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ABSTRACT

Heat Transport in Groundwater Systems
Yol. II - Laboratory Model
by
David Bryan Reed
and

Donald L. Reddell

Solar energy is a promising alternate energy source for space
heating. A method of economic long term solar energy storage is
needed. Researchers have proposed storing solar energy by inject-
ing hot water heated using solar collectors into groundwater aqui-
fers for long term energy storage. Analytical solutions are
available that predict water temperatures as hot water is injected
into a groundwater aquifer, but 1ittle field and laboratory data are
available to verify these models. The objectives of this study were
to construct a laboratory model to simulate hot water injection into
a confined aquifer, to use data from the model to verify analytical
solutions modeling this process, and to evaluate the effects of
physical properties and design parameters on thermal recovery effi-
ciency.

Initial studies of hot water injection into underground reservoirs
were done by the petroleum industry while studying secondary and terti-
ary oil recovery methods. These studies involved small laboratory
models. Advances in computer technology made it possible to model
these systems numerically. Many assumptions must be made to predict

temperature distributions and thermal efficiencies using analytical



models which are not required in numerical solutions.

To simulate hot water injection into a confined aquifer, a
laboratory model (a 1.8288 m deep, 0.2 radian sector tank, that was
7.01 m in the radial direction) was constructed. There were 39 temp-
erature and 15 fluid pressure measuring locations through the model.
Water was supplied to the model at a constant temperature and flow
rate. The flow layer was composed of a fine grained Texblast blast-
ing sand. Four runs were made. During the initial run, no heat trans-
fer took place and the hydraulic conductivity was measured. Three runs
were made where the heat transfer was monitored.

Water level data from the heat transfer runs showed that as the
temperature of the aquifer increased, the hydraulic conductivity in-
creased. Temperature data indicated that the three radii closest to
the well bore reached thermal equilibrium. The equilibrium tempera-
ture decreased as radius increased. From Run 1 to Run 2, the equilib-
rium temperature increased at each radius because a larger flow rate
was used. A vertical thermal gradient existed in the flow Tayer with
the less dense warm water floating out over the cooler more dense
water initially in the model. During the pumping cycle, the temper-
atures gradually decreased.

The temperature of the water as it was pumped out of the model
was measured and the energy recovered was computed using the initial
temperature as a reference. Various other temperatures were used
as a base reference to calculate recovery efficiency.

There were heat losses out the sides of the medel. The assump-

tion of angular symmetry made in all analytical solutions was there-
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fore not met. For this reason, the analytical solutions showed
adequate, but not great, agreement with the experimental tempera-
ture distributions.

Using the analytical solutions, the effects of changing system
design parameters were evaluated., Increasing thermal conductivity
in the flow layer caused the temperature distribution to spread
out but had no effect on thermal efficiency. Increasing the thermal
conductivity in the confining layers caused the temperature profile
to not move as far from the well, and decreased thermal efficiency.
Injection rates are only indirectiy related to thermal efficiency.
The physical parameter having the greatest effect on thermal effi-
ciency was the flow layer thickness. As thickness increased, thermal

efficiency increased.
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CHAPTER 1
INTRODUCTION

The Arab oil embargo of 1974 and the resulting rise in energy costs
have made people in the United States realize the need for developing
alternate energy sources. The harsh winters of 1976-77 and 1977-78 made
people even more aware of the need to find alternate energy sources for
space heating. Kenward (1976} cited ccal, nuclear fission, fusion, geo-
thermal energy, and solar energy as potential alternate energy sources to
replace natural gas and oil. Of these, solar energy is one of tﬁe most
promising alternate energy sources for space heating and cooling.

Solar energy is not a new energy source. Meinel and Meinel (1976)
reported the use of solar energy to power furnaces before the time of
Christ. The eighteenth and nineteenth century saw the development of
solar motors and several patents were issued for this invention. By the
beginning of the twentieth century, solar energy was generally considered
economical only in extremely remote areas.

With the recent price escalation of conventional energy sources,
interest in developing economical solar energy systems has increased.
Kenward (1976) estimated that the sun supplies more energy to the Earth
in one day than will be used in 25,000 years at our present ratelof
consumption. The primary problem in utilizing this vast energy resource

is that solar insolation is at a maximum during the summer when energy



for space heating is needed least. Conversely, it is a minimum during
the winter when most needed.

A method of storing solar energy for long periods of time is needed.
According to Duffie and Beckman (1976), the current methods of storing
solar energy are:

1. An insulated tank for a liquid system,

2. Pebble beds for an air system, and

3. Llatent heat from a phase transition of a chemical compound,

The third system holds possibilities for Tong term solar energy Storage
but much more research is needed. Air and Tigquid systems allow 5n]y
Timited storage which results in the need for a conventiqnal auxiliary
heating system to back up the solar heating system during prolonged
periods of cold weather with little sunshine. Because of the increased
initial cost of an auxiliary system, much of the attractiveness of a
solar heating system is eliminated. To overcome this problem, a method
of storing solar energy for extended periods of time is needed.

In most areas of the Earth, groundwater aquifers underiie the ground
surface. These aquifers have the ability to receive or yield large
volumes of water but vary greatly in depth, porosity, and water gquality.
Combining aquifer availability with the knowledge that the Earth is a
good insulator and water has a relatively high specific heat gives the
basis for Tong term solar energy storage by injecting hot water into
groundwater aquifers,

To use groundwater aquifers effectively for thermal energy storage,
models to predict temperature profiles and heat losses from the aquifer
are required. MNumerical models and mathematical models are available for

predicting water pressures and temperatures in confined aquifers when



water at a given temperature is injected into an aguifer with a different
water temperature. However, limited field and laboratory data are avail-
able to verify these models. Thus, the objectives of this study are:

1. To design, construct, and instrument a physical laboratory
model of a confined aquifer and simulate the injection and
pumping of hot water into the aquifer,

2. To collect water temperature and pressure data from the physical
model and compare these data with predictions obtained from
existing mathematical models, and

3. To evaluate the effects of parameters such as injection:rate,
injection temperature, and aquifer thickness on thermal energy
storage and the efficiency of energy recovery. |

The physical laboratory model, coupled with mathematical and numerical
models, will be very valuable in evaluating the effect of important

system design parameters on the efficiency of storing thermal energy in

groundwater aquifers.



CHAPTER II
REVIEW OF LITERATURE

Meyer and Todd (1973) were among the first to suggest thermal
energy storage by injecting hot water into groundwater aquifers. Their
calculations were based on injecting 99°C water at a rate of 0.05 m3s_1.
They simulated five 90 day injection-pumping cycles into a 33 m thick
confined aquifer. They assumed the hot water would float above the more
dense cooler water in the aquifer, and form an inverted cone with a top
radius of from 180 to 210 m. After the fifth injection cycle, 86 percent
of the heat was recovered at a temperature greater than 82°C. The first
four cycles were less efficient because some thermal energy was required
to bring the aquifer to the temperature of the injected water. Above
ground storage of energy recovered during their fifth injection cycle
would have required a tank 33 m high and 130 m in diameter, plus insula-

tion. This represented 2.8 x 1013

J of usuable energy for space heating.
Davison et al. (1975) proposed the "Solaterre" system which would
use solar heaters to heat water during the summer. The resulting hot
water would be stored in an aquifer until winter and would then be used
for space heating. Using a utility-type distribution system, a large
number of homes could be heated with the stored hot water. The
“Solaterre" system also included a chilling pond to cool water during
the winter. The cold water would be stored in the aquifer and used to
cool homes in the summer. The distribution system used for heating

would also be used for cooling. The aquifer was divided into four

separate zones; two for heating and two for cooling. In a study of the



"Solaterre" system at Lubbock, Texas, Martin et al. (1974) found the
system to be economically feasible.

Hot water injected into a groundwater aquifer can be 1/6 as viscous
and 10 percent less dense than the natural groundwater. The hot water
will tend to float over the cooler and more dense natural groundwater.
Mass flow will be affected by the density and viscosity differences.

Heat flow in the permeable flow region will be by both conduction and
convection. Determining how hot water will move through a porous aquifer
is a difficult process. At the present time, little work has beén done
in evaluating heat flow in a confined aquifer system. Even Tessiwork

has been done in evaluating the thermal storage efficiency and the even-
tual thermal recovery efficiency. |

Initial studies of hot fluid injection into underground reservoirs
were done by the oil and gas industry developing secondary and tertiary
0il recovery by hot water flooding and steam injection. Design work
involved laboratory studies on core samples similar to those described
by Breston and Pearman (1953) for the Pembian o0il fields in Canada.

Their design also included a trial and error procedure.

Preston and Hazen (1954) were among the first to publish laboratory
results of hot water injection into an unconsolidated sand. The labora-
tory model consisted of a 7.62 c¢m (3 in) diameter column which véried in
length from 15.32 cm (6.03 in} to 60.96 ¢cm (24 in). Hot water was forced
vertically downward at a constant rate and temperature. By measuring the
temperature at the outlet port, Preston and Hazen (1954} were able to
calculate a heat transfer coefficient between sand and water using an

analytical solution by Schumann (1929).



Malofeev (1959) experimentally studied hot water injection in a
Tinear Taboratory model. The flow area was 2.54 cm (1 in) thick,

22.86 cm (9 in) wide, and 71.12 cm (28 in) long. The impermeable strata
above and below were simulated by a clay Tayer 12.70 c¢m (5 in) thick.
Pore water velocities ranged from 0.16 m/hr (0.52 ft/hr) to 1.27 m/hr
(4.14 ft/hr). With thermocouples in the sand and clay layers, tempera-
ture distributions were measured as a function of time. Thermal effi-
ciencies were calculated and found to agree with the analytical solution
presented by Lauwerier (1955).

Baker (1967) studied hot fluid injection in a laboratory moael and
compared results with analytical solutions by Lauwerier {(1955), Marx and
Langheim (1959), and Rubinshtein (1959) and a computer simulation by
Spillette (1965). The laboratory model simulated plane radial flow in a
confined sand aquifer with a 10.16 cm (4 in) thick flow area and a
maximum radial extent of 91.44 cm {36 in). To simplify the model the
caprock and bedrock were composed of a saturated sand separated from the
confined flow region by a 3.3 mm (0.013 in) thick Tayer of mylar plastic.
The injection rates were kept constant during each run, and the injection
temperature was 76.7°C (170°F). Temperatures were measured in the cap-
rock, bedrock, and flow area using thermocouples. In the flow area,
temperature distributions in the model compared favorably with tﬁose
predicted by the analytical solutions. Predicted thermal efficiencies
and heat losses using analytical solutions were in poor agreement with
the laboratory data. Results indicated that thermal efficiency is
dependent on flow rate. Baker (1969) later showed that heat losses from
steam injection into a laboratory model agreed closely with the predicted

values from analytical solutions.



Chappelear and Volek (1969) modeled steady state mass flow and
unsteady state heat flow in a rectangular laboratory model composed of
sand. The flow region was 10.24 cm (4 in) thick, 10.24 cm (4 in) wide,
and 91.44 cm (36 in) long. The caprock and bedrock were simulated by
dry limestone. Temperatures were measured with thermocouples. The
system was modeled numerically, and results compared favorably with
laboratory data. A comparison with the analytical solution by Lauwerier
(1955) showed poor agreement.

