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ABSTRACT

Fuel shortages and resultant rising fuel costs as well as federal
policies prompting energy 1ndependen¢e have served to encourage power
companies to exploit available lignite deposits of the western states as
a viable fuel source. Large reserves of lignite found in a northeasterly
trending belt through Texas have been only partially tapped. To develop
this natural resource, large volumes of water will be required for min-
ing, handling, processing, cooling, power generation, and land reclama-
tion.

Throughout the Texas lignite belt, physical characteristics vary
widely depending mainly upon the amount of water present in any form.
Research into the potential impact of the development of the Texas 1ig-
nite resources on both the surface and groundwater resources of Texas
has produced three separate areas within the lignite belt which have
varying capabilities of supporting lignite development. The northeastern
section of the lignite belt has sufficient surface water resources and
backup groundwater resources to allow extensive development of lignite.
The central section will support mining and development, but care must
be taken to conserve and regulate water use. The southwestern section
of the 1lignite belt does not possess sufficient ground or surface water
resources for much, if any, lignite development. -The most water thrifty
methods of production would have to be employed for even limited develop-

ment,
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INTRODUCTION

Objective
The pyimary objective of this research is to evaluate the potential
impact of the development of the Texas Tignite resources for e1ectr1ca1

energy production on both the surface and groundwater resources of Texas.

The Switch to Lignite

The energy crisis of 1973, rising fuel oil costs, and federal policies
promoting energy independgnce have served to encourage power companies to
exploit avilable lignite deposits of the western states for use as a fuel
source in the generation of electricity. Texas has.been a leading supplier
of fossil energy in the form of oil and gas and her large lignite resources
have been only partially tapped. Eighty-one Texas counties (Fig. 1) have
some deposits of lignite with principal deposits located in the counties
listed in Table 1. Estimated reserves by county are found in Table 2.
Recent estimates indicate that the total near surface deposits (within 200
feet of the ground surface) are approximately 12.2 billion short tons
(Kaiser, 1978) and deep-basin deposits (between 20 and 5000 feet below
ground surface) equal to 112 billion short tons (Kaiser, 1974). Because
a continued need for fossil energy can be expected to partially provide for
the energy needs of our nation, Texas will benefit from the utilization of
the lignite reserves within the state.

Lignite is a low-rank coal, thus greater quantities of lignite are
needed to produce as much heat energy as the higher ranking bituminous and

anthracite coals. For example, two pounds of Texas lignite are needed to



Figure 1.

TEXAS

Location of the Texas lignite belt.




TABLE 1. Counties in the Texas lignite belt.

Anderson
Angelina
Atascosa
Bastrop
Bell
Bexar
Bowie
Brazos
Burleson
Caldwell
Camp
Cass
Cherokee
Comal
Delta

De Witt
Dimmit
Duval
Falls
Fayette
Franklin
Freestone
Frio
Gonzales
Gregg
Grimes
Guadalupe

Harrison
Hays
Henderson
Hopkins
Houston
Hunt
Jasper
Jim Hogg
Karnes
Kaufman
Kinney
LaSalle
Lavaca
Lee

Leon
Limestone
Live Oak

- McMuilen

Madison
Marion
Maverick
Medina
Milam
Morris
Nacogdoches
Navarro
Newton

Panola
Polk
Rains

Red River
Robertson
Rusk
Sabine

San Augustine

San Jacinto
Shelby
Smith

Stan

Titus
Travis
Trinity
Tvler
Upshur
Uvalde

Van Zandt
Walker
Washington
Webb
Williamson
Wilson
Wood
Zapata
Zavala




TABLE 2. Estimated reserves of lignites in the Texas lignite belt by
county; figures in millions of short tons.

_Measured Reseryes Indicated_Reserves
Overburden* Overburden*
County Thin _Thick Thin Thick
WILCOX LIGNITES
Anderson 21.4 65.2 64.2 165.6
Bastrop 54 .8 86.4 153.9 348.2
Bexar 15.5 28.0 46.5 _ 85.8
Bowie 47.4 2.0 10.2 6.0
Caldwell 38.0 59.2 114.0 177.0
Camp 6.8 2.0 20.4 6.0
Cass 17.9 21.6 53.7 64.0
Cherokee i1.0 34.6 33.0 67.8
Franklin 3.0 4.0 9.0 12.0
Freestone 2h.5 23.8 76.5 71.4
Gregy 4.1 32.0 12.3 96.0
Harrison 46.8 17.8 76.8 53.4
Henderson 37.8 33.0 113.4 99.0
Hopkins 24.1 6.0 61.8 18.0
Lee 6.2 1.2 ‘18.6 33.6
Leon 24.4 18.0 73.8 54.0
Limestone -—- 6.2 - 18.6
Marion 1.4 16.0 33.0 48.0
Milam 254.6 2.0 163.8 6.0
Morris 5.5 3.4 16.5 10.2
Pancla 35.1 17.0 105.3 51.0
Rains 3.6 5.6 10.8 16.8
Robertson 28.1 26.0 84.3 78.0
Rusk 41.6 104.4 124.8 313.2
Shelby 18.6 10.0 55.8 30.0
Titus 36.5 10.0 109.5 30.0
Van Zandt £9.3 34.4 207.9 103.2
Wood 38.5 33.6 94.5 100.8
YEGUA AND JACKSON LIGNITES
[}
Angelina 5.1 7.6 15.3 22.8
Brazos 2.8 6.0 8.4 18.0
Burleson 4.0 17.8 12.0 53.4
Fayette 27.0 5.4 81.0 16.2
Grimes 12.8 19.8 38.4 59.4
Houston 16.9 29.2 50.7 37.6
Madison 7.6 5.0 22.8 15.0
Nacogdoches 4.5 16.2 13.5 348.6
San Augustine -—- 1.0 --- 3.0
Trinity 6.1 13.8 18.3 41.4
Walker 7.9 11.0 23.7 33.0
Washington 5.4 22.0 16.2 66.0

*Thin overburden, less than 90 feet; thick overburden, greater than S0
feet.

(Computed by J.M. Perkins; data on file at Bureau of Economic Geology.)
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produce 14,000 Btu's while one pound of.bituminous will produce the same
amount (Fig. 2). To economically employ lignite as a fuel source in

the generation of electricity, it is important that mining costs not

be excessive relative to the end use. The regional geology of the Texas
lignite belt, with a flat to gently rolling topography, contributes
significantly to both the practicality and economic feasibility of strip
mining Texas lignite.

Transferring energy production from natural gas and fuel oil to
lignite will have a significant technical, environmental, and social
impact in Texas. Mine-mouth power plant operations, located throughout
the lignite belt, with high voltage power transmission lines going to
consumer, may replace the oil and gas fired plants now in operation and
located near the user.

Large volumes of water are required in the process of strip mining
as well as in the handling of lignite and the generation of power in
steam-turbine power plants. Water is essential for mine haul road main-
tenance, dust control, retention of the moisture content of the lignite
during transportation, boiler stock cooling, and other facets of the pro-
duction of electrical energy.

In addition, there are water requirements for mined land reclamation
which will vary according to the climatic conditions of the mining area.
For example, reclamation of the East Texas lands will have less of an
impact on the existing water budget than reclamation endeavors in the
central and wast Texas regions because of the differences in climate

conditions.
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A surface mine operations requires 2-6 galions of water per million
Btu's of lignite mined (1200-4000 aére-feet per year) including water used
for dust control and reclamation. Electric power generation requires more
water than other synthetic fuel technologies. To produce 3000 megawatts
of electricity, 23000-29000 acre-feet of water per year are consumed
(Enerygy Resource Development Associates). The City of Bryan, Texas,
consumes 0.75 gallons of water to generate 1 kwh of electricity in a gas
fired 125 megawatt steam turbine power plant {Jack Bayer, personal communi-
cation). While some data exists, the quantity of water actually used in
mine-mouth conversion processes along with reclamation requirements has
not been fully determined. - Therefore, the total effects of developing
Texas lignite to generate electricity is not known. The question of water
resource capacity to meet all needs becomes even more complex when varija-
bles such as population increases, industrial expansion, and urbanization
resulting from non-energy related growh patterns such as Texas is now

experiencing, are considered in addition to the development of lignite.

Lignite Mining in Texas

History

Lignite mining in Texas was documented as early as 1819 when L'Heriter,
a Frenchman, located a "mine de charbon de Terre" in east Texas on a map
accompanying a report published in Paris. Lignite was used by many of the
early settlers as a fuel source, and, prior to the impact of the discovery
of oil and gas, there were as many as 100 small 1%gnite mines operating
in east Texas (Fisher and Kaiser, 1979). Early production of lignite was
minimal and conducted locally with many of the mines operating underground.
"From an annual production of about 20,000 tons in the late 1880's, lignite

gradually increased to as much as 1.4 willion short tons in 1914. Yearly
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production averaged about 1 million tons from 1915 through 1930. From
1930 to 1940 annual production dropbed £0 slightly more than 0.5 million
tons, and by 1950 it has practically ceased" (Fisher and Kaiser, 1974).
Figure 3 graphically i1lustrates 1ignite production in Texas from 1885
to 1950.

In 1954, the Industrial Generating Company (ICG) opened a lignite
mine near Rockdale, Milam County, for use in generating power for the
Aluminum Company of America (ALCOA) to process aluminum. This power
plant became Texas' first major mine-mouth operation. Imperial Chemical
industries, Ltd., operates another mine near Marshall, Harrison County.
Texas Utilities also has mine-mouth operations at Martin Lake near Tatum
in Panola County and at Monticello near Mt. Pleasant_in Hopkins and Titus
Counties. Basic Resources of Texas Utilities has recently been granted
a permit by the Texas Railroad Commission for an in situ lignite gasi-
fication test facility in Palestine, Anderson County. Other mining per-
mits approved by the Texas Railroad Commission include: Amistad Fuel
Company of San Antonio for Little Bull Creek in Coleman County; Texas
Municipal Power Associates for operations in Grimes County; Shell 0il
Company for Milam Mine in Milam County; and an in situ gasification
facility outside Rockdale to Texas ARM University. Operations of these
facilities are pending posting of performance bonds.

Extensive lignite exploration programs are being carried out by
utility companies, private industry and mineral investors. Plans are in
the formation stages for development and construction of new lignite
fired power generation facilities throughout the entire lignite belt of
Texas. Exploration activities are being conducted by Phillips Petroleum

in Hopkins County, Sabine River Authority of Texas in Hopkins, Woods and
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Rains Counties, Texas Power Pool, Inc. in Grimes County, Dow Chemical in
Freestone County, Sunoco Energy Devélop%ent Company in Angelina County,
Carter 0i1 Company in Rusk County, Southwestern Electric Power Company

and Texas Lignite Products Corporation in Harrison County, Duval and
Associates Consulting and Construction Company in Young and Erath Counties,
Dahlstrom Industries, Inc. in Maverick County and Enserch Exploration,

Inc. who are test hole drilling in various locations.

Mining and Reclamation

Until 1944, the shaft, room and pillar method of underground coal
mining was used. Less than 50% of the coal seam could be recovered by
this method, thus proving fo be inefficient if other methods of extraction
are available.

Strip mining has been the only type of Jignite mining in Texas since
1950. Surface mining allows large deposits of lignite occurring at shallow
depths and underlying soft, unconsolidated rocks to be profitably mined
in large volumes. The average recovery rate of lignite for this type of
operation is approximately 75% (Fisher, 1963).

Strip mining for lignite in Texas is an operation in which no net
volume is lost because the deposit to be mined is considerably thinner
than the overburden. Mining consists of removing the overburden with a
drag line and placing it in the previously mined-out trench. The lignite
is removed with a power shovel and placed in large haul trucks for trans-
portation over special haul roads to the nearby péwer plant. Reclama-
tion begins with backfilling the mined-out trench. The spoil piles are

then leveled and the whole area regraded to natural contours, fertilized,

and planted (Fig. 4).

10
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CHARACTERISTICS OF THE LIGNITE BELT

Physiography
Texas has a total area of 267,339 square miles or one-fourteenth
of the land and inland water area of the nation. Generally, the state
is a vast plain sloping gently southeasterly to the Guif of Mexico.
Texas contains parts of five of the natural regions in the United
States. Of these, two are found in the lignite belt (Fig. 5): the Gulf

Coastal Plain and the Great Plain (Chambers and Kennamer, 1963).

