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ABSTRACT

The purpose of this study was to quantify the benefits of using a
wind energy system for irrigation. The value of wind energy was
estimated on both a static basis (where the annual value of wind
power was assumed to be constant over the life of the machine) and on a
temporal basis (where the annual value of wind power was estimated
recursively).

The model for static analysis contained two components which were
applied consecutively. The first was a linear programming (LP) model
for the High Plains region. Production activities were included which
allowed both optimal and non-optimal timing of post-plant irrigations,
giving the producer added flexibility in the employment of limiting
water resources. The optimal irrigation schedule determined by the LP
solution was used as input to the second component. A simulation model
matched stochastically generated estimates of wind power availability
with irrigation fuel requirements (derived from the profit maximizing
irrigation schedule) by three-hour time periods throughout a year.

For the temporal analysis, a Fortran subroutine was added to the
LP model to operate the model recursively over the life of the wind
system and to account for the annual decline of the aquifer. Both
fixed and variable costs were included. The basic LP model was applied
to develop the benchmark case (i.e., without wind power). The farm
operation with wind power was analyzed by applying the LP model with
the monthly expectations of wind-generated electricity added.

Two wind machines were analyzed, with rate outputs of 40 to 60

kilowatts (KW). FEach was applied to the Northern and Southern Texas
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High Plains over a range of land and water resource situations, Break-
even investment was estimated at discount rates of three, five and ten
percent.,

Cropping patterns on the Southern High Plains were dominated by
irrigated cotton and were insensitive to changes in crop or electricity
prices. On the Northern High Plains, irrigated corn and grain sorghum
were the major crops, with acreage reverting to dryland wheat at the
higher electricity prices. The cropping patterns in this area were
impacted heavily by labor restrictions. Consideration of wind power
had little effect in determining optimal cropping patterns.

When wind power was applied to an irrigated farm on a static
basis, the set of crop prices applied had little effect on the annual
value of a wind system. Value of wind power was increased, but by
smaller proportions than associated increases in the price of elec-
tricity. Each machine size had a greater value when operated on the
larger of the two applicable land units (100 acres for the 40 KW
machine and 144 acres for the 60 KW system)., The 60 KW system was
also tested on the 100 acre unit but returned less per KW than the 40
KW system.

Available wind power in the temporal analysis was less than in the
static analysis, thus temporal estimates of wind system value should be
regarded as conservative. On the Southern High Plains, break-even
investment was decreased slightly from the static analysis. However,
in some situations on the Northern High Plains, break-even investment
increased. This indicates that the value of wind power could increase

as the aquifer declines in some situations. Break-even investment



increased by up to 80 percent when the price of electricity was
increased by $.005 per KWH per year. The most significant effect of
wind power was that it allowed the maintenance of irrigation levels
which, without wind power, had been made uneconomical.

These results indicate that, at least in the future when wind
system costs decrease and stabilize, wind-assisted irrigation could be
an economically viable alternative for Texas High Plains producers.
The results are limited by the need for future research regarding the
effect of irrigation timing on crop yield as well as some of the long-
term characteristics of wind system operation, such as durability and

the requirements and costs for system repairs and maintenance,
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CHAPTER I

INTRODUCTION

The Texas High Plains is a fairly level, semi-arid region located
on the Southern Great Plains, encompassing about 35,000 square miles.
The region's climate and land resource capability support dryland pro-
duction of cotton, grain sorghum and wheat. With irrigation, yields
of these crops can be increased substantially and other crops such as
corn and soybeans can be produced. In addition, irrigation can
greatly reduce the risk of drought (Black).

Irrigation water on the High Plains is pumped from the underlying
Ogallala aquifer, This aquifer receives a negligible amount of
recharge (one-half to one inch per year) compared to the amount of
water withdrawn annually. Average annual rates of decline in the
static water level have been projected to be from .35 to 4.08 feet,
depending on the original saturated thickness (Wyatt, et al.}). TFor the
farmer, this results in (1) declining well yields, where less water
can be pumped in a given period of time, (2) increased energy require-
ments as pumping lift increases and (3) eventual economic exhaustion
of the water supply for irrigation.

Energy is one of the most important input factors in irrigated

crop production., In 1973, it was estimated that 39 percent cof the

The citations on the following pages follow the style of the
American Journal of Agricultural Economies.




total agricultural energy demand in Texas was for pumping groundwater
(Coble and LePori). This figure is likely understated for the High
Plains, due to the relatively higher intensity of irrigation in the
area. An estimate for this region in 1975 showed that 53.4 percent of
the total variable costs of producing irrigated corn was energy
related (Skold).

The dramatic increases in energy prices since 1973, in conjunction
with higher variability of crop prices, have accelerated research
directed to reducing costs of production. For example, emphasis has
been placed on modified crop production systems which seek to improve
the energy efficiency of irrigated production by reducing the usage of
energy inputs (Condra, et al.; Sprott, et al.,). Other studies have
focused on the benefits of reducing energy requirements through
reducing the amount of water pumped, improving irrigation and pumping
plant efficiencies, and lowering the distribution system pressure
requirements (Hardin, et al.; Hardin and Lacewell, 1979).

The sensitivity of irrigated agriculture to increased fuel costs
has placed considerable emphasis on the development of new and competi-
tive alternative energy supplies. Much of the research emphasis in
agriculture has been placed on biomass; i.e., the conversion of crop
residue into usable energy (LePori and Lacewell). In addition, the
utilization of grain for the production of alcohol has gained substan-
tial interest (Hiler). Solar energy has been proposed as an alterna-
tive to the use of natural gas in grain drying applications (Knutson,
et al.) and for irrigation (Katzman and Matlin).

The use of wind energy is being developed in a number of agricul-



tural applications, including water heating (Gunkel, et al.) and for
cooling and refrigeration (0'Brien, et al.,). The application which is
of most interest to High Plains crop producers is that of wind-assisted
irrigation pumping. Large scale wind systems have been developed which
are capable of providing supplemental energy to an existing electrical
pumping plant. The electric motor is sized to operate the pump on a
stand~alone basis, However, when the wind velocity is sufficient, the
wind system operates and reduces the load on the electric motor (Clark
and Schneider).

The wind-assist concept appears to be a particularly attractive
alternative on the High Plains, A study by Elliot shows that the mean
annual wind power available is as high as in any other area in the
nation, with monthly average wind speeds ranging from 15.6 miles per
hour (mph) in March to 12.1 mph in August. In addition, about 350
percent of the energy used on irrigated farms in the area is accounted
for by irrigation pumping (Clark and Schneider), thus providing a
large potential for energy substitution.

Previous studies (Clark and Schneider; Buzenberg, et al,) consider-
ing wind power application to irrigation have shown potential savings
but have assumed no load management; i.e.,, rescheduling energy use to
periods of expected high winds. This leaves open the possibility of
further savings. For example, on the High Plains, traditional cropping
patterns {(involving corn, grain sorghum and cotton) make the summer
months (when post-plant irrigations are applied) the peak water use
period. However, peak winds occur in the spring months when wheat,

which in the past has not been one of the area's major irrigated crops,



uses the bulk of its irrigation water. Further load management
strategies might include the consideration of non-optimal irrigation
timing, that is, shifting one or more post-plant irrigations to differ-
ent time periods. The negative effect on yield might be compensated
for not only in energy savings from wind, but also through the possible
extension of a seasonally limited water supply. High Plains producers,
faced with declining well yields and increasing energy requirements due
to the continuing depletion of the Ogallala aquifer, are in a position
to benefit considerably from the use of wind energy. However, these

benefits must be quantified.

Objectives

The general objective of this study is to determine the economic
value of a wind energy conversion system (WECS) for an irrigated farm
on the Texas High Plains. Specific objectives of the study are:

1. Develop a model to plan the optimal farm organization and

simulate the energy generated by a wind system.

2. Estimate the value of wind energy under alternative situations

of groundwater availlability and size of wind system.

3. Test the sensitivity of the results to changes in energy costs

and crop prices.

4, Estimate the value of wind energy considering load management

strategies.

5. Estimate the temporal value of wind energy considering a

declining groundwater supply.



The Study Area

The High Plains of Texas includes 42 counties and is roughly
rectangular, averaging about 300 miles north to south and 120 miles
east to west, The Canadian River flows from west to east, dividing
the region. The main soils in the region include Pullman, Mansker and
Richfield in the "Hardlands", Amarillo and Portales in the "Mixed
Lands", and Brownfield and Tivoli in the "Sandy Lands", Average annual
rainfall averages from 14 to 21 inches, with the growing season ranging
from 180 te 220 days (Godfrey, et al.).

The High Plains region has 34 percent of the total cropland, and
approximately 70 percent of the irrigated cropland in Texas. Over the
period from 1970 to 1977, crop production from the region (as a percent-
age of total state production) was 61 percent of cotton, 50 percent of
grain sorghum and 61 percent of wheat. The area also produces 78 per-
cent of the fed cattle in Texas, enough to feed 13.2 million people
(Texas Department of Water Resources).

Pumpage from the Ogallala for irrigation purposes began to rise
to a significant level in the late 1930's and accelerated in the
1950's, spurred by the availability of low-cost natural gas. This
rapid development has resulted in the mining of Ogallala water. In
1974, there were nearly 5.9 million irrigated acres on the High Plains.
However, based on projected pumpage rates, the aquifer will be able to
supply enough water to irrigate only 53 percent of these acres by the
year 2000 and only 35 percent in 2030 (Texas Water Development Board).

The study area lies within a 2l-county sub-region of the High
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Plains, Figure 1. 1In 1974, 4,16 million acres in the region were
irrigated, which was 66 percent of the total crop acreage (New, 1977).
In 1979, irrigated acreage had decreased to 3.27 million acres (57 per-
cent of total cropland), while total crop acreage had declined by over
572 thousand acres (Texas Crop and Livestock Reporting Service, 1979).
Much of this decrease comes from the area south of the Canadian River,
where irrigation development began earlier than in the northern region.

Even though irrigated acreage is decreasing, irrigated agriculture
continues to be of vital importance to the state and regional economies.
The region produced 77 percent of the grain sorghum and 87 percent of
the wheat harvested from irrigated acreage in the state in 1979. Due
to the length of the growing season, cotton can be produced only south
of the Canadian River. Still, this portion of the study area produced
24 percent of the state's irrigated cotton output (Texas Crop and
Livestock Reporting Service, 1979).

There were 37,010 dirrigation wells in the area in 1977, 9,029 of
which were powered by electricity. Natural gas was the predominant fuel
used, powering 27,323 wells. WNinety-eight percent of the wells lift
water from a depth greater than 125 feet, while 73 percent produce less
than 700 gallons per minute (New, 1977). Most of the lower yielding
wells were situated in the southern part of the region. Surface irriga-
tion methods were used on 90 percent of the irrigated acres, while

sprinkler systems were in use on the remaining 10 percent,

Review of Literature

The following review of literature was developed to address two



major areas, The first section, in general, deals with irrigation on
the High Plains. This includes studies which address the impacts of,
and adjustments to, the problems of increasing energy costs and declin-
ing groundwater levels. The second section examines wind energy

applications.

High Plains Irrigation

The High Plains has been the focus of several studies on the
expected effect of increasing irrigation fuel prices. A common thread
among these studies has been the significance of crop price levels on
the ability of producers to adjust to increasing energy costs.

Break-even relationships between product and irrigation fuel
prices for High Plains irrigators were estimated for natural gas
(Hardin and Lacewell, 1977) and for electricity (Shipley and Goss).
Both studies showed that all crops except cotton were threatened for
continued irrigation at prevailing prices, particularly for farm
operators who did not own their land. However, relatively small crop
price increases could have changed several cases. A regional study for
the High Plains (Lacewell, Condra and Fish) showed similar effects.
When average 1971-1974 crop prices were assumed, significant cropping
pattern adjustments would be made when natural gas price reached $2.47
per thousand cubic feet (mcf). When higher crop prices were used,
indicative of 1975-1976, irrigated acreage held constant up to a price
of $5.46 per mcf for natural gas.

A more recent analysis (Petty, et al.) examined both static (one
vear) and temporal effects of increasing energy prices. In response to

an increase from $1.50 per mef to $2.50 per mef, annual net returns



were decreased by from 9 to 15 percent for sprinkler irrigation, and
from 5 to 13 percent for furrow irrigation, depending on well yield and
pumping level. A temporal amalysis with natural gas price increasing
5,10 mef per year showed reductions in the present value of the water
supply of up to 59 percent, while an increase of $.25 per mcf per year
decreased returns to water by as much as 79 percent., In both cases,
the economic life of the water supply was reduced significantly,

The continuing decline of the Ogallala aquifer not only affects
the profitability of individual producers but, due to reductions in
irrigated acreage, will exert significant downward pressure on the
economy of the region. Several attempts have been made to quantify
this conclusion.

In 1967, the value of crop output in the High Plains was estimated
by Osborn and Harris to be $778.1 million, of which nearly 82 percent
was attributed to irrigated crops. By the year 2015, it was forecast
that irrigated production would decrease by 61.6 percent. Even with
an increase in dryland preoduction value, the total value of crop pro-
duction would be only 60.9 percent of the 1967 value. For approximately
the same time period (1966 to 2015), Hughes and Harman predicted
massive reductions in production of cotton and grain sorghum, with a
smaller increase in the production of wheat. Total value of agricul-
tural production was estimated to decline by more than 70 percent.

In another study, Harman, Hughes and Martin evaluated increases
in farm size necessary to adjust from irrigated to dryland farming
without sacrificing living standards or net worth. It was shown that

only those producers in areas having more than 225 feet of imitial
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saturated thickness (approximately 30 percent of the area) would be
able to make this transition.

Rising costs of all inputs, not only energy, have given rise to the
development of new production systems. Of particular interest are those
which improve the efficiency of water use; thus, also attempting to
reduce the requirements for groundwater pumpage. The use of conserva-
tion bench terraces (Jones) and, more recently, furrow diking (Clark)
have been tested. Both practices have the effect of holding more run-
off water on the field so that it may be utilized by the crop. Over 21
years, average grain sorghum yields on conservation benches were 60
percent higher than shown from land where runoff was lost, Furrow dams
have been shown to increase yields of dryland cotton from 11 to 25 per-
cent and dryland grain sorghum from 25 to 40 percent (Runkles). Further
efficiency gains are expected from a developing system which combines
furrow diking with a low energy-precision system of applying irriga-
tion water (Lyle). The system is designed to use all water more

efficiently as well as reduce energy requirements for pumping.

Wind Energy

As is to be expected in a developing field, the major proportion
of the studies in wind energy deal solely with the engineering aspects
of wind systems. Of the limited number of studies making any mention
of economics, most have simply amortized the expected cost of a wind
machine and divided by expected output to find cost per kilowatt-—hour
produced (e.g., Eldridge). However, these estimates have little

relevance when examining the use of wind for irrigation purposes,



where the actual timing of wind power received and electricity used is
of critical importance. The articles cited below represent the avail-
able literature which actually considers such factors.

A wind energy project for irrigation pumping was started at the
U.5. Department of Agriculture Southwestern Great Plains Research
Center in Bushland, Texas in late 1976 (Clark and Schneider)., A
vertical-axis wind turbine was installed which was designed to produce
40 kilowatts (KW) in a 32 mph wind and furnish power only when the wind
speed is above 13 mph., A test of the system was reported for the
period between 9:00 a.m, and 4:00 p.m. on September 18, 1978, The
pump produced 458 gallons per minute with a total dynamic head of 344
feet, In the seven hour period reported, the wind turbine produced an
average of 35,9 KW. Overall, 65 percent of the energy required to pump
water was produced by the wind, despite the fact that the long-term
average wind speed for September is one of the lower in the year
(U.S, Department of Commerce).

A 1980 study also shows the High Plains to have considerable
potential for using wind power for irrigation (Lansford, et al.).
Average monthly wind power was estimated from historical data and,
along with load characteristics, were used to estimate break-even
investment values for three energy price scenarios and two discount
rates, Wind-assist electric systems with sale of surplus electricity
were shown to be economically viable in the high energy price scenario.
At lower energy prices, break-—-even values were less than the cost of
prototype units., However, irrigators in a position to take advantage

of tax savings could afford to make the investment, even at lower
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energy prices,

A study using a simulation model to determine the optimum size
wind system for each of 1.775 million potential farm applications in
23 states included beth farm operation and residential uses (Buzenberg,
et al.). Wind velocity was described by Beta distributions for each of
15 wind reporting stations, Other input into the model included load
characteristics for each application, wind turbine capital costs (high
and low estimates) and alternative electricity costs of $.04, $.06 and
$.08 per kilowatt hour (KWH). Wind systems were found to be econom-
ically feasible only with low capital costs and electricity priced at
$,06 and $,08 per KWH., In the state of Texas, there were estimated to
be 3200 potentially viable wind systems with annual net savings of
$1.92 million when electricity was priced at $.06 per KWH. With
electricity at $.08 per KWH, there were 187,700 viable systems with
annual savings of $9.04 million.

The initial cost of a wind system is also subject to some uncer-
tainty as different producers are in different stages of technological
development. Recent estimates of installed costs for small systems
(less than 100 KW rated output) have been as low as $500 to $700 per
installed KW (Gipe) and ranging up to $2000 per KW (Alternative Energy
Institute}. Again, this is due to the relatively new nature of the
field, As more companies move past the prototype stage into production,
prices should decrease and stabilize., A typical prediction of mature
costs is in the $300 to $500 per KW range (Katzenberg). Another cost
factor is the possibility of tax savings. Federal solar tax credits,

which effectively reduce the initial cost, are available with
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individuals receiving 40 percent of the first $100,000 invested, while
businesses can claim 25 percent with no upper limit (Alternative Energy
Institute), However, these are credits, meaning that the investor must

have taxes due to be reduced.

An Overview of the Study

The fellowing chapter presents some of the major theoretical con-
cepts which provide a background for the study. Chapter III chronicles
the development of the study's data base and analytical models. Some
results relating to wind power are included in Chapter IV, while
Chapter V presents the results of wind-assisted irrigation. A summary
and some of the limitations inherent to the study make up the final

section.
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CHAPTER II
THEORETICAL CONSIDERATTIONS

The theoretical background in this study encompasses two areas.
Elements of probability theory provide the basis for the estimation of
power generated by a wind machine., Economic theory presents the condi-
tions necessary for optimal allocation of resources by the profit
maximizing firm. These theoretical principles will be discussed in
this chapter, as well as the quantitative techniques selected to

estimate the value of wind power.
Probability Theory

Stochastic generation of wind power requires knowledge of the
magnitude, and the relative frequency therecf, of wind velocities.
These characteristics can be described by a prebability density func-
tion (p.d.f.), a mutually exclusive list of all values of a random
variable which may result from a random process, and the probability
associated with each (Richmond). For a discrete random variable, the
probability of each event can be shown. For example, there are only
two possible outcomes associated with the toss of a fair coin., The
probability of each is 1/2.l

A continuous random variable, such as wind speed, has no

lThis illustrates another characteristics of a p.d.f.. that the
sum of all probabilities of all events equals one,
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probability associated with the occurrence of a given point, since
there are an infinite number of points. Statements of probability
associated with a continuous p.d.f. can, however, be expressed in terms
of intervals. Using the example of wind, the probability of a velocity
of 15 mph is zero, while it would be possible to determine the prob-
ability of wind speeds greater than 14.99 mph and less than 15.01 mph.

This evaluation requires a further concept, cumulative probabil-
ities, which state the probability that the random variable assumes a
value less than or equal to a given number, A distribution that gives
the cumulative probabilities for every value of the random variable is
known as the cumulative distribution function (c.d.f.) (Kmenta). If
the p.d.f. is represented by f(v), the c.d.f. at any point X is given
by

X

F(X) = J f£(v)dv (1)

0

and is subject to the following properties (Hogg and Craig):

(a) 0<F(X) <1; (b) F(X) is a non-decreasing function of X; and

(¢} F(») =1 and F(~=) =0, Given the cumulative distribution, the
probability of wind speeds between 14,99 and 15.01 mph could be deter-

mined by evaluating F(15,01) minus F(14,99).