Rabbimov et al. (1974b) constructed a linear laboratory model to
simulate long term energy storage by injecting water heated by sd]ar
collectors into a groundwater aquifer. The flow area, composed of sand,
was 10 cm (3.94 in) thick and 1 m (39.37 in) long. The éonfining layers
consisted of clay, and temperatures were measured using thermocouples.
Fluid fluxes ranged from 15.8 x 1072 m/hr (5.184 x 1072 ft/hr) to
79 x 1072 m/hr (25.92 x 1072),

According to Spillette (1965), the differential equation governing

heat transport in a porous media is:

VKT - 7+ (p CVT) = ff(pTc]T) (1)

where 101(:'[ = (\b(pfcf) + (]-0'¢)Drcr;

T = temperature (deg):

K = thermal conductivity (FT']deg-]);
o = density (ML'3);
C = specific heat (FLM'Tdeg_1);

fluid pore water velocity vector (LT']);

=<
n

t = time (T);



¢ = porosity (fraction); and

v = vector "del" operator (L’1).

The subscripts denote the following media properties:

f

It

flowing fluid properties;

r = porous media or rock properties; and

1 combined porous media and fluid properties.

1i

Equation (1) is valid for any coordinate system, contains both conductive
and convective heat transfer, and is valid for a non-homogenous, aniso-
tropic porous media. One assumption inherent in this equation is that

an instantaneous thermal equilibrium exists between the water an& porous
media; i.e., a grain of sand instantaneously reaches the temperature of
the surrounding fluid. This assumption is made in all useful mathemats-
cal and numerical models of heat transport in porous media.

In obtaining analytical sclutions for the hot water injection prob-
iem, additional simplifying assumptions are necessary. Incompressible,
one-dimensional mass flow, two-dimensional heat flow, with constant
physical properties are the only cases for which analytical solutions are
available. In many cases, assumptions concerning thermal conductivity
are made to restrict heat flow to certain directions; thus simplifying
the problem. Theoretical developments and analytical solutions are
discussed in Chapter 3. |

Before the recent advances in computer technology, mathematical
models were the only practical way to analyze a problem as complex as
combined heat and mass transfer in porous media. Recent advances in
computer technology have made it possible to numerically analyze problems

as complicated as Equation (1). Simplifications necessary to solve
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Equation (1) analytically are not necessary in existing computer simula-
tions. Numerical models can analyze heat transfer and fluid flow in
anisotropic, non-homogenous aquifer in all three directions. Mass flow
does not have to be considered separately from heat transfer as is
required in analytical solutions.

Fournier (1965) used the Buckley-Leverett displacement theory and an
analytical solution by Lauwerier (1955} to derive a differential equation
describing hot water injection for oil recovery in a radial system.

Using Milne's predictor-corrector scheme to solve the finite difference
equations, Fournier (1965) was able to calculate water saturatioas and
temperatures in the reservoir. 7

Gottfried (1965) developed a sophisticated numerical model to simu-
late thermal oil recovery in a linear system. In his three-phase (o0il,
gas, water) flow model, seven non-1inear partial differential equations
with variable coefficients were used to solve for temperatures, pres-
sures, saturations, and mass fractions as functions of time and space.

Using an analytical solution, Davidson et al. (1967) evaluated
temperatures after the injection and condensation cycles in a cyclic
steam injection process. The production or backflow cycle was modeled
numerically to calculate oil recovery and temperature.

Spillette (1965) modeled hot water injection in a groundwater
aquifer using a one-dimensional radial mass flow mode] and a two-dimen-
sional heat transfer model. The thermal properties and the injection
temperature were held constant, but they could easily have been functions
of time and temperature. The energy balance equation was solved by the

method of characteristics. Results compared favorably with Rubinshtein's
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{1959) analytical solution for thermal efficiency and the temperature
distribution obtained in a laboratory study by Malofeev (1959).

Flock et al. (1967) developed a one-dimensional incompressible mass
flow model and a heat flow model for the radial and vertical directions.
To simulate steam injection, a step function approach like Marx and
Langheim (1959) was used. All thermal conductivities had finite values
except the vertical thermal conductivity in the flow layer which was
assumed infinite. Numerical results, considering two-dimensional heat
flow in the strata above and below the aquifer, compared favorably with
Marx and Langheim‘s (1959) analytical solution. |

Chappelear and Volek (1969) modeled hot water injection into a
saturated sand layer surrounded by two impermeable layers using a numer-
ical model and a laboratory model. Assuming incompressible mass flow,
the elliptic mass flow equation was solved by successive over relaxation
(SOR) and the parabolic heat flow equation was solved by an explicit
approximation. Viscosity was a function of temperature. The numerical
results compared more favorably to the laboratory results than did the
analytical solution of Marx and Langheim (1955).

Weinstein (1972) used a semi-analytic approach to solve for tempera-
ture distributions in an aquifer and its confining layers during hot
fluid injection. Solving the mass and energy balance equations simulta-
neously, excessive computer storage and computation time were avoided.
The semi-analytic method approximates the overburden temperature as a
function of height above the aquifer. This temperature function is
combined with finite difference equations for temperature and pressure

in the aquifer to determine the temperature distribution in the confining
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lTayers. This method resulted in a 40 percent saving in computer time as
compared to a fully finite difference technique. Answers were within 15
percent of a fully finite difference technique.

Ebeling and Reddell (1976) studied several aspects of the hot water
injection and storage problem and the "Solaterre" system proposed by
Davison et al. (1975). Possible aquifer sites were investigated for
several locations in Texas. The volumes of hot water capable of being
produced by solar collectors at several locations in Texas were computed
using a numerical model. They also developed a three-dimensional numer-
ical model in cylindrical coordinates to simulate hot water injeétion
into an anisotropic, non-homogenous, confined aquifer, The media and
fluid properties were considered functions of both pressﬁre and tempera-
ture. The problem was set up in finite difference form and solved using
an unconditionally stable Crank-Nicholson method.

Reed (1977) modeled hot water injection into a confined aquifer
with one-dimensional mass flow and “pseudo" two-dimensional heat flow.
Density varied with temperature and pressure while all other properties
were held constant. Temperatures were constant in the vertical direction
in the aguifer. "“Pseudo" two-dimensional heat flow refers to the fact
that heat losses out the top and bottom of the aquifer were calculated
using a heat loss coefficient as employed by Rabbimov et al. (1974a).

Numerical modeling is important in studying hot water and steam
injection into underground reservoirs. Fluid physical and thermal
properties can be made functions of both temperature and pressure. How-
ever, excessive storage requirements and computation time are needed to
solve coupled mass and heat flow problems. Numerical models combined

with analytical solutions can reduce storage requirements and computer



time, and yet be very useful in determining how parameters such as
injection rate, injection temperature, aquifer thickness, and fluid

properties affect thermal energy storage in aquifers.

13



CHAPTER III

THEQRETICAL DEVELOPMENTS

15

Theoretical studies of hot fluid injection into confined aquifers

involve predicting temperature as a function of time and space within the

aquifer. Ramey (1967) indicated that the usual procedure was to consider

heat and fluid flow separately.

Baker (1967) justified the separate

treatment of heat and mass transfer by assuming that only a single fluid

exists in the porous media. If two fluids are present, the fluid is

assumed to be a mixture of the two.

According to Spillette (1965), the differential equation governing

heat transfer in a porous media is:

7-KVT - 7+ (p CVT) = -3‘—(p1cTT)

where p1C1
T
K

at

0(04Ce) + (1.0-0)0 C_ (FL 2deg™!);

temperature (deg);

thermal conductivity (FT'1deg']);
density (ML'3);
specific heat (FLM']deg"]);

fluid pore water velocity vector (LT'1);
time (T);
porosity fraction; and

vector "del" operator.
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The subscripts denote the following media properties:

f = flowing fluid ;
r = porous media or rock properties; and
1 = combined porous media and fluid properties.

To obtain a solution to Equation (2), many simplifying assumptions in
addition to instantaneous thermal equilibrium must be made. Assuming
one-dimensional mass flow, two-dimensional heat flow, constant fluid
physical properties, and a homogenous and isotropic porous media for a

cylindrical coordinate system, Equation (2) becomes:

3 P19 5 o (3)

where r = radial distance from well (L);
Q = injection rate (L3T']);
h = aquifer thickness (L); and
z = vertical distance (L).

A11 other symbols have been previously defined. Equation (3) is derived
in detail in Appendix A.

Additional simplifications of Equation (3) can be made by making
assumptions concerning the thermal conductivity. Assuming that the
acquifer has an infinite vertical thermal conductivity results in no
temperature gradient vertically throughout the aquifer. The resulting
temperature distribution will correspond to an dverage temperature
at a given radius from the well. If the radial thermal conductivity in
the flow area is assumed zero, then heat flow in the flow region is

restricted to convective flow only. In the confining layers above and
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below the aquifer, heat flow is restricted to vertical conduction by
assuming that the radial thermal conductivity and mass flow in these
layers is zero,.

An early analytical study of hot fluid injection into a porous media
was made by Schumann {1929) in which he assumed incompressible mass flow
with constant fluid physical properties. However, Schumann (1929) did
not assume an instantaneous thermal equilibrium between the sand and
water. Thus, his solution required a heat transfer coefficient to
evaluate the heat exchange between the fluid and porous media. Baker
(1967) stated that the analytical work by Schumann (1929) and 1a50ratory
studies by Preston and Hazen (1954) justified the assumption that an
instantaneous thermal equilibrium is reached between the.f1uid and the
sand grain. All recent works have incorporated this assumption.

Lauwerier (1955) obtained an analytical solution to a hot water
injection problem for incompressible flow in a linear system. He assumed
no horizontal conduction in both the sand layer and the confining layers.
Vertical thermal conductivity was assumed finite in the confining layers
but infinite in the sand layer. For a constant injection rate and
temperature, Lauwerier's (1955) solution for the temperature distribution

in the flow area is:

T = erfc __&/8 - U(r-g) (4)
2vt/e~£/8
_ T~ T0
where T = TT ;
i 0
) 4K2x
E = 2 »
h DfoV
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. 4:2t
h o]C]
14
§ = C M
P2~2

x = distance from injection jnterface (L);
V= fluid flux (LT™1);
T = aquifer temperature at x (deg);
T. = injection temperature (deg);
T = initial aquifer temperature (deg);
erfc = complimentary error function;
U = unit step function defined as U{t~£)=0 when 1-£50 and
U(t-£)=1 when t-£>0, and
subscript 2 denotes properties of the confining strata above and below
the aquifer. Al1 other variables are as previously defined.

