enough separated

from the coordinates on which B depends, we can always fill in the rest of the graph to get

a proper coloring.

More precisely, suppose A = {x ∈ X : x � FA = χA}, where FA ⊂ E such that for

any e ∈ FA there exists f ∈ FA such that e ∩ f 6= ∅, FA = ∪e∈FAe, and χA : FA → {0, 1}
and similarly B = {x ∈ X : x � FB = χB}. χA and χB must be bichromatic on each edge in

their respective domains since A and B are nonempty.

Let N = max{|h| : h ∈ FA} + max{|h| : h ∈ FB} + k. Then it can be shown for any

g with |g| > N , that g−1FA ∩ FB = ∅. It follows from our earlier remark that there exists

a unique hyper-path connecting g−1FA to FB (otherwise there would be a hyperloop in G).

Thus for example one can recursively fill in a coloring on the rest of Γ by levels of hyperedges

- first the hyperedges adjacent to g−1FA and FB, then the next layer of adjacent hyperedges,

and so on. At each step, most hyperedges only have one vertex whose color is determined, so

it is always possible to color another vertex of an edge to make it bichromatic. Only along

the hyper-path connecting g−1FA to FB at some step there will be a hyperedge with two

vertices whose colors are already determined, but since k is large there is still another vertex

to color to make the edge bichromatic.

We will show that for certain values of k, d, the action ΓyX satisfies the conclusion

of Theorem 2.1.1.

2.1.4 Sofic entropy of the shift action on proper colorings

Given a homomorphism σ : Γ→ sym(V ), let Gσ = (V,Eσ) be the hyper-graph with vertices

V and edges equal to the orbits of the generator subgroups. That is, a subset e ⊂ V is an

edge if and only if e = {σ(sji )v}k−1
j=0 for some 1 ≤ i ≤ d and v ∈ V .

A hyper-graph is k-uniform if every edge has cardinality k. We will say that a

homomorphism σ : Γ→ sym(V ) is uniform if Gσ is k-uniform. Equivalently, this occurs if

for all 1 ≤ i ≤ d, σ(si) decomposes into a disjoint union of k-cycles.

A 2-coloring χ : V → {0, 1} of a hyper-graph G is ε-proper if the number of

monochromatic edges is ≤ ε|V |. Using the formulation of sofic entropy in [Bow17] (which
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was inspired by [Aus16]), we show in §2.2 that if Σ = {σn}n≥1 is a sofic approximation to Γ

by uniform homomorphisms then the Σ-entropy of ΓyX is:

hΣ(ΓyX) := inf
ε>0

lim sup
i→∞

|Vi|−1 log #{ε-proper 2-colorings of Gσi}.

2.1.5 Random hyper-graph models

Definition 1. Let Homunif(Γ, sym(n)) denote the set of all uniform homomorphisms from

Γ to sym(n). Let Pun be the uniform probability measure on Homunif(Γ, sym(n)) and let

Eun be its expectation operator. The measure Pun is called the uniform model. We will

always assume n ∈ kZ so that Homunif(Γ, sym(n)) is non-empty. In §2.3 we show that

{Pun}n≥1 is a random sofic approximation. We will use the uniform model to obtain the sofic

approximation Σ1 which appears in Theorem 2.1.1.

If V is a finite set, then a 2-coloring χ : V → {0, 1} is equitable if |χ−1(0)| = |χ−1(1)|.
We will assume from now on that n is even so that equitable colorings of [n] exist.

Definition 2. Fix an equitable coloring χ : [n]→ {0, 1}. Let Homχ(Γ, sym(n)) be the set of

all uniform homomorphisms σ : Γ→ sym(n) such that χ is proper as a coloring on Gσ. Let

Pχn be the uniform probability measure on Homχ(Γ, sym(n)) and let Eχn be its expectation

operator. The measure Pχn is called the planted model and χ is the planted coloring.

When χ is understood, we will write Ppn and Epn instead of Pχn and Eχn. In §2.3 we show that

{Ppn}n≥1 is a random sofic approximation. We will use the planted model to obtain the sofic

approximation Σ2 which appears in Theorem 2.1.1.

Remark 9. If χ and χ′ are both equitable 2-colorings then there are natural bijections from

Homχ(Γ, sym(n)) to Homχ′(Γ, sym(n)) as follows. Given a permutation π ∈ sym(n) and σ :

Γ→ sym(n), define σπ : Γ→ sym(n) by σπ(g) = πσ(g)π−1. Because χ and χ′ are equitable,

there exists π ∈ sym(n) such that χ = χ′ ◦ π. The map σ 7→ σπ defines a bijection from

Homχ(Γ, sym(n)) to Homχ′(Γ, sym(n)). Moreover π defines an hyper-graph-isomorphism

from Gσ to Gσπ . Therefore, any random variable on Hom(Γ, sym(n)) that depends only on

the hyper-graph Gσ up to hyper-graph-isomorphism has the same distribution under Pχn as

under Pχ′n . This justifies calling Pχn the planted model.
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2.1.6 The strategy and a key lemma

The idea behind the proof of Theorem 2.1.1 is to show that for some choices of (k, d), the

uniform model admits an exponential number of proper 2-colorings, but it has exponentially

fewer proper 2-colorings than the expected number of proper colorings of the planted model

(with probability that decays at most sub-exponentially in n).

To make this strategy more precise, we introduce the following notation. Let Z(ε;σ)

denote the number of ε-proper 2-colorings of Gσ. A coloring is σ-proper if it is (0, σ)-proper.

Let Z(σ) = Z(0;σ) be the number of σ-proper 2-colorings.

In §2.3, the proof of Theorem 2.1.1 is reduced to the Key Lemma:

Lemma 2.1.2 (Key Lemma). Let f(d, k) := log(2) + d
k

log(1 − 21−k). Also let r = d/k.

Then

f(d, k) = lim
n→∞

n−1 logEun[Z(σ)] = inf
ε>0

lim sup
n→∞

n−1 logEun[Z(ε;σ)]. (2.1)

Moreover, for any

0 < η0 < η1 < (1− log 2)/2

there exists k0 (depending on η0, η1) such that for all k ≥ k0 if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η ∈ [η0, η1] then

f(d, k) < lim inf
n→∞

n−1 logEpn[Z(σ)]. (2.2)

Also,

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
Pun
(∣∣n−1 logZ(σ)− f(d, k)

∣∣ < ε
))
. (2.3)

In all cases above, the limits are over n ∈ 2Z ∩ kZ.

Equations (2.1) and (2.2) are proven in §2.4 and §2.5 using first and second moment

arguments respectively. This part of the paper is similar to the arguments used in [AM06].
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Given σ : Γ → sym(n) and χ : [n] → {0, 1}, let Cσ(χ) be the set of all proper

equitable colorings χ′ : [n] → {0, 1} with dn(χ, χ′) ≤ 2−k/2. In section §2.5.2, second

moment arguments are used to reduce equation (2.3) to the following:

Proposition 2.5.9. Let 0 < η0 < (1− log 2)/2. Then for all sufficiently large k (depending

on η0), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η < (1 − log 2)/2 then with high probability in the planted model,

|Cσ(χ)| ≤ Eun(Ze). In symbols,

lim
n→∞

Pχn
(
|Cσ(χ)| ≤ Eun(Ze)

)
= 1.

In §2.6, Proposition 2.5.9 is reduced as follows. First, certain subsets of vertices are

defined through local combinatorial constraints. There are two main lemmas concerning

these subsets; one of which bounds their density and the other proves they are ‘rigid’.

Proposition 2.5.9 is proven in §2.6 assuming these lemmas.

The density lemma is proven in §2.7 using a natural Markov model on the space of

proper colorings that is the local-on-average limit of the planted model. Rigidity is proven in

§2.8 using an expansitivity argument similar to the way random regular graphs are proven

to be good expanders. This completes the last step of the proof of Theorem 2.1.1.

Acknowledgements. L.B. would like to thank Tim Austin and Allan Sly for helpful

conversations.

2.2 Topological sofic entropy

This section defines topological sofic entropy for subshifts using the formulation from [Aus16].

The main result is:

Lemma 2.2.1. For any sofic approximation Σ = {σn} with σn ∈ Homunif(Γ, sym(n)),

hΣ(ΓyX) = inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn).
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Let Γ denote a countable group, A a finite set (called the alphabet). Let T = (T g)g∈Γ

be the shift action on AΓ defined by T gx(f) = x(g−1f) for x ∈ AΓ. Let X ⊂ AΓ be a closed

Γ-invariant subspace. We denote the restriction of the action to X by ΓyX. Also let

Σ = {σi : Γ→ Sym(Vi)}i∈N be a sofic approximation to Γ.

Given σ : Γ → Sym(V ), v ∈ V and x : V → A the pullback name of x at v is

defined by

Πσ
v (x) ∈ AΓ, Πσ

v (x)(g) = xσ(g−1)v ∀g ∈ Γ.

For the sake of building some intuition, note that when σ is a homomorphism, the map

v 7→ Πσ
v (x) is Γ-equivariant (in the sense that Πσ

σ(g)v(x) = gΠσ
v (x)). In particular Πσ

v (x) ∈ AΓ

is periodic. In general, we think of Πσ
v (x) as an approximate periodic point.

Given an open set O ⊂ AΓ containing X and an ε > 0, a map x : V → A is called an

(O, ε, σ)-microstate if

#{v ∈ V : Πσ
v (x) ∈ O} ≥ (1− ε)|V |.

Let Ω(O, ε, σ) ⊂ AV denote the set of all (O, ε, σ)-microstates. Finally, the Σ-entropy of

the action is defined by

hΣ(ΓyX) := inf
O

inf
ε>0

lim sup
i→∞

|Vi|−1 log #Ω(O, ε, σi)

where the infimum is over all open neighborhoods of X in AΓ. This number depends on

the action ΓyX only up to topological conjugacy. It is an exercise in [Bow17] to show that

this definition agrees with the definition in [KL13]. We include a proof in Appendix 2.9 for

completeness.

Proof of Lemma 2.2.1. Let ε > 0 be given. Let S(ε;σn) ⊂ 2Vn be the set of (ε, σn)-proper

2-colorings. Let O0 ⊂ 2Γ be the set of all 2-colorings χ : Γ → {0, 1} such that for each

generator hyper-edge e ⊂ Γ, χ(e) = {0, 1}. A generator hyper-edge is a subgroup of the

form {sji : 0 ≤ j < k} for some i. Note O0 is an open superset of X.

We claim that Ω(O0, kε/d, σn) ⊂ S(ε;σn). To see this, let χ ∈ Ω(O0, kε/d, σn).

Then Πσn
v (χ) ∈ O0 if and only if all hyper-edges of Gσ containing v are bi-chromatic
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(with respect to χ). So if Πσn
v /∈ O0, then v is contained in up to d monochromatic hy-

peredges. On the other hand, each monochromatic hyperedge contains exactly k vertices

whose pullback name is not in O0. It follows that χ ∈ S(ε;σn). This implies hΣ(ΓyX) ≤
infε>0 lim supn→∞ n

−1 logZ(ε;σn).

Given a finite subset F of hyper-edges of the Cayley hyper-tree, let OF be the set of

all χ ∈ 2Γ with the property that χ(e) = {0, 1} for all e ∈ F. If O′ is any open neighborhood

of X in 2Γ then O′ contains OF for some F. To see this, suppose that there exist elements

χF ∈ OF \O′ for every finite F. Let χ be a cluster point of {χF} as F increases to the set E

of all hyper-edges. Then χ ∈ X \ O′, a contradiction. It follows that

hΣ(ΓyX) = inf
F

inf
ε>0

lim sup
i→∞

|Vi|−1 log #Ω(OF, ε, σi).

Next, fix a finite subset F of hyper-edges of the Cayley hyper-tree. We claim that

S
(

ε
k|F| ;σn

)
⊂ Ω(OF, ε, σn). To see this, let χ ∈ S

(
ε

k|F| ;σn

)
and B(χ, σn) ⊂ Vn be the set of

vertices contained in a monochromatic edge of χ. Now for v ∈ Vn, Πσn
v (χ) /∈ OF if and only

if Πσn
v (χ) is monochromatic on some edge in F. This occurs if and only if there is an element

f ∈ Γ in the union of F such that σn(f−1)v ∈ B(χ, σn). There are at most |F|B(χ, σn)

such vertices. But |B(χ, σn)| ≤ ( ε
|F |)n, so there are at most εn such vertices. It follows that

χ ∈ Ω(OF, ε, σn). Therefore,

inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn) ≤ inf
F

inf
ε>0

lim sup
i→∞

|Vi|−1 log #Ω(OF, ε, σi) = hΣ(ΓyX).

2.3 Reduction to the key lemma

The purpose of this section is to show how Lemma 2.1.2 implies Theorem 2.1.1. This requires

replacing the (random) uniform and planted models with (deterministic) sofic approxima-

tions. The next lemma facilitates this replacement.

Lemma 2.3.1. Let D ⊂ Γ be finite and δ > 0. Then there are constants ε,N0 > 0 such that
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for all n > N0 with n ∈ 2Z ∩ kZ,

Pun{σ : σ is not (D, δ)−sofic} ≤ n−εn,

Ppn{σ : σ is not (D, δ)−sofic} ≤ n−εn.

Proof. The proof given here is for the uniform model. The planted model is similar.

The proof begins with a series of four reductions. By taking a union bound, it suffices

to prove the special case in which D = {w} for w ∈ Γ nontrivial. (This is the first reduction).

Let w = srlil · · · s
r1
i1

be the reduced form of w. This means that ij ∈ {1, . . . , d},
ij 6= ij+1 for all j with indices mod l and 1 ≤ rj < k for all j. Let |w| = r1 + · · ·+ rl be the

length of w.

For any g ∈ Γ, the fixed point sets of σ(gwg−1) and σ(w) have the same size. So after

conjugating if necessary, we may assume that either l = 1 or i1 6= il.

For 1 ≤ j ≤ l, the j-th beginning subword of w is the element wj = s
rj
ij
· · · sr1i1 .

Given a vertex v ∈ Vn and σ ∈ Homunif(Γ, sym(n)), let p(v, σ) = (e1, . . . , el) be the path

defined by: for each j, ej is the unique hyper-edge of Gσ labeled ij containing σ(wj)v. A

vertex v ∈ Vn represents a (σ,w)-simple cycle if σ(w)v = v and for every 1 ≤ a < b ≤ l,

either

• ea ∩ eb = ∅,

• b = a+ 1 and |ea ∩ eb| = 1,

• or (a, b) = (1, l) and |ea ∩ eb| = 1.

We say that v represents a (σ,w)-simple degenerate cycle if σ(w)v = v and l = 2

and |e1 ∩ e2| ≥ 2.

If σ(w)v = v then either

• v represents a (σ,w)-simple cycle,

• there exists nontrivial w′ ∈ Γ with |w′| ≤ |w| + k such that some vertex v0 ∈ ∪jej
represents a (σ,w′)-simple cycle,
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• or there exists nontrivial w′ ∈ Γ with |w′| ≤ |w| + k such that some vertex v0 ∈ ∪jej
represents a (σ,w′)-simple degenerate cycle.

So it suffices to prove there are constants ε,N0 > 0 such that for all n > N0,

Pun
{
σ : #{v ∈ [n] : v represents a (σ,w)-simple cycle} ≥ δn

}
≤ n−εn.

and

Pun
{
σ : #{v ∈ [n] : v represents a (σ,w)-simple degenerate cycle} ≥ δn

}
≤ n−εn.

(This is the second reduction).

Two vertices v, v′ ∈ Vn represent vertex-disjoint (σ,w)-cycles if p(v, σ) = (e1, . . . , el), p(v
′, σ) =

(e′1, . . . , e
′
l) and ei ∩ e′j = ∅ for all i, j.

Let Gn(δ, w) be the set of all σ ∈ Homunif(Γ, sym(n)) such that there exists a subset

S ⊂ [n] satisfying

1. |S| ≥ δn,

2. every v ∈ S represents a (σ,w)-simple cycle,

3. the cycles p(v, σ) for v ∈ S are pairwise vertex-disjoint.

If v represents a simple (σ,w)-cycle then there are at most (kl)2 vertices v′ such that

v′ also represents a simple (σ,w)-cycle but the two cycles are not vertex-disjoint. Since this

bound does not depend on n, it suffices to prove there exist ε > 0 and N0 such that

Pun(Gn(δ, w)) ≤ n−εn

for all n ≥ N0. (This is the third reduction. The argument is similar for simple degenerate

cycles).

Let m = dδne and v1, . . . , vm be distinct vertices in [n] = Vn. For 1 ≤ i ≤ m, let Fi

be the set of all σ ∈ Homunif(Γ, sym(n)) such that for all 1 ≤ j ≤ i

1. vj represents a (σ,w)-simple cycle,
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2. the cycles p(v1, σ), . . . , p(vi, σ) are pairwise vertex-disjoint.

By summing over all subsets of size m, we obtain

Pun(Gn(δ, w)) ≤
(
n

m

)
Pun(Fm).

Since
(
n
m

)
≈ eH(δ,1−δ)n grows at most exponentially, it suffices to show there exist ε > 0 and

N0 such that Pun(Fm) ≤ n−εn for all n ≥ N0. (This is the fourth reduction. The argument is

similar for simple degenerate cycles).

Set F0 = Homunif(Γ, sym(n)). By the chain rule

Pun(Fm) =
m−1∏
i=0

Pun(Fi+1|Fi).

In order to estimate Pun(Fi+1|Fi), Fi can be expressed a disjoint union over the cycles

involved in its definition. To be precise, define an equivalence relation Ri on Fi by: σ, σ′ are

Ri-equivalent if for every 1 ≤ j ≤ i, 1 ≤ q ≤ l and r > 0

σ(sriqwq)vj = σ′(sriqwq)vj.

In other words, σ, σ′ are Ri-equivalent if they define the same paths according to all vertices

up to vi (so p(vj, σ) = p(vj, σ
′)) and their restrictions to every edge in these paths agree.

Of course, Fi is the disjoint union of the Ri-classes. Note that R0 is trivial (everything is

equivalent).

In general, if A,B1, . . . , Bm are measurable sets and the Bi’s are pairwise disjoint then

P(A| ∪i Bi) is a convex combination of P(A|Bi) (for any probability measure P). Therefore,

Pun(Fi+1|Fi) is a convex combination of probabilities of the form Pun(Fi+1|Bi) where Bi is an

Ri-class.

Now fix a Ri-class Bi (for some i with 0 ≤ i < m). Let K be the set of all vertices

covered by the cycles defining Bi. To be precise, this means K is the set of all u ∈ [n] = Vn

such that there exists an edge e with u ∈ e such that e is contained in a path p(vj, σ) with

1 ≤ j ≤ i and σ ∈ Bi. Since each path covers at most kl vertices, |K| ≤ ikl.

If l > 1 (the case l = 1 is similar), fix subsets e1, . . . , el−1 ⊂ [n] of size k. Conditioned
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on Bi and the event that the first (l−1) edges of p(vi+1, σ) are e1, . . . , el−1, the Pun-probability

that vi+1 represents a simple (σ,w)-cycle vertex-disjoint fromK is bounded by the probability

that a uniformly random k-element subset of

[n] \

( ⋃
2≤j≤l−1

ej ∪K

)

conditioned to intersect el−1 nontrivially contains vi+1. Since∣∣∣∣∣ ⋃
2≤j≤l−1

ej ∪K

∣∣∣∣∣ ≤ (i+ 1)kl ≤ mkl = kldδne,

this probability is bounded by C/n where C = C(w, d, k, δ) is a constant not depending on

n or the choice of Bi. It follows that Pun(Fi+1|Fi) ≤ C/n for all 0 ≤ i ≤ m− 1 and therefore

Pun(Fm) ≤ (C/n)m ≤ (C/n)δn.

This implies the lemma (the argument is similar for simple degenerate cycles).

Proof of Theorem 2.1.1 from Lemma 2.1.2. Choose d, k according to the hypotheses of Lemma

2.1.2 and construct ΓyX according to Section 1.3.

Let ε, δ > 0 and D ⊂ Γ be finite. Then there exists ε′, N1 such that if n > N1,

n ∈ 2Z ∩ kZ and σn is chosen at random with law Pun, then with positive probability,

1. σn is (D, δ)-sofic,

2. |n−1 log(Z(ε′;σn))− f(d, k)| < ε.

This is implied by Lemma 2.3.1 and Lemma 2.1.2 equations (1) and (3) respectively.

Now consider decreasing sequences εm → 0, δm → 0 and Dm ⊂ Γ finite subsets

increasing to Γ. We can repeated apply the above to get a decreasing ε′m and increasing Nm

such that if n > Nm, n ∈ 2Z∩kZ and σn is chosen at random with law Pun then with positive

probability

1. σn is (Dm, δm)-sofic,
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2. |n−1 log(Z(ε′m;σn))− f(d, k)| < εm.

So there exists a sofic approximation Σ1 = {σn} to Γ such that

inf
ε>0

lim sup
n→∞

n−1 logZ(ε;σn) = f(d, k).

By Lemma 2.2.1, this implies hΣ1(ΓyX) = f(d, k) > 0.

Equation (2) of Lemma 2.1.2 implies the existence of a number fp with

f(d, k) < fp < lim inf
n→∞

n−1 logEpn[Z(σ)].

Since Z(σ) ≤ 2n for every σ, there exist constants c,N0 > 0 such that

Ppn{σ : Z(σ) ≥ exp(nfp)} ≥ exp(−cn) (2.4)

for all n ≥ N0.

Now let δ > 0 and D ⊂ Γ be finite. Then there exists N2 such that if n > N2,

n ∈ 2Z ∩ kZ and σn is chosen at random with law Ppn, then with positive probability,

1. σn is (D, δ)-sofic,

2. n−1 logZ(σn) ≥ fp.

This is implied by Lemma 2.3.1 and equation (2.4). So there exists a sofic approximation

Σ2 = {σ′n} to Γ such that

lim sup
n→∞

n−1 logZ(σ′n) ≥ fp.

Since Z(σ′n) ≤ Z(ε;σ′n), Lemma 2.2.1 implies hΣ2(ΓyX) ≥ fp > f(d, k) = hΣ1(ΓyX).

2.4 The first moment

To simplify notation, we assume throughout the paper that n ∈ 2Z ∩ kZ without further

mention. This section proves (2.1) of Lemma 2.1.2. The proof is in two parts. Part 1, in

§2.4.1, establishes:
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Theorem 2.4.1.

lim
ε↘0

lim sup
n→∞

(1/n) logEun[Z(ε;σ)] = lim sup
n→∞

(1/n) logEun[Z(σ)].

Part 2 has to do with equitable colorings, where a 2-coloring χ : [n] → {0, 1} is

equitable if

|χ−1(0)| = |χ−1(1)| = n/2.

Let Ze(σ) be the number of proper equitable colorings of Gσ. §2.4.2 establishes

Theorem 2.4.2.

lim
n→∞

1

n
logEun[Z(σ)] = lim

n→∞

1

n
logEun[Ze(σ)].

Moreover,
1

n
logEun[Ze(σ)] = f(d, k) +O(n−1 log(n))

where f(d, k) = log(2) + d
k

log(1− 21−k).

Combined, Theorems 2.4.1 and 2.4.2 imply (2.1) of Lemma 2.1.2.

Remark 10. If r := (d/k) then the formula for limn→∞
1
n

logEun[Z(σ)] above is the same as

the formula found in [AM06, COZ11, COZ12] for the exponential growth rate of the number

of proper 2-colorings of Hk(n,m).

Remark 11. When we write an error term, such as O(n−1 log(n)), we always assume that

n ≥ 2 and the implicit constant is allowed to depend on k or d.

2.4.1 Almost proper 2-colorings

For 0 < x ≤ 1, let η(x) = −x log(x). Also let η(0) = 0. If ~T = (Ti)i∈I is a collection of

numbers with 0 ≤ Ti ≤ 1, then let

H(~T ) :=
∑
i∈I

η(Ti)

be the Shannon entropy of ~T .
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Definition 3. A k-partition of [n] is an unordered partition of [n] into sets of size k. Of

course, such a partition exists if and only if n/k ∈ N in which case there are

n!

k!n/k(n/k)!
(2.5)

such partitions. By Stirling’s formula,

1

n
log(#{k-partitions}) = (1− 1/k)(log(n)− 1)− (1/k) log(k − 1)! +O(n−1 log(n)). (2.6)

Definition 4. The orbit-partition of a permutation ρ ∈ sym(n) is the partition of [n] into

orbits of ρ. Fix a k-partition π. Then the number of permutations ρ whose orbit partition

is π equals (k − 1)!n/k.

Given σ ∈ Homunif(Γ, sym(n)), define the d-tuple (πσ1 , . . . , π
σ
d ) of k-partitions by: πσi

is the orbit-partition of σ(si). Fix a d-tuple of k-partitions (π1, . . . , πd). Then the number of

uniform homomorphisms σ such that πσi = πi for all i is [(k− 1)!n/k]d. Combined with (2.5),

this shows the number of uniform homomorphisms into sym(n) is

[
n!(k − 1)!n/k

k!n/k(n/k)!

]d
.

By Stirling’s formula,

1

n
log # Homunif(Γ, sym(n)) = d(1− 1/k)(log n− 1) +O(n−1 log(n)). (2.7)

Definition 5. Let π be a k-partition, χ : [n]→ {0, 1} a 2-coloring and ~t = (tj)
k
j=0 ∈ [0, 1]k+1

a vector with
∑

j tj = 1/k. The pair (π, χ) has type ~t if for all j,

#
{
e ∈ π : |e ∩ χ−1(1)| = j

}
= ntj.

Lemma 2.4.3. Let ~t = (t0, t1, . . . , tk) ∈ [0, 1]k+1 be such that
∑

j tj = 1/k and ntj ∈ Z. Let

p =
∑

j jtj. Let χ : [n] → {0, 1} be a map such that |χ−1(1)| = pn. Let f(~t) be the number
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of k-partitions π of [n] such that (π, χ) has type ~t. Then

(1/n) log f(~t) = (1−1/k)(log(n)−1)−H(p, 1−p)+H(~t)−
k∑
j=0

tj log(j!(k−j)!)+O(n−1 log(n)).

Proof. The following algorithm constructs all such partitions with no duplications:

Step 1. Choose an unordered partition of the set χ−1(1) into tjn sets of size j (j = 0, . . . , k).

Step 2. Choose an unordered partition of the set χ−1(0) into tjn sets of size k−j (j = 0, . . . , k).

Step 3. Choose a bijection between the collection of subsets of size j constructed in part 1 with

the collection of subsets of size k − j constructed in part 2.

Step 4. The partition consists of all sets of the form α ∪ β where α ⊂ χ−1(1) is a set of size j

constructed in Step 1 and β ⊂ χ−1(0) is a set of size (k− j) constructed in Step 2 that

it is paired with under Step 3.

The number of choices in Step 1 is (pn)!∏k
j=1(j)!tjn(tjn)!

. The number of choices in Step 2 is

((1−p)n)!∏k−1
j=0 (k−j)!tjn(tjn)!

. The number of choices in Step 3 is
∏k−1

j=1(tjn)!. So

f(~t) =
(pn)!((1− p)n)!∏k

j=0 j!
tjn(k − j)!tjn(tjn)!

.

The lemma follows from this and Stirling’s formula.

Let M be the set of all matrices ~T = (Tij)1≤i≤d,0≤j≤k such that

1. Tij ≥ 0 for all i, j,

2.
∑k

j=0 Tij = 1/k for all i,

3. there exists a number, denoted p(~T ), such that p(~T ) =
∑k

j=0 jTij for all i,

4. n~T is integer-valued.
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Lemma 2.4.4. Given a matrix ~T ∈M define

F (~T ) := H(~T ) + (1− d)H(p, 1− p)− (d/k) log k +
d∑
i=1

k∑
j=0

Tij log

(
k

j

)

where p = p(~T ). Then for any ε ≥ 0,

(1/n) logEun[Z(ε;σ)] = sup

{
F (~T ) : ~T ∈M and

d∑
i=1

∑
j=0,k

Tij ≤ ε

}
+O(n−1 log(n))

where the constant implicit in the error term does not depend on ε.

Proof. Given σ ∈ Homunif(Γ, sym(n)) and 1 ≤ i ≤ d, let πσi be the orbit-partition of σ(si).

For ~T as above, let Zσ(~T ) be the number of ε-proper colorings χ : [n] → {0, 1} such that

(πσi , χ) has type ~Ti = (Ti,0, . . . , Ti,k). It suffices to show that

(1/n) logEun[Zσ(~T )] = F (~T ) +O(n−1 log(n))

for all n ≥ 2 such that n~T is integer-valued. This is because the size of M is a polynomial

(depending on k, ε, d) in n so the supremum above determines the exponential growth rate

of Eun[Z(ε;σ)].

To prove this, fix a ~T as above and let n be such that n~T is integer-valued. Fix a

coloring χ : [n]→ {0, 1} such that |χ−1(1)| = pn. By symmetry,

Eun[Zσ(~T )] =

(
n

pn

)
Pun[(πσi , χ) has type ~Ti ∀i].

The events {(πσi , χ) has type ~Ti}di=1 are jointly independent. So

Eun[Zσ(~T )] =

(
n

pn

) d∏
i=1

Pun[(πσi , χ) has type ~Ti]. (2.8)

By symmetry, Pun[(πσi , χ) has type ~Ti] is the number of k-partitions π such that (π, χ) has
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type ~Ti divided by the number of k-partitions. By Lemma 2.4.3 and (2.6),

1

n
logPun[(πσi , χ) has type ~Ti]

= −H(p, 1− p) +H(~Ti)−
k∑
j=0

Tij log(j!(k − j)!) + (1/k) log(k − 1)! +O(n−1 log(n)).

Combine this with (2.8) to obtain

(1/n) logEun[Zσ(~T )]

= (1− d)H(p, 1− p) +H(~T )−
d∑
i=1

k∑
j=0

Tij log(j!(k − j)!) + (d/k) log(k − 1)! +O(n−1 log(n)).

This simplifies to the formula for F (~T ) using the assumption that
∑k

j=0 Tij = 1/k for all i.

Theorem 2.4.1 follows from Lemma 2.4.4 because F is continuous and the space of

vectors ~T satisfying the constraints of the Lemma is compact.

2.4.2 Equitable colorings

Proof of Theorem 2.4.2. Let M0 be the set of all ~T ∈ M such that Tij = 0 whenever

j ∈ {0, k}. By Lemma 2.4.4, it suffices to show that F admits a unique global maximum on

M0 and moreover if ~T ∈M0 is the global maximum then p(~T ) = 1/2 and F (~T ) = f(d, k).

The function F is symmetric in the index i. To exploit this, let M ′ be the set of all

vectors ~t = (tj)
k−1
j=1 such that tj ≥ 0 for all j and

∑k−1
j=1 tj = 1/k. Let

p(~t) =
k−1∑
j=1

jtj

F (~t) = dH(~t) + (1− d)H(p, 1− p)− (d/k) log k + d

k−1∑
j=1

tj log

(
k

j

)
.

Note that F (~t) = F (~T ) if ~T is defined by ~Tij = ~tj for all i, j. Moreover, since Shannon entropy

is strictly concave, for any ~T ∈M0, if ~t is defined to be the average: ~tj = d−1
∑d

i=1
~Tij then
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F (~t) ≥ F (~T ) with equality if and only if ~tj = ~Tij for all i, j. So it suffices to show that F

admits a unique global maximum on M ′ and moreover if ~t ∈ M ′ is the global maximum

then p(~t) = 1/2 and F (~t) = f(d, k).

Because ∂H(~t)
∂tj

= −[log(tj) + 1], ∂p
∂tj

= j, and ∂H(p,1−p)
∂tj

= j log
(

1−p
p

)
,

∂F

∂tj
= −d[log(tj) + 1] + (1− d)j log

(
1− p
p

)
+ d log

(
k

j

)
.

Since this is positive infinity whenever tj = 0, it follows that every maximum of F occurs

in the interior of M ′. The method of Lagrange multipliers implies that, at a critical point,

there exists λ ∈ R such that

∇F = λ∇

(
~t 7→

∑
j

tj

)
= (λ, λ, . . . , λ).

So at a critical point,

∂F

∂tj
= −d[log(tj) + 1] + (1− d)j log

(
1− p
p

)
+ d log

(
k

j

)
= λ.

Solve for tj to obtain

tj = exp(−λ/d− 1)

(
k

j

)(
1− p
p

)j(1−d)/d

.

Note

1 = k

k−1∑
j=1

tj

1 = 1/p
k−1∑
j=1

jtj

implies

0 =
k−1∑
j=1

(k − j/p)tj =
k−1∑
j=1

(pk − j)
(
k

j

)(
1− p
p

)j(1−d)/d

.
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So define

g(x) :=
k−1∑
j=1

(kx− j)
(
k

j

)(
1− x
x

)j(1−d)/d

.

It follows from the above that g(p(~t)) = 0 whenever ~t is a critical point.

We claim that g(x) = 0 if and only if x = 1/2 (for x ∈ (0, 1)). The change of variables

j 7→ k − j in the formula for g shows that g(1 − x) = −
(

x
1−x

)k(1−d)/d
g(x). So it is enough

to prove that g(x) < 0 for x ∈ (0, 1/2).

To obtain a simpler formula for g, set y(x) =
(

1−x
x

)(1−d)/d
. The binomial formula

implies

g(x) =
k−1∑
j=1

(kx− j)
(
k

j

)
yj

= kx[(1 + y)k − 1− yk]− ky[(1 + y)k−1 − yk−1]

= k[(x(1 + y)− y)(1 + y)k−1 − x+ (−x+ 1)yk].

Because 0 < x < 1/2, y >
(

x
1−x

)
which implies that the middle coefficient (x(1 + y)− y) =

x− y(1− x) < 0. So

g(x)/k < (1− x)yk − x < 0

where the last inequality holds because

yk =

(
x

1− x

)k(d−1)/d

<
x

1− x

assuming k(d− 1)/d > 1. This proves the claim.

So if ~t is a critical point then p(~t) = 1/2. Put this into the equation above for tj to

obtain

tj = C

(
k

j

)
where C = exp(−λ/d− 1). Because

1/k =
k−1∑
j=1

tj = C

k−1∑
j=1

(
k

j

)
= C(2k − 2)
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it must be that

tj =
1

k(2k − 2)

(
k

j

)
. (2.9)

The formula F (~t) = f(d, k) now follows from a straightforward computation.

2.5 The second moment

This section gives an estimate on the expected number of proper colorings at a given Ham-

ming distance from the planted coloring. This computation yields (2.2) of Lemma 2.1.2 as a

corollary. It also reduces the proof of (2.3) to obtaining an estimate on the typical number

of proper colorings near the planted coloring.

Before stating the main result, it seems worthwhile to review notation. Fix n > 0 with

n ∈ 2Z ∩ kZ. Fix an equitable 2-coloring χ : [n] → {0, 1}. This is the planted coloring.

The planted model Ppn is the uniform probability measure on the set Homχ(Γ, sym(n)) of all

uniform homomorphisms σ such that χ is σ-proper. Also let Ze : Homχ(Γ, sym(n))→ N be

the number of equitable proper 2-colorings. For δ ∈ [0, 1], let Zχ(δ; ·) : Homχ(Γ, sym(n))→ N

be the number of equitable proper 2-colorings χ̃ such that |dn(χ, χ̃)− δ| < 1/2n where dn is

the normalized Hamming distance defined by

dn(χ, χ̃) = n−1#{v ∈ [n] : χ(v) 6= χ̃(v)}.

We will also write Zχ(δ;σ) = Zχ(δ) = Z(δ) when χ and/or σ are understood.

The main result of this section is:

Theorem 2.5.1. With notation as above, for any 0 ≤ δ ≤ 1 such that δn/2 is an integer,

1

n
logEpn[Z(δ)] = ψ0(δ) +O(n−1 log(n))

(for n ≥ 2) where

ψ0(δ) = (1− d)H(δ, 1− δ) + dH0(δ, 1− δ) +
d

k
log

(
1− 1− δk0 − (1− δ0)k

2k−1 − 1

)
,
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δ0 is defined to be the unique solution to

δ0
1− 22−k + (δ0/2)k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
= δ

and

H(δ, 1− δ) := −δ log δ − (1− δ) log(1− δ),

H0(δ, 1− δ) := −δ log δ0 − (1− δ) log(1− δ0).

