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ABSTRACT

Achieving Hate Speech Detection in a Low Resource Setting

by

Peiyu Li, Master of Science

Utah State University, 2021

Major Professor: Shuhan Yuan, Ph.D.
Department: Computer Science

With the rise of social networks, social media has become the major platform for people to

share and exchange information. Due to the anonymous environments provided by social

networks, some malicious users express the offensive content online which contributes to

increasing hate speech cases. To prevent the negative effects of hate speech, automatically

hate speech detection methods are required. Models based on machine learning and natural

language processing provide a way to detect hate speech. However, annotating sufficient

data to train these models is a big challenge. In this thesis, we focus on achieving hate

speech detection based on limited labeled data. In particular, we propose three research

tasks to address the low resource data problem. First, we propose a hate speech detec-

tion model based on fine-tuning a pre-trained language model BERT on limited annotated

data. By transferring the knowledge from the pre-trained model into our low-resource hate

speech, we expect to get decent classification performance by just using a small size of

labeled training data. Second, we propose a multitask learning approach to conduct hate

speech detection. By applying multitask learning for detecting hate speeches on different

platforms, multiple hate speech classifiers are trained jointly. In this case, we can leverage

the correlations among different hate speech detection tasks to improve the detection per-

formance. Last, we propose a domain adversarial neural network for hate speech detection.
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In this scenario, we train the classification model on data from some social network plat-

forms (source domains) and apply the classifier trained on source domains to detect the hate

speeches on a new platform (target domain). By using the domain adaptation technique, we

make full use of the labeled data from the source domain and achieve the domain transfer

to our target domain. Empirical studies show that our proposed approaches can achieve

good performance on hate speech detection in a low resource setting.

(72 pages)
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PUBLIC ABSTRACT

Achieving Hate Speech Detection in a Low Resource Setting

Peiyu Li

Online social networks provide people with convenient platforms to communicate and share

life moments. However, because of the anonymous property of these social media platforms,

the cases of online hate speeches are increasing. Hate speech is defined by the Cambridge

Dictionary as “public speech that expresses hate or encourages violence towards a person

or group based on something such as race, religion, sex, or sexual orientation”. Online

hate speech has caused serious negative effects to legitimate users, including mental or

emotional stress, reputational damage, and fear for one’s safety. To protect legitimate

online users, automatically hate speech detection techniques are deployed on various social

media. However, most of the existing hate speech detection models require a large amount

of labeled data for training. In the thesis, we focus on achieving hate speech detection

without using many labeled samples. In particular, we focus on three scenarios of hate

speech detection and propose three corresponding approaches. (i) When we only have

limited labeled data for one social media platform, we fine-tune a per-trained language

model to conduct hate speech detection on the specific platform. (ii) When we have data

from several social media platforms, each of which only has a small size of labeled data, we

develop a multitask learning model to detect hate speech on several platforms in parallel.

(iii) When we aim to conduct hate speech on a new social media platform, where we do not

have any labeled data for this platform, we propose to use domain adaptation to transfer

knowledge from some other related social media platforms to conduct hate speech detection

on the new platform. Empirical studies show that our proposed approaches can achieve

good performance on hate speech detection in a low resource setting.
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CHAPTER 1

Introduction

Online social media plays a very important role in our social life, which influences our

lives in both positive and negative ways. It provides people platforms to communicate with

each other online, where people can be informed about all kinds of news while just sitting

at home. It is very convenient for people to share some interesting, fun and informative

moments in public. However, there are many cases of public speeches called hate speeches

that express hate or encourage violence, which cause varying degrees of harm to individuals

or organizations.

According to Munro’s study of the bad effects of hate speech on children, 30% of

secondary school children in England have been deliberately targeted, threatened, or hu-

miliated online. The hate speech causes very strong negative feelings, fear, and a sense of

helplessness, which is even worse than offline bullying. These will further lead to school

failure, depression, anxiety, and psychological problems [8]. Besides, the nationally rep-

resentative Pew Research Center survey of 4,248 U.S. adults shows that about 41% of

Americans have experienced personally harassing behavior online, and 66% of them have

witnessed these behaviors directed at others; for those who experience online harassment

directly, they might have profound real-world consequences, ranging from mental or emo-

tional stress to reputational damage or even fear for one’s safety [9]. Moreover, according to

the 2015 hate crime statistic [10], hate crime cases have been increasing rapidly. Two main

factors can explain this. On the one hand, on the internet, social networks provide anony-

mous environments, which make people more likely to conduct aggressive behavior [11]. On

the other hand, the willingness to express emotional content online is increasing, which also

contributes to the spread of hate speech [12].

To prevent the harmful effect on society from this kind of prejudiced communication,

automatically hate speech detection and prevention tools are required on social network
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platforms. Automated techniques, which aims to classify hate speeches in a timely manner

so that the online users can be protected from social hate [13,14].

In general, hate speech detection application scenarios can be classified into three

categories: (i) High- or Rich-resource settings, where we can get access to a large amount of

annotated data; (ii) Low-resource or Resource-poor ones, where only limited annotated data

are available; and (iii) Zero-resource settings, where there is no annotated data available

in the target context. Most of the approaches used for hate speech detection tasks are

supervised methods [15], which require manual labeling of a large volume of text. The

labeling task is very laborious but it is proved to be very efficient for domain-independent

events [15].

In this thesis, we adopt three annotated datasets that are from different social me-

dia platforms for hate speech detection. Firstly, we make full use of the three annotated

datasets to apply traditional machine learning models and deep learning models on hate

speech detection based on the scenario (i), our result shows good performance in this sce-

nario. However, in many real-world scenarios, it is usually prohibitive or expensive to obtain

large amounts of labeled data. Considering the scenario (ii), where only limited annotated

data are available, we propose transfer learning and multitask learning(MTL) approaches to

address the low resource problem. By using transfer learning, we can transfer the knowledge

from the high resource domains to a new low-resource target domain. For many applications

in NLP, most popular transfer learning methods choose to pre-train a large language model,

e.g., ELMo [16], GPT [17], and BERT [6]. In this thesis, we choose Bidirectional Encoder

Representations from Transformers (BERT) as the pre-trained language model. BERT is

trained on a large number of words and articles from Wikipedia and the Book Corpus. By

importing a pre-trained BERT and the pre-trained BERT model then can be fine-tuned

with just one additional output layer to create a powerful hate speech classification neural

network. For MTL, Caruana [18] summarizes the goal of MTL succinctly: “MTL improves

generalization by leveraging the domain-specific information contained in the training sig-

nals of related tasks”. We propose a multitask learning model that achieves hate speech
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detection on three related tasks. Specifically, we train these three tasks in parallel while

using a shared representation. Therefore, what is learned for each task can help other tasks

be learned better. At last, for scenario (iii), where no annotated data in the target context

is available, we propose domain adversarial neural networks to detect hate speech. Domain

adversarial neural network is directly inspired by the theory on domain adaptation [19],

which aims at adapting a classifier trained on the source domain for use in the target do-

main, and the performance in the target domain depends on both the performance in the

source domain and the similarity between the source domain and target domain [19]. In

this situation, we leverage the annotated data from labeled source domain to detect the

hate speeches in the target domain without using labeled data.

1.1 Hate Speech Definition

Detecting hate speech is not an easy task, even for humans. In this section, we first

describe several definitions of hate speech in literature. Hate speech is defined by the

Cambridge Dictionary as “public speech that expresses hate or encourages violence towards

a person or group based on something such as race, religion, sex, or sexual orientation”

[20]. According to the Twitter platform, any contents that promote violence against or

directly attack or threaten other people based on race, ethnicity, national origin, caste,

sexual orientation, gender, gender identity, religious affiliation, age, disability, or serious

disease are regarded as hate speech [21]. The YouTube community defines hate speech as

contents that promotes violence or hatred against individuals or groups based on certain

attributes, such as race or ethnic origin, religion, disability, gender, age, veteran status,

and sexual orientation/gender identity [22]. The YouTube community also emphasizes that

there is a fine line between what is and what is not considered to be hate speech; for

instance, it is generally okay to criticize a nation-state, but not okay to post malicious

hateful comments about a group of people solely based on their ethnicity [22]. According

to The International Lesbian, Gay, Bisexual, Trans and Intersex Association (ILGBTIA,

and in Europe ILGA), hate speech is public expressions that spread, incite, promote or

justify hatred, discrimination, or hostility towards a specific group [23]. By comparing
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those definitions from different sources, we can conclude that hate speech aims at attacking

or diminishing specific targets to incite violence or hate. Several Examples of hate speech

are 1-3 1.

1. At least I’m not a nigger.

2. California is full of white trash.

3. Why people think gay marriage is okay is beyond me. Sorry, I don’t want my future

son to see 2 fags walking down the street holding hands.

Besides hate speech, there are many other related concepts, like hate [25], cyberbullying

[26], abusive language [27], discrimination [28], toxicity [29], flaming [30]. All of these

concepts are slightly distinct from but still related to hate speech. By exploring those

concepts can give insight into how to automatically detect hate speech.