Simulation

Once the c.d.f. is identified, it can be used to stochastically
generate random wind speeds. The c.d.f. is transformed such that v,
the value of the random variable, is expressed as a function of its

cumulative probability. Since, as is shown above, the cumulative
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probability is always between 0 and 1, a random number drawn from a
uniform distribution (0-1) can be substituted. By solving the trans-
formation of the c.d.f., a unique value of v is generated which is
associated with the cumulative probability represented by the value of
the random number, Use of this procedure will allow the generation of
a series of independent, stochastic wind speeds which will be used in
the simulation model to calculate electricity produced by a wind

machine,

Mathematical Expectation

The planning and temporal models will require estimates of average
wind power over a given time period rather than individual, stochasti-
cally generated values. Let f(v) represent a p.d.f. of wind speed and
g(v) a function which represents the amount of electrical power gen-
erated as a function of wind speed. Thus, g(v) may be thought of as
the "payoff" of each value of v. The mathematical expectation or

expected value of wind power generated, E{g(v)], can be expressed as

E{g(v)] = [ £(@)g(v)dv. (2)

Selection of a& Density Function

Previous studies (Doram, et al,; Cliff; Hennessey) have proposed
two general analytical forms as appropriate for the description of
wind velocity density functions. The Weibull distribution is a func-
tion of two parameters measuring, indirectly, the mean and standard
deviation of wind speed, while the Rayleigh distribution has a single

parameter, the long-~term mean wind speed. At low average wind speeds



18

(less than 10 mph) the Weibull distribution is significantly better,
However, at higher average wind speeds, there is little difference
between the two (Doran, et al,). Since, as noted earlier, average High
Plains wind speeds are considerably above 10 mph, the Rayleigh distribu-
tion was selected for this study due to is simpler form.

The Rayleigh distribution of wind speed can be expressed as

2
fw) =% exp -7 GO (3)
2v

where v represents the mean wind speed, This yields the cumulative

distribution

2
F(x) =1 - exp [- %‘(g) 1. (4)
v

The transformation of this distribution for use in simulation would be

St
[

2
_ An(1-F(x))f¥V

v T .

(5)

Selection of a Power Function

The choice of a function to relate electrical power generation to
wind speed was dictated by the need for the function to apply to
different sizes of wind machines. A typical power function of the
quadratic form applies to a National Aeronautics and Space Administra-
tion prototype unit (Puthoff and Sirocky). The general form of this

function has been applied to different machines in other studies
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(Doran, et al.; Justus, et al.),

The power function is described by

g(v) =0 . v <V, (6)
2
g(v) = a+bv+ev, v, < v E-Vl (1)
g(v) =P , vy <V, (8)
g(v) = 0 , v > v, ()
where:
g(v) = wind generator output, in KW
P = rated (maximum) power output
vV, = cut-in speed, below which the machine does not operate

vy = rated speed, at which the machine begins to produce its

rated output

v, = cut-out speed, above which the machine does not operate.

Power output is assumed to be constant at rated power when wind velo-
city is between rated speed and cut-out speed, and varies parabolically
from zero at cut—-in speed to rated power at rated speed, The para-
meters a, b and ¢ are estimated as functions of these variables and are
determined by solving the following set of simultaneous equations

(Justus, et al.).

a+ bv_ + cv 2
o] o]

i
o

(10}

0
g

a + bvl + cv 2 {(11)

1

a+bv + cv 2
c c

3
P (VC/VI) (12)
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where

v, = (VO + vl)/Z. (13)

Economic Thecory

The typical farm operator on the Texas High Plains is assumed to
use production economic theory to allocate resources among competing
enterprises such that net returns to the farm firm are maximized. The
primary focus of this study is on resources; irrigation water pumped
from an exhaustible aquifer and the fuel necessary to pump it. Some of
the theoretical principles which underlie optimal resource allocation
will be discussed here. More detailed expositions of economic theory
may be found in other references, such as Leftwich or Henderson and

Quandt.

Allocation of Variable Resources

The profit maximizing firm determines its optimal resource alloca-
tion from the interrelationships of the production function and the
input and output prices. The production function measures the relation-
ship between a firm's inputs of resocurces and its level of output.
Marginal physical product (MPP), defined as the first derivative of
the production function, measures the change in output per unit change
in the quantity employed of a given input, holding all other input
levels constant, This study focuses on crop output with the major
variable input being irrigation water. Typically, crop production
functions are characterized by diminishing marginal productivity of

water, meaning that each successive unit of water contributes less to



output than the preceding unit.

Input levels are determined by the point at which the last unit
of input used makes the same contribution to profit as its price. The
contribution of an input to profits is measured by its marginal value
product (MVP), which, for a firm facing perfect competition in the
product market, is equal to MPP times the product price. The profit
maximizing firm will employ that quantity of the resource for which
MVP equals input price. Over all outputs and all inputs, the ratio of
MVP to input price must equal one for each input in the production of
each output.

The relationships specified above will hold true if all resources
are unlimited in quantity. However, the typical Texas High Plains
farmer is faced with limitations in the amounts of many resources, the
most important being land, labor and irrigation water. At the maximum
level of input usage, the MVP will be equal to the factor price plus
some unknown value, which is known as the shadow price. The shadow
price measures the additional amount the firm could afford to pay to
obtain one more unit of the resource., Thus, the last unit of a limited
resource would be allocated to the use showing the highest shadow
price. In addition, a limited quantity of one resource may affect the
level of employment of another 1if the level of the first input is a

factor in the MVP of the second input.

Effect of Irrigaton Timing on Crop Yield
Previous studies involving irrigation on the High Plains have
assumed that, for any given number of post-plant irrigations, each

irrigation was timed such that the maximum yield was achieved for the
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given amount of irrigation water. However, actual practices suggest
that this is not always the case. Due to physical limitations on the
amount of water that can be pumped in any time period, the producer
may not be able to apply a timely irrigation to all land. For the re~-
maining acres, he is faced with the choice of (a) applying the irriga-
tion in an untimely manner, resulting in some moisture stress and
reduced yield or (b) eliminating that post-plant watering altogether
and facing further yield reduction.

Even though the first choice would not make the most technically
efficient use of the water, its marginal value could still be greater
than its marginal cost, hence making it economically viable. In addi~
tion, the use of wind energy could result in a relatively greater
reduction in marginal cost for the untimely irrigation, making it a
more attractive alternative than the timely irrigation even if there is

no physical limitation on irrigation water.

Effect of Wind Energy on Resource Allocation

The amount of electricity used by the firm in any given time period
will, in effect, be limited. This is because electricity requirements
are directly affected by the amount of irrigation water pumped, which
is physically limited.

Operation of a wind machine will provide part or all of the elec-
tricity required in any given time period at zero variable cost. 1In
effect, this will reduce the marginal factor cost (MFC) of electricity
by the ratio of wind generated electricity to total electricity
requirements. Since the actual wind power available will be unknown

in advance, some estimate of its magnitude must be developed for
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planning purposes. By using long~term average wind speed for the time
period in question and the chosen density and power functions, average
wind power availability can be estimated using the principles of
mathematical expectation as shown above.

Since the MVP of electricity in the production of crops is assumed
to be a decreasing function over the relevant range, a decrease in the
effective cost of electricity would indicate that optimal usage of
electricity would increase in all time periods. However, this would
not be possible in all cases due to limitations on irrigation water and
land. It would, in fact, be possible for usage to be decreased in a
given time period. With wind energy, the effective MFC would be lower
in time pericds with historically higher wind speeds., 1If the relative
difference were great enough, it could cause a shift in the employment
of water and complementary resources away from previous usage to time

periods having higher winds.

Allocation of Exhaustible Resources

Recharge to the Ogallala aquifer is negligible in comparison with
the rate of extraction. Groundwater stocks will eventually become
depleted. Depletion can occur in the physical sense, meaning simply
that the well runs dry, or more likely in the economic sense, where the
cost of extracting the groundwater is greater than the revenues to be
derived from its use,

A major issue for individual farmers is temporal allocation of
their underground water supply to maximize returns to the water, This
involves not only annual allocation of water among competing crops but

also alleccation of water over time (Lacewell and Grubb). Optimal
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temporal allocation involves equating the present wvalue of a unit of
water used In the future with the incremental wvalue of using an addi-
tional unit in the present time., This allocation is difficult to
estimate quantitatively and even more difficult to achieve in actual
practice, Thus, this study will assume, as have others {(such as Petty,
et al,; Bredehoeft and Young), that producers will allocate the water

supply through maximization of annual net returns.

Application of the Theory

The decision-making process of the profit maximizing firm operator
is based on the theoretical principles discussed above. Linear pro-
gramming (LP) is one of the most widely used analytical techniques by
which economic theory is applied. The following section is designed
to give a brief overview of the linear programming method, including
the underlying assumptions, mathematical formulation and some compari-
sons with marginal analysis, Other references (e.g., Heady and
Chandler; Beneke and Winterboer) provide more detailed presentations.

There are many similarities between models which determine the
profit maximizing position of a firm in a linear programming framewcrk
and those which use the neoclassical marginal analysis approach. Some
of the more basic comparisons will be made here. A more detailed dis-
cussion of these similarities is given by Naylor.

The production function gives rise to the principal differences
between the two approaches. The neoclassical model is assumed to have
a production function which, in the relevant range, exhibits diminish-

ing marginal productivity. A linear programming mcdel is comprised of



25

activities which are linear, thereby having constant marginal produc-
tivity. The activity is a more specifically defined concept than a
production function. A production function may be thought of as a
family of activities which use the same resources and turn out the same
products, Comparing any two points of the production surface, if the
ratios of the inputs and outputs are the same, they represent the

same activity: otherwise there are two different activities. Thus, the
production function is a tool for exhibiting and comparing different
but related activities. The production function may be presented as a
family of linear activities which have constant marginal returns, but
each successive activity having a lesser slope, thereby depicting

diminishing marginal returns for the production function as a whole.

Linear Programming Model

The four basic assumptions underlying a linear programming model

are:

(1) Additivity or linearity —-- The net returns and resources
required by two or more activities are the sum of the amount
required by each, In addition, each activity is assumed to
exhibit constant returns to scale.

(2) Divisibility —— All of the firm's factors and products are
perfectly divisible, This assumption may be relaxed, In
some cases, it is possible to formulate an integer model.

(3) Finiteness —- The number of resource restrictions and the
number of alternative activities is finite,

(4) Single-valued expectations —-- The amount of each resource

available, the input-output coefficients, and prices are
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fixed and known with certainty.
Mathematically, the linear programming model with n activities and k

resource constraints maximizes a given cobjective function:

Z=CyX, + CXy + ... + CX (14)

subject to the resource constraints:

Allxl + Alzxz + ... t Alnxn < b1 (15)
A21X1 + A22X2 + ... + A?_nxn < b2 (16)
Ale1 + Akzxz + ... + Aknxn < bk (17)

also subject to the condition that a negative amount of an activity

can not be produced:

Xk > 0 for all j. (18)

In these equations:
X, represents the output of the j-th activity,
C, represents the net returns per unit of the j~th activity,
A,. represents the amount of the i-th resource required to
produce one unit of the j-th activity,

b. represents the amount of the i-th resource available.

These equations are used to solve for the output of each activity
which will maximize net income to the firm. The procedure used most
often to solve linear programming problems is the Simplex method.

This is an iterative procedure which, on each iteration, adds to the
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solution the aetivity which will increase net returns by the greatest
amount., JIterations are continued until the objective function is
maximized. A more detailed outline of the Simplex method can be found

in the linear programming texts mentioned above.

Estimation of the Value of Wind Power

To appropriately estimate the ability to pay for a wind machine,
it is necessary to establish net returns for the farm under two situa-
tions: with wind power and without wind power, all other things being
identical. The predicted operation of the farm without wind power
serves as a benchmark. This makes it possible to determine the benefits
directly attributable to wind power as the difference in net returns
between the two situations.

The investment in a wind machine invelves a cost in the present
which will generate a stream of future returns. Thus, the farmer's
maximum economically feasible investment would be determined by the

present value of the future income stream, The discounting procedure

is
n NRi
NPV = ] ——= (19)
i=1  (1+4d)
where:
NPV = the net present value of wind power
NRi = net returns to wind power in year i
d = the discount rate
n = number of years.
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The discount rate selected in evaluating a capital decision repre-
sents the fact that a dollar at some point in the future is not worth
as much as a dollar at present. The time value of money, allowance for
risk and alternative earning potential of capital are all reflected in
the discount rate. Obviously, this will not be the same for all
individuals., TFor this reason, this study will use alternative discount

rates to provide a range of results.
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CHAPTER III

PROCEDURES

This chapter presents the data base underlying the analysis and
the development of the analytical models used to estimate the value of
wind energy. The study is based on a typical farm operation on the
Texas High Plains, having 640 acres of land irrigated by a furrow or
gravity flow distribution system (Petty, et al.,). This analysis will,
in all scenarios, include the land unit which can be irrigated by one
well, applicable to a single wind machine. The size of the land unit
will be based on the "rule of thumb" that 0,18 acres can be irrigated
per gallon per minute (GPM) of well yield (Lacewell, Hardin, McGrann
and Griffin). Well vield is a function of saturated thickness, which
will depend on the scenario to be analyzed. These scenarios will be

gpecified subsequently.

Crop Yield and Trrigation Timing

Expected yield reductions resulting from non—optimal irrigation
timing were estimated for the study area, Experimental data from the
Texas A&M Research Centers in Amarillo and Lubbock and from the U,S.
Department of Agriculture Southwestern Great Plains Research Center in
Bushland, Texas were obtained for corn, cotton, grain sorghum and
wheat., Original intentions were to also include soybeans in the
analysis. However, insufficient data were available to provide reli-

able yield estimates. Since soybeans comprise a minor portion of
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irrigated acreage in the region (less than five percent), they were
excluded from the remainder of the study.

Cotton data were obtained from an experiment which was replicated
over five years (1950-54). Even though the study is an old one, it
was felt that the reported yield levels were representative of those
in more recent years. Average yield over the five year period for each
reported combination of irrigation timings was used for this study,
shown in Table 1. Current tillage and herbicide practices were
included in the crop enterprise budgets.

Data were obtained from mixed sources for each of the remaining
crops. This often resulted in differences in nomenclature regarding
the stages of growth at which water was applied. Thus, the first step
was to group post-plant irrigation applications into common time
periods. (Adequate pre-plant watering was provided in all experiments.)
Actual dates of application, length of time from planting and relation
to commonly named growth stages were among the criteria used in making
the groupings. It was assumed that the "critical periods" for irriga-
tion applications were ten days long. For purposes of generality, it
was further assumed that each month had 30 days, thus establishing
three critical water periods per month.

The greatest number of post-plant irrigations common to all
experiments for a particular crop was used to establish a base for that
crop., A base yield for the given amount of seasonal irrigation water
was established from statistical production functions estimated for
the area (Shipley 1977a, Shipley 1977b), Then, within each experiment,

yields for all eported combinations of irrigation timings were
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expressed as a percentage of the highest yield reported for the base
number of post-plants. This was done to remove annual variations in
yield levels and attempted to isolate the yield reduction effect of
differences in timing of irrigation water.

Across all experiments for each crop, these percentages were
averaged for each combination of irrigation timings. The average per-
centages were then applied to the base yield, the results of which were
used in this study and are presented in Tables 2, 3 and 4, Due to a
limited number of data points, it was recognized that little statistical
significance could be attached to these estimates of reduced yield.
However, it was felt that they would still be effective as a broad
representation of the alternatives available to an irrigated producer
and represent the relative yields for alternative timings of irrigaton
water application.

Each of the combinations of irrigation timing could be included in
a linear programming model as a separate activity. Clearly, in many
cases, yield levels are low enough to be effectively dominated. It
was decided to use only those activities for which yield is greater
than the highest yield achieved by applying one less irrigation. For
example, an activity with three post-plant irrigations would be in-
cluded only if its yield were greater than the yield from the optimal
timing of two post-plants.

Cotton and wheat are characterized by the production of joint
products. Cotton income is derived from the sale of lint and seed,
while wheat produces both grain and grazing. In both cases, yield of

the joint product (seed or grazing) is a function of the main product
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yield, Cotton yields 1.67 pounds of seed per pound of lint (Parnell).
Income from wheat grazing is assumed to be $11.25 for dryland wheat

(15 bu. per acre grain yield) and increases by $0.45 for each additiomal
bushel of grain. The dryland wheat yield, as well as the other dryland
yields used in this study, are based on the 1975-1979 average for the

area (Lacewell, Hardin, McGrann and Griffin),.

Input Requirements and Costs

For each of the selected yield levels, rescource requirements and
costs were compiled from a variety of sources. Crop enterprise budgets
developed by Extension Economists-Management of the Texas Agricultural
Extension Service for the 1980 crop year were the basis for developing
many of the coefficients. Modifications were required where input
levels vary with yield or with number of irrigations, since budgets
were published for only one irrigation level.

The most common cost components related to yield are the costs of
harvesting and hauling done on a custom basis, with the rates reflect=-
ing common practices in the area (Extension Economists-Management). In
most cases, these costs are on a direct, per unit of yield basis,

There are two exceptions. For cotton, the cost of stripping (harvest-
ing), hauling and ginning is based on the total amount of material
(seed contton) brought to the gin, and is computed as 4,75 pounds of
seed cotton per pound of lint yield (Parnell). Seed cotton includes
seed, lint, burrs, leaves, trash and dirt. The harvest cost of wheat
is based on a flat rate of $10 per acre plus $.10 per bushel of grain

over 20,
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Application rates for nitrogen and phosphorous were varied with
expected yield for irrigated crops based on published recommendations
for the area (Valentine, et al.). Existing soil test levels were
assumed to be low for both nutrients in order to estimate fertilizer
requirements, Recommendations are published for alternative yield
levels, To estimate the amount to be applied for each of the many dif-
ferent yield levels, linear interpolations were made. The resulting
equations for fertilizer application levels are given in Table 5.
Fertilizer requirements for crops grown dryland are also presented, but
are not dependent on yield,

Irrigation water is the most obvious input varying with irrigation
level. To reflect "average" practices for furrow distribution systems
in the area, pre-plant irrigations were specified as seven acre-inches
per acre and post—plants as four acre-inches per acre (Shipley 1977b).
These levels alsc approximate those used in the yield experiments
discussed earlier. Irrigation labor is required at the rate of 0,1
hours per acre-inch applied (Extension Economists-Management).

Irrigation fuel is specified on a per acre—foot basis and varies

with pumping lift (Kletke, et al.). The relationship is

ELEC = 4B8.725 + 2.109L (20)

where

ELEC

Kilowatt—hours of electricity required to pump one acre-

foot of water,

£
|l

pumping 1ift in feet.
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Imbedded in this equation are the assumptions for water pressure
required at the wellhead (10 1lbs. per square inch for furrow irrigationm)
and pump efficiency (50 percent, noted by Ulich as an average for the
area), Non-fuel variable costs of irrigation are comprised of engine
repairs (New 1980), engine lubrication and attendance labor (LePori,

et al,) and distribution system repairs (Kletke, et al.).

Analytical Model for Static Analysis

The mathematical model for estimating the value of wind energy
consists of two components. The first is a linear programming model
which, based on a profit maximization objective, determines the optimal
farm plan. The irrigation pattern developed here is used as input to
the second phase, a simulation model, which will stochastically simulate

wind speeds and thus electrical power generated by a wind machine.

Linear Programming Model

The basic linear programming model provides a means of determining
optimal irrigation schedules for input into the simulation model, as
well as the benchmark net returns for the farm operation without wind
power, A simplified structure of the model is shown in Table 6. For
the study of load management strategies, expectations of available wind
power are added to the model. A complete version of the model,
including the wind expectation structure (to be discussed subsequently),

is presented in Appendix A,

Activities

The model includes dryland production activities for cotton, grain
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sorghum and wheat, Irrigated production activities {(including the
above crops plus corn) were selected for inclusion according to the
criterion discussed earlier, with a total of 51 irrigated activities
over the four crops. In addition to the basic production activities,
the model includes (1) purchase activities for selected inputs,

(2) sell activities for crops produced, (3) activities which allow a
choice in the timing of pre-plant irrigations and (4) borrowing and
repaying activities for cash flow by two-month time periods.

The inclusion of purchasing and selling activities facilitates
the evaluation of the effects of price changes. The model contains
purchase activities for seed, insecticide, herbicide, fertilizer,
diesel, gasoline and custom harvest and hauling for all crops. Price
changes for these commodities were not considered in this study, but
the activities were included in the interests of future research.
Separate activities for a single ltem are required for each cash flow
period in which purchases can be made. Buy activities are also
included for electricity by critical water period. Electricity and
crop prices were varled according to the scenario to be analyzed. Base
prices for other input items are shown in Table 7.

Critical water periods 10 days in length were established for the
effective timing of post-plant irrigations., However, the timing of
the pre-plant watering was not considered to be as crucial. For each
crop, activities are included which allow the pre-plant irrigation to
be applied effectively in any of five contiguous 1l0-day pericds.