Moreover, the constant implicit in the error term O(n−1 log(n)) may depend on k but not on

δ.

Remark 12. If δ0 = δ then δ = 1/2. In the general case, δ0 = δ + O(2−k). Theorem 2.5.1

parallels similar results in [AM06, COZ11] for the random hyper-graph Hk(n,m). This is

explained in more detail in the next subsection.

The strategy behind the proof of Theorem 2.5.1 is as follows. We need to estimate

the expected number of equitable colorings at distance δ from the planted coloring. By

symmetry, it suffices to fix another coloring χ̃ that is at distance δ from the planted coloring

and count the number of uniform homomorphisms σ such that both χ and χ̃ are proper

with respect to Gσ. This can be handled one generator at a time. Moreover, only the orbit-

partition induced by a generator is used in this computation. So, for fixed χ, χ̃, we need to

estimate the number of k-partitions of [n] that are bi-chromatic under both χ and χ̃. To

make this strategy precise, we need the next definitions.

Definition 6. Let χ̃ be an equitable 2-coloring of [n]. An edge P ⊂ [n] is (χ, χ̃)-bichromatic

if χ(P ) = χ̃(P ) = {0, 1}. Recall that a k-partition is a partition π = {P1, . . . , Pn/k} of [n]

such that every part P ∈ π has cardinality k. A k-partition π is (χ, χ̃)-bichromatic if every

part P ∈ π is (χ, χ̃)-bichromatic.

Given a (χ, χ̃)-bichromatic edge P ⊂ [n] of size k, there is a 2 × 2 matrix ~e(χ̃, P )

defined by

~ei,j(χ̃, P ) = |P ∩ χ−1(i) ∩ χ̃−1(j)|.

Let E denote the set of all such matrices (over all P, χ̃). This is a finite set. To be precise,
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E is the set of all 2× 2 matrices ~e = (eij)i,j=0,1 such that

• eij ∈ {0, 1, . . . , k} for all i, j

• 0 < e10 + e11 < k

• 0 < e01 + e11 < k

•
∑

i,j eij = k.

If π is a (χ, χ̃)-bichromatic k-partition then it induces a function tχ̃,π : E→ [0, 1] by

tχ̃,π(~e) = n−1# {P ∈ π : ~e = ~e(χ̃, P )} .

Let T denote the set of all such functions. To be precise, T is the set of all functions

t : E→ [0, 1] satisfying

•
∑

~e∈E t(~e) = 1/k,

•
∑

~e∈E(e10 + e11)t(~e) = 1/2,

•
∑

~e∈E(e01 + e11)t(~e) = 1/2,

• nt(~e) is integer-valued

A k-partition π has type (χ, χ̃, t) if t = tχ̃,π.

Lemma 2.5.2. Given an equitable 2-coloring χ̃ : [n] → {0, 1}, let pχ̃ = (pχ̃ij) be the 2 × 2

matrix

pχ̃ij = (1/n)|χ−1(i) ∩ χ̃−1(j)|.

Then

pχ̃ =

 1/2− dn(χ, χ̃)/2 dn(χ, χ̃)/2

dn(χ, χ̃)/2 1/2− dn(χ, χ̃)/2


In particular, pχ̃ is determined by the Hamming distance dn(χ, χ̃).

43



Proof. Let p = pχ̃. The lemma follows from this system of linear equations:

1/2 = p01 + p11

1/2 = p10 + p11

dn(χ, χ̃) = p01 + p10

1 = p00 + p01 + p10 + p11.

The first two occur because both χ and χ̃ are equitable. The third follows from the defini-

tion of normalized Hamming distance and the last holds because {χ−1(i) ∩ χ̃−1(j)}i,j∈{0,1}
partitions [n].

For t ∈ T, define the 2× 2 matrix pt = (ptij) by

ptij :=
∑
~e∈E

eijt(~e).

If π is a k-partition that has type (χ, χ̃, t) (for some equitable χ̃) then pχ̃ = pt. This motivates

the definition.

The main combinatorial estimate we will need is:

Lemma 2.5.3. Let t ∈ T and χ̃ : [n]→ {0, 1} be equitable. Suppose nt is integer-valued and

pt = pχ̃. Let g(χ̃, t) be the number of k-partitions of type (χ, χ̃, t). Also let

G(t) := (1− 1/k)(log(n)− 1)−H(pt)− (1/k) log(k!) +H(t) +
∑
~e

t(~e) log

(
k

~e

)

where
(
k
~e

)
is the multinomial k!

e00!e01!e10!e11!
. Then

(1/n) log g(χ̃, t) = G(t) +O(n−1 log(n))

(for n ≥ 2) where the constant implicit in the error term depends on k but not on χ̃ or t.

Proof. The following algorithm constructs all such partitions with no duplications:
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Step 1. Choose a partition {Q~e
ij : i, j ∈ {0, 1}, ~e ∈ E} of χ−1(i) ∩ χ̃−1(j) such that

|Q~e
ij| = eijt(~e)n.

Step 2. For i, j ∈ {0, 1} and ~e ∈ E, choose an unordered partition π~eij of Q~e
ij into t(~e)n sets of

size eij.

Step 3. For i, j ∈ {0, 1} with (i, j) 6= (0, 0) and ~e ∈ E, choose a bijection α~eij : π~e00 → π~eij.

Step 4. The k-partition consists of all sets of the form P
⋃
i,j∈{0,1},(i,j) 6=(0,0) α

~e
ij(P ) over all P ∈

π~e00 and ~e ∈ E.

The number of choices in Step 1 is

∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!
∏
~e∈E

(eijt(~e)n)!−1.

The combined number of choices in Steps 1 and 2 is

∏
i,j∈{0,1}

|χ−1(i)∩χ̃−1(j)|!
∏
~e∈E

eij!
−t(~e)n(t(~e)n)!−1 =

(∏
~e∈E

(t(~e)n)!

)−4 ∏
i,j∈{0,1}

|χ−1(i)∩χ̃−1(j)|!
∏
~e∈E

eij!
−t(~e)n.

The number of choices in Step 3 is
∏
~e∈E(t(~e)n)!3. So

g(χ̃, t) =

 ∏
i,j∈{0,1}

|χ−1(i) ∩ χ̃−1(j)|!

(∏
~e∈E

(t(~e)n)!

)−1
 ∏
i,j∈{0,1}

∏
~e∈E

eij!
−t(~e)n

 .

An application of Stirling’s formula gives

(1/n) log g(χ̃, t) = (1− 1/k)(log(n)− 1)−H(pt) +H(t)−
∑
~e,i,j

t(~e) log(eij!) +O(n−1 log(n))

(for n ≥ 2) where the constant implicit in the error term depends on k but not on χ̃ or t.
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Since
∑

~e t(~e) = 1/k,

∑
~e

t(~e) log

(
k

~e

)
= (1/k) log(k!)−

∑
~e,i,j

t(~e) log(eij!).

Substitute this into the formula above to finish the lemma.

Next we use Lagrange multipliers to maximize G(t). To be precise, for δ ∈ [0, 1], let

T(δ) be the set of all t ∈ T such that pt01 = δ/2. To motivate this definition, observe that if

χ̃ is an equitable 2-coloring and δ = dn(χ, χ̃) then pχ̃01 = δ/2. So if π is a k-partition with

type (χ, χ̃, t) then pt01 = δ/2.

Lemma 2.5.4. Let δ ∈ [0, 1]. Then there exists a unique sδ ∈ T(δ) such that

max
t∈T(δ)

G(t) = G(sδ).

Moreover, if δ0, C > 0 and tδ ∈ T(δ) are defined by

δ

2
=

δ0

2

1− 22−k + (δ0/2)k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

C =
1

k[1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k]

tδ(~e) = C

(
1− δ0

2

)e00+e11 (δ0

2

)e01+e10 (k
~e

)
then sδ = tδ.

Proof. Define F : T → R by

F (t) = H(t) +
∑
~e

t(~e) log

(
k

~e

)
.

For all t ∈ T(δ), G(t)− F (t) is constant in t. Therefore, it suffices to prove the lemma with

F in place of G.

The function F is concave over t ∈ T(δ). This implies the existence of a unique

46



sδ ∈ T(δ) such that

max
t∈T(δ)

F (t) = F (sδ).

By definition, T(δ) is the set of all functions t : E→ [0, 1] satisfying

1/k =
∑
~e∈E

t(~e)

pij =
∑
~e∈E

eijt(~e),

where p = (pij) is the matrix

p =

 1/2− δ/2 δ/2

δ/2 1/2− δ/2

 .
For any ~e ∈ E,

∂F

∂t(~e)
= − log t(~e)− 1 + log

(
k

~e

)
. (2.10)

Since this is positive infinity when t(~e) = 0, sδ must lie in the interior of T(δ). By the method

of Lagrange multipliers there exists λ ∈ R and a 2× 2 matrix ~µ such that

∂F

∂t(~e)
(sδ) = λ+ ~µ · ~e. (2.11)

Evaluate (2.10) at sδ, use (2.11) and solve for sδ(~e) to obtain

sδ(~e) = C0

(
k

~e

)
xe0000 x

e01
01 x

e10
10 x

e11
11

for some constants C0, xij. In fact, since F is concave, sδ is the unique critical point and so

it is the only element of T(δ) of this form. So it suffices to check that the purported tδ given

in the statement of the lemma has this form and that it is in T(δ) as claimed. The former

is immediate while the latter is a tedious but straightforward computation. For example, to
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check that
∑

~e tδ(~e) = 1/k, observe that, by the multinomial formula for any (xij)i,j∈{0,1},

∑
~e∈E

(
k

~e

)
xe0000 x

e01
01 x

e10
10 x

e11
11

=
[
(x00 + x01 + x10 + x11)k

−(x00 + x01)k − (x00 + x10)k − (x11 + x01)k − (x11 + x10)k + xk00 + xk01 + xk10 + xk11

]
.

Substitute x00 = x11 = 1−δ0
2

and x01 = x10 = δ0/2 to obtain

∑
~e∈E

tδ(~e) = C

[
1− 4(1/2)k + 2

(
1− δ0

2

)k
+ 2

(
δ0

2

)k]
= 1/k.

The rest of the verification that tδ ∈ T(δ) is left to the reader.

Proof of Theorem 2.5.1. Let E (δ) be the set of all equitable 2-colorings χ̃ : [n]→ {0, 1} such

that dn(χ̃, χ) = δ. Also let Fχ̃ ⊂ Homunif(Γ, sym(n)) be the set of all σ such that χ̃ is a

proper 2-coloring of the hyper-graph Gσ. By linearity of expectation,

Epn[Zχ(δ)] =
∑
χ̃∈E (δ)

Pun(Fχ̃|Fχ).

The cardinality of E (δ) is
(
n/2
δn/2

)2
. By Stirling’s formula

n−1 log

(
n/2

δn/2

)2

= H(δ, 1− δ) +O(n−1 log(n)). (2.12)

We have Pun(Fχ̃|Fχ) is the same for all χ̃ ∈ E (δ). This follows by noting that the distribution

of hyper-graphs in the planted model is invariant under any permutation which fixes χ.

If η, η′ are two configurations with dn(η, χ) = dn(η′, χ) = δ then there is a permutation

π ∈ sym(n) which fixes χ and such that η ◦ π = η′. To see this note that we simply need to

find a π ∈ sym(n) which maps the sets χ−1(i)∩η−1(j) to χ−1(i)∩η′−1(j) for each i, j ∈ {0, 1}.
Such a map exists since for each i, j the two sets have the same size. It follows that

n−1 logEpn[Zχ(δ)] = H(δ, 1− δ) + n−1 logPun(Fχ̃|Fχ) +O(n−1 log(n)) (2.13)
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for any fixed χ̃ ∈ E (δ).

For 1 ≤ i ≤ d, let Fχ,i be the set of uniform homomorphisms σ such that the orbit-

partition of σ(si) is χ-bichromatic in the sense that χ(P ) = {0, 1} for every P in the orbit-

partition of σ(si). Then the events {Fχ,i ∩ Fχ̃,i}di=1 are i.i.d. and

Fχ ∩ Fχ̃ =
d⋂
i=1

Fχ,i ∩ Fχ̃,i.

Therefore,

Pun(Fχ̃|Fχ) =
Pun(Fχ̃,1 ∩ Fχ,1)d

Pun(Fχ)
. (2.14)

Note Pun(Fχ,1∩Fχ̃,1) is, up to sub-exponential factors, equal to the maximum of g(χ̃, t)

over t ∈ T(δ) divided by the number of k-partitions of [n]. So Lemmas 2.5.3, 2.5.4 and

equation (2.6) imply

1

n
logPun(Fχ̃,1 ∩ Fχ,1) = −H(~p) +H(tδ)−

∑
i,j,~e

tδ(~e) log(eij!) + (1/k) log(k − 1)! +O(n−1 log(n)).

Since ~p = (δ/2, δ/2, (1− δ)/2, (1− δ)/2), H(~p) = H(δ, 1− δ) + log(2). So

1

n
logPun(Fχ̃,1 ∩ Fχ,1) = −H(δ, 1− δ)− log(2) +H(tδ)

−
∑
i,j,~e

tδ(~e) log(eij!) + (1/k) log(k − 1)! +O(n−1 log(n)).(2.15)

On the other hand, Theorem 2.4.2 implies

1

n
logPun(Fχ) =

1

n
log

((
n

n/2

)−1

Eun[Ze(σ)]

)
= (d/k) log(1− 21−k) +O(n−1 log(n)).
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Combine this result with (2.13), (2.14) and (2.15) to obtain

n−1 logEpn[Zχ(δ)] = (1− d)H(δ, 1− δ)− d log(2) + dH(tδ)− d
∑
i,j,~e

tδ(~e) log(eij!)

+(d/k) log(k − 1)!− (d/k) log(1− 21−k) +O(n−1 log(n)).

Since
∑

~e tδ(~e) = 1/k,

∑
~e

tδ(~e) log

(
k

~e

)
= (1/k) log k!−

∑
i,j,~e

tδ(~e) log(eij!).

Substitute this into the previous equation to obtain

n−1 logEpn[Zχ(δ)] = ψ0(δ) +O(n−1 log(n))

where

ψ0(δ) = (1− d)H(δ, 1− δ)− d log(2) + dH(tδ) + d
∑
~e∈E

tδ(~e) log

(
k

~e

)
−(d/k) log k − (d/k) log(1− 21−k).

Observe that in every estimate above, the constant implicit in the error term does not depend

on δ. To finish the lemma, we need only simplify the expression for ψ0.

By Lemma 2.5.4,

H(tδ) = −
∑
~e

tδ(~e) log tδ(~e)

= −
∑
~e

tδ(~e)

(
logC + (e00 + e11) log

(
1− δ0

2

)
+ (e01 + e10) log

(
δ0

2

)
+ log

(
k

~e

))
= −(1/k)(logC)− (1− δ) log(1− δ0)− δ log(δ0) + log 2−

∑
~e

tδ(~e) log

(
k

~e

)
= −(1/k)(logC) +H0(δ, 1− δ) + log 2−

∑
~e

tδ(~e) log

(
k

~e

)
.
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Combined with the previous formula for ψ0, this implies

ψ0(δ) = (1− d)H(δ, 1− δ)− (d/k) logC + dH0(δ, 1− δ)− (d/k) log k − (d/k) log(1− 21−k).

To simplify further, use the formula for C in Lemma 2.5.4 to obtain

−(d/k)
(
logC + log k + log(1− 21−k)

)
= (d/k) log

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

1− 21−k

= (d/k) log

(
1− 1− δk0 − (1− δ0)k

2k−1 − 1

)
.

Thus ψ0(δ) = (1− d)H(δ, 1− δ) + dH0(δ, 1− δ) + d
k

log(1− 1−δk0−(1−δ0)k

2k−1−1
).

2.5.1 Analysis of ψ0 and the proof of Lemma 2.1.2 inequality (2.2)

Theorem 2.5.1 reduces inequality (2.2) to analyzing the function ψ0. A related function ψ,

defined by

ψ(x) := H(x, 1− x) +
d

k
log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
has been analyzed in [AM06, COZ11]. It is shown there ψ(x) is the exponential rate of growth

of the number of proper colorings at normalized distance x from the planted coloring in the

model Hk(n,m). Moreover, if r = d/k is close to log(2)
2
· 2k − (1 + log(2))/2 then the global

maximum of ψ(x) is attained at some x ∈ (0, 2−k/2). Moreover, ψ has a local maximum at

x = 1/2 and is symmetric around x = 1/2. It is negative in the region (2−k/2, 1/2− 2−k/2).

We will not need these facts directly, and mention them only for context, especially because

we will obtain similar results for ψ0.

The relevance of ψ to ψ0 lies in the fact that

ψ0(δ) = ψ(δ0)− (H(δ0, 1− δ0)−H0(δ, 1− δ)) + (d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)] .(2.16)

As an aside, note that H0(δ, 1 − δ) − H(δ, 1 − δ) is the Kullback-Leibler divergence of the

distribution (δ, 1− δ) with respect to (δ0, 1− δ0).

To prove inequality (2.2), we first estimate the difference ψ0(δ) − ψ(δ0) and then
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estimate ψ(δ0). Because the estimates we obtain are useful in the next subsection, we prove

more than what is required for just inequality (2.2).

Lemma 2.5.5. Suppose 0 ≤ δ0 ≤ 1/2. Define ε ≥ 0 by δ = δ0(1− ε). Then

H(δ0, 1− δ0)−H0(δ, 1− δ) = δ0ε log

(
1− δ0

δ0

)
≥ 0,

H0(δ, 1− δ)−H(δ, 1− δ) = O(δ0ε
2),

ε = O(2−k),

(1− δ)0 = 1− δ0.

The last equation implies ψ0(1− δ) = ψ0(δ).

Proof. The first equality follows from:

H(δ0, 1− δ0)−H0(δ, 1− δ) = −δ0 log δ0 − (1− δ0) log(1− δ0) + δ log δ0 + (1− δ) log(1− δ0)

= (δ0 − δ) log(1/δ0) + (δ0 − δ) log(1− δ0)

= δ0ε log

(
1− δ0

δ0

)
.

The second estimate follows from:

H0(δ, 1− δ)−H(δ, 1− δ) = δ (log δ − log δ0) + (1− δ) (log(1− δ)− log(1− δ0))

= δ log(1− ε) + (1− δ) log

(
1− δ
1− δ0

)
= −δε+ (1− δ) log

(
1 +

δ0ε

1− δ0

)
+O(δ0ε

2)

= −δε+ δ0ε+O(δ0ε
2) = O(δ0ε

2).
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The third estimate follows from:

ε = 1− δ

δ0

(2.17)

= 1− 1− 22−k + (δ0/2)k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
(2.18)

=
2(δ0/2)k − (δ0/2)k−1 + 2((1− δ0)/2)k

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
(2.19)

=
(δ0/2)k−1(δ0 − 1) + 2((1− δ0)/2)k

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
(2.20)

= 21−k · (1− δ0) · (1− δ0)k−1 − δk−1
0

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k
. (2.21)

The denominator is 1 +O(2−k) and the numerator is O(2−k). The result follows.

The last equation follows from:

1− δ = 1− δ0

(
1− 22−k + (δ0/2)k−1

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

)
=

1− 22−k + 2(δ0/2)k + 2
(
(1− δ0)/2)k − δ0(1− 22−k + (δ0/2)k−1

)
1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

=
(1− δ0)

(
1− 22−k + ((1− δ0)/2)k−1

)
1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

.

The last expression shows that (1− δ)0 = 1− δ0.

Lemma 2.5.6. Let 0 ≤ η be constant with respect to k. If

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

then

f(d, k) = ψ(1/2) = ψ0(1/2) = (1− 2η)2−k +O(2−2k)

ψ(2−k) = 2−k +O(2−2k).

In particular, if k is sufficiently large then ψ(2−k) > f(d, k).
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Proof. By direct inspection f(d, k) = ψ(1/2) = ψ0(1/2). By Taylor series expansion, log(1−
21−k) = −21−k − 21−2k +O(2−3k). So

f(d, k) = log(2) + r log(1− 21−k)

= log(2) +

(
log(2)

2
· 2k − (1 + log(2))/2 + η

)(
−21−k − 21−2k

)
+O(r2−3k)

= (1− 2η)2−k +O(2−2k).

Next we estimate ψ(2−k). For convenience, let x = 2−k. Then

1− xk − (1− x)k = k · 2−k +O(k22−2k).

Since log(1− x) = −x− x2/2 +O(x3),

log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
= −2k · 2−2k +O(k22−3k).

So

r log

(
1− 1− xk − (1− x)k

2k−1 − 1

)
= −k log(2) · 2−k +O(k22−2k).

Also,

H(x, 1− x) = (k log(2) + 1) · 2−k +O(2−2k).

Add these together to obtain

ψ(2−k) = 2−k +O(k22−2k).

Corollary 2.5.7. Inequality (2.2) of Lemma 2.1.2 is true. To be precise, let 0 < η0 be

constant with respect to k. Then for all sufficiently large k (depending on η0), if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η
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for some η ≥ η0 constant with respect to k then

f(d, k) < lim inf
n→∞

n−1 logEpn[Z(σ)].

Proof. By definition,

n−1 logEpn[Z(σ)] ≥ max
δ∈[0,1/2]

n−1 logEpn[Z(δ)].

By Theorem 2.5.1,

lim inf
n→∞

n−1 logEpn[Z(σ)] ≥ max
δ∈[0,1/2]

ψ0(δ). (2.22)

Because H0(δ, 1 − δ) − H(δ, 1 − δ) ≥ 0 (since it is a Kullback-Liebler divergence), the first

equality of Lemma 2.5.5 implies

ψ0(δ) = ψ(δ0)− (H(δ0, 1− δ0)−H0(δ, 1− δ)) + (d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)]

≥ ψ(δ0)− δ0ε log

(
1− δ0

δ0

)
.

By Lemma 2.5.6, ψ(2−k) = f(d, k) + 2η2−k + O(2−2k). By Lemma 2.5.5, ε = O(2−k). As δ

varies over [0, 1/2], δ0 also varies over [0, 1/2], so there exists δ such that δ0 = 2−k. For this

value of δ,

ψ0(δ) ≥ ψ(2−k)− 2−kε log

(
1− 2−k

2−k

)
≥ f(d, k) + 2η2−k +O(k2−2k).

Combined with (2.22) this implies the Corollary.

In the next subsection, we will need the following result.

Proposition 2.5.8. Let

0 < η0 < η1 < (1− log 2)/2.

Then there exists k0 (depending on η0, η1) such that for all k ≥ k0 if

r = d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η
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for some η ∈ [η0, η1] then in the interval [2−k/2, 1 − 2−k/2], ψ0 attains its unique maximum

at 1/2. That is,

max{ψ0(δ) : 2−k/2 ≤ δ ≤ 1− 2−k/2} = ψ0(1/2) = f(d, k) = log(2) + r log(1− 21−k)

and if δ ∈ [2−k/2, 1− 2−k/2] and δ 6= 1/2 then ψ0(δ) < ψ0(1/2).

Proof. By Lemma 2.5.5, it suffices to restrict δ to the interval [2−k/2, 1/2] (because ψ0(δ) =

ψ0(1− δ)). So we will assume δ ∈ [2−k/2, 1/2] without further mention.

Define ψ1 by

ψ1(δ0) =
d

k
log

(
1− 1− δk0 − (1− δ0)k

2k−1 − 1

)
.

Observe

ψ1(δ0) = r

(
−1− δk0 − (1− δ0)k

2k−1 − 1
+O(4−k)

)
(2.23)

= − log(2)[1− (1− δ0)k] +O(2−k). (2.24)

By (2.16) and the first inequality of Lemma 2.5.5,

ψ0(δ) ≤ ψ(δ0) + (d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)] (2.25)

= H(δ0, 1− δ0) + ψ1(δ0) + (d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)]. (2.26)

Moreover, (d − 1) = O(k2k) and, by Lemma 2.5.5, H0(δ, 1 − δ) − H(δ, 1 − δ) = O(δ04−k).

Therefore,

ψ0(δ) ≤ H(δ0, 1− δ0) + ψ1(δ0) +O(δ0k2−k) (2.27)

≤ H(δ0, 1− δ0)− log(2)[1− (1− δ0)k] +O((δ0k + 1)2−k). (2.28)

Observe that δ0 ≥ δ. We divide the rest of the proof into five cases depending on

where δ0 lies in the interval [2−k/2, 1/2].

Case 1. Suppose 2−k/2 ≤ δ0 ≤ 1
2k

. We claim that ψ0(δ) < 0. Note − log(δ0) ≤
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(k/2) log(2) and −(1− δ0) log(1− δ0) = δ0 +O(δ2
0). So

H(δ0, 1− δ0) = −δ0 log δ0 − (1− δ0) log(1− δ0)

≤ δ0(k/2) log(2) + δ0 +O(δ2
0).

By Taylor series expansion,

1− (1− δ0)k ≥ kδ0 −
(
k

2

)
δ2

0 ≥ 3kδ0/4.

So by (2.28)

ψ0(δ) ≤ δ0(k/2) log(2) + δ0 − 3kδ0 log(2)/4 +O(δ2
0)

= δ0[1− k log(2)/4] +O(δ2
0).

Thus ψ0(δ) < 0 if k is sufficiently large.

Case 2. Let 0 < ξ0 < 1/2 be a constant such that H(ξ0, 1− ξ0) < log(2)(1− e−1/2).

Suppose 1
2k
≤ δ0 ≤ ξ0. We claim that ψ0(δ) < 0 if k is sufficiently large.

By monotonicity, H(δ0, 1− δ0) ≤ H(ξ0, 1− ξ0). Since 1− x ≤ e−x (for x > 0),

[1− (1− δ0)k] ≥ 1− e−kδ0 ≥ 1− e−1/2.

By (2.28),

ψ0(δ) ≤ H(ξ0, 1− ξ0)− log(2)(1− e−1/2) +O(k2−k).

This implies the claim.

Case 3. Let ξ1 be a constant such that max(ξ0, 1/3) < ξ1 < 1/2. Suppose ξ0 ≤ δ0 ≤
ξ1. We claim that ψ0(δ) < 0 for all sufficiently large k (depending on ξ1).

By (2.28),

ψ0(δ) ≤ H(ξ1, 1− ξ1)− log(2)[1− (1− δ0)k] +O(k2−k) ≤ H(ξ1, 1− η1)− log(2) +O((1− ξ0)k).
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This proves the claim.

Case 4. We claim that if ξ1 ≤ δ0 ≤ 0.5− 2−k then ψ0(δ) < f(d, k) for all sufficiently

large k (independent of the choice of ξ1).

Recall that we define ε by δ = δ0(1− ε). By (2.21),

ε = 21−k · (1− δ0) · (1− δ0)k−1 − δk−1
0

1− 22−k + 2(δ0/2)k + 2((1− δ0)/2)k

≤ 21−k(1− ξ1)k +O
(
4−k
)
≤ 2 · 3−k

since ξ1 > 1/3, assuming k is sufficiently large.

The assumption on r implies d = O
(
k2k
)
. So the second equality of Lemma 2.5.5

implies

(d− 1)[H0(δ, 1− δ)−H(δ, 1− δ)] = O
(
4.5−k

)
.

By the discussion before equation (32) on page 19 of [COZ11] and Taylor’s theorem,

ψ(δ0) = ψ(1/2)− (2 + ok(1))(0.5− δ0)2 + ok
(
(0.5− δ0)3

)
. (2.29)

Since ψ(1/2) = f(d, k), (2.25) implies

ψ0(δ) ≤ f(d, k)− (2 + ok(1))(0.5− δ0)2 + ok
(
(0.5− δ0)3

)
+O

(
4.5−k

)
is strictly less than f(d, k) if k is sufficiently large. This implies the claim.

Case 5. Suppose 0.5− 2−k ≤ δ0 < 0.5. Let γ = 0.5− δ0. By (2.21),

ε = O
([

(1/2 + γ)k−1 − (1/2− γ)k−1
]

2−k
)
.

Define L(x) := (1/2 + x)k−1 − (1/2 − x)k−1. We claim that L(γ) ≤ γ. Since L(0) = 0, it

suffices to show that L′(x) ≤ 1 for all x with |x| ≤ 0.01. An elementary calculation shows

L′(x) = (k − 1)
[
(1/2 + x)k−2 + (1/2− x)k−2

]
.

So L′(x) ≤ 1 if |x| ≤ 0.01 and k is sufficiently large. Altogether this proves ε = O
(
γ2−k

)
.

58



So the second equality of Lemma 2.5.5 implies

(d− 1) [H0(δ, 1− δ)−H(δ, 1− δ)] = O
(
k2−kγ2

)
.

By (2.29) and (2.25),

ψ0(δ) ≤ f(d, k)− (4 + ok(1))γ2 +O
(
k2−kγ2

)
.

This is strictly less than f(d, k) if k is sufficiently large.

2.5.2 Reducing Lemma 2.1.2 inequality (2.3) to estimating the

local cluster

As in the previous section, fix an equitable coloring χ : Vn → {0, 1}. Given a uniform

homomorphism σ ∈ Homunif(Γ, Sym(n)), the cluster around χ is the set

Cσ(χ) :=
{
χ̃ ∈ Ze(σ) : dn(χ, χ̃) ≤ 2−k/2

}
.

We also call this the local cluster if χ is understood.

In §2.6 we prove:

Proposition 2.5.9. Let 0 < η0 < (1− log 2)/2. Then for all sufficiently large k (depending

on η0), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η < (1 − log 2)/2 then with high probability in the planted model,

|Cσ(χ)| ≤ Eun(Ze). In symbols,

lim
n→∞

Pχn
(
|Cσ(χ)| ≤ Eun(Ze)

)
= 1.

The rest of this section proves Lemma 2.1.2 inequality (2.3) from Proposition 2.5.9

and the second moment estimates from earlier in this section. So we assume the hypotheses

of Proposition 2.5.9 without further mention.
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We say that a coloring χ is σ-good if it is equitable and |Cσ(χ)| ≤ Eun(Ze(σ)). Let

Sg(σ) be the set of all σ-good proper colorings and let Zg(σ) = |Sg(σ)| be the number of

σ-good proper colorings.

We will say a positive functionG(n) is sub-exponential in n if limn→∞ n
−1 logG(n) =

0. Also we say functionsG andH are asymptotic, denoted byG(n) ∼ H(n), if limn→∞G(n)/H(n) =

1. Similarly, G(n) . H(n) if lim supn→∞G(n)/H(n) ≤ 1.

Lemma 2.5.10. Eun(Zg) ∼ Eun(Ze) = F (n)Eun(Z) where F (n) is sub-exponential in n.

Proof. For brevity, let H = Homunif(Γ, Sym(n)). Let Pχn be the probability operator in the

planted model of χ. By definition,

Eun(Zg) = |H|−1
∑
σ∈H

Zg(σ) = |H|−1
∑
σ∈H

∑
χ:V→{0,1}

1Sg(σ)(χ)

=
∑
χ

Pun(χ ∈ Sg(σ))

=
∑

χ equitable

Pun (|Cσ(χ)| ≤ Eun(Ze)|χ proper)Pun(χ proper)

=
∑

χ equitable

Pχn (|Cσ(χ)| ≤ Eun(Ze))Pun(χ proper)

∼
∑

χ equitable

Pun (χ proper) = Eun(Ze)

where the asymptotic equality ∼ follows from Proposition 2.5.9. The equality Eun(Ze) =

F (n)Eun(Z) holds by Theorem 2.4.2.

Lemma 2.5.11. Eun(Z2
g ) ≤ C(n)Eun(Zg)

2, where C(n) = C(n, k, r) is sub-exponential in n.
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Proof.

Eun(Z2
g ) = |H|−1

∑
σ∈H

(∑
χ

1Sg(σ)(χ)

)2

(2.30)

= |H|−1
∑
σ∈H

∑
χ,χ̃

1Sg(σ)(χ)1Sg(σ)(χ̃) (2.31)

=
∑
χ,χ̃

Pun (χ ∈ Sg and χ̃ ∈ Sg) (2.32)

=
∑
χ,χ̃

Pun(χ ∈ Sg)Pun(χ̃ ∈ Sg|χ ∈ Sg) (2.33)

=
∑
χ

Pun(χ ∈ Sg)Eun(Zg|χ ∈ Sg). (2.34)

For a fixed χ ∈ Sg(σ) we analyze Eun(Zg|χ ∈ Sg) by breaking the colorings into those that are

close (i.e. in the local cluster) and those that are far. So let Zg(δ) : Homχ(Γ, sym(n))→ N be

the number of good proper colorings such that dn(χ, χ̃) = δ. (We will also use Ze(δ) = Zχ(δ)

for the analogous number of equitable proper colorings). Then

Eun(Zg|χ ∈ Sg) ≤ 2Eun

 ∑
0≤δ≤2−k/2

Zg(δ)
∣∣∣χ ∈ Sg

+ 2Eun

 ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ ∈ Sg

 . (2.35)

The coefficient 2 above accounts for the following symmetry: if χ̃ is a good coloring with

dn(χ, χ̃) = δ then 1− χ̃ is a good coloring with dn(χ, 1− χ̃) = 1− δ. Note that

Eun

 ∑
0≤δ≤2−k/2

Zg(δ)
∣∣∣χ ∈ Sg

 ≤ Eun
(
#Cσ(χ)|χ ∈ Sg

)
≤ Eun(Ze) (2.36)

where the last inequality holds by definition of Sg.

For colorings not in the local cluster,

Eun

 ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ ∈ Sg

 ≤ Eun

 ∑
2−k/2<δ≤1/2

Ze(δ)
∣∣∣χ ∈ Sg


≤ Eun

 ∑
2−k/2<δ≤1/2

Ze(δ)
∣∣∣χ proper

 Pun(χ proper)

Pun(χ ∈ Sg)
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where the sum is over all δ ∈ Z[1/n] in the given range. By definition and Proposition 2.5.9,

Pun(χ proper)

Pun(χ ∈ Sg)
=

1

Pun(χ ∈ Sg|χ proper)
=

1

Pχn
(
|Cσ(χ)| ≤ Eun(Ze)

) → 1

as n→∞. Since Eun(·|χ proper) = Eχn(·), the above inequality now implies

Eun

 ∑
2−k/2<δ≤1/2

Zg(δ)
∣∣∣χ ∈ Sg

 .
∑

2−k/2<δ≤1/2

Eχn(Ze(δ)) ≤ C1

∑
2−k/2<δ≤1/2

enψ0(δ) (2.37)

≤ C1ne
nf(d,k) ≤ C2Eun(Ze) (2.38)

where the second inequality holds by Theorem 2.5.1 for some function C1 = C1(n, k, r)

which is sub-exponential in n. The second-to-last inequality holds because the number of

summands is bounded by n since δ is constrained to lie in Z[1/n] and by Proposition 2.5.8,

ψ0(δ) ≤ f(d, k). The last inequality holds for some function C2 = C2(n, k, r) that is sub-

exponential in n since by Theorem 2.4.2, n−1 logEun(Ze) converges to f(d, k).

Combine (2.35), (2.36) and (2.38) to obtain

Eun(Zg|χ ∈ Sg) ≤ 2(1 + C2)Eun(Ze).

Plug this into (2.34) to obtain

Eun(Z2
g ) ≤ 2(1 + C2)Eun(Ze)

2 ∼ 2(1 + C2)Eun(Zg)
2

where the asymptotic ∼ holds by Lemma 2.5.10. This proves the lemma.

Corollary 2.5.12. Lemma 2.1.2 inequality (2.3) is true. That is:

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
Pun
(∣∣n−1 logZ(σ)− f(d, k)

∣∣ < ε
))
.

Proof. By Theorem 2.4.2,

n−1 logEun(Z(σ))→ f(d, k)
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as n→∞. In particular, for every ε > 0, for large enough n, Pun (n−1 logZ(σ) > f(d, k) + ε) <

1/2. So it suffices to prove

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
Pun
(
n−1 logZ(σ) ≥ f(d, k)− ε

))
.