Marx and Langheim (1959) modeled the injection of steam or hot
water into underground reservoirs. Using a step function approach, they
were able to determine the expected heated area following thermal injec-
tion. Making the same assumptions as Lauwerier (1955}, 0il recovery was
calculated. However, their solution is more applicable to steam injec-
tion than to hot fluid injection. Ramey (1959) expanded this concept and
calculated the temperature distribution for underground combustion in a
reservoir with a varying fuel injection rate. Landrum et al. (1960)
analyzed a linear injection system and computed steam areas, hot water
areas, and cold water areas using the Buckley-Leverett displacement
theory. William et al. (1961) also used the Buckley-lLeverett displace-

ment theory and applied it to a radial system. However, they were
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unable to separate the injection region into steam, hot water, and
cold water regions.

The Russians have been very active in formulating mathematical
models of thermal injection into groundwater reservoirs. Malofeey (1960}
used Lauwerier's (1955) solution for a linear system and made it appli-

cable to a radial coordinate system by changing the dimensionless param-

eter, &, to:
4K27rr‘2
g =
hprfQ
where Q = injection rate (L3T']); and

r = radial distance from the well (L).
Assuming a non-zero horizontal thermal conductivity (K]) in the
sand layer, Avdonin (1964) obtained a solution for the temperature

distribution in a radial coordinate system. His solution was:

1

AY)
2
= ] R -R y/r/AJ dv
= —— f . 5
T Tt\); [4}\‘[] DJ EXp[q'KT_YJer C[Za‘n_—y y\)+] ( )
Qo C
where v = 4ﬂ:Kf 4
1
K] = horizontal thermal conductivity in the aquifer
(FT"Tdeg™") 3
A= E]_ »
Ko
a = Kop 10y
NP
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_2r .,
R = el and

¥y = an integration parameter.
The term, r{v), is the gamma function of v. A1l other terms were
previously defined.

Thermal efficiency, =, is defined as a fraction of the injected
energy which remains in the aquifer at a given time after injection.
This is very important when evaluating the total energy recovery from an
injection pumping cycle. Assuming a constant isotropic thermal conduc-
tivity in both the flow layer and confining strata, Rubinshtein C1959)
was able to solve the energy equation for thermal efficiency but not
for the temperature distribution. His solution for therha] efficiency
in a homogenous isotropic sand with confining layers of caprock and

bedrock are:

[2 AT ‘ = n-] ﬂz -EE
£ = 1-(1-a)<[-3- Az Lr-n a)nz1u (1+ )™ 3
+ (1-2) E n n-](1+ EEE) erfc(ll—) >, (6)
@ nz] o BAT AT J ' ‘
where e = thermal efficiency (fraction); and
- Ara-1
& 7 a+l

A1l other parameters were previously defined. Ramey (1964) presented a
solution for thermal efficiency as derived from the temperature

distribution of Lauwerier {1955). The solution was:
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/8
e = %[2 5% - J+e  erfc /%J X (7)

An examination of Equations (6) and (7) indicates that thermal efficiency
is not directly dependent upon flowrate or injection temperature. How-
ever, it s a function of time, aquifer thickness, and the ratios of
thermal conductivity, density, and specific heat in the aquifer and
confining layers. However, the injection rate is indirectly involved in
the time of injection. For example, if a given amount of heat energy

is injected, then the flow rate could be increased and the time of
injection decreased, resulting in less heat energy loss.

Thomas (1964) modeled conduction heating in underground systems
with little or no permeability. This corresponded to underground
reservoirs with thick heavy oils where convective heat transfer was
negligible. Making thermal conductivities a function of temperature,
the temperature distribution was calculated for a constant heat injec-
tion rate using a step-function approach. Thomas (1967) obtained three
solutions for hot water injection into a confined aquifer. ATl three
solutions assumed convective heat transfer would dominate and neglected
conduction in the sand layer. The range of validity for such an assump-
tion was evaluated. The first solution was obtained by mapping the
problem into a new coordinate system, the second solution was obtained
by a weighted residuals method, and the third solution was obtained by
using Laplace transforms. The first solution was the simplest and was
considered the best of the three because it more closely matched

computer data of Spillette (1965).
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Rabbimov et al. (1974a) mathematically studied solar energy
accumulation by injecting hot water into a groundwater aquifer. Heat
losses to the confining layers were assumed proportional to the differ-
ence between the present aquifer temperature and its initial temperature.
The proportionality factor was defined as a heat loss coefficient. His
solution was for a pair of wells, one injecting and one pumping simulta-
neously, called a doublet.

Gringarten and Sauty (1975) modeled steady state mass flow and un-
steady state heat flow while injecting hot water into a confined aquifer,
They neglected the horizontal thermal conductivity in the aquife; and
assumed an infinite vertical thermal conductivity in the_f]ow region.
Holding all physical properties constant, they used Lauwerier's {1955)
approach to obtain a solution in radial coordinates for a single injec-
tion well. By modifying the solution for a single well, the temperature
distribution for a doublet was determined. Resulting temperatures at
the pumping well were also obtained.

In designing systems for storing energy by injecting hot water into
groundwater aquifers, mathematical models can play an important part.
With mathematical models, design parameters are more easily identified
and the effects evaluated. Because simplifying assumptions are required
to solve the problem analytically, work is needed to determine the
validity of these solutions and assumptions and incorporate these

solutions into design procedures.
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CHAPTER IV
LABORATORY MODEL

A Taboratory model was constructed to simulate the injecting or
pumping of hot water into a confined aquifer. Instrumentation monitored
movement of the heat front as hot water moved through the model. The
model, in the shape of a sector tank of 0.2 radians (11.46°), was
constructed of 0.64 cm (1/4 in) steel plates, 182.9 cm (6 ft) high,
and 7.57 m (24 ft) in length (radial direction) as shown in Figure 1.

The model simuiated two-dimensional heat flow in the vertical and radial
direction and one-dimensional plane radial flow for a cylindrical
coordinate system. Symmetry was assumed in the angular direction.

The well was 0.3048 m (1 ft) in radius and located at the apex of
the sector. Water was supplied to the well through a 1.91 cm {3/4 in)
nominal size pipe with 0.64 cm (1/4 in) holes drilled 6.35 cm (2 1/2 in)
apart along the length of the pipe. The holes were covered with 100 mesh
wire screen. A storage tank 0.3048 m (1 ft) wide, was located at the
outer boundary of the sector tank and maintained at a constant head. Wa-
ter pressures were maintained at a sufficient level to assure that the
flow area would aiways be saturated. The model was insulated with
0.1524 m (6 in) of Owens Corning* Fiberglass insulation with an R value of

2.28 m2°C/w (19 hrft°F/Btu) .

*Trade names are used in this paper solely for the purpose of providing
specific information. Mention of trade names does not constitute a
guarantee or warranty of the product by the Texas A&M System or an

endorsement by the University over other products not mentioned.
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Water was supplied to the model at a constant temperature and flow-
rate. The water was initially heated to approximately 60°C (140°F) by a

0.11 m°

(30 gal) Jackson hot water heater with two 4500 watt heating
elements and injected into a constant temperature bath where the tempera-
ture was controlied by a Polyscience Model 1266 immersion circulator-
controller. Using a Masterflex Tubing Pump #7545, water was supplied

to the apex of the well at a constant flowrate. The flowrate was
measured by a Brooks Micro-Oval II pulsing flowmeter. For each 5 cm3
of flow, the flowmeter gave an electrical pulse which was counted by a
frequency counter. As the water entered the model, the temperature was
measured using a thermistor.

Water pressures were measured using piezometer tubes. Since only
positive gage pressures were measured, open port pressure taps were used.
Holes for a 1.58 ecm (5/8 in) bolt were drilled and tapped into the side
of the model. For open port pressure taps, 1.58 cm (5/8 in) bolts were
milled out and covered with 100 mesh wire screen as shown in Figure 2.

Fifteen water pressure measuring locations were established, three
vertically at each of five different radii. Water pressures were mea-
sured at heights of 0.4572 m (18 in), 0.7620 m (30 in), and 1.0668 m
(42 in} above the bottom of the confined layer and at radii of 0.4572 m
(11/2 ft), 0.6096 m (2 ft), 1.829 m (6 ft), 3.581 m (11.75), and 4.801 m
(15.75 ft). A1l pressure measuring locations are shown in Figure 3.

Temperatures were measured using Fenwal GB32J2 glass bead
thermistors. For protection, each thermistor was encased in 6.35 mm

(1/4 in) plexiglass tubing and sealed using industrial epoxy. The glass

bead thermistor protruded slightly from the epoxy used to seal the
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plexiglass tubing as shown in Figure 4. Each thermistor was connected
to one of two contact switches. Resistance readings were measured using
a Fluke Digital Multimeter and recorded manually.

The resistance of each thermistor varies non-linearly with tempera-
ture as shown by a typical calibration curve in Figure 5. Each
thermistor was calibrated by placing it in a constant temperature bath.
Temperatures in the bath were measured using a copper-constantan
thermocouple. At 10 temperatures ranging from 5°C to 75°C, the resis-
tance of each thermistor was measured and recorded. Using a least
squares curve fit, a fifth order calibration curve with temperatdre as a
function of resistance was calculated for each thermistor. Using the
correct calibration curve, the temperature of each thermﬁstor could be
determined by measuring its resistance.

Temperatures were measured at six radial distances and seven heights
above the bottom of the flow layer. The six radial distances were:
0.3048 m (1 ft), 0.6096 m (2 ft), 1.524 m (5 ft), 3.048 m (10 ft),

4.57 m (15 ft), and 6.10 m (20 ft). The seven heights were: 0.0762 m
(3 in), 0.3048 m (1 ft), 0.6096 m (2 ft), 0.7620 m (2 1/2 ft), 0.9144 m
(3 ft), 1.2192 m (4 ft), and 1.4478 m (4 3/4 ft). A1l temperature

measuring locations are shown in Figure 6.
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CHAPTER V
PROCEDURE

After the model was filled with sand and saturated, a 2.66 mm
(0.1064 in) steel plate top was bolted on top of the model and sealed.
A head of 1.2192 m (4 ft) of water was applied to the model to check for
water leaks. Leaky pressure and temperature sensors were replaced and
all leaks were sealed before the test was initiated.

Before the injection cycle of each run, the water supply system
was operated until thermal equilibrium was achieved and a constaﬁt water
temperature was supplied at the injection well. To accomplish this,
the supply valve to the model was closed and a bleed-off §a1ve was opened.
With the constant temperature bath full of water at 60°C {140°F), hot water
was pumped through the supply system (described in Chapter 4) and routed
through the bleed-off valve where the temperature was measured using a
thermistor. When the temperature at the bleed-off valve became constant,
the hot water system and the environment had reached thermal equilibrium.

Before the injection cycle, the pump controller was set so that the
tubing pump would operate at the desired flowrate. This was accomplished
while the hot water supply system was reaching thermal edui1ibrium. For
Run 1, the desired flowrate for the 0.2 radian sector was 963.84 cm3/min,
which is equivalent to injecting 5.05 x 10"4 m3/sec (8 gpm) into a full
360° circle. This flowrate corresponded to a pulse rate of 193 pulses
per minute from the pump, as counted by a frequency counter. While

counting the pulses per minute using a frequency counter, the pump
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controller was varied until the desired pulses per minute were obtained.
The average injection rate for Run 1 was 957.3 cm3/min.