The possibility of price changes makes prior determination of

operating capital requirements impossible. For this reason, a separate
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Table 7. Base 1980 Input Prices:

Texas High Plains

Item Unit Price
Corn seed 1b. 5 0.90
Cotton seed 1b. .45
Grain sorghum seed 1b. .50
Wheat seed bu, 7.50
Nitrogen ib. .24
P,05 1b. .23
Custom application of fertilizer acre 2.00
Gasoline gal, 1.05
Diesel gal. 1.00
Custom combining:
Corn bu. .25
Grain sorghum, dryland acre 8.00
Grain sorghum, irrigated cwt. .35
Wheat, dryland acre 10.00
Wheat, irrigated acre, bu, a
Cotton stripping and hauling cwt.s.cC. 1.50
Cotton ginning cwt.s.C. 2,00
Custom hauling:
Corm bu. .15
Grain sorghum cwt. .25
Wheat bu. .12
Corn drying bu. .12
Labor, full-time hr. 5,00
Labor, part-time hr. 4.50

qnarvest cost for irrigated wheat is $10 per acre plus
$.10 per bushel of yield greater than 20.

b100 pounds of seed cotton, includes lint, seed, burr and

other trash delivered to the gin.

Source: Fxtension Economists-Management
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cash flow section is included. Capital requirements are specified in
six two-month periods. Cash deficits at the end of each period are
repaid, either by borrowing from the following credit periocd or by
income from product sales, To reflect the producer's short-term
capital costs, an interest rate of 2,33 percent is charged for borrowed
capital in each two-month period. Excess funds do not earn interest,
but are available for operating expenses in the next period. For
buying and selling activities, the coefficients in the cash flow rows
represent the input or output price, For production activities, these
coefficients reflect costs which are not represented by purchase
activities (labor and non-fuel machinery and equipment variable costs).
The net cash position at the end of the year is equivalent to the
traditional objective function value.

An accounting row is included for each cash flow period which
measures the net cash position exclusive of carryover from previous
periods. All transactions are included with the exception of elec-
tricity and capital costs, The values of these rows are input into
the simulation model, where the electricity and capital costs are

recomputed based on "actual" wind power availability.

Constraints

Constraints included in the model are (1) acres of land,
(2) seasonal irrigation water by critical periods and (3) labor,
divided into two-month periods to correspond with the cash flow section.
The actual constraint levels depended on the scenaric, Land and water
were determined by well yield, while labor availability was based on

the size of the land unit.
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As was discussed earlier, the land unit included .18 acres per
GPM. Well yield is a function of saturated thickness.2 Maximum well
yield of 800 GPM is assumed to remain constant for all levels of
saturated thickness above 210 feet. This is representative of an
average well in the region, where the maximum yield is much less than
the potential that the aquifer can deliver (Reddell). The well yield
relationship for lower levels of saturated thickness is represented
by equation (21) (Hughes and Harman),

GPM = 800 * Gggoz (21)
210

where

GPM

well yield in gallons per minute

ST = saturated thickness in feet.
Limitations on seasonal water availability were established by the

physical maximum which could be pumped in a critical water period,

based on well yield.

M = .0044 * GPM * T (22)

where

M = maximum acre-feet of water that can be pumped in a critical

water period,

2Saturated thickness refers to feet of water-bearing sand. The
coefficient of storage of the Ogallala is about 15 percent, meaning
that 100 feet of saturated thickness yields 15 feet of water (Cronin}.
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T = numher of days in each period not used for well repairs
and maintenance (assumed to be 8.5 for this study),

0044

constant value which translates gallons per minute into
acre—feet per day.

Labor restrictions were based on the principle that two men, the
operator and one full-time employee, will provide all labor (except
part—time hoeing labor) for a 640 acre farm. Labor usage is separated
into two-month periods in the model and is charged on an hourly basis.
The number of hours available in each two-month period depends on
weather patterns and length of days, and will thus be higher in the
summer months. The amounts based on 640 acres (Petty, et al.) were
placed on a per acre basis, then multiplied by the size of the land
unit determined above for use as constraints in this study. The labor

constraints also provide, indirectly, for machinery limitatioms.

Wind Energy

The consideration of wind in the LP model requires estimates of
wind power availability in each critical water period. The expected
value of wind energy was developed using monthly mean wind velocities,
over the period 1941-1970, recorded at the Amarillo airport (Table 8).
The use of monthly averages means that each ten-day eritical irrigation
period of any given month will have one-third of the expected monthly
wind power.

Wind velocity increases with height above the surface. Accurate
estimates of wind power require that the wind speed be adjusted from
the height at which it was measured (in this case, 23 feet) to the

height of the center of the wind machine, known as "hub height", which
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Table 8. 1941-1970 Average Wind Speeds by
Month: Amarillo, Texas

Average Wind Speed

Month (mph)
January 13.1
February 14.2
March 15.6
April 15.5
May 14.8
June 14.4
July 12.5
August 12.1
September 13.0
October 13.0
November 13,2
December 13.0

Source: U.,S., Department of Commerce.
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for this study is assumed to be 65.6 feet (Clark and Schneider). The

most widely used method of performing this extrapclation is described

by Reed.
Ht 1/7
= % (—
Ve = Vo * @) (23)
m
where
Vt = wind velocity at hub height
Vm = wind velocity at measured height
Ht = hub height
Hm = measured height,

The power functions used to develop the expectations depend on the
size and specifications of the machine. Two different sizes, with
rated output of 40 and 60 kilowatts (KW), were analyzed. The assumed
specifications are the same for both machines and are based on the
characteristics of the system in operation at the U.S. Department of
Agriculture station in Bushland, Texas (Clark and Schneider). The
cut-in speed is 13 mph, rated speed is 32 mph and cut-out speed is

45 mph., The resultant power functions are, for the 40 KW machine,

P = 0.72795 - 0,92401V + 0.06754V2 (24)
and for the 60 KW machine,

P = 1.09196 ~ 1.40101V + 0.10131V (25)

where
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f

P power output in KW

V = wind velocity in mph,
The coefficients in these power functions were estimated according to
the procedure described by Justus, et al.

Using the transformed wind speed means, expectations of wind-
generated electricity for 8.5 days (matching the maximum pumping time)
were developed for each water period. The model allows this "free"
electricity to be used for irrigation only in the same proportion as
actual to maximum pumping time. For example, if irrigation takes place
over only half of the 8.5 days, only half of the wind-generated elec-
tricity could be used for irrigation pumping. This requirement
prevents electricity which was generated over the entire time period
from being used in a shorter time., Ninety percent of any excess
electricity can be sold to the electric utility. The 10 percent loss
is due to alternator efficiency (Lansford, et al.). The selling price
was assumed to be 60 percent of the purchase price (Lansford, et al.).
Separate selling and buying activities for electricity are included for
each water period along with extra selling activities, by cash flow
period, to account for the wind power generated in the 1.5 days in

each water period when no pumping takes place.

Simulation Model

The simulation model was designed to match the farm's optimal
irrigation pattern (determined by the LP model) with stochastically
generated wind power. This determines the amount of irrigation elec-—
tricity purchased and the apportionment of wind-generated electricity

(amounts used for irrigation and sold to the utility).



50

Simulation of the farm operation with a wind energy system involves
four steps. This process includes (1) generation of random wind speeds
by three-hour time periods, (2) power output in each period is
determined, (3) power output in each period is matched with irrigation
requirements to calculate electricity purchases and sales, and
(4) capital costs and net returns to the farm are calculated. Input to
the simulation model includes parameters defining the scenario being
analyzed (saturated thickness, lift, purchase and selling price of
electricity), and results from the LP solution relating to the optimal
farm organization (acre-feet of water pumped by critical water period
and the net cash position for each cash flow period).

Random wind speeds are drawn from probability distributions set
up by month and time of day using the Rayleigh distribution. In each
month, eight distributions were defined corresponding to the three-hour
time intervals at which climatological data are reported in Local

Climatological Data, U.S. Department of Commerce. The distributions

were filled based on the mean speeds for Amarillo over the period 1965-
1978 for each month and each reporting time, i.e., 12 midnight, 3:00
a.m., 6:00 a.m,, ete, These are shown in Table 9. After height
extrapolation, these means are used in the generation of stochastic,
or "actual" wind speeds. These speeds are assumed to be constant over
the three-hour time period. The power function uses the wind speed
to calculate total kilowatt-hours of electricity generated by the
system for each three-hour period in the year.

To match with the estimated wind power availabilities, irrigation

fuel requirements are calculated for each three-hour time period. The
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program operates an outer loop for each 10-day period throughout the
year. The amount of water pumped in the period is used to determine
electricity requirements for irrigation. If irrigation occurs, it is
assumed to begin at midnight on the first day and continue until
completed. The number of acre~feet pumped is converted to gallons then
divided by gallons per hour (GPM times 60) to determine hours required
for pumping. This is divided by three to determine the number of
three-hour wind periods required, which will be equal to a whole number
K plus a fraction X/3.

The program then operates an inmer loop over the 80 three-hour
periods in a ten-day critical irrigation period. Using the results
from above, an array is constructed which measures, for each wind
period, the percentage of the three hours in which pumping occurs.

This percentage will be equal to one for the first K periods, X/3 in
the next period and zero in the remaining periods. The amount of
electricity required to pump for three hours is calculated based on
well yield and pumping Lift.

These percentages are used in comparing wind-generated electricity
with irrigation pumping requirements., If the percentage is zero, 90
percent of the generated electricity is sold for 60 percent of the
purchase price, as stated earlier., If the proportion is one, all
generated electricity can be used for irrigation. Any excess require-
ment is purchased from the electric utility., However, if there is a
surplus of wind-generated electricity, it is assumed to be lost and
cannot be sold. If the percentage is X/3 (from the example above),

both wind power and the three-hour electricity pumping requirement are
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multiplied by X/3. These values are then matched in the same manner

as when the proportion is one. Ninety percent of the remaining propor-
tion of wind power (1 -X/3) is sold. This procedure prevents wind
power generated over the entire period from being used for irrigation
over a fraction of the period.

Simulated purchases and sales of electricity are summed by two-
month periods, corresponding with the cash flow figures. Beginning
with the January-February period, purchases are subtracted and sales
added to the net cash for the period. Any deficit is borrowed at the
same capital cost used in the LP model and is carried forward to the
next period, while a cash surplus is carried forward but does not earn
interest. The surplus at the end of the November-December period is
net returns to the farm.

The simulation process is repeated twenty times in order to
generate a range of solutions. The program then calculates the maximum,
minimum, mean and standard deviation for net profit, electricity pur-
chased, electricity sold and electricity generated. Sample output

from the simulation program is presented in Appendix B.

Analytical Model for Temporal Analysis

As the Ogallala aquifer declines, requirements for irrigation
fuel increase and seasonal water availability decreases. Consideration
of these factors requires a model which operates recursively over the
assumed 20 year useful life of the wind system (Lansford, et al.). The
static linear programming model is modified to serve as the core of the

temporal model. The temporal model 1s completed with the development
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of (1) fixed costs appropriate for a long-run analysis and (2) a Fortran

subroutine which applies the LP model on a year-to-year basis.

Fixed Costs

Annual fixed costs were calculated for (1) machinery and equipment,
(2) furrow distribution system, (3) irrigation wells and (4) pumping
plants. The fixed costs are based on the expected life of the equip-
ment, and include charges for deprecreation, taxes, insurance and
opportunity cost of the investment. Depreciation was calculated using
the straight-line method. Charges for taxes and insurance were one-
half percent and one percent, respectively, of the initial investment,
Interest charges were based on a rate of 14 percent on one-half of the
initial investment.

Machinery and equipment fixed costs were calculated on a per acre
basis to apply to different sizes of farms and estimated from the 1980
crop budgets (Extension Economists—-Management). A single estimate of
fixed cost was derived for irrigated production. The per acre values
for each crop were weighted according to the number cof acres of each
crop in the study area. The machinery and equipment fixed cost thus
derived was 532.79 per acre for Irrigated production.

Also established on a per acre basis was the annual fixed cost of
a furrow distribution system, Initial investment for a furrow distribu-
tion system was calculated to be $69,203 for 640 acres {Laughlin,
et al.). Main line pipe and valves were depreciated over 20 years,
while lateral pipe was depreciated over 15 vyears., Annual, per acre
fixed cost was thus estimated to be $14.89 per acre. Machinery and

equipment and distribution system fixed costs are charged according to
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the size of the land unit regardless of whether or not all acres are
irrigated.

Fixed costs of wells and pumping plants were calculated on an
annual basis and are charged in the Fortran subroutine regardless of
the number of irrigated acres. Annual fixed costs were calculated for
(1) developed wells of various depths and (2) pumping plants (engines,
pumps and gearheads) for various combinations of well yield and pumping

lift. These are shown in Tables 10 and 11.

Fortran Subroutine

An extension of linear programming is utilized which consolidates
a Fortran program with an LP model. The Fortran program functions as a
subroutine which modifies the LP model after each year's solution to
reflect the farm situation for the following year. The procedure per-
forms as follows:

1. Calculates the decregse in saturated thickness of the aquifer

and associated increase in pumping lift based on the amount of

water withdrawn in the previous year. The relationship is

D = W/(CA * ,15) (26)
where
D = decline in water level of the aquifer (in feet)
W = acre-feet of water pumped in the previous year
CA = acres contributing to the aquifer (including non-culti-

vated acres and dryland)3

3Acres contributing irrigation water are expected to exceed acres
irrigated since all acres cannot be cropped, i.e., there is water avail-
able beneath land used for turn rows, roads and homesteads,
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Table 10. Annual Fixed Costs of Developed
Irrigation Wells

Well Depth Annual Fixed Cost
(feet) (dollars)
150 863,35
200 1074.38
250 1285.38
300 1496,39
400 1918.42
500 2340.44

Source: Petty, et al.

Table 11, Annual Fixed Costs of Pumping Plants

Well Yield Pumping Lift (feet)
{gpm) < 100 101-150 151-200 201-300 > 300
——————————————————— (dollars)———————————————=—=
< 350 751.64 798.31 $38.31 936,96 1252,57
351-600 789,64 883.63 1032.21 1239,24 1265.,90
601-800 848.29 978.88 1172.57 1272.57 1285.90

Sources: Petty, et al.
Emerson Industrial Service
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.15 = coefficient of storage for the Ogallala aquifer.

2, Calculates well yield based on the new saturated thickness,
according to equation (21).

3. Calculates the amount of electricity required to pump an
acre—foot of water based on the adjusted pumping 1ift, accord-
ing to egquation (20).

4. Calculates the maximum acre-feet of water which can be pumped
in each critical water period based on the adjusted well
yield, according to equation {(22),

5. Calculates the present value of net returns using three dif-
ferent discount rates.

6. Modifies the LP tableau with new irrigation water upper limits
and electricity requirements,

Input data specifying the scenario being analyzed are read into
the subroutine, which creates a file to initialize the basic LP matrix.
The program is called after each year's solution to perform the updating
procedure. A summary table is printed for each year showing the
activities in the solution and their level, irrigation pumping and
shadow prices by water period, irrigation fuel requirements separated
into the amounts purchased and wind-generated by month in addition to
cropland acres and their shadow price. At the end of 20 years the
temporal analysis is summarized in tabular form. An example of the

output from the temporal model is shown in Appendix C.

Specification of Alternative Scenarios

Scenarios analyzed in this study are comprised of changes in
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four basic areas, (1) region of the study area, (2) the farm situation,
(3) crop prices and (4) electricity prices. The region was separated
into the areas north and south of the Canadian River. The basic
difference between the two is that cotton is not included as a crop
option in the northern area due to the shortness of the growing season.
Another difference is that low lift wells are not common in the northern
region, thus only a 60 KW machine was analyzed for this area.

Farm situations were specified according to the beginning water
resource (saturated thickness and 1lift), size of the land unit and
rated output cf the wind system. Four combinations (Situations 1~4)
were considered (Table 12}, Three different water resource situations
are utilized to represent the area, Two sizes of wind machines (40 and
60 KW) were chosen to analyze the effects of the size of wind machine
for a given water resource situation as well as to analyze a single
machine size on two different water resource situations.

Two sets of crop prices were specified., The first was intended to
reflect recent levels, based on 1974-1978 average prices received
(Texas Crop and Livestock Reporting Service). To estimate future
situations, a set of 1985 prices (in 1980 dollars), estimated by an
econometric simulation model (Collins) was used. Cotton prices are
adjusted to reflect quality differences. Both price sets are shown
in Table 13,

For static analysis, three levels of electricity prices, $.05,
$.075 and $,10 per KWH, were analyzed. The first approximates current
prices in the area, with the others included to evaluate the effects

of price increases. Two scenarios were specified for the temporal
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Table 13, Crop Price Scenarios

1974-1978 Average? 1985 Simulated®

Commodity Unit {(dollars) (dollars)
Corn bu, 2,48 3.06
Cotton Lint®  1b. ,533 .823
Cotton Seed® ton 96,20 137.94
Grain Sorghum  cwt, 4,02 5.52
Wheat bu. 3.08 3.14

%Gource: Texas Crop and Livestock Reporting Service,
b .
Source: Collins.

“Cotton was not included as a crop option for the
Northern High Plains.
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analysis, one in which price remains constant at $.05 per KWH while the

second increases the price by one-half cent per year.

Method of Analysis

Static Applications

To estimate benchmark net returns and optimal cropping patterns,
the basic LP model was applied over all scenarios. The irrigation
schedule derived was used as input to the simulation model, The annual
value of wind power was calculated as the average simulated net returns
minus benchmark net returns.

For the analysis of load management strategies, the LP model
including wind expectations was solved. If the optimal irrigation
schedule was changed in response to wind power, the simulation model
was applied to the new schedule using the same set of random wind
speeds as for the simulation of the benchmark case. Again, benchmark
returns were netted out of average simulated returns to determine wvalue
of including wind expectations in the planning process.

The annual value of wind power was assumed to be constant over 20
years. Break-even investment value was estimated by discounting this
constant stream of returns. Since the discount rate is a subjective
judgement on the part of the investor, break-even investment was
calculated at discount rates of three, five and ten percent to indicate
the range of values. A complicating factor was the requirement of an
allowance for yearly operation and maintenance costs for the wind
system., Available estimates of these costs were all based on a per-

centage of initial investment. For this study, an annual charge of
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one percent was assumed (Traudt). The discounting equation thus

becomes
20
I = E V—.Ol"]::' (27)
t=1 (1+d)
where
I = break-even investment value in a wind system
V = annual value of wind power
d = discount rate
t = years.

Over the 20 year period, inflation was not explicitly considered
but was assumed to apply equally to all costs and returns. Thus, d
is in real, rather than nominal terms (Watts and Helmers). The dis-

count rate is of the form

d=[(1+)/(Q+i)] - 1 (28)
where
r = nominal discount rate
i = rate of inflatiom.

Temporal Applications

Over all scenarios, benchmark net returns on a temporal basis were
estimated by applying the temporal model without wind. The wvalue of
wind power was estimated by adding wind expectations to the temporal
model, maximizing over the 20 years, and netting out benchmark net
returns. The discounting procedure is the same as above, with the

exception that the annual value of wind power is not constant.
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CHAPTER IV

WIND AND POWER RESULTS

This chapter is designed to give a brief overview of some of the
study results relating solely to wind power. Break-even investment
values are presented based on the assumption that all electricity pro-
duced is sold to the utility, hence these results will provide a lower
bound on the value of wind energy as compared to its value in irrigation
use. Results relating to the use of wind energy in irrigation will be
shown in Chapter V.

Results are presented for the 40 KW and 60 KW wind systems. In
each case, benchmark simulations from the Southern High Plains analyses
were aggregated over all crop and electricity price scenarios to obtain
the wind and power results. Thus, the wind and power results are based

on 240 annual simulations.

Power Output and Operating Characteristics

Physical characteristics of the simulated wind system operation
are presented in Table 14, Maximum, minimum, mean and standard devia-
tion are shown for power output, percent down time (during which the
machine does not operate) and percent of time producing rated output.
Predicted performance parameters from the 40 KW machine in operation
at Bushland, Texas (Clark and Schneider) will be used for purposes of

comparison. Tt should be noted that these predictions are based on
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Table 14, Simulation Results of Annual Power Output and

Operating Characteristics?®

Item Unit

Rated Qutput Of
Wind Machine (KW)

40 60

Electric Power Generated:

Maximum KWH 74085.4 108131.3

Minimum KWH 62316.8 95372.3

Mean KWH 67679.4 101618.6

Standard deviation KWH 2024 .4 2558.4
Down Time:b

Maximum percent 44,06 44,65

Minimum percent 39.06 39.10

Mean percent 41,58 41.42

Standard devigtion percent 0.95 0.89
Time Producing Rated Output:©

Maximum percent 5.97 6.15

Minimum percent 3.65 4,06

Mean percent 4,91 4,93

Standard deviation percent 0.41 0.39

a . ,
These results are based on 240 annual simulations.

b . :
Down time measures the times during which wind

velocity is less than cut-in speed or greater than cut-out

speed,

“Time producing rated output measures the time during

which wind velocity is between rated speed and cut-out

speed.
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monthly averages while the simulation results are based on eight
average wind speeds (corresponding to time of day) within each month.
The use of less frequent sampling periods tends to underestimate the
power available from higher wind speeds, since power is proportional to
the cube of wind speed (Doran, et al.). Thus, the power results from
the simulation model are expected to be higher than the predicted per-
formance of the 40 KW machine at Bushland.