Since Z(σ) ≥ Zg(σ), it suffices to prove the same statement with Zg(σ) in place of Z(σ). By

Lemma 2.5.10 and Theorem 2.4.2, n−1 log (Eun[Zg(σ)]) converges to f(d, k) as n→∞. So we

may replace f(d, k) in the statement above with n−1 log (Eun[Zg(σ)]). Then we may multiply

by n both sides and exponentiate inside the probability. So it suffices to prove

0 = inf
ε>0

lim inf
n→∞

n−1 log
(
Pun
(
Zg(σ) ≥ Eun[Zg(σ)]e−nε

))
. (2.39)

By the Paley-Zygmund inequality and Lemma 2.5.11

Pun
(
Zg(σ) > Eun[Zg(σ)]e−nε

)
≥ (1− e−nε)2Eun[Zg(σ)]2

Eun[Zg(σ)2]
≥ 1

C

where C = C(n) is sub-exponential in n. This implies (2.39).

2.6 The local cluster

To prove Proposition 2.5.9, we show that with high probability in the planted model, there

is a ‘rigid’ set of vertices with density approximately 1− 2−k. Rigidity here means that any

proper coloring either mostly agrees with the planted coloring on the rigid set or it must

disagree on a large density subset. Before making these notions precise, we introduce the

various subsets, state precise lemmas about them and prove Proposition 2.5.9 from these

lemmas which are proven in the next two sections.

So suppose G = (V,E) is a k-uniform d-regular hyper-graph and χ : V → {0, 1}
is a proper coloring. An edge e ∈ E is χ-critical if there is a vertex v ∈ e such that

χ(v) /∈ χ(e \ {v}). If this is the case, then we say v supports e with respect to χ. If χ

is understood then we will omit mention of it. We will apply these notions both to the case

when G is the Cayley hyper-tree of Γ and when G = Gσ is a finite hyper-graph.

For l ∈ {0, 1, 2, . . .}, define the depth l-core of χ to be the subset Cl(χ) ⊂ V
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satisfying

C0(χ) = V,

Cl+1(χ) = {v ∈ Cl(χ) : v supports at least 3 edges which are contained in Cl}.

Also let C∞(χ) = ∩lCl(χ).

The set Cl(χ) is defined to consist of vertices v so that if v is re-colored (in some

proper coloring) then this re-coloring forces a sequence of re-colorings in the shape of an

immersed hyper-tree of degree at least 3 and depth l. Re-coloring a vertex of C∞(χ) would

force re-coloring an infinite immersed tree of degree at least 3.

Also define the attached vertices Al(χ) ⊂ V by: v ∈ Al(χ) if v /∈ Cl(χ) but there

exists an edge e, supported by v such that e \ {v} ⊂ Cl(χ). Thus if v ∈ Al(χ) is re-colored

then it forces a re-coloring of some vertex in Cl(χ). In this definition, we allow l =∞.

In order to avoid over-counting, we also need to define the subset A′l(χ) of vertices

v ∈ Al(χ) such that there exists a vertex w ∈ Al(χ), with w 6= v, and edges ev, ew supported

by v, w respectively such that

1. ev ∪ ew \ {v, w} ⊂ Cl(χ),

2. ev ∩ ew 6= ∅.

In this definition, we allow l =∞.

We will need the following constants:

λ0 =
1

2k−1 − 1
, λ := dλ0 =

d

2k−1 − 1
.

The significance of λ0 is: if e is an edge and v ∈ e a vertex then λ0 is the probability

v supports e in a uniformly random proper coloring of e. So λ = dλ0 is the expected

number of edges that v supports. For the values of d and k used in the Key Lemma 2.1.2,

λ = log(2)k +O(k2−k).

For the next two lemmas, we assume the hypotheses of Proposition 2.5.9.

Lemma 2.6.1. For any δ > 0 there exists k0 such that k ≥ k0 implies

lim
l→∞

lim inf
n→∞

Pχn
(
|Cl(χ) ∪ Al(χ) \ A′l(χ)|

n
> 1− e−λ(1 + δ)

)
= 1.
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Lemma 2.6.1 is proven in §2.7.

Definition 7. Fix a proper 2-coloring χ : V → {0, 1}. Let ρ > 0. A subset R ⊂ V is ρ-rigid

(with respect to χ) if for every proper coloring χ′ : V → {0, 1}, |{v ∈ R : χ(v) 6= χ′(v)}| is

either less than ρ|V | or greater than 2−k/2|V |.

Lemma 2.6.2. For any ρ > 0,

lim
l→∞

lim inf
n→∞

Pχn (Cl(χ) ∪ Al(χ) \ A′l(χ) is ρ-rigid) = 1.

Lemma 2.6.2 is proven in §2.8. We can now prove Proposition 2.5.9:

Proposition 2.5.9. Let 0 < η0 < η1 < (1 − log 2)/2. Then for all sufficiently large k

(depending on η0), if

r := d/k =
log(2)

2
· 2k − (1 + log(2))/2 + η

for some η with η0 ≤ η ≤ η1 then with high probability in the planted model, |Cσ(χ)| ≤ Eun(Ze).

In symbols,

lim
n→∞

Pχn
(
|Cσ(χ)| ≤ Eun(Ze)

)
= 1.

Proof. Let 0 < ρ, δ be small constants satisfying

log(2)δ +H(ρ, 1− ρ) + log(2)ρ < (1− 2η − log(2))2−k. (2.40)

Let l be a natural number. Also let σ : Γ → sym(n) be a uniform homomorphism and

χ : [n]→ {0, 1} a proper coloring. To simplify notation, let

R = Cl(χ) ∪ Al(χ) \ A′l(χ).

By Lemmas 2.6.1 and 2.6.2 it suffices to show that if |R|/n > 1 − e−λ − δ and R is ρ-rigid

then |Cσ(χ)| ≤ Eun(Ze) (for all sufficiently large n). So assume |R|/n > 1− e−λ − δ and R is

ρ-rigid.

65



Let χ′ ∈ Cσ(χ). By definition, this means dn(χ′, χ) ≤ 2−k/2. Since R is ρ-rigid, this

implies

|{v ∈ R : χ(v) 6= χ′(v)}| ≤ ρn.

Since this holds for all χ′ ∈ Cσ(χ), it follows that

|Cσ(χ)| ≤
(
|R|
ρn

)
2ρn2n−|R|.

By Stirling’s formula

n−1 log

(
|R|
ρn

)
≤ n−1 log

(
n

ρn

)
≤ H(ρ, 1− ρ) +O(n−1 log(n)).

Since |R|/n > 1− e−λ − δ = 1− 2−k − δ +O(k2−2k),

n−1 log(2n−|R|) ≤ log(2)[2−k + δ] +O(k2−2k).

Thus,

n−1 log |Cσ(χ)| ≤ log(2)2−k + log(2)δ +H(ρ, 1− ρ) + log(2)ρ+O(k2−2k + n−1 log(n)).

On the other hand,

n−1 logEun(Ze) = f(d, k) +O(n−1 log(n)) = (1− 2η)2−k +O(2−2k) +O(n−1 log(n))

by Lemma 2.5.6 and Theorem 2.4.2.

Therefore, the choice of ρ, δ in (2.40) implies |Cσ(χ)| ≤ Eun(Ze) for all sufficiently large

n. This also depends on k being sufficiently large, but the lower bound on k is uniform in n.

2.7 A Markov process on the Cayley hyper-tree

Let (xg)g∈Γ be a family of random variables satisfying the following conditions:

• For each g ∈ Γ, xg is uniformly distributed on {0, 1},
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• Let v ∈ Γ and let e ⊂ Γ be a hyperedge containing v. Let Past(e, v) be the set of all

g ∈ Γ such that every path in the Cayley hyper-tree from g to an element of e passes

through v. In particular, e ∩ Past(e, v) = {v}. Then the distribution of (xg)g∈e\{v}

conditioned on {xg : g ∈ Past(e, v)} is uniformly distributed on the set of all colorings

y : (e \ {v})→ {0, 1} such that there exists some h ∈ e \ {v} with y(h) 6= x(v).

By definition, the latter condition means that (xg)g∈Γ is a Markov random field on the Cayley

hyper-tree. Let µ be the law of (xg)g∈Γ. So µ is a Γ-invariant Borel probability measure on

X.

2.7.1 Local convergence

We will prove the following lemma.

Lemma 2.7.1. Let χ : V → {0, 1} be an equitable coloring with |V | = n. If B ⊆ X is

clopen, then for every ε > 0

lim
n→∞

Pχn

(∣∣∣∣∣ 1n∑
v∈V

1B(Πσn
v (χ))− µ(B)

∣∣∣∣∣ > ε

)
= 0.

To prove this lemma we will first show that if f : Homχ(Γ, sym(n))→ R is the function

f(σn) :=
1

n

∑
v∈V

1B(Πσn
v (χ))

then f concentrates about its expectation using Theorem 2.10.1, and then we will show that

this expectation is given by µ(B).

Proposition 2.7.2. We have

lim
n→∞

Pχn (|f − Eχn[f ]| > ε) = 0.

Proof. For g ∈ Γ, let prg : X → {0, 1} be the projection map prg(x) = xg. For D ⊂ Γ, let

FD be the smallest Borel sigma-algebra such that prg is FD-measurable for every g ∈ D.

Note that every clopen subset B of X is a finite union of cylinder sets. Thus the

function 1B is FD-measurable for some finite set D ⊂ Γ.
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We will use the normalized Hamming metrics dSym(n) and dHom on Sym(n) and Homχ(Γ, sym(n))

respectively. These are defined in the beginning of Appendix 2.10. We claim f is L-Lipschitz

for some L <∞. Let σ, σ′ ∈ Homχ(Γ, sym(n)). Because 1B is FD-measurable,

|f(σ)− f(σ′)| ≤ n−1#{v ∈ [n] : χ(σ(γ−1)(v)) 6= χ(σ′(γ−1)(v)) for some γ ∈ D}

≤ n−1#{v ∈ [n] : σ(γ−1)(v) 6= σ′(γ−1)(v) for some γ ∈ D}

≤
∑
γ∈D

dSym(n)(σ(γ−1), σ′(γ−1)).

Now dSym(n) is both left and right invariant. So

dSym(n)(gh, g
′h′) ≤ dSym(n)(gh, gh

′) + dSym(n)(gh
′, g′h′) = dSym(n)(h, h

′) + dSym(n)(g, g
′)

for any g, g′, h, h′ ∈ Sym(n). By induction, this implies dSym(n)(σ(γ), σ′(γ)) ≤ |γ|dHom(σ, σ′)

for any γ ∈ Γ where |γ| is the distance from γ to the identity in the word metric on Γ. Thus

if we take L =
∑

γ∈D |γ| <∞ we see that |f(σ)− f(σ′)| ≤ LdHom(σ, σ′) as desired.

The Proposition now follows from Theorem 2.10.1.

To finish the proof of Lemma 2.7.1, it now suffices to show the expectation of f with

respect to the planted model converges to µ(B) as n→∞. We will prove this by an inductive

argument, the inductive step of which is covered in the next lemma. In general, if F is a

function and D is a subset of the domain of F then we denote the restriction of F to D by

F � D.

Lemma 2.7.3. Let h ∈ Γ and e be a hyperedge containing h. Let D ⊂ Past(e, h) be either

the singleton {h} or a connected finite union of hyperedges containing h. Let ẽ = e \ h and

ξ ∈ {0, 1}D∪ẽ be a proper coloring. Let FD,ξ be the event that Πσn
vn (χ) � D = ξ � D and define

Fẽ,ξ similarly. Then for every fixed vn ∈ V ,

Pχn
(
Fẽ,ξ

∣∣∣∣FD,ξ) =
1 + on(1)

2k−1 − 1

where for fixed n, on(1) does not depend on the choice of vn ∈ V .

Proof. Let Evn be the event that σn(g−1)(vn) 6= σn(g′−1)(vn) for any g, g′ ∈ D ∪ ẽ, g 6= g′.
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Since the planted model is a random sofic approximation, we have Pχn(Evn) = 1−on(1). Now

lim inf
n→∞

Pχn (FD,ξ)

rther conditioning on Evn changes the left hand side by at most a factor of 1 + on(1).

Let m = |(ξ � ẽ)−1(1)|. We claim that

(
n/2−|D|

m

)(
n/2−|D|
k−1−m

)
m!(k − 1−m)!

(
(
n−|D|
k−1

)
−
(
n/2
k−1

)
)(k − 1)!

≤ Pχn
(
Fẽ,ξ

∣∣∣∣FD,ξ, Evn) ≤
(
n/2
m

)(
n/2

k−1−m

)
m!(k − 1−m)!

(
(
n−|D|
k−1

)
−
(
n/2−|D|
k−1

)
)(k − 1)!

.(2.41)

Since |D|, m, and k are constants we have for example
(
n−|D|
k

)
= (n−|D|)k

k!
+O(nk−1) =

(1 + on(1))n
k

k!
+ O(nk−1). From this and similar computations the desired equality follows

from (2.41).

We justify (2.41) as follows:

Since we are conditioning on Evn and FD,ξ, after σn(D−1)(vn) has been chosen, the to-

tal number of choices for σn(ẽ−1)(vn) to form any bichromatic edge is between
((

n−|D|
k−1

)
−
(
n/2−|D|
k−1

))
(k − 1)! and

((
n−|D|
k−1

)
−
(
n/2
k−1

))
(k − 1)!, depending on the color distribution of ξ.

On the other hand, the number of choices for σn(ẽ−1)(vn) to form an edge with colors

matching ξ on ẽ, so that Fẽ,ξ occurs, is calculated by counting the number of ways to choose

m vertices from χ−1(1) and k− 1−m vertices from χ−1(0) that have not already been fixed

by conditioning on FD,ξ. There are at least
(
n/2−|D|

m

)(
n/2−|D|
k−1−m

)
m!(k − 1 − m)! and at most(

n/2
m

)(
n/2

k−1−m

)
m!(k − 1 −m)! ways to choose our vertices with these restrictions, depending

again on the color distribution of ξ.

Since the hyperedges in V are chosen uniformly at random, the result follows.

Proof of Lemma 2.7.1. Let µχn be the Borel probability measure on X defined by

µχn(B) = Eχn

(
1

#V

∑
v∈V

1B (Πσn
v (χ))

)

for any Borel set B ⊂ X. By Proposition 2.7.2, it suffices to show that µχn(B) → µ(B) as

n → ∞ for any clopen set B ⊂ X. Because clopen sets are finite unions of cylinder sets, it

suffices to show that if D ⊂ Γ is a finite subset and ξ ∈ {0, 1}D then limn→∞ µ
χ
n([ξ]) = µ([ξ])
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where [ξ] is the cylinder set {x ∈ X : x � D = ξ}. We can further assume D to be a

connected finite union of hyperedges, since such objects contain all finite subsets of Γ.

Let D be a connected finite union of L hyperedges. By properties of Γ as a Cayley

hyper-tree, D is also a “finite hyper-tree”: there exists a sequence D1, ..., DL of hyperedges

satisfying the following.

1. ∪Li=1Di = D.

2. Let Fi = ∪ij=1Dj for 1 ≤ i ≤ L − 1. Let F0 be a fixed singleton in D1. Then there

exists a unique vi ∈ Di+1 ∩ Fi.

3. Fi ⊂ Past(Di+1, vi).

It follows that if ξ ∈ {0, 1}D is a proper coloring, then

µ([ξ]) =
1

2

L∏
i=1

µ

(
[ξ � Di]

∣∣∣∣[ξ � Fi−1]

)
=

1

2
(2k−1 − 1)−L.

Similarly, along with linearity of expectation, Lemma 2.7.3 implies that

µχn([ξ]) = (1 + on(1))
1

2
(2k−1 − 1)−L.

2.7.2 The density of the rigid set

This subsection proves Lemma 2.6.1. So we assume the hypotheses of Proposition 2.5.9.

An element x ∈ X is a 2-coloring of the Cayley hyper-tree of Γ. Interpreted as such,

Cl(x), Al(x), A′l(x) are well-defined subsets of Γ (see §2.6 to recall the definitions).

For l ∈ N ∪ {∞}, let

C̃l = {x ∈ X : 1Γ ∈ Cl(x)},

Ãl = {x ∈ X : 1Γ ∈ Al(x)},

Ã′l = {x ∈ X : 1Γ ∈ A′l(x)}.
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Recall that λ0 = 1
2k−1−1

and λ = dλ0. Since we assume the hypothesis of Prop. 2.5.9,

λ is asymptotic to log(2)k as k →∞.

Proposition 2.7.4.

µ(C̃∞) ≥ 1− λ2e−λ +O(k62−2k),

µ(C̃∞ ∪ Ã∞) ≥ 1− e−λ +O(k42−2k).

Proof. For brevity, let ei ⊂ Γ be the subgroup generated by si. So ei is a hyper-edge of the

Cayley hyper-tree. Let F i
l ⊂ X be the set of all x such that

1. 1Γ supports the edge ei with respect to x and

2. ei \ {1Γ} ⊂ Cl(x).

Since Cl+1(x) ⊂ Cl(x), it follows that F i
l+1 ⊂ F i

l . The events F i
l for i = 1, . . . , d are i.i.d. Let

pl = µ(F i
l ) be their common probability.

We write Prob(Bin(n, p) = m) =
(
n
m

)
pm(1 − p)n−m for the probability that a bino-

mial random variable with n trials and success probability p equals m. Since the events

F 1
l−1, . . . , F

d
l−1 are i.i.d., Ãl−1 is the event that either 1 or 2 of these events occur and C̃l is

the event that at least 3 of these events occur, it follows that

µ(Ãl−1) = Prob(Bin(d, pl−1) ∈ {1, 2}).

µ(C̃l) = Prob(Bin(d, pl−1) ≥ 3).

Because the sets Ãl−1, C̃l−1 are disjoint, so too are the sets Ãl−1 and C̃l which implies

µ(C̃l ∪ Ãl−1) = Prob(Bin(d, pl−1) > 0).

Claim 2. p0 = λ0 and for l ≥ 0, pl+1 = f(pl) where

f(t) = λ0 Prob(Bin(d− 1, t) ≥ 3)k−1.

Proof. To reduce notational clutter, let Fl = F 1
l . Note that p0 = µ(F0) = λ0 is the probability
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that the edge e1 is critical. So

pl+1 = µ(F0)µ(Fl+1 | F0) = λ0µ(Fl+1 | F0).

Conditioned on F0, Fl+1 is the event that e1 \{1Γ} ∈ Cl+1(x). By symmetry and the Markov

property µ(Fl+1 | F0) is the (k − 1)-st power of the probability that s1 ∈ Cl+1(x) given that

1Γ supports e1. By translation invariance, that probability is the same as the probability

that 1Γ ∈ Cl+1(x) given that 1Γ does not support the edge e1. By definition of Cl+1(x) and

the Markov property, this is the same as the probability that a binomial random variable

with (d− 1) trials and success probability pl is at least 3. This implies the claim.

The next step is to bound Prob(Bin(d− 1, t) ≥ 3) from below:

Prob(Bin(d− 1, t) ≥ 3) = 1− (1− t)d−1 − (d− 1)t(1− t)d−2 −
(
d− 1

2

)
t2(1− t)d−3

≥ 1− e−(d−1)t

(
1 +

(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2

)
. (2.42)

The last inequality follows from the fact that (1− t)d−1 ≤ e−(d−1)t. This motivates the next

claim:

Claim 3. Suppose t is a number satisfying λ0

(
1− λ2e1−λ)k−1 ≤ t ≤ λ0. Then for all

sufficiently large k,

0 ≤ λ− (d− 1)t ≤ 1

1 +
(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2
≤ (d− 1)2t2.

Proof. The first inequality follows from:

λ− (d− 1)t ≥ λ− (d− 1)λ0 = λ0 > 0.
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The second inequality follows from:

λ− (d− 1)t ≤ λ− (d− 1)λ0

(
1− λ2e1−λ)k−1

= dλ0 − (d− 1)λ0

(
1− λ2e1−λ)k−1

≤ dλ0 − (d− 1)λ0(1− (k − 1)λ2e1−λ)

≤ λ0 + (d− 1)λ0(k − 1)λ2e1−λ ≤ λ0 + kλ3e1−λ →k→∞ 0.

The third line follows from the general inequality (1 − x)k−1 ≥ 1 − (k − 1)x valid for all

x ∈ [0, 1]. To see the limit, observe that under the hypotheses of Proposition 2.5.9, d ∼
(log(2)/2)k2k. So λ ∼ log(2)k. In particular, kλ3e1−λ → 0 and λ0 → 0 as k → ∞. The

implies the limit. Thus if k is large enough then the second inequality holds.

To see the last inequality, observe that since t ≤ λ0, t → 0 as k → ∞. On the other

hand, (d − 1)t ∼ λ ∼ log(2)k. Thus (d−1)t
1−t and (d − 1)t are asymptotic to log(2)k. Since

1 + log(2)k + log(2)2k2

2
≤ log(2)2k2 for all sufficiently large k, this proves the last inequality

assuming k is sufficiently large.

Now suppose that t is as in Claim 3. Then

f(t) ≥ λ0

(
1− e−(d−1)t

(
1 +

(d− 1)t

1− t
+

(d− 1)2t2

2(1− t)2

))k−1

≥ λ0

(
1− e1−λ(d− 1)2t2

)k−1 ≥ λ0

(
1− λ2e1−λ)k−1

.

The first inequality is implied by (2.42). The second and third inequalities follow from Claim

3. For example, since λ− (d− 1)t ≤ 1, e−(d−1)t ≤ e1−λ.

Therefore, if pl satisfies the bounds λ0

(
1− λ2e1−λ)k−1 ≤ pl ≤ λ0 then f(pl) = pl+1

satisfies the same bounds. Since p∞ = liml→∞ f
l(λ0), it follows that

λ0 ≥ p∞ ≥ λ0

(
1− λ2e1−λ)k−1

= λ0 +O(k32−2k).
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Because (1− t
n
)n ≤ e−t for any t, n > 0,

µ(C̃∞ ∪ Ã∞) = lim
l→∞

µ(C̃l ∪ Ãl−1) = lim
l→∞

Prob(Bin(d, pl) > 0) = Prob(Bin(d, p∞) > 0)

= 1− (1− p∞)d ≥ 1− exp(−p∞d) = 1− e−λ +O(k42−2k).

By (2.42) and Claim 3 (with d in place of d− 1),

µ(C̃∞) = Prob(Bin(d, p∞) ≥ 3) ≥ Prob(Bin(d, λ0 +O(k32−2k)) ≥ 3)

≥ 1− exp(−λ0d)

(
1 +

dλ0

1− λ0

+
d2λ2

0

2(1− λ0)2

)
+O(k62−2k)

≥ 1− λ2e−λ +O(k62−2k).

Lemma 2.7.5. µ(Ã′∞) = o(e−λ) where the implied limit is as k →∞ and η is bounded.

Proof. As in the previous proof, let ei ⊂ Γ be the subgroup generated by si. So ei is a

hyper-edge of the Cayley hyper-tree.

Let x ∈ X. We say that an edge e is attaching (for x) if it is supported by a vertex

v ∈ A∞(x) and e \ {v} ⊂ C∞(x). Let F (x) = 0 if 1Γ /∈ C∞(x). Otherwise, let F (x) be the

number of attaching edges containing 1Γ. Then by translation invariance,

µ(Ã′∞) ≤
d∑

m=2

mµ(F (x) = m). (2.43)

Let G ⊂ X be the set of all x such that

1. e1 is a critical edge supported by some vertex v 6= 1Γ,

2. e1 \ {v, 1Γ} ⊂ C∞(x),

3. v ∈ A∞(x).

By the Markov property and symmetry,

µ(F (x) = m) ≤
(
d

m

)
µ(G)m(1− µ(G))d−m. (2.44)
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Let

• G1 ⊂ X be the set of all x such that e1 is supported by s1,

• G2 ⊂ X be the set of all x such that e1 \ {s1, 1Γ} ⊂ C∞(x),

• G3 ⊂ X be the set of all x such that s1 ∈ A∞(x).

By symmetry

µ(G) = (k − 1)µ(G3|G2 ∩G1)µ(G2|G1)µ(G1).

Conditioned on G1 ∩ G2, if G3 occurs then there are no more than 2 attaching edges e

supported by s1 with e 6= e1. By the Markov property and symmetry,

µ(G3|G2 ∩G1) ≤ Prob(Bin(d− 1, p∞) ≤ 2) = O(λ2e−λ).

Also µ(G1) = λ0. Thus µ(G) ≤ O(k3e−2λ). So (2.43) and (2.44) along with straightforward

estimates imply µ(Ã′∞) = o(e−λ).

Lemma 2.7.6. lim supl→∞ µ(Ã′l) ≤ µ(Ã′∞).

Proof. Given a coloring χ : Γ → {0, 1} of the Cayley hyper-tree and l ∈ N, define A′′l (χ) =

∪m≥lA′m(χ). Also define Ã′′l = {x ∈ X : 1Γ ∈ A′′l (x)}. Since Ã′′l ⊃ Ã′l and the sets Ã′′l are

decreasing in l, it suffices to prove that ∩l≥0Ã
′′
l ⊂ Ã′∞.

Suppose x ∈ ∩l≥0Ã
′′
l . Then there exists an infinite set S ⊂ N such that x ∈ Ã′l

(∀l ∈ S). So 1Γ ∈ A′l(x) (∀l ∈ S). So for each l ∈ S, there exist gl ∈ Γ \ {1Γ} and

hyper-edges el, fl ⊂ Γ such that

1. 1Γ supports el (with respect to x),

2. gl supports fl (with respect to x),

3. el ∪ fl \ {1Γ, gl} ⊂ Cl(x),

4. el ∩ fl 6= ∅.
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Because el ∩ fl 6= ∅, gl is necessarily contained in the finite set {spii s
pj
j : 1 ≤ i, j ≤ d, 0 ≤

pi ≤ k}. So after passing to an infinite subset of S if necessary, we may assume there is a

fixed element g ∈ Γ such that g = gl (∀l ∈ S). Similarly, we may assume there are edges

e, f ⊂ Γ such that el = e and fl = f (∀l ∈ S).

Observe that 1Γ /∈ C∞(x) because 1Γ ∈ Al(x) implies 1Γ /∈ Cl(x) (∀l ∈ S). Similarly,

g /∈ C∞(x). Because el ∪ fl \ {1Γ, gl} ⊂ Cl(x) (∀l ∈ S) and the sets Cl(x) are decreasing in l,

it follows that e ∪ f \ {1Γ, g} ⊂ C∞(x). Therefore {1Γ, g} ⊂ A∞(x). This verifies all of the

conditions showing that 1Γ ∈ A′∞(x) and therefore x ∈ Ã′∞ as required.

We can now prove Lemma 2.6.1:

Proof of Lemma 2.6.1. Observe that the sets C̃l, Ãl, Ã
′
l are clopen for finite l. By Lemma

2.7.1,

lim
δ↘0

lim inf
n→∞

Pχn
(∣∣∣∣ |Cl(χ) ∪ Al(χ) \ A′l(χ)|

n
− µ

(
C̃l ∪ Ãl \ Ã′l

)∣∣∣∣ < δ

)
= 1. (2.45)

for any finite l. Since Ã∞ ∪ C̃∞ is the decreasing limit of Ãl ∪ C̃l, Lemma 2.7.6 implies

lim inf
l→∞

µ(C̃l ∪ Ãl \ Ã′l) ≥ µ(C̃∞ ∪ Ã∞ \ Ã′∞).

By Proposition 2.7.4 and Lemma 2.7.5,

µ(C̃∞ ∪ Ã∞ \ Ã′∞) ≥ 1− e−λ +O(k2e−2λ) = 1− e−λ + o(e−λ).

Together with (2.45), this implies the lemma.

2.8 Rigid vertices

This section proves Lemma 2.6.2. So we assume the hypotheses of Proposition 2.5.9.

As in the previous section, fix an equitable coloring χ : V → {0, 1}. We assume

|V | = n and let σ : Γ→ Sym(V ) be a uniformly random uniform homomorphism conditioned

on the event that χ is proper with respect to σ.
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Lemma 2.8.1 (Expansivity Lemma). There is a constant k0 > 0 such that the following

holds. If k ≥ k0 then with high probability (with respect to the planted model), as n → ∞,

for any T ⊂ V with |T | ≤ 2−k/2n the following is true. For a vertex v let Ev denote the set

of hyperedges supported by v. Let ET be the set of all edges e ∈ ∪v∈TEv such that |e∩T | ≥ 2.

Then

#ET ≤ 2#T.

Proof.

Claim 4. There exists k0 ∈ N such that k ≥ k0 implies

• k/2 ≤ λ ≤ k,

• 2−k/2 ≤ 1/(8k),

• and for any 0 < t ≤ 2−k/2 and k/2 ≤ λ′ ≤ k

H(t, 1− t) + λ′H(2t/λ′, 1− 2t/λ′) + 2t log(4k) + 4t log(t) ≤ t log(t)/2.

Proof. Recall that λ = log(2)k + O(k2−k). So the first two requirements are immediate for

k0 large enough.

We estimate each of the first three terms on the left as follows. Because 1 =

limt↘0
H(t,1−t)
−t log(t)

, there exists k0 ∈ N such that k ≥ k0 implies H(t,1−t)
−t log(t)

≤ 1.1.

Note,

λ′H(2t/λ′, 1− 2t/λ′) = −2t log(2t/λ′)− (λ′ − 2t) log(1− 2t/λ′)

= −2t log(2t/λ′) +O(t) ≤ −2t log(t) + 2t log(λ′) +O(t)

≤ −2t log(t) + 2t log(k) +O(t).

So by making k0 larger if necessary, we may assume

λ′H(2t/λ′, 1− 2t/λ′)

−t log(t)
≤ 2.1.
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Since
2t log(4k)

−t log(t)
≤ 2 log(4k)

(k/2) log(2)

we may also assume 2t log(4k)
−t log(t)

≤ 0.1. Combining these inequalities, we obtain

H(t, 1−t)+λ′H(2t/λ′, 1−2t/λ′)+2t log(4k)+4t log(t) ≤ (1.1+2.1+0.1−4)(−t log(t)) ≤ t log(t)/2.

From now on, we assume k ≥ k0 with k0 as above. To simplify notation, let ζ = 2−k/2.

For 1 ≤ l ≤ n, let Tl be the collection of all subsets T ⊂ V = [n] such that |T | = l and

|ET | > 2|T |. To prove the lemma, by a first moment argument, it suffices to show that the

expected value of |Tl| tends to zero exponentially in n (with respect to the planted model).

Given a d-tuple c = (c1, . . . , cd) of natural numbers, let Ec be the event that there are

exactly ci critical edges of the form {σ(si)
j(v) : 0 ≤ j ≤ k−1}. We denote |c| = max1≤i≤d ci.

Let Pχc,n be the planted model conditioned on Ec.

Claim 5. If n is sufficiently large (depending only on k, d), l ≤ ζn and kn/2 ≤ |c| ≤ kn

then

Eχc,n[#Tl] ≤ ζζn/2.

Before proving this claim, we show how it implies the lemma. By Lemma 2.7.1, with

high probability, the total number of critical edges is asymptotic to λn as n → ∞. Let E ′n

be the event that the number of critical edges is between (k/2)n and kn. So Pχn(E ′n)→ 1 as

n→∞.

By Claim 5,

∑
1≤l≤ζn

Eχn[#Tl|E ′n] ≤
∑

1≤l≤ζn

∑
kn/2≤|c|≤kn

Eχc,n[#Tl] ≤ (kn)dζζn/2.

Since this decays exponentially in n, it implies the lemma.

To prove the claim, we first need to introduce the planted model conditioned on Ec

which we denote by Pχc,n. This measure can be constructed as follows. Let Ic be the set

of pairs (i, j) with 1 ≤ i ≤ d and 1 ≤ j ≤ ci. First choose edges {ei,j}(i,j)∈Ic uniformly at
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random subject to the conditions:

1. each ei,j ⊂ [n] has cardinality k and ei,j ∩ ei,j′ = ∅ for j 6= j′,

2. each ei,j is critical with respect to χ.

Next choose a uniformly random uniform homomorphism σ subject to:

1. χ is a proper coloring with respect to σ,

2. each ei,j is of the form {σ(si)
j(v) : 0 ≤ j ≤ k − 1} with respect to σ,

3. the edges {ei,j}(i,j)∈Ic are precisely the critical edges of χ with respect to σ.

Then σ is distributed according to Pχc,n.

For s ∈ Ic and T ⊂ V , let FT,s be the event that es is supported by a vertex in T and

|es ∩ T | ≥ 2. For S ⊂ Ic, let FT,S = ∩s∈SFT,S.

Before proving the claim above, we need to prove:

Claim 6. For any T ⊂ V with cardinality |T | = l, S ⊂ Ic with |S| ≤ 2l− 1 and s0 ∈ Ic \ S,

one has Pχc,n(FT,s0|FT,S) ≤ 4kl2

n2 .

Proof of Claim 6. For s ∈ S, let es be a random edge in [n] with cardinality k satisfying

the conditions above. Let s0 = (i0, j0). Let V0 be the union of all edges of the form

{σ(si0)
j(v) : 0 ≤ j ≤ k − 1} in {es}s∈S. That is, v ∈ V0 if and only if there is s ∈ S with

es 3 v and s = (i0, j) for some j.

We will condition on FT,S and {es}s∈S. For i = 0, 1, let

• ni be the number of vertices v ∈ [n] \ V0 such that χ(v) = i;

• li be the number of vertices v ∈ T \ V0 such that χ(v) = i.

The probability that es0 is supported by a vertex in T given {es}s∈S and FT,S is the same as

the probability that a randomly chosen vertex in [n] \ V0 lies in T :

l0 + l1
n0 + n1

.
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Given that es0 is supported by a vertex in T (and given {es}s∈S and FT,S) the probability

that |es0 ∩ T | = 1 is

l0
l0 + l1

(
n1−l1
k−1

)(
n1

k−1

) +
l1

l0 + l1

(
n0−l0
k−1

)(
n0

k−1

) .
The reason for this expression is that l0

l0+l1
is the probability that the vertex v that supports

es0 has χ(v) = 0. Conditioned on this event, there are k − 1 non-supporting vertices of es0

that must be chosen amongst the n1 vertices in [n] \ V0. The probability that these vertices

are all chosen in the complement of T is
(n1−l1k−1 )
( n1k−1)

. This explains the first summand; the second

is justified similarly.

It follows that

Pχc,n(FT,s0|FT,S, {es}s∈S) =
l0 + l1
n0 + n1

[
1− l0

l0 + l1

(
n1−l1
k−1

)(
n1

k−1

) − l1
l0 + l1

(
n0−l0
k−1

)(
n0

k−1

) ] .
In order to bound this expression, consider(

n1−l1
k−1

)(
n1

k−1

) =

(
n1 − l1
n1

)
· · ·
(
n1 − l1 − k + 2

n1 − k + 2

)
≥

(
n1 − l1 − k + 2

n1 − k + 2

)k−1

=

(
1− l1

n1 − k + 2

)k−1

≥ 1− (k − 1)l1
n1 − k + 2

≥ 1− kl1
n1

.

Thus,

Pχc,n(FT,s0|FT,S, {es}s∈S) ≤ l0 + l1
n0 + n1

[
1− l0

l0 + l1

(
1− kl1

n1

)
− l1
l0 + l1

(
1− kl0

n0

)]
=

kl0l1
n0n1

.

Because l0 + l1 ≤ |T | = l, the product satisfies l0l1 ≤ l2/4. Note n0 ≥ n/2 − 2kl ≥ n/4.

Similarly, n1 ≥ n/4. Substitute these inequalities above to obtain,

Pχc,n(FT,s0|FT,S, {es}s∈S) ≤ 4kl2

n2
.
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Since Pχc,n(FT,s0|FT,S) is a convex sum of such expressions, it follows that Pχc,n(FT,s0|FT,S) ≤
4kl2

n2 . This proves the claim.

Apply the chain rule and Claim 6 to obtain: if S ⊂ Ic has |S| = 2l then

Pχc,n(FT,S) ≤
(

4kl2

n2

)2l

.