When the hot water supply system reached thermal equilibrium and the
pump was operating at the proper flowrate, the injection cycle was ready
to be initiated. The resistance of each thermistor and the water level
in each piezometer tube was measured and recorded. The pump was turned
off (very briefly), the bleed-off valve closed, the supply valve to the
model opened, and the frequency counter reading recorded. The pump was
then turned back on to initiate the injection cycle.

When the pump was turned on, two people manually recorded water
Tevel readings every two minutes for the first 40 minutes and then every
5 minutes until the end of the first hour. The time between water level
readings was gradually increased to about one hour. When the injection
cycle was completed and the pumping cycle began, this procedure was
repeated. Two people read water levels and recorded them every two
minutes and gradually increased the time between readings to approxi-
mately one hour.

The frequency of temperature measurements was dependant on the
location of the thermistors. Thermistors that measured air temperatures
were read approximately every 90 minutes. Sensors at the 0.3048 m (1 ft)
radius were read every 2 minutes for the first 100 minutes. The time
between readings was then gradually increased to 30 minutes. At the
0.6096 m (2 ft) radius, temperature measurements were made at 10 minutes
after the injection cycle started and then every 2 minutes for the next
180 minutes. The time interval between readings was eventually increased
to 30 minutes. At all other radii, temperature measurements were made

every 30 minutes until the hydraulic front reached that radii. Readings
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were then taken at 5 minute intervals and gradually increased as the
temperature change slowed down. When the injection cycle began, the
water temperature entering the well was measured at 2 minute intervals.
This temperature remained stable, so that these measurements were
eventually made only every 15 minutes.

During the pumping cycle, temperature readings were taken at 4
minute intervals initially. Because the readings changed so slowly,
they were eventually taken at 10 minute intervals. As the temperatures
at the outer radii approached their initial values, readings were taken
Tess frequently. During the pumping cycle, the temperature of the water
removed from the model was initially measured every 2 minutes. The
reading times were soon lengthened to 10 minutes.

On Run 1, the injection cycle lasted 29 hours and was followed by
a pumping cycle of 24 hours. To go from injecting to pumping, the pump
was turned off and the supply valve closed. After reversing the pump
and flowmeter in the line, the supply valve to the model was reopened.
The pumping cycle began by starting the pump at the same speed as before.
The average pumping cycle flowrate was 1044.5 cm3/min.

Between the first and second run, a second 0.1524 m (6 in) thick
layer of insulation was applied to the first 3.048 m (10 ft) of the
model. This was done because temperature measurements at the first two
radii (0.3048 m and 0.6096 m) during Run 1 showed temperature fluctua-
tions resulting from changes in air temperature within the building.
Insualtion was added to reduce this effect. Also during this interval
of time, two aborted attempts were made to run the model. Both runs

were aborted because of a malfunction in the water heater.
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Run 2 was set up to simulate 2 complete injection-pumping cycles
(36 hours injecting - 36 hours pumping - 36 hours injecting - 36 hours
pumping}. However, 12 hours into the second injection cycle, the tubing
pump that supplied water to the model broke down, and the test was halted
at that time. The target sector flowrate was 1442 cm3/m1n, which is
equivalent to injecting 7.57 x 1074 m3/sec (12 gpm) into a full 360°
circle. Compared to Run 1, a higher flowrate and Tonger injection cycle
were used in Run 2 because, in Run 1, the hydraulic front reached only
about 5 m (16.4 ft) and the thermal front was barely noticeable at the
3.048 m (10 ft) radius. |

The procedure for Run 2 was the same as for Run 1. The only
differences were that Run 2 was at a higher flowrate and temperature
data collection was more efficient for Run 2 because of the experience
gained from Run 1. The average injection rate for Run 2 was 1482 cc/min
and the pumping rate was 1246 cc/min.

Upon completion of Run 2, all data were punched on computer cards.
A calibration curve for each thermistor had been obtained in the
laboratory by placing the thermistors in a constant temperature bath
and calibrating them using a copper-constantan thermocouple as a
standard. For each location in the model, the correct calibration curve

was known and used to convert from resistance to temperature.
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CHAPTER VI
RESULTS AND DISCUSSION
Physical Properties

The physical properties of the porous media used in the laboratory
model were determined by standard procedures, and the values are listed
in Table 1. The porous media was a fine grained Texblast blasting sand
from Lone Star Industries.

According to Brady (1974), bulk density (db) is defined as:.

Mass of soil

Bulk Density = Bulk volume of soil ' : (8)

The mass of sand put into the model was measured and the bulk density was
calculated to be 1.61 x 103kg/m3. The porosity {¢) is related to bulk
density by

6= 1. - (dylo) (9)

where ¢ porosity (fraction);

d, = bulk density (ML™%); and
Py = particle density (ML'3).
The particle density was measured to be 2.65 x 103kg/m3 using an air
pycnometer. From Equation 9, the porosity was calculated to be 0.392.

A sieve analysis, as described by Johnson Division, UOP Inc. (1975),
was run on the sand placed in the model. The sand would be classified
as a fine to medium grained sand. A mean particle diameter of

4.064 x 10"*m (0.016 in) and an effective grain size of 2.743 x 107
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Table 1.
model

Physical Properties of the Porou

s Media used in the laboratory

Bulk Density

Porosity

Mean Particle Diameter

Effective Size

Uniformity Coefficient

Hydraulic Conductivity (at 25°C)
Intrinsic Permeability

Stagnant Thermal Conductivity
Sand Density

Specific Heat of Sand

Volumetric Heat Capacity of Sand
Combined Volumetric Heat Capacity

Thermal Diffusivity

(A I e =

LA o~ B A% B o T o S % T Y v o

.782 x 10

.61 x 103kg/m3

.392

.064 x 10"*m (0.016 in)
.743 x 107%n (0.0108 in)
.65

.40 x 1074 m/sec

.69 x 107 n?

.65 w(m®K)

.65 x 103 kg/m3

.825 x 10° J/(kg°K)
186 x 108 37(m¥ex)

.98 x 10% 9/ (m3x)

-7 mz/sec
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(0.0108 in) were obtained from the particle size distribution curve shown
in Figure 7. The uniformity coefficient, defined and calculated as the
quotient of the 40 percent retained size of sand divided by the 90

percent retained size, was calculated to be 1.65.
Thermal Properties

The specific heat of the sand (Cr) was 0.825 x 103 J/{kg°K) as
measured using a bomb calorimeter. The density of the porous media (pr)
is the same as the particle density (pp), and was measured using-an air
pycnometer. The density (pw) and specific heat (Cw) of water were
assumed to be 1000 kg/m3 and 4.186 x 103 J/{kg°K) respectively. The
volumetric heat capacity of a fluid or solid is defined és the product
of the density and specific heat of the fluid or solid. The combined

volumetric heat capacity of the porous media and water (p1C1) is

D]C] = ¢pWCW + (]-D - ¢) prcr . (10)

A1l variables were previously defined. The combined volumetric heat.
capacity of the porous media and water was calculated to be
2.98 x 10% 9/(m°k).

According to Bear (1972), the modes of heat transfer in a porous
media, in addition to convection, are

a. conduction in the solid phase,

b. conduction in the fluid phase, and

C. heat dispersion in the fluid phase.
The stagnant thermal conductivity (KO) of a porous media is the result

of the first two modes mentioned above, and occurs without any fluid
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motion. Using a probe and procedure by Sweat (1976), the stagnant
thermal conductivity was measured to be 2.65 w/(m°K).

According to Green et al. (1964), heat transfer by dispersion is
dependant on fluid velocity and is called eddy dispersion. The effective
thermal conductivity, K1, is the sum of the stagnant thermal conductivity
and eddy dispersion. Values of all thermal conductivities used in
analytical solutions describing heat flow through porous media are the
values of effective thermal conductivity.

Values of eddy dispersion were obtained from data by Green et al.
(1964). A plot of KT/Ko versus a modified heat transfer Peclet number
was prepared using data from Green et al. (1964) and is shown in

Figure 8. The modified heat transfer Peclet number is defined as

Vd
Pe=_—9‘ [ (.”)
o
1
where Pe = Peclet number;

V. = fluid pore water velocity (LT']);

dp = mean particle diameter {L); and

ay = thermal diffusivity of the porous media (LZT'1).

The thermal diffusivity is calculated using the stagnant thermal

conductivity, i.e.

_ 0
Otl - Q}C-I ] (]2)

where I<O = stagnant thermal conductivity (FT']deg"1); and
p]C] = combined porous media and water volumetric heat capacity

2

(FL™ deg']).
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The fluid pore water velocity is a function of radius, i.e.

V= gt (13)
where Q = injection rate (L3T'T);
r = radial distance from we11 (L); and
h = thickness of flow layer (L).

Using the physical properties in Table 1 and the flow rates for Run 1
and Run 2, the Peclet number as a function of radius, r, in meters, is

Pe = 5.2101 x 10”2/ and © (14a)

Pe = 8.0693 x 107%/r " (14b)
for Runs 1 and 2 respectively. These relationships showing the Peclet
number as a function of radius are given in Figure 9. Thus, over the
entire length of the model, the Peclet numbers are less than 1. Enter-
ing Figure 8 with Pe 51, K]/K0 = 1. Therefore, the effective thermal

conductivity is essentially equal to the stagnant thermal conductivity

for all values of radius in both Runs 1 and 2.
Pressure Data

The hydraulic conductivity, P, was measured in the laboratory
model during an injection cycle where there was no heat transfer and
only water level data were collected. Water was injected until fhe
water levels reached equilibrium. At that time, the hydraulic conduc-

tivity was calculated using the equilibrium well formula

r,,r
. QIn(72/71)
P 2 bR, R ’ (18]
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where P = hydraulic conductivity (LT']);
Q = injection rate (L3T']);
b = flow Tayer thickness (L);
r = radial distance from well (L);
h] = water level measured at radius r](L); and
h2 = water level measured at radius rZ(L).

For the run with no heat transfer, the equilibrium water levels are
shown in Figure 10 and a hydraulic conductivity of 8.40 x 10'4 m/sec was
calculated.

The assumed steady state changes in water levels for Runs 1rand 2
50 minutes after injection began are also shown in Figure 10. Hydraulic
conductivities of 8.85 x 1077 m/sec and 5.76 x 1074 m/sec were calculated
for Runs 1 and 2 respectively using the equilibrium well formula. For
Run 1, the hydraulic conductivity is only slightly larger than the one
measured with no heat transfer. However, the hydraulic conductivity for
Run 2 was significantly less than the hydraulic conductivity for Run 1.

During the time interval between Runs 1 and 2, one of the pressure
sensors began to leak and the model was drained to repair this leak.
After resaturating the model, some air was apparently entrained in the
model during Run 2, which effectively reduced the hydraulic conductivity
for Run 2.

According to Todd (1964), hydraulic conductivity is a function of
both flowing fluid and media properties, i.e.

kiofg

p= L1 (16)
Hof
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where ki = intrinsic permeability (Lz);
o = density of fluid (ML'3);
g = acceleration of gravity (LT'Z); and
uw = viscosity of fluid (ML71T71).