Table 1.1: Types of hate speech and examples (Table from Silva et al [1])

Categories Example of possible targets

Race black people, white people

Behavior insecure people, sensitive people

Physical obese people, beautiful people

Sexual orientation gay people, straight people

Class ghetto people, rich people

Gender pregnant people, cunt, sexist people

Ethnicity chinese people, indian people, paki

Disability retard, bipolar people

Religion religious people, jewish people

Other drunk people, shallow people

1The examples are to illustrate the severity of the hate speech problem. They are taken from the Twitter
dataset [24] that was used in our experiments and in no way reflect the opinion of the authors
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1.2 Types of Hate Speech

Based on [1], the hate speech can be grouped into ten categories: Race, Behavior,

Physical, Sexual Orientation, Class, Gender, Ethnicity, Disability, Religion, and Others.

Table 1.1 shows the categories and their corresponding examples of possible targets.

1.3 Methodologies for Hate Speech Detection

In general, hate speech detection is a text classification task. Following the typical

procedure for the text classification, we first need to extract the features from text data

and then apply the classification models to detect the hate speech.

1.3.1 Features Representation for Hate Speech Detection

To apply classification models to detect the hate speech, text features need to be

generated. Here, several commonly used approaches are presented

Dictionaries and Lexicons. This feature is commonly employed in unsupervised ma-

chine learning scenarios [31]. Wiegand et al. [32] propose novel features employing informa-

tion from both corpora and lexical resources to achieve profane word detection. They build

the lexicon by using general-purpose lexical resources. Since dictionaries based approaches

generally suffer from the inability to find opinion words with domain and context specific

orientations [33], they are usually not competitive compared with other features used in

supervised approaches.

Bag-of-Words (BOW) and N-grams. BOW creates a corpus based on the words that

occur in the training data, then the occurrence of each word is regarded as a feature for

training. It is easy to implement but the word sequence, syntactic and semantic content are

ignored. In this case, the performance is not guaranteed if the words are used in different

contexts. Then N-grams is adopted to deal with this limitation. N-grams representation

means a sequence of N adjacent words. It aims at enumerating all the expressions of size N

and counting all occurrences. Since it incorporates at some degree the context of each word,

the classifiers’ performance is improved [34]. Except using words, we can also use N-grams
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with characters or syllables. For the abusive language detection, character N-gram features

are proved to be more predictive than token N-gram features [35].

TF-IDF. The term frequency-inverse document frequency (TF-IDF) is a measure of

the importance of a word in a document within a corpus and increases in proportion to

the number of times that a word appears in the document [34]. By using TF-IDF, we can

remove some n-grams from features based on their occurrence frequency in our corpus. In

general, the high-frequency n-grams (eg. stop words) might be ignored since they are not

helpful for us to discriminate texts; and low-frequency n-grams (eg. typos, rare n-grams)

might be ignored since they may cause overfit.

Word Embedding. Word embedding brings up an extra semantic feature by generating

distributed representations that introduce dependence between words, which mitigates the

data sparsity problem [15]. Word2Vec and FastText are two commonly used techniques to

construct word embedding [36,37]. According to Lilleberg et al. [37], word2vec is compatible

with both supervised and unsupervised machine learning models.

1.3.2 Traditional Machine Learning for Hate Speech Detection

After generating feature representation from the corpus, we can apply classification

algorithms to perform the detection task. In general, machine learning approaches are

categorized into: supervised, semi-supervised and unsupervised approaches.

Supervised learning relies on a large volume of labeled texts. Data labeling is usually

time-consuming but it is very efficient for domain-specific tasks. Most of the approaches

for hate speech detection tasks are supervised methods [15].

Unsupervised learning is capable of handling a diversity of content while maintaining

scalability because it does not require the manually labeled data [38]. It not only saves

human labor but also dynamically extracts domain-related key terms.

Semi-supervised learning uses both labeled and unlabeled data during the training

process. Hua et al. [39] prove the effectiveness of semi-supervised models in targeted-

interest event detection tasks. They argue that the ability of unsupervised learning to
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handle small-scale events is limited, while supervised learning can effectively capture small-

scale events but the scalability of the model decreases due to the need to manually label

the data set [39]. Then they come up with the semi-supervised model to balance between

these two situations.

1.3.3 Deep Learning for Hate Speech Detection

Deep learning methods have achieved notable performance in many classification tasks

[40]. Unlike traditional machine learning methods, deep learning methods can automat-

ically learn latent representations of the input data to perform classification [41]. Deep

learning approaches have been widely applied to various natural language processing tasks,

including text classification [42, 43]. Many recent studies adopt deep learning methods to

detect hate speech in social media [35,36,44–50]. Mehdad et al. [35] apply Recurrent Neural

Network (RNN) for hate speech detection. Gambäck et al. [47] conduct hate speech detec-

tion using Convolutional Neural Network (CNN). Badjatiya et al. [36] combine Long-Short

Term Memory (LSTM) model and Gradient-Boosted Decision Tree to detect hate speech on

Twitter. Zhang et al. [50] propose a new neural network architecture that combines CNN

with Gated Recurrent Unit (GRU) to classify hate speech.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:

• In Chapter 2, we firstly introduce the commonly used traditional machine learning

models and deep learning models for hate speech detection on Twitter, Wikipedia,

and White Supremacy Forum. We conduct experiments based on the rich resource

setting, we make full use of the data from Twitter, Wikipedia, and White Supremacy

Forum, then compare the performances of various hate speech detection models in

terms of different evaluation metrics.

• In Chapter 3, we focus on achieving effective hate speech detection while we can only

get access to limited annotated data. To address the insufficient labeled data issue, we
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use the pre-trained language model BERT for hate speech classification on Twitter,

Wikipedia, and White Supremacy Forum three social media platforms based on the

low-resource setting. For each social media platform, we train a classifier that fine-

tunes a pre-trained BERT model to classify hate speech. In this case, the knowledge

from a pre-trained model can be transferred into our low-resource hate speech lan-

guages. In terms of low-resource setting, we propose a pre-trained BERT model and

fine-tuning it on our hate speech detection tasks, then compare their performances

with the previous techniques introduced in Chapter 2.

• In Chapter 4, we propose the multitask learning (MTL) method to deal with the low-

resource problem. Contrary to single-task learning, which learns one task at one time

during the training process, the idea behind MTL is to improve classification by learn-

ing tasks parallel. Here, we apply MTL on Twitter, Wikipedia, and White Supremacy

Forum for three hate speech detection tasks. Since the three hate speech classification

tasks are learning jointly, we can leverage potential correlations among three hate

speech detection tasks for different social media platforms to extract common fea-

tures. In this case, the corpus size of our training data is increased implicitly. The

effectiveness of multitask learning will be validated by comparing it with single-task

learning where only limited training data is available.

• In Chapter 5, we propose the domain adversarial neural network (DANN) on Twitter,

Wikipedia, and White Supremacy Forum in terms of zero-resource setting. DANN

is directly inspired by the theory on domain adaptation, which leverages sufficient

annotated data from the related source domain to the unlabeled target domain. In this

scenario, we don’t have annotated data from the target domain, but the labeled data

from the source domain is available. Here, we combine three social media platform

datasets (Twitter, Wikipedia, and White Supremacy Forum) to build the domain

datasets. We take each of Twitter, Wikipedia, and White Supremacy Forum as target

domains in turn, and the rest as source domains, then conduct hate speech detection

on each source-target domain pair. By applying DANN, the mappings between the
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source and the target domains will be built, so the classifier learned for the source

domain can be applied to the target domain.
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CHAPTER 2

Machine Learning for Hate Speech Detection

How do we conduct hate speech detection while we have enough data?

2.1 Introduction

The massive increase of user-generated web content has contributed to a great amount

of hate speech on the web and social media platforms. As social media platforms become

mainstream means for people to acquire and exchange information, the raging hate speech

will absolutely affect our normal life. Therefore, it is urgent to automatically detect and fil-

ter hate speech. Over the past few years, interest in hate speech detection has continuously

grown. A number of studies that aim at detecting hate speech have been come up with re-

cently. A diverse range of classic machine-learning strategies has been proposed [24,51–53].

These machine learning strategies usually include an initial feature-extraction phase. For

example, Bag-of-Words vectors or Term-Frequency Inverse-Document-Frequency scores will

be generated firstly; then these features are regarded as input for machine learning methods

such as Logistic Regression, SVM, or Naive Bayes. In recent years, deep learning methods

have attracted more interest to hate speech detection [36,47–50,54]. Compared with tradi-

tional machine learning methods, deep learning methods can achieve feature extraction and

classification at the same time. Deep learning architectures such as Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks

(LSTMs), and Gated Recurrent Units (GRUs), are predominantly used methods for several

Natural Language Processing tasks [42]. In the context of hate speech, effectiveness has

been proved with the use of CNNs [47,49], GRUs [50], LSTMs [36,54].