Note

Eχc,n[#Tl] ≤
∑
S,T

Pχc,n(FT,S). (2.46)

where the sum is over all T ⊂ [n] and S ⊂ Ic with |T | = l and |S| = 2l. Therefore,

Eχc,n[#Tl] ≤
(
n

l

)(
|c|
2l

)(
4kl2

n2

)2l

.

Define t, λ′ by tn = l and |c| = λ′n. By hypothesis k/2 ≤ λ′ ≤ k. We make the following

estimates: (
n

l

)
= exp(nH(t, 1− t) + o(n)),(

|c|
2l

)
= exp(λ′nH(2t/λ′, 1− 2t/λ′) + o(n))

so that

Eχc,n[#Tl] ≤ exp(n(H(t, 1− t) + λ′H(2t/λ′, 1− 2t/λ′) + 2t log(4k) + 4t log(t)) + o(n)).

For n sufficiently large and t ≤ 2−k/2, this is bounded above by exp(nt log(t)/2) = ttn/2 by

the choice of k0.

This proves Claim 5 and finishes the lemma.

Lemma 2.8.2. Let ρ > 0. Then there exists L such that l > L implies Cl(χ) ⊂ [n] is ρ-rigid

(with high probability in the planted model as n→∞).
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Proof. Without loss of generality, we may assume that 0 < ρ < µ(C̃∞).

Observe that the sets C̃l are clopen for finite l. By Lemma 2.7.1,

lim
η↘0

lim inf
n→∞

Pχn
(∣∣∣∣ |Cl(χ)|

n
− µ

(
C̃l

)∣∣∣∣ < η

)
= 1.

Since the sets Cl(χ) are decreasing with l, this implies the existence of L such that l > L

implies

lim inf
n→∞

Pχn
(∣∣∣∣ |Cl(χ)|

n
− |Cl+1(χ)|

n

∣∣∣∣ < ρ/3

)
= 1.

Choose l > L. Let ψ : V → {0, 1} be a σ-proper coloring. Let

Tl = {v ∈ Cl(χ) : χ(v) 6= ψ(v)}.

Define Tl+1 similarly. Since |Cl(χ) \Cl+1(χ)| < ρn/3 (with high probability) and Tl \ Tl+1 ⊂
Cl(χ) \ Cl+1(χ), it follows that |Tl \ Tl+1| < ρn/3 (with high probability).

For every v ∈ Tl+1, let Fv ⊂ Ev be the subset of χ-critical edges e such that e ⊂ Cl(χ).

We claim that if v ∈ Tl+1 then Fv ⊂ ETl where

ETl = {e ∈ ∪v∈TlEv : |e ∩ Tl| ≥ 2}.

Because ψ : [n] → {0, 1} is a proper coloring and v ∈ Tl+1, ψ(v) 6= χ(v). So if e ∈ Fv then

v supports e with respect to χ. Therefore, there must exist a vertex w ∈ e \ {v} such that

χ(w) 6= χ(v). Since {v, w} ⊂ e ⊂ Cl(χ), this means that |e ∩ Tl| ≥ 2 and therefore e ∈ ETl ,
which proves the claim.

For every v ∈ Tl+1, |Fv| ≥ 3. Since edges can only be supported by one vertex, the

sets Fv are pairwise disjoint. So

|ETl | ≥

∣∣∣∣∣∣
⋃

v∈Tl+1

Fv

∣∣∣∣∣∣ ≥ 3|Tl+1| ≥ 3|Tl| − ρn.

If |Tl| > ρn then |ETl | ≥ 3|Tl| − ρn > 2|Tl|. So it follows from Lemma 2.8.1 that (with high

probability), |Tl| > 2−k/2n. Thus Cl is ρ-rigid.
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We can now prove Lemma 2.6.2.

Proof of Lemma 2.6.2. Let ρ > 0. By Lemma 2.8.2, there exists L such that l > L implies

Cl(χ) is (ρ/2)-rigid with high probability in the planted model as n → ∞. So without loss

of generality we condition on the event that Cl(χ) is (ρ/2)-rigid.

Now let l > L. Let ψ : V → {0, 1} be a σ-proper coloring. Let

T = {v ∈ Cl(χ) : χ(v) 6= ψ(v)}.

T ′ = {v ∈ Al(χ) \ A′l(χ) : χ(v) 6= ψ(v)}.

We claim that |T | ≥ |T ′|. To see this, let v ∈ T ′. Then there exists an edge e supported by

v (with respect to χ) with e \ {v} ⊂ Cl(χ). Since ψ is proper and ψ(v) 6= χ(v), there must

exist a vertex w ∈ e \ {v} with ψ(w) 6= ψ(v). Necessarily, w ∈ T . So there exists a function

f : T ′ → T such that f(v) is contained in an edge e supported by v with e \ {v} ⊂ Cl(χ).

Because v /∈ A′l(χ), f is injective. This proves the claim.

Now suppose that |T ∪ T ′| > ρn. Since T and T ′ are disjoint, either |T | > (ρ/2)n or

|T ′| > (ρ/2)n. So the claim implies |T | > (ρ/2)n. Since Cl(χ) is (ρ/2)-rigid,

|T ∪ T ′| > 2−k/2n.

This proves the lemma.

2.9 Appendix A: Topological sofic entropy notions

In this appendix, we recall the notion of topological sofic entropy from [KL13] and prove

that it coincides with the definition given in §2.2.

Let T be an action of Γ on a compact metrizable space X. So for g ∈ Γ, T g : X → X

is a homeomorphism and T gh = T gT h. We will also denote this action by ΓyX. Let

σ : Γ → Sym(n) be a map, ρ be a pseudo-metric on X, F b Γ be finite and δ > 0. For
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x, y ∈ Xn, let

ρ∞(x, y) = max
i
ρ(xi, yi), ρ2(x, y) =

(
1

n

∑
i

ρ(xi, yi)
2

)1/2

be pseudo-metrics on Xn. Also let

Map(T, ρ, F, δ, σ) = {x ∈ Xn : ∀f ∈ F, ρ2(T fx, x ◦ σ(f)) < δ}.

Informally, elements of Map(T, ρ, F, δ, σ) are “good models” that approximate partial peri-

odic orbits with respect to the chosen sofic approximation.

For a pseudo-metric space (Y, ρ), a subset S ⊂ Y is (ρ, ε)-separated if for all s1 6=
s2 ∈ S, ρ(s1, s2) ≥ ε. Let Nε(Y, ρ) = max{|S| : S ⊂ Y, S is (ρ, ε)-separated} be the maximum

cardinality over all (ρ, ε)-separated subsets of Y .

Given a sofic approximation Σ to Γ, we define

h̃Σ(ΓyX, ρ) = sup
ε>0

inf
FbΓ

inf
δ>0

lim sup
i→∞

|Vi|−1 log(Nε(Map(T, ρ, F, δ, σi), ρ∞))

where the symbol F b Γ means that F varies over all finite subsets of Γ.

We say that a pseudo-metric ρ on X is generating if for every x 6= y there exists

g ∈ Γ such that ρ(gx, gy) > 0. By [KL13, Proposition 2.4], if ρ is continuous and generating,

h̃Σ(T, ρ) is invariant under topological conjugacy and does not depend on the choice of ρ.

So we define h̃Σ(T ) = h̃Σ(T, ρ) where ρ is any continuous generating pseudo-metric. The

authors of [KL13] define the topological sofic entropy of ΓyX to be h̃Σ(T ). The main result

of this appendix is:

Proposition 2.9.1. Let A be a finite set and X ⊂ AΓ a closed shift-invariant subspace. Let

T be the shift action of Γ on X. Then hΣ(ΓyX) = h̃Σ(T ) where hΣ(ΓyX) is as defined in

§2.2.

Proof. To begin, we choose a pseudo-metric on AΓ as follows. For x, y ∈ AΓ, let ρ(x, y) =

1xe 6=ye . Then ρ is continuous and generating. So h̃Σ(ΓyX) = h̃Σ(ΓyX, ρ).

Let ε > 0, O ⊂ AΓ be an open set. We first analyze Ω(O, ε, σ) from the definition

of hΣ(ΓyX). Note that the topology for AΓ is generated by the base B = {[a] : a ∈
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AF , F b Γ} where if a ∈ AF then [a] = {x ∈ AΓ : x|F = a}. In other words, open sets of

B are those that specify a configuration on a finite subset of coordinates. For F b Γ let

O(F ) = {y ∈ AΓ : ∃x ∈ X, y|F = x|F} = ∪ a∈AF
[a]∩X 6=∅

[a] be the open set containing all elements

containing some configuration that appears in X in the finite window F .

Claim 7. Every open superset O ⊃ X contains some open set of the form O(F ).

Because Ω(O, ε, σ) decreases as O decreases, it suffices to only consider open sets of

the form O(F ) in the definition of hΣ(ΓyX).

Proof. O is a union of elements in B and X is compact, so that there exists X ⊂ O′ ⊂ O

with O′ containing only finitely many base elements. Let F be the union of all coordinates

specified by base elements in O′. It follows that O′ contains O(F ).

Without loss of generality and for convenience we can assume that F is symmetric,

i.e. F = F−1, and contains the identity. This is because we can replace any F with the larger

set F ∪ F−1 ∪ {e}, and both Map(T, ρ, F, δ, σi) and Ω(O(F ), ε, σi) are monotone decreasing

in F .

Let n = |Vi|. We assume limi→∞ |Vi| =∞. Now for each x ∈ Ω(O(F ), ε, σi) we obtain

an element x̃ ∈ Xn and then show that these partial orbits form a good estimate for h̃Σ.

Let G(x) = {v ∈ Vi : Πσi
v (x) ∈ O(F )}. For every v ∈ G(x), choose some x̃v ∈ X that agrees

with Πσi
v (x) on F . For v /∈ G(x) choose an arbitrary element x̃v ∈ X. Thus x̃ ∈ Xn .

Now for v ∈ G(x), f ∈ F , T f x̃v(e) = x̃v(f
−1) = xσi(f)v. On the other hand we also

want x̃σi(f)v(e) = xσi(f)v, which is true if v ∈ σi(f)−1G(x) and σi(e)σi(f)v = σi(f)v. It

follows that ρ2(T f x̃, x̃ ◦ σi(f)) <
√

2ε.

Now consider separation of {x̃ : x ∈ Ω(O(F ), ε, σi)}. We will show that a slightly

smaller subset is (ρ∞, 1)-separated. By the pigeonhole principle there exists a subset V̄i of

size at least (1 − ε)n such that Ω(O(F ), ε, σi, V̄i) := {x ∈ Ω(O(F ), ε, σi) : G(x) = V̄i} has

cardinality at least e−n(H(ε,1−ε)+o(1))#Ω(O(F ), ε, σi). Furthermore, if x, y ∈ Ω(O(F ), ε, σi, V̄i)

then ρ∞(x̃, ỹ) = 1 if x(v) 6= y(v) for some v ∈ V̄i ∩ Fix(1Γ), where Fix(1Γ) = {v ∈ Vi :

σi(1Γ)v = v}. Since there are at most |A|(ε+o(1))n configurations in AVi with some fixed

configuration on V̄i ∩ Fix(1Γ), there exists a (ρ∞, 1)-separated subset of Ω(O(F ), ε, σi, V̄i) of
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size at least |A|−(ε+o(1))n#Ω(O(F )), ε, σi, V̄i). It follows that

N1(Map(T, ρ, F,
√

2ε, σi), ρ∞) ≥ |A|−(ε+o(1))ne−n(H(ε,1−ε)+o(1))#Ω(O(F ), ε, σi).

On the other hand, suppose we have some x̃ ∈ Map(T, ρ, F, δ, σi). This means that

for every f ∈ F , there exists a set Ṽi(f) of size > (1 − δ2)n such that for v ∈ Ṽi(f),

x̃σi(f)v(1Γ) = T f x̃v(1Γ) = x̃v(f
−1). Let Ṽi = ∩f∈F Ṽi(f). Then |Ṽi| > (1 − |F |δ2)n and for

v ∈ Ṽi, for every f ∈ F , x̃σi(f)v(1Γ) = T f x̃v(1Γ) = x̃v(f
−1).

Define x ∈ AVi by xv = x̃v(1Γ). Then for any fixed v ∈ Ṽi, for every f ∈ F ,

Πσi
v (x)(f) = xσi(f−1)v = x̃σi(f−1)v(1Γ) = T f

−1
x̃v(1Γ) = x̃v(f). Since x̃v ∈ X, it follows that

x ∈ Ω(O(F ), δ2|F |, σi).
Also note that x̃, ỹ ∈ Map(T, ρ, F, δ, σi) are (ρ, ε)-separated for any ε ≤ 1 if and only

if x̃v(1Γ) 6= ỹv(1Γ) for some v ∈ Vi, so that x 6= y. It follows that

Nε(Map(T, ρ, F, δ, σi), ρ∞) ≤ #Ω(O(F ), δ2|F |, σi).

Note that in the definitions of hΣ and h̃Σ, F is fixed with respect to δ.

2.10 Appendix B: Concentration for the planted model

Definition 8 (Hamming metrics). Define the normalized Hamming metric dSym(n) on

Sym(n) by

dSym(n)(σ1, σ2) = n−1#{i ∈ [n] : σ1(i) 6= σ2(i)}.

Define the normalized Hamming metric dHom on Hom(Γ, Sym(n)) by

dHom(σ1, σ2) =
d∑
i=1

dSym(n)(σ1(si), σ2(si)).

The purpose of this section is to prove:

Theorem 2.10.1. There exist constants c, λ > 0 (depending only on k, d) such that for every

δ > 0 there exists Nδ such that for all n > Nδ, for every 1-Lipschitz f : Homχ(Γ, Sym(n))→
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R,

Pχn (|f − Eχn[f ]| > δ) ≤ c exp(−λδ2n).

2.10.1 General considerations

To begin the proof we first introduce some general-purpose tools.

Definition 9. A metric measure space is a triple (X, dX , µ) where (X, dX) is a met-

ric space and µ is a Borel probability measure on X. We will say (X, dX , µ) is (c, λ)-

concentrated if for any 1-Lipschitz function f : X → R,

µ

(∣∣∣∣f − ∫ f dµ

∣∣∣∣ > ε

)
< ce−λε

2

.

If (X, dX , µ) is (c, λ)-concentrated and f : X → R is L-Lipschitz, then since f/L is

1-Lipschitz

µ

(∣∣∣∣f − ∫ f dµ

∣∣∣∣ > ε

)
= µ

(∣∣∣∣f/L− ∫ f/L dµ

∣∣∣∣ > ε/L

)
< c exp(−λε2/L2). (2.47)

Lemma 2.10.2. Let (X, dX , µ) be (c, λ)-concentrated. If φ : X → Y is an L-Lipschitz

map onto a measure metric space (Y, dY , ν) and ν = φ∗µ is the push-forward measure, then

(Y, dY , ν) is (c, λ/L2)-concentrated.

Proof. This follows from the observation that if f : Y → R is 1-Lipschitz, then the pullback

f ◦ φ : X → R is L-Lipschitz. So equation (2.47) implies

ν

(∣∣∣∣f − ∫ f dν

∣∣∣∣ > ε

)
= µ

(∣∣∣∣f ◦ φ− ∫ f ◦ φ dµ
∣∣∣∣ > ε

)
< c exp(−λε2/L2).

The next lemma is concerned with the following situation. Suppose X = ti∈IXi is a

finite disjoint union of spaces Xi. Even if we have good concentration bounds on the spaces

Xi, this does not imply concentration on X because it is possible that a 1-Lipschitz function

f will have different means when restricted to the Xi’s. However, if most of the mass of X
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is concentrated on a sub-union ∪j∈JXj (for some J ⊂ I) and the sets Xi are all very close

to each other, then there is a weak concentration inequality on X.

Lemma 2.10.3. Let (X, dX , µ) be a measure metric space with diameter ≤ 1. Suppose

X = ti∈IXi is a finite disjoint union of spaces Xi, each with positive measure (µ(Xi) > 0).

Let µi be the induced probability measure on Xi. Suppose there exist J ⊂ I and constants

η, δ, λ, c > 0 satisfying:

1. µ(∪j∈JXj) ≥ 1− η ≥ 1/2.

2. For every j, k ∈ J , there exists a measure µj,k on Xj × Xk with marginals µj, µk

respectively such that

µj,k({(xj, xk) : dX(xj, xk) ≤ δ}) = 1.

3. For each j ∈ J , (Xj, dX , µj) is (c, λ)-concentrated.

Then for every 1-Lipschitz function f : X → R and every ε > δ + 2η,

µ

(∣∣∣∣f − ∫ f dµ

∣∣∣∣ > ε

)
≤ η + c exp

(
−λ (ε− δ − 2η)2) .

Proof. Let f : X → R be a 1-Lipschitz function. After adding a constant to f if necessary, we

may assume
∫
f dµ = 0. Note that the mean of f is a convex combination of its restrictions

to the Xi’s:

0 =

∫
f(x) dµ(x) =

∑
i∈I

µ(Xi)

∫
f(xi) dµi(xi)

=
∑
i∈I\J

µ(Xi)

∫
f(xi) dµi(xi) +

∑
j∈J

µ(Xj)

∫
f(xj)dµj(xj).

Since f is 1-Lipschitz with zero mean, |f | ≤ diam(X) ≤ 1. So

∣∣∣∣∣µ(∪j∈JXj)
−1
∑
j∈J

µ(Xj)

∫
f(xj) dµj(xj)

∣∣∣∣∣ =

∣∣∣∣∣∣µ(∪j∈JXj)
−1
∑
i∈I\J

µ(Xi)

∫
f(xi) dµi(xi)

∣∣∣∣∣∣
≤ η

1− η
≤ 2η
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where the last inequality uses that µ(∪j∈JXj) ≥ 1− η and η ≤ 1/2.

For any j, k ∈ J , the µj and µk-means of f are δ-close:∣∣∣∣∫ f(xj) dµj(xj)−
∫
f(xk) dµk(xk)

∣∣∣∣ =

∣∣∣∣∫ f(xj)− f(xk) dµj,k(xj, xk)

∣∣∣∣
≤

∫
|f(xj)− f(xk)| dµj,k(xj, xk) ≤ δ.

So for any j0 ∈ J ,∣∣∣∣∣
∫
f(xj0) dµj0(xj0)− µ(∪j∈JXj)

−1
∑
j∈J

µ(Xj)

∫
f(xj) dµj(xj)

∣∣∣∣∣ ≤ δ.

Combined with the previous estimate, this gives∣∣∣∣∫ f(xj0) dµj0(xj0)

∣∣∣∣ ≤ δ + 2η.

Now we estimate the µ-probability that f is > ε (assuming ε > δ + 2η):

µ

(∣∣∣∣f − ∫ f dµ

∣∣∣∣ > ε

)
= µ(|f | > ε)

≤ η +
∑
j∈J

µj(|f | > ε)µ(Xj)

≤ η +
∑
j∈J

µj

(∣∣∣∣f − ∫ f(xj) dµj(xj)

∣∣∣∣ > ε−
∣∣∣∣∫ f(xj) dµj(xj)

∣∣∣∣)µ(Xj)

≤ η +
∑
j∈J

µj

(∣∣∣∣f − ∫ f(xj) dµj(xj)

∣∣∣∣ > ε− δ − 2η

)
µ(Xj)

≤ η + c exp
(
−λ (ε− δ − 2η)2) .

The next lemma is essentially the same as [Led01, Proposition 1.11]. We include a

proof for convenience.

Lemma 2.10.4. [Led01] Suppose (X, dX , µ) is (c1, λ1)-concentrated and (Y, dY , ν) is (c2, λ2)-
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concentrated. Define a metric on X×Y by dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) +dY (y1, y2).

Then (X × Y, dX×Y , µ× ν) is (c1 + c2,min(λ1, λ2)/4)-concentrated.

Proof. Let F : X×Y → R be 1-Lipschitz. For y ∈ Y , define F y : X → R by F y(x) = F (x, y).

Define G : Y → R by G(y) =
∫
F y(x) dµ(x). Then F y and G are 1-Lipschitz.

If |F (x, y)−
∫
F dµ×ν| > ε then either |F y(x)−

∫
F y dµ| > ε/2 or |G(y)−

∫
G dν| >

ε/2. Thus

µ× ν
({

(x, y) :

∣∣∣∣F (x, y)−
∫
F dµ× ν

∣∣∣∣ > ε

})
≤ µ× ν

({
(x, y) :

∣∣∣∣F y(x)−
∫
F y dµ

∣∣∣∣ > ε/2

})
+ ν

({
y :

∣∣∣∣G(y)−
∫
G dν

∣∣∣∣ > ε/2

})
≤ c1e

−λ1ε2/4 + c2e
−λ2ε2/4 ≤ (c1 + c2) exp(−min(λ1, λ2)ε2/4).

Lemma 2.10.5. Let (X, dX , µ) and (Y, dY , ν) be metric-measure spaces. Suppose

1. X, Y are finite sets, µ and ν are uniform probability measures,

2. there is a surjective map Φ : X → Y and a constant C > 0 such that |Φ−1(y)| = C for

all y ∈ Y ,

3. (Y, dY , ν) is (c1, λ1)-concentrated,

4. for each y ∈ Y , the fiber Φ−1(y) is (c2, λ2)-concentrated (with respect to the uniform

measure on Φ−1(y) and the restricted metric),

5. for each y1, y2 ∈ Y there is a probability measure µy1,y2 on Φ−1(y1) × Φ−1(y2) with

marginals equal to the uniform measures on Φ−1(y1) and Φ−1(y2) such that

µy1,y2({(x1, x2) : dX(x1, x2) ≤ dY (y1, y2)}) = 1.

Then (X, dX , µ) is (c1 + c2,min(λ1, λ2)/4)-concentrated.
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Proof. Let f : X → R be 1-Lipschitz. Let E[f |Y ] : Y → R be its conditional expectation

defined by

E[f |Y ](y) = |Φ−1(y)|−1
∑

x∈Φ−1(y)

f(x).

Also let E[f ] = |X|−1
∑

x∈X f(x) be its expectation.

We claim that E[f |Y ] is 1-Lipschitz. So let y1, y2 ∈ Y . By hypothesis (5)

E[f |Y ](y1)− E[f |Y ](y2) =

∫
f(x1)− f(x2) dµy1,y2(x1, x2)

≤
∫
d(x1, x2) dµy1,y2(x1, x2)

≤ d(y1, y2).

The first inequality holds because f is 1-Lipschitz and the second by hypothesis (5). This

proves E[f |Y ] is 1-Lipschitz.

Let ε > 0. Because Φ is C-to-1, it makes the measure µ to ν. Because (Y, dY , ν) is

(c1, λ1)-concentrated,

µ

(∣∣∣∣E[f |Y ] ◦ Φ−
∫
f dµ

∣∣∣∣ > ε/2

)
= ν (|E[f |Y ]− E[f ]| > ε/2) < c1e

−λ1ε2/4. (2.48)

Because each fiber Φ−1(y) is (c2, λ2)-concentrated, for any y ∈ Y ,

|Φ−1(y)|−1#
{
x ∈ Φ−1(y) : |f(x)− E[f |Y ](y)| > ε/2

}
< c2e

−λ2ε2/4.

Average this over y ∈ Y to obtain

µ ({x ∈ X : |f(x)− E[f |Y ](Φ(x))| > ε) < c2e
−λ2ε2 .

Combine this with (2.48) to obtain

µ

(∣∣∣∣f − ∫ f dµ

∣∣∣∣ > ε

)
≤ µ (|f − E[f |Y ](Φ(x)) dµ| > ε/2) + µ

(∣∣∣∣E[f |Y ](Φ(x))−
∫
f dµ

∣∣∣∣ > ε/2

)
≤ c2e

−λ2ε2/4 + c1e
−λ1ε2/4
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which implies the lemma.

2.10.2 Specific considerations

Given an equitable coloring χ : [n]→ {0, 1}, let Hχ be the stabilizer of χ:

Hχ = {g ∈ Sym(n) : χ(gv) = χ(v) ∀v ∈ [n]}.

Lemma 2.10.6. The group Hχ is (4, n/16)-concentrated (when equipped with the uniform

probability measure and the restriction of the normalized Hamming metric dSym(n)).

Proof. The group Hχ is isomorphic to the direct product Sym(χ−1(0))×Sym(χ−1(1)) which

is isomorphic to Sym(n/2)2. By [Led01, Corollary 4.3], Sym(n/2) is (2, n/16)-concentrated.

So the result follows from Lemmas 2.10.4 and 2.10.2. This uses that the inclusion map

from Sym(n/2)2 to itself is (1/2)-Lipschitz when the source is equipped with the sum of the

dSym(n/2)-metrics and the target equipped with the dSym(n) metric.

We need to show that certain subsets of the group Sym(n) are concentrated. To define

these subsets, we need the following terminology.

Recall that a k-partition of [n] is an unordered partition π = {P1, . . . , Pn/k} of [n]

such that each Pi has cardinality k. Let Part(n, k) be the set of all k-partitions of [n]. The

group Sym(n) acts on Part(n, k) by gπ = {gP1, . . . , gPn/k}.
Let σ ∈ Sym(n). The orbit-partition of σ is the partition Orb(σ) of [n] into orbits of

σ. For example, for any v ∈ [n] the element of Orb(σ) containing v is {σiv : i ∈ Z} ⊂ [n]. Let

Sym(n, k) ⊂ Sym(n) be the set of all permutations σ ∈ Sym(n) such that the orbit-partition

of σ is a k-partition.

Recall from §2.4.1 that a k-partition π has type ~t = (tj)
k
j=0 ∈ [0, 1]k+1 with respect

to a coloring χ if the number of partition elements P of π with |P ∩ χ−1(1)| = j is tjn.

We will also say that a permutation σ ∈ Sym(n, k) has type ~t = (tj)
k
j=0 ∈ [0, 1]k+1 with

respect to a coloring χ if its orbit-partition Orb(σ) has type ~t with respect to χ.

Let Sym(n, k;χ,~t) be the set of all permutations σ ∈ Sym(n, k) such that σ has type

~t with respect to χ.
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Lemma 2.10.7. The subset Sym(n, k;χ,~t) is either empty or (6, λn)-concentrated (when

equipped with the normalized Hamming metric dSym(n) and the uniform probability measure)

where λ > 0 is a constant depending only on k.

Proof. Let Part(n, k;χ,~t) be the set of all (unordered) k-partitions of [n] with type ~t (with

respect to χ). We will consider this set as a metric space in which the distance between

partitions π, π′ ∈ Part(n, k;χ,~t) is d(π, π′) = k|πMπ′|
2n

where M denotes symmetric difference.

Let Orb : Sym(n, k;χ,~t)→ Part(n, k;χ,~t) be the map which sends a permutation to

its orbit-partition. We will verify the conditions of Lemma 2.10.5 with X = Sym(n, k;χ,~t),

Y = Part(n, k;χ,~t) and Φ = Orb. Condition (1) is immediate.

Observe that Orb is surjective and constant-to-1. In fact for any partition π ∈
Part(n, k;χ,~t), |Orb−1(π)| = (k − 1)!n/k since an element σ ∈ |Orb−1(π)| is obtained by

choosing a k-cycle for every part of π. To be precise, if π = {P1, . . . , Pn/k} then Orb−1(π) is

the set of all permutations σ of the form σ =
∏n/k

i=1 σi where σi is a k-cycle with support in

Pi. This verifies condition (2) of Lemma 2.10.5.

Observe that Hχ acts transitively on Part(n, k;χ,~t). Fix π ∈ Part(n, k;χ,~t) and define

a map φ : Hχ → Part(n, k;χ,~t) by φ(h) = hπ. We claim that φ is k2/2-Lipschitz. Indeed, if

h1, h2 ∈ Hχ then

d(h1π, h2π) =
k|h1π M h2π|

2n

≤ k2#{p ∈ [n] : h1(p) 6= h2(p)}
2n

=
k2

2
dSym(n)(h1, h2).

Because Hχ is (4, n/16)-concentrated by Lemma 2.10.6, Lemma 2.10.2 implies Part(n, k;χ,~t)

is (4, n/4k4)-concentrated. This verifies condition (3) of Lemma 2.10.5.

We claim that Orb−1(π) is (2, n/2k)-concentrated. To see this, let π = {P1, . . . , Pn/k}
and let Symk(Pi) ⊂ Sym(n) be the set of all k-cycles with support in Pi. Then Orb−1(π) is

isometric to Symk(P1)× · · · × Symk(Pn/k). The diameter of Symk(Pi), viewed as a subset of

Sym(n) with the normalized Hamming metric on Sym(n), is k/n. So the claim follows from

[Led01, Corollary 1.17]. This verifies condition (4) of Lemma 2.10.5.

For π1, π2 ∈ Part(n, k;χ,~t), let Xπ1,π2 be the set of all pairs (σ1, σ2) ∈ Orb−1(π1) ×
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Orb−1(π2) such that if P ∈ π1∩π2 then the restriction of σ1 to P equals the restriction of σ2 to

P . Observe that Xπ1,π2 is non-empty and the projection maps Xπ1,π2 → Orb−1(πi) (i = 1, 2)

are constant-to-1. In fact, for any σ1 ∈ Orb−1(π1), the set of σ2 with (σ1, σ2) ∈ Xπ1,π2 is

bijective with the set of assignments of k-cycles to parts in π2 \ π1.

Let µπ1,π2 be the uniform probability measure on Xπ1,π2 . Since the projection maps

are constant-to-1, the marginals of µπ1,π2 are uniform. Moreover, if (σ1, σ2) ∈ Xπ1,π2 then

{i ∈ [n] : σ1(i) 6= σ2(i)} ⊂ ∪P∈π1\π2P.

Thus

dSym(σ1, σ2) ≤ n−1| ∪P∈π1\π2 P | = n−1k|π1 M π2|/2 = d(π1, π2).

This verifies condition (5) of Lemma 2.10.5.

We have now verified all of the conditions of Lemma 2.10.5. The lemma follows.

Let Sym(n, k;χ) be the set of all σ ∈ Sym(n, k) such that if ~t = (tj)
k
j=0 is the type

of σ with respect to χ then t0 = tk = 0. In other words, σ ∈ Sym(n, k;χ) if and only if

the orbit-partition π of σ is proper with respect to χ (where we think of π as a collection of

hyper-edges).

Let ~s = (sj) with s0 = sk = 0 and sj = 1
k(2k−2)

(
k
j

)
for 0 < j < k. For δ > 0 let

Symδ(n, k;χ) be the set of all σ ∈ Sym(n, k;χ) such that if ~t = (ti)
k
i=0 is the type of σ (with

respect to χ) then
k∑
i=0

|si − ti|2 < δ2.

Lemma 2.10.8. With notation as above, for sufficiently large n

| Symδ(n, k;χ)|
| Sym(n, k;χ)|

≥ 1− e−λ1δ2n

where λ1 > 0 is a constant depending only on k.
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Proof. Let

Part(n, k;χ,~t) = {π ∈ Part(n, k) : π has type ~t with respect to χ},

Part(n, k;χ) = {π ∈ Part(n, k) : χ is proper with respect to π},

Partδ(n, k;χ) =

{
π ∈ Part(n, k;χ) : if ~t is the type of π with respect to χ then

k∑
i=0

|ti − si|2 < δ2

}
.

The orbit-partition map from Sym(n, k)→ Part(n, k) is constant-to-1 and maps Sym(n, k;χ)

onto Part(n, k;χ) and Symδ(n, k;χ) onto Partδ(n, k;χ). Therefore, it suffices to prove

|Partδ(n, k;χ)|
|Part(n, k;χ)|

≥ 1− e−λδ2n

where λ > 0 is a constant depending only on k.

Let M̃ be the set of all vectors ~t = (ti)
k
i=0 ∈ [0, 1]k+1 such that t0 = tk = 0,

∑
i ti = 1/k

and
∑

j jtj = 1/2. By the proof of Theorem 2.4.2 (specifically equation (2.9)), J is uniquely

maximized in M̃ by the vector ~s.

Recall from Lemma 2.4.3 that if ~t ∈ M̃ and n~t is Z-valued then

(1/n) log |Part(n, k;χ,~t)| = (1− 1/k)(log(n)− 1)− log(2) + J(~t) +O(n−1 log(n))

where J(~t) = H(~t)−
∑k

j=0 tj log(j!(k − j)!).
In order to get a lower bound on |Part(n, k;χ)|, observe that there exists ~r ∈ M̃ such

that n~r is Z-valued and |si− ri| ≤ k/n for all i. Thus J(~r)− J(~s) = O(1/n). It follows that

|Part(n, k;χ)| ≥ |Part(n, k;χ,~r)| = (1− 1/k)(log(n)− 1)− log(2) + J(~s) +O(n−1 log(n)).

We claim that the Hessian of J is negative definite. To see this, one can consider J

to be a function of [0, 1]k+1. The linear terms in J do not contribute to its Hessian. Since

the second derivative of x 7→ −x log x is −1/x,

∂2J

∂ti∂tj
=

 0 i 6= j

−1/ti i = j
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Thus the Hessian is diagonal and every eigenvalue is negative; so it is negative definite.

Thus if ~t ∈ M̃ is such that
∑

i |ti − si|2 ≥ δ2 then

(1/n) log |Part(n, k;χ,~t)| ≤ (1− 1/k)(log(n)− 1)− log(2) + J(~s)− δ2λ′1 +O(n−1 log(n))

where λ′1 = 1
2

min~t∈M̃ min1≤i≤k−1 1/si is half the smallest absolute value of an eigenvalue of

the Hessian of J on M̃ .

If ~t is the type of a k-partition π of n then ti ∈ {0, 1/n, 2/n, . . . , 1}. Thus the number

of different types of k-partitions of [n] is bounded by a polynomial in n (namely (n+ 1)k+1).

Thus

|Partδ(n, k;χ)|
|Part(n, k;χ)|

≥ 1− (n+ 1)k+1 exp(n[(1− 1/k)(log(n)− 1)− log(2) + J(~s)− δ2λ′1 +O(n−1 log(n))])

exp(n[(1− 1/k)(log(n)− 1)− log(2) + J(~s) +O(n−1 log(n))])

= 1− nc exp(−δ2λ′1n)

where c > 0 is a constant. This implies the lemma.

Recall that a k-cycle is a permutation π ∈ Sym(n) of the form π = (v1, . . . , vk) for

some v1, . . . , vk ∈ [n]. In other words, π has n − k fixed points and one orbit of size k.

The support of π ∈ Sym(n) is the complement of the set of π-fixed points. It is denoted

by supp(π). Two permutations are disjoint if their supports are disjoint. A permutation

π ∈ Sym(n) is a disjoint product of k-cycles if there exist pairwise disjoint k-cycles

π1, . . . , πm such that π = π1 · · · πm. In this case we say that each πi is contained in π.

Lemma 2.10.9. Let ~t, ~u ∈ [0, 1]k+1. Suppose

k∑
i=0

|ti − ui| < δ.

Suppose Sym(n, k;χ,~t) and Sym(n, k;χ, ~u) are non-empty (for some integer n and equitable

coloring χ).

For σ, σ′ ∈ Sym(n, k), let |σ M σ′| be the number of k-cycles τ that are either in σ or

96



in σ′ but not in both. Let

Z = {(σ, σ′) ∈ Sym(n, k;χ,~t)× Sym(n, k;χ, ~u) : |σ M σ′| ≤ δn}.

Then Z is non-empty and there exists a probability measure µ on Z with marginals equal to

the uniform probability measures on Sym(n, k;χ,~t) and Sym(n, k;χ, ~u) respectively.

Proof. Let ρ ∈ Sym(n) be a disjoint product of k-cycles. The type of ρ with respect to

χ is the vector ~r = (ri)
k
i=0 defined by: ri is 1/n times the number of k-cycles ρ′ contained in

ρ such that | supp(ρ′) ∩ χ−1(1)| = i.

Let σ ∈ Sym(n, k;χ,~t). Then there exist disjoint k-cycles σ′1, . . . , σ
′
m in σ such that if

ρ = σ′1 · · ·σ′m and ~r = (ri)
k
i=0 is the type of ρ then ri = min(ti, ui). Note m ≥ n(1/k − δ/2)

by assumption on ~t and ~u. Moreover, there exist k-cycles σ′m+1, · · · , σ′n/k such that the

collection σ′1, . . . , σ
′
n/k is pairwise disjoint and the type of σ′ = σ′1 · · ·σ′n/k is ~u. Then |σ M

σ′| = 2(n/k −m) ≤ δn. So (σ, σ′) ∈ Z which proves Z is non-empty.