The Gulf Coastal Plain

The Gulf Coastal Plain along the Texas shoreline is located
between the lower course of the Sabine River and the southern shore
of Corpus Christi Bay and extends inland to the pine and post oak belts.
The low almost level prairie is covered with grasses, wild flowers, and
trees. Closest to shore, the land is low, flat, and somewhat marshy.
Barrier islands, sand bars, and spits enclose broad shallow bays and
lagoons along most of the coast. Moving inland, drainage becomes
better developed as the land surface gradually increases above sea
level. Rivers and streams have created shallow, level valleys in this
part of the plain. From 75 to 100 miles iniand, the 1and surface
increases in elevation and becomes gently rolling to hilly due to deeper
cutting of river and stream valleys. Most of the plain area is less than

100 feet above sea level (Chambers and Kennamer, 1963).

The Great Plain

The Great Plain region extends from the South Texas Plain and the

Rio Grande River northward across the United States into Canada. The

12



Figure 5. Physiographic regions of the Texas Lignite
belt.
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portion found within the Texas lignite belt is a 1imestone highland with
thin, flaggy soils covered with grasses, brush, and small trees. Streams
flowing across this high plateau have created canyons, gorges, and
valleys, making this area hilly or even mountainous. Relief reaches
several hundred feet from mountain tops to the bottom of nearby valleys

{Chambers and Kennamer, 1963).

Soils

One of Texas' most important natural resources is her soil, which
supports several industries, crops, pastureland, and forestland. Nearly
500 different soil types are recognized within the state, but these can
be narrowed to seven dominant soil orders {Fig. 6) within the Texas
Tignite belt.

Soils form as a result of "interaction of climate and organisms on
geologic materials as conditioned by topography over a period of time"
(Fisher, 1972). Variety in type, number, and degree of development
of natural layers {horizons) differentiates soil orders. Following is

a desciption of the soil orders within the Tignite belt:

Entisols

Fntisols are recent soils without well-developed horizons. They
are variable in texture and develop under many climatic conditions,
usually on young geomorphic surfaces. Characteristic are deep sandy

soils of coastal terraces.

Vertisols

These dark soils are characterized by shrink-swell properties due
to high clay content. They hold water and nutrients well but resist
further permeation by air and water when moist. The dark clay soils of

the uplands and stream terraces of the Blackland Prairie are vertisols.

14
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Figure 6. Soil orders within the Texas lignite belt.

15



Alfisols
Alfisols have a grayish-brown loamy surface horizon with a clayey
subsurface horizon that has a low permeability. These are good agricul-

tural soils and are found throughout much of the lignite belt.

Inceptisols

Variable soils with limited horizon development due to lack of
extreme weathering are inceptisols. In this case, alteration of parent
material and erosion are in equilibrium. Characteristic are the red

Joamy soils of the South Texas Plain.

Moilisols

Mollisols are thick,‘soft, dark soils formed in moderate climatic
reéions high in calcium. Much decomposing organic matter is usually
present within rather than on the soil layer. They generally develop
from calcareous water-laid parent material. Mollisols may also be
somewhat thinner with flags or stones of the parent rock on the

surface.

Ultisols

Ultisols form in warm, humid climatic regions and are commonly
1ight reddish-colored, loamy, sandy, and acidic. They have well-
developed horizons due to a high degree of weathering. Stratified sand
and clay sediments of the East Texas Timberlands produce ultisols

(Fisher, 1972 and Mathewson, 1980).

Geology
Description
Certain physical and biochemical processes act on accumulated plant

material to form coal. Its nature and form depend on the original com-
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position of the plant material and the length of time during which these
processes acted. Coalification, or.the gradual transition from plant
material to coal resulting from these processes, produces different
levels of maturation of coal. All coals can be ranked in ascending
order by carbon content as follows: peat, 1ignite, subbituminous,
bituminous, and anthracite (Berkowitz, 1979). Lignite has been described
as a low rank, brownish-black coal with a high moisture and velatile
matter content and a heating value of less than 8,300 Btu's per pound,
that is intermediate in coalification between peat and subbituminous
coal (ASTM, 1979). Lignite contains separable pieces of plant material
and is soft, friable, and porous with a low specific gravity. At pre-
sent, international c1assification of soft, or low rank, coal is based
on bed moisture content and tar yield.

Lignite in Texas is formed in three facies: fluvial, deltaic, or
lagoonal. Fluvial Tignite has a high percentage of wood and low percen-
tages of sulfur and ash. If formed as backswamp peats or in broad
flood plains along ancient meandering rivers. Deltaic lignite is non-
woody with 1ittle ash, and moderaté amounts of sulfur. It has a wide,
tabular shape and formed in marshes on ancient deltas. Lagoonal lignite
has a high ash content which indicates frequent introduction of clastic
materials and a high sulfur content suggesting it formed in salt marshes

associated with ancient lagoons (Kaiser, 1974).

Stratigraphy .

There are abundant deposits of lignite among the Eocene rocks in
Texas (Fig. 7). Table 3 shows the stratigraphic occurrence of these
lignite deposits. Primarily they are found in the Wilcox Group and -
locally in the Yegua and Manning Formations. Potential reserves include

about 41% of the outcrop area of the Wilcox aquifer. Figure 8 indi-
17



" i" QUATERNARY (Pleistocene)

TERTIARY [Pliocene, Miocene,
and Oligocene)

:' TERTIARY {Eocene)

"] cRETACEOUS {Upper, Gulf

Series}

CRETACEOQUS (Lower, Commanche
Series)

Figure 7. Principal surface geologic formations in the Texas

lignite belt.
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TADLE 3. Stratigraphic occurrence of principal Tignite deposits in Texas.

Period Series Group and Formation
A S i - -
Pliocene
Neogene  {—--——-

Miocene

0ligucene

- Jackson

Whitsett

A e+ ———

* Manning

Wellborn

Caddell

iClaiborne

* Yegua

Cook Mountain

(NE Texas)

(S Texas)

Stone City

Sparta

Heches

Mt. Selman

Queen City

—

Rek]aw

Bigford

Carrizo

* Wilcox

Paleocene

'
i
1

i

Midway

L__TLw___.__LEM-A_“_b___

19



‘M wiLcox-" =

Figure 8. Distribution of Tignite bearing rocks in Texas.

¥ Existina mine sites.
© Proposed mine sites.

20



cates the distribution of lignite-bearing rocks in Texas. These near
surface lignite deposits occur in two elongated bands stretching from
the Angelina River in Angelina County and the Red River in Bowie County
to the Rio Grande River in Webb and Starr Counties. Approximately

one million acres are possibly underlain by recoverable lignite.
Recoverable lignite refers to the lignite located within 200 feet of

ground surface, removable by strip mining methods.

Regional Variation

In general, the strata which contain the Tignite dip towards the
Gulf of Mexico. Southwest alona Lhe outcrop, the ash and sulfur content
increases, while the content of volatile matter and fixed carbon and
caloric value decreases. Average ash content of Texas Tignite (Fig. 9)
is approximately 17%, but can vary between 10% and 40%. HNorth of the
Colorado River, Wilcox lignites contain the lowest percentage of ash
(less than 15%), while south of the Colorado River the ash content
increases. A similar southward increase in ash content occurs in the
Upper Eocene lignites. Sulfur content increases southward from less
than 1% in much of the area north of the Colorado to 2% south of the
Colorado. Some of the lignite between the Brazos and Trinity Rivers
contains 1% to 1.5% sulfur locally {Fig. 10). The most desirable
lignite for fuel use is one having lTow percentages of both ash and
sulfur. Lignites containing high percentages of ash or sulfur present
waste management and pollution problems.

Regional variations reflect differences in both source material and
formation processes {Fisher, 1963). Fluvial Tignite occurs in east-
central Texas, deltaic in southeast Texas, and Tagoonal in south
Texas. Deltaic is the highest grade lignite and is found primarily in

the Wilcox Group with smaller occurrences in the Yegua and Manning

21
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Figure 9. Regional variation in ash content of Texas lignite
(as-received basis).
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Figure 10. Regional variation in sulfur content of Texas lignite
(as received basis).
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Formations. Lagoonal lignite occurs with equal abundance in the Wilcox,
Yegua, and Manning while fluvial lignite has been found only in the
Wilcox Group. The highest quality and largest recoverable deposits are
found in the Wilcox Group north of the Colorado River in east and cenlral
Texas where individual seams are thicker, nore uniform in quality and
more persistent. Of sccondary importance are deposits of the Yegua
Formation north of the Brazos River. There are, however, certain local
deposits of the Yegua Fnormation such as those found in Fayette and Grimes
Counties and of the Manning Formation in Grimes County which may have
conmercial importance. Table 4 lists the principal lignite deposits by

county and facies.

Hydrology

To assess water availability for lignite deve]oﬁment, the mayni-
tude of the water resource and the total demand placed on it must be
taken into consideration. The stream-electric power generation indus-
try alone will consune approximately 1.5 miilion acre-feet (maf) of
water by the year 2000 to generate 1.1 biilion megawatt hours of
electricity, if present and planned cooling practices are continued
(Texas Water Developuent Board, T.W.D.B., Report, 1974). In addition,
it has been noted that strip mining requires 1200-1400 acre-feet of
water per year for dust control, fire protection, cooliny, and recla-
mation of mined lands. Public water consumption has increased as a
result of energy related population increases. Water is also needed
by wunicipalities for domestic consumption and waste disposal, by indus-
tries, by agriculture where regional demands have already exceeded
renewable supply, and for environmental maintenance.

According to the Texas Department of Water Resources, Texas has

an annual supply of fresh water from surface and ground sources of 14.1
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maf. OF this, 5.1 maf is defined as the "quantity of average, annual,
recoverable recharge to groundwater aquifer" or "safe groundwater yield"
(Mcieely and Lacewell, 1978). The other 9.0 maf is found as firm
surface water yield or "the quantity of water that can be withdrawn or
released from reservoirs continuously, on an annual basis, over periods
of time of sufficient length so as to span the most severe period of
drought in the reservoir catchment areas" (T.W.D.B., 1977}. Groundwater
use in Texas in 1974 exceeded the annual safe groundwater yield by 7.1
maf, which Jowered groundwater tables, increased pumping costs, and
changed the physical characteristics of individual aquifers. Actual

surface water use in 1974 was estimated at 5.1 maf, somewhat below the

firm surface water yield.

Surface Water

One of the most dramatic extremes in Texas climate is in the amount
and timing of annual precipitation, which varies from 8 inches or less
in far west Texas to nore than 56 inches in far east Texas (Fig. 11).
Precipitation rates may vary as much as 507 from year to year and periods
of drought are quite common. High sumner temperatures and constant wind
raise evapotranspiration rates substantially. Runoff rates increase from
west to east (Fig. 12), with three-fourths of the annual runof f in Texas
occurring in the eastern one-fourth of the state (T.W.D.B., 1968).

surface water may be in the form of diffused surface water or water
within a watercourse. Diffused surface water results from rain, sleet,
hail, or snow and is classified as such until it reaches a defined
watercourse. When it reaches the watercourse it becomes part of the
streamflow and is therefore property of the State, subject to landowner
and appropriated rights. A watercourse is an "identifiable natural

stream having a definite natural channel originating from a definite
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Figure 11.

Mean annual precipitation in inches.

29



Figure 12. Mean annual runuff in inches.
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source of supply" (McNeely and Lacewell, 1977).

In Texas, landowners have the right to intercept and impound up
to 200 acre-feet of diffused surface water before it reaches a water-
course without obtaining a permit. Surface water in Texas is also regu-
lated by the riparian and prior appropriation water rights systems. The
riparian doctrine allows landowners with land containing or abutting a
watercourse to reasonably use water for jrrigation or other purpouses.
Under prior appropriation doctrine water rights on a stream may be
acquired from the State, however, riparian rights to the stream are re-
cognized as superior. The Texas Water Rights Commission had granted
claims to 53.7 million acre-feet by the middle of 1975 (McNeely and
Lacewell, 1977). Table 5 éhows the number and extent of claims to basins

wilhin the Tignite belt as of July 1980.

Drainage Basins. Texas is drained by twelve principal drainage

basins, Lhree minor river basins, and eight coastal basins (Fig. 13).

Of these, fifteen basins drain all or part of the lignite belt. Follow-
ing are descriptions of cach basin within or partly within the Texas
lignite belt. Included is information on size of drainage area, soils,
reservoirs, and some general geclogy. Foliowing the descriptions, Table
6 contains water availability data on celected streams within the lianite
belt.

The Red River basin is bounded on the north by the Canadian River
basin and on the south by the Trininty, Brazos, and Sulphur River Basins.
The total basin drainage area is 48,030 square miles, of which only
24,463 square miles is in Téxas. Of the basin's area that is within the
state, only the southeastern portion is included in the Texas lignite
belt. Most of the soils in Lhis area are reddish brown to dark gray,
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TABLE 5. Appropriation claims to basins in the Texas lignite belt.