In this chapter, we conduct our experiments with annotated datasets that are from

three social network platforms, Twitter, Wikipedia, and White Supremacy Forum. The

details of these three datasets are described in the following sections. We apply both deep
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learning neural network architectures and traditional machine learning methods that are

predominantly used in the task of hate speech detection to classify hate speech. Then

we evaluate their performances in terms of macro averaged precision, recall, and F1 score

respectively.

2.2 Methodology

2.2.1 Traditional Machine Learning Methods

• Näıve Bayes (NB). NB classifiers are probabilistic classifiers based on Bayes theo-

rem Algorithm, which applies Bayes’ theorem with strong independence assumptions

between the features. While conducting text classification, NB is a popular baseline

method for classifying sentences into different categories with word frequencies as the

feature. The basic idea of NB to find the probabilities of categories given a text

by using the joint probabilities of words and categories. It is based on the assump-

tion of word independence. The starting point is the Bayes’ theorem for conditional

probability, stating that, for a given data point x and class C:

P (C|x) =
P (x|C)P (C)

P (x)
(2.1)

Furthermore, by making the assumption that for a data point x = {x1,x2,...xn}, the

probability of each of its attributes occurring in a given class is independent. Then

the probability of x being categorized as class C can be estimated as follows:

P (C|x) = P (C)

n∏
i=1

P (xi|C) (2.2)

• Linear Support Vector Machine (SVM). SVM classifiers are supervised learning

models. The goal of SVM classifiers is to find the optimal hyperplane separating two

different classes of data that will generate the best model for future data. The SVM

method is proposed by Vapnik [55], and the great performance in pattern recognition
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and text categorization has been validated in [56]. In linear classification, SVM creates

a hyperplane that separates the data into two sets with the maximum-margin. A

hyperplane with the maximum-margin has the distances from the hyperplane to points

when the two sides are equal. Mathematically, SVM learns the sign function

f(x) = sign(wx+ b), (2.3)

where ω is a weighted vector in R. SVM finds the hyperplane

y = wx+ b (2.4)

by separating the space R into two half-spaces with the maximum-margin.

• Logistic Regression. Logistic regression is an advanced linear regression technique

used for classifying both linear and non-linear data. It is commonly used to model

data with binary responses. Logistic regression is a machine learning technique that

is implemented by taking the given input value and multiplying the input with weight

value [57]. Consider a feature vector x of one input text and the category C of this

input text, logistic regression directly estimates the vector (w) of weights, then we

use logistic regression models the prediction of specific text is hate speech or not.

Mathematically, we have

C = σ(w · x+ b)

=
1

1 + e−(w·x+b)
,

(2.5)

where the text falls into one of two class categories, hate speech or non-hate speech.

C indicates this text belongs to which category, which is given as

C =


0, non hate;

1, hate

(2.6)
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2.2.2 Deep Learning Based Methods

• Convolutional Neural Network (CNN). CNN is a kind of deep, feed-forward

artificial neural network. CNN is commonly used in computer vision, which shows

promising performance while applying to NLP tasks as well. The model architecture,

shown in Fig 2.1, is a shallow-and-wide CNN from Kim2014 [58].

Fig. 2.1: Architecture of the CNN model (Source: from [2])

We assume xi ∈ Rd is the d-dimensional word vector corresponding to the i-th word

in the sentence. Then we can denote a sentence of length n as

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn, (2.7)

where ⊕ defines the concatenation operator. In this case, a n×d sentence matrix for a

sentence of length n can be generated. Then we perform convolution on the sentence

matrix via filters. A convolution operation involving a filter W ∈ Rh×d, which is
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applied to a window size of h to produce a new feature. For example, a feature ci is

generated from a window of words xi:i+h−1 by

ci = f(W · xi:i+h−1 + b), (2.8)

where b ∈ R is a bias term and f is a nonlinear function such as the hyperbolic

tangent. After applying this filter to each possible window of words in the sentence

{x1:h, x2:h+1, ..., xn−h+1:n}, we can get a feature map

c = [c1, c2, ..., cn−h+1], (2.9)

where c ∈ Rn−h+1. Here, we use 2 filters for the same region size to learn complemen-

tary features from the same regions. We also use multiple filters with 2,3 and 4 region

sizes. In this condition, the dimensionality of the feature map generated by each filter

will vary as a function of the filter region size. A pooling function is thus applied

to each feature map to induce a fixed-length vector. We use 1-max pooling which is

to capture the most important feature (one with the highest value) [59]. For each

feature map, it takes the maximum value ĉ = max{c} as the feature corresponding

to this particular filter. (In the following, we denote the feature extraction process

as h(x) = CNN(x).) After that, we concatenate the outputs generated from each

filter map into a fixed-length, “top-level” feature vector. Then the feature vector is

fed through a softmax function to generate the final classification.

• Simple Recurrent Neural Network (Simple RNN). A recurrent neural network

is a class of artificial neural networks where connections between nodes form a directed

graph along a temporal sequence. Fig 2.2 shows the architecture of RNN. RNN reads

a sequence of tokens one by one. At each step, a recurrent network receives a new

input vector (xi) and the previous network state (hi−1). A recurrent neuron stores the

state of a previous input and combines with the current input, then a new state (hi+1)

is being computed. The new state contains the information about the current input
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and the previous states, thereby preserving some relationships between the current

input token and the previous input tokens. After we get the final state output vector,

then it can be passed to a fully connected layer for final prediction.

Fig. 2.2: Recurrent neural network

RNN models word sequence x as follows,

ht = σh(Whxt + Uhht−1 + bh) (2.10)

yt = σy(Wyht + by), (2.11)

where xt is input vector, ht is hidden layer vector, yt is output vector; W, U and

b are parameter matrices and vector; σh and σy are activation functions. Equation

2.10 shows the connection between the previous and the current hidden states, which

makes the information of previous context can be absorbed.

• Long Short Term Memory (LSTM). RNN suffers from vanishing and explod-

ing gradients problems when the error of the gradient descent algorithm is back-

propagated through the network [60], which makes RNN can not remember all input

history effectively. In order to deal with these problems, Hochreiter et al. [61] propose

LSTM that preserves long-term dependencies in a more effective way. Fig 2.3 shows

the structure of the LSTM cell.
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Fig. 2.3: The structure of LSTM cell

LSTM has three gates: input gate it, forget gate ft and output gate ot. All gates

are generated by a sigmoid function over the ensemble of input xt and the preceding

hidden state ht−1. In order to generate the hidden state at current step t, it first

generates a temporary result c̃t by a tanh nonlinearity over the ensemble of input

xt and the preceding hidden state ht−1, then combines this temporary result c̃t with

history ct−1 by input gate it and forget gate ft respectively to get an updated history

ct, finally uses output gate ot over this updated history ct to get the final hidden state

ht [62]. After we get final layer output ht, then a sigmoid function is applied to get

the final output yt.

The LSTM transition equations are the following:

ft = σg(Wfxt + Ufht−1 + bf ) (2.12)

it = σg(Wixt + Uiht−1 + bi) (2.13)

ot = σg(Woxt + Uoht−1 + bo) (2.14)

c̃t = σc(Wcxt + Ucht−1 + bc) (2.15)
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ct = ft ◦ ct−1 + it ◦ c̃t (2.16)

ht = ot ◦ σh(ct), (2.17)

where the initial values are c0 = 0, h0 = 0 and the operator ◦ denotes the Hadamard

product (element-wise product); the subscript t indexes the time step; σg is sigmoid

function, σc hyperbolic tangent function, σh is hyperbolic tangent function or, as the

peephole LSTM paper [63] suggests, σh(x) = x. Intuitively, the forget gate controls

the amount of which each unit of the memory cell is erased, the input gate controls

how much each unit is updated, and the output gate controls the exposure of the

internal memory state [64].

• Gated Recurrent Units (GRU). GRU is a gating mechanism in recurrent neural

networks, which was introduced in 2014 by Kyunghyun Cho et al [65]. GRU is a

variant of LSTM, it is easier to train. It has fewer parameters than LSTM, which

only includes two gates, the reset, and the update gate. Fig 2.4 shows the structure

of the GRU cell.

Fig. 2.4: The structure of the GRU cell (Source: from [3])



18

GRU models text x as follows,

zt = σg(Wzxt + Uzht−1 + bz) (2.18)

rt = σg(Wrxt + Urht−1 + br) (2.19)

h̃t = φh(Whxt + Uh(rt ◦ ht−1 + bh)) (2.20)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (2.21)

where xt is input vector, ht is output vector, h̃t is candidate activation vector, zt is

update gate vector, rt is reset gate vector, W, U and b are parameter matrices and

vector; σg is sigmoid function, φh is hyperbolic tangent. After we get layer output ht,

then a sigmoid function is applied to get the final output yt.