We claim that there is a constant C1 > 0 such that for every σ ∈ Sym(n, k;χ,~t)

the number of σ′ ∈ Sym(n, k;χ, ~u) with (σ, σ′) ∈ Z is C1. Indeed the following algorithm

constructs all such σ′ with no duplications:

Step 1. Let σ = σ1 · · ·σn/k be a representation of σ as a disjoint product of k-cycles.

Choose a vector ~r = (ri)
k
i=0 such that

1. there exists a subset S ⊂ [n/k] with cardinality |S| ≥ n(1/k − δ/2) such that if

ρ =
∏

i∈S σi then ~r is the type of ρ;

2. ri ≤ ui for all i.

Step 2. Choose a subset S ⊂ [n/k] satisfying the condition in Step 1.

Step 3. Choose pairwise disjoint k-cycles σ′1, . . . , σ
′
n/k−|S| such that

1. supp(σi) ∩ supp(σ′j) = ∅ (∀i ∈ S) (∀j);

2. σ′j is not contained in σ (∀j);

3. if σ′ =
∏

i∈S σi
∏

j σ
′
j then σ′ has type ~u;
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The range of possible vectors ~r in Step 1 depends only on k, n,~t, ~u. The number of

choices in Steps 2 and 3 depends only on the choice of ~r in Step 1 and on k, n,~t, ~u. This

proves the claim.

Similarly, there is a constant C2 > 0 such that for every σ′ ∈ Sym(n, k;χ, ~u) the

number of σ ∈ Sym(n, k;χ,~t) with (σ, σ′) ∈ Z is C2. It follows that the uniform probability

measure on Z has marginals equal to the uniform probability measures on Sym(n, k;χ,~t)

and Sym(n, k;χ, ~u) respectively.

Corollary 2.10.10. Let USym(n,k;χ) denote the uniform probability measure on Sym(n, k;χ)

and let ESym(n,k;χ) be the associated expectation operator. There are constants c, λ > 0 (de-

pending only on k) such that for every δ > 0, there exists Nδ such that for all n > Nδ, for

every 1-Lipschitz f : Sym(n, k;χ)→ R,

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > δ

)
≤ c exp(−λδ2n).

Moreover δ 7→ Nδ is monotone decreasing.

Proof. The set Sym(n, k;χ) is the disjoint union of Sym(n, k;χ,~t) over ~t ∈ [0, 1]k+1. Let δ >

0. Lemmas 2.10.7, 2.10.8 and 2.10.9 imply that for all sufficiently large n, this decomposition

of Sym(n, k;χ) satisfies the criterion in Lemma 2.10.3 where we set c = 3, η = exp(−λ1δ
2n)

and λ = λ0n where λ0, λ1 > 0 depend only on k. So for every 1-Lipschitz function f :

Sym(n, k;χ)→ R, every ε > δ + 2η and all sufficiently large n,

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > ε

)
≤ exp(−λ1δ

2n) + c exp
(
−λ0n (ε− δ − 2η)2) .

In particular, there exist Nδ such that if n > Nδ the inequality above holds and 2η < δ.

By choosing Nδ to satisfy the equation 2 exp(−λ1δ
2Nδ) = δ, we can ensure that δ 7→ Nδ is

decreasing.

Set ε = 3δ to obtain

USym(n,k;χ)

(∣∣f − ESym(n,k;χ)[f ]
∣∣ > 3δ

)
≤ exp(−λ1δ

2n) + c exp
(
−λ0n (δ)2) ≤ (1 + c) exp(−λδ2n)
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where λ = min(λ0, λ1). The corollary is now finished by changing variables.

Proof of Theorem 2.10.1. The space of homomorphisms Homχ(Γ, Sym(n)) is the d-fold di-

rect power of the spaces Sym(n, k;χ). So the Theorem follows from Corollary 2.10.10 and

the proof of Lemma 2.10.4.
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Chapter 3

A multiplicative ergodic theorem for

von Neumann algebra valued cocycles

Coauthors: Lewis Bowen 1, Ben Hayes 2, and Yuqing (Frank) Lin

3.1 Introduction

3.1.1 The finite dimensional MET

Here is a version of the classical Multiplicative Ergodic Theorem (MET). Let (X,µ) be

a standard probability space, f : X → X a measure-preserving transformation, and c :

N×X → GL(n,R) a measurable cocycle:

c(n+m,x) = c(n, fmx)c(m,x) ∀n,m ∈ N, µ− a.e. x ∈ X.

Assume the first moment condition:∫
log+ ‖c(1, x)‖ dµ(x) <∞,

1supported in part by NSF grant DMS-1500389 and a Simons Fellowship
2The author acknowledges support from NSF grants DMS-1600802 and DMS-1827376.
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Then there is a limit operator

Λ(x) := lim
n→∞

[c(n, x)∗c(n, x)]1/2n

for a.e. x. Let eλ1(x) > · · · > eλk(x) be the distinct eigenvalues of Λ(x). Then λ1, . . . , λk are

the Lyapunov exponents. They are invariant in the sense that λi(fx) = λi(x) for a.e. x.

If mi ∈ N is the multiplicity of λi then the Lyapunov distribution is the discrete measure∑k
i=1 miδλi .

Let Wi be the eλi(x)-eigenspace of Λ(x) and define

Vi =
∑
j≥i

Wj

so that Vk(x) ⊂ · · · ⊂ V1(x) = Rn is a flag. The Vi(x) are the Oseledets subspaces. They

are cocycle-invariant in the sense that Vi(fx) = c(1, x)Vi(x) (for a.e. x).

Finally, for a.e. x ∈ X and every vector v ∈ Vi(x) \ Vi+1(x),

lim
n→∞

1

n
log ‖c(n, x)v‖ = λi(x).

This last condition can be expressed without reference to Lyapunov exponents by:

lim
n→∞

‖c(n, x)v‖1/n = lim
n→∞

‖Λ(x)nv‖1/n.

3.1.2 Previous literature

Infinite-dimensional generalizations of the MET have appeared in [Rue82, Mn83, Blu16,

LL10, Thi87, GTQ15, Sch91]. Each of these assumes the operators c(n, x) satisfy a quasi-

compactness condition and consequently the limit operators Λ(x) have discrete spectrum.

On the other hand, one does not expect there to be an unconditional generalization

to infinite dimensions. For example, Voiculescu’s example in [HS09, Example 8.4] shows

there is a bounded operator T : `2(N) → `2(N) such that |T n|1/n does not converge in the

strong operator topology. We could define the cocycle c above by c(n, x) = T n to see that

convergence cannot be guaranteed in the general setting of bounded operators on Hilbert
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spaces.

3.1.3 von Neumann algebras

The purpose of this paper is to establish a new MET in which the cocycle takes values in the

group of invertible elements of a tracial von Neumann algebra. To explain in more detail,

let H be a separable Hilbert space, B(H) the algebra of bounded operators on H. A von

Neumann algebra is a sub-algebra M ⊂ B(H) containing the identity (I ∈ M) that is

closed under taking adjoints and closed in the weak operator topology. Let M+ ⊂M be the

positive operators on M . A trace on M is a map τ : M+ → [0,∞] satisfying

1. τ(x+ y) = τ(x) + τ(y) for all x, y ∈M+;

2. τ(λx) = λτ(x) for all λ ∈ [0,∞), x ∈M+ (agreeing that 0(+∞) = 0);

3. τ(x∗x) = τ(xx∗) for all x ∈M .

We will always assume τ is

• faithful, which means τ(x∗x) = 0⇒ x = 0;

• normal, which means τ(supi xi) = supi τ(xi) for every increasing net (xi)i in M+;

• semifinite, which means for every x ∈ M+ there exists y ∈ M+ such that 0 < y < x

and 0 < τ(y) <∞.

The pair (M, τ) is a finite tracial von Neumann algebra if τ(I) <∞.

The trace τ on M is unique (up to scale) if and only if M has trivial center. Many con-

structions considered here depend on the choice of trace but we will suppress this dependence

from the notation.

3.1.4 Example: the abelian case

Fix a standard probability space (Y, ν) and let M = L∞(Y, ν). For every φ ∈M , define the

multiplication operator

mφ : L2(Y, ν)→ L2(Y, ν), (mφf)(y) = φ(y)f(y).
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The map φ 7→ mφ embeds M into the algebra of bounded operators on L2(Y, ν). We will

identify φ with mφ. Define the trace τ : M → C by

τ(φ) =

∫
φ dν.

With this trace, (M, τ) is a finite von Neumann algebra.

3.1.5 Main results

The limit operator

Our first main result shows the existence of a limit operator. We state the result here and

afterwards explain the notions of convergence and the notation used, such as GL2(M, τ)

Theorem 3.1.1. Let (X,µ) be a standard probability space, f : X → X an ergodic measure-

preserving transformation, (M, τ) a von Neumann algebra with semi-finite faithful normal

trace τ . Let M× ⊂ M be the subgroup of elements of M with bounded inverse. Let c :

N×X →M× ∩GL2(M, τ) be a cocycle in the sense that

c(n+m,x) = c(n, fmx)c(m,x)

for all n,m ∈ N and a.e. x ∈ X. We assume c is measurable with respect to the strong

operator topology on M×.

Assume the first moment condition:∫
X

‖ log(|c(1, x)|)‖2 dµ(x) <∞.

Then for almost every x ∈ X, the following limit exists:

lim
n→∞

‖ log(c(n, x)∗c(n, x))‖2

n
= D.

Moreover, if D > 0 then for a.e. x, there exists a limit operator Λ(x) ∈ L0(M, τ) satisfying

• limn→∞
1
n
dP(|c(n, x)|,Λ(x)n) = 0 in P;
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• limn→∞ |c(n, x)|1/n → Λ(x) in P and in measure;

• limn→∞ n
−1 log |c(n, x)| → log Λ(x) in L2(M, τ).

The regular representation

Let N = {x ∈M : τ(x∗x) <∞} The trace induces an inner-product on N by

〈x, y〉 := τ(x∗y).

Let L2(M, τ) denote the Hilbert space completion of N with respect to this inner product.

For x ∈ M , the left-multiplication operator Lx : M → M defined by Lx(y) = xy extends

to a bounded linear operator on L2(M, τ). Therefore, we may view M as a sub-algebra

of the algebra B(L2(M, τ)) of bounded linear operators on L2(M, τ). This is the regular

representation of M (this is explained in more detail in §3.3).

An operator x on L2(M, τ) is affiliated with (M, τ) if it is closed, dense defined and

commutes with every element in the commutant M ′ = {x ∈ B(L2(M, τ)) : xy = yx∀y ∈
M}. Let L0(M, τ) denote the algebra of operators affiliated with (M, τ). This is a ∗-algebra

in the measure topology. Moreover, the trace τ extends to τ : L0(M, τ)+ → [0,∞] where

L0(M, τ)+ ⊂ L0(M, τ) is the cone of positive affiliated operators. Also if x ∈ L0(M, τ)+ then

x−1/2 and log x are well-defined via the spectral calculus. See §3.3.4 and §3.5.2 for details.

Let GL2(M, τ) consist of those elements x ∈ L0(M, τ) such that log |x| ∈ L2(M, τ).

We prove in §3.4 that GL2(M, τ) is a group. Let P = GL2(M, τ) ∩ L0(M, τ)+. For x, y ∈ P,

define dP(x, y) = ‖ log(x−1/2yx−1/2)‖2. We prove in §3.5.3-3.5.4 that (P, dP) is a complete

CAT(0) metric space on which GL2(M, τ) acts transitively by isometries. This extends work

of Andruchow-Larotonda who previously studied the geometry of P ∩M [AL06].

Example 1. Continuing with our running example, ifM = L∞(Y, ν) then the above-mentioned

inner product on M is the restriction of the inner product on L2(Y, ν) to M . Therefore,

L2(M, τ) is naturally isomorphic to L2(Y, ν). The algebra of affiliated operators L0(M, τ) is

identified with the algebra of all complex-valued measurable functions on (Y, ν) (mod null

sets). The exponential map exp : L2(Y, ν) → GL2(M, τ) is a surjective homomorphism of

groups (where we consider L2(Y, ν) as an abelian group under addition). The kernel consists
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of all maps φ ∈ L2(Y, ν) with essential range in 2πiZ. The restriction of exp to the real

Hilbert space L2(Y, ν;R) is an isometry onto (P, dP).

Remarks on the limit operator

Remark 13. Let ‖ · ‖∞ denote the operator norm. If the cocycle is uniformly bounded in

operator norm (this means there is a constant K such that ‖c(1, x)‖∞ ≤ K for a.e. x) then

‖Λ(x)‖∞ ≤ K as well. Therefore, Λ(x) ∈M for a.e. x.

Remark 14. This theorem is a special case of a more general result (Theorem 3.6.2) which

allows the cocycle to take values in GL2(M, τ).

Remark 15. The reader might wonder whether a stronger form of convergence holds in the

theorem above. Namely, whether convergence log Λ(x) = limn→∞ log
(
[c(n, x)∗c(n, x)]1/2n

)
occurs in operator norm. The answer is ‘no’. We provide an explicit example of this in §3.2

below with M = L∞(Y, ν).

Conjecture 1. For a.e. x, log
(
[c(n, x)∗c(n, x)]1/2n

)
converges to log Λ(x) almost uniformly

in the sense of [Pad67]. This means that for every ε > 0 there exists a closed subspace

S ⊂ L2(M, τ) such that the projection operator pS ∈M , τ(pS) > 1− ε and

lim
n→∞

log
(
[c(n, x)∗c(n, x)]1/2n

)
pS = log(Λ(x))pS

in operator norm.

Oseledets subspaces and Lyapunov distribution

One of the main advantages of working with a tracial von Neumann algebra (M, τ) is that

if x ∈M is normal (this means xx∗ = x∗x) then x has a spectral measure. If M = Mn(C) is

the algebra of n× n complex matrices, then the spectral measure is the uniform probability

measure on the eigenvalues of x (with multiplicity). To define it more generally, recall that

there is a projection-valued measure Ex on the complex plane such that x =
∫
λ dEx(λ).

The spectral measure of x is the composition µx = τ ◦ Ex. It is a positive measure with

total mass equal to τ(id). Moreover, if p is any polynomial then τ(p(x)) =
∫
p dµx where

p(x) is defined via spectral calculus.
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Example 2. If M = L∞(Y, ν) then every operator φ ∈ M is normal. The spectral measure

of φ is its distribution µφ defined by

µφ(R) = ν({y ∈ Y : φ(y) ∈ R})

for all measurable regions R ⊂ C.

This definition of spectral measure extends to x ∈ L0(M, τ). In the context of Theorem

3.1.1, we define the Lyapunov distribution to be the spectral measure µlog Λ(x) of the log

limit operator log Λ(x). If M = Mn(C) is the algebra of n×n complex matrices and τ is the

usual trace then this definition agrees with the previous definition.

To further justify this definition, we recall the notion of von Neumann dimension. If

S ⊂ L2(M, τ) is a closed subspace and the orthogonal projection operator pS lies in M then

the von Neumann dimension of S is dimM(S) = τ(pS). For example, the vN-dimension

of L2(M, τ) itself is τ(id). This notion of dimension satisfies many desirable properties such

as being additive under direct sums and continuous under increasing and decreasing limits

[Lüc02].

Example 3. If M = L∞(Y, ν) and if p ∈M is a projection operator then there is a measurable

subset Z ⊂ Y such that p is the characteristic function p = 1Z and the range of p is the

space of all L2-functions with support in Z. The vN-dimension of this space is the measure

ν(Z).

Let

Ht(x) = 1(−∞,t](log Λ(x))(L2(M, τ)) ⊂ L2(M, τ)

where 1(−∞,t](log Λ(x)) is defined via functional calculus. Alternatively, Ht(x) is the range

of the projection Elog Λ(x)(−∞, t]. This is analogous to the Oseledets subspaces defined

previously.

Theorem 3.1.2. [Invariance principle] With notation as above, for a.e. x ∈ X and every

t ∈ [0,∞),

c(1, x)Ht(x) = Ht(fx), µlog Λ(x) = µlog Λ(fx).
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Fuglede-Kadison determinants

The Fuglede-Kadison determinant of an arbitrary x ∈M is defined by

∆(x) = exp

(∫ ∞
0

log(λ) dµ|x|(λ)

)

where |x| = (x∗x)1/2 is a positive operator defined via the spectral calculus. The FK-

determinant is multiplicative in the sense that ∆(ab) = ∆(a)∆(b) [FK52]. From [HS07] it

follows the definition of FK-determinant extends to operators in GL2(M, τ) and therefore

can be applied to the limit operator Λ(x).

Example 4. IfM = L∞(Y, ν) then the FK-determinant of a function φ ∈M is exp
∫

log |φ(y)| dν(y).

Theorem 3.1.3. With notation as above, for a.e. x ∈ X,

lim
n→∞

(∆|c(n, x)|)1/n = ∆Λ(x).

Growth rates

Assume the notation of Theorem 3.1.1.

Definition 10. Given ξ ∈ L2(M, τ), let Σ(ξ) be the set of all sequences (ξn)n ⊂ L2(M, τ)

such limn→∞ ‖ξ − ξn‖2 = 0. Define the upper and lower smooth growth rates of the

system (X,µ, f, c) with respect to ξ at x ∈ X by

Gr(x|ξ) = inf
{

lim inf
n→∞

‖c(n, x)ξn‖1/n
2 : (ξn)n ∈ Σ(ξ)

}
Gr(x|ξ) = inf

{
lim sup
n→∞

‖c(n, x)ξn‖1/n
2 : (ξn)n ∈ Σ(ξ)

}
.

Theorem 3.1.4. Assume the hypotheses of Theorem 3.1.1. Then for a.e. x ∈ X and every

ξ ∈ L2(M, τ),

Gr(x|ξ) = lim
n→∞

‖Λ(x)nξ‖1/n
2 = Gr(x|ξ).

Remark 16. In §3.2 we give an explicit example in which a strict inequality

lim inf
n→∞

‖c(n, x)ξ‖1/n
2 > lim

n→∞
‖Λ(x)nξ‖1/n

2
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occurs.

Conjecture 2. Theorem 3.1.4 can be strengthened to: for a.e. x ∈ X there exists an

essentially dense subspace Hx ⊂ L2(M, τ) such that for every ξ ∈ Hx,

lim
n→∞

‖c(n, x)ξ‖1/n
2 = lim

n→∞
‖Λ(x)nξ‖1/n

2 .

Essentially dense subspaces are reviewed in §3.6.4.

Remark 17. In §3.6.5, we prove the conjecture with lim inf in place of lim. To be precise:

for a.e. x ∈ X there exists an essentially dense subspace Hx ⊂ L2(M, τ) such that for every

ξ ∈ Hx,

lim inf
n→∞

‖c(n, x)ξ‖1/n
2 = lim

n→∞
‖Λ(x)nξ‖1/n

2 .

3.1.6 The abelian case

As in previous examples, suppose M = L∞(Y, ν). In §3.2, we show that with this choice of

(M, τ), Theorem 3.1.1 follows readily from von Neumann’s mean ergodic theorem. Moreover,

Conjectures 1 and 2 follow from Birkhoff’s pointwise ergodic theorem. We also provide

explicit examples where the limit operator Λ(x) has continuous spectrum, where convergence

to the limit operator does not occur in operator norm, and where there exist vectors ξ

satisfying the strict inequality

lim inf
n→∞

‖c(n, x)ξ‖1/n
2 > lim

n→∞
‖Λ(x)nξ‖1/n

2 .

The section §3.2 can be read independently of the rest of the paper.

3.1.7 Powers of a single operator

As above, let (M, τ) be a finite von Neumann algebra and let T ∈ M . It is a famous open

problem to determine whether T admits a proper invariant subspace. The main results of

[HS09] show that the limit limn→∞ |T n|1/n = Λ exists in the strong operator topology (SOT)

and moreover, if Ht = 1[0,t](Λ)(L2(M, τ)) then Ht is an invariant subspace. The spectral

measure of Λ is the same as the Brown measure of T radially projected to the positive real

108



axis. Moreover, if the Brown measure of T is not a Dirac mass then there exists a proper

invariant subspace.

Now suppose that T has a bounded inverse T−1 ∈M . Regardless of the dynamics, we

may choose to define the cocycle c by c(n, x) = T n. Theorems 3.1.1 and 3.1.4 then recover

the main results of [HS09] with the exception that our results say nothing of the Brown

measure and they only apply to the invertible case. Our methods are completely different.

In particular, we do not use [HS09].

3.1.8 Proof overview

We will make use of a general Multiplicative Ergodic Theorem due to Karlsson-Margulis

based on non-positive curvature (see also [Kau87] which seems to be the first paper that

develops this geometric approach). To accommodate their cocycle convention (which is

different than ours), let us say that a measurable map č : N×X → G is a reverse cocycle

if

č(n+m,x) = č(n, x)č(m, fnx)

for any n,m ∈ N (where G is a group).

The following is a special case of the Karlsson-Margulis Theorem.

Theorem 3.1.5 ([KM99]). Let (X,µ) be a standard probability space, f : X → X an ergodic

measure-preserving invertible transformation, (Y, d) a complete CAT(0) space, y0 ∈ Y and

č : N × X → Isom(Y, d) a measurable reverse cocycle taking values in the isometry group

of (Y, d), where measurable means with respect to the compact-open topology on Isom(Y, d).

Assume that ∫
X

d(y0, č(1, x)y0) dµ(x) <∞.

Then for almost every x ∈ X, the following limit exists:

lim
n→∞

d(y0, č(n, x)y0)

n
= D.

Moreover, if D > 0 then for almost every x there exists a unique unit-speed geodesic ray
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γ(·, x) in Y starting at y0 such that

lim
n→∞

1

n
d(γ(Dn, x), č(n, x)y0) = 0.

As remarked in [KM99], this result implies the classical MET as follows. Let P (n,R)

be the space of positive definite n×nmatrices. Then GL(n,R) acts on P (n,R) by g.p := gpg∗.

The tangent space to p ∈ P (n,R), denoted Tp(P (n,R)), is naturally identified with S(n,R),

the space of n× n real symmetric matrices. Define an inner product on Tp(P (n,R)) by

〈x, y〉p := trace(p−1xp−1y).

This gives a complete Riemannian metric on P (n,R). All sectional curvatures are non-

positive and so P (n,R) is CAT(0). Moreover the GL(n,R) action is isometric and transitive.

Every geodesic ray from I (the identity matrix) has the form t 7→ exp(tx) for x ∈ S(n,R).

Substitute Y = P (n,R) and y0 = I (the identity matrix) in the Karlsson-Margulis

Theorem to obtain the classical multiplicative ergodic theorem.

Our proof of Theorem 3.1.1 follows in a similar way from the Karlsson-Margulis The-

orem. In [AL06], Andruchow and Larotonda construct a Riemannian metric on the positive

cone P∞(M) of a finite von Neumann algebra. They prove that it is non-positively curved.

We go over the needed facts from their construction in §3.5.1.

However, P∞(M) is not metrically complete. We prove that its metric completion

can naturally be identified with the log-square-integrable positive operators in the affiliated

algebra of the von Neumann algebra and that a natural subgroup of its isometry group acts

transitively.

Acknowledgements. L. Bowen would like thank IPAM and UCLA for their hospitality.

The initial ideas for this projects were obtained while L. Bowen was attending the Quanti-

tative Linear Algebra semester at IPAM.
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3.2 The abelian case

As in §3.1.4, let M = L∞(Y, ν) and define the trace τ on M by τ(φ) =
∫
φ dν. This section

studies the MET under the hypothesis that the cocycle c takes values in M . It serves as

motivation and can be read independently of the rest of the paper.

This special case might seem trivial and indeed, we will see that the conclusions of

Theorem 3.1.1 are implied by the pointwise ergodic theorem. However, there are curious

features not present in previous versions of the MET. Below we will give examples in which

Λ(x) has continuous spectrum and examples where |c(n, x)|1/n converges in L2-norm to Λ(x)

but not in operator norm. We will also show that growth rates do not necessarily exist for

every vector, but do exist for an essentially dense subspace of vectors.

3.2.1 Theorem 3.1.1 from the pointwise ergodic

Let us assume hypotheses as in Theorem 3.1.1 with M = L∞(Y, ν). In particular, we have

log |c(1, x)| ∈ L∞(Y, ν) ∩ L2(Y, ν), and ‖ log |c(1, x)|‖Y,ν2 ∈ L1(X,µ). For a fixed (x, y) ∈
X × Y , consider

An(x, y) =
1

n
log |c(n, x)(y)| = 1

n

n−1∑
i=0

log |c(1, f ix)(y)|

.

‖An(x)‖Y,ν2 = ‖ 1

n
log |c(n, x)|‖Y,ν2

We apply the pointwise ergodic theorem in X to both An(x, y) and ‖An(x)‖Y,ν2 . It

then follows by what is known as Scheffe’s lemma (which has also been shown by Riesz) that

for a.e. x ∈ X, An(x) converges in L2(Y, ν). This implies one of the conclusions of Theorem

3.1.1. The other conclusions follow easily because we are in the abelian case.

That we can apply the pointwise ergodic theorem to the second equation above fol-

lows directly from the condition ‖ log |c(1, x)|‖Y,ν2 ∈ L1(X,µ). That we can apply the point-

wise ergodic theorem to the first equation follows from the following arguments to show

that log |c(1, x)(y)| ∈ L1(X,µ) for ν-a.e. y. First notice that if (Y, ν) is a finite measure

space, then log |c(1, x)| ∈ L1(Y, ν) and ‖ log |c(1, x)|‖Y,ν1 ∈ L1(X,µ), so by Fubini’s theorem

log |c(1, x)(y)| ∈ L1(X,µ). Now if (Y, ν) is an infinite measure space, let ε > 0 and let
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(note that A1(x, y) = log |c(1, x)(y)|) Ã1(x, y) = A1(x, y) if |A1(x, y)| > ε, otherwise let

Ã1(x, y) = 0. Then Ã1(x) is supported on a finite measure subspace of Y for every fixed x.

It follows that for a fixed y, Ã1(x, y) ∈ L1(X,µ). But ‖A1(x, y)‖X,µ1 ≤ ‖Ã1(x, y)‖X,µ1 + ε, so

A1(x, y) ∈ L1(X,µ).

Similarly, if M = Mn(C)⊗L∞(Y, ν) where Mn(C) denotes the algebra of n×n complex

matrices, then the non-ergodic version of the classical multiplicative ergodic theorem implies

the conclusions of Theorem 3.1.1.

3.2.2 Examples with continuous spectrum

This example is almost trivial. Let ψ ∈ L∞(Y, ν) be such that log |ψ| ∈ L2(Y, ν). Define

c(n, x) = ψn. Then the limit operator satisfies Λ(x) = |ψ| for a.e. x and the spectral measure

of Λ is the distribution of |ψ|. In particular, if |ψ| has continuous distribution then Λ(x) has

continuous spectrum.

3.2.3 Almost uniform convergence and growth rates

In this subsection, we prove Conjectures 1 and 2 in the special case M = L∞(Y, ν).

Theorem 3.2.1. Assume hypotheses as in Theorem 3.1.1 with M = L∞(Y, ν) and H =

L2(Y, ν). For Z ⊂ X and φ ∈ L∞(Y, ν), let φ � Z ∈ L∞(Z, ν � Z) denote the restriction of φ

to Z.

Then for every ε > 0 and a.e. x ∈ X, there exists a measurable subset Z(x) ⊂ Y with

ν(Z(x)) > 1− ε such that

lim
n→∞

n−1 log |c(n, x) � Z(x)| = log(Λ(x) � Z(x))

where convergence is in L∞(Z(x)). In particular, Conjecture 1 is true if M = L∞(Y, ν).

Proof. Define F, φ and An as in §3.2.1. By Birkhoff’s Pointwise Ergodic Theorem, An con-

verges pointwise a.e. to E[φ|I] where I denotes the sigma-algebra of F -invariant measurable

subsets. Since expAn(x, y) = |c(n, x)(y)|1/n, it follows that, for a.e. (x, y), An(x, y) converges

to log Λ(x)(y).
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Define An(x) ∈ L1(Y, ν) by An(x)(y) = An(x, y). By Fubini’s Theorem, there exists a

subset X ′ ⊂ X with full measure such that for a.e. x ∈ X ′, An(x) converges pointwise a.e.

(as n→∞) to log Λ(x).

By Egorov’s Theorem, for every x ∈ X ′ there exists a measurable subset Z(x) ⊂ Y

with ν(Z(x)) ≥ 1− ε such that An(x) converges uniformly to log Λ(x) on Z(x).

Proposition 3.2.2. With notation as above, suppose that for some x ∈ X and Z(x) ⊂ Y

that,

lim
n→∞

n−1 log |c(n, x) � Z(x)| = log(Λ(x) � Z(x))

where convergence is in L∞(Z(x)). Then for every ξ ∈ L2(Y, ν) with support in Z(x)

lim
n→∞

‖c(n, x)ξ‖1/n
2 = lim

n→∞
‖Λ(x)nξ‖1/n

2 = ‖Λ(x)1support(ξ)‖∞. (3.1)

In particular, Conjecture 2 is true if M = L∞(Y, ν). Also, if n−1 log |c(n, x)| → log Λ(x) in

operator norm, then (3.1) holds for all ξ ∈ L2(Y, ν).

Proof. Let ξ ∈ L2(Y, ν). We first prove limn→∞ ‖Λ(x)nξ‖1/n
2 = ‖Λ(x)1support(ξ)‖∞.

Without loss of generality, we may assume ‖ξ‖2 = 1. Recall that limn→∞ ‖φ‖n =

‖φ‖∞ for φ ∈ L∞. So tends to ‖Λ(x)‖L∞(Y,|ξ|2dν) as n → ∞. The latter is the same as

‖Λ(x)1support(ξ)‖L∞(Y,ν).

Now suppose ξ has support in Z(x). Then

‖c(n, x)ξ‖2 ≤ ‖Λ(x)nξ‖2

∥∥∥∥(y ∈ Z(x) 7→ |c(n, x)(y)|
Λ(x)n(y)

)∥∥∥∥
L∞(Z(x),ν)

.

Since n−1 log |c(n, x) � Z(x)| converges to log Λ(x) uniformly on Z(x), this implies

lim sup
n→∞

‖c(n, x)ξ‖1/n
2 ≤ lim

n→∞
‖Λ(x)nξ‖1/n

2 .

Similarly,

‖Λ(x)nξ‖2 ≤ ‖c(n, x)ξ‖2

∥∥∥∥(y ∈ Z(x) 7→ Λ(x)n(y)

|c(n, x)(y)|

)∥∥∥∥
L∞(Z(x),ν)

.
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So lim infn→∞ ‖c(n, x)ξ‖1/n
2 ≥ limn→∞ ‖Λ(x)nξ‖1/n

2 . This proves (3.1).

Next we prove Conjecture 2. In general, a subspace S ⊂ L2(M, τ) is essentially

dense if for every ε > 0 there exists a projection p ∈ M with range contained in S such

that τ(1− p) < ε. In the special case M = L∞(Y, ν) this means a subspace S ⊂ L2(Y, ν) is

essentially dense if and only if for every ε > 0 there is a subset Z ⊂ Y with ν(Z) > 1−ε such

that S contains all functions with support in Z. So the Conjecture 2 follows from Theorem

3.2.1 and (3.1).

Remark 18. The same result holds if M = Mn(C)⊗L∞(Y, ν) with essentially the same proof.

One needs only use the non-ergodic version of Oseledet’s Multiplicative Ergodic Theorem

instead of Birkhoff’s Pointwise Ergodic Theorem.

3.2.4 A counterexample

Theorem 3.2.3. There exist standard probability spaces (X,µ), (Y, ν), an ergodic pmp in-

vertible transformation f : X → X, a measurable cocycle c : Z × X → M = L∞(Y, ν)

satisfying the hypotheses of Theorem 3.1.1 and a vector ξ ∈ L2(Y, ν) such that

lim sup
n→∞

‖c(n, x)ξ‖1/n

L2(Y,ν)
= lim

n→∞
‖c(n, x)‖1/n

L2(Y,ν)
> lim

n→∞
‖Λ(x)nξ‖1/n

L2(Y,ν)
= lim

n→∞
‖Λ(x)n‖1/n

L2(Y,ν)
.

Moreover, we can choose the cocycle so that ‖c(1, x)‖∞ ≤ C for some constant C and a.e.

x. Moreover, n−1 log |c(n, x)| does not converge to log Λ(x) in operator norm (for a.e. x).

Proof. Let X = Z2 be the compact group of 2-adic integers. An element of Z2 is written

as a formal sum x =
∑∞

i=0 xi2
i with xi ∈ {0, 1} and the usual multiplication and addition

rules. Let µ be the Haar probability measure on X. There is a bijection between X and

{0, 1}N∪{0} given by x 7→ (x0, x1, . . .). This bijection maps the measure µ to the (N∪{0})-th
power of the uniform measure on {0, 1}.

Define f : X → X by f(x) = x+ 1. It is well-known that a translation on a compact

abelian group is ergodic if and only if every orbit is dense. Thus f is an ergodic measure-

preserving transformation. Alternatively, f is the standard odometer which is well-known

to be ergodic.
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Let (Y, ν) be a probability space that is isomorphic to the unit interval with Lebesgue

measure. Let Y = t∞n=1Yn be a partition of Y into positive measure subsets. We will choose

the partition more carefully later. Define the cocycle c : Z×X → L∞(Y, ν) by

c(1, x)(y) =

 1 if y ∈ Ym for some m and xm = 0

2 otherwise

This extends to a cocycle via c(n, x) = c(1, fn−1x) · · · c(1, fx)c(1, x).

For every y ∈ Y , ∫
log c(1, x)(y) dµ(x) = (1/2) log(2).

Since f is ergodic, it follows that the limit operator Λ(x) defined by log Λ(x) = limn→∞ n
−1 log c(n, x)

(where convergence is in L2 and pointwise a.e.) is the constant function Λ(x) =
√

2 for a.e.

x.

For n,m ∈ N, let

Sn,m = {x ∈ X : xm = 1, xn = 0}.

We claim that if x ∈ Sn,m and n < m then c(n, x)(y) = 2n ∀y ∈ Ym. Indeed,

2m ≤
m∑
i=0

xi2
i ≤ 2m+1 − 2n − 1.

Therefore, c(1, fkx)(y) = c(1, x+ k)(y) = 2 for all 0 ≤ k ≤ 2n − 1 and

c(n, x) = c(1, fn−1x) · · · c(1, x) = 2n.

Note that µ(Sn,m) = 1/4. Moreover, if n1 6= n2 and m1 6= m2 then Sn1,m1 and Sn2,m2

are independent events. It follows that if Tn = Sn,n+10 then the events {Tn}∞n=1 are jointly

independent and, by Borel-Cantelli, a.e. x is contained in infinitely many of the sets Tn.

If x ∈ Tn then

‖c(n, x)1Y ‖2
L2(Y,ν) ≥ ‖c(n, x)1Yn+10‖2

L2(Y,ν) ≥ ν(Yn+10)22n.
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We could choose the subsets {Ym} so that ν(Ym) ≥ Cm−2 for some constant C. With

this choice and x ∈ Tn,

‖c(n, x)1Y ‖2
L2(Y,ν) ≥ C22n/(n+ 10)−2.

Since a.e. x is contained in infinitely many Tn’s it follows that

lim sup
n→∞

‖c(n, x)1Y ‖1/n

L2(Y,ν)
= 2.

On the other hand,

lim
n→∞

‖Λ(x)n1Y ‖1/n

L2(Y,ν)
=
√

2.

This proves the theorem with ξ = 1Y . By Theorem 3.2.1, |c(n, x)|1/n does not converge to

Λ(x) in operator norm (for a.e. x).

Remark 19. The essential phenomena behind this counterexample is that there is no uniform

rate of convergence in the pointwise ergodic theorem. Precisely, while 1
n

∑n−1
k=0 log c(1, fkx)(y)

converges to log(2)/2 for every y and a.e. x, the convergence is not uniform in y.