Annual power output from the 40 KW machine ranged from 62,316.8
to 74,085,4 KWH, with a mean of 67,679.4. Predicted output from the
Bushland system was 65,190 KWH, The 60 KW machine produced an average
of 101,618.6 KWH, with individual observations ranging from 108,131.3
to 95,732.3 KWH. No figures are available for direct comparison;
however, the ratio of power output of the 60 KW machine to the 40 KW
would be expected to be the same as the ratio of their rated outputs,
i.e., 1.5. The actual ratio of the means is 1.501, indicating a
slight bias in favor of the 60 KW unit.

Since both machines have the same operating specifications,
expected down time and time running at rated output would not be ex-
pected to differ between sizes of machine, as they are dependent only
on wind speeds. Thus, any differences would be resultant only from the
simulation process,

Predicted down time of the Bushland unit was 43.7 percent, compared
with 41.58 and 41.42 for the 40 and 60 KW machines, respectively. For
the same reasons as noted earlier, the machine is expected to operate
longer, thus having less down time, under the simulated results. The

gimulated operation of wind machines produced rated output between 3.65
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and 6.15 percent of the time, with an average for both machine sizes of
approximately 4.9 percent. No estimate of time running at rated output
was made for the Bushland system.

Monthly average wind speeds over the period 1941-1970 were used in
determining the expectations of wind power applied in the LP model,
Expected output was 65,075.9 KWH for 40 KW (compared with 65,190 at
Bushland) and 97,613.8 for the 60 KW unit. However, predicted down time
of 41,5 percent corresponded more closely with that from the simulation
model, In both cases, all months were assumed to have the same number

of days, in contrast to the predictions from the Bushland unit.
Value of Wind Energy

The power output results were used to calculate the expected (mean)
annual value of wind power if sold to the power grid only and the
related maximum and minimum values. These are presented in Table 15
along with break-even investment values, based on mean returns to wind
as a constant over 20 years, at each of three discount rates. Break-
even investment represents the maximum economically feasible price that
could be paid for a wind system.

Three selling prices of electricity ($.03, $.045, and $.06 per
KWH) were used. These correspond to the electricity price scenarios
specified for static analysis, with each adjusted to 60 percent of the
purchase price, which is the assumed fuel replacement value that
utilities would pay (Lansford, et al.). Power output that can be sold
is 90 percent of the total generated, with the 10 percent loss due to

to alternator efficiency (Lansford, et al.). 1In this analysis, the
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Table 15. Annual Revenue and Break-Even Investment Where
all Power Output is Sold to the Utility

Item Selling Price of Electricity
{cents per KWH)
3 4.5 6
————————— (dollars)

40 KW Machine

Annual Revenue:

Maximum 2000,31 3000.46 4000.61

Minimum 1682.55 2523,83 3365.11

Mean 1827.35 2741.02 3654.69
Break-Even Investment:?

3% Discount rate 23665,52 35498.21 47330.90

5% Discount rate 20249,29  30373,88 40498.48

10% Discount rate 14336.69  21505.00 28673.30

60 KW Machine

Annual Revenue:!

Maximum 2919.55 4379.32 5839.09

Minimum 2575.05 3862.58 5150.11

Mean 2743,70 4115.55 5487.40
Break~Even Investment:2

3% Discount rate 35532,92 53299.37 71065.83

5% Discount rate 30403.58 45605,37 60807.16

10% Discount rate 21526.02 32289.04 43052,05

a . ,
Break—even investment is calculated based on mean
annual revenue.



68

same electricity amounts were applied to each price, thus changes in
returns are proportional to the changes in electricity price.

In the situations where annual returns are assumed constant over
the life of the wind system, changes in the discount rate will have the
same proportional effect on break-even investment values in each
scenario analyzed. For example, break-even investment calculated at
the three percent discount rate will be 16.9 percent higher than for
the five percent discount rate and 65.1 percent higher than for the ten
percent discount rate. The different disciount rates reflect differ-
ences in the return on investment required to satisfy an individual
investor's subjective judgement of risk and time preference for money.
An example of the implications is the person who requires a greater
return for risk, who would be willing to make a smaller imitial
investment, other factors being equal.

Based on the maximum and minimum electricity production, the
annual value of wind power can vary by as much as $317.76 for the 40 KW
machine and $344.50 for the 60 KW, while selling electricity at three
cents per KWH. Average value was $1,827.35 and $2,743.70, respectively,
These values increase by 530 and 100 percent for electricity selling at
$.045 and $.06 per KWH. Break-even investment values for a 40 KW
machine range from $14,336.69 ($358.42 per KW) with three cent elec-
tricity and ten percent discounting to $47,330.90 ($1,183.27 per KW)
with six cent electricity and the three percent discount rate. At the
same combinations of electricity price and discount rate, values for
the 60 KW machine vary from $21,526.02 ($358.77 per KW) to $71,065.83

($1,184,43 per KW),
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As was noted earlier, these wvalues reflect lower limits to the
value of wind power. When used for irrigation, part of the power will
take on a higher value as it replaces electricity which would otherwise
need to be purchased. The following chapter will detail the results of

the use of wind energy in conjunction with an irrigated farm.
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CHAPTER V

IMPLICATIONS FOR IRRIGATION WITH WIND ENERGY

This chapter extends the analysis of wind energy from exclusive
sales of electricity to the electric utility to use on an irrigated
farm. Benchmark situations will be analyzed with respect to cropping
patterns and water use. Simulation results for the benchmark solutions,
including break-even investment for wind power, are presented along
with some comparisons among the applicable farm situations. The results
from the static analysis are concluded with the analysis of the effect
of wind expectations on cropping patterns and value of wind power.

Finally, selected results from a temporal analysis are shown.

Static Analysis

In the static analysis, the annual value of wind power was
estimated and assumed to be constant over the life of the wind system.
For each farm situation, three electricity prices ($.04, $.075 and
$.10 per KWH) were analyzed with each of two sets of crop prices

(1974-78 average prices and 1985 simulated prices).

Effect of Non-Optimal Irrigation Timing

To give a broader presentation of an irrigated producer's alterna-
tives, irrigated activities with both optimal and non-optimal irrigation
timings were included in all analyses. To indicate the effects of the

inclusion of non-optimal timings, one situation was analyzed with only
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optimal timings. These results are compared with those of the full
model in Table 16. The results are from the Northern High Plains under
farm situation 3, with 1974-78 average crop prices and electricity
purchased at five cents per KWH.

With only optimal timings allowed, 8.52 acres of the total of 100
acres are left idle, as labor availability is restrictive in three of
the six two-month periods. The optimal cropping pattern includes
39.52 acres of grain sorghum with three post-plant irrigations, 23.15
acres of both grain sorghum with one post-plant and corn with five
post—plants and 5,66 acres of wheat with three post-plants. Returns
over variable costs are $5,797.63.

With non-optimal timings added to the model, irrigated acreage
increases by 5.13 acres {although 3.39 acres still remain idle) while
net returns show an increase of $50.50., There are 3.5 additional acre-
feet of water pumped, but the average application rate is reduced from
1.58 to 1.54 acre-feet per acre. Cropping pattern changes feature,
besides the total increase in irrigated acreage, shifts which allow
an increase in the production of grain sorghum. Corn acreage decreases
and shifts to a non-optimal timing, as an irrigation is shifted from
late July to early September. Yield is reduced by nine bushels per
acre but releases amounts of two limiting inputs; late July water and
July-August labor, Acreage of grain sorghum with one post-plant
irrigation is also decreased as sorghum with three post-plants in-
creases and sorghum with two post-plants and non~optimal timing enters
the solution. In this case, 1.8 cwt. of grain per acre are forfeited

as compared to optimal timing. An irrigation is applied in late



73

<ATuo 53500 ITYBLABA JO 19U 2a® mcuzuMMﬁ
‘suor3edTaaT JueTd-31sod jo roqunu USATE B YILA doxd
usATd ® JO S2T3TATIOE TTe Buome Zuryuel p[oTL SATIBIIL dY3 01 SASIY

-per1dde suorie8raar juerd-isod Jo JIsqunu s34l 01 mpwwme
cpueidoad jo saade (0T PU® 2997 G/T FO IITT ‘193 /T IO SsSOoWOTYl pPoIBINIES
® SBY ¢ UOTIEBN]TS WIB] °PIPNIOUT JoU 2i1e SuOTIEIDdX® PUTH “HMA aad ¢o*$%
28 £3310T130972 pue seoTid doad a8easae Qf-%/6T U0 PISE] ST sTsATeUR STUl,

€I gh8c £9° /6165 SIBTTOP pSUINASY 39N
Sy 9g~6/°L  LL°0E-TGTTI saey{rop s90Tid MOpRYS Jo 83ury
£ € Iaqumnu SpoTIad I23EBM
feuoseag JuTITUIT Jo Iaquny
£°8y1 8 vyl 1993-210® pedung I21BM

:1938M uoTl1eITIAT

19796 8%°16 s9a0® 910y pajueld T®iol
867G 99°¢ EER L T £ IBIUM
69°8% 24°6E S910® T £ mny810§ UTBRIH
86°CT s3I0® rA z mny3105 UTBIH
86°¢€1 g1 € SaI0® T T mny3Iog UTRIH
86°¢CT S910F Z g uIon
L9 I 4 S9I0® T g uIon

AUBY  ¢SIUBTd-IS0d doan

:e8woa0vy doap

pemoTTy Surtwrl  ATup Surwi]
Teutldo~uon TeWT3dQ ITun wo1lT

£ UOT3IBNITS wiej ‘suleld y8ty uisylaoN ‘uoriezruedip Wi
pejeurisy uo s8ufwyl uworie3raal TewridQ-UoON FO UOTSNTOUI @Yyl 3O 3I993I3H "9 9TqeL



74

August rather than mid-August, when water is limiting. In both cases,
three water periods are limiting but, with non-optimal timings allowed,
shadow prices decrease by approximately $4 per acre-foot,

As was discussed earlier, the inclusion of non-optimal irrigation
timings was originally hypothesized primarily to take advantage of
wind energy and secondarily as a method of easing seasonal water
limitations. These results point out a further advantage, the in-
creased flexibility of labor utilization. This, in addition to the
extension of the limited pumping capacity in critical water periods,
allows the irrigated producer in this situation to increase both
irrigated acreage and net returns. In more practical terms, the
extended model more closely represents the situation faced by irriga-—

tion farms on the Texas High Plains.

Cropping Pattern Results

Selected results from the benchmark LP solutions for the Southern
and Northern High Plains are presented in this section., Acreage
planted in the various crop activities and some of the characteristics

of the limiting rescurces are discussed.

Southern High Plains

Benchmark solutions for the Southern High Plains area are pre-
sented in Tables 17, 18 and 19. Each table represents one of the three
land units analyzed, with all combinations of crop and electricity
prices included.

Optimal cropping patterns for the area are deveted to irrigated

cotton. The solution is not sensitive to electricity price, commodity
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Table 17. Cropping Pattern Results, Southern High Plains, Farm Situation 12

Item Unit Purchase Price of Electricity
(cents per KWH)
5 7.5 10

197478 Average Crop PricesP
Crop Acreage: 4
Crop Post-Plants® Rank

Cotton 1 2 acres 12,19 12.19 12,19
Cotton 2 1 acres 8.28 8.28 8.28
Cotton 2 2 acres 12,19 12.19 12.19
Cropland Shadow Price dollars 107,189 99.40 91,62

Irrigation Water:
Number of Limiting Seasconal
Water Periods number 2 2 2
Range of Shadow Prices doellars 3.26-125.44 3,45-117.26 3.64-109.08

1985 Simylated Crop PricesP
Crop Acreage:
Crop Post~Plants® Rankd

Cotton 1 2 acres 12,19 12.19 12.19
Cotton 2 1 acres 8.28 8.28 8.28
Cotton 2 2 acres 12,19 12.19 12,19
Cropland Shadow Price dollars 259,19 251.40 243,62

Irrigation Water:
Number of Limiting Seasonal
Water Periods number 2 2 2
Range of Shadow Prices dollars 5.25-242,60  5,44-234,42  5,63-226.24

aFarm situation 1 has a saturated thickness of 100 feet, 1ift of 125 feet and
32,65 acres of cropland.

bSee Table 13 for a listing of the crop price scenarios.
®Refers to the number of post-plant irrigations applied.

dRefers to the relative yield ranking among all activities of the given crop
with a given number of post-plant irrigations.
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Cropping Pattern Results, Southern High Plains, Farm Situations 2 and 32

Item Unit Purchase Price of Electricity
{cents per KWH)
5 7.5 10
1974-78 Average Crop Prices’
Crop Acreage!
Crop Post-Plants® Rankd
Cotton 1 acres 37.33 37.33 37.33
Cotton 2 acres 25,34 25.34 25.34
Cotton 2 acres 37.33 37.33 37.33
Cropland Shadow Price dollars 102.33 91.91 B1.48
Irrigation Water:
Number of Limiting Seasonal
Water Periods number 2 2 2
Range of Shadow Prices dollars  3.38-120.35 3.64-109.40 3.90-98.44
1985 Simulated Crep Prices?
Crop Acreage:
Crop _ Post-Plants® Ranmkd
Cotton 1 acres 37.33 37.33 37.33
Cotton 2 acres 25.34 25,34 25.34
Cotton 2 acres 37.33 37.33 37.33
Cropland Shadow Price dollars 254,33 263,91 233,48
Irrigation Water:
Number of Limiting Seasonal
Water Periods number 2 2 2
Range of Shadow Prices dollars  5.38-237.51 5.63-226,56 5,89-215,61

8Farm situations 2 and 3 differ only in the size of wind machine; thus, their

basic creopping patterns will be identical.

feer, lift of 175 feet and 100 acres of cropland.

Both have a saturated thickness of 175

bSee Table 13 for a listing of the crop price scenarios.

“Refers to the number of post-plant jrrigations applied.

dRefers to the relative yield ranking among all activities of the given crop
with a given number of post-plant irrigations.
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Table 19. Cropping Pattern Results, Southern High Plains, Farm Situation 42
Item Unit Purchase Price of Electricity
(cents per KWH)
5 7.5 10
1974-78 Average Crop PricesP
Crop Acreages:
~ Crop Post-Plants® Rankd
Cotton ¢] 1 acres 53.76
Cotton 1 2 acres 53.76 53.76
Cotton 2 1 acres 36.49 36,49 90.24
Cotton 2 2 acres 53.76 33.76
Cropland Shadow Price dollars 99,83 88.14 76,68
Irrigation Water:
Number of Limiting Seascnal
Water Periods number 2 2 2
Range of Shadow Prices dollars 3.45-117.73 3.73-105.44 3.31-93,15
1985 Simulated Crop Pricesb
Crop Acreage:
Crop Post~Plants” Rankd
Cotton 1 2 acres 53.7¢ 53.76 53,76
Cotton 2 1 acres 36.49 36,49 36.49
Cotton 2 2 acres 53.76 53.76 53.76
Cropland Shadow Prices dollars 251,83 243,14 228,44
Irrigation Water:
Number of Limiting Seascnal
Water Perieds number 2 2 2
Range of Shadow Prices deollars 5.44-251,83 5,73-222,60 6,01-210,31

2Parm situation 4 has a saturated thickness of 225 feet, 1lift of 200 feet and

144 acres of cropland.

bSee Table 13 for a listing of the crop price scenarios.

“Refers to the number of post-plant irrigations applied,

dRefers to the relative yield ranking among all activities of the given crop
with a given number of post-plant irrigations.
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price, l1ift or saturated thickness changes, as acreage in each crop
activity remains the same (as a proportion of the total land unit) in
all cases but one. TIn the predominant cropping pattern (all cottom),
37.33 percent of the acreage is planted with both one and two post-—
plant irrigations applied non-optimally. The remaining 25.34 percent
receives two post—plants timed optimally. The yield differential for
the non-optimal two post-plant irrigations is only two pounds of lint
per acre. Both receive an irrigation in early August, the same time
at which one post-plant, optimally timed, would be applied. Thus, the
acreage receiving one post-plant is shifted to a mid-July irrigation,
even at the loss of 47 pounds of lint per acre as compared to optimal
timing of irrigation.

The optimal cropping pattern is changed only for farm situation 4
with 1974-78 average crop prices and electricity purchased for $.10 per
KWH. Here, 37.33 percent of the total acreage shifts from one post-
plant application to a pre-plant only. The remaining 62.67 percent
receives two post-plants applied optimally, as the elimination of the
single post-plant releases water in mid-July.

In all cases, two seasonal water periods are limiting. The low
shadow price is between three and four dollars for the average crop
prices and between five and six dollars per acre-foot for the simulated
prices., The higher shadow price ranges for the 1374-78 average crop
prices are from $93.15 to $125.44 and for the 1985 simulated crop
prices are from $210,31 to $251.83. Additional cropland also has a
relatively large value, up to $107.19 per acre with 1974-78 average

crop prices and $259.19 for simulated crop prices.
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Northern High Plains

In contrast to the results for the area south of the Canadian
River, cropping patterns for the northern region vary considerably over
the alternative scenarios. These results are shown in Tables 20 and 21
for farm situations 3 and 4, respectively. Again, all crop and
electricity price scenarios are reflected in each table.

Under 1974-78 average crop prices, the optimal cropping patterns
change in response to changes in the price of electricity, With
electricity at $.05 per KWH corn, grain sorghum and wheat are produced
under irrigation, although land is left idle in both farm situations.
With an increase in electricity price from $.05 to $.075 per KWH, all
land is utilized as dryland wheat enters the solution. Irrigated corn
production increases (and shifts to an optimal timing) while irrigated
grain sorghum and wheat acreage decrease, Finally, with $.10 per KWH
electricity, irrigated wheat leaves the solution and dryland wheat
acreage increases., All irrigated acreage shifts to grain sorghum in
farm situation 4 while approximately 17 acres of irrigated corn remain
in farm situation 3.

Cropping patterns stabilize in response to the 1985 simulated
crop prices, The solutions do not change in response to electricity
prices and are the same (proportionate to total acreage) for both farm
situations. All acres are irrigated, as 1.37 percent of the available
acreage is planted to corn, with the remaining 98.63 percent in grain
sorghum. Fivé different sorghum activities are included, receiving
one, two, three and four post-plant irrigations.

The solutions are very sensitive, as is emphasized by the results
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Table 20. <Cropping Pattern Results, Northern High Plains, Farm Situation 3?