The intrinsic permeability is a unique pore area governing flow. Density
and viscosity are fluid properties and a function of temperature. Both
properties decrease with an increase in temperature. However, viscosity
decreases more than density and a net increase in hydraulic conductivity
results. As hot water is injected into the model, temperature increases
and the hydraulic conductivity increases behind the thermal fronf.

Figure 11 shows the effects of the increasing aquifer temperature
on water levels and hydraulic conductivity during Run 1. As the slope
of the 1ines in Figure 11 decreases, the hydraulic conductivity
increases. The increase in hydraulic conductivity resulting from temper-
ature increases in the flow layer are quite large. Initially the flow
layer was at a temperature of approximately 298.16°K(25°C). From
Streeter and Wylie (1974), the viscosity and density of water are
0.894 x 10"%kg/(m sec) and 997.1 kg/m® respectively. The intrinsic
permeability of the porous media (from Equation 16) will be

2

8.09 x 10711 based on a hydraulic conductivity of 8.85 x 10'4m/sec.

For water at 328.16°K(55°C), the density and viscosity are 985.7 kg/m3

3

and 0.506 x 107~ kg/(m sec) respectively. Using an intrinsic permeabil-

ity value of 8.09 x 10'”m2 and the physical properties of water at
328.16°K, the hydraulic conductivity is 1.54 x 10'3m/sec. Thus, a 75
percent increase in hydraulic conductivity occurs because of an increase

in water temperature from 298.16°K(25°C) to 328.16°K(55°C). For this
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reason, the hydraulic conductivity in the model increased with time,

and the water levels declined as the thermal front moved through the
aquifer. This is shown in Figure 11 by comparing the water levels 1080
minutes after Run 1 was initiated with the water levels 50 minutes after
Run T was initiated. The hydraulic conductivity calculated from the
experimental data at 1080 minutes was 1.53 x 10'3 m/sec, a 74 percent
increase over the value of the hydraulic conductivity calculated from
the experimental data at 50 minutes. This was certainly in line with

theoretical expectations.
Temperature Measurement

Two laboratory runs were made that involved heat transfer in the
porous media. For Run 1, the average injection rate was 957.34 cm3/m1n
for the 0.2 radian sector which is equivalent to injecting 0.50126 x 10'3
m3/sec in a full 360°, and the injection cycle lasted 29 hours. This
was followed by a 24 hour pumping cycle at an average pumping rate of
1044.5 cm®/min for 0.2 radians or 0.5469 x 10°3 m3/sec for a full 360°
circle. Run 2 was designed to be two full injection-pumping cycles
(36 hrs injecting - 36 hrs pumping - 36 hrs injecting - 36 hrs pumping).
The first injection cycle lasted 36 hours at an average rate of 1482
cm3/min followed by a 36 hour pumping cycle at an average flowrate of
1245.9 cm3/m1n. This injection-pumping cycle will be referred to as
Run 2. Twelve hours into the second injection cycle of Run 2, the
tubing pump broke, and the test was stopped. For convenience and
clarity, this 12 hour injection cycle will be referred to as Run 3. The

average injection rate for Run 3 was 1574.1 cm3/m1n.
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Temperatures were measured and recorded manually for the injection
and pumping cycles of all runs. The average injection temperature was
332.65°K(54.49°C) for Run 1 and 332.49°K(59.12°C) for Run 2. The injec-
tion temperature ranged from 331.13°K({59.97) to 333.64°K(60.48°C) during
Run 1 and from 329.89°K(56.73°C) to 333.89°K(60.73°C) during Run 2. A
representative sample of the temperature data is shown in Appendix B.

For Run 1, the temperatures 0.762 m above the bottom of the model
for the first four radii (0.3048 m, 0.6096 m, 1.524 m, and 3.048 m) are
plotted versus time in Figure 12. A1l the curves have the general shape
of breakthrough curves experienced when recording the movement o? a mass
tracer through a porous media. At the end of the injection phase of Run 1,
the hydraulic front had reached 4.8 m (15.7 ft) radially. ~At the same
time, the temperature 0.7620 m above the hottom of the flow layer were
309.33°K(36.17°C) and 298.43°K(25.27°C) at the 3.048 m and 4.572 m radii,
respectively., The temperature at the 3.048 m radius had not reached
thermal equilibrium. Therefore, the thermal front was located close to
the 3.048 m radius and lagged far behind the hydraulic front.

From Figure 12, temperatures at radii of 0.3048 m and 0.6096 m
reached a peak after about 300 minutes and then began decreasing. These
temperatures decreased because the air temperature surrounding the model
was lowered. An additional 0.152 m thick layer of insulation waé added
to the first 3.048 m radius of the model after Run 1 to reduce this
effect.

The effects of fluctuating air temperatures were apparent at the
0.3048 m and 0.0696 m radii but were not noticeable at the larger radii

(1.524 m, 3.048 m, 4.572 m, and 6.096 m). The ratio of heat transfers



51

_ , ‘L uny go
31243 UoL3d3lul ay3 butanp |apow 3yl 40 wo330q Iy 9A0QR W 029/°0 padnsesw saanjesadws) cz| sunbyy

(Uw) swy)
008I 006 002l 006 009 00€ 0

a— -

~ \\ /
- /

/
!
]
\ / __ GO0E o
/ / | E
1]
/ | 3
\\\\\\ \\ “ e
wgH0's snipoy" , | o 2
X
/ _ -
!
< ]
W {261 sSnipoy—— - —— ~ \ - G2t
W9609°0 SNPOY- - — "~ T~ o -~ \\\K
W8HO0E 0 sNPOY e e -
-GEe



52

area out the bottom, top, and sides to the volume of storage is smaller as
the radius increases in the laboratory model. From Figure 13, the totatl
area for heat transfer from an incremental volume of the laboratory model

is:

At = Ab + As (17a)

where At total area for heat transfer out top, bottom, and
2
).

sides (L°);
Ab = area for heat losses out top and bottom (LZ); and

A_ = area for heat transfer out sides of model (LZ).

3
Specificaliy,

Ab = 2r a8 Ar (17b)
and AS =2 Arh {(17¢)
where r = radial distance from well (L);

48 = angle increment (radians);

Ar = radial increment {L); and

h = flow layer thickness (L),
Therefore,
At =2r A8 Ar +2 Ar h . (17d)

The volume of storage in the same small radial increment is
Yol = r a6 Ar h (18)

where Vol = small incremental volume of model (L3).
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The ratio of total area to volume for the radial increment is

2 Ar h +2r a9 Ar _ 2 . 2 . (19)

r A8 Ar h YY) h

For the laboratory model, ao equaled 0.2 equaled 0.2 radians and h
was 1.8288 m. For the 0.3048 m and 1.524 m radii, the ratio of the heat
transfer area to the storage volume is 33.90 m'] and 7.66 m'] respective-
ly. Thus, the ratio of heat transfer area to volume was decreased by a
factor of 4.43 at the larger radii of 1.524 . The decrease in heat
transfer area per unit volume at the larger radii causes a cushioning ef-
fect for temperatures in the model against fluctuationsinair temperature.

The first term of Equation 19 (2/(rae))is the ratio of heat loss
area out the sides of the model to storage volume and is a function of
radius. The second term, 2/h, is the ratio of heat transfer area out
the top and bottom of the model to storage volume and is independent
of radius and a constant for a fiven flow layer thickness. For a full
circle of 2r radians, no sides exist and the ratio of heat loss area to
storage volume s a constant equal to 2/h. The ratio of the heat trans-
fer area to storage volume for the laboratory model of 0.2 radians and
a flow thickness of 1.8288 m is plotted in Figure 14 as a function of
radius. Also plotted in Figure 14 is the ratio of heat transfer area to
storage volume for a laboratory model with a full 2+ radians and a flow
thickness of 1.8288 m. The percentage of heat lost out the sides of the
Taboratory model as compared to the volume of storage is much higher than
the corresponding percentage for a full circle. It is apparent from
Figure 14 that unless the thermal conductivity of the insulation on the

laboratory model is zero, then the model will not meet the criteria
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of angular symmetry assumed for field problems of this type. A signif-
icant amount of work must be done to reduce the thermal losses out the
sides of the model.

The curves in Figure 12 also show that the 0.3048 m, 0.6096 m, and
1.524 m radius had reached a maximum equilibrium temperature. Table 2
Tists the maximum equilibrium temperature reached for both Runs 1 and 2
at the 0.7620 m height, and for the 3 radii closest to the well. For
both runs, the equilibrium temperature decreased as expected as the
radius increased. For all three radii, the equilibrium temperature was
greater for Run 2 as compared to Run 1. Since the injection temﬁerature
was the same, the increase in temperature at these radii is believed to
have resuited from the larger injection rate and the exfra thickness of
insulation used in Run 2.

Table 2. Maximum equilibrium temperature reached at each radii for
Run 1 and 2 at the 0.7620 m height

Radius (m Equilibrium Temperature (°X)
Run 1 Run 2
0.3048 331.22 332.13
0.6096 330.00 330.60
1.524 326.85 329.81

Figure 15 shows the vertical temperature distributions for éach
radii at the end of the injection cycle for Run 1. A vertical tempera-
ture gradient with the warmer water on top is evident. This occurred
because the injected water is less dense than the cold water initially
in the model. The hot injected water tended to float out over the cold

native water. The temperature at the 3.048 m radius and 0.7620 m height
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appears to be in error when compared to other temperatures at the same
radius.

Figure 16 is an isothermal map showing the temperature distributions
for Run 1 960 minutes after the injection cycle began. The vertical
temperature gradient shown in Figure 15 is also apparent in Figure 16.
Also, at a radius of 3 to 4 m and a depth of 0.75 m, a temperature
"finger" was beginning to develop. A temperature “finger” occurs in a
layer or region of a porous media where the resistance to flow is less.
When the hot water reaches this region, it moves more rapidly and a
temperature “finger" develops. This fingering effect showed up in all
runs and was probably caused by poor packing of the porous media in this
area of the model.

In Figure 17, temperature is plotted versus time since pumping
began for Run 2 at the 0.7620 m height and each of 6 radii. The tempera-
ture distributions at the 0.3048 m, 0.6096 m, and 1.524 m radius are
similar. Much of the time, the temperature at the 0.6096 m radius is
slightly higher than that measured at the 0.3048 m radius. The decrease
in temperature while approaching the well results because angular symme-
try is not met. Approaching the well, the ratio of the heat transfer
area to storage volume increases. Comparing the 0.3048 m and 0.6096 m
radii, a higher percentage of stored energy is lost out the sides at the
0.3048 m radius and the temperature is thereby lowered at the smaller
radius.

An isothermal map showing the temperature distributions as a
function of radial distance from the well and aquifer thickness 1is
shown in Figure 18 480 minutes after the pumping was initiated during

Run 1. The vertical thermal gradient exhibited during the injection
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cycle is also noticeable during the pumping cycle. Fingering effects
are also indicated in the same location, at a radius of 3 to 4 m and a
depth of 0.75 m.