Basin Number Water Claimed
of Claims (acre-feet)
Rio Grande River 1346 7.084,812
Hueces River : 333 922,251
San Antonio River 249 248,982
Guadalupe River 453 10,513,136
Lavaca River 35 120,342
Colorado River 1575 9,028,560
irazos River 1707 4,796,057
Ssan Jacinto River 96 3,551,993
Trinity River 652 5,827,352
Neches River 460 2,501,547
Sabine River 311 2,043,452
Cypress Creek 154 382,304
Sulphur River 78 358,510
Red River 399 665,182
Rio Grande-Nueces Coastal” 86 2,201,797

(Texas Department of Water Resources, 1980)
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calcareous, alluvial soils, thal are underlain by Cretaceous limestone,
clay, chalk, and sand. The annual funo%f in the basin from 1941 to 1970
averaged 203 acre-fect per square mile of contributing drainage area, and
abnut 156 acre-feet per squarc mile of total drainage area. There are

22 major reservoirs in this basin. Of these, eight are located within

or near the Lignite Belt.

In Texas, the Sulphur River basin is hounded on the norﬁh by the
Red River basin, on the west by the Trinity River basin, and on the
soulh by the Sabine and Cypress Creek basins. The total drainage basin
area within Texas is 3,588 square miles. Soils in the uplands are mostly
lTight to red, acid sandy loams and sands. Bottomland soils are light
brown to dark gray, acid to calcareous, alluvial dgposits. The upper
Sulphur River asin is underlain by southeasterly dipping clay and Time-
stone beds of Cretaceous age. IHost of the basin is underlain by clay
and sand of the Midway Group, which are overlain by sand, clay, silt,
and lignite of the Wilcox Group (Calvert Bluff Formation). Average
runoff of this basin during the 1941-1970 period varied from approxi-
mately 600 acre-feet per square mile in the western part to 1000 acre-
feet per square mile in the eastermost part. There are three major
reservoirs in the area today and one, the Cooper Lake and Channels Pro-
ject, is awaiting renewed construction pending the approval of a new
environmental impact statement.

The Cypress Creek basin is bounded on the north by the Sulphur River
basin, on the west and south by the Sabine River basin, and on the east
by the Texas-Arkansas and Texas-Louisiana boundaries. In Texas, the
total drainage area of the basin is 2,812 square miles, all within the

lignite belt, The soils are similar to those of the Sulphur River basin.
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This basin is underlain by southeasterly dipping sand, clay, glauconite,
and Tignite of the Wilcox and ClaibdrnenGroups of Tertiary Age and nost
of the iron ore produced in Texas came from formations within the Cypress
Creek asin. During the 1941 to 1970 measured period, the average runoff
in Lhis basin was 696 acre-feet per square mile. There are seven major
reservoirs in the Cypress Creek basin: Cypress Sprinys, Lake 0" The
Pines, Monticello, Welsh, E1lison Creek, Johnson Creek, and Caddo Lake
(shared with Louisiana). One other reservoir, Lake Bob Sandin, is
currently under construction,

The Sabine River basin is bounded an the north by the Sulphur River
and Cypress Creek basins, on the west by the Trinity and Nueces River
basins, and on the east by the Texas-Louisiana bouqdary. Maximum basin
width is about 45 miles. The total basin drainage area is about 9,756
square miles, of which 7,426 square mifes is in Texas (76.1%). In the
northern portion, upland areas have dark calcareous, clayey soils which
change gradually with depth to 1ight marls or chalks. Bottomland soils
are reddish brown to dark gray, slightly acid to calcareous, alluvial
soils. Soils in the southern part of the Sabine River basin are similar
to those in the Sulphur and Cypress Creek basins. Average runoff within
about 97 percent of the Sabine River basin during the 1941-1967 period
was about 640 acre-feet per square mile. In the southern-most part near
Buna, average runoff in the 1953-1970 period was 687 acre-feet per square
mile. There are 10 major reservoirs in this basin, nine of which are in
the northern section, and one currently under construction {also in the
north).

The Neches River lasin is bounded on the north and east by the
the Sabine River basin, on the west by the Trinity River basin, and on

the south by the Neches-Trinity Coastal basin. The total drainage area
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is roughly 15,000 square miles. l.Light grayish brown to red, acid sandy
loams and sands overlying gray, yeliow, red sandy c¢lay subsoils are
chayacteristic of the upland arvas. In the bottomlands, light brown to
dark gray, acid to calcareous, alluvial soils occur. In the north, this
basin is underlain by a thick sequence of southeasterly dipping beds of
sand, clay, glauconite, and lignite of the Tertiary Wilcox and Ctaiborne
Groups. These are overlain by sand, clay, silt, lignite, and volcanic
ash beds of the Jackson and Catahoula Formations. The middle and lower
reaches are underlain by a thick sequence of sedimentary rocks comprising
the Fleming Formation. Also present are Pliocene and Pieistocenc sequences
as well as recent alluvium along streams. The average annual runoff
during the 1941-1970 period was 522 acre-feet per square mite, and

ranged from 930 acre-feet per sguare mile near the mouth of the Heches

tu about 400 acre-feet per square mile in the northwestern part of the
basin. There are ten major existing or under-construction reservoirs
Jocated in the Neches River basin, seven in the north and three in the
southern part.

The Trinity River basin is bounded on the north by the Red River basin,
on the east by the Sabine and Neches River basins and the Neches-Trinity
Coastal basin, and nn the west by the Brazos and San Jacinto River basins
and the Trinity-San Jacinto Coastal basin. The total basin drainage arca
is 17,969 square miles and approximately the central one-third 1ies within
the Texas lignite belt. Land resource areas within thie basin include
the North Blackland Prairies, East Texas Timberland, and Coastal Prairies
and their associated soil and vegetation characteristics. The upper
portions of the Trininty River basin are underlain by westerly dipping

rocks of Permian and Pennsylvanian Age and are characterized by mudstone,

36



claystone, limestone, and conglomerate. These Pennsylvania and Permian
strata are unconformahly overlain h} southeasterly dipping Cretaceous
rocks. The lower Cretaceous strata are fine-grained sands with small
amounts of clay, silt, and Timestone which grade upward into alternating
clay and 1imestone layers. The uppef Cretaceous rocks are primarily basal
sand with some silty clay lenses, glauconite and carbonaceous material
which grades upward into alternating clay and limestone layers. These
rocks are overlain by Tertiary strata consisting of alternating sand

and clay layers, with some iron cement, limestone, lignite, volcanic ash,
glauconite and gravel. Above these are Pliocene and Pleistocene layers
and Quaternary age alluvium in the streams. Average runoff for the
1941-1970 period was 310 acre-feet per square mile for the entire basin
and ranged from 153 to 606 acre-feet per square mile from the upper to
Jower basin, respectively. There are Z6 major reservoirs and two addi-
tional projects under construction in the Trinity River basin. Only
three are within the lignite belt (Navarro Mills Lake, Cedar Creek Re-
servoir, and Lake Livingston).

The San dJacinto River basin plays a very small part in surface
water availability for the Texas lignite belt. 0f this 3,834 square
mile drainage basin only portions of three important counties for lig-
nite development?-Grimes, Walker, and San Jacinto--are included in the
san Jacinto River basin. This northern part of the basin is underlain
by the Catahoula Formation, a south-easterly-dipping sandstone inter-
bedded with volcanic ash and clay deposited during Oliyocene times.

Over this is a Miocene clay of the Fleming Formation and its overlying
Pliocene and Pleistocene deposits. Recent alluvium occurs along streams.

From 1941-1970, the average annual runoff for the entire area was about
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440 acre-feet per square mile. There are no major reservoirs within
Lhe jignite belt counties.

rhe Brazos River basin is bounded on the north by the Red River
basin, on the east by the Trininty and San Jacinto River basins, and the
San Jacinto-Brazos Coastal basin and on the south and west by the Colo-
rado River basin and the Brazos-Colorado Coastal basin. The total
drainage basin area is 45,573 square mile of which about 43,000 square
miles is in Texas {94.3%). Approximately 9,556 square miles (21%) of
drainage area is non-contributing (no runoff). The south central portion
of the Brazos River basin is important to Tignite development. Here
Pennsylvanian formations are overiain by a broad area of southeasterly
dipping, Cretaceous 1inmestone, clay and sandstone that are transected
by the Balcones and the Luling-Mexia Fault Zones. The Cretaceous rocks
are overlain by a thick sequence of southeasterly dipping clay, silt,
sand, glauconite, and lignite beds of Tertiary Age. Above these are
Pliocene and Pleistocene deposits and Recent alluvium occurs along
streams and in some upland areas. Here soils range from dark, deep to
shallow, stoney, calcareous clays to dark, neutral to slightly acid clay
loams and clays. The average annual runoff for the 1941-70 period for
the Brazos River basin was 156 acre-feet per square mile of contributing
area and about 119 acre-feet per square mile for the total area. Most
of the area in the High Plains is non-contributing. The average runoff
ranged from about 530 acre-feet per square mile near the rivers' mouth
to less than 50 acre-feet per year near the escarpment of the High
Plains. There are 34 major.reservoirs in the Brazos River basin and
five more currently under construction. Of these, there are several

within the lignite beit  (Belton Lake, Stillhouse Hollow Lake, and Lake
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Somerville).

The Colorado River basin is boﬁnded on the north and east by the
Brazos River basin and the Brazos-Colorado Coastal basin, and on the
couth and west by the Lavaca, Guadalupe, Nueces, and Rio Grande Lasins,
and the Colorado-Lavaca Coastal basin. The total basin drainage area
is 41,763 square miles, of which 39,893 square miles is in Tegas. Only
the southern portion of the Colorado River Basin is within the lignite
belt and includes Travis, Bastrop, Fayette, and part of Hays counties.
Soils in the Colorado River basin are similar to those in the Brazos
River tasin. The Cretaceous strata of this portion of the Colorado
River basin grade from 1imestone and chalk to shale and clay. The
Cretaceous rocks are transected by the Balcones Fault Zone and are over-
lain by Pliocene and Pleistocene layers and Recent aliuvium is common
along the streams. The average annual runoff from 1941 to 1970 was
about 80 acre-feet per sgquare mile in the contributing area. The
average annual runoff ranges from about 350 acre-feet per square mile
near the mouth of the Colorado to less than 50 acre-feet per square
mile in the northern part of the basin. The Colorado River basin has
23 major reservoirs and two reservoirs currently under construction.
Many of these are located in the southern third of the basin and are
as such located near the lignite development area.

The Lavaca River basin is bounded on the north and east by the
Colorado River basin, on the west by the Guadalupe River basin, on
Lhe southeast by the Colorado-lavaca Coastal basin, and on the south-
west by the Lavaca-Guadalupe Coastal basin. Drainage area of the basin

is 2,309 square miles. Upland soils in the area of the basin included

in the lignite bett are dark, calcareous, clay soils, changing gradually
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with depth to light warls or chalks. Bottomiand soils are reddish-brown
to dark gray, slightly acid to calcareous, alluvial deposits. This
portion of the basin is underlain by gray clay of the Fleming Formation
(Tertiary) which dips toward the Gulf,‘ Overlying the Fleming are gravel,
sand, silt, and clay of Pleistocene age. Recent alluvium occurs along
the streams. Average annual runoff during the 1941-1970 period in the
western and eastern parts of the Lavaca River basin was 236 and 325
acre-feet per square mile, respectively. Palmetto Bend [ Reservoir,
presently under construction by the Bureau of Reclamation, is the only
major reservoir project of the Lavaca River basin.

Tive Guadalupe River basin is bounded on the north by the Colorado
River hasin, on the east by the Lavaca River .basin and the Lavaca-
Guadalupe Coastal basin, and on the west and south by the Nueces and
San Antonio River basins. Total basin drainage area is 6,070 square
miles and its central portion is included in the Texas lignite belt.
Soils in the northern part of the basin vary from dark, calcareous clays
and clayey lcams in the uplands to dark, calcareous, clayey alluvial soils
in the bottomiands. The central area's upland soils are either dark,
calcareous, clayey soils or neutral to slightly acid clays to dandy loams,
both of which change gradually with depth to marls or chalks, [Bottom-
land soils in this area are reddish brown to dark gray, slightly acid
Lo calcareous, loamy to clayey alluvial sgils. The upper reach of the
Guadalupe River basin is underlain by Cretaceous age limestone which
forms the Edwards Plateau. FLast and south of the plateau are Upper Cre-
taceous chalk, limestone and clay. The Balcones Fault Zone distinguishes
the Edwards Plateau from the Gulf Coast Plain. Cretaceous strata are
overlain by a sequence of south-easterly dipping sand, silt, clay,

glauconite, volcanic ash, and 1ignite of Tertiary age. These ar=, in
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turn, overlain by clay, silt, and sand of the Beaumont Formation
(Pleistocene). Recent alluvium is éomm;n alony streams within the basin
and caps some upland areas. The average annual runoff in the southern
part of the basin during the 1941-1970 period was 178 acre-feet per
square mile. 1n the northeastern paft of the basin the average annual
runoff from 1960 to 1971 was 236 acre-feet per square mile. Canyon Lake,
Jocated on Comal County (part of the lignite belt) on the Guadalupe, is
the only existing major reservoir in the basin containing conservation
storage.