Item Unit Purchase Price of Electricity
{cents per KWH)
5 7.5 10

1974-78 Average Crop PricesP
Crop Acreage:

Crop Post—Plants® Rankd
Corn 5 1 acres 22.05 16.98
Corn 5 2 acres 13.98
Grain Sorghum 1 1 acres 13.98 22,05 16.98
Grain Sorghum 2 2 acres 13.98
Grain Serghum 3 1 acres 48.69 40,62 45,68
Wheat 3 1 acres 5.98 2,43
Wheat Dryland acres 12.84 20.35
Cropland Shadow Price dollars 0 6.65 13.31
Irrigation Water:
Number of Limiting Seasonal
Water Periods number 3 3 3
Range of Shadow Prices dollars 7.79-26.45 1¢.63-35.50  1.84-47.63
1985 Simulated Crop Pricesb
Creop Acreage: g
Crop Post—-Plants® Rank
Corn 5 2 acres 1.37 1,37 1.37
Grain Sorghum 1 1 acres 8.31 8.31 . 8.3
Grain Sorghum 2 2 acres 35.96 35,96 35,96
Grain Sorghum 2 3 acres 27.66 27.66 27.66
Grain Sorghum 3 1 acres 1.37 1.37 1.37
Grain Sorghum 4 1 acres 25,34 25,34 25,34
Cropland Shadow Price dollars G.64 9.56 18,47
Irrigation Water:
Number of Limiting Seasonal
. Water Perioeds number 3 3 3
Range of Shadow Prices dollars 4,28-93,28 4.28-93.28 4,28-93.28

®Farm situation 3 has a saturated thickness of 175 feet, 1ift of 175 feet and 100
acres of cropland.

bSee Table 13 for a listing of the crop price scenarios.
“Refers to the number of post-plant irrigations applied.

dRéfers to the relative yield ranking among all activities of the given crop with a
given number of post-plant irrigations,
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Table 21. Cropping Pattern Results, Northern High Plains, Farm Situation 42

Item Unit Purchase Price of Electricity
(cents per KWH)
5 7.5 10

1974-78 Average Crop Prices’
Crop Average:

Crop Post-Plants® Rankd
Corn 5 1 acres 31.76
Corn 3 2 acres 20.13
Grain Sorghum 1 1 acres 20.13 31.76
Grain Sorghum 2 2 acres 20.13
Grain Sorghum 3 1 acres 70.12 58,49 90.24
Wheat 3 1 acres 8,61 3.51
Wheat Dryland acres 18.5¢0 533,76
Cropland Shadow Price dollars 0 9.81 13,44
Irrigation Water:
Number of Limiting Seasonal
Water Periods number 3 3 2
Range of Shadow Prices dollars  6.88-27.79 10,09-42,51 17.08-30.64
1985 Simulated Crop Pricesb
Crop Acreage: d
Crop Post-Plants® Rank
Corn 5 2 acres 1.97 1.97 1.97
Grain Sorghum 1 1 acres 11.96 11.96 11.96
Grain Sorghum 2 2 acreg 51.79 51.79 51.79
Graln Sorghum 2 3 acres 39.38 39.38 35.38
Grailn Sorghum 3 1 acres 1.97 1.97 1.587
Grain Sorghum 4 1 acres 36.49 316.49 36,49
Cropland Shadow Price dollars 2,78 12.78 22.7%
Irrigation Water:
Number of Limiting Seasonal
Water Periods number 3 3 3
Range of Shadow Prices dollars 4.28-93.28 4,28-93,28 4.28-93,28

%Farm situation 4 has a satuyrated thickness of 225 feet, lift of 200 feet and 144
acres of cropland.

bSee Table 13 for a listing of the crop price scenarios.

“Refers to the number of post=-plant irrigations applied.

dRefers to the relative yield ranking among all activities of the given crop with a

given number of post-plant irrigations.



82

with average 1974~78 crop prices. At low electricity prices, land is
left idle due to labor restraints. As the electricity price increases,
irrigated acreage is forced out; however, this frees enough labor in
critical periods for dryland crops to utilize all available acreage,
The phenomena of cropland shadow prices rising with electricity price
is caused by the tight labor situation. To fully utilize the marginal
unit of land, some additional acreage must be shifted to dryland (along
with the marginal unit) to stay within the labor restrictions. Thus,
the value of the marginal unit of land would be the added returns from
dryland production minus the returns foregone from the acreage with-
drawn from irrigation. As electricity price increases, the foregone
irrigated returns decrease, thus increasing the value of the marginal
unit.

Shadow prices for irrigation water, with 1985 simulated crop
prices, remain constant as electricity price increases, Again, this
is due to restrictions on labor availability. Fach of the three
limiting seasonal water periods fall within the most restrictive labor
period, July-August, Thus, to obtain sufficient labor to apply the
marginal unit of water, a like amount of water from a different water
period but the same labor period must be deleted. This results in an
even trade-off in costs regardless of the electricity price, with the

marginal value of water remaining constant.

Break-Even Analysis
The cropping patterns and associated irrigation schedules dis-
cussed above were used as input to the simulation model to estimate

the annual value of wind power. Results relating to these simulations
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are shown in Tables 22 through 25 for the Southern High Plains and in
Tables 26 and 27 for the Northern High Plains. Each table consists of
all combinations of crop and electricity prices for a given farm
situation.

The benchmark net returns (calculated as returns above variable
cost for the static analysis) from the LP solution are shown for each
scenario. These returns are netted out of the "actual" returns as
estimated by the simulation model to determine returns to wind power.
Maximum, minimum, mean and standard deviation of returns to wind over
20 annual simulations are shown to indicate the dispersion of values.
Mean returns are used in the calculation of break-even investment at
three discount rates. As was noted in the previous chapter, the value
estimated using the three percent discount rate will be 16,9 percent
higher than at five percent and 65.1 percent higher than for the ten

percent discount rate.

Crop Price Effects

All crop prices were higher in the 1985 simulated prices than in
the 1974-78 average prices. Thege differences are reflected in the
benchmark returns. Wtih 1985 prices, benchmark returns range from
$9,459.15 for farm situation 1 with $.10 per KWH electricity to
$39,246.10 for farm situation 4 with $.05 per KWH electricity in the
Southern High Plains., With average 1974-78 prices, the same returns
are $3,684.43 (61 percent lower) and $13,7920.32 (65 percent lower).
In the northern region, benchmark returns are much lower than in the
south, less than half in all situations, as cotton is not included as

a crop option., The different sets of crop prices have a wider



Table 22. Break-Even Investment in a Wind Energy System,
Southern High Plains, Farm Situation 12

Item

Price of Purchased Electricity

{cents per KWH)

5 7.5 10
1974-78 Average Crop Prices
Benchmark Returns 4301.65 3993.04 3684.43
Returns to Wind:
Maximum 2006.12 2997 .48 3897.91
Minimum 1854.,05 2738.85 3506.73
Mean 1935.63 2883.36 3702.11
Standard Deviation 47 .97 78.91 110.74
Break-Even Investment®:
3% Discount Rate 25067 .82 37341,.61 47945,02
5% Discount Rate 21449.17 31951.19 41023.95
10% Discount Rate 15186.21 22621.74 29045.34
1985 Simulated Crop Pricesb
Benchmark Returns 10076.,37 9767.76 9459,15
Returns to Wind:
Maximum 2055.58 3023.60 4077.76
Minimum 1824,01 2739.98 3698.81
Mean 1920.43 2909.50 3865.83
Standard Deviation 57.41 70.39 112.86
Break-Even Investment®:
3% Discount Rate 24870,97 37680.15 50065.32
57 Discount Rate 21280.73 32240.85 42838.17
10% Discount Rate 15066.96 22826.83 30329.83

8Farm situation 1 has a saturated thickness of 100 feet,
1lift of 125 feet, 32.65 acres of cropland and a 40 KW wind

machine.

bSee Table 13 for a listing of the crop price scenarios.

¢ \ .
Break-even investment is calculated based on mean returns

to wind.



Table 23. Break-Even Investment in a Wind Energy System,
Southern High Plains, Farm Situation 2

Ttem Price of Purchased Electricity
{cents per KWH)
5 7.5 10
——————————— (dollars) —————=———u=-
1974-78 Average Crop Pricesb
Benchmark Returns 12725.17 11459,64 10194.11
Returns to Wind:
Maximum 2331.16 3383.83 4782.47
Minimum 2108.09 3136.98 4179.77
Mean 2201.47 3276.04 4387.45
Standard Deviation 61.25 69.70 147.00
Break-Even Investment®:
3% Discount Rate 28510, 64 42427 .11 56820.68
5% Discount Rate 24395,00 36302.57 48618.36
10% Discount Rate 17271.89 25702.56 34422.26
1985 Simulated Crop Pricesb
Benchmark Returns 30411,67 29146.14 27880.,60
Returns to Wind:
Maximum 2342.21 3493.96 4682,08
Minimum 2052 .43 3179.70 4158.58
Mean 2181.53 3291.59 4418.71
Standard Deviation 81.22 86.78 138,12
Break-Even Investment®:
3% Discount Rate 28252.40 42628,49 57225.52
5% Discount Rate 24174,04 36474.88 48964 .76
10% Discount Rate 17155,.45 25824 .56 34667.51

8parm situation 2 has a saturated thickness of 175 feet,
1ift of 175 feet, 100 acres of cropland and a 40 KW wind

machine.

bSee Table 13 for a listing of the crop price scenarios.

c .
Break-even investment is calculated based on mean returns

to wind.



Table 24, Break-Even Investment in a Wind Energy System,
Southern High Plains, Farm Situation 32

Item

Price of Purchased Electricity

(cents per KWH)

5 7.5 10
———————————— (dollars)———w—m—=s—
1974~78 Average Crop Pricesb
Benchmark Returns 12725.17 11459.64 10194.11
Returns to Wind:
Maximum 3315.28 5082.86 6622.14
Minimum 3096.49 4573.62 6120,27
Mean 3198.66 4809, 38 6339.44
Standard Deviation 69,89 130.21 154,83
Break-Even Investment®:
3% Discount Rate 41424 ,98 62284,98 82100.37
5% Discount Rate 35445,10 53293.87 70248,82
10% Discount Rate 25095.47 37732.56 49736.83
1985 Simulated Crop Pricesb
Benchmark Returns 30411,67 29146.14 27880.60
Returns to Wind:
Maximum 3338.79 5078.47 6673,12
Minimum 3069.88 4607.80 6157,.61
Mean 3212.75 4804,09 6415.65
Standard Deviation 81.53 132,71 143.26
Break-Even Investment®:
3% Discount Rate 41607 .45 62216.47 83087.34
5% Discount Rate 35601.23 53235,25 71093.32
10% Discount Rate 25206.01 37691.06 50334.,74

a .
Farm situation 3 has a

saturated thickness of 175 feet,

lift of 175 feet, 100 acres of cropland and a 60 KW wind machine.

bSee Table 13 for a listing of the crop price scenarios,

c . s
Rreak-even investment is calculated based on mean returns

to wind.



Table 25. Break-Even Investment in a Wind Energy Systemn,
Southern High Plains, Farm Situation 42

Item

Price of Purchased Electricity

(cents per KWH)

5 7.5 10
————————————— {(dollars)~—————m——
1974-78 Average Crop Prices
Benchmark Returns 17867.17 15822.35 13790.32
Returns to Wind:
Maximum 3408,06 507n0,22 6868,51
Minimum 3058.82 4680.56 6155.72
Mean 3255.356 4893.37 6469.62
Standard Deviation 103,22 114.93 197.82
Break-Even InvestmentC®:
3% Discount Rate 42159.29 63372.71 83786.30
5% Discount Rate 36073.41 54224 .58 71691.37
10% Discount Rate 25540.31 38391.51 50758.17
1985 Simulated Crop Pricesb
Benchmark Returns 43335.73 41290.91 39246.10
Returns to Wind:
Maximum 3444 .59 5118.83 6990.00
Minimum 3107.9%4 4691.82 6306.04
Mean 3274,71 4852 .47 6568.25
Standard Deviation 91.64 115.48 189,81
Break-Even Investment®:
3% Discount Rate 42409,88 62843.02 85063,63
5% Discount Rate 36287.83 53771.36 72784.,32
10% Discount Rate 25692.13 38070.63 51531.98

aFarm situation 4 has a

machine.

saturated thickness of 225 feet,
1ift of 200 feet, 144 acres of cropland and a 60 KW wind

See Table 13 for a listing of the crop price scenarios.

c \ .
Break-even investment is calculated based on mean returns

to wind,
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Table 26. Break-Even Investment in a Wind Energy System,
Northern High Plains, Farm Situation 32

Item Price of Purchased Electricity
(cents per KWH)
5 7.5 10
———————————— (dollars)—————————n-
1974-78 Average Crop Pricesb
Benchmark Returns 5848.13 4775.61 2788.58
Returns to Wind:
Maxdimum 3287.77 4769,88 6584.74
Minimum 3043.68 4366,18 5889.24
Mean 3182.57 4553,45 6255.45
Standard Deviation 61,75 115.92 175.55
Break-Even Investment®:
3% Discount Rate 41216,60 58970.50 81012.64
5% Discount Rate 35266.80 50457.84 69318.11
10% Discount Rate 24969,23 35724.63 49077 .87

1985 Simulated Crop Pricesb

Benchmark Returns 13836.62 12296.59 10756.56
Returns to Wind:
Maximum 3341.92 5100.99 6598.11
Minimum 2989.96 4576.96 6063.60
Mean 3156.93 4784 .64 6315.91
Standard Deviation 84,27 162.38 163.79
Break-Even Investment®:
3% Discount Rate 40884 .54 61964.58 81795.64
5% Discount Rate 34982.68 53019.72 69988.08
10% Discount Rate 254768,07 37538.46 49552,22

aFérm situation 3 has a saturated thickness of 175 feet,
lift of 175 feet, 100 acres of cropland and a 60 KW wind
machine.

See Table 13 for a listing of the crop price scenarios.

c . ,
Break-even investment is calculated based on mean returns
to wind,



Table 27. Break-Even Investment in a Wind Energy System,
Northern High Plains, Farm Situation 4

Item Price of Purchased Electricity
{(cents per KWH)
5 7.5 10
—————————————— (dollars)—=w———w—-
1974-78 Average Crop Pricesb
Benchmark Returns 7843.70 5353,52 3218.64
Returns to Wind:
Max imum 3438.41 5074.93 6329.64
Minimum 3144.07 4629.34 5796,76
Mean 3255.60 4812.68 5997.10
Standard Deviation 77 .94 121.12 143,62
Break-Even InvestmentC:
3% Discount Rate 42162,39 62327.71 77666.82
5% Discount Rate 36076.07 53330.43 66455.27
10% Discount Rate 25542,20 37758.45 47050.96
1985 Simulated Crop Pricesb
Benchmark Returns 19373.22 16884 .89 14396.55
Returns to Wind:
Maximum 3444 ,01 5084.94 6829.57
Minimum 3022.35 4632.90 6073.30
Mean 3220.47 4860,32 6463,27
Standard Deviation 107.12 120.79 211,21
Break-Even Investment®:
3% Discount Rate 41707 .43 62944,69 83704.06
5% Discount Rate 35686.78 53858, 34 71621.01
10% Digcount Rate 25266.58 38132,22 50708.35

a 3 .
Farm situation 4 has a

machine.

saturated thickness of 225 feet,
1ift of 200 feet, 144 acres of cropland and a 60 KW wind

bSee Table 13 for a listing of the crop price scenarios,

c . ,
Break—-even investment is calculated based on mean returns

to wind.
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percentage effect in the north. Returns under average crop prices are
as much as 77 percent lower than with simulated prices in farm situation
4 with $.10 per KWH electricity (514,396.55 vs, $3,218.87). The
smallest decrease in returns is 57 percent, $13,836.62 to $5,848,13,

in farm situation 3 with electricity at $.05 per KWH.

In contrast, the set of prices utilized has little effect on
returns to wind., On the Northern High Plains, returns to wind are
greater under average crop prices with electricity at $.05 per KWH.
This is reversed at higher electricity prices, where the 1985 simulated
crop prices yvield higher returns to wind. No tests for statistical
significance were made; however, in only two cases was the difference
in annual returns greater than $100. Southern High Plains results show
no pattern of higher returns with either set of prices. The difference
in annual returns with respect to crop prices is greater than $100

in only one situatiom.

Electricity Price Effects

Increases in electricity price have a constant effect on benchmark
returns with farm situations where cropping patterns remain constant.
This is most easily seen in the Southern High Plains results. 1In farm
situation 1, returns decrease by $308.61 for each 2% cent increase in
electricity prices. Other rates of change are $1,265.53 in situations
2 and 3 and $2,044.82 in situation 4. The only exception is in farm
situation 4 with average crop prices, where the increase in electricity
price from $.075 to $.10 per KWH results in a decrease in benchmark
returns of $2,032,03, This is the only scenario in the southern

region where cropping patterns change.
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On the Northern High Plains, cropping patterns are constant with
simulated crop prices. As electricity price increases by 2% cents per
KWH, benchmark returns decrease by $1,540.03 in farm situation 3 and by
$2,488.33 in situation 4. With average crop prices, the decrease in
returns is slightly greater than above when moving from $.05 to $.075
per KWH but less than above for the next electricity price increment.

The decline in returns in response to increasing electricity
prices is mitigated by the addition of a wind energy system to the farm
operation. In farm situations 1 and 3, total returns (equivalent to
benchmark returns plus returns to wind) actually iIncrease with an
increase in electricity prices, as increased income from the sale of
surplus electricity offsets the added cost of electricity purchases.
In each case, the applicable wind system operates on the smaller of
the two land units applied to a given size of machine. When the 40 KW
and 60 KW machines are placed on the larger land unit for each (farm
situations 2 and 4, respectively), higher electricity prices cause a
decrease in returns, but the decrease is of a much smaller magnitude
than in the benchmark case, For example, in farm situation 2 with
average creop prices (Scuthern High Plains), benchmark returns decrease
by $2,531.06 in response to a five cent increase in electricity price.
However, when a wind system is utilized, simulated returns decrease by
only $345.08 in the same situation.

Overall, annual returns to wind energy do not increase in strict
proportion te electricity price increases. On the Southern High
Plains, simulated returns to wind increase by an average of 49.8 per-

cent in response to a 50 percent increase in electricity prices and
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by 99.2 percent when electricity price increases by 100 percent. 1In
the northern region, where irrigated acreage is more likely to decrease
in response to higher fuel prices, the respective increases in returns

to wind average 48.4 percent and 95,4 percent.

Feasibility cof Investment

Break-even investment values for the Southern High Plains range
from $15,186,21 to $56,820.68 for a 40 KW system and from $25,095,47
to $83,786.30 for a 60 KW machine. For the Northern High Plains,
where only the 60 KW machine was analyzed, break-even values range
from $24,969.23 to $81,012.64. These values are somewhat lower than
for the southern region, indicating that cotton can make more profitable
use of wind energy than the northern erop mix, dominated by grain
sorghum.

The wide divergence in both present and projected future costs of
wind systems makes a "yes or no" recommendation on the investment
decision beyond the scope of this study. One general conclusion can be
made. Cost projections for the mature industry often mention $500 per
installed KW (Alternative Energy Imstitute, Katzenberg). These results
show break-even investment values over $500 per KW in all cases except
where electricity is priced at $,05 per KWH and returns discounted at

10 percent.

Comparisons Among Farm Situations
The farm situations were specified to permit the analysis of a
given size of wind system on two different land units as well as

examine the two machine sizes on a common land unit. The 100 acre
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farm unit was analyzed with both 40 KW and 60 KW wind systems for the
Southern High Plains only., These results are shown in Table 28,

Break-even investment values, calculated at a five percent
discount rate, are adjusted to a per installed kilowatt of generating
capacity basis. 1In all cases, the ability to pay per KW of capacity is
higher for the smaller, 40 KW machine. In farm situation 3, revenue
from the sale of electricity offsets purchases for irrigation as elec-
tricity price increases, thus suggesting that the 60 KW machine in this
situation may be over-sized for irrigation purposes.

In all cases, break-even investment rates are higher for farm
situation 2 than for 1 as well as for situation 4 over 3, This means
that each size of wind system is more effective on the larger of the
two land units applied. Table 29 presents further confirmation of this
conclusion., Simulation results within each farm situation were aggre-
gated over all crop and electricity price scenarios. Averages were
calculated for wind generated electricity, both sold and used for
irrigation, as well as the percentage of total irrigation requirements
fulfilled by wind power.

As was noted earlier, cotton production (only in the Soutern High
Plains) makes more efficient use of wind energy. 1In the situations
applicable to both regions {(farm situations 3 and 4), the amount of
wind energy used for irrigation is higher on the Northern High Plains
by slightly less than one thousand KWH. However, the percentage of
irrigation requirements fulfilled by wind energy is higher in the
southern region, 27.56 percent as compared to 23.98 percent in the

north for farm situation 3 and 18.79 vs. 16.4 percent for farm
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Table 28. Comparison of the Value of 40 Kilowatt and 60
Kilowatt Wind Energy Systems on a 100 Acre Farm
Unit, Southern High Plains

Item Purchase Price of
Electricity
{cents per KWH)
5 7.5 10

1974-78 Average Crop Prices®

Break=-Even Investmentb:

40 KW Wind System 609.88 907,56 1215.46
(Farm Situation 2)
60 KW Wind System 590.75 888.23 1170.81

(Farm Situation 3)

1985 Simulated Crop Prices’

Break-Even Investmentb:
40 KW Wind System 604 .35 911,87 1224,12
(Farm Situation 2)
60 KW Wind System) 593.35 887.25 1184.89

(Farm Situation 3)

85ee Table 13 for a listing of the crop price scenarios.

b . . .
Break-even investment, discounted at 5 percent, is
expressed on a per kilowatt of capacity basis.
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situation 4. In farm situations 1 and 2 (analyzed only for the
southern region) the percentages of irrigation requirements satisfied
by wind power are 42.05 and 20.43 percent, respectively.