At the end of the pumping cycle for Run 2, temperatures throughout
the model were larger than when injection began. This temperature
increase indicated that some of the injected energy remained in the model
after pumping ceased. Calculations showed that 12 percent of the
injected energy for Run 2 remained in the flow layer at the completion
of the pumping cycle for Run 2. An isothermal map showing tempekature
distributions at the end of the pumping cycle for Run 2 (Figure i9)
shows that the temperature increase is not restricted to the region near
the well bore. In fact, the temperature had increased above the initial
aquifer temperature of 296.65°K out to a radius of 4.572 m.

The heat energy in the form of warm water still remaining in the
aquifer altered the temperature distributions during Run 3 (the injection
cycle immediately following the pumping cycle in Run 2). From the aver-
age temperature distribution curves at the 1.524 mradius (Figure 20), the
initial average temperature was larger for Run 3 than Run 2 and remained
larger for the entire injection cycle. However, an average equilibrium
temperature of approximately 327°K was approached during both injection
cycles. During Run 3, the equilibirum temperature was reached after
about 800 minutes as compared with about 1200 minutes during Run 2. This
decrease in time to reach an equilibrium temperature occurred because of
the energy remaining in the form of warm water after completion of the

pumping cycle for Run 2.
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Energy Recovered

The temperature of the water as it was pumped from the model was
measured and the amount of recoverable energy was calculated. The
temperature of the water pumped during Run 2 is plotted in Figure 21.
After a slight increase in temperature during the first few minutes of
the pump-out cycle on Run 2, the temperature decreased smoothly and
gradually in almost a linear pattern. The slight initial increase in
temperature during pump-out occurred because of a 4 to 5 minute delay
between the end of the injection cycle and the beginning of the bumping
cycle. Thermal losses occurred in the supply line during this interval
and the temperature decreased. As pumping began, water'removed from the
model, which had not cooled, had to reheat the supply line. The peak
temperature during the pump-out for Run 2 was 330.17°K(57.01°C) as
compared to the average injection temperature of 332.28°K(59.12°C). For
Run 1, the corresponding temperatures were an average injection tempera-
ture of 332.65°K{59.49°C) and:a maximum pump-out temperature of 325.56°K
(53.40°C).

A comparison of temperatures in the aquifer (Figure 17) and tempera-
tures during the pump-out (Figure 21) shows that the formation tempera-
tures are larger than the pump-out temperatures during much of the pump-
out cycle. As was discussed earlier, this occurs for the same reason
that the temperature at the 0.6096 m radius is larger than the tempera-
ture at the 0.3048 m radius. As the well is approached, the ratio of heat
transfer area to volume of storage increases. The heat losses per unit

volume of storage next to the well bore are extremely large.
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Table 3 summarizes the information on the amounts of heat injected
and recovered during each run. The total energy injected and recovered
was calculated using the initial aquifer temperature for a base of
reference. For Run 1, the energy recovery efficiency was 46.4 percent,
and for Run 2 54.8 percent. More insulation on the sides of the model
during Run 2 could have contributed to the increased efficiency of Run 2.
Also, a larger injection flowrate and injection time were used in Run 2,
which moved the thermal front to a radius of 6.096 m as compared to a
radius of 3.048 m for Run 1. Thus, the ratio of surface area toistorage
volume for Run 2 was much less than for Run 1, and therefore 1es§ energy
was lost per unit of stored energy.

Table 3 also shows the amounts of energy injected and recovered
using 4 different temperatures as a base. The corresponding recovery
efficiencies are also given. This type of information will be useful

for designing hot water injection pumping systems.

Comparison of Experimental Data

to Analytical Models

In comparing the temperature data from the laboratory experiment
with the predicted temperatures from the analytical solution of Avdonin
(1964), two problems occurred. The first problem was how to characterize
the thermal conductivity of the confining layer of the model, which
consisted of a 0.00644 m (1/4 in) layer of sheet metal, plus insulation,
instead of the shale experienced in nature. The second problem occurred
because the laboratory model was a radial sector and had sides. In

nature, angular symmetry exists around a well and sides are not present,
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Table 3. Quantities of energy injected and recovered during Runs 1 and 2

Injection Cycle Run 1 Run 2
Average Injection Rate (cc/min) 957.3 1482.0
Flowrate for full circle (ma/sec) 0.50126x103 0.077634x10"3
Average Initial Aquifer Temperature {°K) 295.72 296. 64
Average Injection Temperature (°K)} 332.65 332.28
Total Energy Injected (J) 2.57x10% 4.78x108

Energy Injected > 303.16°K(J) 2.05x108 3.90x108

Energy Injected > 313.16°K(J) 1.36x10% 2.56x10°

Energy Injected > 323.16°K(J) 6. 60x10’ 1.22x108
Time of Cycle (hr) 29. 36.
Volume of Water Injected (m°) 1.666 3.201

Pumping Cycle
Average Pumping Rate (cc/min) 1044.5 1245.9
Energy Recovered - Total (J) 1.19x108 2.62x10°

> 303.16°K(J) 7.26x107 1.88x10°

> 313.16°K(J) 2.12x107 7.75x107

> 323.16°K(J) 1.38x10° 8.58x10°
Recovery Efficiency* - Total (%) 46.4 54.8

> 303.16°K(%) 35.3 48.2

> 313.16°K(%) 15.6 30.3

> 323.16°K(%) 2.9 7.2
Time of Cycle (hr) 24, 36.
Volume of Water Recovered (m3) 1508 2.691

Energy in model at end of pumping cycie (J}) 1.57x10 3.14x10

*Al1 efficiencies are calculated from the energy injected and energy
recovered for the given temperature. Total energy is based on initial
aquifer temperature.
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Thus, in nature heat is only lost out the top and bottom of the aquifer,
In the laboratory model, heat was lost out the top, bottom, and sides.
The heat lost through the sides is not considered in Avdonin's solution
(1964). To account for this problem, the value of the thermal conduc-
tivity in the confining layers was assumed to be larger for the calcula-
tions using Avdonin's solution (1964). A trial and error procedure was
used to select the best values of thermal conductivity to use in Avdonin's
solution (1964}, and predict the experimental temperature profiles.

For this trial and error procedure, the thermal conductivity of the
flow layer was initially assumed to be equal to the stagnant thefma]
conductivity of 2.65 w/(m°K). Values of the thermal conductivity in the
confining layers were varied in Avdonin's solution with little success in
predicting experimental values. The experimental heat front appeared to
be more spread out and dispersed than the analytical solution was capable
of predicting. This indicated that a larger value of thermal conductiv-
ity was needed in the confining layers until a good agreement between
experimental and predicted temperature profiles was obtained. Using the
thermal conductivity value that gave the best agreement, the analytical
solution of Avdonin was compared to the experimental data of Run 1
(Figures 22 and 23)}. A value of 30.0 w/(m°K) for both the thermal con-
ductivity in the flow layer and confining layers gave the best agreement
between experimental and predicted temperature profiles.

In formulating Avdonin's solution (1964), a infinite vertical
thermal conductivity in the flow layer was assumed. Thus, the tempera-
ture obtained using this solution will be an average temperature for the

aquifer thickness at a specified radius and time. Figures 22 and 23



70

"SAINULW POE = 1 1B | uny 404
SY1dap 3JUsU441p JB saunjedsdwal pasnsesw 03 ($961) UOLIN|OS S,ULUOPAY JO uO0sLaedwO)

(w) snypoy
W e e | 0
Y [l 2 o-o
r2'0
- 0
9°0
® 8.vP’|
® 26121
o ¥HIEO
v 02910 80
+ 96090
X 8H0L£°0
- 29200
(w) jybieH | 0]

Y
-

#
-

2
I
-

22 94nbig



71

TSAINULW QpLL = 3 ' | uny 404
Sy1dap JusUay4Lp 3@ Sauniedaduwady pasnsesw 03 (7961) UOLINEOS S ULUOPAY 4O UOSLJedWO) €2 3unbi4

Aeumz_ﬁcm_
9 : v g 2 ! 0 o
-2'0
-0
: -1
q-1 ™
b 4
® Slbvb| , 90
= 26121
o bbI60
v 029.0
+ 96090 -8°0
X 8H0€0
. 29.00
(w) Jybroy
-Q'l



72

show that the predicted average temperature is well within the range of
measured temperatures.

Using the value for thermal conductivity of 30.0 w/(m°K) determined
from Run 1, temperature profiles from Avdonin's solution were compared
with the experimental data from Run 2. Five hours into the injection
cycle of Run 2, the predicted values closely matched the experimental
data as shown in Figure 24. After 36 hours of injection in Run 2, the
analytical solution s1ightly under predicted the temperature profile as
shown in Figure 25. The temperature profile moved farther radia?]y in
Run 2 than predicted by the analytical solution. Therefore, the use of
30.0 w/(m°K) for the thermal conductivity in the flow layer and confining
layers of Avdonin's solution did not predict the temperature profiles as
well for Run 2 as for Run 1.

Angular symmetry was assumed in the formulation of Avdonin's
solution (1964). However, angular symmetry does not exist in the labora-
tory model and heat losses are occurring out the sides of the model. It
is apparent that heat losses out the sides of the model cannot be
completely accounted for by increasing the thermal conductivity in the
confining layer. The reasons for this are as follows. By dividing
Equation 17b by Equation 17c, the ratio of the heat transfer area out

the model sides to the heat transfer area out the top and bottom is

1=

s _ 2har _ h

b T 2r A8 Ar v 48

(20a)

where  Ar = radial increment (L);

r = radial distance from well (L);
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A6 = angle increment (radian); and

h

1]

flow layer thickness (L).
For a flow layer thickness of 1.8288 m and a6 of 0.2, this expression

becomes

™
]

9.144 (20b)

with r in meters. Therefore, for radial increments centered at radii of
0.3048 m and 3.048 m, the ratio of heat transfer area out the sides to
heat transfer area out the top and bottom is 30.0 and 3.0 respecfively.
Thus, the ratio of heat loss out the sides to the heat losses out the
top and bottom is reduced by a factor of 10 when the radius is increased
by a factor of 10. Therefore, as the hot water front moves farther away
from the well, the thermal conductivity required in the confining layers
of Avdonin's solution must decrease with time to account for the losses
out the side of the model.

At the end of the injection cycle for Run 1, the hot water front
was at the 3.048m radius and Avdonin's solution accurately predicted the
temperature profile. At the end of the injection cycle of Run 2, the
hot water front was at the 6.096m radius and Avdonin's solution qnderpre—
dicted the temperature profiles. For Run 2, less heat was lost out the
sides compared to losses out the top and bottom because the heat front
had moved farther away from the well. The apparent thermal conductivity
in the confining layers should be reduced to accurately predict the

temperature at large times for Run 2.
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Thermal Efficiency

In Figure 26, the calculated thermal efficiencies for Runs 1 and 2
are plotted along with the analytical results from Rubinshtein (1959)
and Lauwerier (1955). In the analytical solutions, a value of
30.0 w/{m°K) was used for both thermal conductivities. Run 1, with its
heat front at about 3 m, agrees more closely with the analytical solu-
tions than Run 2. As discussed above, the thermal front in Run 2 moved
to a Targer radius than Run 1 and heat losses are less per unit volume
of stored energy. This made the thermal efficiencies larger for. Run ]
than for Run 2.