The San Antonio River basin is bounded on the north and east by
the Guadalupe River basin-and on the south and west by the Nueces River
basin and the San Antonio-Nueces Coastal basin. The Total drainaye avrea
of the basin is 4,180 square mites. Soil types and-genera1 geology of
the San Antonio River basin are the same as those of the Guadalupe River
basin. The average annual runoff from 1955 to 1970 was about 150 acre-
feet per square mile in the lower part of the basin, and from 1963-1970
it was about 185 acre-feet per square mile in the northern part of the
basin nea: Boerne. Huch of the runoff in the upper part of the basin
enters the Edwards and associated 1imestones of the Balcones Fault Zone.
Major reservoirs occur only in the northern part of the San Antonio River
basin and these include: Medina Lake, Oimus Reservoir, Victor Braunig
Lake, Calaveras Creek Reservoir, and Mitchell Lake.

The Nueces River basin is bounded on the north and evast by the
Colorado, Guadalupe, and San Antonio River basins and the San Antonio-
Nueces Coastal basin, and on the west and south by the Rio Grande River
basin and the Nueces-Rio Grande Coastal basin. Almost the entire Hueces

'River basin is included in the Texas lignite belt. The total basin
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drainage area is 16,950 square miles. The upland soils are dark, cal-
careous to slightly acid clays, 1oaﬁs, ;nd sands. Bottomlands have brown
to yray, calcareous, aljuvial soils. The upper reach of the Nueces River
basin is underlain by Cretaceous 1imestone which forms the Edwards Plateau.
South of the plateau are younger Cretaceous chalk, clay and limestone beds.
The entire sequence gently dips to the southeast. Much of the basin is
undertain by a Tertiary sequence of southeasterly dipping saﬁd, clay,
silt, glauconite, volcanic ash, and lignite beds; and sand, clay, and
gravel of the Goliad Formation. Overlying these are Pleistocene deposits
and Recent alluvium is again common along the streams. In the Edwards
Plateau area north of the Balcones Fault Zone, the average annual runoff
during the 1941-1970 period was 118 acre-feet per square mile. 1n the
eastern portion is was 88 acre-feet per square mi]e.during the same time
span. In the southwestern part of the basin the average annual runoff
(1962-1970) was 74 acre-feel per square mile. The Balcones Fault Zone
crosses this basin along an east-west line from San Antonio to Del Rio
and a substantial part of the flows of the Nueces and its tributaries
enter the fractured and cavernous limestone formations as they cross the
fault zone. The only major reserveir in the Nueces River basin is Lake
Corpus Christi and it is of little use as a source of water for tignile
development.

The Nueces-Ric Grande Coastal basin is bounded on the north by the
Nueces River basin and Corpus Christi Bay, on the west by the Rio Grande
basin, and on the south by the Rio Grande River. The total drainange area
is 10,442 square miles. Soils in this area vary from calcareous to neutral
and clayey to sandy. Bottomlands have brown to gray, calcareous, alluvial
soils. The regions of this coastal basin that are part of the Texas

1ignite belt are underlain by Tertiary sediments of the Fleming Formation
12



and clay, sand, and gravel of the Goliad Formation. Average annual runoff
during the 1968-1974 period was 23 gcre-Feet per square mile within the
480 square mile drainage area west of Falfurrias. The runoft declines
in the area west of Alice and increases toward the north and east, but
in all aveas is less than 50 acre-feet per sgquare mile. The nearest
reservoir is Alice Terminal Reservoir near Alice in Jim Wells county
(east of Duval county).

The Rio Grande River originates in southern Colorado, flows across
New Hexico, and eventually forms the jnternational boundary between
the United States and Mexico. The total drainage area of the Rio Grande
River basin is 182,215 square miles of which 88,968 square miles is in
Texas. Soils common in the uplands range from 1ighF, reddish-brown to
brown sands, clay Toams and clays, to dark, calcareous stoney clays.
The bottomlands have dark grayish-brown to reddish-brown, calcareous
clay Toams and clays. From Big Bend to the Gulf of Mexico the hasin
is underlain by a series of easterly dipping Cretaceous (1imestone,
clay, and sand), Tertiary (sand, silt, clay, lignite, and channel coal
hear Laredo), and Quaternary age formations. The average annual runoff
from 1941 to 1970 was approximately 20 acre-feet per square miles in
Mexico and Texas. However, amounts and rates vary greatly throughout
the Rio Grande basin. Reservoirs, numerous diversions, and substantial
return flows also modify the flow of the main channel. Furthermore
upstream development has progressively reduced the flow of the Rio
Grande as it enters Texas. Allocation of surface waters of the Rio
Grande basin is governed by two interstate compacts and two interna-
tional treaties. There are no major reservoirs in the northwestern
portion of the Rio Grande basin, however, there are two in the north-

eastern area {Red BIuff Reservoir and Lake Balmorhea) and four further
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downstream including San Estaban Lake, International Amistad Reservoir,

Casa Blanca Lake, and {nternational Falcon Reservoir.

Reservoirs. Storage of surface water in reservoirs allows some
control of allocation ovver periods of time. During a year or several years,
excess water from wet periods can be held for use in dry period. The "firm
yield" of a reservoir is the "maximum amount of water that can be supplied
continuously by a reservoir under conditions of the driest and mnst severe
drought period known to have occurred at that site" (McHeely and Lacewell,
1978). Evaporation, leakage, infiltration, and gvapotranspiration de-
crease the firm yield as storage capacity is decreased by sedimentation.

The ratio of storage‘capacity to firm yield varies widely throughout
the stateof Texas. In west Texas, storage capacity may be ten to thir-
teen times the firm yield while the humid climate in east Texas allows
firm yield to equal or surpass storage capabilities of a reservoirs.

Sixty-three major reservoirs represent 95% of Texas reservoirs
with over 5000 acre-fect storage capacity. Twenty-nine of these either
1ie within or closely border the lignite belt (Fig. 14). Estimates of
storage conservation capacity and flood control storage capacity as viell

as the owner and/ov operator ave provided in Table 7.

The Texas Water Code defines groundwater as "water percolating below
the surface of the earth and that is suitable for-agricultural, gardening,
domestic, or stock raising puvrposes but does not include defined sub-
terranean streams or the under flow of rivers." Groundwater is one of
Texas' major natural resources, however, heavy pumping has caused nany
problems throughout the state: land subsidence, saltwater encroachinent,
rapid depletion of groundwater in the driest areas, and increased pumping

costs. 45



I. Pot Meyse Loke 1. 8. A. Steinhagen Lake
2. Lake Sulphur Springs 12. Laven Lake
3. Wright Potman Lake 13, Lake Roy Hubbard

4, Lake Cypress Springs |4, Cedur Creek Reservoir

5. Luke Q' the Pines 15. Navorro Mills Lake
6, Lake tawakoni 16. Bardwell Luke

7. Toledo Bend Reservair }7. Luke Livingston
8. Lake Palestine I18. Lake Conroe

Q. Lake Tyler 19, Whitney Loke

10. Sam Rayburn Reservoir 20, Belton Lake.

21, Stillhouse Hollow Lake

22. Somerville Lake

23. Loke Buchangn

24. Loke Travis

25. Canyon Lake

26. Medina Lake

27. Lake Corpus Christi
28. Intl. Amistad Reservoir
29. intl. Falcon Reservoir

Figure 14. Reservoirs within or bordering the Texas lignite
belt (storage capacity 5000+ acre-feet).
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Presently, management of groundwaler resources occurs on d Tocal
basis for local objectives and this-has-been supported by Texas state
law. The effects of groundwater depletion occur slowly and do not
affect all users at one time, therefore action to regulate use state-
wide all but stands still. State agéncies merely study the situation
and collect data because they have no regulatory control. In 1979,
the Texas legislature created the Underground Water Conservat%on Dis-
trict plan which would, if the district voted to adopt it, be able to
regulate consumption of groundwater within that district. Only Ffive

regions adopted the plan and of those, none regulates production of

water from wells directly.

Aquifers. Most of the groundwater in Texas is:1ocated in relatively
few aquifers. Within the lignite belt are located all or part of four
major aquifers: the Trinity Group, the Carrizo-Wilcox, the Gulf Coast,
and the Edwards (Balcones Fault Zone); and three winor aquifers: the
Woodbine, the Queen City, and the Sparta (Figs. 15 and 16). Following
is a general description of these aquifers, their water-bearing proper-
ties, and the amounts of water available.

The Trinity Group aquifer is made up of the Paluxy, Glen Rose, and
Travis Peak Formations of Cretaceous age. These rocks extend over a
large area of north and central Texas, but are only found along the upper
northwest edge of the lignite belt. They are composed of sand with
interbedded clays, 1imestone, dolomite, gravel, aAd conglomerates. The
aauifer dips toward the southeast and reaches a thickness of 1000-1200
feet where it is found within the lignite belt. Wells in this part of
the aquifer can produce up to 2000 gallons per minute. Infiltration
of precipitation, seepage of surface water, and return flows of irri-
gation water are the main forms of recharge to the aquifer. Artesian
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Figure 15.
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Major aquifers within the Texas lignite belt.
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QUEEN CITY

Minor aquifers within the Texas lignite belt.

Fiqure 16.

51



pressure conditions exist in the downdip area and water quality is acceptable
with the exception of excess f]uoriae at shallower depths.

The Trinity Group aquifer has been severely overdrawn in some areas
and water levels overall are declining because withdrawal exceeds effective
recharge. Low transmissibility furtﬁer Timits recharge rates. The de-
clining water levels cause encroachment at the salt-fresh interface and
increased pumping costs. |

Total average groundwater availability for the aquifer has been
estimated at 114,000 acre-feet, including volume of water recoverable
from storage and annual effective recharge. The annual effective recharge
was estimated at 95,100 acre-feet (Muller and Price, 1979).

1he Carrizo-Wilcox aquifer forms a wide, northgast trending band
extending from the the Rio Grande River the full length of the lignite
belt into Arkansas and Louisiana. It is made up of cross-bedded sands with
clay, silt, lignite, and gravel of the Wilcox Group and Carvizo Formation
of Eocene age. Recharge comes mainly from precipitation and streams that
cruss the outcrop. The aquifer dips to the southeast except in far east
Texas where it dips away from the structural high of the Sabine Uplift;
it ranges in thickness from 150 to 3000 feet. Downdip wells are artesian
and may yield up to 3000 gallons per minute.

Large withdrawais on the aquifer have lowered water levels and arte-
sian pressure, resulting in leakage between beds and encroachment of poorer
quality water. Saline water from the overlying Bigford Formation is con-
taminating the aquifer through old boreholes. In some areas, reversal
of hydraulic gradienl has caused a shift in the salt-fresh interface.

The overall quality of Carrizo-Wilcox water is acceptable and fresh

to slightly saline. It ranges from hard water, low in dissolved solids on
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the outcrop, to soft, warmer water, with more dissolved solids in the
downdip area. High iron content, hydregen sulfide, and mcthane gas are

found localily.

The Carrizo-Wilcox has an estimated average annual availability of
groundwater of 847,600 acre-feet. Tdta] annual effective recharge 1is
estimated at 644,900 acre-feet (Muller and Price, 1979).

The Gulf Coast aquifer includes the eastern lowermost edﬁe of the
lignite belt. The Miocene to Holocene formations making up the aquifer
are beds of clay, silt, sand, and gravel which alternate to form a leaky,
artesian system. Water quality in this part of the aquifer is better
than further south, with 500 mg/1 being commdn for dissolved solids.

High quality water can be found to depths of 3200 feet. The aquifer sedi-
ments reach 1300 feet thick in this area and wells may produce up to 1600
gal/min.