• Bidirectional LSTM. Bidirectional LSTM is an extension of traditional LSTM that

can improve model performance on sequence classification problems. Bidirectional

LSTM trains two LSTMs on the input sequence. Firstly, it computes the forward

hidden sequence
−→
ht ; then, it computes the backward hidden sequence

←−
ht ; finally, it

combines
−→
ht and

←−
ht to generate the hidden state ht. With this architecture, both past

context and future context of a specific word can be made use of. This can provide

additional context to the network and result in faster and even fuller learning on the

problem. Fig 2.5 shows the architecture of Bidirectional LSTM with three consecutive

steps. A Bidirectional LSTM is implemented by the following functions:

−→
ht = σh(W−→

h
xt +W−→

h

−→
h t−1 + b−→

h
) (2.22)

←−
ht = σh(W←−

h
xt +W←−

h

←−
h t−1 + b←−

h
) (2.23)

ht = W−→
h

−→
ht +W←−

h

←−
ht + bh (2.24)
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After we get final layer output ht, then a sigmoid function is applied to get the final

output yt. In the following, we denote Equations 2.22 to 2.24 as ht = BiLSTM(xt).

Fig. 2.5: The architecture of Bidirectional LSTM with three consecutive steps

• Loss Function. The parameters of the networks we described above are trained to

minimize the cross-entropy of the prediction and ground truth.

L(ŷ, y) = − 1

N

N∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (2.25)

where yi is the ground truth label, ŷi is prediction probabilities, and N denotes the

number of training samples.

2.3 Experiments

2.3.1 Dataset Description

We evaluate the proposed models on three annotated datasets that are from three

social media platforms, Twitter, Wikipedia, and White Supremacy Forum. In this section,

we provide a basic introduction for all of them. Table 2.1 shows the detailed statistics of

the three datasets.
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Table 2.1: Statistics of the three datasets

Dataset Total Classes Distribution

Twitter 24783

Offensive 19190

Hate speech 1430

Neither 4163

White Supremacy Forum 42812
Not hate 38028

Hate 4784

Wikipedia 159571
Toxic 15294

Not toxic 144277

• Twitter. The Twitter dataset includes 25K annotated tweets made available by the

authors of [24]. In this dataset, 1430 tweets are labeled as hate speech, 19190 tweets

are labeled as offensive language, and the remaining (4163) tweets are marked as

harmless (neither hate speech nor offensive language). In our experiments, we merge

the offensive language labeled tweets and hate speech labeled tweets into one positive

class for binary classification.

• Wikipedia. Wikipedia dataset includes 160k Wikipedia comments which have been

labeled by human raters for toxic behavior. In this dataset, 15294 comments are

labeled as toxic, and the remaining comments are marked as not toxic, the dataset is

provided by [66].

• White Supremacy Forum. Forum dataset includes 42k annotated forums made

available by [67]. In this dataset, 4784 forums are labeled as hate speech, 38028 forums

are labeled as not hate speech.

2.3.2 Word Cloud

A word cloud is a powerful visual representation object for text processing, in which

the sizes of words shows the frequency and importance of specific words. The bigger size
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of the word means it’s more important. Figure 2.6 shows the word clouds of the positive

classes of the three datasets. From the three word clouds, we can notice that the hate

speech type of the Wikipedia dataset and Twitter dataset are general and similar to each

other, while the Forum dataset is focusing on race orientated hate speech.

(a) Wikipedia (b) Twitter (c) Forum

Fig. 2.6: Word cloud of three datasets

2.3.3 Pre-Processing

Since the data we got is from social media platforms, the raw texts usually include a

lot of noise, like punctuation, URLs that will affect our experiment result, we pre-process

our text data at the very first step.

• Remove Noise. Remove the URLs, punctuation marks.

• Lowercasing. Lowercasing all the texts, which avoids capitalized versions of words

being treated as separate features to lowercase versions of the same word.

• Stop Words Removal. A stop word is a commonly used word (such as “the”, “a”,

“an”, “in”) that a search engine has been programmed to ignore. We would not want

these commonly used words taking up space in our database, or taking up the valuable

processing time. Here, we remove the stop words, then we can focus on the important

words instead.

• Tokenization. Tokenization is essentially splitting a phrase, sentence, paragraph, or

an entire text document into smaller units, such as individual words or terms. Each
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of these smaller units is called tokens. In this thesis, we split all the sentences into

words during the tokenization process.

• Token normalization. Two commonly used techniques for text normalization are

Stemming and Lemmatization. Stemming is a process of removing and replacing

suffixes to get to the root form of the word, which is called the stem. Lemmatization

usually refers to doing things properly with the use of a vocabulary and morphological

analysis. Lemmatization technique returns the base or dictionary form of a word,

which is known as the lemma. Table 2.2a shows how stemming works. Table 2.2b

shows how lemmatization works. In our experiments, we use lemmatization as the

token normalization method.

Table 2.2: Stemming and lemmatization

(a) Stemming

Original word Stemmed word

feet feet

cats cat

wolves wolv

talked talk

(b) Lemmatization

Original word Lemmatized word

feet foot

cats cat

wolves wolf

talked talk

Text Feature Extraction

While applying machine learning algorithms, the raw text data cannot be fed directly

to machine learning algorithms. Most algorithms accept numerical feature vectors with a

fixed size but can not deal with the raw text data with variable length. To address this

problem, we need to extract numerical features from text content. In traditional machine

learning, we usually convert a collection of text documents to a matrix of token counts by

using Bag of Words or Term Frequency-Inverse Document Frequency.

• Bag of Words (BOW). BOW is a method that is to extract numerical features

from text content. Firstly, tokenizing all sentences and store all unique tokens that

generated from all sentences into a dictionary (a big bag); secondly, counting the
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occurrences of tokens in each sentence. In this case, we convert our raw sentences

into feature vectors. Thus we can represent a corpus of sentences as a matrix with

one row per sentence and one column per token occurring in the corpus. For each

token, we will have a feature column, this is called text vectorization. Table 2.3

show a simple example of convert three sentences into three feature vectors. Assum-

ing we have three sentences show in Table 2.3a, firstly we can get the first row of

Table 2.3b, which contains all the unique tokens that occurs in the three sentences,

then we count the occurrences of tokens in each sentence to get the feature vector of

each sentence. The general process of converting a collection of text sentences into

numerical feature vectors is vectorization. By using BOW, sentences are described

by word occurrences.

Table 2.3: Bag of words

(a) Sentences

good movie

not a good movie

did not like

(b) Feature vectors

good movie not a did like

1 1 0 0 0 0

1 1 1 1 0 0

0 0 1 0 1 1

• Term Frequency-Inverse Document Frequency (TF-IDF). In a large text

corpus, some words occur very frequently (e.g. “the”, “a” in English) while carrying

very little meaningful information about the actual contents. In order to focus on more

important information, it is common to use the TF-IDF transform. By using TF-IDF

transform, we can can re-weight the count features into floating-point values suitable

for usage by classifier. The TF-IDF score is calculated by the following formula:

tfidf(t, d,D) = tf(t, d)× idf(t,D), (2.26)
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where tf(t, d) represents the frequency for term t in document d (Table 2.4 shows the

variants of tf(t, d)), and idf(t, D) represents the inverse document frequency

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
, (2.27)

where N = |D| represents the total number of documents in corpus, and |{d ∈ D :

t ∈ d}| is the number of documents where the term t appears.

Table 2.4: Term frequency (tf(t, d))

Weighting scheme TF weight

Binary 0,1

Raw count ft,d

Term frequency ft,d/
∑

t′∈d ft′ ,d

Log normalization 1 + log(ft,d)

A high weight in TF-IDF is reached by a high term frequency (in the given document)

and a low document frequency of the term in the whole collection of documents.

2.3.4 Evaluation Metrics

In general, classifiers that show higher accuracy scores represent better performance in

classification tasks. However, the class distribution of the three datasets that we used in our

experiments are very imbalanced, using accuracy score is misleading. Here, we use macro

averaged precision, recall, and F1 score to summarize models’ performance, which may

provide a more informative evaluation strategy for imbalanced classification models [68].

Accuracy, which is the proportion of correct predictions, is suitable for evaluating

models based on balanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.28)
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where TP (True Positive) is the number of texts that are positive and predicted correctly

as positive; TN (True Negative) is the number of texts that are negative and predicted

correctly as nagetive; FP (False Positive) is the number of texts that are negative but

predicted incorrectly as positive; FN (False Negative) is the number of texts that are

positive but predicted incorrectly as negative.

Precision, which is also referred to as positive predictive value (PPV), is the proportion

of positive results that are truly positive:

Precision =
TP

TP + FP
. (2.29)

Recall, which is also referred to as the true positive rate or sensitivity, is the ability

of a test to correctly identify positive results to get the true positive rate:

Recall =
TP

TP + FN
. (2.30)

F1 score, which is also referred to as the F score or F measure, is defined as the

weighted harmonic mean of the precision and recall such that the best score is 1.0 and the

worst is 0.0. F1 score is calculated as follow:

F1 = 2× Precision×Recall
Precision+Recall

. (2.31)

2.3.5 Experimental Results

We conduct hate speech detection on Twitter, Wikipedia, and White Supremacy Forum

datasets that we have described in Table 2.1. For each dataset, we assign 75 percent of the

whole dataset for training, and the test set contains the remaining 25 percent. Table 2.5

shows the size of the training and test sets for three datasets. In addition, for deep learning

methods, we assign 10 percent of the training set to the validation set. Each model is
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trained using the training set, and then the test set is used to measure the performance of

the model.