The thermal efficiency values calculated from the experimental data
are erratic. This erratic behavior occured at early times in the in-
Jection cycle when the hot water front was very sharp and located close
to the well bore. The integration procedure for calculating thermal
efficiency was less accurate under these conditions. Two temperature
measuring iocations (r = 0.3048 m and r = 0.6096 m) were located close to
the well. The next radial measuring location was at r = 1.524 m. When
the temperature front was located between the 0.6096 m and 1.524 m radius,
there was no accurate way to determine the exact location of the tempera-
ture profile in this area. This inability to know the exact location of
the temperature profile caused erratic values of thermal efficiency to be
calculated when the experimental data were used in the integration proce-
dure.

The analytical solutions by Avdonin (1964) for predicting tempera-
ture profiles and the one by Rubinshtein (1959) and Lauwerier (1955) for

thermal efficiency accurately predicted temperatures and thermal
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efficiencies for Run 1. These solutions did not give as good of results
for Run 2. In nature where there is angular symmetry and no heat losses
out the sides, the solutions of Avdonin (1964), Rubinshtein (1959), and
Lauwerier (1955) appear to be capable of accurately predicting tempera-
tures and thermal efficiencies resulting from injecting hot water into

groundwater aquifers.
Effect of Parameters on Temperature Profiles

From the analytical solution by Avdonin (1964) for the temperature
distribution resulting from hot fluid injection and the one by
Rubinshtein (1959) for thermal efficiency, the effects of changes in
physical properties can be evaluated. Figure 27 shows the effects of
varying the thermal conductivity in the flow layer on the radial tempera-
ture distribution. As the thermal conductivity in the flow layer was
increased, the temperature curve was flattened and the hot water front
was less pronounced. Because the larger thermal conductivity allowed
more heat transfer radially by conduction, a temperature change resulted
at a greater distance from the well. The ratio of heat transfer by con-
duction to convection was increased.

Figure 28 shows the effect of increasing the thermal conductivity in
the confining layers while holding all other properties constant. The
hot water front has the same shape for both the Targe and small values of
thermal conductivity in the confining Tayers. However, the heat front
moved farther from the well for the smaller value of thermal conductivity
in the confining layers. Because heat is transferred out of the aquifer

faster with the larger value of thermal conductivity in the confining
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layers, less heat is stored in the aquifer which prevents the temperature
front from moving as far radially.

The effect of increasing the fluid flowrate while holding ail other
parameters constant is shown in Figure 29. The curves have the same
shape, but the temperature profile for the larger flowrate has advanced
@ greater distance from the well. The flowrate was increased by 54.9
percent and the radius where the dimensionless temperature is 0.5, an
indicator of how far the thermal front has advanced, increased from 2.7 m
to 3.4 m, a 25.9 percent increase. The percent increase in radius was
less than the percent increase in flowrate. Thermal efficiency is
independent of flowrate. If the flowrate is increased by 54.9 percent
(Q2 = 1.549 Q]), the amount of energy stored must increase by 54.9
percent assuming no thermal losses. The volume of energy storage in an
aquifer is a function of r2, not a linear function of r. Therefore, when
the volume is increased by 54.9 percent (V2 = 1.549 M1), the radius where
the thermal front has reached will only increase by the square root of
the volume increase (r2 = v7.549 ry = 1.245 r.) or 24.5 percent. This
increase is in close agreement with the 25.9 percent increase obtained
from Figure 29. Therefore, the radius of the thermal front is related to
the square root of flowrate and is not a linear function of flowrate.

A family of curves for thermal efficiency from Rubinshtein (1959) is
shown in Figure 30. Thermal efficiency is directly dependant on the
physical properties of the porous media and confining layers. This

dependance is characterized by
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5
where A= T and
2
AT
a = K C y Or
1°2%2
A
Aa = K C
2°2%2

From Figure 30, a definite relationship exists between o and thermal
efficiency. For a given dimensionless time, thermal efficiency increases
as o increases. Also, a relationship exists between the thermal proper-
ties of the system and o as shown in Figure 31. From Figures 30 and 31,
it is apparent that as (ra) increases, thermal efficiency increases.

This relationship can be explained by examining the thermal param-
eters. First, assume that all properties except the thermal conductivity
in the flow Jayer (K]) are held constant. Also, assume a dimensionless
time of 5 and a (Aa} of 1, forcing « = 0. Going to Figure 30 ‘and reading
the « = 0 curve at a dimensionless time of 5, the thermal efficiency is
0.4. Increasing the thermal conductivity in the flow layer by a factor
of 4 (K} = 4K]) dimensionless time is now 20 (5 x 4) and (xa) is now
2 (1 x ¥"F). For (ra) equal 2 from Figure 31 o is 1/3. By interpolating
between o of 0.2 and 0.4 at a dimensionless time of 20 in Figure 30, the
thermal efficiency is also 0.4. From this analysis, changing the thermal
conductivity in the flow layer does not affect energy storage and thermal
efficiency when injecting hot water into a groundwater aquifer.

By holding all thermal properties constant and increasing the

thermal conductivity ( K2) in the confining layers, o« is decreased and
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thermal efficiency is decreased. This is a result of increased heat
transfer out the top and bottom of the aquifer.

Thermal efficiency is very dependant on the thickness of the flow
layer (h}. This physical parameter enters into the family of curves in
Figure 30 via the dimensionless time parameter. By holding all values
constant while doubling the flow layer thickness, dimensionless time is
decreased by 1/4. For large values of dimensionless time (>15), this
change would result in only small changes in thermal efficiency. However
for smaller values of dimensionless time, a decrease of 1/4 could result
in a very large increase in thermal efficiency.

For most practical injection times and flow thicknesses, dimension-
Tess time will be very small. Assuming a thermal conductivity of
5 w/(m°K) and a specific heat capacity of 2.5 x 106 J(m3°K) inan 8 m
thick flow layer, water could be injected for 90 days with a dimension-
less time of only 0.97. Therefore, for most practical purposes, the
range in values for dimensionless time will be less than 1.0. The
portion of Figure 30 with dimensionless time less than 1.0 has been
expanded in Figure 32.

Curves such as Figure 30 and especially Figure 32 can be useful in
designing a hot water injection-pumping system. In the design of a hot
water injection system, values for thermal conductivity and specific
heat capacity can be estimated. For these estimates, a value for &« can
be calculated and an efficiency curve for operating the system could be
established. After determining an injection cycle length and a minimum
allowable efficiency, Figure 32 could be used to calculate a critical
aguifer thickness. If the aquifer had a thickness greater than the

critical thickness, the system would operate at an efficiency greater
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than desired. If the aquifer thickness was not as large as the critical
thickness, either the time of injection would have to be decreased or a
smaller efficiency than desired would be obtained.

The same type of analysis could also yield a critical injection
time. After calculating a value for « and determining a minimum allow-
able efficiency, Figure 32 could be used to find a maximum dimensionless
time to get a desired efficiency. By estimating flow layer thickness and
thermal properties, the maximum injection time or critical injection time
could be calculated. For a given amount of stored energy, the required
injection flowrate and injection temperature could be determined.

Thermal efficiency is only indirectly related to flowrate. If the
flowrate is doubled, the time for injecting a given amount of energy in
the form of hot water is halved. Thus, dimensionless time is also halved
and a larger thermal efficiency is obtained.

Using the analytical solution by Avdonin (1964), increasing thermal
conductivity in the flow layer showed that the temperature profile
became Tess pronounced. Thermal efficiency did not change with changes
in thermal conductivity of the flow layer. If the thermal conductivity
in the confining layers is increased, the heat front does not move as far
from the well, more heat is lost through the top and bottom of the
aquifer, and thermal efficiency decreases. Thermal efficiency is depen-
dant on the porous media but is the most sensitive to changes in flow
layer thickness. Thermal efficiency is only indirectly related to in-

Jjection flowrate.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

The objectives of this study were to construct a laboratory model to
simulate hot fluid injection into a confined aquifer, collect temperature
and fluid pressure data from this laboratory model, and use them to
verify existing analytical solutions. Also, the analytical solutions
were used to evaluate the effects of various system parameters (thermal
conductivities, flow layer thickness, and injection rate) on efficiency
of energy storage and total energy recovery efficiency.

A laboratory model was constructed that simulated hot water injec-
tion into a confined aquifer. Temperature and pressure-data were taken
to monitor the hot water front as it moved through the model which was
a 1.8288 m deep, 0.2 radian sector tank with a radial extent of 7.01 m.
Temperatures were measured using thermistors at 6 different radial
distances from the well and 7 vertical heights above the bottom of the
flow layer. Piezometric water levels were measured at 5 radial distances
from the well and 3 heights above the bottom of the flow layer. A1l data
were manually read and recorded. Water was supplied to the model at a
constant temperature and flow rate. The flow layer was composed of a
Texblast fine grained blasting sand and all physical properties 6f the
porous media were measured using standard laboratory procedures.

One run was made where no heat transfer took place. Using water
level data from this Run and a steady state well formula, the hydraulic
conductivity was measured. The hydraulic conductivity measured during

the first heat transfer, Run 1, was slightly higher than originally
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measured because as the aquifer temperature increases, the hydraulic
conductivity increases. For both Runs 1 and 2, the temperature of the
laboratory model increased, the hydraulic conductivity increased, and the
water levels decreased. The hydraulic conductivity measured during Run 2
was less than that measured in Run 1 because there was more entrapped air
in the flow layer during Run 2.

Three runs were made where heat transfer took place. The first run,
with an injection cycle of 29 hours, was conducted at an average sector
flow rate of 957.34 cc/min and an average injection temperature of
333.865°K. The injection cycle was followed by a 24 hour pumping?cycTe.
Run 2 had an injection rate of 1482 cc/min at an average injection
temperature of 332.28°K for 36 hours, which was fol]owed by a 36 hour
pumping cycle. Run 3 was an injection cycle at the same injection rate
as Run 2 and immediately followed the pumping cycle of Run 2.

Temperature for Runs 1 and 2 showed that the 0.3048 m, 0.60%6 m,
and 1.524 m radii reached thermal equilibrium during the injection cycle.
The equilibrium temperature decreased with increasing radii. For these
radii, the equilibrium temperature increased from Run 1 to Run 2 because
a higher flow rate was used for Run 2 and there was increased insulation
on the model. A vertical thermal gradient existed at each radii with the
warm water on top. The less dense warm water floated over the mére dense
cooler water initially in the model.

Temperature distributions at the 0.3048 m and 0.6096 m radii showed
the effects of changing air temperature. There were more heat losses
out the sides of the model than out the top and bottom. The condition

of angular symmetry required in the analytical solutions was not met.
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The thermal energy recovered was measured, and the thermal
efficiency calculated. There was an increase in thermal efficiency
from Run 1 to Run 2. Energy in the form of warm water remained in the
flow layer at the end of the pumping cycle on Run 2 and the temperature
curves for Run 3 were affected by this remaining energy.