3.3 Preliminaries

Throughout these notes, by a tracial von Neumann algebra we mean a pair (M, τ) where M is

a von Neumann algebra, and τ is a faithful, tracial state which is ultraweakly continuous. By

a semifinite von Neumann algebra we mean a pair (M, τ) where M is a von Neumann algebra

and τ is a faithful, ultraweakly continuous (or normal?), and semifinite. For concreteness, we

consider M to be a sub-algebra of the algebra B(H) of all bounded operators on a separable

Hilbert space H. We will consider many constructions that depend on the choice of trace τ

but we suppress this dependence from the notation.

3.3.1 Spectral measures

Suppose x is a (bounded or unbounded) self-adjoint operator on H. By the Spectral Theorem

([RS80, Theorem VIII.6]), there exists a projection valued measure Ex on the real line such
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that

x =

∫
λ dEx(λ).

The support of Ex is contained in the spectrum of x. The projections of the form Ex(R) (for

Borel sets R ⊂ R) are the spectral projections of x. If f : R→ R is Borel then f(x) is a

self-adjoint operator on H defined by

f(x) :=

∫
f(λ) dEx(λ).

In the case of unbounded x, f(x) has the same domain as x. The absolute value of x is

defined by |x| = (x∗x)1/2 =
∫ √

λ dEx∗x(λ) and is equal to
∫
|λ| dEx(λ).

If x is such that all of its spectral projections lie in the von Neumann algebra M , then

the composition τ ◦ Ex is a Borel probability measure on C called the spectral measure

of x and denoted by µx. In particular, if x ∈M then µx is well-defined.

Example 5 (The abelian case). If M = L∞(Y, ν) (as in §3.1.4), then every operator φ ∈ M
is self-adjoint if and only if it is real-valued. Then projection-valued measure Eφ satisfies

Eφ(R) is the projection onto the subspace of L2-functions with support in φ−1(R) (for Borel

R ⊂ R) and µφ = φ∗ν is the distribution of φ.

3.3.2 Polar decomposition

We will frequently have to use the polar decomposition, see [RS80, Theorem VIII.32]. We

restate it here.

Proposition 3.3.1. Let x be a closed densely defined operator on H. Then there is a positive

self-adjoint operator |x| with dom(|x|) = dom(x) and a partial isometry u with initial space

ker(x)⊥ and final space Im(x) so that x = u|x| (where Im(x) denotes the image of x).

Moreover |x| and u are uniquely determined by these properties together with the additional

condition ker(|x|) = ker(x).

The expression x = u|x| is called the polar decomposition of x.
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3.3.3 The regular representation

Recall from the introduction that L2(M, τ) is the Hilbert space completion of N with respect

to the inner product defined on M by

〈x, y〉 = τ(x∗y).

Let ‖x‖2 = 〈x, x〉1/2 and ‖x‖∞ be the operator norm of x (as an operator on H).

For any x, y ∈M ,

‖xy‖2 ≤ ‖x‖∞‖y‖2 and ‖xy‖2 ≤ ‖x‖2‖y‖∞.

(e.g., [Dix81, Part I, Chapter 6, Theorem 8]). Therefore, the operator Lx : N → N defined

by Lx(y) = xy admits a unique continuous extension from L2(M, τ) to itself. Moreover, the

operator norm of Lx is bounded by ‖x‖∞. In fact, they are equal. This follows, for example,

from [AP16, Proposition 8.2.2]. Similarly, the map Rx : N → N defined by Rx(y) = yx

admits a unique continuous extension to L2(M, τ) and the operator norm of Rx is ‖x‖∞.

We will identify M with its image {Lx : x ∈ M} (viewed as a sub-algebra of the

algebra of bounded operators on L2(M, τ)).

3.3.4 The algebra of affiliated operators

Definition 11 (L0(M, τ)). The commutant of M , denoted M ′, is the algebra of bounded

operators y on L2(M, τ) such that xy = yx for all x ∈ M . An unbounded operator x on

L2(M, τ) is affiliated with M if for every unitary u ∈M ′, xu = ux. Let L0(M, τ) denote the

set of closed densely defined operators affiliated with M . By [AP16, Proposition 7.2.3], if x is

a closed densely defined operator and x = u|x| is its polar decomposition, then x ∈ L0(M, τ)

if and only if u and the spectral projections of |x| are in M . By [AP16, Theorem 7.2.8],

L0(M, τ) is closed under adjoint, addition and multiplication and is a ∗-algebra under these

operations.
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Domains

For x ∈ L0(M, τ) we write dom(x) ⊂ L2(M, τ) for its domain. We remark now that for

a, b ∈ L0(M, τ) the sum a + b is defined as the closure of the operator T with dom(T ) =

dom(a)∩dom(b) and with Tξ = aξ+bξ for ξ ∈ dom(T ). Similarly ab is defined as the closure

of the operator T with domain b−1(dom(a)) ∩ dom(a) and Tξ = a(bξ) for ξ ∈ dom(T ).

Thus, for example, the domain of ab is often larger than b−1(dom(a)) ∩ dom(b). This will

occasionally cause us some headaches, and we will try to remark when it actually presents

an issue. Regardless, this paragraph should be taken as a blanket warning that ab is not

literally defined to be the composition, and a+ b is not the literal sum.

L2(M, τ) ⊂ L0(M, τ)

We can include L2(M, τ) in L0(M, τ) as follows. For x ∈ L2(M, τ) and y ∈ M , define

L0
x(y) = Ry(x) = xy. Then L0

y is closable but not bounded in general. Let Ly denote the

closure of L0
y. The map y 7→ Ly defines a linear bijection from L2(M, τ) into L0(M, τ). By

abuse of notation, we will identify L2(M, τ) with its image in L0(M, τ). While L2(M, τ) is a

subspace of L0(M, τ), it is not a sub-algebra in general.

For x ∈ L0(M, τ) we set |x| = (x∗x)1/2 and

‖x‖2 =

(∫
t2 dµ|x|(t)

)1/2

∈ [0,∞].

Then L2(M, τ) is identified with the set of all x ∈ L0(M, τ) which have ‖x‖2 <∞.

Extending the adjoint

The anti-linear map x 7→ x∗ on M uniquely extends to an anti-linear isometry J : L2(M, τ)→
L2(M, τ). By [AP16, Proposition 7.3.3], if x ∈ L2(M, τ) then the following are equivalent:

(1) x is self-adjoint, (2) Jx = x, (3) x is in the L2-closure of Msa = {y ∈ M : y∗ = y}. Let

L2(M, τ)sa = {x ∈ L2(M, τ) : Jx = x}.
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Invertible affiliated operators

We say an operator x ∈ L0(M, τ) is invertible if there exists an operator y ∈ L0(M, τ)

such that xy = yx = 1 where, following our abuse of notation, xy and yx denote the

closures of the compositions of the operators x and y. In this case we write y = x−1. Let

L0(M, τ)× ⊂ L0(M, τ) be the set of invertible affiliated operators x.

Lemma 3.3.2. If (M, τ) is semi-finite and x ∈ L0(M, τ)× has polar decomposition x = u|x|
then u is unitary, |x| ∈ L0(M, τ)× and x∗ ∈ L0(M, τ)× with (x∗)−1 = (x−1)∗. If (M, τ) is

finite then x ∈ L0(M, τ) is invertible if and only if it is injective.

Proof. Because u is a partial isometry, u∗u is the orthogonal projection onto ker(u)⊥. If x

is invertible, then u is injective, so u∗u = 1. Similarly, uu∗ is projection onto the closure of

the image of u. So if x is invertible then uu∗ = 1. This proves u is unitary.

Because x is injective, the equality ‖xξ‖ = ‖|x|ξ‖ for ξ ∈ dom(x) implies that |x| is

injective. Thus 1{0}(|x|) = pker(|x|) = 0, and so |x|−1 may be defined as a closeable operator

in L0(M, τ). The computation (x∗)−1 = (x−1)∗ is straightforward.

Now suppose (M, τ) is finite. Without loss of generality, τ(1) = 1. Suppose x is

injective. Because u also injective, u∗u = 1. Because τ(1) = 1, 1 = τ(u∗u) = τ(u∗u). So

u∗u = 1 and u is unitary. As above, |x| is invertible. So |x|−1u∗ is an inverse to x.

3.4 The log-square integrable general linear group

Given a semifinite von Neumann algebra (M, τ), let

GL2(M, τ) = {a ∈ L0(M, τ)× : log(|a|) ∈ L2(M, τ)}

be the log-square integrable general linear group of (M, τ). For brevity we will write

G = GL2(M, τ). Although we call this set a group, it is not at all obvious that G is closed

under multiplication. The main result of this section is:
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Theorem 3.4.1. G is a subgroup of L0(M, τ)×. Moreover, for every a ∈ G we have that

a∗ ∈ G and additionally:

‖ log(|a|)‖2 = ‖ log(|a∗|)‖2 = ‖ log(|a−1|)‖2.

We start with some basic facts about spectral measures.

Proposition 3.4.2. Let (M, τ) be a semifinite von Neumann algebra and a ∈ L0(M, τ)×.

Then:

1. µ|a| = µ|a∗|,

2. µ|a−1| = µ|a|−1 = r∗(µ|a|), where r : (0,∞)→ (0,∞) is the map r(t) = t−1.

Proof. (1): Let a = u|a| be the polar decomposition. Since a ∈ L0(M, τ)× by Lemma 3.3.2

we have that u ∈ U(M) (which is the unitary group of M). Then a∗ = |a|u∗, and |a∗|2 =

aa∗ = u|a|2u∗. From this, it is easy to see that |a∗| = u|a|u∗, because (u|a|u∗)2 = u|a|2u∗

Thus, for every Borel E ⊆ [0,∞)

µ|a∗|(E) = τ(1E(|a∗|)) = τ(1E(u|a|u∗)) = τ(u1E(|a|)u∗) = τ(1E(|a|)) = µ|a|(E).

(2): Again, let a = u|a| be the polar decomposition. So a−1 = |a|−1u∗. As in (1), it is

direct to show that |a−1| = u|a|−1u∗. The proof then proceeds exactly as in (1), using that

r∗(µ|a|) = µ|a|−1 (which follows from functional calculus).

Because expressions like 1(λ,∞)(|a|)(L2(M, τ)) will show up frequently, it will be helpful

to introduce the following notation. Given a ∈ L0(M, τ) and E ⊆ [0,∞) Borel, we let Ha
E =

1E(|a|)(L2(M, τ)). It will be helpful for us to derive an alternate expression for ‖ log(|a|)‖2.

We have that

‖ log(|a|)‖2
2 =

∫ ∞
0

t2 dµ| log(|a|)|(t)

=

∫ ∞
0

(∫ t

0

2λ dλ

)
dµ| log(|a|)|(t)

= 2

∫ ∞
0

λ

∫ ∞
0

1(λ,∞)(t) dµ| log(|a|)|(t) dλ = 2

∫ ∞
0

λµ| log(|a|)|(λ,∞) dλ. (3.2)
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Note that we have used Fubini’s theorem, which is valid since semifiniteness of τ

implies that the associated spectral measure is σ-finite.

By functional calculus, µ| log(|a|)| is the pushforward of µ|a| under the map t 7→ | log(t)|.
So

‖ log(|a|)‖2
2 = 2

∫ ∞
0

λ
[
µ|a|(e

λ,∞) + µ|a|(0, e
−λ)
]

dλ.

By Proposition 3.4.2,

‖ log(|a|)‖2
2 = 2

∫ ∞
0

λ[µ|a|(e
λ,∞) + µ|a−1|(e

λ,∞)] dλ. (3.3)

Proposition 3.4.3. Let (M, τ) be a semifinite von Neumann algebra and a, b ∈ L0(M, τ).

Given λ1, λ2, λ ∈ (0,∞) with λ1λ2 = λ, we have that

τ(1(λ,∞)(|ab|)) ≤ τ(1(λ1,∞)(|a|)) + τ(1(λ2,∞)(|b|)).

Proof. The proof is almost immediate from [FK86, Lemma 2.5 (vii) and Proposition 2.2]. To

explain, for a ∈ L0(M, τ), let µ̃t(a) be the infimum of ‖ap‖∞ over all projections p ∈M with

τ(1− p) ≤ t. This is the t-th generalized s-number of a. Also let λ̃t(a) = τ(1(t,∞)(|a|)).
So t 7→ λ̃t(a) is the distribution function of a. These invariants are related by [FK86,

Proposition 2.2] which states

µ̃t(a) = inf{s ≥ 0 : λ̃s(a) ≤ t}.

It follows that µ̃t(a) ≤ s if and only if λ̃s(a) ≤ t. In particular, µ̃λ̃t(a)(a) ≤ t always holds.

[FK86, Lemma 2.5 (vii)] states

µ̃t+s(ab) ≤ µ̃t(a)µ̃s(b)

for any t, s > 0 and any a, b ∈ L0(M, τ).

Now that the tools above are ready, we return to the proposition we want to prove.

The inequality τ(1(λ,∞)(|ab|)) ≤ τ(1(λ1,∞)(|a|))+τ(1(λ2,∞)(|b|)) is equivalent to the statement

λ̃ts(ab) ≤ λ̃t(a) + λ̃s(b).
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By [FK86, Proposition 2.2], this is true if and only if

µ̃λ̃t(a)+λ̃s(b)
(ab) ≤ ts.

By [FK86, Lemma 2.5 (vii)],

µ̃λ̃t(a)+λ̃s(b)
(ab) ≤ µ̃λ̃t(a)(a)µ̃λ̃t(b)(b).

By [FK86, Proposition 2.2] again, µ̃λ̃t(a)(a) ≤ t and µ̃λ̃s(b)(b) ≤ s. Combining these inequali-

ties proves the proposition.

Proof of Theorem 3.4.1. The fact that G is closed under inverses and the ∗ operation is

obvious from Proposition 3.4.2. Let a, b ∈ G. By Proposition 3.4.3:

‖ log(|ab|)‖2
2 = 2

∫ ∞
0

λ
[
µ|ab|(e

λ,∞) + µ|b−1a−1|(e
λ,∞)

]
dλ

≤ 2

∫ ∞
0

λ
[
µ|a|(e

λ/2,∞) + µ|a−1|(e
λ/2,∞)

]
dλ+ 2

∫ ∞
0

λ
[
µ|b|(e

λ/2,∞) + µ|b−1|(e
λ/2,∞)

]
dλ

= 4

∫ ∞
0

λ
[
µ|a|(e

t,∞) + µ|a−1|(e
t,∞)

]
dt+ 4

∫ ∞
0

λ
[
µ|b|(e

t,∞) + µ|b−1|(e
t,∞)

]
dµ

= 2(‖ log(|a|)‖2
2 + ‖ log(|b|)‖2

2).

We also need the following fact analogous to Proposition 3.4.3, but whose proof is

easier.

Proposition 3.4.4. Let (M, τ) be a semifinite von Neumann algebra, and a, b ∈ L0(M, τ).

Then for all λ1, λ2 > 0 we have that

µ|a+b|(λ1 + λ2,∞) ≤ µ|a|(λ1,∞) + µ|b|(λ2,∞).

Proof. We use [FK86, Lemma 2.5, (v)], which shows that

µ̃µ|a|(λ1,∞)+µ|b|(λ2,∞)(a+ b) ≤ µ̃µ|a|(λ1,∞)(a) + µ̃µ|b|(λ2,∞)(b) ≤ λ1 + λ2.
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Apply [FK86, Proposition 2.2] to the inequality above to obtain

λ̃λ1+λ2(|a+ b|) ≤ µ|a|(λ1,∞) + µ|b|(λ2,∞).

By definition of λ̃, λ̃λ1+λ2(|a+ b|) = µ|a+b|(λ1 + λ2,∞) so this finishes the proof.

3.5 The geometry of positive definite operators

Let P = {x ∈ GL2(M, τ) : x > 0} be the positive definite elements of GL2(M, τ). Most

of this section, except for §3.5.5, will deal with a tracial von Neumann algebra. In §3.5.1,

we review work of Andruchow-Larontonda [AL06] on the geometry of P ∩M . In §3.5.2, we

review the measure topology on L0(M, τ). By approximating P by P ∩M (in the measure

topology), we show in §3.5.3 that dP (as defined in the introduction) is a metric on P.

Moreover, GL2(M, τ) acts transitively and by isometries on (P, dP). In §3.5.4, we show that

the exponential map exp : L2(M, τ)sa → P is a homeomorphism. From this, we conclude

that (P, dP) is a complete CAT(0) metric space and characterize its geodesics. In §3.5.5 we

generalize results to semifinite von Neumann algebras.

3.5.1 The space P∞(M, τ) of bounded positive operators

In this section (M, τ) is restricted to a tracial von Neumann algebra.

Let Msa ⊂M be the subspace of self-adjoint elements and

P∞ = P∞(M, τ) := {exp(x) : x ∈Msa} ⊂Msa

be the positive definite elements with bounded inverse. This section studies P∞ equipped

with a natural metric, as introduced in [AL06]. The results in this section are obtained

directly from [AL06].

Let GL∞(M, τ) be the group of elements x ∈ M such that x has a bounded inverse
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x−1 in M . This group acts on Msa by

g.w := gwg∗.

For w ∈ P∞, the tangent space to P∞ at w, denoted Tw(P∞), is a copy of Msa with

the inner product 〈·, ·〉w defined by

〈x, y〉w := 〈w−1/2.x, w−1/2.y〉 = τ(w−1/2x∗w−1yw−1/2) = τ(w−1xw−1y).

Let ‖ · ‖w,2 denote the L2-norm with respect to this inner product. In the special case that

w = I is the identity, this is just the restriction of the standard inner product to Msa.

These inner products induce a Riemannian metric on P∞(M, τ). The reader might

be concerned that the tangent spaces Tw(P∞) are not complete with respect to their inner

products. This causes no difficulty in defining the metric on P∞ but it does mean that

Theorem 3.1.5 cannot be directly applied to P∞.

Here is a more detailed explanation of the metric. Let γ : [a, b]→ P∞ be a path. The

L2-derivative of γ at t is defined by

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h

where the limit is taken with respect to the L2-metric on Tγ(t)(P
∞). Then the length of γ is

defined as in the finite-dimensional case:

lengthP(γ) =

∫ b

a

‖γ′(t)‖γ(t),2 dt.

Define distance on P∞(M, τ) by dP(x, y) = infγ lengthP(γ) where the infimum is taken over

all piece-wise smooth curves γ with derivatives in M . For this to be well-defined, it needs to

be shown that there exists a piecewise smooth curve between any two points of P∞. For any

exp(x) ∈ P∞, the map t 7→ exp(tx) defines a smooth curve from I to exp(x). A piecewise

smooth curve between any two points can be obtained by concatenating two of these special

curves.

Lemma 3.5.1. The action of GL∞(M, τ) on P∞ is transitive and by isometries.
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Proof. The action of GL∞(M, τ) on P∞ is by isometries since the Frechet derivative of g at

w is the map

x ∈ Tw(P∞) 7→ g.x = gxg∗ ∈ Tg.w(P∞)

and

〈g.x, g.y〉g.w = τ((g.w)−1(g.x)(g.w)−1(g.y))

= τ((g∗)−1w−1g−1(gxg∗)(g∗)−1w−1g−1(gyg∗))

= τ(w−1xw−1y) = 〈x, y〉w.

The action GL∞(M, τ)yP∞ is transitive since for any w ∈ P∞, w1/2 ∈ GL(M, τ) and

w1/2.I = w.

Lemma 3.5.2. [AL06, Lemma 3.5] For any a, b ∈ P∞,

dP(a, b) = ‖ log(b−1/2ab−1/2)‖2 ≥ ‖ log(a)− log(b)‖2.

Theorem 3.5.3. P∞(M, τ) is a CAT(0) space.

Proof. This follows from [AL06, Lemma 3.6] and [BH99, Chapter II.1, Proposition 1.7 (3)].

Corollary 3.5.4. Let x, y ∈Msa and σ ≥ 1 be a scalar. Then

dP(eσx, eσy) ≥ σdP(ex, ey).

Proof. Let x′, y′ ∈ Msa and let f(t) = dP(etx
′
, ety

′
). By [AL06, Corollary 3.4], f is convex.

Therefore,

f(t) ≤ tf(1) + (1− t)f(0) = tf(1)

126



for any 0 ≤ t ≤ 1. Set t = 1/σ, x′ = σx, y′ = σy to obtain

f(t) = dP(ex, ey) ≤ σ−1dP(eσx, eσy).

3.5.2 The measure topology

This section reviews the measure topology on L0(M, τ). The results here are probably well-

known but being unable to find them explicitly stated in the literature, we give proofs for

completeness. We will need this material in the next two sections.

Let (M, τ) be a semifinite von Neumann algebra. By [Tak03, Theorem IX.2.2], the

sets

Oε,δ(a) =
{
b ∈ L0(M, τ) : τ(1(ε,∞)(|a− b|)) < δ

}
ranging over a ∈ L0(M, τ) and ε, δ > 0 form a basis for a metrizable vector space topology

on L0(M, τ), and this topology turns L0(M, τ) into a topological ∗-algebra (i.e. the product

and sum operations are continuous as a function of two variables, as is the adjoint). We

shall call this topology the measure topology. This motivates the following definition.

Definition 12. Let (M, τ) be a semifinite von Neumann algebra. Given a sequence (an)n in

L0(M, τ), and an a ∈ L0(M, τ) we say that an → a in measure if for every ε > 0 we have

that

τ(1(ε,∞)(|a− an|))→n→∞ 0.

Proposition 3.5.5. Let (M, τ) be a tracial von Neumann algebra. Let C > 0 and let

MC ⊂ M be the set of all elements x with ‖x‖∞ ≤ C. Then the measure, strong operator

and L2 topologies all coincide on MC. By strong operator topology we mean with respect to

either of the inclusions M ⊂ B(H) or M ⊂ B(L2(M, τ)).

Proof. By [AP16, Corollary 2.5.9 and Proposition 2.5.8], the topology induced on MC from

the SOT on B(H) is the same as the topology it inherits from the SOT on B(L2(M, τ)).

Let x ∈ MC and let (xn)n ⊂ MC be a sequence. We will show that if xn → x in one

of the three topologies then xn → x in the other topologies. After replacing xn with xn − x
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and C with 2C if necessary, we may assume x = 0.

Suppose that xn → 0 in measure. We will show that xn → 0 in L2. For any ε > 0,

‖xn‖2
2 = τ(x∗nxn) ≤ C2τ(1(ε,∞)(|xn|)) + ε2.

Since xn → x in measure, lim supn→∞ ‖xn‖2
2 ≤ ε2. Since ε is arbitrary, this shows xn → 0 in

L2.

Now suppose that xn → 0 in L2. We will show that xn → 0 in the SOT. So let

ξ ∈ L2(M, τ). If ξ ∈M then

lim sup
n→∞

‖xnξ‖2 ≤ lim sup
n→∞

‖xn‖2‖ξ‖∞ = 0.

In general, for any ξ ∈ L2(M, τ) and ε > 0, there exists ξ′ ∈M with ‖ξ − ξ′‖2 < ε. Then

lim sup
n→∞

‖xnξ‖2 ≤ lim sup
n→∞

‖xnξ′‖2 + ‖xn(ξ − ξ′)‖2 ≤ lim sup
n→∞

‖xn(ξ − ξ′)‖2 ≤ Cε.

Since ε > 0 is arbitrary, this shows xn → 0 in SOT.

Now suppose that xn → 0 in SOT. Since 1 ∈ L2(M, τ) and xn1 = xn, ‖xn‖2 → 0.

This shows xn → 0 in L2.

Now suppose xn → 0 in L2. Let ε > 0. Then τ(1(ε,∞)(|xn|)) ≤ ε−2‖xn‖2
2. Since

‖xn‖2
2 → 0 this implies

lim sup
n→∞

τ(1(ε,∞)(|xn|)) = 0.

So xn → 0 in measure.

Remark 20. It is possible that the topology on M inherited from the SOT on B(H) is not

the same as topology it inherits from the SOT on B(L2(M, τ)) [AP16, Exercise 1.3].

Definition 13. If (µn)n is a sequence of Borel probability measures on a topological space

X and µ is another Borel probability measure on X then we write µn → µ weakly if for

every bounded continuous function f : C→ C,
∫
f dµn converges to

∫
f dµ as n→∞.

Recall that C0(R) denotes continuous functions on R that vanish at infinity while
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Cc(R) ⊂ C0(R) denotes those functions with compact support.

Proposition 3.5.6. Let (M, τ) be a tracial von Neumann algebra. Suppose that (an)n, (bn)n ∈
L0(M, τ), an → a in measure, bn → b in measure and bn is self-adjoint for all n. Then:

1. µbn → µb weakly.

2. For all but countably many λ ∈ R we have that µbn(λ,∞)→ µb(λ,∞).

3. For every bounded, continuous f : R→ R we have that ‖f(bn)− f(b)‖2 →n→∞ 0.

4. For every continuous f : R→ R we have that f(bn)→ f(b) in measure.

5. |an| → |a| in measure.

Proof. (1): Let f ∈ C0(R) (where C0(R) is the space of continuous functions that vanish at

infinity). By [Sti59, Corollary 5.4], we know that

lim
n→∞

‖f(bn)− f(b)‖2 = 0.

Since |τ(x)− τ(y)| ≤ ‖x− y‖2 for all x, y ∈M, the above convergence shows that

lim
n→∞

∫
f dµbn = lim

n→∞
τ(f(bn)) = τ(f(b)) =

∫
f dµb.

Once we know convergence when integrated against C0 functions, convergence when inte-

grated against bounded continuous functions is a consequence of the fact that µbn , µb are all

probability measures (see, e.g. [Fol99, Exercise 20 of Chapter 7]).

(2): This follows from (1) and the Portmanteau theorem.

(3): Let M be such that |φ(t)| ≤ M for all t ∈ R. Let ε > 0, and choose a T > 0 so

that µb({t : |t| ≥ T}) < ε. Choose a function ψ ∈ Cc(R) with ψ(t) = 1 for |t| ≤ T and so
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that 0 ≤ ψ ≤ 1. Then,

‖φ(bn)− φ(b)‖2 ≤ ‖φψ(bn)− φψ(b)‖2 + ‖φ(1− ψ)(bn)‖2 + ‖φ(1− ψ)(b)‖2

= ‖φψ(bn)− φψ(b)‖2 +

(∫
|φ(t)|2(1− ψ(t))2 dµbn(t)

)1/2

+

(∫
|φ(t)|2(1− ψ(t))2 dµb(t)

)1/2

.

By [Sti59, Corollary 5.4] and (1) we thus have that

lim sup
n→∞

‖φ(bn)− φ(b)‖2 ≤ 2

(∫
|φ(t)|2(1− ψ(t))2 dµb(t)

)1/2

< 2Mε.

Letting ε→ 0 completes the proof.

(4): Let φ ∈ Cc(R). By [Sti59, Theorem 5.5], it suffices to show that

‖ lim
n→∞

φ(f(bn))− φ(f(b))‖2 = 0.

Since φ ◦ f is bounded and continuous, this follows from (3).

(5): Since L0(M, τ) is a topological ∗-algebra in the measure topology, a∗nan → a∗a

in the measure topology. Let g : [0,∞) → [0,∞) be the function g(t) =
√
t. Then |an| =

g(a∗nan). So this follows from (4) with bn = a∗nan.

We can give a more refined improvement of Proposition 3.5.6.4 which we will need

later. We first note the following.

Corollary 3.5.7. Let (M, τ) be a tracial von Neumann algebra, and let K ⊆ L0(M, τ) have

compact closure in the measure topology. Then for every ε > 0, there is an M > 0 so that

τ(1(M,∞)(|a|)) < ε

for all a ∈ K.

Proof. Replacing K with its closure, we may as well assume K is compact. By Proposition

3.5.6 (5) and (1), the map L0(M, τ) → Prob(R) sending x 7→ µ|x| is continuous if we give

130



L0(M, τ) the measure topology, and Prob(R) the weak topology. So {µ|a| : a ∈ K} is

compact in the weak topology, and thus tight. Tightness means there exists an M > 0 so

that µ|a|(M,∞) < ε for all a ∈ K. As τ(1(M,∞)(|a|)) = µ|a|(M,∞), we are done.

Corollary 3.5.8. Let (M, τ) be a tracial von Neumann algebra. Then the map

E : L0(M, τ)sa × C(R,R)→ L0(M, τ)sa

given by E(a, f) = f(a) is continuous if we give L0(M, τ)sa the measure topology and C(R,R)

the topology of uniform convergence on compact sets.

Proof. Suppose we are given sequences (fn)n ⊂ C(R,R), (an)n ⊂ L0(M, τ)sa and f ∈ C(R),

a ∈ L0(M, τ)sa with fn → f uniformly on compact sets and an → a in measure.

To prove fn(an)→ f(a) in measure, fix λ > 0. Let ε > 0 be given. By Corollary 3.5.7,

we may choose an M > 0 so that

sup
n∈N

τ(1(M,∞)(|an|)) < ε, τ(1(M,∞)(|a|)) < ε.

Let g : R → R be a bounded continuous function with g(t) = t for |t| ≤ M, and define

h : R→ R by h(t) = f(t)− f(g(t)) and hn : R→ R by hn(t) = fn(t)− fn(g(t)). Then:

fn(an)− f(a) = fn(g(an))− f(g(a)) + hn(an)− h(a).

Then, by Proposition 3.4.4 we have that:

τ(1(λ,∞)(|fn(an)− f(an)|)

≤ τ(1(λ/4,∞)(|hn(an)|)) + τ(1(λ/4,∞)(|h(a)|)) + τ(1(λ/2,∞)(|fn(g(an))− f(g(a))|))

≤ τ(1(λ/4,∞)(|hn(an)|)) + τ(1(λ/4,∞)(|h(a)|)) +
4

λ2
‖fn(g(an))− f(g(a))‖2.

Since λ > 0, and h = 0 in [−M,M ] it follows that for all n ∈ N :

τ(1(λ/4,∞)(|hn(an)|)) ≤ τ(1(M,∞)(|an|)) < ε.
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Similarly,

τ(1(λ/4,∞)(|h(a)|)) < ε.

For the last term: let T > 0 be such that ‖g‖∞ ≤ T. Then:

‖fn(g(an))− f(g(a))‖2 ≤ ‖fn(g(an))− f(g(an))‖2 + ‖f(g(an))− f(g(a))‖2

≤ ‖fn(g(an))− f(g(an))‖∞ + ‖f(g(an))− f(g(a))‖2

≤ sup
t∈R:|t|≤T

|fn(t)− f(t)|+ ‖f(g(an))− f(g(a))‖2.

We have that supt∈R:|t|≤T |fn(t) − f(t)| →n→∞ 0 as n → ∞ since fn → f uniformly on

compact sets. We also have that ‖f(g(an))− f(g(a))‖2 → 0 by Proposition 3.5.6 (3). Hence

‖fn(g(an))− f(g(a))‖2 →n→∞ 0. Altogether, we have shown that

lim sup
n→∞

τ(1(λ,∞)(|fn(an)− f(an)|)) ≤ 2ε.

Since ε > 0 is arbitrary, we can let ε→ 0 to show that

τ(1(λ,∞)(|fn(an)− f(a)|))→n→∞ 0.

Since this is true for every λ > 0, we have that fn(an)→n→∞ f(a) in measure.

3.5.3 The space P(M, τ) of positive log-square integrable operators

Definition 14. Let (M, τ) be a tracial von Neumann algebra, and let

G = GL2(M, τ) = {a ∈ L0(M, τ) : log(|a|) ∈ L2(M, τ)}.

We then set P = P(M, τ) = {a ∈ G : a ≥ 0}. For a, b ∈ P, we set

dP(a, b) = ‖ log(b−1/2ab−1/2)‖2.
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This is well-defined by Theorem 3.4.1. Note that P∞ = P ∩ M and dP restricted to P∞

agrees with the formula above by Corollary 3.5.2.

The main result of this section is:

Theorem 3.5.9. Let (M, τ) be a tracial von Neumann algebra. Then,

1. dP is a metric.

2. The group G acts on P by isometries by g · a = gag∗.

3. The action GyP is transitive.

4. P∞ is dense in P.

To prove this theorem, we will approximate elements of P by elements of P∞ in the

measure topology and then apply results from the previous section on P∞. Because we

will use the Dominated Convergence Theroem, we need some basic facts about operator

monotonicity. Recall that if a, b are operators then by definition, a ≤ b if and only if b − a
is a positive operator.

Proposition 3.5.10. Let (M, τ) be a tracial von Neumann algebra.

1. Suppose a, b ∈ L0(M, τ) and |a| ≤ |b|. Then for every λ > 0 we have that

µ|a|(λ,∞) ≤ µ|b|(λ,∞).

2. If a, b ∈ L0(M, τ) are self-adjoint and a ≤ b, then cac∗ ≤ cbc∗ for every c ∈ L0(M, τ).

Proof. (1): This is implied by [BK90, Lemma 3.(i)]

(2): We may write b−a = d∗d for some d ∈ L0(M, τ). Then cac∗−cbc∗ = (dc∗)∗dc∗.

The next proposition contains the approximations results we will need.

Proposition 3.5.11. Let (M, τ) be a tracial von Neumann algebra. Suppose that (an)n,

(bn)n are sequences in G, that a ∈ L0(M, τ) and that a±1
n → a±1, b±1

n → b±1 in measure.

Further assume that there are A1, A2, B1, B2 ∈ P with A1 ≤ |an| ≤ A2, B1 ≤ |bn| ≤ B2 for

all n ∈ N.
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1. Then a ∈ G and ‖ log(|an|)‖2 → ‖ log(|a|)‖2.

2. If an and bn ∈ P for all n, then dP(an, bn)→n→∞ dP(a, b).

Proof. (1): As in (3.3),

‖ log(an)‖2
2 = 2

∫ ∞
0

λ[µ|an|(e
λ,∞) + µ|a−1

n |(e
λ,∞)] dλ.

Moreover, since |an| ≤ A2, we have that µ|an|(λ,∞) ≤ µA2(λ,∞). Let an = un|an| be the

polar decomposition. Since a−1
n = u−1

n (un|an|−1u−1
n ), it follows that |a−1

n | = un|an|−1u∗n. So

by operator monotonicity of inverses, |a−1
n | ≤ unA

−1
1 u∗n and thus by Proposition 3.5.10 (1),

µ|a−1
n |(e

λ,∞) ≤ µunA−1
1 u∗n

(eλ,∞).

Since an ∈ L0(M, τ)× we know that each un is a unitary, so µ|a−1
n |(e

λ,∞) ≤ µA−1
1

(eλ,∞).

Thus

λ[µ|an|(e
λ,∞) + µ|a−1

n |(e
λ,∞)] ≤ λ[µA2(e

λ,∞) + µA−1
1

(eλ,∞)].

Since A1, A2 ∈ P, the right hand side of this expression is in L1(R).

Since a±1
n → a±1 in measure, Proposition 3.5.6 implies that µ|a±1

n |(λ,∞)→ µ|a±1|(λ,∞)

for all but countably many λ. So by the dominated convergence theorem,

‖ log(|a|)‖2
2 = 2

∫ ∞
0

λ[µ|a|((e
λ,∞)) + µ|a−1|((e

λ,∞))] dλ

= lim
n→∞

2

∫ ∞
0

λ[µ|an|((e
λ,∞)) + µ|a−1

n |((e
λ,∞))] dλ

= lim
n→∞

‖ log(|an|)‖2
2

Moreover, we already saw that

2

∫ ∞
0

λ
[
µ|an|(e

λ,∞) + µ|a−1
n |(e

λ,∞)
]

dλ ≤ 2

∫
λ
[
µA2(e

λ,∞) + µA−1
1

(eλ,∞)
]

dλ <∞.