Table 2.5: The size of training and test datasets

Dataset Training size(75%) Test size(25%)

Twitter 18587 6196

Forum 32109 10703

Wikipedia 119678 39893

Tables 2.6, 2.7, and 2.8 show the macro averaged precision, recall and F1 score for hate

speech detection results on three datasets respectively. The macro average precision, recall,

and F1 score indicate arithmetic averages of the per-class precision, recall, and F1-score to

show the overall performance of all classes. The best precision, recall, and F1 score results

of different models for each dataset are identified by underlining and bolding.
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Table 2.6: Macro averaged precision, recall and F1 score for Twitter Dataset

Method Precision Recall F1 score

Traditional Machine Learning Methods

Näıve Bayes & TFIDF 0.9033 0.5550 0.5581

Näıve Bayes & Count 0.9053 0.7757 0.8215

SVM & TFIDF 0.9027 0.9058 0.9042

SVM & Count 0.9065 0.9102 0.9083

Logistic Regression & TFIDF 0.9113 0.8532 0.8787

Logistic Regression & Count 0.9054 0.9113 0.9083

Deep Learning Methods

SimpleRNN 0.8889 0.8637 0.8756

LSTM 0.8937 0.8656 0.8788

GRU 0.8947 0.8738 0.8838

Bidirectional LSTM 0.8972 0.8753 0.8858

CNN 0.9105 0.8745 0.8912

It is clear from Table 2.6 that for Twitter dataset, traditional machine learning meth-

ods perform better than deep learning methods. Among all traditional machine learning

methods, Logistic Regression with the TFIDF feature shows the best precision while Lo-

gistic Regression with Bag of Words feature shows the best recall and F1 score. Among

all deep learning methods, CNN shows the best precision and F1 score while Bidirectional

RNN shows the best recall.
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Table 2.7: Macro averaged precision, recall and F1 score for Forum Dataset

Method Precision Recall F1 score

Traditional Machine Learning Methods

Näıve Bayes & TFIDF 0.9319 0.5986 0.6399

Näıve Bayes & Count 0.8767 0.8750 0.8758

SVM & TFIDF 0.9238 0.6641 0.7231

SVM & Count 0.9712 0.9081 0.9367

Logistic Regression & TFIDF 0.8977 0.6486 0.7025

Logistic Regression & Count 0.9672 0.8868 0.9221

Deep Learning Methods

SimpleRNN 0.9924 0.9853 0.9888

LSTM 0.9858 0.9894 0.9876

GRU 0.9891 0.9891 0.9891

Bidirectional LSTM 0.9824 0.9882 0.9853

CNN 0.9944 0.9933 0.9939

Table 2.7 shows that for the Forum dataset, deep learning methods perform better than

traditional machine learning methods. Among all traditional machine learning methods,

SVM with TFIDF feature achieves the best precision, recall, and F1 score. Among all deep

learning methods, CNN achieves the best precision, recall, and F1 score.
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Table 2.8: Macro averaged precision, recall and F1 score for Wikipedia Dataset

Method Precision Recall F1 score

Traditional Machine Learning Methods

Näıve Bayes & TFIDF 0.9554 0.5714 0.6031

Näıve Bayes & Count 0.9117 0.7617 0.8159

SVM & TFIDF 0.9546 0.7239 0.7920

SVM & Count 0.9165 0.8089 0.8526

Logistic Regression & TFIDF 0.9362 0.7902 0.8450

Logistic Regression & Count 0.9111 0.8242 0.8611

Deep Learning Methods

SimpleRNN 0.5421 0.5372 0.5393

LSTM 0.8600 0.8357 0.8473

GRU 0.8683 0.8316 0.8487

Bidirectional LSTM 0.8790 0.8281 0.8512

CNN 0.8785 0.8403 0.8581

Table 2.8 shows that for the Wikipedia dataset, deep learning methods perform better

in terms of precision and F1 score than traditional machine learning methods. Among

all traditional machine learning methods, Logistic Regression with Bag of Words feature

achieves the best recall and F1 score while Näıve Bayes with TFIDF feature achieves the

best precision. Among all deep learning methods, CNN achieves the best recall and F1

score while Bidirectional RNN performs the best precision.

2.4 Summary

In this chapter, we conduct hate speech detection on three different social media plat-

forms by using widely-used traditional machine learning models and deep learning models

based on rich amount of annotated data. The experimental results show that these models

can achieve decent performance.
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CHAPTER 3

Hate Speech Detection via a Pre-trained Language Model

In previous work, we conduct hate speech detection based on rich annotated data and get

decent performance. However, in real life, data labeling is very time and effort-consuming.

If we want to conduct hate speech detection on a social media platform that only limited

labeled data is available for us, then how can we tackle this challenge?

3.1 Introduction

In Chapter 2, we have shown the good performance of applying deep learning models

for hate speech detection in rich resource datasets. However, modern deep learning mod-

els suffer data-hungry and computationally expensive problems, good performance usually

depends on sufficient amounts of labeled data. Recently, pre-trained language models have

attracted massive interest in the NLP field, which aims at finding the best methods for

word or text representations. The key idea behind pre-trained language models is to train

a large generative model on a huge size corpus, then use the resulting representations on

tasks for which only limited amounts of labeled data are available. Pre-trained language

models can be regarded as a black box that has a good understanding of natural language,

which can be easily applied and fine-tuned to deal with many NLP tasks. In this case, we

don’t have to train a new model from scratch. Unsupervised pretraining of language models

on large corpora such as ELMo [16], GPT [17] and BERT [6] significantly improve perfor-

mance on many NLP tasks. In this chapter, considering the low-resource setting scenario,

we propose to use a pre-trained Bidirectional Encoder Representations from Transformers

(BERT) model to address the low resource issue for hate speech detection.

3.2 Methodology
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3.2.1 BERT

BERT, as a powerful pre-trained language model, is built based on Transformer encoder

[69]. BERT is designed to train deep bidirectional representations from unlabeled texts by

considering both left and right contexts [6].

Fig. 3.1: Transformer encoder architecture (Source: from [4])

The multi-layer bidirectional transformer encoder (see Fig 3.1) contains a stack of iden-

tical layers. In each layer, there are two sub-layers, a multi-head self-attention mechanism

and a simple position-wise fully connected feed-forward network. It employs a residual

connection [70] around both sub-layers, followed by a layer normalization [4]. In this case,

the output of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the

function implemented by the sub-layer [69].

For the multi-head self-attention mechanism (see Fig 3.2), firstly, a scaled dot-product

attention is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (3.1)
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where Q is the matrix of queries, K is the matrix of keys, V is the matrix of values and dk

is the dimension of the Q and K matrices. Then, a multi-head attention is defined as:

MuitiHead(Q,K, V ) = Concat(head1, ..., headh)WO, (3.2)

where headi = Attention(QWi
Q,KWi

K , V Wi
V ). Multi-head attention works on projecting

the queries, keys and values h times with different, learned linear projections to dk, dk

and dv(dimension of the values matrix), respectively. Then, for each projected version

of the queries, keys and values, attention function is performed in parallel, yielding in

dv−dimentional output values. Finally, these are concatenated and projected, resulting in

the final values [69]. The key point behind self-attention is that all of the keys, values and

queries come from the same place.

Fig. 3.2: Multi-head attention (Source: from [5])

Pre-training BERT

For the BERT model framework, there are two important steps: pre-training and fine-

tuning [6]. During the pre-training process, the model is trained on the English Wikipedia

and the Book Corpus using the following tasks:

Task #1: Masked LM. Intuitively, it is reasonable to believe that a deep bidirectional

model is strictly more powerful than either a left-to-right model or the shallow concatena-
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tion of a left-to-right and a right-to-right model [6]. However, the previous unidirectional

language models are only considering context from left-to-right or right-to-left while learn-

ing general language representations. Since bidirectional conditioning enables each word to

indirectly “see itself”, Masked LM is proposed to train a deep bidirectional representation.

At first, a ratio of tokens in the input sequence is masked out at random. Then,

the entire sequence is fed to a deep bidirectional Transformer [69] encoder. The objective

of the model is to predict the original vocabulary id of the masked words only based on

their context. In this case, the final hidden vectors corresponding to the mask tokens

are fed into an output softmax over the vocabulary, as in a standard LM [6]. By using

this “masked language model” pre-training process, BERT alleviates the unidirectional

constraint, which enables the representation to fuse the left and right context. The following

example illustrates how masked LM works.

• Input = That’s [MASK] she [MASK]

• Output = That’s what she said

Task #2: Next Sentence Prediction (NSP). A binarized NSP task is pre-trained

to understand the relationship between sentences, which can be easily generated from any

monolingual corpus. Given a pair of two input sentences A and B, and then the model

learns to classify whether or not sentence B follows sentence A. Specifically, while choosing

the sentences A and B for each pre-training example, 50% of the time B is the actual next

sentence that follows A (labeled as IsNext), and 50% of the time B it is a random sentence

from the corpus (labeled as NotNext) [6]. The following examples illustrate how NSP works.

• Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

• Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext
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After pre-trained based on the above two self-supervised tasks, the model is initialized

with the pre-trained parameters. Since the BERT model is pre-trained on general corpora,

and the hate speech detection task that we are dealing with is related to social media

content. Then we have to fine-tune it using annotated hate speech datasets after analyzing

the contextual information extracted from BERT pre-trained layers. For fine-tuning, all the

parameters are fine-tuned using labeled data for specific tasks. In our experiments, all the

parameters are fine-tuned for hate speech detection.

The layers of BERT architecture are showed in Fig 3.3, where En defined the n-th token

in the input sequence, Trm defines the Transformer block, and Tn defines the corresponding

output embedding. We can see that it is not the same as traditional sequential or recurrent

models, the attention architecture processes all the input tokens in parallel. Pre-trained

BERT model can be fine-tuned with just one additional layer to obtain state-of-art results

in a wide range of NLP tasks [6].

Fig. 3.3: BERT architecture (Source: from [6])

3.2.2 BERT Based Hate Speech Detection Model

Fig 3.4 shows the overall architecture of our BERT based model. Firstly, we remove

punctuations, URLs, stopwords, and lowercase all the texts. Secondly, we tokenize texts

by padding them into a max length and add the [CLS] and [SEP] tokens at the appropri-

ate positions. Thirdly, we compute the sequence embedding from BERT. Then we apply

dropout with a probability factor of 0.3 to regularize and prevent overfitting. Finally, we

apply a softmax classification layer for prediction. The softmax layer is a fully connected
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neural network layer with the softmax activation function σ : RK → RK :

σ(Z)i =
ezi

ΣK
j=1e

zj
, (3.3)

where i = 1, ...,K, and z = (z1, ..., zK) ∈ RK is the intermediate output of the softmax

layer (also called logits). The output node with the highest probability is then chosen as

the predicted class label for the input.

Fig. 3.4: Bert based hate speech detection model (Source: from [6])

3.3 Experiments

3.3.1 Dataset Description

The datasets we use in our experiments are still from Twitter, Wikipedia, and White

Supremacy Forum datasets that we have introduced in Chapter 2. For each dataset, we

use 600 of the whole dataset for training, and the test set contains the remaining of each

dataset. Table 3.1 shows the size of the training and test sets for our experiments in this

chapter.
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Table 3.1: The size of training and test datasets

Dataset Training size Test size

Twitter 600 24183

Forum 600 42212

Wikipedia 600 158971

3.3.2 Pre-Processing

We remove stop words, remove punctuation marks, URLs, and convert all texts to

lower case. We also use the lemmatization technique as the token normalization method.

The details of these pre-processing steps have been introduced in Chapter 2.

3.3.3 Experimental Results

Every model is trained using the training set and then the test set is used to measure

the performance of the model. For deep learning methods, we assign 100 data points of

the training set to the validation set. In this chapter, the experiments using different

datasets with the same size of the training datasets, the evaluation metrics that we use

here are the macro averaged precision, recall, and F1 score. Table 3.2 shows the macro

averaged precision, recall, and F1 score for three datasets respectively. Here, we compare

the performances of BERT based model with traditional machine learning models and deep

learning models based on the small-size training datasets. The best precision, recall, and F1

score results of different models for each dataset are identified by underlining and bolding.
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Table 3.2: Macro average of precision, recall and F1-score for three datasets

Datasets Models Precision Recall F1-score

Twitter Dataset

Näıve Bayes 0.8840 0.6627 0.7091

SVM 0.8484 0.7704 0.8014

Logistic Regression 0.8532 0.7128 0.7561

Simple RNN 0.5488 0.5358 0.5382

LSTM 0.4156 0.5000 0.4539

Bidirectional LSTM 0.4156 0.5000 0.4539

GRU 0.4156 0.5000 0.4539

CNN 0.8000 0.7580 0.7762

BERT 0.8865 0.8389 0.8602

Forum Dataset

Näıve Bayes 0.6753 0.5504 0.5634

SVM 0.6551 0.5816 0.6006

Logistic Regression 0.8175 0.5357 0.5395

Simple RNN 0.5805 0.5002 0.4710

LSTM 0.5813 0.5820 0.5816

Bidirectional LSTM 0.8401 0.5123 0.4956

GRU 0.7444 0.5006 0.4718

CNN 0.8879 0.5159 0.5024

BERT 0.7385 0.6338 0.6656

Wikipedia Dataset

Näıve Bayes 0.8998 0.6176 0.6673

SVM 0.7236 0.6541 0.6801

Logistic Regression 0.8935 0.5648 0.5919

Simple RNN 0.7646 0.5002 0.4752

LSTM 0.9102 0.5028 0.4806

Bidirectional LSTM 0.9198 0.5042 0.4834

GRU 0.6437 0.5018 0.4791

CNN 0.6724 0.6273 0.6449

BERT 0.8912 0.7685 0.8155
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It is clear from Table 3.2 that, for Twitter dataset, BERT shows the best precision,

recall and F1 score; for Forum dataset, CNN shows the best precision, BERT shows the best

recall, and F1 score; for Wikipedia dataset, Bidirectional LSTM shows the best Precision,

BERT shows the best recall, and F1 score. Overall, for three datasets, BERT always

shows the best recall and F1 score among the deep learning models and traditional machine

learning models used in our experiments.

Besides comparing the BERT with the deep learning models and traditional machine

learning models by using a fixed size of the training dataset, we also compare the different

performances of SVM, CNN, and BERT by using different sizes (200, 400, 600, 800, 1000)

of the training dataset. The reason why we choose CNN and SVM to compare with BERT

is that, according to Table 3.2, SVM shows the highest F1 score among traditional machine

learning models, CNN shows the highest F1 score among deep learning models.

We simply choose 200, 400, 600, 800, 1000 from the original Twitter dataset, Forum

dataset, and Wikipedia dataset for training, and the remaining for testing. The evaluation

metric we use here is the Macro average of the F1-score. Fig 3.5 shows that, for Forum and

Wikipedia datasets, BERT always shows the best performance in F1 score. For Twitter

dataset, by using a small size (200, 400) training dataset, SVM can get a decent performance,

even better than using BERT. However, when the training size is a little bit larger, BERT

shows the best performance.

(a) Twitter Dataset (b) Forum Dataset (c) Wikipedia Dataset

Fig. 3.5: Macro averaged F1 score of three datasets with different training size
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3.4 Summary

In this chapter, we conduct hate speech detection on three different social media plat-

forms based on limited labeled data. We fine-tune the BERT model on each social media

platform to detect hate speech. The experimental results show that by using BERT, we can

achieve better performance than widely-used machine learning models while only limited

labeled data is available.
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CHAPTER 4

Multitask Learning for Hate Speech Detection

In previous work, we fine-tune a language model to conduct hate speech detection on

single task learning based on limited labeled data for each social media platform. If we

have limited labeled data from several related social media platforms, can we utilize the

correlations among platforms to improve hate speech detection on all the platforms?

4.1 Introduction

In Chapter 2, we apply the traditional machine learning and deep learning models

to detect hate speech based on single-task supervised objective functions. By using large

sizes of annotated datasets to train our models, we do get good performances. However,

in reality, the data that can be used for hate speech detection is limited, it is not easy

to collect enough annotated data to analyze the models. Then in Chapter 3, we propose

to fine-tune the pre-trained BERT model which employs a pre-trained embedding to map

words into vectors with semantic implications. By using the pre-trained BERT model, we

can get decent performance by just using a relatively small size of training data. However,

BERT is trained on a large number of words and articles from Wikipedia and the Book

Corpus. Therefore, this method introduces extra knowledge from the large-size corpus.

In this chapter, we propose to use the multitask learning technique to leverage potential

correlations among related tasks to extract common features. By using multitask learning,

we can not only increase corpus size implicitly but also absorb knowledge from related

tasks. Multitask learning is defined as “an approach to inductive transfer that improves

generalization by using the domain information contained in the training signals of related

tasks as an inductive bias” by Caruana [18]. Multitask learning has been applied to many

different domains. The substantial benefit of using extra tasks has been validated [18]. One

of the most important benefits of multitask learning is that it provides an approach to access
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resources developed for similar tasks. By learning related tasks jointly while using a shared

representation, we can get access to larger amounts of usable data. And with the help of

other tasks, the performance of a single task can be improved. In this chapter, considering

the low-resource setting scenario, we propose multitask learning to detect hate speech in

different online platforms.

4.2 Methodology

4.2.1 Multitask Learning

The key idea of multitask learning is to solve multiple related tasks simultaneously.

Recently, the neural network-based models for multitask learning have been employed in

computer vision and natural language processing, and the benefits have been empirically

validated [71–74]. Especially, given K learning tasks {T k}Kk=1, where all the tasks or subset

of them are related, multitask learning aims to improve the performance of a model for T k

by using the knowledge contained in all or some of the K tasks [75].

In our scenario, Dk is defined as an online platform with Nk texts for task k, i.e.,

Dk = {(xki , yki )}Nk
i=1, (4.1)

where xki and yki denote a sentence and corresponding label for task k.