Even though the proportion of irrigation requirements fulfilled
by wind power decreases when a machine is operated on the larger land
unit, the percentage of total electricity generated applied to irriga-
tion increases. The increase is slightly more than one percent when
moving from farm situation 3 to 4 in both regions, and 6.97 percent
when moving from farm situation 1 to 2 in the Southern High Plains.

In all cases, the magnitude of wind generated electricity sold and
applied to irrigation is higher on the larger land unit for each
machine (farm situations 2 and 4). This is due to the assumption that
wind power cannot be used for both purposes at the same time. If the
wind system is producing more power than required for pumping, the
excess power was assumed to be wasted. This was more likely to occur

on the smaller land unit.

Effect of Load Management Strategies

The previous results were based on an irrigation schedule that was
planned without taking into account the availability of wind power. It
was hypothesized that, if wind energy was included in the planning
process, irrigation scheduling might be changed to take advantage of
periods havinghigher wind power. Thus, expectations of available wind
power were included in the LP model to test their effect on cropping
patterns. However, wind power expectations result in changes in only
four situations.

In the southern region, benchmark cropping patterns were identical
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in proportion in all situations but one (farm situation 4, 1974-78
average crop prices and $.10 per KWH electricity)., The addition of
wind expectations to this situation resulted in a cropping pattern
shift to the same solution as in the other benchmark situations. This
was 53.76 acres of cotton receiving one post-plant irrigation (in mid-
July) rather than zero, while the remaining 90,24 acres of cotton
continue to receive two post-plant irrigations. Average annual returns
to wind increase by $96.06. This was the only scenario in the Southern
High Plains where the cropping pattern was affected.

In contrast, the Northern High Plains benchmark results varied
considerably under average crop prices. Wind power expectations
changed the optimal cropping pattern for farm situation 3, with elec-
tricity priced at $.075 and $.10 per KWH. These changes are detailed
in Table 30,

With electricity at $.075 per KWH, irrigated corn and dryland
wheat acreage decrease in favor of irrigated grain sorghum, with a
small increase in irrigated wheat acreage. Irrigation pumping decreases
slightly in the two months (July and August) having the lowest average
wind speeds, while pumping increases in the gpring months. Total
pumping increases by 7.41 acre-feet. However, these changes have
little effect on the annual value of wind energy, which increases by
less than eight dollars for the farm,

When electricity is priced at $.10 per KWH, wind expectations
allow the cropping pattern to return to the benchmark solution that
was optimal with electricity at $.075 per KWH. Again, dryland wheat

acreage decreases and 2.43 acres of irrigated wheat enter the solution.
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Table 30. Effects of Wind Energy Expectations on_the Optimal Farm Organization:
Northern High Plains, Farm Situation 3a, 1974~78 Average Crop PricesP

Item Unit Purchase Price of Electricity {cents per KWH)
7.5 10
Benchmark  With Wind Benchmark  With Wind

Crop and Irrigation Level:

Corn (PP+5)° . acres 22.05 13,70 16.98 22.05
Grain Sorghum (PP+1) acres 22,05 13.70 16.98 22.05
Grain Sorghum (PP+2) acres 13.70

Grain Sorghum (PP+3) acres 40,602 48.96 45.68 40.62
Wheat (PP+3) acres 2.43 4,65 2.43
Wheat (Dryland} acres 12.84 5.27 20.35 12.84

Water Pumped by Month:

February acre~-feet 8.92 10.12 8,92
March acre-feet 40,49 42.42 46,46 40,49
April acre-feet 0.81 1.55 0.81
May acre-feet 1.62 3.10 1.62
July acre-feet 49,08 46,30 47,40 49,08
August acre=feet 35.55 34,56 32.18 35.55
September acre~feet 1.42 7.27 1.42
Total acre-feot 137.99 145,40 126.04 137.99
Simulated Returns to Wind dollars 4553,45 4561,37 6255.45 6284.55

aFarm situation 3 has 175 feet of saturated thickness, 175 feet of 141ft, 100 acres
of cropland and a 60 KXW wind machine.

b197&—78 average crop prices are listed in Table 13.

“Indicates a pre-plant plus the given number of post-plant irrigations,
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Grain sorghum with three post-plants shows a decrease and acreage of
grain sorghum with one post-plant and corn with five post-plant
irrigations increase., Total irrigation water application increases by
11.95 acre-feet, with increases in each month except March, where
average wind speed is highest. The increase in returns to wind is
$29.10,

The final cropping pattern change was also in farm situation 3,
but with 1985 simulated crop prices and $.05 per KWH electricity (Table
31). Acreage in grain sorghum with two post-plants decreases
dramatically and acreage of all other crops in the solution (corn with
five post-plants and sorghum with one, three and four post-plants)
increases. However, as in the previous case, irrigation actually
shifts away from periods with higher wind speeds, as returns to wind
increase by less than five dollars per year.

The comnsideration of wind expectations in the planning process
had little effect, with cropping pattern changes occurring in only four
of the thirty-six situations analyzed. In two situations, unique
cropping patterns were developed, involving relative changes of irriga-
tion scheduling to higher wind speed months, but the increase din
returns to wind was negligible (less than eight dollars per year).

More substantial increases occurred where wind power simply eased the
effect of higher electricity prices by allowing the farm plan to return
to a cropping pattern which had been optimal at lower electricity

prices.
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Table 31. Effects of Wind Energy Expectations on the Optimal Farm
Organization: Northern High Plains, Farm Situation 32,
1985 Simulated Crop Prices

Item Tnit ' Benchmark® With Wind®

Crop and Irrigation Level:

Corn (PP+5)d acres 1.37 10.07
Grain Sorghum (PP+1) acres 8.31 22.57
Grain Sorghum (PP+2) acres 63.62 22,57
Grain Sorghum (PP+3) acres 1.37 10.07
Grain Sorghum (PP+4) acres 25.34 30.02

Water Pumped by Month:

February acre~feet 11.28 10,72
March acre-feet 47 .05 44 .87
July acre-feet 39.88 40.93
August acre-feet 42.19 45.09
September acre~feet 0.46 3.35
Total acre-feet 140.96 145.08
Similated Returns to Wind dollars 3156.93 3161.52

AFarm situation 3 has 175 feet of saturated thickness, 175 feet
of 1ift, 100 acres of cropland and a 60 KW wind machine.

b1985 simulated crop prices are listed in Table 13,

“The purchase price of electricity is $.05 per KWH.

Indicates a pre-plant plus the given number of post-plant
irrigations.
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Temporal Analysis

The results above assumed the value of wind power to be constant
over a 20 year period, the expected life of a wind system. However,
the irrigated farmer on the High Plains does not face a constant
situation. As the water level of the Ogallala aquifer declines, the
producer faces declining well yield, which reduces the amount of water
that can be pumped in any seasonal water period, and increasing pumping
costs due to increasing pumping 1ift. These factors will cause net
returns to decrease. Whether or not there will be a differential
effect on returns to wind power is unknown. The linear programming
model was revised and applied on a recursive basis to estimate the
effects of the declining water level. The simulation model is not
applied in temporal analysis; rather, the mathematical expectation of
available wind power, calculated based on monthly average wind speeds,
is assumed to be received in each year., As was noted in Chapter IV,
this will result in slight underestimates of wind energy availability
as compared to that estimated by the simulation model.

Only farm situations 2 and 4 were selected for temporal analysis,
as the static results above showed each to be the more efficient
application of the given machine size. Both situations were analyzed
for the Southern High Plains while only farm situation 4 was included
in the northern region. The 1985 simulated crop prices were used.

Two scenarios were established for electricity prices; one where the
price is held constant at $.05 per KWH and another where the price is

increased from $.05 per KWH by one—half cent per KWH per year.



102

Constant Electricity Price
With electricity prices constant, cropping patterns do not change
between the benchmark (without wind power) solution and the solution

with wind power.

Southern High Plains

Selected physical results of the constant electricity price case
are shown in Appendix D, Tables 1 and 2 for the Southern High Plains
farm situations 2 and 4, respectively. Comparisons between the first
and last year of each analysis are presented.

In the southern region, where all land is initially in irrigated
cotton, acreage gradually shifts away from two post-plant irrigations
with optimal timing. Eventually, the optimal timing of two post-plants
is replaced by a pre-plant irrigation only. This occurs in year 8
in farm situation 2 and in year 15 in farm situation 4. TFrom this
point, the above situation reverses, as pre-plant only acreage in-
creases with equal declines in the other activities. By year 19 on
the smaller land unit, well yield declines to the point where the five
pre-plant irrigation periods are mot sufficient to cover all 100 acres.
At this point, a small amount of irrigated grain sorghum enters the
solution.

By year 20, total irrigation fuel requirements increase by 10 and
11 percent, respectively, in farm situations 2 and 4. The proportion
of the requirement fulfilled by wind power is 19.4 and 18.1 percent
in year 1, increasing to 30.6 and 22.4 percent, respectively, by vyear
20. The amount of purchased electricity actually decreases in farm

situation 2, as the more rapid decline in well yield and subsequent
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extension of irrigation over more seasonal water periods allows the use
of wind power to iIncrease.

As was done earlier, present value of returns is calculated at
three different discount rates to reflect a range of estimates.
However, since annual returns are not constant, changes between dis-
count rates are not proportional. Returns without wind power (the
benchmark) are netted out, with the difference adjusted for the
assumed operation and maintenance cost to determine break-even invest-
ment, shown in Table 32. When expressed on a per KW basis, break-even
investment is slightly higher at all discount rates for the 40 KW
machine, These values range from $421.51 to $700,96 at ten and three
percent discount rates, respectively, as opposed to $415.08 to $688.18

for the 60 KW machine.

Northern High Plains

Only farm situation 4 was examined for the northern region. As
in the south, wind power does not affect cropping patterns when elec-
tricity price remains constant (Appendix D, Table 3). The optimal farm
plan consists almost entirely of irrigated grain sorghum in year 1,
with only 1.97 acres of irrigated corn. This remains constant until
year 7, as corn acreage begins to increase., The following year,
irrigated wheat enters the solution. Both wheat and corn acreage
increase annually through the remainder of the analysis.

Regardless of whether wind power is included, labor constraints
make the optimal land use pattern sensitive to the declining water
level, As was the case in the static analysis with increasing elec-

tricity prices, the shadow price of cropland does not behave as would
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be expected. The shadow price increases over the first six years, then
goes to zero as land is left idle beginning year 7. Full irrigated
acreage returns in year 15, From that point, the shadow price makes
one large increase, then decreases for the remainder of the analysis.
More water is pumped in the northern region, as ending saturated
thickness is 18 feet lower than in the south (156 feet vs. 174 feet).
The annual amount of electricity required for irrigation increases
substantially by year 20, 45 percent higher than in year 1. The propor-
tion of irrigation fuel fulfilled by wind power increases from 15.9
percent to 22.3 percent over the time of the analysis. The beginning
figure is lower than in the south, but in year 20 the percentages are
nearly identical. Break-even investment ranges from $41,772.44
($696.20 per KW) at a three percent discount rate to $25,009.90

($416.83 per KW) with returns discounted at 10 percent.

Increasing Electricity Price

Southern High Plains

In farm situation 4, cropping patterns are the same as with
constant electricity prices, both with and without wind power (Appendix
D, Table 4). The primary difference in the two analyses is in break-
even investment (Table 33), which increases substantially compared to
constant prices (80, 75 and 64 percent, respectively, at three, five
and 10 percent discount rates).

In farm situation 2, increasing electricity prices result in
minor cropping pattern changes (less than one acre) when comparing

with and without wind power (Appendix D, Table 5). Both solutions are
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practically identical to those with constant electricity prices, The
major difference in the analyses is an increase in ending well yield
of one gallon per minute. Again, break—-even investment increases
substantially (80, 75 and 62 percent at three, five and ten percent

discount rates).

Northern High Plains

Wind power has its greatest effect on cropping patterns in this
situation, as shown in Appendix D, Table 6. With and without wind
power, cropland shifts to dryland grain sorghum by year 20, However,
there are 29 acres of dryland sorghum when wind energy is used compared
to 45 acres in the benchmark solution. Irrigation is more intensive,
with 16.63 acres of grain sorghum receiving three post-plants, in the
benchmark solution. With wind power, only one and two post-plant
sorghum activities are in the solution.

Trrigation fuel requirements decrease by year 20 in response to
the increasing fuel price by 26,806 KWH without windpower and by
21,506 KWH with wind power. Even though the total fuel requirement
decreases substantially, wind-generated electricity used for irrigation
increases, as pumping is spread over a longer time period in response
to declining well yield. Again, break-even investment values are
increased over the comstant electricity price case, but by smaller

rates than in the south (75, 70 and 58 percent}.

Comparison of Static and Temporal Results

Some general conclusions may be made by examining a cross-section

of the results. Table 34 shows break—even investment values for the
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Table 34. Comparison of Break-Even Investment Values?
Derived from Static and Temporal Anmalysis

Item Sell-Onl Static Temporal
Analysis Analysis® Analysisd
-------- (dollars per KWH)———=—=———o

Southern High Plains
40 KW Machine

(Farm Situation 2) 591.64 706.31 700.96
60 KW Machine
(Farm Situation 4) 592,22% 706.83 688,18

Northern High Plains

60 KW Machine
(Farm Situation &) 592,22% 695.12 696.21

8A11 values were discounted at three percent and ex-
pressed in dollars per KWH,

bElectricity sold at $.03 per KWH.

CElectricity purchased at $.05 per KWH and 1985
simulated crop prices.

dElectricity purchase price constant at $.05 per KWH
and 1985 simulated crop prices,

e . . ;
No distinction was made between regions for the sell-
only option.
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sell-only option (discussed in the previous chapter)} and from the
static and temporal analysis. 1In all cases, the price of purchased
electricity is constant at $.05 per KWH. This is the assumed equiva=-
lent of selling electricity at $.03 per KWH. The three percent dis-
count rate is used, with 1985 simulated crop prices assumed.

The sell-only option provides a lower limit to the value of a wind
system compared to the other analyses, where part of the wind generated
electricity is substituted for higher walued purchased electricity.
Break-even investment values are approximately $100 per KW lower when
all electricity is sold to the utility.

Due to the difference in the way wind speed distributions were
specified, available wind power is lower in the temporal analysis than
in the static. In the Southern High Plains, this is reflected by
estimated break-even investment being less than for the static
analysis. However, north of the Canadian River, estimated break-even
investment is higher under the temporal analysis. It is also higher
than for the Southern High Plains temporal analysis for the same
machine size, a reversal of the static analysis results,

The benchmark returns {(without wind power) in the Northern High
Plains are much more sensitive to the declining water level than in
the south. This is the major reason behind the increase in value of
wind energy, even with lower wind power estimates., The increase in
break-even investment for a wind power system as compared to static
analysis in the north indicates that temporal analysis could yield
higher estimated break-even investment in the south if wind power

estimates were equal, Due to the lower wind power estimates, the value
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of wind power estimated on a temporal basis should be regarded as

conservative in nature,
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The High Plains region of Texas is one of the major agricultural
areas of the state. The agricultural, as well as the entire regional
economy, is heavily dependent on irrigation. Irrigation increases the
productivity of crops previously produced under dryland conditions and
allows the production of other higher valued crops which cannot be
grown without irrigatiom.

The viability of irrigated agriculture is threatened by continually
increasing costs of pumping groundwater. This is due not only to
increasing energy prices but also to the declining water level of the
Ogallala aquifer, which increases the amount of energy required to lift
the groundwater., Since dramatic energy price increases began in 1973,
much research has been directed toward increasing the energy efficiency
of irrigated agriculture. Other major research efforts have examined
the development of energy from renewable sources.

One readily abundant renewable source of energy on the Texas High
Plains is wind power. The High Plains has as much available wind
power as any region in the country. Due to the importance of irriga-
tion in the region, the concept of wind-assisted irrigation pumping
could be an important alternative., Wind systems have been developed
which are capable of providing supplemental energy to an existing

electrical pumping plant. The electric motor is sized to operate the
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pump on a stand-alone basis. However, when the wind velocity is
sufficient, the wind system operates and reduces the load on the
electric motor. When pumping is not taking place, electricity can be
generated and sold to the electric utility. The purpose of this study
was to quantify, on both a static and temporal basis, the benefits of
a wind energy system in an irrigation application on the Texas High

Plains.

Methodology

The procedure for the static analysis involved determination of
an optimal cropping pattern by a linear programming model developed
for the Texas High Plains region. The optimal irrigation schedule was
used as input to a simulation model. The simulation model matched
stochastically generated wind power estimates to the irrigation schedule
to estimate the annual value of wind energy.

The production activities in the LP model included dryland and
irrigated options for cotton, grain sorghum and wheat along with
irrigated corn. To give a broader representation of the choices
available to an irrigated producer, activities were included assuming
both optimal and non-optimal timing of irrigation applications. The
yield reduction effects of non-optimal timing were estimated from
experimental data for the region. In addition to the production
activities, there were separate purchasing activities for selected
inputs, selling activities for crops produced and a cash flow section
divided into two-month pericds.

Constraining resources included land, labor and irrigation water.
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Labor restrictions were divided into two-month periods. Irrigation
water applications were divided into ten-day periods, with restrictions
based on the physical maximum that could be pumped.

The simulation model generates random ("actual') wind speeds by
three-hour time periods throughout a year. Random wind speeds are
drawn from Rayleigh distributions, the single parameter of which is
mean wind velocity. Frequency distributions were set up by month and
time of day (each three-hour interval for which wind speed is recorded},
making eight distributions per month. Each three-hour estimate of
wind power availability is matched with the amount of irrigation fuel
required in that period, as determined by the LP model. Irrigation
requirements in excess of wind power are purchased. Surplus generated
electricity while pumping is assumed to have no value. If dirrigation
does not take place, 90 percent of excess wind power is sold to the
electric utility for 60 percent of the purchase price. The annual
value of wind power is calculated based on irrigation fuel saved and
excess power sold. The simulation process is repeated 20 times for
each situation analyzed to generate a range of solutions.

Mathematical expectations of available wind power based on single
monthly average wind speeds were added to the LP model to test if
cropping patterns would change when the availability of wind power was
considered in the planning process. If this resulted in a change in
cropping patterns, the simulation model was applied to the new irriga-
tion schedule using the same set of random wind speeds.

For the temporal analysis, a Fortran subroutine was added to the

LP model to operate the model recursively over the assumed twenty year
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life of a wind system. Annual farm plans are developed by the LP
model. Based on the quantity of irrigation water applied in year t
for the LP farm plan, the Fortran subroutine calculates the deline in
saturated thickness of the aquifer and associated new well yield,
pumping 1ift and irrigation fuel requirements for year t+l. The LP
matrix is then updated with the new coefficients. This procedure
continues over the twenty years of analysis.

The benchmark case involved application of the basic LP model. To
estimate the value of wind power in the temporal framework, the monthly
expectations of wind-generated electricity were added to the model.

In both cases, fixed costs appropriate for a long-run analysis are

deleted from returns.

Alternative Scenarios

The scenarios analyzed consisted of changes in four basic areas.
The region was separated into the areas north and south of the Canadian
River, with cotton included as a crop option only south of the river,
due to the length of the growing season. Four farm situations were
specified: (1) a saturated thickness of 100 feet, 1lift of 125 feet,
32.65 acres of cropland and a 40 KW wind machine; (2) a saturated
thickness of 175 feet, lift of 175 feet, 100 acres of cropland and a
40 KW machine; (3) the same as situation 2 with the exception of a
60 KW machine; and (4) a saturated thickness of 225 feet, 1ift of
200 feet, 144 acres of cropland and a 60 KW wind machine.

Two sets of crop prices were used, one reflecting 1974-78

averages and the other based on simulated 1985 prices, For the static
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analysis, electricity purchase prices of $.05, §$.075 and $.10 per KwH
were analyzed. In the temporal analysis, a constant purchase price of
$.05 per KWH was specified, plus a situation where the price increased

by one-half cent per KWH per year.

Results

Operating Characteristics

The randomly generated wind speeds and power output from the
Southern High Plains benchmark simulations were aggregated to examine
some predicted performance parameters. Average annual output was
67,679.4 KWH for a 40 KW system and 101,618.6 KWH for the 60 KW machine.
Over both machines, the average proportion of time producing rated
(maximum) output was 4.92 percent, while the average time not operating
due to low or high wind speed was 41.5 percent. Value of wind power
was estimated assuming all power was sold to the utility. Break-even
investment (on a per KW basis) ranged from $358.42 at a ten percent
discount rate and $.03 per KWH electricity to $1,184.43 with three per-
cent discounting and $.06 per KWH electricity. These selling prices
are 60 percent of the assumed purchase price of electricity at $.05

and $.10 per KWH, respectively.