Angular symmetry, an assumption in all analytical solutions, was
not met in the laboratory model. For this reason, the analytical
solution did not accurately predict formation temperatures at all times.
Thermal efficiency curves showed the same results.

Using analytical solutions, the effects of various system pérameters
were easily seen. Increasing thermal conductivity in the flow layer
caused the hot water front to flatten out and reach farther into the
flow layer. Increasing the thermal conductivity in the confining layers
resulted in more heat lost out the top and bottom of the aquifer, and
the temperature for a given radius and time was decreased. Increasing
the flow rate moves the heat front farther into the flow layer. In
general for the short times studied (less than 36 hours), the tempera-
ture distribution tends to be insensitive to changes in thermal conduc-
tivity in the flow layer and confining layers. Thermal efficiency was
most affected by a change in flow layer thickness.

As a result of this research, the following specific conclusions
were drawn:

1. Because the assumption of angular symmetry was not met, the

laboratory model did not simulate the injection and pumping
of hot fluid into a confined aquifer as described by the

analytical solutions.
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2. When injecting hot water into a confined aquifer, the hydraulic
conductivity will increase with an increase in formation
temperature,

3. During a series of injection-pumping cycles, the energy
remaining in the form of warm water at the end of a pumping
cycle will alter the temperature distribution curves on
subsequent injection cycles.

4. During hot fluid injection, a verticai temperature gradient
exists with the warmer water on top.

5. Temperature distributions Ffrom analytical solutions modé]ing
hot fluid injection are relatively insensitive to changes in
thermal conductivity in the flow layer and confining layers.

6. The physical property of a system that most affects thermal
efficiency during hot water injection is flow layer thickness.

Research concerning the injection of hot fluids into confined

aguifers should be improved as follows:

1. A numerical model should be developed that models the
laboratory model and the data obtained from the Taboratory
model could be used to verify the numerical model.

2. Further work needs to be done to more accurately determine
the effects of injection rate and injection temperature'on
thermal efficiency.

3. Llaboratory data should be collected to determine how
temperature distributions will change when a cooler fluid

is injected into a confined aquifer.
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A method of preventing heat transfer out the sides of the
laboratory model is required to meet the assumptions in

the analytical solutions.
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APPENDIX A

DERIVATION OF HEAT FLOW EQUATION

L 4

| R e -=" k \i
ar—y

Figure A-1. Cylindrical element of a well sector used to develop heat
flow equation.

Heat in - Heat out = change in heat storage (A1)

or
J. ar A Ar +J_ az A, az-J _ArA_ ar-
7 7 T rTm rthyrtwm
3 .
J .82+ AZ+A2 = SE-(heat in volume) (A2}
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where J heat flux at respective faces

A

area of face.

By a Taylor Series Expansion

2
3J 2 3%d
Ar r Ar r 1 (A3a}
Jdoar = J -5 —— + (59 BT 7 e
r-j?- r 2 Ir 2 arz 2!
ar My (Ar‘)z 32Jr ] (A3b)
J . ar = J + 5 —— + (= 5= + ...
r+~§— r 2 ar 2 a!,,2 2!
: AZ an Az 2 BZJz 1 (A3c)
2= -7 ow %) ot
z z
3d 2 2
- sz "z, Azy" 3% 1 (A3d)
Jz+-T"- b, *+7 57 + &) g2 2t 7
Also
Ar‘_ér = (r—%{) ABAZ (Ada)
2
A br = (r+92-t) ABAZ (Adb)
2
A Az = rassr (Adc)
2
- Add
Az+gg_ = riAsAz (A4d)
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Neglecting all second order terms and higher, equation A2 becomes:

adr z
Ar 1 r-Ar
o - 3or ( 7/ 484z *
AZ aJr1Z
JZ -5 52 r A8 Ar -
3d
Ar r r+ar
[%*7? ((T)ABM}'
AZ adr]Z
JZ t 5 37 r AR Ar =
g%— (heat in volume element) (A5)
MuTtiplying these terms out and rearranging yields:
3d
r 3d _
48 AZ  |-r Ar 3¢ - Ar Jr - r A8 AT AZ 3z -
3
It (ofo r A8 Ar Az T) (A6)

Jr=-l<§—l— + ol VT (A7)
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However V gz
where h = aquifer thickness (L), and

H

Q

Since mass flow is in only radially (one-dimensional),

= _x 2~
Jz = -K 3z

Equation A6 becomes

5 ST
AB AZ - r Ar ﬁ (-K'é? +
CAQT
3T Rt
ar [ St o J

3
it ( pfcf r A8 Ar Az T)

By product rule differentiation, Equation A10 becomes

3 oT
+ r 2.
AB AZ Ar r a7 Kr'EF

T
A8 AZ Ar Kr pe Ar A8 AZ

injection rate (L3/T).

prfQT
2nrh

= r A8 Ar

a3
Y"é? [

2rhr

AZ

prfQT

2arh
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3 3T] _ 3
+r A8 AP AZ EE’(KZ EEJ = 5T (pfcf r A9 Ar AZ T) (A11)

Assuming that fluids and media properties are constant with time and

space, All becomes

r ar2 2rnh ar'r r ar 2rhr
r K 21 = cp & L (A12)
232 Pa'a' 3t '
Product nine differentiation again yields
r arz Z2rhr 2nh ar r ar 2rhr
r K .@.2_1-_ = C r QI (A13)
z .2 Pa"a’ ot
3z
or
K .3_.2_T + K E_ZI_ + l - p_f.Ef.Q + K ) .Ql =
r ar z .2 r 2rh r’ ar
oz
37T
0,C; i (A14)

This is the equation presented by Baker (1967). In the caprock and
bedrock, there is no convective heat transfer because the fluid velocity

in this region is assumed zero. The governing equation for these



105

regions is
1., 3T 3T 3T
Ko =5 + rKag t K == = o ¢ 3T (A15)

Avdonin (1964) assumed infinite vertical thermal conductivity in
the flow area. In the underTying and overlying strata, horizontal
thermal conductivity is neglected. Vertically, heat transfer is only by

conduction in this region. For the aquifer, Equation Al becomes

Jo_Ar A ar - J Ar AL Ar -J. Az A Az -
Y‘-'Z— Y‘-—Z'" Y‘+‘§"‘ T‘+T Z- = Z——é"

Jr+%§ Az+%§- = é%—(heat in volume)}. (A16)

Expanding the first two terms as done previously and simplifying yields

2 oL Q]
K...a_T_+‘l_{K__f..i _B_Tr&eArh.-.
raee rlr o 2mh j 3r

= Jr_az_rA Ar - J. ar A sr (A17)

By the Taylor Series expansion from Equation A3¢ and A3d,

+Jd_ Az A, Az +J_, Az A, Az =
Z-T Z--'z— zZ+ 2 Z+—‘2—"
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2 r A9 Ar JZ ) (A18)
but
= 3T
Jz = -KZ 37 (A19)

where Kz = vertical thermal conductivity in the confining layers.

Substituting A17 and A19 into Al6 yields

I
c.0
3T, ] PEef) aT
r A8 Ar h L#r ot [Kr - ] N
ar B
ol | aT
2 r A Ar |<Z 37 = 48 arh paca T (A20)
or
P S I PR i o IS LI
r . 2 r |l 2wh ar h Az
ar
aT
paca Fr (A21)
or
S0 S B N7 B B S
ar2 r 27rhKr r hKr t

0 C —{ (A22)
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To non-dimensionalize the problem, let

7 = 2r
rE g
r . T -T0
T.-T
i o
. prfQ
4‘ﬁhKr
Kr
_ 4 Kr t
t:
2
h"e,Ca
T . 22
Z = f
o _ a1 T ar _ 2 oT %1 _ 4 5%
or 3T 5r or h ar arz h2 8;2
Equation A22 becomes
§_2_T+(]‘2V)§I+ 8T _ T (A23)
= ¥ 3F 37 ar

This is Avdonins (1964) equation for the aquifer. In the confining

strata considering only vertical conduction, the equation is

3T . 1 T (A24)
3-22 a12 at
K
where a2 = (Z:
Prop
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APPENDIX B

MEASURED TEMPERATURES
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LIST OF SYMBOLS

Definition

Area

Total area out top, bottom, and sides
of laboratory model '

Area for heat transfer out the top and
bottom = 2r A8 Ar

Area for heat transfer oqut the sides of
the model = 2arh

Flow Tayer thickness

Specific heat

Specific heat of flowing fluid
Specific heat of the porous media
Specific heat of water

Specific heat of confining layer
Bulk density

Mean particle diameter

Subscript denoting flowing fluid
properties

Accelleration of gravity

Flow layer thickness

Water level measured at radius r,
Water level measured at radius r,

Intrinsic permeability

155

Units

FLM™ ‘deg”

FIM™ 'deg”
FLM™ 'deg”
FLM™ 'deg”
FLM™ ‘deg”

ML™
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LIST OF SYMBOLS {continued)

Symbol Definition Units
K Thermal conductivity FT"]deg'1
K Stagnant thermal conductivity FT']deg']
K Thermal conductivity of combined FT']deg']

porous media and flowing fluid
Ky Thermal conductivity of confining F’i"]deg'I

Tayers
n Summation counter
P Hydraulic conductivity LT

vd
Pe Peclet number = —L£
* ”
Q Injection flowrate L3r!
r Subscript denoting porous media
r Radial distance from well L
R Dimensionless radius = %F
t Time T
T Temperature deg
Ti Fluid injection temperature deg
To Average initial aquifer temperature deg
_ T-T0
T Dimensionless temperature = +—%
i o

v Fluid pore water velocity vector LT']
v Fluid pore water velocity Rk
Vol Incremental volume of an incremental 3

radius {ar) = r a8 ar L
W Subscript denoting water properties

X Horizontal distance L



Symbol

¥

LIST OF SYMBOLS {continued)

Dafinition

Integration parameter

Vertijcal distance above or below
aquifer midplane

Subscript referring to initial
aquifer conditions

Subscript referring to total porous
media, combined fluid properties

Subscript referring to properties
of caprock and bedrock

ra-1
aat+]

Thermal diffusivity of the flow layer

Ko

014

Dimensionless flowrate =

Thermal efficiency

%% for z 2 h/2

1 for z £ h/2

5
Kz

Viscosity of fluid

4K2x
—5— (for cartesian coordinates)

h prfV

157

Units
L
L2T-1
FL2T
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Symbo1

€4

erfc

LIST OF SYMBOLS {continued)

Definition Units
4KZ”2 (for cylindrical coordinates)
Fo e o
3.14159 —_
Density M2
Density of flowing fluid ™3
Particle density M3
Porous media density ML’3;
Water density M3
Confining layer density "3
Specific heat capacity of flow FL'zdeg']

layer = ¢o0, C * (1-6)e .C..

4K2t L
2

h p]C1

Porosity

Complimentary Error Function

Gamma Function

Unit Step Function defined as U{c-£)=0
when {t-£)S 0 and U (7-£) =1 when

(t-2) > 0
Vector "del" operator L
Incremental radius L

Incremental angle radians
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