4.2.2 Multitask Learning for Hate Speech Detection

We adopt bidirectional LSTM (BiLSTM) to model the text data, which consists of

two LSTM networks to propagate text forward and backward to capture the dependencies

among words. Previous work in Chapter 3 also shows relatively good performance by using

BiLSTM while we conduct hate speech detection based on limited labeled data. In this

chapter, we still consider using multitask learning to detect hate speech based on several

limited labeled datasets from different social media platforms.
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Architecture of Multitask Learning

Fig 4.1 shows the multitask learning architecture. It shares the hidden layers between

all tasks and keeps several task-specific output layers. In our case, the embedding layer and

Bidirectional LSTM layer are shared to extract the common features for all tasks, then fed

into the corresponding task-specific output layer for classification. For example, given three

hate speech detection tasks k1, k2 and k3 that from different social media platforms (Twitter,

Wikipedia, Forum), it takes the view that the features of each hate speech detection task can

be shared by the other two hate speech detection tasks. Given K supervised hate speech

detection tasks, T 1, T 2, ..., TK , a jointly learning model is trained to transform multiple

inputs into a combination of predicted distributions in parallel.

Fig. 4.1: Architecture of multitask learning

For a sentence xki in task T k, the feature hki will be extracted by the shared layers, in

this case, we can firstly get its shared representation hki .

hki = BiLSTM(xki ), (4.2)

After the feature hki is derived by the multitask architecture, it will be fed into the

corresponding task-specific dense layer for classification. The overall training objective is
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to minimize the cross-entropy of predicted and true distributions on all the tasks.

ŷki = σ(Whki + b), (4.3)

LTk = − 1

N

N∑
i=1

[yki log(ŷki ) + (1− yki )log(1− ŷki )], (4.4)

L =
K∑
k=1

LTk , (4.5)

where ŷki is the prediction of a input sentence in task k, yki is the ground truth of a input

sentence in task k, N is the number of training samples in specific task, LTk is the loss of

task k, L is the total loss of all tasks.

4.3 Experiments

4.3.1 Dataset Description

In this chapter, we compare the performances of single-task (BiLSTM model) with

multitask learning for each dataset. We use balanced datasets to conduct our experiments.

To generate balanced datasets for our experiments, we under-sample the majority class

(negative class). Table 4.1 shows the class distributions for the three datasets we use in this

chapter. In our experiments, we choose 100, 200, 300, 400, and 500 data points from the

three balanced datasets for training. We also assign another 100 data points for validation,

and the remaining for testing.

Table 4.1: The classes distribution for three datasets

Dataset Positive Negative

Twitter 4000 4000

Forum 4700 4700

Wikipedia 15000 15000
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4.3.2 Pre-Processing

We remove stop words, punctuation marks, URLs, and convert all texts to lower case.

We also use the lemmatization technique as the token normalization method. The details

of these pre-processing steps have been introduced in Chapter 2.

4.3.3 Training Details

The training steps of our multitask learning are different from single-task learning. In

multitask learning, the labeled data for training each task should come from completely

different datasets. According to [71], the training is achieved in a stochastic manner by

looping over the tasks:

1. Select a random task.

2. Select random training examples from this task. In our experiments, we set a batch

size 32, and then randomly select a batch from the specific task as training samples.

3. Update the parameters for this task by taking a gradient step with respect to these

examples.

4. Go to 1.

4.3.4 Experimental Results

(a) Twitter Dataset (b) Forum Dataset (c) Wikipedia Dataset

Fig. 4.2: Accuracy of three datasets with different training size

Since we use balanced datasets to conduct experiments, the evaluation metric here we

use is Accuracy. Figure 4.2 shows the result of our experiments. It is clear from Fig 4.2
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that, for three datasets, the performances of using multitask learning are much better than

just training our model on a single dataset when we only use 100, 200, 300 samples for

training. However, while the size of our training set is larger, the performances of using

multitask learning are not better than just training our model on a single dataset. This

means that in multi task learning, the quality of data (how close to the target data) is much

more important than the quantity (how many related tasks data).

4.4 Summary

In this chapter, we develop a multitask learning model to conduct hate speech detection

on three social media platforms in parallel. The experimental results show that, by lever-

aging the knowledge from the three related hate speech detection tasks, the performances

of hate speech detection on each single social media platform can be improved when only

limited labeled data are available.



46

CHAPTER 5

Domain Adaptation for Hate Speech Detection

In previous work, we implement hate speech detection based on labeled data with large

size of training datasets and small size of training datasets, while generating labeled data is

always an obstacle, can we achieve hate speech detection when the labeled data of our target

social media platform is not available?

5.1 Introduction

Over the past few years, significant success has been validated in classification areas by

using traditional machine learning technologies. However, while applying machine learning

methods for a new machine learning task, the cost of generating labeled data is often chal-

lenging. Costly annotation limits the further development of machine learning approaches.

In this case, domain adaptation approaches have been introduced to address the lack of

labeled data problems. The task of domain adaptation is to leverage sufficient annotated

data from the related source domain to the unlabeled target domain. In many cases, we

have enough labeled training data for the source domain, we wish to learn a classifier from

the source domain and then apply it into our unlabeled target domain with different dis-

tributions. By transferring invariant structures or features from the source domain to the

target domain, we can alleviate the distribution discrepancy of different domains. Accord-

ing to [19], a good representation transfer is one for which an algorithm cannot learn to

identify the domain of origin of the input observation. To achieve domain adaptation, then

in [76], the authors proposed a neural network algorithm, named Domain Adversarial Neu-

ral Network. Domain Adversarial Neural Network architecture aims at encouraging the

network’s hidden layer to learn a representation that is predictive of the source example

labels, but uninformative about the domain of the input. The effectiveness of applying

Domain Adversarial Neural Network has been validated from extensive experiments on dif-
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ferent applications. Domain Adversarial Neural Network architecture develops an explicit

pair of the source and target domains that the knowledge can be transferred from one source

domain to the target domain. Recently, research in [77] propose that domain adaptation

can be applied on multiple source domains. In this case, more knowledge might be ab-

sorbed from multiple source domains compared with learning from a single-source domain.

Considering the zero-resource settings of the target domain, we propose to adopt Domain

Adversarial Neural Network architecture to detect hate speech on newly developed social

media platforms.

5.2 Methodology

5.2.1 Domain Adaptation

Domain adaptation is described by [76] as follows: X is defined as the input space

and Y = {0, 1} is the set of labels in classification tasks. Then we have source domain DS

and the target domain DT , which are two different distributions over X × Y. An domain

adaptation learning algorithm is then provided with a labeled source sample S drawn i.i.d

from DS , and an unlabeled target sample T drawn i.i.d from DT ,

S = {(xsi , ysi )}mi=1 ∼ (DS)m T = {xti}m
′

i=1 ∼ (DT )m
′
, (5.1)

where m is the number of samples from source domain, m′ is the number of samples from

target domain. The learning algorithm aims at building a classifier η : X → Y with a low

target risk

RDT (η)
def
= Pr

(xt,yt)∼DT

(
η(xt) 6= yt

)
, (5.2)

while having no information about the labels of DT . Here the low target risk RDT (η) that

respect to classifier η is defined by the probability that the prediction results η(xt) do not

match the the ground truth yt.

In our cases, we assume this scenario: for a new social media platform, we want to

conduct hate speech detection on this platform. However, we do not have any labeled data
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for this platform. Then we try to leverage the labeled data from other related social media

platforms and apply the domain adaptation technique to address the hate speech detection

task on our target social media platform. Here, the hate speech detection on our target

social media platform is regarded as a target domain task, and the other related social

media platforms with labeled data are regarded as source domains. Our goal is to transfer

the knowledge from source domains to our target domain, then to achieve high accuracy on

the target hate speech classification task without labeled data of our target domain.

5.2.2 Domain Adversarial Neural Network for Hate Speech Detection

To achieve domain adaptation for hate speech detection, we propose a domain adver-

sarial neural network to learn a model that can generalize well from the source domain to

the target domain. The key point behind of domain adversarial neural network is that the

source risk is expected to be a good indicator of the target risk when the distributions of the

source and the target are similar. Therefore, the feature representation derived from the

neural network should not contain any discriminative domain information about the input

(source or target). The domain adversarial neural network includes two main key parts:

Source Risk Minimization and Domain Adaptation Regularizer. The source risk minimiza-

tion is to achieve high accuracy on the hate speech detection of the source domain. The

domain adaptation regularizer is to force representations of examples where both the source

and the target domain are as indistinguishable as possible.

Source Risk Minimization

For source domain classification, given an input text x, we denote the feature repre-

sentation of this input as h(x), where h(·) is an CNN model used as the feature extractor.

h(x) = CNN(x). (5.3)
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We denote f(x) as conditional probability that the neural network assigns x to class y,

where y is the ground truth label.

f(x) = σ(Wh(x) + b). (5.4)

To train the feature extractor h(·) and classifier f(·), we use cross entropy loss as the

objective function.