Unique problems exist relating to excessive withdrawal of water from
the Gulf Coast aquifer; a) subsidence of the land surface due to compac-
tion of water bearing clays, b) increase in chloride content to the south-
west, and ¢) encroachment of salt water at the coastline. Two minor
aquifers, within the Gulf Coast aquifer, the Chicot and Evangeline, are
located in the lignite belt. Pumpage from these two aquifers has been
directly related to land-surface subsidence in Houston, Texas, with water
derived from clay cowpaction being nearly equal to the amount of subsi-
dence (Jorgensen, 1975).

A digital computer model was developed by Muller and Price to
evaluate long-term supply capabilities of the Gulf Coast aquifer based
on simulations of pumpage, water level declines, and land-surface sub-
sidence. Frowm this, a perpetual annual effective recharge of 1.23 million

'acre-feet was estimated. Approximately 4% of the mean annual rainfall on
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the outcrop would be needed to support this amount of recharge (Muller
and Price, 1979). -

The Cretaceous-age Edwards (Balcones Fault Zone) aquifer consists of
massive to thin-bedded, cherty, nodular, argillaceous grayish-white
1imestones and dolomites of the Geofgetown, Edwards, and Comanche Peak
Formations. It is found in the uppermost western half of the lignite
belt and ranges from 200-600 feet thick. Yielding large amounts of
fresh water, the Edwards Limestone is extensively honeycombed and
cavernous due to solution channeling. This aquifer produces wells
yielding up to 16,000 gal/min,

The Edwards aquifer is recharged by infittration of precipitation
and stream water on the outcrop wainly through crevices and faults in
the Balcones Fault Zone. Some groundwater enters ihe agquifer laterally
from the Glen Rose Formation. Water within the aquifer is discharged
through natural springs in addition to hundreds of wells. It nmoves
rapidly through the aquifer where volume and flow rate respond quickly
to precipitation. Mater quality is good overall.

A digital computer model was also developed for the Edwards aquifer
which included simulations of pumpage, recharge, areal distribution of
water levels, and major spring flows. Average annual groundwater avail-
ability for the aquifer was estimated to be 438,700 acre-feet (Muller
and Price, 1979).

The sands of the Woodbine aquifer cover a small area on the northern
edge of the lignite belt where they are 600 feet thick at 2000 feet of
depth. Wells yield from 100 to 700 gal/min and water is mainly a sodium
bicarbonate type, high in dissolved solids, sulfate, fluoride, and
chloride. Groundwater availability is estimated to be about 26,100 acre-

feet annual (Muiler and Price, 1979).
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Located in the northeastern part of the lTignite belt, the Eocene~
age Queen City aquifer is made up 0% sahd, loosely cemented sandstone,
and clays. Although it dips s1ightly southeast, most of the aquifer is
exposed at the surface. 1t reaches a thickness of 500 feet, but due Lo
Tow transmissibility does not tranémit large quantities of water. Mells
usually produce less than 400 gal/min. Quantities of dissolved solids
are usually low, while acidity, iron concentrations, and hydrﬁgen sulfide
may be locally high. Average annual groundwater availability is appruxi-
mately 682,000 acre-feet {Mulier and Price, 1979).

The Eocene-age Sparta aquifer is also Jocated in the northeastern
part of the lignite belt slightly south of the Queen City aquifer. Over
thicknesses of 100 to 300 feet, the aquifer consists of sands and inter-
bedded clays which dip south and southeast. Large Qells yield 400 to
500 gal/wmin; water is sTightly saline, Tow in dissolved solids, and
tocally high in iron content. Groundwater availability is estimated to
be 163,800 acre-feet per year (McMullen and Price, 1979).

In Table 8 are found estimates of groundwater availability for
aquifers within the Texas lignite belt by river pasin. Also listed are
projected availability through 2030 and estimated remaining recoverable

storage as of 2031. Totals for each aquifer are computed at the end of

the table.

In order to contour the groundwater hydrology of the lignite belt,
the area encompassed by both major and minor aquifers was drawn onto a
large base map. Then the water availability values for each county
as determined by the Texas Water Development Board studies were added
(Table 9). Since groundwater availability values represented a county-
wide average, the center of aquifer extent in each county was used as the

contour point. In counties with two aquifers, one overlying the other,
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TABLE 9. Groundwater availability by

county, 1976.

County

Report or Millions of Gallons

Bulletin Per Day

Anderson, Cherokee, Freestone R. 150 68

llenderson

Angelina, Macogdoches R. 110 54

Atascosa, Frio R, 32 no data

Bastrop R. 109 no data

Bell B. 5902 no data

Bexar B. 5911 210

Brazas, Burleson R. 185 57

Caldwell R. 12 50

Camp, Franklin, Morris, Titus B. 6517 B -9

Cass, Marion R. 135 15

Comal B. 5610 no data

De Wittt B. 6518 55 - 90

Dimmit B. 6002 22

Duval R. 181 23

Falls R, 41 no data

fayette R. 56 - 49

Gonzales R. 4 "150

Gregg, Upshur R. 101 6.8

Grimes R. 186 52

Guadaiupe R, 19 40 at Teast

Harrison R. 27 49 at least
3. 6004 no data

Houstan R. 18 46

Jasper, Newton R. 59 500

Karnes B. 6007 1.7 at least

Kinney B. 6216 no data

LaSalle, McMullen B. 6520 80

Lee R. 20 12 - 40

Leon B. 6513 76

Live Dak B. 6105, 6301 2.15 at least

Medina B. 5601 80

filam R. 41 no data

Navarro R. 160 1.3 at least

Polk R. 82 46

Rains, Van Zandt R. 169 4.5

Robertson R. 4 no data

Sabine, San Augustine R. 37 44 - 165

San Jacinto R. 80 35

Smith B. 6302 52

Starr B. 5209 no data

Travis B. 5612, 5708 no data

Tyler R, 74 62

Uvalde B. 6212 178

Halker B. 5003 no data

Washinyton R. 162 27.3 at least

Webb R. 70 no data
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TABLE 9. (cont.)
County Report or Millions of Gallons
Bulletin Per Day
Williawson B. 5612 no data
Wilson B. 5610 4 at least
Wood R. 79 47
Zavala R, 70 no data

(Texas Water Development Board Publications)
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the center of the area of overlap was assigned the water availability
value. Thus it was possible to contour groundwater hydrology in accor-
dance with aquifer geoiogy and to obtain reasonable estimates of water
availability in counties that have not as yet been surveyed by the Texas

Water Development Board (Fig. 17 - in pocket).

Climate
Climatic conditions affect local water tables as well as‘water avail-
ability and future domestic, industrial and agricultural needs. Texas
has a variety of climates ranging from humid in the east to arid in
the west. While the climatic conditions of the eastern sector of the
state generally support ample water supplies for present needs, the

western sector has little or no water reserves.

Precipitation

Most of the water used in Texas comes from the Gulf of Mexico and
includes the sum of rainfall, sleet, hail and snow in one year expressed
in inches of water (Texas Natural Resources, 1959). The mean annual
precipitation for the state vas 28.04 inches for the period 1941-1970,
however, the distribution is not even. The far Trans-Pecos region of
the west received 8 inches while far east Texas received over 56 inches
(average annual rainfall can also be measured in acre-feet which is
equivalent to 325,851 gallons). Measured average annual rainfall over
Texas for the period 1924-1956 was 360 million agre—feet (1370 acre-
{eet per square mite). An annual average of 413 million acre-feet was
reported in 1968 by the Texas Water Developmnent Board. Figure 18 con-
tours mean annual precipitation rates for the Texas Lignite Belt in
acre-feet per square wmile. Precipitation varies approximately one inch

per 15.5 miles with a decrease from east to west.
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Figure 18. HMean anmal precipitation in acre-feet per
sguare mile.
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“Average" rainfall seldom actually occurs. The nation's greatest
short period storm rainfall was recﬁrdéﬁ in Texas. A Tong wet period
lasting seven years occurred between 1940-1946. During this seven year
period measured average rainfall of 33 inches annually exceeded the long
termn average by nearly 20%. 1In one yéar a total of 556 million acre-
feet fell - 154% of the long-term average. Twelve drought periods have
been recorded since 1891 with the 1950-56 drought averaging only 22
inches of rainfall per year - 80% of the long term average. In essence,

shift in short-period climate had occurred causing a 200 mile dis-
placement in which the humid climatic region was partially replaced by
a semi-arid climate and a semi-arid climatic region was partially replaced
by an arid one (Lowry, 1958)

Using average rainfall figures can also be misleading without the
specifications of time and place. Annual rainfall in extreme west Texas
is less than 10 inches while extreme portions of east Texas register
more than 50 inches annually. Figures 11 and 18 show lines of equal
rainfall trending in a north - south direction with precipitation
increasing in the east. Tabie 10 gives annual precipitation rates for
the climatic regions of the Texas lignite beit for the years 1941-1970.
Figure 19 graphically depicts average monthly precipitation for the

years 1931-1960 (Carr, 1967).

Movement of Air Masses

The interaction of two major air masses contkols moisture distri-
bution in Texas. Warm, moist air from the Guif of Mexico moves in a
northerly direction, while cold air masses move from the northwest of
Texas (Fig. 20). Cold air movements dominate during winter months and
contribute to the seasonal moisture variations in Texas. The major
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TABLE 10. Mean precipitation in Texas by climatological divisions.1

Climatological Average Wettest Driest
Annual Month Month
Precipitation

North Central 32.94 May 4,65 January 1.;5
fast 45.37 May ]5.34 August 2.8}
Edwairds Plateau 23.94 September 3.22 December 1.18
South Central 33.03 September 4,32 March 1.84
Southern 21.95 September 3.56 March 0.80
1

of Texas.

Precipitation, in inches,
totals observed for the perio

is based upon average monthly precipitation
d 1941-1970 for each climatological division

(U.S. Department of Comwerce, Climatology of the Uhited States No. 81)
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Figure 19. Average monthly precipitation in selected areas of
Texas, 1931-1960.
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Figure 20. Movement of air masses in Texas.

67



precipitatien producing mechanisms along the Texas Gulf Coast are sea-
sonal and include: fronts, troughs in-westerly winds, waves in easterly
winds, tropical storms and thunderstorms (Carr, 1967). South Texas tends
to be dry due to its distance from the interaction of the two air masses.
Fast Texas, on the other hand, is moist because of its proximity to a

moisture source as well as the interaction of the two air masses.

Temperature

Average January and July temperatures for the climatic regions of
the Texas lignite belt are listed in Table 11. The range between daily
maximum and minimum temperatures and temperature spread between the
coldest and warmest months generally increase with distance from the
Gulf of Mexico and with latitude. Mean annual temperature is shown in

Figure 21.

Evaporation and Transpiration

Evaporation is "the climatic process by which moisture is picked
up from any source and transported as vapor to other locations by wind
movement" (Kane, 1967). Water evaporates from open bodies of water such
as a reservoir, lake, or stream and also from the soil. The evaporation
rate of a saturated soil is nearly equal to that of an adjacent body of
water. Evaporation, which is inversely proportional to rainfall, will
pccur at a faster rate during dry periods and therefore significantly
affect water supplies. Contours of net lake surface evaporation are
shown in Figure 22. HNet lake surface evaporation is actual evaporation
loss calculated by subtracting effective rainfall from gross lake surface

evaporation.

Transpiration is the process through which water vapor is transferred
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TABLE 11. Ranges in temqerature, in degrees Fahrenheit, at selected
Texas cities.

City  mmmmmmmes January-~---==n~-  —==mo=---- July------===--
Average Average Average Average Averagye Averaye
Minimum  Max inuw Minimum Maximum
Dallas-Fort 33.9 bh.7 44.8 74.0 §5.5 84.8
Worth
Denison 31.5 53.3 42.3 72.3 94.6 83.5
Jacksbhoro 32.5 57.7 45.2 72.6 96.9 84.8
Waco 36.6 57.4 47.0 75.0 96.2 85.6
Longview 35.2 56.9 46.2 72.4 94.4 83.5
Lufkin 38.2 60.0 48.8 71.9 94.3 83.0
Palestine 37.0 56.8 46.8 72.3 93.9 83.0
Del Rio 38.1 63.4 50.8 74.2 99.2 86.7
Llano 33.1 60.0 46.6 72.4 97.9 85.4
San Angelo 33.6 59.1 46.4 72.4 96.9 84.7
Austin 39.3 - 60.0 49.7 73.7 95.4 84.6
Corpus Christi 46.1 . 66.5 56.3 75.2 94.4 84.8
San Antonio 39.8 61.6 50.7 73.8 95.6 84.7
Smithville 38.0 62.1 50.7 72.6° 96.3 84.5
Eagle Pass 38.2 64.3 51.3 74.9° 100.4 87.8

1Average temperatures are the arithmetic means of daily minimum and
maximum temperatures observed during the respective months for the
period 1941-1970.