Static Analysis

Non-Qptimal Irrigation Timing

The effect of the inclusion of non-optimal irrigation timings
was examined for a specified situation on the Northern High Plainms.

The model was applied with only optimal irrigation timings included
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and with non-optimal irrigation timings included. Labor constraints
were binding, as land was left idle in both cases, but 5.13 more acres
were irrigated where non-optimal timing was allowed. Irrigations

were applied non-optimally on 28.9 percent of the irrigated acres. The
inclusion of non-optimal timings allowed added flexibility in the

usage of labor as well as irrigation water, and increased returns over
variable costs to the 100 acre farm by $50.,50. This was felt to more
accurately reflect the situation faced by High Plains producers, thus,

non-optimal timing of irrigation was permitted in further analyses.

Cropplng Patterns

In the analysis of alternative scenarios for the benchmark solu-
tions, cropping patterns were found to be insensitive to changes in
crop prices or electricity prices in the southern region. All acres
were planted to irrigated cotton over all farm situations. The
specific cropping pattern was identical (in proportion to total
acreage) in all cases except in farm situation 4 with electricity at
$.10 per KWH and 1974-78 average crop prices, where 37.33 percent of
the acreage shifted from one post-plant irrigation to a pre-plant only,

On the Northern High Plains, cropping patterns were insensitive
to electricity price changes under 1985 simulated crop prices,
Irrigated grain sorghum dominated these solutions, with a small amount
of irrigated corn. With 1974-78 average crop prices, land was left
idle with electricity at $.05 per KWH. At higher electricity prices,
irrigated acreage declined, but sufficient labor was released to
allow dryland wheat to use all remaining acreage. Again, irrigated

grain sorghum and corn dominated the solution, with a small amount of
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irrigated wheat in the farm plan except where electricity costs $.10
per KWH. Labor restrictions impacted heavily in this region, actually
causing the shadow price of cropland to increase with higher electricity

prices,

Returns to Wind Energy

The set of crop prices applied had very little effect on returns
to wind. 1In the morthern region, the annual value of a wind system
was higher for the average 1974~78 crop prices with electricity at
$.05 per KWH. At higher electricity prices, value of wind was higher
for 1985 simulated crop prices. Yo such pattern existed in the south.
Any differences in annual returns to wind with respect to crop prices
were negligible, less than 5100 in most cases.

As expected, returns to wind were higher at higher electricity
prices, but by slightly smaller proportions than the increases in
electricity price., The addition of a wind system significantly abates
the adverse effects of increasing electricity prices. In farm situa-
tions where a given wind system is operated on the smaller of the two
applicable land units, total returns (returns to wind plus benchmark
returns) actually increased with increases in electricity price. On
the larger land units, returns did decrease as electricity price was
increased, but by a much smaller percentage, where wind power was
available, than the decrease in benchmark returns.

Estimated break-even investment was higher for the Southern High
Plains, where cotton was available as a crop option. With electricity
at $.05 per KWH, 1985 simulated crop prices and returns discounted at

three percent, break-even investment for the 60 KW machine ranged up
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to $42,409,88 ($706.83 per KW) in the south compared with $41,707 .43
($695.12 per KW) in the north, The 40 KW machine was analyzed only in
the southern region. At the same prices and discount rate cited above,
maximum break-even investment for the 40 KW system was $28,252,40
($706.31 per KW).

On the 100 acre land unit, where both machines were analyzed in
the south, the 40 KW machine (farm situation 2} was found to be the
better investment on a per KW basis. Each machine had higher value on
the larger of the two land units tested, farm situation 2 for the 40 KW

machine and situation 4 for the 60 KW system.

Effect of Load Management

The inclusion of wind power expectations in the planning process
had little effect on irrigation scheduling, with cropping pattern
changes occurring in only four of the 36 situations analyzed. 1In two
of these cases, irrigations were shifted to higher wind speed periods,
but this resulted in only a small increase in returns to wind. More
significant increases occurred where wind power eased the impact of
increasing electricity price, allowing the farm to maintain the irriga-
tion levels estimated without wind power, but which had been decreased

due to the price increase.

Temporal Analysis

Only farm situations 2 and 4 were analyzed temporally, as the
static analysis results showed each to be the more efficient applica-
tion of the given size of machine. To reflect the future situation,

1985 simulated crop prices were used.
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Cropping Patterns

Wind power had no effect on the optimal farm plan when the price
of electricity was held constant through time. Cotton again dominated
southern solutioms, with a small amount of irrigated grain sorghum
planted on the 100 acre unit in the last two years of the analysis,
Initial acreage on the Northern High Plains was planted almost entirely
to irrigated grain sorghum, with acreage of irrigated wheat and corn
increasing through time.

On the Southern High Plains, with electricity price increasing
through time, the optimal farm plan remained the same as with constant
price for farm situation 4, and changed only minutely in situation 2.
In the north, wind power had a significant effect on cropping patterns
through time. Acreage reverted to dryland with and without wind
power; however, more irrigated acreage was maintained when wind power

was available.

Returns to Wind Energy

In contrast to the static results, the estimated break-even
investment was higher on the Northern High Plains where electricity
price was held constant, with values on the 60 KW power system as
high as $41,772,44 with the three percent discount rate (compared to
$41,290.73 in the south). This is due largely to the more adverse
effect of the declining water level in the north., TFor the 40 KW
machine (analvzed only on the Southern High Plains), break-even
investment on a per KW basis was higher than for the 60 KW machine in
either region,.

When electricity price increased annually, break-even investment
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showed significant increases, as was expected. The increases were as
much as 80 percent on the Southern High Plains and up to 75 percent
in the north. TFor the 60 KW system, the results were again reversed,
with higher investment values in the south. Even with wind power,
the increasing electricity price forced land out of irrigation in the

north, thus reducing the potential for electricity substitutien.

Conclusions

With the wind energy industry still in largely a developmental
stage, estimates of the initial cost of a wind system can vary consid-
erably. This makes it difficult to draw firm conclusions on the
profitability of investment, at least in the short term. As more
firms begin mass production of wind systems, prices should decrease
and stabilize. Available estimates of the industry's mature cost
range around $500 per KW. Estimated break-even investment rates for
wind-assisted irrigation were greater than $500 per KW in all cases
except where electricity was purchased for $.05 per KWH and returns
discounted at ten percent, The possibility of tax credits for the
purchase of a wind system was not explicitly considered. However, for
the farm business in a position to take full advantage of the credits,
the effective break-even investment rate could be increased by as much

as one-third.

Limitations

This study uses the typical farm approach, thus, the results

will likely not apply directly to any specific farm due to the
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"average" nature of the data. This should be noted particularly in
view of the Nowxthern High Plains results, where the assumed labor
restrictions had a large effect on the optimal farm plan chosen. A
producer able to hire additional summer labor could have a significantly
different result., In addition, the producer was assumed to be a
strict profit maximizer. Personal preferences or consideration of
risk could cause changes in an individual's cropping pattern.

The consideration of non-optimal irrigation timing gives the
model additional flexibility that more accurately represents the
decision making process of the irrigated producer. However, the
yield reductions estimated for this study were based on limited data.
Further research is needed regarding the effects of irrigation timing.

The monthly wind power expectations used in the LP model were,
in total, slightly less than the averages of output from the simulation
model. Thus, the temporal results should be regarded as conservative.
These same expectations, as a factor in the planning process, were
estimated to have little effect on cropping patterns, contrary to what
was expected. The use of wind speed distributions based on averages
for each ten-day period could improve the model; however, these data
would be difficult to obtain.

The price at which the utility will buy back surplus electricity
was assumed to be a constant percentage of the purchase price. In
actual practice, this price may vary greatly., Peak load pricing
structures, where the price of electricity varies according to the
time of use, were not considered. This type of pricing might apply

not only to electricity purchases but also to sales, where the utility
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might pay a premium price for electricity generated at times of peak
demand.

The study assumed that normal wind system down time {(when the
machine does not operate due to insufficient wind speed) could be used
for all necessary repairs and maintenance. Major breakdowns could
render the system inoperative for long periods of time; however, data
regarding the frequency or duration of such breakdowns were unavailable,
The cost of normal repairs and maintenance has not been established on
a long-term basis, Available estimates varied considerably and were
all based on a percentage of the initial investment rather than on
operating time or other performance parameters. This type of data
should become more readily available as the industry matures,

Break-even investment was estimated over a period of 20 years
assuming constant levels of technology, crop prices and input costs
(except where specified differently). The future values are, of
course, unknown, Significant changes in any of these factors could

have a great impact on the value of wind energy.
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APPENDIX A

THE LINEAR PROGRAMMING MATRIX FOR A
100 ACRE SOUTHERN HIGH PLAINS FARM

WITH A 40 KILOWATT WIND SYSTEM
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Definitions of Linear Programming Activities and Restraints

Columns (Activities or Enterprises)

Dryland crop production:

Cols.

Cels 5

Irrigated

Cols,

Col.

Col.

Col.

Col.
Pre-plant
Cols,
Cols.
Col.

Col, 8

1-4

-8

DRYL

COTN = cotton

GRSO = grain sorghum
WHET = wheat

crop production:

1-4 CORN = corn
COTN = cotton
GRSO = grain sorghum
WHET = wheat

5 number of post-plant irrigations

6 A or B = two activities have the same

yield, 0 otherwise

7 relative rank in yield among all activities
of the given crop and the given number of
post-plant irrigations

8 F

irrigations:

1-2 PP

3-6 crop code (see ahove)

7 month

first, second or third 10-day critical

water period in a month
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Wind power, electricity and water:

Cols. 1-6 SLKWAT slack water

FRELEC = wind-generated electricity
BYELEC = electricity purchase
SLELEC = electricity sale
IRELEC = irrigation fuel

Col., 7 month

Col., 38 critical water period

The model printout shows this complete structure for
cne critical water period.
Other electricity sales:
Cols., 1-7 SLELECO = sale of electrieity during time
for well repairs and maintenance
Col. 8 cash flow pericd
Seed purchases:
Cols. 1-4 crop code
Cols. 5=8 SEED
Other input purchases:
Cols, 1-8 INSECT = insecticide in cash flow period
(Col. 7)
HERB_ = herbicide in cash flow period
(Col. 5)
FERTAPP = custom application of fertilizer

in cash flow period (Col. 8)



Custom harvest, hauling and

Cols.

Cash flow:

Cols.

Col.

1-8

1-7
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NITROGEN _

nitrogen

(Col. 8)

in cash flow period

PHOS_ = phosphorous in cash flow period

(Col. 5)

DIESELP

GASOLNP_

CORNCOMB

GRSOCOMD =

GRSOCOMI =

WHTCOMBD =

WHTCOMBI =

COTNSAHL =

COTNGING =

CORNHAUL =

GRSOHAUL =

WHETHAUL =

CORNDRYG =

BORROWP

INVSTRP

cash flow

U

diesel in

(Col. 8)

cash flow period

gasoline in cash flow pericd

(Col. 8)
drying:
combining
combining
combining
sorghum
combining
combining

stripping

corn
dryland grain sorghum

irrigated grain

dryvland wheat
irrigated wheat

and hauling cotton

ginning cotton

hauling corn

hauling grain sorghum

hauling wheat

drying corn

borrowing

period

accumulating surplus cash
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Crop sales:
Cols. 1~4 SELL
Cols. 5-8 CORN =
COTN =
CTSD =
GRSO =
WHET =
GRAZ =
Other activities:

Cols. 1-8 OBJCOL

corn

cotton lint
cotton seed
grain sorghum
wheat

wheat grazing

cash transfer column

IRRGVCL = per acre=foot cost of engine
lubrication, attendance labor
and distribution system repairs

IRRGVC2 = per horsepower cost of engine

Right hand side:
Cols. 1-3 RS1
Rows (Restraints)
Objective function:
Cols. 1-4 0BJ1

Accounting rows:

Cols., 1-8 TOTWATER

ELIRRG

repairs

total water pumped

irrigation fuel required in

month (Cols, 7-8)
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ELBUYS = electricity purchased in month
(Cols. 7-8)
ELSOLD = total electricity sales
WATER = water pumped in month (Col. 6)
and critical water period (Col. 7)
Land and labor restraints:
Cols. 1-8 LAND = cropland restraint
RMAXLAB = labor restraint in cash flow
period {Col. 8)
Pre—plant irrigation transfers:
Cols., 1-4 PREP
Cols. 5-8 crop code (see above)
Wind power, electricity and water:

Cols. 1-6 FWATER

water restraint

IRFUEL = irrigation fuel transfer
UELECT = wind~generated electricity
transfer
SELECT = requires sale of electricity in
proportion teo unused pumping
capacity
Col., 7 month
Col. 8 critical water period

Seed requirements:

Col. 1 R



Cols.

Cals.

2-5

6~8
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crop code

SED

Other input requirements:

Cols.

1-8

RINSECT __

RHERB =

RFERTAP

RNITROG __

RPHOS__ =

RDIESEL

RGASOLN

= insecticide in cash flow pericd
(Col. 8)
herbicide in cash flow period

(Col. 6)

fertilizer application in cash

flow period (Col. 8)

nitrogen in cash flow period
(Col, 8)
phosphorous in cash flow period

(Col. 6)

diesel in cash flow period

(Col. 8)

gasoline in cash flow period

{Cel. 8)

Harvesting, hauling and drying requirements:

Cols.

1-8

RCCCORNN

RCCGRSOD

RCCGRSOI

RCCWHETD

RCCWHETL

RCSHCOTN

RGINCOTN

L]

combining corn

combining dryland grain sorghum
combining irrigated grain sorghum
combining dryland wheat

combining irrigated wheat
stripping and hauling cotton

ginning cotton



Cash flow:

Cols.

Col.

Yield transfers:

Cols.

Cols.

Other transfers:

Cols.

1-7

8

1-5

6-8

1-8
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RHAULCRN = hauling corn

RHAULGRS = hauling grain sorghum

RHAULWHT = hauling wheat

RDRYCORN = drying corn

RCASHFL = total cash flow

ACCTGCF = cash flow exclusive of carryovers,

electricity and capital costs,

cash flow period

CBRN = corn

COT = cotton lint
CTS = cotton seed
GRS = grain sorghum
WHT = wheat

GRZ = wheat grazing

IRRIGVCl = per acre-foot irrigation vari-
able cost (non-fuel)
IRRIGVCZ = per engine horsepower irriga-

tion variable cost (non-fuel)
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2 aMPSXmVY]INT7 ..

BOUND

LAND

FWATERZ2
FWATER23
FeATER31
FWATER32
FWATER33
FWATERSL
FYATER42
FRATERS1
FWATERS3
FWATERG2
FRWATERG2
FWATERT71
FWATERT2
FWATER73
FWATERS1
FWATERS2
FYWATERS3
FWATER9!
FWATERS2
FWATER93
RMAXL. AB1
RMAXLAB2Z
RAMAXLAB3
RAMAXLABRS
RMAXLABS
RMAXLABGE
IRRIGVC2

RS1

100.000C0
2C.86E¢€1
20.868¢€1
20 .86861
20.868¢€¢1
20.868¢€1
2C.868€1
20486E€1
20 .86861
20.868¢&1
20.868€1
20 .868¢€1
20.868¢£1
20 .86861
2C.868¢€])
20.868¢€1
20 .86861
20.86£L€1
20.86861
2C.B68¢€1
20 .868€1
7608375
13343750
14S.3212%90
149,2187%
11937500
S1.25000
€0.,00000

EXECUTOR .
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MPSX RELEASE 1

BOUND

L AND

FRATER22
FWATER23
FWATER31
FWATER32
FYATER3Z
FYATERAL
FYATERA42
FYATERS 1

FWATERSSI.

FWATEREZ2
FWATERG3
FWATERT7!
FYATERT 2
FWATER73
FWATERSB1
FWATERS82
FUATERES3
FWATERS 1
FYATERSZ
FMATERS3
RMAXL AB1
RMAXLAR2
RMAXL AB3
RMAXLABA
RMAXLABS
RMAXL ABS
IRRIGVC2

MCD LEVEL 7
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APPENDIX B

AN EXAMPLE OF THE SIMULATION

MODEL COMPUTER OUTPUT
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The simulation model generates 20 stochastic estimates of the
ammual value of wind power. Sample output from the simulation model
is shown on the following two pages. The first, as an example, shows
the results from one of the 20 simulations. The second is a table

summarizing the results of all 20 simulations.
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APPENDIX C

AN EXAMPLE OF THE TEMPORAL

MODEL COMPUTER OUTPUT




172

1TEM

CORN PRICE

COTTON LINT PRICE

CCTTON SEED PRICE

GRAIN SORGHUM PRICE

WHEAT PRICE

ELECTRICITY PURCHASE PRICE
ELECTRICITY SELLING PRICE
CIESEL FUEL PRICE

CASOLINE PRICE

NITROGEN PRICE

FHCSPHORDUS PRICE

CROPLAND ACRES

LAND CONTRIBUTING TC IRRIGATION
YEAR 1 SATURATED THICKNESS
YEAR 1 LIFT

BEGINNING SATURATED THICKNESS
EEGINNING WELL YIELD

RECS RATED CUTPUT

MECS CUT=IN SPEED

WECS RAYED SPEED

¥ECS CUT=0OUT SPEED

WECS HUB HEIGHTY

FLANNED YEARS OF ANALYSIS

UNIT
$/78U»
S$/LB.
$/TON

S/CHT .,
$/78U.
$/7KWH
$/7KWH

S/GAL »

$/GAL .
S$/LB.
$/LBs
ACRES
ACRES

FEET

FEET

FEET

GPM
KW
MPH
MPH
MPH
FEET
YEARS

VAL UE
3.060
0.0
0.0
S.520
3140
0.050
0.030
1000
1.050
Ce240
0,230
144.000
392.C000
22%.000
200,009
256 .000
800.000
€0.0€0
13.000
32,000
4%,000
€5 .620
20.0C0



CORNSQ2F
GRSDO203F
PPCORN33
PPGRSE31
PPGRSC31L

SUMMARY FOR YEAR

ACTIVITY LEVELS

19
39.8

7
3

1.97

€1.5

2

Si.52

IRRIGATION WATER

WATERZ22
WATER23
WATER3I
WATER3Z2
WATER33
WATER41
WATERA2
WATERS]
WATERS3
WATERG2
WATERG3
WATERT1
WATERT2
WATERT3
WATERSB1
WATER82
WATER23
WATER91
WATER92
WATERS93

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

So~Noumeldn

1
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GRSCL101F
GRSE301F
FPGRS5022
PPGRSD32
PPGRSCIA2

ACRE=FEEY
FUMPED
16,24
U, 00
30.05
T+65
30,05
0.0
Ce0
D0
D0
0s0
0.0
26,72
Q.66
30.,05
Qe+ 66
30.08
30,05
Q66
0.0
Qe Q

PURCHASED
E254 .63
24£€98.,06
O=0

0.0

0.0
23%90.37
25 308,92
264.21

ACRES
L REOPPED
144.00

11.96

157
27 .84
13.12
13.12

GE

GRSO202F
GRSOAQ W
PPGRS023
PPGRSO33
PPGRS033

SHADOW
PRICE
0.0
0.0
=2 .59
0.0
=3.59
00
0«0
V.0
0.0
G Q
0.0
D0
0.0
91 .90
0.0
7710
2.89
0.0
0»0
0.0

NERATED
1369.27
Ti12.40
0.0
D.0
0.0
3372.03
A215.59
43.857

SHADO W
PRICE
2.21

8179
3'&0‘9

C.00
4S.55
4555



SUMNMARY FOR YEAR 2

ACTIVITY LEVELS

CCRNSO2F
GRSOD203F
PPLORN33
PPGRSC31
PPGRSD31

1.97
39,83
1.97
81.52
S1.%2

IRRIGATION WATER

WATER22
WATER23
WATER31
WATER32
WATER33
WATERS1
WATERS42
WATERS1
WATERS3
WATERG 2
WATERG63
WATERT)
WATERT2
WATERT3
WATERS |
¥ATERA2
WATERS3
WATER91
WATER92
WATER93

ELECTRICITY
FOR IRRIGATION

CROPL aND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

G Oo~NMAdWN

174

GRSO101F
GRSC301LF
PPGRSO22
FPGKSO32
FPGRSC32

ACRE=FEETY
PUMPED
16,24
0,00
30.05
Te&S
30.08
N.0
0.0
D.0
Q.0
D.0
0.0
26+72
0.66
30.08
0.€6¢
30.05
30.CS
Q.66
.0
0.0

PURCHASED
€400.55
28306, E7
.0

QD

Q.0
24106+ 40
25E54 .84
27010

LCRES
CROPPED
144,00

11.86
1 .97
27.84
13.12
13.12

GRS0202F
GRSO4D1F
PPGRSO23
PPGRSO33
PPGRS5033

SHADO W
PRICE
0.0
0.0
=2 ,59
0.0
=2,59
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
9190
0.0
17.10
2.89
0.0
00
0.0