Ls(f(x), y) = −ylog(f(x))− (1− y)log(1− f(x)). (5.5)

Given a training source sample S = {(xSi , ySi )}mi=1, to get a low risk on source domain, we

need to minimize the objective function:

min

[
1

m

m∑
i=1

Ls(f(xSi ), ySi )

]
. (5.6)

Domain Adaptation Regularizer

To learn representations of examples where both the source and the target domain are

as indistinguishable as possible, domain-invariant features need to be learned. We denote

the feature representations of unlabeled sample from the target domain T = {xti}m
′

i=1 as

h(T ) = {h(xti)}m
′

i=1.

We use a domain classifier to classify a given input (xS or xt) is from the source domain

DS or target domain DT , we denote the label of target domain as z = 0, denote the label

of source domain as z = 1:

o(φ) = σ(d+ uTφ), (5.7)

where o(·) is a domain classifier; φ is either h(xS) or h(xt). Loss function of domain classifier

Ld is defined as

Ld(o(x), z) = −zlog(o(z))− (1− z)log(1− o(z)). (5.8)
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Then the domain classifier is to get low risk on domain classification:

min
( 1

m

m∑
i=1

Ld(o(xSi ), 1) +
1

m′

m′∑
i=1

Ld(o(xti), 0)
)
. (5.9)

When the domain classifier is struggling to classify the input is from the source domain or

target domain, the feature extractor is to prevent the domain classifier from classifying the

input correctly. Finally, the domain classifier will fail, then domain-invariant features can

be learned. Here, we use a domain classifier and feature extractor to fight each other to

achieve this goal. Then we can get the final objective function as follows.

Final Objective Function

To sum up the Source Risk Minimization and Domain Adaptation Regularizer, we can

get the the final objective function:

min

[
1

m

m∑
i=1

Ls(f(xSi ), ySi )− λmax
( 1

m

m∑
i=1

Ld(o(xSi ), 1) +
1

m′

m′∑
i=1

Ld(o(xti), 0)
)]
, (5.10)

where the first term is to minimize the loss of hate speech detection on the source domain,

the second term is to maximize the loss of domain classification task to get domain-invariant

features. λ > 0 weights the domain adaptation regularization term, in our experiments, we

set λ as 1.

Domain Adversarial Neural Network

In Equation 5.10, there is a maximization operation, which makes the feature extractor

and the domain classifier fight against each other in an adversarial way. Figure 5.1 shows

the architecture of our domain adversarial neural network. The domain adversarial neu-

ral network includes several major parts: i) feature extractor (the green part), ii) domain

classifier (the blue part), iii) label predictor (the yellow part). The feature extractor learns

a representation in which the label predictor accurately classifies the hate speech from the

source domain, while the domain classifier is unable to distinguish the input example that
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belongs to the source domain or the target domain. To fool the domain classifier, a special

gradient reversal layer (GRL) is inserted between the feature extractor and the domain

classifier. During the backpropagation-based training, the gradient reversal layer is used to

multiply the gradient by a negative constant. Gradient reversal ensures that the feature

distributions over the target domain and the source domain are as indistinguishable as pos-

sible for the domain classifier. During the learning process in the domain adversarial neural

network, the domain classifier aims to discriminate between the source domain and the

target domain, while the feature extractor is adversarially updated to prevent it to succeed.

In the end, the domain classifier fails to discriminate the source and target distributions.

In this case, the domain-invariant features can be learned.

Fig. 5.1: Architecture of domain adversarial neural network (Source: from [7])

Domain Adversarial Neural Network based on Multiple Source Domains

In the previous description, we are talking about applying a domain adversarial neural

network to achieve domain adaptation between one source domain and one target domain.

Actually, the domain adversarial neural network can be easily extended to multi-source

domain adaptation. We only need to add labeled data from multiple source domains as

input, the source risk is the total risk of hate speech detection from multiple source domains.

We can achieve domain adaptation by using multiple source domains and transfer the
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knowledge from multiple source domains to our target domain. For example, in our cases, if

we want to conduct hate speech detection on the Twitter platform without label information,

we can use both Wikipedia and Forum as source domains.

5.3 Experiments

5.3.1 Dataset Description

We apply the domain adaptation technique to conduct hate speech based on three

social media platforms: Wikipedia (W), Twitter (T), and Forum (F). First of all, we use

the under-sample technique to get balanced datasets, Table 5.1 shows the class distributions

for the three datasets we use in this chapter. Texts are encoded as 100-dimensional feature

vectors of unigrams, with binary labels of hate speech and non-hate speech. For each of the

three hate speech-related datasets, we pick one of them as the target domain and the rest as

sources domains. For example, while applying domain adaptation based on multiple source

domains, Wikipedia (W), Twitter (T) are regarded as two source domains with labeled

data, and Forum is regarded as the target domain without labeled data. While applying

domain adaptation based on single source domain, we only need one source domain. For

example, when we regard Forum as a target domain, Wikipedia or Twitter can be regarded

as a source domain, respectively. During the training phase, each source domain has (200,

400, 600, 800, 1000) labeled examples, while each target domain has (200, 400, 600, 800,

1000) unlabeled examples. We use 2000 examples from the target domain for testing. Table

5.2 shows the size of the training and test sets for our experiments in this chapter. During

training, we randomly sample the same number of unlabeled target examples as the source

examples in each mini-batch. Besides, we train our models in our two source domains, and

test the model on the target domain directly, without using any domain information to get

the “source-only” setting results. By comparing the performances of different settings with

different sizes of the training datasets (200, 400, 600, 800, 1000), the effectiveness of domain

adaptation technique used in our tasks has been verified.
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Table 5.1: The classes distribution for three datasets

Dataset Positive Negative

Twitter 4000 4000

Forum 4700 4700

Wikipedia 15000 15000

Table 5.2: The size of training and test datasets

Dataset Training size Test size

Twitter 200, 400, 600, 800, 1000 2000

Forum 200, 400, 600, 800, 1000 2000

Wikipedia 200, 400, 600, 800, 1000 2000

5.3.2 Pre-Processing

We remove stop words, punctuation marks, URLs, and convert all texts to lower case.

We also use the lemmatization technique as the token normalization method. The details

of these pre-processing steps have been introduced in Chapter 2.

5.3.3 Experimental Results

(a) Twitter (b) Forum (c) Wikipedia

Fig. 5.2: Accuracy of three datasets with different training sizes
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The accuracy of three datasets with different training sizes shows in Figure 5.2. First,

we can observe that models using the domain adaptation technique outperform the models

that are only trained on source domain without domain adaption. By comparing the single

source-target pair, we can notice the different performances on our target domain task while

using different source domains. (i) When the Wikipedia platform is the target domain task,

the performance of using the Twitter platform as the source domain is much better than

using Forum platform as the source domain. (ii) When the Twitter platform is the target

domain task, the performance of using the Wikipedia platform as the source domain is much

better than using Forum platform as the source domain. (iii) When the Forum platform

is the target domain task, the performances between using the Wikipedia platform as the

source domain and using the Forum platform as the source domain are fluctuating. This is

because of the high similarity between Wikipedia and Twitter datasets and the dissimilarity

between the Forum dataset to the other datasets.

Also, we can see that it is not always beneficial to naively incorporate more source

domains for domain adaptation. When the target task is to conduct hate speech detection

on the Twitter platform, the performance of using multiple source domains is not better

than only use Wikipedia as one source domain. This is because of the high dissimilarity

between the Forum dataset to the others.

5.4 Summary

In this chapter, we target the scenario of detecting hate speech on a new social media

platform where no labeled data are available. To tackle this challenge, we develop a domain

adversarial neural network to detect hate speech. We use the domain adaptation technique

to transfer the knowledge from related social media platforms to the new platform so that

the hate speech detection model trained on existing social media platforms can be adapted

to detect hate speech on the new platform. The effectiveness of domain adaptation has

been verified from our experimental results.
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CHAPTER 6

Conclusion

With our social interactions and information being increasingly online, there are more

and more cases that people express their aggressive hate, which cause varying degrees of

harm to individuals or organizations. In order to make social media safe, automatically

hate speech detection is an emerging task to prevent or filter hate speech. In this thesis, we

propose different methods to detect hate speech in three scenarios, (i) rich resource setting,

(ii) low resource setting, (iii) zero resource setting. For scenario (i), we apply traditional

machine learning and deep learning methods for hate speech detection based on rich labeled

data. Our experiment results show good performance of most of the existing approaches in

this case. For scenario (ii), where we consider we only have limited labeled data, we develop

a hate speech detection approach via fine-tuning a pre-trained language model BERT. Then

we further develop a multitask learning approach to extract general information contained in

our three hate speech detection tasks. We observe that the multitask learning approach can

achieve better performance compared with the single-task learning approach. For scenario

(iii), where no annotated data in the target social media platform is available, we propose

domain adversarial neural networks to detect hate speech on the target platform. By using

domain adversarial neural networks, we adapt classifiers trained on the source domain for

use in the target domain and leverage annotated data from source domain to predict the

hate speech on target domain.
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