Thus log(|a|) ∈ L2(M, τ) and we have established that ‖ log(|an|)‖2 → ‖ log(|a|)‖2.
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(2): We have that

dP(an, bn) = ‖ log(b−1/2
n anb

−1/2
n )‖2,

and as in (1) we have that

dP(an, bn) = 2

∫ ∞
0

λ
[
µ
b
−1/2
n anb

−1/2
n

(eλ,∞) + µ
b
1/2
n a−1

n b
1/2
n

(eλ,∞)
]

dλ. (3.4)

By Proposition 3.5.6 (4) we know that b
−1/2
n anb

−1/2
n → b−1/2ab−1/2 in measure, and similarly

b
1/2
n a−1

n b
1/2
n → ba−1b measure. Hence by Proposition 3.5.6 (5) we know that

lim
n→∞

µ
b
−1/2
n anb

−1/2
n

(eλ,∞)+µ
b
1/2
n a−1

n b
1/2
n

(eλ,∞) = µb−1/2ab−1/2(eλ,∞)+µb1/2a−1b1/2(e
λ,∞), (3.5)

for all but countably many λ. Moreover, by Proposition 3.4.3 we have that

µ
b
−1/2
n anb

−1/2
n

(eλ,∞) ≤ 2µ
b
−1/2
n

(eλ/4,∞) + µan(eλ/2,∞) = 2µb−1
n

(eλ/2,∞) + µan(eλ/2,∞).

By operator monotonicity of inverses, we have that b−1
n ≤ B−1

1 and so by Proposition 3.5.10

(1) we have

µ
b
−1/2
n anb

−1/2
n

(eλ,∞) ≤ 2µB−1
1

(eλ/2,∞) + µA2(e
λ/2,∞). (3.6)

Similarly,

µ
b
1/2
n a−1

n b
1/2
n

(eλ,∞) ≤ 2µB2(e
−λ/2,∞) + µA−1

1
(e−λ/2,∞). (3.7)

As in the proof of (1),

λ 7→ λ
[
µB−1

1
(eλ/2,∞) + µB2(e

−λ/2,∞) + µA−1
1

(e−λ/2,∞) + µA2(e
λ/2,∞)

]
is in L1(R). So by (3.6),(3.7), and (3.5) we may apply the dominated convergence theorem

to (3.4) to see that

lim
n→∞

dP(an, bn) = 2

∫ ∞
0

λ
[
µb−1/2ab−1/2(eλ,∞) + µb1/2a−1b1/2(e

λ,∞)
]

dλ = dP(a, b).
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Proof of Theorem 3.5.9. (1):

We first prove non-degeneracy. So suppose that a, b ∈ P and dP(a, b) = 0. Then

log(a−1/2ba−1/2) = 0, and so a−1/2ba−1/2 = 1. Multiplying this equation on the left and right

by a1/2 proves that b = a.

For the triangle inequality, we already know by Corollary 3.5.2 that dP is a metric

when restricted to GL∞(M, τ) = M×. Here M× is the set of elements of M with a bounded

inverse. Define fn : [0,∞)→ [0,∞) by

fn(t) =


n, if t > n

t, if 1
n
≤ t ≤ n

1
n
, if 0 ≤ t < 1

n
.

Given a, b ∈ P, set an = fn(a), bn = fn(b), A = | log(a)|, B = | log(b)| and observe that:

• a±1
n → a±1, b±1

n → b±1 in measure,

• exp(−A) ≤ an ≤ exp(A), exp(−B) ≤ bn ≤ exp(B) for all n ∈ N.

By Proposition 3.5.11 (2),

lim
n→∞

dP(an, bn) = dP(a, b).

Since dP is a metric when restricted to P ∩M×, and fn(P) ⊆ P ∩M×, the above equation

implies the triangle inequality for dP. It also implies dP is symmetric. So it is a metric.

(2): It is easy to see that (2) is true if g ∈ U(M) (where U(M) ≤M× is the group of

unitaries in M). Every g ∈ G can be written as g = u|g| where u ∈ U(M). Since |g| ∈ P for

every g ∈ G, and (2) is true when u ∈ U(M), it suffices to show (2) for g ∈ P. So we will

assume throughout the rest of the proof that g ∈ P.

We first show that dP(gag∗, gbg∗) = dP(a, b) for a, b ∈ P ∩M×. Since g ∈ P, as in (1)

we may find a sequence gn ∈ P ∩M× so that

• g±1
n → g±1 in measure,

• gn = fn(g) for some fn : [0,∞)→ [0,∞)

• exp(−H) ≤ gn ≤ exp(H) for some self-adjoint H ∈ L2(M, τ).
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Since L0(M, τ) is a topological ∗-algebra in the measure topology, we have that gnagn →n→∞

gag in measure. Moreover by Proposition 3.5.10 (2)

‖a−1‖−1
∞ exp(−2H) ≤ ‖a−1‖−1

∞ gngn ≤ gnagn ≤ ‖a‖∞g2
n ≤ ‖a‖∞ exp(2H),

and similarly

‖b−1‖−1
∞ exp(−2H) ≤ gnbgn ≤ ‖b‖∞ exp(2H).

So as in (1) we may apply Proposition 3.5.11 (2) to see that

dP(gag, gbg) = lim
n→∞

dP(gnagn, gnbgn). (3.8)

By Lemma 3.5.1, dP(gnagn, gnbgn) = dP(a, b). We thus have that

dP(gag, gbg) = dP(a, b).

We now handle the case of general a, b ∈ P. As in (1), we find may sequences an, bn ∈
P ∩M× so that:

• a±1
n → a±1, bn → b±1 in measure

• exp(−A) ≤ an ≤ exp(A), exp(−B) ≤ bn ≤ exp(B) for some A,B ∈ L2(M, τ).

As in (1), we have that

dP(a, b) = lim
n→∞

dP(an, bn). (3.9)

dP(gag∗, gbg∗) = lim
n→∞

dP(gang
∗, gbng

∗).

So combining (3.9) with the first case shows that

dP(gag∗, gbg∗) = dP(a, b).

(3) Let p, q ∈ P. Then p−1/2, q1/2 ∈ G = GL2(M, τ). Moreover,

(q1/2p−1/2) · p = q.
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(4) Let a ∈ P and define an = fn(a) as in (1). Then an ∈ P∞ and an → a in measure.

Apply Proposition 3.5.11 with bn = a = B1 = B2 to obtain dP(an, a) → dP(a, a) = 0 as

n→∞. Since a ∈ P is arbitrary, this proves P∞ is dense in P.

3.5.4 Continuity of the exponential map

This section proves that the exponential map exp : L2(M, τ)sa → P is a homeomorphism

and obtains as a corollary that P is a complete CAT(0) metric space. We also obtain a

formula for the geodesics in P. First we need the following estimate which extends the P∞

case proven earlier.

Proposition 3.5.12. Let (M, τ) be a tracial von Neumann algebra. Then for a, b ∈ L2(M, τ)sa

we have that

‖a− b‖2 ≤ dP(ea, eb).

If a and b commute then ‖a− b‖2 = dP(ea, eb).

Proof. Define a function fn : R→ R by

fn(t) =


n, if t > n

t, if |t| ≤ n

−n, if t < −n.

Set an = fn(a), bm = fn(b). Then:

• ean → ea, ebn → eb in measure,

• exp(−A) ≤ ean ≤ exp(A), exp(−B) ≤ ebn ≤ exp(B) for all n ∈ N.

So as in Theorem 3.5.9 (1) we have that

dP(ea, eb) = lim
n→∞

dP(ean , ebn).
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Additionally, it is direct to see from the spectral theorem that

lim
n→∞

‖a− an‖2 = lim
n→∞

‖b− bn‖2 = 0.

So, by Corollary 3.5.2,

dP(ea, eb) = lim
n→∞

dP(ean , ebn) ≥ lim
n→∞

‖an − bn‖2 = ‖a− b‖2.

Suppose a and b commute. By definition

dP(ea, eb) = ‖ log(e−b/2eae−b/2)‖2.

Since a and b commute, e−b/2eae−b/2 = ea−b. So ‖ log(e−b/2eae−b/2)‖2 = ‖a− b‖2.

Theorem 3.5.13. Let (M, τ) be a tracial von Neumann algebra. Then the exponential map

exp: L2(M, τ)sa → P is a homeomorphism.

Proof. By Proposition 3.5.12, we know that log : P → L2(M, τ)sa is continuous. So it just

remains to show that exp: L2(M, τ)sa → P is continuous.

Suppose that (an)n is a sequence in L2(M, τ) and a ∈ L2(M, τ) with ‖a − an‖2 → 0.

Let ε > 0, and for λ > 0, define fλ : R→ R by

fλ(t) =


λ, if t > λ

t, if |t| ≤ λ

−λ, if t < −λ.

If λ > 0 is large enough, then ‖a− fλ(a)‖2 < ε. Fix such a choice of λ.

Since a and fλ(a) commute,

dP(ean , ea) ≤ dP(ea, efλ(a)) + dP(efλ(an), efλ(a)) + dP(ean , efλ(an)) (3.10)

= ‖a− fλ(a)‖2 + ‖an − fλ(an)‖2 + dP(efλ(an), efλ(a)).
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Since an → a in L2(M, τ), an → a in measure. By Proposition 3.5.6 (3), limn→∞ ‖fλ(an)−
fλ(a)‖2 = 0. Furthermore, max(‖fλ(an)‖∞, ‖fλ(a)‖∞) ≤ λ for all n ∈ N.

By Proposition 3.5.6 (4), e−fλ(an)/2 → e−fλ(a)/2 in measure. Since L0(M, τ) is a topo-

logical ∗-algebra in the measure topology, e−fλ(an)/2efλ(a)e−fλ(an)/2 → 1 in measure. We claim

that

log(e−fλ(an)/2efλ(a)e−fλ(an)/2)→ 0

in measure. To see this, observe that

e−2λ ≤ e−fλ(an)/2efλ(a)e−fλ(an)/2 ≤ e2λ.

Choose a continuous function φ : R → R with φ(x) = log(x) for all e−2λ ≤ x ≤ e2λ.

Then φ(e−fλ(an)/2efλ(a)e−fλ(an)/2) = log(e−fλ(an)/2efλ(a)e−fλ(an)/2). So the claim follows from

Proposition 3.5.6 (4).

By Proposition 3.5.5, the claim above implies log(e−fλ(an)/2efλ(a)/2e−fλ(an)/2) → 0 in

L2(M, τ). Since

dP(efλ(an), efλ(a)) = ‖ log(e−fλ(an)/2efλ(a)/2e−fλ(an)/2)‖2

this shows

dP(efλ(an), efλ(a))→n→∞ 0. (3.11)

Since an → a and fλ(an)→ fλ(a) in L2(M, τ), ‖an−fλ(an)‖2 →n→∞ ‖a−fλ(a)‖2. Combining

with (3.11), (3.10) we have shown that

lim sup
n→∞

dP(ean , ea) ≤ 2‖a− fλ(a)‖2 < 2ε.

Letting ε→ 0 proves that dP(ean , ea)→ 0.

Corollary 3.5.14. Let (M, τ) be a tracial von Neumann algebra. Then (P, dP) is a complete

metric space.

Proof. Let (an) be a Cauchy sequence in P. Set bn = log(an). By Proposition 3.5.12, we
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know that (bn) is Cauchy in L2(M, τ). By completeness of L2(M, τ), there is a b ∈ L2(M, τ)

with ‖bn− b‖2 →n→∞ 0. Then a = eb ∈ P, and by Theorem 3.5.13 we know that an = ebn →
eb = a.

Corollary 3.5.15. P is CAT(0).

Proof. Recall that P∞ is CAT(0) by Theorem 3.5.3. By Theorem 3.5.9 P∞ is dense in P.

Because metric completions of CAT(0) spaces are CAT(0) by [BH99, II.3, Corollary 3.11],

this implies P is CAT(0).

Corollary 3.5.16. Let (M, τ) be a tracial von Neumann algebra. Then the measure topology

on P(M, τ) is weaker than the dP-topology.

Proof. Let (bn)n be a sequence in P(M, τ) and b ∈ P(M, τ) with limn→∞ dP(bn, b) = 0. Let

an = log bn, a = log(b). Then ‖an− a‖2 →n→∞ 0, since the logarithm map is continuous. So

an → a in measure. But then by applying the exponential map in Proposition 3.5.6 (4) we

have that bn → b in measure.

Corollary 3.5.17. For ξ ∈ L2(M, τ)sa, the map γξ : R→ P defined by

γξ(t) = exp(tξ)

is a minimal geodesic with speed ‖ξ‖2. Moreover every geodesic γ with γ(0) = I is equal to

γξ for some ξ. Moreover, for any a, b ∈ P, the unique unit-speed geodesic from a to b is the

map γ : [0, dP(a, b)]→ P defined by

γ(t) = a1/2γξ(t)a
1/2

where

ξ =
log(a−1/2ba−1/2)

‖ log(a−1/2ba−1/2)‖2

=
log(a−1/2ba−1/2)

dP(a, b)
. (3.12)

Proof. For any t > 0,

dP(I, γξ(t)) = ‖ log γξ(t)‖2 = t‖ξ‖2.
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This proves γξ is a minimal geodesic with speed ‖ξ‖2. Because P is CAT(0), there is a unique

unit-speed geodesic between any two points. By uniqueness of geodesics, every geodesic γ

with γ(0) = I has the above form.

In particular, if a, b ∈ P and ξ is defined by (3.12) then γξ : [0, dP(a, b)]→ P is a unit-

speed geodesic from I to a−1/2ba−1/2. Because the action of GL2(M, τ) on P is by isometries,

γ(t) = a1/2.γξ(t) is a unit-speed geodesic from a = a1/2.I to b = a1/2.a−1/2ba−1/2.

3.5.5 Semi-finite case

Let (M, τ) be a semi-finite tracial von Neumann algebra. Let G = GL2(M, τ) and P =

P(M, τ) = exp(L2
sa(M, τ)) as before. We want to show that dP(a, b) := || log(b−1/2ab−1/2)||2

is a distance function which makes P into a complete CAT(0) space. Since we have shown

this fact for the case of a finite tracial state, our approach will often involve reducing to the

finite case. To this end we first need to identify the following objects.

For a finite projection p, let Pp = exp(L2
sa(pMp, τ ◦ p)) ⊂ L0(pMp, τ ◦ p) and P̃p =

exp(pL2
sa(M, τ)p) ⊂ L0(M, τ). For a, b ∈ Pp define dPp(a, b) = || log(b−1/2ab−1/2)||L2(pMp,τ◦p)

and define dP̃p = dP|P̃p . Since (pMp, τ ◦ pn) is a finite von Neumann algebra, Theorem 3.5.9

implies dPp is a metric and Corollar 3.5.15 implies Pp is complete CAT(0).

Proposition 3.5.18. The following are true:

1. For every finite projection p there exists a bijective map f : Pp → P̃p such that for all

a, b in Pp, dPp(a, b) = dP̃p(f(a), f(b)).

2. dP is a metric.

3. G acts on P by isometries.

4. G acts on P transitively.

5. P is complete.

6. P is CAT(0).

7. Let P∞ = exp(Msa). Then P∞ is dense in P and is equal to P ∩M×
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Proof. (1)

Let p ∈ M be any finite projection. Let L = L2
sa(pMp, τ ◦ p), L̃ = L2

sa(M, τ). First

let ι : pMp→M be the inclusion map. We will show that ι extends to an isometry from L

to pL̃p.

Observe that ι is an isometric embedding in the sense that

‖ι(x)‖L̃ = ‖x‖L (∀x ∈ pMp).

Because pMp is dense in L, ι extends to an isometric embedding, which we also denote by

ι, from L to L̃.

Claim 8. The map L̃→ pL̃p, x→ pxp is continuous

Proof. Suppose xn → x in L2. Then ‖pxp−pxnp‖2 = ‖p(xn−x)p‖2 ≤ ‖p‖∞‖xn−x‖2‖p‖∞ =

‖xn − x‖2 → 0

We claim that ι(L) = pL̃p. To see this, note that pL̃p is a closed subspace of L̃:

suppose pxip
L̃−→ y. Then p(pxip)p

L̃−→ pyp by the above claim. But p(pxip)p = pxip, so

pyp = y. It follows that y ∈ pL̃p. Next, note that pMp ⊂ pL̃p and pMp is dense in L. These

facts together imply ι(L) ⊂ pL̃p. On the other hand, pMp is also dense in pL̃p because M

is dense in L̃ and because of the above claim. It follows that ι(L) = pL̃p.

Now we define f : Pp → P̃p by f(ex) = eι(x). First note that for y ∈ pL̃p, for

any v ∈ (pH)⊥ yv = 0, so eyv = v On the other hand w ∈ pH, yw ∈ pH, and by

functional calculus eyw ∈ pH also. Also note that if y ∈ pL̃p, so is −y and y/2. Now

suppose ex, ey ∈ Pp. Then dPp(e
x, ey) = ‖ log(e−y/2exe−y/2)‖L while dP̃p(f(ex), f(ey)) =

‖ log(e−ι(y)/2eι(x)e−ι(y)/2)‖L̃. By the above discussion, the spectral measures of e−y/2exe−y/2

and e−ι(y)/2eι(x)e−ι(y)/2 are identical on R \ {1} and similarly for their inverses. It follows by

equation 3.3 that dPp(e
x, ey) = dP̃p(f(ex), f(ey)). Thus L and pL̃p are naturally identified

and so are Pp and P̃p and we do not distinguish between them from now on.

(2)

Claim 9. Let (M, τ) be a semifinite von Neumann algebra. Suppose a, b ∈ L0(M, τ) and

|a| ≤ |b|. Then for every λ > 0
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µ|a|(λ,∞) ≤ µ|b|(λ,∞)

Proof. Use [FK86, Lemma 2.5(iii)] .

Lemma 3.5.19. Suppose xk, x ∈ L0
sa(M, τ) and xk → x in measure and f : R → R is a

Borel function continuous on the spectrum of x and bounded on bounded subsets of R. Then

f(xk)→ f(x) in measure.

Proof. [Tik87, Theorem 2.4].

Lemma 3.5.20. Suppose xk, x ∈ L0(M, τ) and xk → x in measure. Suppose λ 7→ µ|x|(λ,∞)

is continuous at λ0. Then µ|xk|(λ0,∞)→ µ|x|(λ0,∞).

Proof. Let λ 7→ µ|x|(λ,∞) be continuous at λ0. By Proposition 3.4.4, for any δ and k,

µ|x|(λ+ δ,∞) ≤ µ|x−xk|(δ,∞) + µ|xk|(λ,∞);

µ|xk|(λ) ≤ µ|xk−x|(δ,∞) + µ|x|(λ− δ,∞).

It follows by first choosing δ small and then k large, and the assumptions of continuity

and of xk → x in measure that µ|x|(λ,∞) ≤ µ|x|(λ + δ,∞) + ε1 ≤ µ|xk|(λ,∞) + ε1 + ε2 and

similarly µ|x|(λ,∞) ≥ µ|xk|(λ,∞)− ε3 − ε4

We now prove that dP satisfies the triangle inequality and symmetry properties; the

identity property is similar to the finite case. We do this by approximating via elements

from a “reduced” finite von Neumann algebra.

Lemma 3.5.21. For any x ∈ L2
sa(M, τ), let pxn = 1(−∞,−1/n)∪(1/n,∞)(x) and xn := pxnxp

x
n =

xpxn. Then for any x, y ∈ L2
sa(M, τ), dP(exn , eyn)→ dP(ex, ey)

Proof. Then xn is an increasing sequence converging in measure to x (that |xn| ≤ |xn+m| ≤
|x| for all n,m ∈ N). Similarly for y. Let z = e−y/2exe−y/2 and z̃n = e−yn/2exne−yn/2. Since

e is continuous and bounded on bounded subsets, and L0 is a topological ∗-algebra (see

Takesaki and Lemma 3.5.19), z̃n → z in measure. Similarly z̃−1
n → z−1.

We will next proceed in a similar fashion as in the finite case.
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Now by Lemma 3.5.20, and z, z̃n being positive, µzn(λ,∞) → µz(λ,∞) for all but

countably many λ > 0.

Next use Proposition 3.4.3 and the operator monotonicity claim to get

µz̃n(eλ,∞) ≤ 2µe−yn/2(e
λ/4,∞) + µexn (eλ/2,∞)

= 2µ−yn(λ/2,∞) + µxn(λ/2,∞)

≤ 2µ|yn|(λ/2,∞) + µ|xn|(λ/2,∞)

≤ 2µ|y|(λ/2,∞) + µ|x|(λ/2,∞).

= 2µ2|y|(λ,∞) + µ2|x|(λ,∞)

A similar calculation shows that µz̃−1
n

(eλ,∞) ≤ 2µ2|y|(λ,∞) + µ2|x|(λ,∞).

Now since x, y ∈ L2
sa(M, τ), by equation (3.2) we conclude that λ 7→ λ(µ2|y|(λ,∞) +

µ2|x|(λ,∞)) is integrable. It follows that λ 7→ λ(µz̃n(eλ,∞) + µz̃−1
n

(eλ,∞)) is dominated by

an integrable function, so that by the dominated convergence theorem and using equation

(3.3), dP(exn , eyn)→ dP(ex, ey).

Now for each n, x, y, z ∈ L2
sa(M, τ), xn, yn, zn are in fact contained in L2

sa(pnMpn, τ ◦p)
for a finite projection pn, so they are in a finite trace setting and triangle inequality and

symmetry property hold (e.g. dP(exn , ezn) ≤ dP(exn , eyn) +dP(eyn , ezn)) , so we conclude that

triangle inequality and symmetry hold in general on P.

Corollary 3.5.22. ∪n∈N,x∈L2
sa(M,τ)Ppxn is dense in P

Proof. This follows from xn → x in measure, |xn − x| ≤ |x|, and arguments using the

dominated convergence theorem similar to the above.

(3)

Lemma 3.5.23. Let x, y ∈ L2
sa(M, τ) and u ∈M is unitary. Then

1. (uexu∗)−1 = ue−xu∗;

2. (uexu∗)1/2 = uex/2u∗;
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3. euxu
∗

= uexu∗;

4. dP(uexu∗, ueyu∗) = dP(ex, ey).

Proof. The first claim is obvious. The second follows from observing that uex/2u∗ is positive

and its square is uexu∗.

Note: for the third claim it seems that we can only use the series definition of exp

when we are in a unital Banach algebra - in particular I’m not sure we can use it on L2(M, τ)

since it isn’t an algebra with respect to the L2 norm.

For the third claim, first consider a sequence xk ∈M converging to x in L2. For each

xk, because M is a unital Banach algebra,

euxku
∗

=
∞∑
n=0

(uxku
∗)n

n!
=
∞∑
n=0

uxnku
∗

n!
= uexku∗.

Now since xk → x in L2, by an argument similar to that in Proposition 3.5.5, xk → x

in measure, and so by Lemma 3.5.19, uexku∗ → uexu∗ in measure, and also euxku
∗ → euxu

∗
.

But since uexku∗ = euxku
∗
, by uniqueness of limits uexu∗ = euxu

∗
.

The last claim now follows using the previous three claims:

dP(uexu∗, ueyu∗) = ‖ log[(uexu∗)−1/2ueyu∗(uexu∗)−1/2]‖2

= ‖ log[(ue−x/2u∗)ueyu∗(ue−x/2u∗)]‖2

= ‖ log[ue−x/2eye−x/2u∗]‖2

= ‖u log[e−x/2eye−x/2]u∗‖2

= τ(u log[e−x/2eye−x/2]2 log[e−x/2eye−x/2]u∗)

= τ(log[e−x/2eye−x/2]2 log[e−x/2eye−x/2])

= ‖ log[e−x/2eye−x/2]‖2

= dP(ex, ey).

The first equality is by definition of dP. The second follows from the first two claims above.

The third equality uses uu∗ = 1. The fourth follows from the third item of this lemma. The

fifth is by definition of ‖ · ‖2. The sixth holds because τ is a trace.
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Now by polar decomposition it suffices to consider the action of P on P. Let g, a, b ∈ P,

where g = eh, a = ex, b = ey, h, x, y ∈ L2
sa(M, τ). We want to show that dP(gag∗, gbg∗) =

dP(ex, ey). As before consider reduced versions hn, xn, yn of h, x, y. Let gn = ehn , an = exn ,

bn = eyn . We claim that dP(gnang
∗
n, gnbng

∗
n)→ dP(gag∗, gbg∗). This follows from a dominated

convergence argument similar to that used in proving that dP is a metric.

Let zn = (gnbng
∗
n)−1/2gnang

∗
n(gnbng

∗
n)−1/2, z = (gbg∗)−1/2gag∗(gbg∗)−1/2.

As before, using the fact that L0(M, τ) is a topological *-algebra and Lemma 3.5.19,

zn → z in measure. Then Lemma 3.5.20 shows that µzn(eλ,∞) → µz(e
λ,∞) for all but

countably many λ. Then Proposition 3.4.3 can be used to get a dominating function for

λ 7→ λ(µzn(eλ,∞), and then the dominated convergence theorem can be applied.

Now because we are again in a finite von Neumann algebra, dP(gnangn, gnbngn) =

dP(an, bn) → dP(a, b) (convergence by Lemma 3.5.21, so it must be that dP(gag, gbg) =

dP(a, b).

(4 Same as in the finite case

(5) As in the finite case we first show that exp is a homeomorphism between L2(M, τ)sa

and P.

Claim 10. Let x, y ∈ L2(M, τ)sa. Then ||x− y||2 ≤ dP(ex, ey)

Proof. As before consider xn = pxnxp
x
n and similarly for y. Then ||xn − yn||2 ≤ dP(exn , eyn)

by Proposition 3.5.12 since this is the finite von Neumann algebra case. We also know from

item 2 that dP(exn , eyn)→ dP(ex, ey). It remains to show that ||xn − yn||2 → ||x− y||2. Now

we know that xn−yn → x−y in measure. Furthermore we can write ||xn−yn||22, in a similar

fashion as equation 3.3, as 2
∫∞

0
λµ|(xn−yn)|(λ,∞)dλ, and by Lemma 3.5.20 µ|xn−yn)(λ,∞)→

µ|x−y|(λ,∞), while by Proposition 3.4.4 and Claim 9 µ|xn−yn|(λ,∞) ≤ µ|x|(λ,∞)+µ|y|(λ,∞).

So by the dominated convergence theorem ‖xn − yn‖2 → ‖x− y‖2.

Claim 11. exp : L2(M, τ)sa → P is continuous

Proof. Suppose (ak) is a sequence in L2(M, τ)sa converging to a in L2. By similar arguments

as in Proposition 3.5.5 (ak) converges to a in measure. Let λ > 0 be large. Let fλ : R→ R

be a continuous nondecreasing function such that for fλ(x) = 0 on [−1/2λ, 1/2λ], fλ(x) = λ
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for x > λ, fλ(x) = −λ for x < −λ, and fλ(x) = x on [−λ,−1/λ] ∪ [1/λ, λ]. It follows

by Lemma 3.5.19 that fλ(ak) converges to fλ(a) in measure, and also efλ(ak) converges to

efλ(a) in measure. Since multiplication is jointly continuous with respect to the convergence

in measure topology, zk := e−fλ(ak)/2efλ(a)e−fλ(ak)/2 → 1 in measure. Now since e−2λ ≤
e−fλ(ak)/2efλ(a)e−fλ(ak)/2 ≤ e2λ, log is a continuous function on the spectrum of zk, so that by

Lemma 3.5.19 log zk → 0 in measure.

We now show that log zk converges to 0 in L2. Now −2λ ≤ log zk ≤ 2λ is uniformly

bounded by 2λ, log zk is also in L2(M)sa.

Claim 12. supk τ(1(0,∞)(| log zk|)) <∞

Proof. Note that ker(fλ(ak))∩ ker(fλ(a)) ≤ ker(log zk) (where ≤ means “is a subspace of”),

so ker(log zk)
⊥ ≤ (ker(fλ(ak))∩ker(fλ(a)))⊥ = (span(ker(fλ(ak))

⊥∪ker(fλ(ak))
⊥))cl. Equiv-

alently, 1(0,∞)(| log zk|) ≤ 1(0,∞)(|fλ(ak)|) ∨ 1(0,∞)(|fλ(a)|) ≤ 1(0,∞)(|fλ(ak)|) + 1(0,∞)(|fλ(a)|).
Now τ(1(0,∞)|fλ(ak)|) = τ(1(1/2λ,∞)|ak|) ≤ 4λ2‖ak‖2

2. Since ak is converging to a in L2, the

right hand side is bounded for large enough k. The claim follows.

Now ‖ log zk‖2
2 ≤ ε2µ| log zk|(0, ε] + λ2µ| log zk|(ε,∞). By first letting ε → 0 and then

k →∞ we see that log zk → 0 in L2, showing that dP(efλ(ak), efλ(a))→ 0. Then we also have

dP(eak , ea) ≤ dP(eak , efλ(ak)) + dP(efλ(ak), efλ(a)) + dP(efλ(a), ea) (3.13)

= ‖a− fλ(a)‖2 + ‖ak − fλ(ak)‖2 + dP(efλ(ak), efλ(a)).

Where e.g. dP(eak , efλ(ak)) = ‖a − fλ(a)‖2 come from a and fλ commuting. Now

‖a − fλ(a)‖2 → 0 as λ → ∞ by standard arguments. Furthermore, ‖ak − fλ(ak)‖2 ≤
‖a− fλ(a)‖2 + ‖a− ak‖2 + ‖fλ(a)− fλ(ak)‖2. A similar argument to that found in Claim 12

shows that ‖fλ(a)−fλ(ak)‖2 → 0. Thus for all large enough λ, ‖ak−fλ(ak)‖2 → ‖a−fλ(a)‖2

as k → 0.

We conclude that dP(eak , ea)→ 0. By similar arguments as in the finite case 6) follows.

(6) We use arguments similar to those found in [BH99, Theorem II.3.9] in order to

apply [BH99, Proposition II.1.11]. In particular, given ai ∈ P, 1 ≤ i ≤ 4 consider the reduced
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versions ai,n ∈ Ppn , where pn = ∨4
i=1p

ai
n . Then we have already shown in 2. that for each

i, j dPpn (ai,n, aj,n) → dP(ai, aj). For each n, since Ppn is CAT(0), Ppn satisfies the 4-point

condition. In particular, each 4-tuple (ai,n)i has a subembedding in Euclidean space E2: a

4-tuple of points (ãi,n)i such that dPn(a1,n, a2,n) ≤ d(ã1,n, ã2,n), dPn(a3,n, a4,n) ≤ d(ã3,n, ã4,n),

dPn(ai,n, aj,n) = d(ãi,n, ãj,n) for all other i, j.

By translation invariance of the standard metric on E2, we can assume ãi,n = ãi is the

same for all n. Then the subembedding condition and triangle inequality show that (ãi,n)

is contained in a compact set as i and n vary. In particular, by passing to a subsequence if

necessary, ãi,n converges to ãi for each i. It follows that ãi is a subembedding of ai for each

i.

Now for the approximate midpoint condition, let x, y ∈ P. Then the reduced version

xn, yn has approximate midpoints zδ for every δ in the definition given in the paragraph

before [BH99, Proposition II.1.11]. By considering n large enough and Lemma 3.5.21 it

follows that (zδ)n is an approximate midpoint for x, y for a slightly different δ. Thus P is

CAT(0) by [BH99, Proposition II.1.11].

(7) That P∞ is dense in P follows from Msa being dense in L2(M, τ) and Claim 11

(exp: L2(M, τ) → P is continuous). Now if x ∈ P∞, then x = ey for y ∈ Msa. Then

‖ey‖∞ ≤ exp(‖y‖∞) and similarly for x−1 = e−y, so x ∈ M×. Thus P∞ ⊂ P ∩ M×.

Conversely if x ∈ P ∩M× then log x ∈ L2
sa(M, τ) ∩M = Msa, so x ∈ P∞

Corollary 3.5.24. Corollaries 3.5.16 and 3.5.17 also hold for (M, τ) semifinite.

Proof. Arguments are similar to the finite case.

Lemma 3.5.25. Suppose (M, τ) is semifinite. Suppose xn, x ∈ MC, where MC = {x ∈ M :

‖x‖∞ ≤ C} and xn → x in measure. Then xn → x in SOT

Proof. As in Proposition 3.5.5 we can assume that x = 0. Let ξ ∈ L2(M, τ). We want

to show that xnξ → 0 in L2. Now as in the proof in 3.5.5 of convergence in L2 implies

convergence in SOT, let ξ′ ∈M ∩ L2(M, τ) with ‖ξ′ − ξ‖2 < ε. We first show that xnξ
′ → 0

in L2.

Let pnk = 1(1/k,∞)(|xn|) and xn,k = xnp
n
k . Write xn = xn,k + x⊥n,k. We show that

‖xn,kξ′‖2 → 0 and ‖x⊥n,kξ′‖2 → 0. Now since ‖xn,kξ′‖2 ≤ ‖xn,k‖2‖ξ′‖∞, and ‖xn,k‖2 ≤
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Cµxn,k(0,∞) → 0 as n → ∞, ‖xn,kξ′‖2 → 0 as n → ∞, independent of k. On the other

hand, ‖x⊥n,kξ′‖2 ≤ ‖x⊥n,k‖∞‖ξ′‖2 → 0 as k → ∞, independent of n. It follows that xnξ
′ → 0

in L2. Now ‖xnξ‖2 ≤ ‖xnξ′‖2 + ‖xn(ξ − ξ′)‖2 → 0 by letting ξ′ → ξ in L2.

3.6 Proofs of the main results

3.6.1 The limit operator

This subsection proves a generalization of Theorem 3.1.1. We first need a lemma.

Lemma 3.6.1. Let (M, τ) be a semi-finite tracial von Neumann algebra. For any a, b ∈ P

and σ ≥ 1,

dP(aσ, bσ) ≥ σdP(a, b).

Proof. First, assume τ is a finite trace. Let x = log a, y = log b. Recall that Msa ⊂ M

is the set of self-adjoint elements in M . Because Msa is dense in L2(M, τ)sa, there exist

xn, yn ∈Msa with xn → x and yn → y in L2(M, τ)sa as n→∞. Thus

dP(aσ, bσ) = dP(eσx, eσy) = lim
n→∞

dP(eσxn , eσyn)

≥ lim
n→∞

σdP(exn , eyn) = σdP(ex, ey) = σdP(a, b)

where the second and third equalities follow from continuity of the exponential map (Theorem

3.5.13) and the inequality follows from Corollary 3.5.4.

Next we consider the general semi-finite case. Let xn, yn be the reduced versions of

x, y ∈ L2
sa(M, τ). Then

dP(aσ, bσ) = dP(eσx, eσy) = lim
n→∞

dP(eσxn , eσyn)

≥ lim
n→∞

σdP(exn , eyn) = σdP(ex, ey) = σdP(a, b)

Where the first inequality follows from an argument similar to that found in Lemma

3.5.21, the inequality follows from the above finite case, and the second inequality follows

form Lemma 3.5.21
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We can now prove a slight generalization of Theorem 3.1.1 by expanding the range of

the cocycle.

Theorem 3.6.2. Let (X,µ) be a standard probability space, f : X → X an ergodic measure-

preserving transformation, (M, τ) a semi-finite von Neumann algebra with faithful normal

trace τ . Let c : N×X → GL2(M, τ) be a cocycle:

c(n+m,x) = c(n, fmx)c(m,x) ∀n,m ∈ N, µ− a.e. x ∈ X.

Let π : GL2(M, τ) → Isom(P) be the map π(g)x = gxg∗ where Isom(P) is the group of

isometries of P. Suppose π ◦ c is measurable with respect to the compact-open topology on

Isom(P) and∫
X

L(c(1, x)∗c(1, x)) dµ(x) =

∫
X

‖ log(|c(1, x)|2)‖2 dµ(x) =

∫
X

dP(1, |c(1, x)|2) dµ(x) <∞.

Then for almost every x ∈ X, the following limit exists:

lim
n→∞

L(c(n, x)∗c(n, x))

n
= D.

Moreover, if D > 0 then for a.e. x, there exists Λ(x) ∈ L2(M, τ) with Λ(x) ≥ 0 such that

log Λ(x) := lim
n→∞

log
(
[c(n, x)∗c(n, x)]1/2n

)
∈ L2(M, τ)

exists for a.e. x and

lim
n→∞

1

n
dP(Λ(x)n, |c(n, x)|) = 0.