(Environmental Data Service, Climatological Data: Texas)
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Figure 21. Mean annual temperature in deyrees fahrenheit
in the Texas lignite belt.
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Figure 22. HNet lake surface evaporation in inches.

71






into the atmosphere by plants. The amount of water lost through transpira-
tion depends upon the character and-deﬁ;ity of the vegetation and atnmos-
pheric conditions (Thornthwaite, 1942). The amount of water removed

from a field by transpiration will depend on the water reguirements of

the vegetation and growth which, in furn, may be Timited by the availa-
bility of water. Vegetation bulk increases as some power of the annual
precipitation. In addition, vegetation changes from desert sﬁrub to
grassland to forest with increased precipitation.

Total evaporation or the combination of evaporation and transpira-
tion is important when considering the hydrologic balance of an area.
Thornthwaite (1942introduced the concept of potential evapotranspiration
on the assumption that any reduction in evapotranspiration brought about
by a deficiency of soil noisture is independent of ﬁeteurological conditions.
Potential evapotranspiration is the amount of water that would evaporate
and transpire were it available rather than the quantity of water that
actually does evaporate and transpire (Fig. 23).

Thornthwaite (1948} developed a classification system to determine
climatic boundaries rationally rather than empirically by comparing pre-
cipitation and potential evaporation and formulated a moisture index for
the United States based on indices of humidity and aridity.

Thornthwaite's moisture index is:

Im = In - .b6la

and

i
1]

waler surplus

o
th

water deficiency

12
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Figure 23. Average annual polential evapotranspiration
in dinches in the lignite belt.
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n = water needed

I‘n = moisture index

This formula corrects for fluctuating moisture levels and those due to
seasonal variation. Thornthwaite assigned variables to indicate the
degree of seasonal variation in mgisture and which season, summer or
winter, is drier. Thornthwaite's Moisture Index is given in Figure 24
(in pocket) for the Texas Yignite belt.

Major climatic regions of Texas based on common seasonal rainfall
characteristics are (Carr, 1967):

1. Interior and Lower Coast - maximum precipitation period during
late spring and early fall

2. Upper Coast and Trans-Pecos - maximum precipitation period
during summer (coastal areas also receive considerah]e precipitation
during winter months)

3. Fast Texas - maximum precipitation period during winter months.
Figure 25 outlines the climatic regions included in the lignite belt as
designated by Carr and the National Weather Service which also classifies
its climatic regions on similar rainfall. Figures 26 and 27 indicate

moisture regions and seasonal moisture variation.

Vegetation
Climatic factors, especially temperature and moisture conditions,
influence both the vegetation and land use in an grea. Soil characteristics
are determined by climate and parent rock of the area. A parent rock that is
coarse and siliceous weathers to a material that Jeaches rapidly and is low
in nutrients. Leaching and weathering will occur faster in areas of heavy
rainfall or where the climate is hot and moist. The average rate of de-

composition doubles with every 18°F 4increase in temperature (Eyre, 1963).
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Figure 25. Climatic regions within the Texas
lignite belt.
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Figure 26. Moisture regions within the [exas lignite
belt.
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Figure 27. Seasonal variation of effective moisture
in the Texas lignite belt.
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The microclimate in the air layer nearest the soil is divectly affected by
the soil and vegetation (Walter, 1973). Therefore, climate as modified

by soil cover, directly influences the distribution of plant species.
However, plants are capable of exiting beyond their normal areas of dis-
tribution when not competing with other species. This indicates that
physiological requirements cannot always be determined simply from plant
distribution. |

Vegetative cover consists of: a) stems and leaves, livingor dead,
which1ie above the soil; b) decaying plant remains found on or i the soil;
and ¢) roots and stems which penetrate the soil (Colman, 1953). These
stems, leaves, and decaying plant remains éct as a barrier between the soil
and the atmosphere to restrict the amount of precipitation that enters the
soil and serve as insulators for temperature regulation and wind erosion.
This prevents water from evaporating from the soil as rapidly. The
vegetative cover partially obstructs water flow and soil erosion by
trapping and filtering out sediment from flowing water.

Hence, vegetation is the first line of defense in water yield control.
However, certain factors such as soil texture, structure, and depth can
limit the effectiveness of the vegetation. For example, & }imestone or
sandstone outcrop may support only a thin forest in a region where, on
other types of rock, a rich forest might have developed. Relief also has
an efféct on vegetative distribution. A hillside could be so steep that
so0il would not accumulate, or, on the other hand,' a plain near sea level
might have marshy conditions where large trees cannot exist (Eyre, 1963).
Where shallow water tables exist, vegetation is not as effective in re-
ducing evapotranspiration (Colman, 1953), and in cultivated areas, the

extent of water yield control by vegetation depends on agricultural practices,
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In general, evapotranspiration losses from vegetation and watershed soils
offset much of each year's precipitation. The rate of evaporation is re-
duced by vegetative cover and thus, the management of vegetation is the

only way to reduce this loss.

Vegetative Regions

Seven vegetative regions exist within the lignite belt (Fig. 28}.
0f these, the Southeastern Evergreen Forest, Oak Pine Forest, Post-Qak
Savanna, Blackland Prairies, and the South Texas Plains are significant.
The Cross Timbers and Edwards Plateau regions occur along the northern

and western boundary of the lignite belt.

East Texas Timberlands. The 16 million acres included in the East

Texas Timberland contains the Southeastern Evergreen Forest and the Oak-
Pine Forest regions. These regions receive the highest annual precipita-
tion measuring an annual average of 40-56 inches. This is anearly level,
locally hilly, area with an elevation of 200-700 feet. 235-265 days out
of the year are frost-free. Uplands soils are light-colored, acid, sandy
loams and sands, with some red soils. The bottomlands are light-brown to
dark-gray, acid, sandy loams, clay joams and some clays. These soils
overlie Tertiary sandstones and shales.

The Southeastern Evergreen Forest is found in Tyler, Jasper, and
Newton counties and parts of Sabine, San Augustine, Angelina, Polk, Hardin
and Orange counties. Its dominant vegetation includes the loblolly pine

(Pinus taido), longleaf pine (Pinus palustris, Magonlia sp.), and the

American holly (Ilex opaca). The bald cypress (Taxodium distichum) is

common in swamps and on stream banks.
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Figure 28. Vegelative regions in the Texas lignite belt.
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Dominant species of the Oak-Pine Forest include the loblolly pine

(Pinus taeda), the shortleaf pine (Pinus echinata), eastern red cedar

(Juniperus virginiana), red oak (Quercus falcata), white oak (Q. alba),

water oak (Q. nigra), willow oak (Q. pheilos), post oak (Q. stellata),

sweetgum {Liquidambar styraciflua), beech {Fagus grandigo]ia), hickory

(Carya sp.), maple (Acer sp.), and eims {Ulmus sp.), and in the bottom-

lands, willow (Salix nigra) and bald cypress (Taxodium distichym) occur.

Post Oak Savanna. This region is also referred to as the Claypan

Area, and covers 6,900,000 acres of nearly level to gently rolling
savannah to brushy area with moderate drainage. At an elevation of 200-
500 feet, the annual rainfall is 30-45 inches and 235-280 days of the
year are frost-free. The soils of the uplands are'gray, s1ightly acid,
sandy loams. In the bottomlands reddish-brown to dark gray, slightly
acid to calcareous, loamy to clayey alluvial soils predominate. These
soils lie above Tertiary sandstones and shales.

The climax community of the area is composed of post oak (Quercus

stellata) and the blackjack oak (Quercus marilandica). Undercover

grasses include Tittle bluestem (Schizachyrium scoparium), switch grass

(Panicum virgatum), purpletop (Tridens falvus), and siiver bluestem

(Bothriochloa saccharoides). Other woody species are the eastern red

cedar (Juniperus virginiana), yaupon (11ex vomitoria), and possumhaw

(I1ex decidua). BDue to overgrazing, thickets have formed 1in many areas.

Blackland Prairie. This nearly level to gently rolling prairie con-
tains 13 million acres and begins at a point below San Antonio and extends
northeastward in a widening strip. It is an area with moderate to rapid

surface drainage and is divided by the Eastern Cross Timbers which grow
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on the outcrop of the Woodbine Sand_sepﬂrating the eastern marly clays
of Upper Cretaceous from the western rolling hills of Lower Cretaceous.
The elevation varies from 250-700 feet with annual rainfall of 30-45
inches and annual frost-free period of 230-280 days. Uplands soils are
dark-colored calcareous clays and bottom-land soils are dark-gray to
reddish-brown calcareous clay loams and clays. Upper Cretaceous shales
and limestone gencrally underlie these soils. |

The climax grasslands are complsed chiefly of big bluestem (Andro-

pogon gerardii), sideoats gramma {Bouteloua curtipendula), hairy gramma

(Bouteloua hirsuta), and tall dropseed (Sporobolus asper). Woody species

such as mesquite (Prosopis glandulosa), post oak (Quercus stellata) and

blackjack oak (Q. miralandica) are invading the prairies.

South Texas Plains. 20,500,000 acres of nearly level to rolling

brushy plain is found in this area. Its elevation varies from sea level
to 1000 feet. Surface drainage is slow to rapid. Annual rainfall is
18-30 inches and annual frost-free period is 260-340 days. Soils in the
uplands are dark calcareous to neutral clays and clay loams; reddish-
brown, neulral to slightly acid sandy loams; or grayish-brown, neutral
sandy loams and clay loams; with some saline s0ils near the coast.
Bottomlands soils are brown to dark-gray, calcareous clay loams and clays
with some saline soils. These soils overlie Quaternary and Tertiary
sandstones and shales.

Overgrazing on the original savannah grassland of the South Texas

Plains has caused a severe brush problem. The most common species of

vegetation include mesquite (Prosopis glandulosa), Tive oak (Quercus

frutescens), prickly pear (Opuntia spp.), tasajillo (Opuntia leptocaulis),

silver bluestem (Bothriochloa saccharoides),and seacoast bluestem
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(Schizachrium scoparium Setaria spp., Paspalum spp., and Chloris spp.}.

East Cross Timbers. This narrow strip occupies one million acres of

gently rolling area ranging from open savannah to dense thickets of scrub
oak woodlands. At an elevation of 500-700 feet, it has a moderate to
rapid surface drainage with an annual rainfall of approximately 35 inches
and an annual frost-free period of 230 to 250 days. Lying on the out-
crop of the Noodbiﬁe Sand, the soils are consequently light-colored,
acid-loamy sands and sandy loams.

The post oak {Quercus stellata), blackjack oak (Quercus marilandica),

mesquite (Prosopis glandulosa), little bluestem grass (Schizachrium

scoparium), big bluestem grass (Andropogon gerardii), switch grass

(Panicum virgatum), hairy gramna (Bouteloua hirsuta), sidecats gramma

{Bouteloua curtipendula), and the Canada Wildrye (Elumus canadensis} are

common.

Edwards Plateau. The 24 miilion acres of the Edwards Plateau is

a broad, flat stony plain broken by undulating divides and is deeply
dissected and rapidly drained. At an elevation of 1200-3000 feet, the
annual rainfall is 12-32 inches with a frost-free period of 220-260

days annually. Soils are dark, calcareous stony clays and some clay
loams. Cretaceous 1imestone of the tashita and Fredericksburg Groups is
found in the underlying bedrock.

Common trees are live oak (Quercus virginiané), ash juniper (Junperus

asheri), Texas persimmon (Diospyros texana), and Texas oak (Tuercus

shummardii var. texana). Bald cypress, sycamores and native pecans

can be found along stream banks. Cacti include the prickly pear (Opuntia

spp.), tasajillo (Opuntia Teptocaulis) and thorny shrubs 1ike agarita
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(Berberi§_trif01io1ata). Common grasses include bluestems (Andropogon

spp.) and wildryes (Elymus spp. ).

Land Use

The Texas lignite belt is made up of parts of five land resource
areas - the East Texas Timberlands, Blackland Prairies, Grand Prairie,
Edwards Plateau, and Rio Grand Plain (Fig. 29). Land use in each area
is generally governed by precipitation.

The East Texas Timberlands and Blackland Prairies are a portion
of the low, level, and fertile Gulf Coast Plain. The most significant
difference between the two areas is the dominant presence of dark
calcareous clays in the Biack]and Prairies and sandy loams and sands
in the Timberiands. This part of the state receives the most rain-
fall annually. However, over wide areas the land is flat and drainage
is poor and excessive ground moisture discourages cultivation. Thus,
pasture acreage far outnumbers acres of cropland. Mild climate and
availability of moisture allow yrasses to grow year round and support
a large cattle-raising industry. Another advantage for livestock
producers is the case with which water can be obtained from wells on
the low plain. To the southwest towards the Rio Grande Plain, the
land becomes drier and farming more prevalent. Leading crops are
cotton, grain sorghum and corn. In the east where abundant water is
available for irrigation, rice is an important grain crop.

The Grand Prairie takes up only a small porﬁ%on of the lignite
belt but a sharp increase in elevation makes it easily distinguishable.
The increase in elevation as well as the thin, stony soils of this tegion

result from the hard limestone bedrock. Rivers flow rapidly down the
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northwest to southeast slope of the_Grapd Prairie and carry away accumu-
lating sediments. Thére are some large fertile areas, however, which
have soils a few feet thick. Nearly three times as much land is in
pasture as is cultivated; moisture and soils available allow brush,
cedar trees, and dense pastures to thrive. Approximately one-fifth
of the land is used for growing crops - principally oats, sorghum, and
corn ~ of which most goes for livestock feed. Water can easily be ponded
in the grasslands for use by livestock, and its high 1ime and phosphate
content eliminates the need for some mineral supplements.

The upper southwest edge of the Tignite belt lies within the
Edwards Plateau, a rocky, brush-covered highiand section of the Great
Plains of Texas. Streams in the areas have washed gut canyons and
valleys to create a hilly tomountainous relief and 1imestone bedrock
has produced a sticky, clay s0il with chunks of rock scattered through-
out. Rainfall comes mainly in the form of thunderstorms and runoff is
much higher than absorption. Many of Texas' largest springs occur in
this part of the Edwards Plateau. As the stony soils support mainly
grasses, weeds, brush, and clumps of trees, pastureland equals about
sixty-two times the amount of cultivated 1and. Numerous stock tanks and
natural springs provide water for livestock. The minor amount of
farming which does take place generally provides feed crops such as grain
sorghum. A few small areas are under irrigation and produce alfalfa,
vegetables, and fruits. !

The Rio Grande Plain includes one of the Jargest portions of the
1ignite belt in southwest Téxas. A wide variety of bedrock results in

several soil types throughout the region and elevation and relief in-

creasing away from the coastline. Brush, grasses, and mesquite trees
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are common throughout the area, providing good rangeland for raising
livestock. Tanks and deep artesian-we11s provide water for livestock
throughout frequent drought periods. Only ten percent of the Rio Grande
Plain is cultivated due to lack of rainfall and the need for irrigation,
Corn and grain sorghum are grown as feed crops, while cotton, vegetables,
and fruit are grown Tarther south (Chambers and Kennamer, 1963).

Table 12 describes land use for counties within the Texas.1ignite

belt and Figure 30 generalizes the distribution of irrigated acreage.

Water Use

Water is consumed by both natural and man-related processes. In
the humid c¢limatic regionslof east Texas water consumption by natural
vegetation exceeds that consumed by plants in the sémi-arid regions
to the west. Higher rainfall and lower evapotranspiration rates pro-
vide for greater quantities of available water, thus supporting higher
densities of high water-demand vegetation.

In 1931, the Texas legislature passed the Wagstaff Act as a
guideline for granting future water permits. The act provided that
for a given water supply the following priority would hold for use:
domestic and municipal needs, industry, irrigation, mining, hydro-

electric, navigation, and recreation and pleasure.

Domestic and Municipal Use

As the population in Texas increases so does' the size of her
metropolitan areas, thus increasing domestic and municipal water re-
quirements. Daily per capita use by urban residents has increased from
100 gallons in 1950 to over 150 gallons at present and the figure con-

tinues to grow (Van Dyke, 1974). The three basic water services: water
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Figure 30. Distribution. of irrigated acreage within the
Texas lignite belt.
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supply, wastewater collection and treatwent, and storm water management -
account for most urban needs. Uses include: domestic purposes, commer-
cial uses, Tire protection, street flushing, lawn and garden irriga-
tion, and some municipal industry. Some water is lost through leakage

from systems.

Industrial Water

Five major industries require a majority of the water used for
industrial purposes - food, paper, chemicals, petroleum, and metals
(National Water Commission, 1973). Industrial water is largely reusable
so there is less net loss of availability. Cooling towers equipped for
multiple recycling are coﬁmon, and cvagulation, sedimentation, and
softening are practiced to cleanse waste water. Inéustry faces in-
creasingly strict regulations regarding amount, quality, and environmmental
implications of water used even though it accounts for only a small por-

tion of wateruse in Texas.

Irrigation

Agricultural needs place a heavy demand on water resources in
Texas. Most of this water is consumed with less return flow and with
less available for reuse. In some areas of Texas, crops are completely
:dependent upon irrigation while rain falls on unsuitabie croplands
elsewhere. Both surface and groundwater sources are used for irrigation,
however, decline in groundwater levels is projectéd to cause a major
decline in irrigation (T.W.D.B., 1977).

Recent data on irrigatfon in Texas is found in a report compiled

by the Texas Water Development Board published in October, 1975 with

the cooperation of the United States Soil Conservation Service, area

92



district conservationists, and engineering field specialists. Data trom
this report for the counties of the Texas lignite belt are contained in
Table 13. Accuracy of inventory data differs from county to county
according to the quantity and accuracy of data available, assigned per-
sonnel's degree of familarity with the surveyed area, and the amount of
field observation that could be made. Generally the Soil Conservation
Service teams considered their estimates within a 5 to 10 percent range
of accuracy. A knowledge of jrrigation requirements for the various
counties of the Texas lignite belt will be essential in estimating water
requirements for counties with proposed mines.

Figures 31 and 3¢ show diagramatically the average acre-feet of

surface and groundwater used for irrigation per coupty in the lignite belt.

Mining Use
Fuels, metals, and nonmetals are mined in Texas. The petroleum
and natural gas industries alone consumed 163,572 acre-feet of water in
1972 while the metal industry used 3683 acre-feet. Mining of nonmetals
such as salt, sand, clay, etc. reguired much less water by comparison.
Mineral fuel development directly depends upon availability of
water. .Vast amounts of water are needed to mine Tignite, coal, and
uranium as well as for processing and land reclamation. Until very
recently, water availability has had little effect on the mining industry

in Texas.

Electric Power Production

Because surface water in Texas is fairly limited, only a small
amount of power is produced by hydroelectric plants and this is generally

during peak use times or emergencies. Electric power generation creates
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N
7
R :
>
N\ ACRE-FEET PER COUNTY
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Figure 31. Average acre-feet of surface water used for irrigation by
county in the Texas lignite belt.
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ACRE-FEET PER COUNTY

NONE
N - 499
I 500-2,499

77 2,500-9,999

10,000-24,999

Y 25,000~ 49,999

=1 50,000-99,999

5 100,000-249,999

Figure 32. Average acre-feet of groundwater used for irrigation by
county in the Texas lignite beit.
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a water loss resulting from the method of cooling employed for water
heated in the process of power production. Cooling towers and tanks lose

water to evaporation and seepage from tanks further reduces reusability.

Navigation and Recreation

Navagational and recreational water uses are considered to be
nonconsumptive. Usually water resource storage areas and watercourses
developed for other uses also provide for the needs of navigation and
recreation (McNeely and Lacewell, 1978).

Tables 14 and 15 estimate use of ground and surface water sources

for several different areas by river basin.
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MINING AND PROCESSLHG LIGNITE: WATER DEMANDS

Yater requirements for the conversion of lignite into a useful power
source may be a major factor 1imiting full potential developnent of liynite
resources in Texas (Hoffman, 1976). Mine operations by pre-agrarian man
were primitive. Throughout the Stone Age the demand for flint made it
an important trade item. From the beginning of the New Stone ﬂge shallow
mining pits with a ramified network of tunnels to extract the flints were
used. During the Bronze Age man mined other metals such as copper and
tin and made alloys such as bronze from them. The Iron Age man extracted
iron ores and produced metallic iron (Stoces, 1954).

Texans are presenlly becoming nore involved with shallow surface mines
or. as they are more comnonly called, strip mines. éomparatively uniform
shallow, flat coal beds are mined in open pits where the overburden is
not exceedingly thick. For strip mining to be practical, the area to be
mined must be flat to gently rolling. During mining {Fig. 4) the uver-
burden is removed in successive strips that vary in width and in back-
filled into the area from which the coal has been removed (Young, 1946).

Water needs for these processes vary substantially according to
tye type of utilization and conversion processes employed (Table 16}.

The amounts of water required for each of these processes are included

in five categories: 1) mining, 2} processing, 3) cooling, 4) those water
requirements of area population increase that would result from plant con-
struction and operation, and 5) miscellaneous.

Hoffman (1976) wmakes a distinction between "water intake" and "water
consumption" which have differing effects in lignite water needs. Water

intake refers to the total amount of water withdrawn from a lake, stream,
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estuary, or aquifer while water consumption refers to that amount of the
walter intake which is lost through evaporation, chemical conversion, or

pther means.

Mining Requirements
Water is needed for dust control in the mining area, on the haul
roads, and for land reclamation. A 25,000 ton per day lignite strip
mine requires approximately 500 acre-feet of water per ycar for dust
control. Land reclamation and revegetation of a stripped area could
require up to an additional two acre-feet of water per acre of land that
is surface mined and rec]aimed. Therefore for a 25,000 ton per day mine

with a mining rate of 12,500 tons per acre, total water requirements

can exceed 4000 acre-feel per year (Hoffman, 1976).

Rainfall is an important factor in estimating the amounts of water
actually needed. For exawple, cast Texas and much of central Texas
receive sufficient rainfall to preclude or reduce irrigation needs,
but further to the south periodic jrrigation will probably be necessary
for the reestablishment and maintenance of vegetation. In determining
water needs, Hoffman (1976) assumes that there will be no water require-
ments for land reclamation using jrrigation in the east Texas area west
to Freestone County, but estimates irrigation water needs in the central
and southern climatic regions of Texas would range from 500 acre-feet to
2000 acre-feet per year for a 25,000 ton per day mining operation. No
return flows are assumed; thus water intake equals water consumption.
Other processes, such as underground mining dust control and in-situ

gasification operations have winimal waler requirements (Table 17).
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TABLE 17. Mater for lignite development in Texas.

Estimates for a 25,000 ton/
day Operation

MINTNG ,

Strip 500 acre-feet/year
Dust control - mine area and land 2 acre-feet per acre of

reclamation 1and

Underground small .

In-Situ Gasification small, but may affect

aquifers
PROCESSING

Steam Electric Power Plants
Boiler makeup, ash handling 200 acre-feet/year
Stack gas scrubbing (if used to con- 2000 acre-feet/year

trol emissions)

Lignite Gasification and Liquification (varies with process used)
Gasification in general 1000 acre-feet/year
Liquification in gengral 800 acre-feet/year
Solvent refined coal®- gasification 300 - 3000 acre-feet/year

Vliguification 300 acrg-feet/year

In-Situ Gasification minimal

Lignite Washing usually not practiced but,

if so, it would be small

Pipeline Slurry 500 acre-feet/year

COOLING

Air Cooling minimal

Wet Cooling
Once through cooling - consumption 10,000 acre-feet/year
Cooling ponds or towers 20,000 acre-feet/year
Gasification and liquification - 3000-5000 acre-feet/year

consumptive (depends on process and
amount air cooled)
Total waste heat removal - intake 20,000-45,000 acre-feet/year
With air cooling to remove 75% heat 4000 acre-feet/year
in gasification and Tiquification
processes
Once through cooling - intake 1.5 million acre-feet/year
SECONDARY POPULATION REQUIREMENTS 2000-6000 new peop1e3
Local Municipal Water - intake increase 300-200 acre-feet/year
Municipal - consumption increase 150-450 acre-feet/year
MISCELLANEOUS varies with each report
Intake 500-1000 acre-feet/year
Consumption 250-400 acre-feet/year

1water requirements for all types of stack gas scrubbers (wet 1imestone,
double alkali, magnesia, etc.) are about the sanme.
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TABLE 17. (cont.)

2SRC process requires the least amount of water because total gasifica-
tion or hydrogeneration is not accomplished.

3However, gas will probably be used on site for steam electric power
production so the water requircmen

ts for this method will be associa-
ted with those for electric power generation.

(Hof fman, 1976)
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Process Requirements

Process water requirements vary with the type of lignite conversion
process used (Table 17). A steam electric power plant using 25,000 tons
of lignite per day needs 200 acre-feet per year for boiler feed make
up and ash handling, and approximately 2000 acre-feet per year for stack
gas scrubbing (Hoffman, 1976). Since much of this water is lost through
evaporation, intake and consumption are therefore equal.