Proof. We will use Theorem 3.1.5. So let (Y, d) = (P, dP). By Corollaries 3.5.14 and 3.5.15

for the finite case and Proposition 3.5.18 for the semifinite case, (P, dP) is a complete CAT(0)

metric space. Let y0 = I ∈ Y . Observe that the map

N×X → GL2(M, τ), (n, x) 7→ c(n, x)∗
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is a reverse cocycle. Also

dP(y0, c(1, x)∗.y0) = ‖ log(c(1, x)∗c(1, x))‖2 = L(c(1, x)∗c(1, x)).

So ∫
X

dP(y0, c(1, x)∗.y0) dµ(x) <∞.

Theorem 3.1.5 implies: for almost every x ∈ X, the following limit exists:

lim
n→∞

dP(y0, c(n, x)∗.y0)

n
= lim

n→∞

L(c(n, x)∗c(n, x))

n
= D.

Moreover, if D > 0 then for almost every x there exists a unique unit-speed geodesic ray

γ(·, x) in P starting at I such that

lim
n→∞

1

n
dP(γ(Dn, x), c(n, x)∗.y0) = 0.

By Corollaries 3.5.17 for the finite case and 3.5.18 for the semifinite case,

γ(t, x) = exp(tξ(x))

for some unique unit norm element ξ(x) ∈ L2(M, τ)sa. Let Λ(x) = exp(Dξ(x)/2). Thus we

have

lim
n→∞

1

n
dP(Λ(x)2n, c(n, x)∗c(n, x)) = 0.

Equivalently,

lim
n→∞

1

n
‖ log(Λ(x)−nc(n, x)∗c(n, x)Λ−n)‖2 = lim

n→∞

1

n
L(Λ(x)−nc(n, x)∗c(n, x)Λ−n) = 0.

Observe that

lim
n→∞

‖ log Λ(x)− log[c(n, x)∗c(n, x)]1/2n‖2 ≤ lim
n→∞

dP(Λ(x), [c(n, x)∗c(n, x)]1/2n)

≤ lim
n→∞

1

n
dP(Λ(x)2n, c(n, x)∗c(n, x)) = 0
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where the first inequality is by Proposition 3.5.12 for the finite case and Claim 10 for the

semifinite case, and the second is by Lemma 3.6.1. This concludes the proof.

In order to show that Theorem 3.6.2 implies Theorem 3.1.1, we need to show how

SOT-measurability of the cocycle c in Theorem 3.1.1 implies that π ◦ c is measurable with

respect to the compact-open topology.

We will need the next few lemmas to clarify the measurability hypothesis on the

cocycle. The next lemma is probably well-known.

Lemma 3.6.3. Let (Y, d) be a metric space. Then the pointwise convergence topology on the

isometry group Isom(Y, d) is the same as the compact-open topology.

Proof. It is immediate that the pointwise convergence topology is contained in the compact-

open topology. To show the opposite inclusion, let K ⊂ Y be compact, O ⊂ Y be open

and suppose g ∈ Isom(Y, d) is such that gK ⊂ O. Let gn ∈ Isom(Y, d) and suppose gn → g

pointwise. It suffices to show that gnK ⊂ O for all sufficiently large n.

Because K is compact, there are a finite subset F ⊂ K and for every x ∈ F , a radius

εx > 0 such that if B(x, εx) ⊂ Y is the open ball of radius εx centered at x then

K ⊂ ∪x∈FB(x, εx) ⊂ O.

By compactness again, there exist 0 < ε′x < εx such that

K ⊂ ∪x∈FB(x, ε′x).

Since gn → g pointwise, there exists N such that n > N implies d(gnx, gx) ≤ εx − ε′x for all

x ∈ F . Therefore,

gnK ⊂ ∪x∈FB(gnx, ε
′
x) ⊂ ∪x∈FB(gx, εx) ⊂ O

as required.

Theorem 3.6.4. Suppose (M, τ) is σ-finite and semi-finite. Then

1. the operator norm M → R, T 7→ ‖T‖∞ is SOT-Borel;
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2. the inverse operator norm M× → R, T 7→ ‖T−1‖∞ is SOT-Borel;

3. a subset E ⊂M is SOT-Borel if and only if it is WOT-Borel;

4. the adjoint M →M , T 7→ T ∗ is SOT-Borel;

5. the multiplication map M ×M →M , (S, T ) 7→ ST is SOT-Borel;

6. the map P ∩M× →M defined T 7→ log T is SOT-Borel;

7. the map M ∩ L2(M, τ), T 7→ ‖T‖2 is SOT-Borel;

8. for any x, y ∈ P ∩M× the map M× ∩GL2(M, τ)→ R defined by T 7→ dP(TxT ∗, y) is

SOT-Borel.

Proof. (1)Let H0 ⊂ H be a countable dense subset not containing zero. For h ∈ H0, let

φh : M → [0,∞) be the function

φh(a) = ‖ah‖/‖h‖.

By definition, φh is continuous in the strong operator topology. Moreover, ‖a‖ = suph∈H0
φh(a).

So the operator norm is the supremum of a countable set of continuous functions. This im-

plies it is Borel.

(2) If T is invertible with bounded inverse then

‖a−1‖−1
∞ = inf

h∈H0

φh(a).

This proves a 7→ ‖T−1‖∞ is Borel in the strong operator topology.

(3) This follows from

Because every WOT-open set is open in the SOT, it follows that every WOT-Borel

set is SOT-Borel.

Given v, w ∈ L2(M, τ), define φv,w : M → [0,∞) by φv,w(T ) = ‖Tv − w‖. The

SOT-topology is the smallest topology that makes all of the functions φv,w continuous. By

[Johnson Corollary 1], it suffices to show that each φv,w is WOT-Borel.
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Observe that

‖Tv − w‖2 = ‖Tv‖2 − 2 Re(〈Tv, w〉) + ‖w‖2.

Since T 7→ 〈Tv, w〉 is WOT-Borel, it suffices to show that T 7→ ‖Tv‖ is WOT-Borel. Let

S ⊂ H be a countable dense subset of the unit sphere. Then

‖Tv‖ = sup
u∈S
〈Tv, u〉.

Since each of the functions T 7→ 〈Tv, u〉 is WOT-Borel, this proves that T 7→ ‖Tv‖ is

WOT-Borel.

(4) Since 〈Tv, w〉 = 〈T ∗w, v〉, it follows that T 7→ T ∗ is WOT-Borel. So item (3)

implies the adjoint map is SOT-Borel.

(5) Because the operator norm is SOT-Borel by item (1), it suffices to prove that if

B ⊂ M is a ball in the operator norm then the map B × B → M defined by (S, T ) 7→ ST

is SOT-continuous. To see this, let v ∈ L2(M, τ) and suppose (Tn), (Sn) ⊂ B are sequences

with Tn → T, Sn → S in SOT (as n→∞). Then

‖TnSnv − TSv‖ ≤ ‖TnSnv − TnSv‖+ ‖TnSv − TSv‖

≤ ‖Tn‖∞‖Snv − Sv‖+ ‖TnSv − TSv‖.

By assumption, ‖Tn‖∞ is uniformly bounded in n. So the inequality above implies limn→∞ ‖TnSnv−
TSv‖ = 0. Since v is arbitrary, this implies TnSn → TS in SOT as n→∞.

(6) For D > 0, let

MD = {T ∈ P : ‖T‖∞ ≤ D and ‖T−1‖∞ ≤ D}.

By items (1) and (2), MD is SOT-Borel. So it suffices to show that the map MD →M given

by T 7→ log T is SOT-continuous. This follows from [Corollary, Kaplansky, A theorem on

rings of operators] since log is bounded on [D−1, D].

(7) Let p1, p2, . . . be a sequence of pairwise-orthogonal finite projections pi ∈M with∑∞
i=1 pi = I.
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Claim 13. Let T ∈ L2(M, τ). Then
∑n

i=1 piT converges to T in L2.

Proof. Let Sn =
∑n

i=1 piL
2(M, τ). It suffices to show that ∪∞n=1Sn is dense in L2(M, τ),

for then
∑n

i=1 piT , being the orthogonal projection of T onto Sn, minimizes the distance

from T to Sn. Now suppose that there exists v ∈ L2(M, τ such that for all T and n,

〈
∑n

i=1 piT, v〉 = 0. Then since
∑n

i=1 pi converges to I in SOT, the convergence also happens

in WOT. Since WOT is intrinsic on norm-bounded sets of M , 〈(
∑n

i=1 pi)T, v〉 → 〈T, v〉 = 0.

Since this happens for all T ∈ L2(M, τ), v = 0. The result follows.

Now 〈piT, pjT 〉 = 0 for all i 6= j and
∑∞

i=1 piT = T . Therefore, along with the above

claim

‖T‖2
2 =

∞∑
i=1

‖piT‖2
2 =

∞∑
i=1

‖T ∗pi‖2
2

where the last equality follows from the tracial property of τ . So it suffices to prove that for

any fixed finite projection p ∈ M , the map T 7→ ‖T ∗p‖2
2 is SOT-Borel. This follows from

item (4) which states that the adjoint map is SOT-Borel (since p ∈ L2(M, τ)).

(8) By definition,

dP(TxT ∗, y) = ‖ log(y−1/2TxT ∗y−1/2‖2.

So this item follows from the previous items.

Corollary 3.6.5. Suppose (M, τ) is σ-finite and semi-finite. Then π : M× → Isom(P) is

Borel as a map from M× with the SOT to Isom(P) with the pointwise convergence topology.

Proof. By definition of the pointwise convergence topology, it suffices to show that for every

x, y ∈ P, the map T 7→ dP(TxT ∗, y) is SOT-Borel. By (8) of Proposition 3.5.18, M× ∩ P is

dense in P. So it suffices to show that for every x, y ∈ M× ∩ P, the map T 7→ dP(TxT ∗, y)

is SOT-Borel. This is item (8) of Theorem 3.6.4.

Corollary 3.6.6. The hypotheses of Theorem 3.1.1 imply the hypotheses of Theorem 3.6.2.

In particular, Theorem 3.1.1 is true.
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Proof of Theorem 3.1.1. We assume the hypotheses of Theorem 3.1.1. In particular, c :

N × X → M× ∩ GL2(M, τ) is a strongly measurable cocycle (which means measurable

with respect to the strong operator topology). By Lemma 3.6.3, it suffices to show that

π ◦ c is measurable with respect to the pointwise convergence topology on Isom(P). Let

S(x) = c(1, x). By Corollary 3.6.5, π ◦ S is measurable with respect to the pointwise

convergence topology

By the cocycle equation, c(n, x) = S(fnx) · · ·S(x). If (Y, d) is any metric space and

Isom(Y, d) is equipped with the pointwise convergence topology then the multiplication map

(g, h) 7→ gh from Isom(Y, d)× Isom(Y, d)→ Isom(Y, d) is jointly continuous. It follows that

x 7→ π(c(n, x)) is measurable with respect to the pointwise convergence topology on Isom(P)

for any n ∈ Z.

3.6.2 Determinants

This section proves Theorem 3.1.3. Following [HS07, Definition 2.1], we let M∆ be the set

of all x ∈ L0(M, τ) such that ∫ ∞
0

log+(t) dµ|x|(t) <∞.

For x ∈ M∆, the integral
∫∞

0
log t dµ|x|(t) ∈ [−∞,∞) is well-defined. The Fuglede-

Kadison determinant of x is

∆(x) := exp

(∫ ∞
0

log t dµ|x|(t)

)
∈ [0,∞).

For the sake of context, we mention that by [HS07, Lemma 2.3 and Proposition 2.5], if x, y ∈
M∆ and ∆(x) > 0 then x−1 ∈M∆, ∆(x−1) = ∆(x)−1, xy ∈M∆, and ∆(xy) = ∆(x)∆(y).

Proposition 3.6.7. Suppose τ is a finite trace. Then GL2(M, τ) ⊂ M∆. Moreover, ∆ :

P→ (0,∞) is continuous.

Proof. Let x ∈ GL2(M, τ). By definition, log |x| ∈ L2(M, τ). Since τ is a finite trace,

L2(M, τ) ⊂ L1(M, τ). Thus log |x| ∈ L1(M, τ) and therefore log+ |x| ∈ L1(M, τ). So x ∈M∆.
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Now let (xn)n ⊂ P and suppose limn→∞ xn = x ∈ P. By Proposition 3.5.12, log |xn|
converges to log |x| in L2(M, τ). Therefore, log |xn| converges to log |x| in L1(M, τ). But the

trace τ : L1(M, τ) → C is norm-continuous. So τ(log |xn|) → τ(log |x|). Since exp : R → R

is continuous and ∆(x) = exp(τ(log |x|)), this finishes the proof.

Theorem 3.1.3 follows immediately from Proposition 3.6.7 and Theorem 3.1.1.

3.6.3 Growth rates

In this subsection, we prove Theorem 3.1.4. The proof uses Theorem 3.1.1 as a black-box.

The extra ingredients needed to prove the theorem are general approximation results for

powers of a single operator. These results will also be needed in later subsections to prove

Theorem 3.1.2.

Definition 15. Let a ∈ L0(M, τ) be a positive operator and ξ ∈ dom(a). By the spectral

theorem there exists a unique positive measure ν on C such that ν([0,∞)) = ‖ξ‖2
2 and for

every bounded, Borel function f : [0,∞)→ C,

〈f(a)ξ, ξ〉 =

∫
f(s) dν(s).

Moreover, for a Borel function f : [0,∞) → C we have that ξ ∈ dom(f(a)) if and only if∫
|f(s)|2 dν(s) < ∞, and 〈f(a)ξ, ξ〉 =

∫
f dν if ξ ∈ dom(f(a)). The measure ν is called the

spectral measure of a with respect to ξ. Let ρ(ν) ∈ [0,∞] be the smallest number such

that ν is supported on the interval [0, ρ(ν)].

Lemma 3.6.8. Let a ∈ L0(M, τ)sa, ξ ∈
⋂∞
n=1 dom(an) and let ν be the spectral measure of

a with respect to ξ. Then

ρ(ν) = lim
n→∞

‖anξ‖1/n
2 ∈ [0,∞].

Moreover, ξ ∈ 1[0,t](a)(L2(M, τ)) if and only if limn→∞ ‖anξ‖1/n
2 ≤ t (for any t ∈ [0,∞]).

Proof. Since ξ ∈ dom(an),
∫
s2n dν(s) <∞ for every n ∈ N. Thus

‖anξ‖1/n
2 = 〈a2nξ, ξ〉1/2n =

(∫
s2n dν(s)

)1/2n

. (3.14)
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It is a standard measure theory exercise that the limit of
(∫

s2n dν(s)
)1/2n

as n→∞ exists

and equals ρ(ν).

Now suppose that t > 0 and that limn→∞ ‖anξ‖1/n
2 ≤ t. Then, by the above comment

we have that ν is supported on [0, t]. Thus:

‖ξ − 1[0,t](a)ξ‖2
2 =

∫
|1− 1[0,t](s)|2 dν(s) = 0.

So ξ ∈ 1[0,t](a)(L2(M, τ)).

For the converse, suppose ξ ∈ 1[0,t](a)(L2(M, τ)). Then

lim
n→∞

‖anξ‖1/n
2 = lim

n→∞
‖an1[0,t](a)ξ‖1/n

2 = lim
n→∞

(∫ t

0

s2n dν(s)

)1/2n

≤ t.

Lemma 3.6.9. For a ∈ L0(M, τ)sa and ξ ∈ L2(M, τ), let νa,ξ be the spectral measure of a

with respect to ξ. Then the map

L0(M, τ)sa × L2(M, τ)→ Prob([0,∞)), (a, ξ) 7→ νa,ξ

is continuous with respect to the measure topology on L0(M, τ)sa, the norm topology on

L2(M, τ) and the weak topology on Prob([0,∞)).

Proof. For n ∈ N, let a, bn ∈ L0(M, τ)sa and ξ, ξn ∈ L2(M, τ). Assume:

• bn → a in measure,

• ‖ξn − ξ‖2 → 0 as n→∞.

Let ν be the spectral measure of a with respect to ξ and let νn be the spectral measure of

bn with respect to ξn. It suffices to show νn → ν weakly as n→∞.

Let f ∈ C(R) be bounded. By Lemma 3.5.19, f(bn) → f(a) in measure. Since

‖f(bn)‖∞, ‖f(a)‖∞ ≤ ‖f‖∞ = supx∈R |f(x)| < ∞, Lemma 3.5.25 implies that f(bn) → f(a)
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in the strong operator topology. Hence,∣∣∣∣∫ f(s) dνn(s)−
∫
f(s) dν(s)

∣∣∣∣ = |〈f(bn)ξn, ξn〉 − 〈f(a)ξ, ξ〉|

≤ |〈f(bn)ξn, ξn〉 − 〈f(bn)ξn, ξ〉|+ |〈f(bn)ξn, ξ〉 − 〈f(bn)ξ, ξ〉|+ |〈f(bn)ξ, ξ〉 − 〈f(a)ξ, ξ〉|

≤ ‖f‖∞‖ξn − ξ‖2(‖ξn‖2 + ‖ξ‖2) + |〈f(bn)ξ, ξ〉 − 〈f(a)ξ, ξ〉| .

Since ‖ξn−ξ‖2 → 0 by assumption and f(bn)→ f(a) in the SOT, this shows
∫
f(s) dνn(s)→∫

f(s) dν(s) as n→∞. Since f is arbitrary, νn → ν weakly.

Definition 16. If a ∈ L0(M, τ) and ξ ∈ L2(M, τ) \ dom(a), then let ‖aξ‖2 = +∞.

Definition 17. Given ξ ∈ L2(M, τ), let Σ(ξ) be the set of all sequences (ξn)n ⊂ L2(M, τ)

such limn→∞ ‖ξ− ξn‖2 = 0. Given a sequence c = (cn)n ⊂ L0(M, τ) and ξ ∈ L2(M, τ), define

the upper and lower smooth growth rates of c with respect to ξ by

Gr(c|ξ) = inf
{

lim inf
n→∞

‖cnξn‖1/n
2 : (ξn)n ∈ Σ(ξ)

}
Gr(c|ξ) = inf

{
lim sup
n→∞

‖cnξn‖1/n
2 : (ξn)n ∈ Σ(ξ)

}
.

Lemma 3.6.10. For n ∈ N, let cn ∈ L0(M, τ), a ∈ L0(M, τ) with a ≥ 0 and ξ ∈ L2(M, τ).

Let c = (cn)n. Assume:

• |cn|1/n → a in measure as n→∞.

• ξ ∈
⋂∞
n=1 dom(an).

Then

Gr(c|ξ) = lim
n→∞

‖anξ‖1/n
2 = Gr(c|ξ).

Proof. Let ν be the spectral measure of a with respect to ξ. Let ρ(ν) ≥ 0 be the smallest

number such that ν is supported on [0, ρ(ν)]. By Lemma 3.6.8, ρ(ν) = limn→∞ ‖anξ‖1/n
2 .

It is immediate that Gr(c|ξ) ≤ Gr(c|ξ). So it suffices to show ρ(ν) ≤ Gr(c|ξ) and

Gr(c|ξ) ≤ ρ(ν).

We first show ρ(ν) ≤ Gr(c|ξ). So let (ξn)n ∈ Σ(ξ). Let bn = |cn|1/n. By hypothesis,

bn → a in measure. Let νn be the spectral measure of ξn with respect to bn. By Lemma
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3.6.9, νn → ν weakly. By (3.14) and Fatou’s Lemma we have for every m ∈ N :

‖amξ‖1/m
2 =

(∫
s2m dν(s)

)1/2m

=

(
2m

∫
λ2m−1ν((λ,∞)) dλ

)1/2m

≤
(

2m lim inf
n→∞

∫
λ2m−1νn((λ,∞)) dλ

)1/2m

=

(
lim inf
n→∞

∫
s2m dνn(s)

)1/2m

≤ lim inf
n→∞

(∫
s2n dνn(s)

)1/2n

= lim inf
n→∞

‖cnξn‖1/n
2 .

So

sup
m
‖amξ‖1/m

2 ≤ lim inf
n→∞

‖cnξn‖1/n
2 .

By Lemma 3.6.8,

ρ(ν) = lim
n→∞

‖anξ‖1/n
2 ≤ lim inf

n→∞
‖cnξn‖1/n

2 .

Since (ξn)n is arbitrary, this shows ρ(ν) ≤ Gr(c|ξ).
Next we will show Gr(c|ξ) ≤ ρ(ν). So let ε > 0. Choose a continuous function

f : [0,∞) → [0, 1] such that f(t) = 1 for all t ∈ [0, ρ(ν)] and f(t) = 0 for all t ≥ ρ(ν) + ε.

Let ξn = f(bn)ξ.

We claim that ξn → ξ in L2(M, τ). First observe that

〈f(a)ξ, ξ〉 =

∫
f dν =

∫
1 dν = ‖ξ‖2

2.

Since ‖f(a)‖∞ ≤ 1, we must have f(a)ξ = ξ.

Next, let ν ′n be the spectral measure of bn with respect to ξ. By Lemma 3.5.19,

f(bn)→ f(a) in measure. Since L0(M, τ) is a topological ∗-algebra in the measure topology,

f(bn)ξ → f(a)ξ in measure. Note

‖ξn − ξ‖2
2 = ‖(1− f(bn))ξ‖2

2 = 〈(1− f(bn))ξ, (1− f(bn))ξ〉

= 〈(1− f(bn))2ξ, ξ〉 =

∫
(1− f)2 dν ′n.

By Lemma 3.6.9, ν ′n → ν weakly. So
∫

(1 − f)2 dν ′n →
∫

(1 − f)2 dν as n → ∞. Since ν

is supported on [0, ρ(ν)] and 1 − f = 0 on [0, ρ(ν)], it follows that
∫

(1 − f)2 dν ′n → 0 as

n→∞. This proves that ‖ξn − ξ‖2 → 0 as n→∞. Thus, (ξn)n ∈ Σ(ξ).
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Let νn be the spectral measure of bn with respect to ξn. We claim that dνn = f 2dν ′n.

To see this, let g : [0,∞)→ R be a continuous bounded function. Then∫
g dνn = 〈g(bn)ξn, ξn〉 = 〈g(bn)f(bn)ξ, f(bn)ξ〉

= 〈f(bn)g(bn)f(bn)ξ, ξ〉 =

∫
gf 2 dν ′n.

Since g is arbitrary, this proves dνn = f 2dν ′n.

By Lemma 3.6.9, νn → ν weakly. So

Gr(c|ξ) ≤ lim sup
n→∞

‖cnξn‖1/n
2 = lim sup

n→∞
〈|cn|2ξn, ξn〉1/2n

= lim sup
n→∞

〈b2n
n ξn, ξn〉1/2n = lim sup

n→∞

(∫
t2n dνn(t)

)1/2n

= lim sup
n→∞

(∫
t2nf(t)2 dν ′n(t)

)1/2n

≤ ρ(ν) + ε.

The last inequality occurs because f(t) = 0 for all t > ρ(ν) + ε. Since ε is arbitrary,

Gr(c|ξ) ≤ ρ(ν).

Corollary 3.6.11. Let X,µ, f,M, τ, c,Λ be as in Theorem 3.6.2. Then for a.e. x ∈ X and

every ξ ∈ L2(M, τ),

lim
n→∞

‖Λ(x)nξ‖1/n
2 = Gr(c(x)|ξ) = Gr(c(x)|ξ)

where c(x) = (c(n, x))n. In particular, Theorem 3.1.4 is true.

Proof. Apply Lemma 3.6.10 with a = Λ(x), cn = c(n, x). Theorem 3.1.4 now follows from

Corollary 3.6.6.

3.6.4 Essentially dense subspaces

In this section, we review the notion of an essentially dense subspace. This is used in the

last section to prove Theorem 3.1.2.
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Definition 18. Let (M, τ) be a semi-finite tracial von Neumann algebra. A linear subspace

V ⊆ L2(M, τ) is called right-invariant if V x ⊆ V for all x ∈ M. We say that a right-

invariant subspace D of L2(M, τ) is essentially dense if for every ε > 0, there is a projection

p ∈M so that τ(1− p) ≤ ε, and D ⊇ pL2(M, τ). If H is a closed subspace of L2(M, τ) and

W ⊆ H is a right-invariant subspace, we say that W is essentially dense in H if there exists

D essentially dense in L2(M, τ) such that D ∩H = W .

It is a fact that if a ∈ L0(M, τ), then dom(a) is essentially dense (see da Silva’s

lecture notes, Proposition 1.4.17), and that the intersection of countably many essentially

dense subspaces is essentially dense.

If H ⊆ L2(M, τ) is closed and right-invariant then the orthogonal projection onto H,

denoted pH, is in M as a consequence of the double commutant theorem.

Technically, our definition of essentially dense in H is different from the one in [Lüc02,

Definition 8.1]. The next lemma shows that they are in fact equivalent.

Lemma 3.6.12. Let (M, τ) be a semi-finite tracial von Neumann algebra, let H ⊆ L2(M, τ)

be a closed, right-invariant subspace, and let W ⊆ H be a right-invariant subspace. Then

the following are equivalent:

1. W is essentially dense in H,

2. there is an increasing sequence of projections pn ∈ M so that pn → pH in the strong

operator topology, τ(pH − pn)→ 0, and W ⊇ pnL
2(M, τ).

Proof. (2) implies (1): Let D = W + (1 − pH)L2(M, τ), then clearly D ∩ H = W. Let

qn = 1− pH + pn.

Then D ⊇ qnL
2(M, τ). Since pn(1 − pH) = 0, we also have that qn is an orthogonal

projection. Also τ(1− qn)→ 0. Thus D is essentially dense.

(1) implies (2): Write W = D ∩ H, where D is essentially dense in L2(M, τ). By

assumption, for every n ∈ N, we find a projection fn in M so that τ(1 − fn) ≤ 2−n and

D ⊇ fnL
2(M, τ). Set qn =

∧∞
m=n fm, and pn = pH ∧ qn. Observe that

τ(1− qn) = τ

(
∞∨
m=n

1− fm

)
≤

∞∑
m=n

τ(1− fn) ≤ 2−n+1,
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where in the first inequality we use that τ is normal. Then

τ(1− pn) ≤ τ(1− pH) + τ(1− qn) ≤ 2−n+1 + τ(1− pH),

so that τ(pH − pn) ≤ 2−n+1. Observe that qn are increasing, and that as a consequence we

have that pn is increasing. Let p∞ = supn pn. By normality,

lim
n→∞

τ(p∞ − pn) = 0.

By definition of least upper bound, p∞ ≤ pH and since τ(pH − p∞) ≤ τ(pH − pn) → 0, the

fact that τ is faithful implies p∞ = pH. Now 〈(pH − pn)v, (pH − pn)v〉 = 〈(pH − pn)v, v〉 → 0

(otherwise v does not lie in the closure of the subspaces spanned by pn, so that p∞ 6= supn pn),

so pn → pH in the strong operator topology. For each n ∈ N, we have that

pnL
2(M, τ) = H ∩ qnL2(M, τ) ⊆ H ∩ fnL2(M, τ) ⊆ H ∩D = W.

Lemma 3.6.13. Let (M, τ) be a tracial von Neumann algebra, and let H ⊆ L2(M, τ) be a

closed and right-invariant subspace, fix an a ∈ L0(M, τ).

1. We have that dimM(a(H ∩ dom(a))) ≤ dimM(H), with equality if ker(a) = {0}

2. We have that (a−1(H))⊥ = (a∗)(H⊥ ∩ dom(a∗)).

Proof. Throughout, let p be the orthogonal projection onto H.

(1): Let ap = v|ap| be the polar decomposition. Then v∗v = pker(ap)⊥ , vv∗ = pIm(ap).

Clearly ker(ap) ⊇ (1− p)(L2(M, τ)) so

v∗v = pker(ap)⊥ ≤ p.

So:

dimM(H) = τ(p) ≥ τ(v∗v) = τ(vv∗) = dimM(a(H ∩ dom(a))).

If ker(a) = {0}, then in fact pker(ap) = p.
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(2): This is [Sti59, Lemma 3.4]

3.6.5 Invariance

In this section, we prove Theorem 3.1.2.

Lemma 3.6.14. For n ∈ N, let cn ∈ L0(M, τ) and a ∈ L0(M, τ) with a > 0. Let Tn =

a−n|cn|2a−n, and Sn = T
1/2n
n . Suppose Sn → id in measure and |cn|1/n → a in measure. For

0 ≤ t, let

Vt =
{
ξ ∈ L2(M, τ) : lim inf

n→∞
‖cnξ‖1/n

2 ≤ t
}

Ht =
{
ξ ∈ L2(M, τ) : lim inf

n→∞
‖anξ‖1/n

2 ≤ t
}
.

Then there exists an essentially dense subspace D of L2(M, τ) such that

D ∩ Vt = D ∩Ht.

In particular, we have that Ht = Vt.

Proof. Choose a decreasing sequence (εk)k of positive real numbers tending to zero. Since

Sn → id in measure, there exists a strictly increasing sequence (nk)k of natural numbers so

that ∑
k

µSnk ((1 + εk,∞)) <∞.

By functional calculus, µTnk ((1 + εk)
2nk ,∞) = µSnk ((1 + εk,∞)). So

∑
k

µTnk
(
((1 + εk)

2nk ,∞)
)
<∞.

Let

D =
∞⋃
l=1

∞⋂
k=l

(
dom(ank) ∩ a−nk1[0,(1+εk)2nk ](Tnk)(L

2(M, τ)) ∩ dom(cnk)
)
.
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We claim that D is essentially dense. By Lemma 3.6.13 (1), we know that

dimM

(
a−nk1[0,(1+εk)2nk ](Tnk)(L

2(M, τ))
)

= τ
(
1[0,(1+εk)2nk ](Tnk)

)
.

Now dom(ank) ∩ dom(cnk) ∩ a−nk1[0,(1+εk)2nk ](Tnk)(L
2(M, τ)) is essentially dense in

a−nk1[0,(1+εk)2nk ](Tnk)(L
2(M, τ)) So there exist projections pk ∈M satisfying

• L2(M, τ)pk ⊆ dom(ank) ∩ a−nk1[0,(1+εk)2nk ](Tnk)(L
2(M, τ)) ∩ dom(cnk)

• τ(pk) ≥ 1− 2µTnk (((1 + εk)
2nk ,∞)) .

For l ∈ N, set ql =
∧∞
k=l pk. Then for every l ∈ N, we know that D ⊇ L2(M, τ)ql and

τ(1− ql) ≤ 2
∞∑
k=l

µTnk (((1 + εk)
nk ,∞))→l→∞ 0.

So we have shown that D is essentially dense.

Now suppose that ξ ∈ D. Without loss of generality, ‖ξ‖2 = 1. Then:

lim inf
n→∞

‖cnξ‖1/n
2 ≤ lim inf

k→∞
‖cnkξ‖

1/nk
2 = lim inf

k→∞
〈|cnk |2ξ, ξ〉1/2nk

= lim inf
k→∞

〈
a−nk |cnk |2a−nkankξ, ankξ

〉 1
2nk

= lim inf
k→∞

〈Tnkankξ, ankξ〉
1

2nk .

By choice of D, we have that ankξ ∈ 1[0,(1+εk)2nk ](Tnk)(L
2(M, τ)). So

lim inf
n→∞

‖cnξ‖1/n
2 ≤ lim inf

k→∞
(1 + εk)〈ankξ, ankξ〉

1
2nk

= lim inf
k→∞

(1 + εk)‖ankξ‖1/nk
2 = lim

n→∞
‖anξ‖1/n

2 ,

where the last equality holds by Lemma 3.6.8. So by Lemma 3.6.10,

lim inf
n→∞

‖cnξ‖1/n
2 = lim

n→∞
‖anξ‖1/n

2 .

Again by Lemma 3.6.10 we have that D ∩ Vt = D ∩ Ht. Since Lemma 3.6.10 also

shows that Vt ⊆ Ht, it follows that Vt = Ht since essentially dense subspaces are always
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dense.

Lemma 3.6.15. For n ∈ N, let cn ∈ GL2(M, τ) and a ∈ P(M, τ) with a ≥ 0. Suppose that

A ⊆ N and that ∑
n∈A

(
1

2n
dP(|cn|2, a2n)

)2

<∞.

Then there is an essentially dense DA ⊆ L2(M, τ) so that for every ξ ∈ DA we have

lim
n→∞,
n∈A
‖cnξ‖1/n

2 = lim
n→∞

‖anξ‖1/n
2 .

Proof. Let Tn = a−n|cn|2a−n, so that ‖ log(Tn)‖2 = dP(|cn|2, a2n). Fix ε > 0, and observe

that

∑
n∈A

µTn(((1+ε)2n,∞)) ≤ 1

log(1 + ε)2

∑
n∈A

(
1

2n
‖ log(Tn)‖2

)2

=
1

log(1 + ε)2

∑
n∈A

(
1

2n
dP(|cn|2, an)

)2

.

By our assumptions, ∑
n∈A

µTn(((1 + ε)2n,∞)) <∞.

Now set

Dε
A =

⋃
l∈A

⋂
k∈A,
k≥l

(
dom(ak) ∩ a−k1[0,(1+ε)2k](Tk)(L

2(M, τ)) ∩ dom(ck)
)
.

As in Lemma 3.6.14, we have that Dε
A is essentially dense and for every ξ ∈ Dε

A

lim sup
n→∞,
n∈A

‖cnξ‖1/n
2 ≤ (1 + ε) lim

n→∞
‖anξ‖1/n

2 .

Now set

DA =
∞⋂
m=1

D
1
m
A .

By Lemma 3.6.10

lim
n→∞

‖anξ‖1/n
2 ≤ lim inf

n→∞
‖cnξ‖1/n

2 ≤ lim inf
n→∞,
n∈A

‖cnξ‖1/n
2
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for all ξ ∈
⋂∞
n=1(dom(an) ∩ dom(cn)), so it is not hard to show that DA has the desired

property.

Corollary 3.6.16. Let X,µ, f,M, τ, c,Λ be as in Theorem 3.6.2. Then the Oseledets sub-

spaces and Lyapunov distributions are invariant in the following sense. For a.e. x ∈ X,

c(1, x)Ht(x) = Ht(Tx),

µΛ(fx) = µΛ(x).

In particular, Theorem 3.1.2 is true.

Proof. By the cocycle equation, c(n, fx)c(1, x) = c(n + 1, x). So c(1, x)Vt(x) ⊆ Vt(fx).

Conversely, using that c(1, x)−1 = c(−1, Tx), we can apply the same logic to see that

Vt(x) ⊇ c(1, x)−1Vt(fx).

Hence c(1, x)Vt(x) = Vt(x). Applying the “in particular” part of Lemma 3.6.14 shows that

c(1, x)Ht(x) = Ht(fx). By invertibility of c(1, x) we know that dimM(Ht(x)) = dimM(c(1, x)Ht(x)) =

dimM(Ht(fx)). Since µΛ(x) may be regarded as the distributional derivative of t 7→ Ht(x),

it follows that µΛ(fx) = µΛ(x).

Theorem 3.1.2 now follows from Corollary 3.6.6.
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[Sch91] Kay-Uwe Schaumlöffel. Multiplicative ergodic theorems in infinite dimensions.

In Lyapunov exponents (Oberwolfach, 1990), volume 1486 of Lecture Notes in

Math., pages 187–195. Springer, Berlin, 1991.

174



[Sew18a] Brandon Seward. Bernoulli shifts with bases of equal entropy are isomorphic.

arXiv:1805.08279, 2018.

[Sew18b] Brandon Seward. Positive entropy actions of countable groups factor onto

Bernoulli shifts. 1804.05269, 2018.

[Sha48] Claude E Shannon. A mathematical theory of communication. Bell system

technical journal, 27(3):379–423, 1948.

[Sha51] Claude E Shannon. Prediction and entropy of printed english. Bell system

technical journal, 30(1):50–64, 1951.

[Sin59] Yakov G. Sinai. On the notion of entropy of a dynamical system. Doklady of

Russian Academy of Sciences, 124:768–771, 1959.

[Sti59] W. Forrest Stinespring. Integration theorems for gages and duality for unimod-

ular groups. Trans. Amer. Math. Soc., 90:15–56, 1959.

[Tak03] M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of

Mathematical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and

Non-commutative Geometry, 6.

[Thi87] P. Thieullen. Fibrés dynamiques asymptotiquement compacts. Exposants de

Lyapounov. Entropie. Dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire,
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