Process water requirements for lignite gasification and liquifi-
cation also vary with the process employed. A substantial volume of
the water used in these operations is chemically consumed in the con-
version reactions to produée hydrogen (Hoffman, 1976). Plants that pro-
duce high Btu gas usuaily cohsume more water than 10& Btu yas plants be-
cause they use shift conversion and methanizatio& (Table 18). Since the
process water is actually consumed, intake is equal to consumption.
Liquification methods such as the Synthoil process require less water
than gasification processes because the molar ratio of carbon to hydrogen
in the lignite is not significantly changed {Hoffman, 1976). The solveni
refined coal (SRC) process uses the least amount of water because total
gasification or hydrogeneration is not carried out. Hoffman {1976) es-
tinates process water reguirements for these operations range from
approximately 300 to 3000 acre-feet per year. For most gasification
processes, consumption vates are generally 1000 acre-feet per year. Liqui-
fication processes noimwally require about 800 acrélfeet per year and SRC
processes only about 300 acre-feet per year, Or less if it is assumed that
the ratio of process water to cooling water for these SRC plants is the

same as that for liquification plants (Hoffman, 1976). The actual water

1Methanization - the process of producing methane gas from lignite coal.
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TABLE 18. Energy output of various lignite conversion processes using
25,000 tons of lignite per day.

Process Biliion Btu's Plant Dutput Units
per day per day

Steam Electric Power Plant 120 36,000,000 KWH]
High Btu Gas 230 280,000,000  SCF°
Low Btu Gas 300 830,000,000  SCF
Fischer-Tropsch 130 26,000 Barrels
Synthoil & Others 230 45,000  Barrels®
Solvent Refined Coal 280 38,000 Barrels
Pipeline Slurry . 360 25,000 Tons

]KNH - Kilowatt hours and is equivalent to a 2,000 megawatt power plant
operating at 80% of capacity.

2SCF - Standird cubic feet.
3A heat value of 300 Btu's per SCF is assumed.

4Direct catalytic hydrogeneration and hydrocarbonization have similar
conversion efficiencies.

(Hoffman, 1976)
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requirenents can be affected by the moisture content of the lignite.
Water requirvements for in-situ gasification of existing deep-basin
Tignite in Texas will be minimal (Hoffwman, 1976). However, the gas pro-
duced will most likely be used at that site for steam electric power
production and therefore water needs for in-situ gasification will be
associated primarily with electric power generation. Lignite washing,
while generally not practiced due to the large amounts of fines produced,
if empioyed, would require small amounts of water in comparison with
other lignite conversion process requirements (Hoffman, 1976). Trans-
porting Texas lignite via slurry pipeline is an unlikely alterpative be-
cause lignite tends to disintegrate, when slurried, into a fine powder
which drains poorly and is difficult to handle. Hoﬁever, if used, a
pipeline slurry system transporting 25,000 tons of lignite per day would
require about 5000 acre-feet of water per year (Hoffman, 1976). This
water is not actually consumed, hut would be removed from the lignite

producing area.

Cooling Requirements

Cooling water intake and consumption rates are dependent upon the
type of cooling system used (Table 17). Both air and water cooling
systems are available. In air-cooled operations little water is used,
but in wet cooling systems water needs are substantial. Air cooling
systems are proving useful for many gasification and liquification opera-
tions because of the extremely high tewperatures involved in processing.
Some gasification plants have plans to employ air cooling for nearly
757 of their cooling nceds to reduce water requirements. Stean electric

power plants, however, generally do not use air cooling systems for the
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following reasons: 1) relative cost is excessive compared to wet cooling
systems, 2) power plant efficiency is veduced by 12%, and 3) from 3% to 8%
of the electric power output of a plant is required for operation
{(Hoffman, 1976).

Available wet cooling systems include wet cooling towers,
recirculating cooling ponds, and once-through cooling systems from
multipurpose reservoirs, streams, or estuaries. Once-through systems
consume far less water than cooling towers and cooling ponds.

Consumptive water requirements for a steam electric power plant
using 25,000 tons of Texas lignite per day would total about 10,000
acre-feet per year if oﬁce-through cooling is used, but would be as
much as 20,000 acre-feet per year if cooling pon&s or towers are used
(Hoffman, 1976). Water consumption for gasification and liquification
plants of the same size would range from 3000 to 15,000 acre-feet per
year , Hoffman says, depending on the specific process and the amount
of air cooling used.

Water intake rates also depend on the process used. If wet cooling
towers or cooling ponds are used for total waste heat removal in either
steam electric power plants or gasification or liquification plants
using 25,000 tons of lignite every day, water intake requirements will
be around 20,000 to 45,000 acre-feet per year (Hoffman, 1976). This
equals the volume of water nceded to replace that Jost through evaporation
and biowdown from the cooling system. Hoffman.boints out that if air
cooling is used to remove as much as 75% of the waste heat from the
latter two conversion processes, intake requirements can be reduced to

as little as 4000 acre-feet per year.
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Once-through cooling systems withdraw water, circulate it throudgh
a condenser and heat cxchanger, then discharge it to receiving water
(Hoffman, 1976). For either sieam electric power plants or lignite
conversion plants intake rates can. exceed 1.5 million acre-feet per
year. Such large requirements generally preclude use of groundwater.
1f located on a surface water source, the water should be jmmediately
returned to that body of water and not represent an actual depletion of
the water source. However, the widely varying flow rates oﬁ most Texas
streams limit the feasibility of using such cooling systems. A different
situation exists if the.plants are located on multi-purpose reservoirs.
Since this system merely circulates the lake wafer, the only requirements
are that: 1) sufficient water is impounded at aﬁy one time to provide
enough water surface area for heat dissipation, 2) the lake's water
level remains above the water intake structure of the plant, and
3) sufficient water is released from the reservoir to control the levels
of dissolved solid concentrations (Hoffman, 1976). Single purpose cooling
reservoirs should be used only when absolutely necessary. Such impound-

ments may preclude the statewide water resource planning and development.

Secondary Population Reguirements
Steam electric plants that require 25,000 tons of lignite per day
will require 200 to over 800 new employees for operation. If it 1is
assumed that 75% of these employees are married, then the total direct
population increase, including workers and their families, could range
from 400 to 2000 people (Hoffman, 1976). These employees and their
families would also create new demands for goods and services thus

requiring more people. For most installations these related population
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requirements would be on the order of. 600 acre-feet per year for intake

and 300 acre-feet per year for consumption (Hoffman, 1976).

Miscellaneous Requirements
Miscellaneous requirements include water used for sanitary purposes,
watering the lawn around the plant, washing and maintenance, utilities,
air conditioning, and other needs (Hoffman, 1976). Hoffman estimates
that for a 25,000 ton per day plant intake rates of 500 to 1000 acre-feet
per year and consumption rates of 250 to 500 acre-feet per year would

be more than sufficient for miscellaneous needs.

Sunmary

To fully comprehend water requirements the ‘total water needs of the
various lignite utilization and conversion processes must be examined
(Table 17). Table 19 shows the consumptive water requirements of the
various processes on a "gallons per million Btu's' basis so that relative
water use efficiencies can be compared. As Table 19 shows, steam
electric power plants are the most "water intensive” while slurry
nipeline and solvent refined coal processes are the least water intensive
(Hoffman, 1976). However, Hoffman points out, slurry pipelines are for
transportation and the lignite will be used at its destination. So in
many ways slurry pipelines may merely transport the water use needs from
the mining location to the point of use. The same may be true for the
SRC processes since the product is a solid substance with a heating value
of 16,000 Btu's per pound‘(Hoffman, 1976). This product can be burned
in the power plant boilers or liquified by hydrogeneration -- both

processes will require additional water.
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TABLE 19. Water consumption rates for lignite utilization and conversion1.

Process Water Consumption
(Gallons per million Btu's)

Steam Electric Power Plant 98 - 188

Gasification 15 - 74

Liquefication 16 - 130

In-Situ Gasification2 84 - 148

Pipeline Slurry . 0.2 - 19

Solvent Refined Coa]3 ] 5.4 - 8

]This includes mining, processing, cooling, miscellaneous, and associated
population requirements.

2This assumes that in-situ gasification recovers 50% of the heating value
of the lignite and that gas is used on location to power a 1000 megawatt
power plant. Therefore, water use figures reflect power plant water re-
quirements. :

3Information for the SRC process water requirements is scanty; thus,
these projections should be used with caution.

(Hoffman, 1976)
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Figure 33. Impact evaluation divisions in the Texas
Tignite belt.
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TABLE 20. Impact evaluation figures for the Texas lignite belt.

Northeast

Available Groundwater
{acre-feet per year}

Groundwater Use
(acre-feet per year)

Remaining Groundwater
(acre-feet per year)

Available Surface Water
(acre-feet per year)

Surface Water Use
(acre-feet per year)

Remaining Surface Water
(acre-feet per year)

Precipitation, Annual
(acre-feet per year)

Runoff, Annual
(acre-feet per wi )

Net Lake Surface
Evaporation (inches
per year)

Evapotranspiration
(inches per year)

Reservoirs
(5000+ acre-feet)

4,690,700

2,996,200

1,694,500

69,700,311
1,391,400

68,308,911
2000-2500

150-1000

5-25

39-42

17

Central Southwest
6,469,500 1.975,600
5,525,700 1,347,700

943,800 627,900
58,042,783 3,769,974

994,000 1,689,900
57,048,783 2,080,074
1400-é000 900-1400
50-530 30-120
20-40 40-70
42-45.5 45.5-54.5
9 3
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Total average water requirements were computed for lignite mining
operations with air-cooled and water-cooled processing systems (Fig. 33}.
Since air-cooling is less commonly used, the water-cooled figures are
at present more realistic. For an air-cooled processing system, water
needs for a mining operation miyht be 2000 - 6500 acre-feet per year,
with in-situ gasification requiring the least amount of water. A wet-
cooled processing system would cause mining water requirements to be
500 - 25,000 acre-feet per year, with cooling ponds or towers-consuming
the maximum amount.

Within all three sections available groundwater would play only
a winor role, if any, in providing for mining water needs. Groundwater
use throughout the state has reduced available supplies in storage to
dangerously low levels. Therefore, water resources for mining use would
be 1imited to surface water and precipitation.

The northeastern area of the lignite belt is lush and forested with
fertile soils and moderate temperatures. Precipitation and runoff rates
are high while net Take surface evaporation and evapotranspiration are
Tow. Along with seventeen major reservoirs, available surface water as
watercourse discharye reaches nearly 70 million acre-feet per year.

This section will not be water Jimited in the future as far as extensive
Tignite resource development is concerned. Less water will be required
for dust control and reclamation while abundant runoff will provide water
for cooling ponds or once-through cooling. Thirty million acre-feet of
surface water per year would support 1200 25,000-ton-per-day mining
operations with maxiwum water requirements. Some groundwater will be
available for mining needs ff necessary.

The central section of the lignite belt will be sonewhat water

limited for lignite development. The climate is warmer and drier than
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Figure 34. Total average water requirements for lignite production.
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in the northeastern section and water needs for agriculture are higher.
surface water availability is estimated at 58 million acre-feet per

year but precipitation and runoff rates are considerably lower than in
the northeast. Evaporation and evapotranspiration rates are higher,
creating an elevated water requirement for some mining operations. Nine
major reservoirs serve this section. Water conservation-oriented mining
methods will have to be implemented in order to retain the equi]ibrium
of water use in this area.

The southern section of the Tignite belt is and will be severly
water limited for any resource development. Precipitation and runoff
rates are extremely low and surface water availability barely reaches
2 million acre~feet per year. The extremely hot, dry climate raises
net lake surface evaporation to three times that of ‘the northeastern
section. Evapotranspiration averages thirteen inches more than in the
northeast. Only three reservoirs are available for use in this area and
two of these are international reservoirs shared with Mexico. Vater
resources in this section will support only minimal development of 1ig-
nite resources and then only with mining methods consuming minimum
quantities of water.

The conclusion remains that the northeastern section of the lignite
belt is the most suited to lignite development. Extensive rainfall pro-
vides natural dust control and irrigation water while runoff can be used
to create cooling ponds or used in once-through cooling systems. If
conservation and careful regulation are practiceé, lignite mining
should not affect water resources in this area adversely. In the central
section more care will be needed to conserve the natural water resources.
Mining operations and systems will have to be designed to use 1ess water
because more water will have to be alotted to things such as dust control

and reclamation and less water is available overall. 1f necessary, Yimi-
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ted mining could be practiced in the southern section with systems

consuming the minimum amount of water. . Evaporation and dust control

will be major problems behind the basic extreme lack of water itself.
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