GENERATED
1369.27
7112.40

D.0

0.0

0.0
3372.03
3215..58
A3.57

SHADOW
PRICE
2.60

$1.79
36.49
0. 00
49,55
4G.+55



SUMMARY FOR YEAR

ACTIVITY LEVELS
1.97

CCRNEZ{2F
GRSO203F
PPCOFRN33
PPGRSU31
PPRGRSCI1

39.8

19
1.5
EisE

IRRIGATICN WATER

WATER22
WATER23
WATERJL
WATER32
WATER33
WATERA1L
WATER42
WATERS1
WATERS3
WATERSG62
WATERS3
WATERT1
WATER72
WATER73
WATERS1
WATERE2Z2
WATERS]
WATER91
WATERS2
WATERS3

ELECTRICITY
FOR IRRIGATION

CROPLAND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

3
7
2
2

Vo~ &lh

3
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CRSC101LF
GRSC301F
PPGRSD22
FPGRSO32
PPGRSD32

ACRE=FEET
PLMPED
16,24
0.00
30.C5
785
30.C5
Ce O
020
Qa0
0«0
0.0
Ce O
26.172
Ca66
30.05
D66
30.085
A0L.05
Q:866
0.0
0.0

FURCHASED
£E13,.,70
257TT19.00

0.0

Va0

00
24506.57
2€278.20
274.67

ACRES
CROPPED
144.00

11.56

197
27.E4
13.12
13.12

GRS0O202F
GRSOAO01LF
PPGRS023
PPGRS033
PPGRSO33

SHADOY
PRICE
0.0
0.0
"2 .59
0.0
w2 .59
s % ¢
0.0
0.0
0.0
0.0
0.0
0.0
0.0
S1.90
0.0
7710
2.89
0.0
.0
0,0

GENERATED
1369.,27
T112.40

De0

0.0

0.0
3372.,03
JA215.58
43.57

SHADOW
PRICE
2.90

£1.79
36.49
.00
4G .55
49.55



CORNSO2F
GRSU203F
PPCOERN33
PPGRSC31
PPGRSO31

SUMMARY FOR YEAR

ACTIVITY LEVELS

157

39.83

197
El.82
51.52

IRRIGATION WAYER

WATER22
WATER23
WATER31
WATER32
WATER33
WATERA L
WATERA2
WATERD1
WATERS3
WATERG62
WATERG3
WATERT1
WATERT72
WATERT3
WATERS]
NATERB2
WATERS3
WATER91
WATER92
WATER93

ELECTRICIY¥Y

FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

o~ PpUnN

4

176

GRSC101F
GRSC3C1¥
PPGRS022
FPGRSO32
BP&RSOQ22

ACRE=FEEY
PUNPED
16.24
0.00
30.,CS
T+65
J0e.CH5
0.0
0.0
0.0
0.0
Qa0
0,0
26.72
G+ 66
J0.08
Ceb6
30.CS
30,05
O+ 86
0.0
G

PURCHASEL
€€30. 20
26Z26% .08

0.0

C«0

0.0
24518.57
26714,L7
279.37

ACRES
CROPPED
144,00

1186

197
2?.8“
13.12
12.12

GRSO20Q2F
GREDAO1IF
PPGRS023
PPGRSC33
PPGRSO33

SHADOW
PRICE
0.0
0.0
2,59
0.0
=, 59
0.0
0.0
0.0
0.0
0.0
.0
0.0
0.0
$1.90
0«0
T7.10
2.89
0.0
0.0
0.0

GENERATED
1369.27
7112.39

0.0

0.0

0.0
3372.03
2215.%59
43.57

SHADOW
PRICE
3.20

€1.79
J6.49

000
45,55
49,585



SUNMMARY FOR YEAR 5

ACTIVITY LEVELS

CORNSO2F
GRSO203F
PPCORN33
PPGRSO31
PPGRSO31

1.9
39.8

T
3

1.97

€1.5

2

£1.52

IRRIGATICN WATER

WATER22
WATER23
WATER31
WATER32
WAYER3]3
WATERS]
WATER42
WATERS1
WATERS3]
SATERGE2
WATERG3
WATERT1
WATER? 2
WATERTI
WATERA}
WATERBZ2
WATERB3
WAYTER9 1
MATER92
WATER93

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONKTH
MONTH
MONTH
MONTH

DN WN

177

GRSCI101F
GRSC301F
PPGRSC22
PRGRSD32
FPGRS032

ACRE=FEETY
PUMPED
16.24
0.00
30.05
T 65
30.C5
0.0
0.0
0.8
Q.0
0.C
0.0
2672
0+66
30085
Q.66
30.05
30.05
Q.66
0.0
0.0

FPURCHASED
€150.19
26765.74

0.0

Q.0

0.0
2€342.93
271€3.,01
284422

ACRES
CROPPED
144,00

11.96

167
27 .84
13.12
13.12

GRS0202F
GRS0401F
PPGRS0D23
PPGRSEC33
PPGRSO33

SHADOY
PRICE
0,0
0.0
=2 .59
0.0
2,59
0.0
0.0
0.0
0.0
Ce0
0.0
0.0
0.0
51 .90
0.0
77s10
289
0.0
0.0
Q0.0

GENERATED
1369.27
T112.40

0.0

0.0

0.0
3372.03
3215.%59
43.57

SHADOW
PRICE
3.52

€1.79
36+ 09
0.00
4G.55
4G.55



GRS0O203F
PPCORN33
PPGREC32

IRRIGATION

SUMMARY FOR YEAR

ACTIVITY LEVELS
CORNSO2F

1.97

49. 3
1.9
15.2

WATER

WATERZ22
WATER23
WATER31
WATER32
WATER33
WATERS 1
WATERAZ
WATERS1
WATERS3
WATERG2
WATERG63
WATER71
WATERT2
WATER73
WATEREIL
WATERS2
WATERB3
WATER9 1
WATER92
MATER93

ELECTFICITY
FOR IRRIGATION

CROPL AND

MOKTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

0
7
9

SN W

6

178

GRSCI01F
GRSC301F
PPGRSO22
FPGRS033

ALRE=FEET

PUNFED
16:.24
0.0
29.42
B.62
29.42
0.0
0.0
0.0
0.0
Q0
0.0
28, €2
Q.68
29.42
0= 68
29.42
29. ‘2
Q.66
0.0
0.0

PURCHASED

€ELAQ.TS
27129.17
Ce C
0«30

0.0
26272.98
26%84.,65
288.88

ACRES
LRAPPED
144,00

4,28
1 .97
2784
4B, 47

GE

GRSG202F
GRSO401F
PPGRSC31

SHADOW
PRICE

0.0
0«0
-2.64
O.0
2,64
0.0
0.0
0.0
Q.0
0.0
0.0
Q0.0
D.0
91 .87
G0
TT7.07
2.86
00
0.0
0.0

NERATED
1358.31
7264 ,88
0.0
=(es30
0.0
A51G.77
3216.06
43.90

SHADOW
PRICE
3. 85

£3+.68

32.70

50.44
0.0



SUMMARY FOR YEAR 7

ACTIVITY LEVELS

CORNS02F
GRSO203F
PRCORN23
PPGRECQ31
PPGRSC3L

16.38
18.03

0.Q00
48.78
48.78

IRRIGATION MATER

WATER22
WATER23
WATER31
WATER32
WATER33
WATER4 1
WATER42
WATERS 1
WATERS3
WATERG2
WATERG3
WATER7
WATER72
WATER?73
WATERB1
WATERS2
WATERS3
WATERO]
WATERS2
WATER93

ELECTRICITY
FOR 1RRIGATION

CROPLAND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

Oo~NOM P LN

179

CRSC101F
GRSC3I0LF
PPCCRN33
PPGRSO32
PPGRS0O32

ACRE=FEET
PUMNPED
15,32
0.00
28.45
T+24
28,45
D+0
0.0
0.0
0.0
0.0
0.0
28.4%
52495
28.4€
Se¥S
28,45
28,45
545
.0
0.9

PURCHASED
£493,.72
2ETE3.S7
330

0.0
0,83
28112416
2E4%94,5C
2818.03

ACRES
CROPPED
136.24

1€.,38
1£.38
1€.38
12.41
12.41

GRS0202F
GRSO4A0F
PPGRSD22
PPGRSC33
PPGRSO32

SHADOW
PRICE
0.0
0.0
n2 73
0.0
w2, T3
0.0
0.0
0.0
0.0
0.0
0.0
B8.84
0.0
102.12
0.0
87.33
13.12
0.0
0.0
0.0

GENERATED
1364.92
711051

=3,30
0.0
=053
3867 .69
3485.36
379.31

SHADOW
PRICE
0«0

J4.41
34 .65
2€a27
32.40
32.48



SUMMARY FOR YEAR

ACTIVITY LEVELS

CORNSO2F
GRSO3O01F
PPCORN33
PPGRSQ32
PPGRS032

2%. 30
24,30
24.30
1144
11 .44

IRRIGATION WATER

WATER22
WATER23
WATER31
WATER32
WATERI33
WATER4 1
WATER42
WATERS1
WATERS3
WATERG2
WATERG63]
WATERTI
WAYERT2
MATERT3
WATYERS1
WAYERSZ2
WATERBJ
WATER91
WATERS2
WATERS3

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
\

o~ elWN

8

180

GRSC101F
CRECA401F
FPGERES022
PPGRSC33
PPGRSU3Z

ACRE=FEETY
PUMPED
14,85
Q.0
2747
6567
27. 47
0.0
0.68
Q.68
0.68
0.0
0.0
27«47
B. 09
27247
8.09
27.47
27 .47
8, 09
1.16
L0

PURCHASED
£3C6.47
2501%.30
21727
S67 .86
D20
2E78C.54
25180,.,€3
416395

ACRES
CFROPPED
133.14

24,30
33.%0
25+ 46
22+80
22.80

GRS0202F
WHET301F
PPGRSO31
PPEKHETO2
PPWHETS2

SHADUOW
PRICE
00
0.0
=2.83
0.0
=2.83
De0
DL.0
G0
0.0
0.0
0.0
28.68
0.0
114,31
0.0
99.51
29.13
G0
0.0
0.0

GENERATED
1369.49
TO074.52
7746
141.60
0.0
4048,.,85
3€48.76
67171

SHADOW
PRECE
0.0

24 .30
2.05
AT.09
2.095
24085



181

SUMMARY FOR YEAR 9

ACTIVITY LEVELS

CORNSO2F 24.87 GRSC101F 24,87 GRS0O202F 2487
GRSO3DLF 24 .87 GRSCADILF 25«80 WHE¥301F SeS2
PPCORN33 24,87 PPGRSO22 25.49 PPGRSC31 45,41
PPGRS0O32 12.97 PPGRSOAZ 2054 PPUHETS 2 552
PPGRSCIA2 12 .97 PRPGRSC3D 20.58 PPWHETQ 2 552
IRRIGATION WATER ACRE=FEET SHADOW
FUMPED PRICE
WATER22 14,87 0.0
WATER23 0.0 0.0
WATER31 26. 49 w2,93
WATER32 T+57 Ca.0
WATER3I3 26 .49 =2,93
WATERS ] 0.0 0.0
WATERAZ 1.684 0.0
WATERS1 1+84 Dal
WATERS3 1+84 0.0
WATERGZ2 0.0 00
WATERS] 0.0 0.0
WATERT1 264 49 28.43
WATERT?2 Ba.28 0.0
WATERT3 264 49 114.,49
WATERS1 8.28 0.0
WATERB2 26+ 45 99,70
WATERSI 26.4% 29.10
WATERD1 B,.28 0.0
WATER92 .22 0.0
WATYERG93D Qe 0 0+9
ELECTRICIYY
FCR IRRIGATION PURCHASED GENERATED
MONTH 2 €446,06 1421.46
MONTH 3 24821 .,1% T7210.20
MONTH 4 158, 48 214,02
MONTH S 158,21 386.78
MONTH &6 c.87 () .87
MONTH 7 2E8328.55 4080.70
MONTH 8 28732.09 367755
MONTH 9 E224,.25 861.24
CRCGPL AND ACRES SHADO W
CROFPPED PRICE

134.840 0.0



SUMMARY FOR YEAR 10

ACTIVITY LEVELS

CORNSO2F
GRSO3C1IF
PPCORNZ23
PPGRSO3L
PPAHETSZ2

25+ 4
25+4
0.0
43.7
B+9

IRRIGATION WATER

WATERZZ
WATER23
WATER31
WATER32
WATER33
WATERA1
WATERA2
WATERSI1
WATERS3
WATERG2
WATERG3
WATERT1
WATERTZ2
WATER73
WATERS1
WATERS2
WATERSB83
WATER91
WATERS2
WATER93

ELECTRICITY
FOR IRRIGATICON

CROPLAND

MONTH
MONTH
MONTH
MONTH
MONTH
MO NTH
MONTH
MONTH

4
a4
Q
&
5

DN ewh

182

GRSC101F
GRSC401F
PPCCRN33
FPGRSE32
PPEMETS3

ACRE=FEET
PUNMPED
14,89
C.00
2551
B+45
25 .51
00
2.58
2498
2458
0.0
Qe
25+ 51
B.47
25.51
E.47
25.51
25.51
B.47
.22
0,00

PURCHASED
6£24.,81
24€25,53
1238.62
2547.78
C.87
27&74.382
2£280.87
€291.91

ACRES
CROPPED
136,44

2. 44
25.75
2%«24
14.49
0,00

-GRS0D202F

WHET301¥F
PPGRSN22
PPGRS033

SHADOW
PRICE
0.0
0.0
23,05
0.0
=3,05
0.0
0.0
0.0
Q.0
0.0
0.0
28.18
0.0
114.69
0.0
99,89
29.07
0.0
G0
Ce0

GENERATED
1478,.39
7353.17

3€2.95
€£56.,00
w87
4114.74
3708.25
1067T.82

SHADOW
PRICE
Q.0

2544
8.95

25.52

18,31
0.0



SUMMARY FOR YEAR 11

ACTIVITY LEVELS

CCRNSO02F
GRSO2Q1LF
PPCOFRN33
PPGRS032
PPGRS0O32

25.99
25.99
2% +99
15.98
15.98

IRRIGATION WATER

WATER22
WATER23
WATER31
WATER32
WATER33
WATERS1
WATERA2
WATERS1
WATERS3
WATERGE2
WATYERE3
WATERT]
MATERT2
WATERT3
WATERAL
WATERSB2
WATERS3
WAYER91
WATER92
WATER93

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

o~ éwh

183

GRSC101F
GRSCAQ1LF
FPGRS022
PPGRSC33
PPGRSD32

ACRE=FEEY
PUMPED
14.50
00
24,56
G322
24,56
0.0
H4.11
4e11
4211
D.0
C.0
24 .56
.66
28 .56
B8.66
24,56
24 .56
B.66
7219
0.0

PURCHASED
6%61.,57
242E2.C7
1712.88
3E22.66
0.0

2724%,42
271€655.56
7321.18

ACHRES
LROPPED
138,06

2%.99
21276
25+ 55
16.11
1€.11

GRSQ202F
WHET301F
PPGRS0O31
PPHHEY92
PPYHETS2

SHADOW
PRICE
0.0
0.0
=3,16
0.0
=3 .16
0.0
0.0
0.0
0.0
0.0
0.0
2797
0.0
114.79
00
99,99
29,01
0.0
0.0
0«0

GENERATED
1536.,98
750675

S18.17
939.43
0.0
4151.14%
3740,.,99
1280.91

S+HADOW
PRICE
0.0

2%.99
1233
42.190
12.33
12.33



SUMMARY FOR YEAR 12

ACTIVITYY L
CORNEQG2F
GRSDZO01F
PPCO&N23
PPGRS0O3!
PPRWHET92

IRRIGATION

ELECTRICITY
FCR IRR]

CROPL AND

EVELS
26.+.5
26+ 5

0.0
4054
15.6

WATER

WATER22
WATER23
WATER31
WATER32
WATER33
WATERS )
WATERAZ
WATERS1
WATERS3
WATERS2
WATERG3
WAYER?1
MATERT2
WATER73
WATERS1
WATERB2
WATERSB83
WATERSG1
NATER9Z
WATERS93

Y
GATION
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

a4
&
[+
8
6

Vo §oinpwi

184

GREC10LF
GREC401LF
FPCLRN33
FPGFS032
FPYFET92

ACRE=FEETYT
PUMPED
14.92
0.00
23.€1
10.18
23. €1
0.0
S.21
Sa21
S5221
0.0
0.C
23«61
B.E4
23.€1
8,84
23.861
23,61
8,84
9,13
0,00

PURCHASED
6640. 89
2A047.57
Z2193.€2
4£22,.,2%
0«0

267E8.68
27138.57
416,39

ACRES
CROPPEL
139.€5

2€ .54
17.83
2€.54
1745
0.00

GHRSO0202F
WHET301F
PPGRSO22
PRGRS0O33

SHADUW
PRICE
0.0
0.0
=3,29
0.0
3,29
D0
0.0
0.0
0«0
0.0
00
27 .69
0.0
114,98
0.0
100,19
2B .97
0«0
0.0
0.0

GENERATED
1601.08
1669.09

687.3C
1228.59
0.0
4189.24
3775.95
1212,.,99

SHADOW
PRICE
0.0

26.54
15.66
25.57
13.94
0«0



SUMMARY FOR YEAR 13

ACTIVITY

CORNSO2F
GRS0201LF
PACORNI3
PPGRS032
PPGRSO32

LEVELS

27.08
2708
27.08
18.90
18,90

IRRIGATION WATER

WATERZ22
WATER23
WATER31
WATER32
WATER33
WATERA1
WATERAZ2
WATERS1
WATERS3
WATERG2
WATERG3
WATERT!
WATER7T2
WATERT3
WATERSB]
WATERS2
WATERS3
WATER91
WATERD2
WATER93

ELECTRICKTY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

VDO~ e N

185

GREC101F
GRSCAOLF
PFPGRS022
PPGRSD 33
FPGRSO33

ACRE=FEETY
PUMPRED

14,93
Q.0
R2:68
11.03
Z22.68
0.0
6. 31
E.21
6,31
€0
0.0
22.68
G.02
22.68
9.02
22.68
22.68
9.02
1105
0.0

PURCHASED
ET22439
23840.53
2¢78.60C
E£2€.29
1.6%
2€322.54
26740.82
€515.50

ACRES
CROPPED
141.22

27.0C8
1355
25:860
11.21
11.81

GRSO202F
WHET301F
PPGRSC31
PPRHETO2
PPYHETS 2

SHADOW
PRICE
0.0
G0
w3a43
0.0
=J.43
0.0
0.0
0.0
0.0
0.0
0.0
2740
0.0
115.18
0.0
100,39
28,93
0.0
B0
00

GENERATED
1667.29
7841 .23

BE4.76
1560.32

=] + 569
4230.88
3812.60
1757.67

SHADOW
PRICE
0.0

2708
18.94
38.89
18.94
18.94



SUMMARY FOR YEAR 14

ACTIVITY LEVELS

CORNS02F 27 +61 CRSCI101F 27.61 GRS0O202F 2T«61
GRSO301LF 27+ 61 GRSCACLF 10.14 WHET301IF 22,17
PPCORN33 2T+61 PPGRSD22 25,63 PRAGRS(O31 37.32
PPGRSQ32 20,33 FPGRS0O33 970 PPWHETI92 2217
PRPGRSO32 20,33 FPGRSO33 G 70 PPYMHETY92 2217
IRRIGATION WATER ACRE=FEET SHADOW
PUNPED PRICE
WATER22 14,685 00
WATER23 0.0 0.0
WATER31 21.77 =3 .57
WATER32 ¥l .86 0.0
WATER33 21.77 =357
WATERA1 0.0 0.0
WATERAZ2 T.38 0.0
WATERS] 7,38 0.0
WATERS3 T+ 38 0.0
WATERG2 00 0.0
WATERS3 0.0 00
WATERTI1 2177 2716
WATERT2 Q20 0.0
WATERT73 21277 115.28
WATERS1 G20 0.0
WATERB2 2177 100 .48
WATERAS3 2177 28.85
WATERD1 9,20 0.0
WATERSZ 12.%3 0.0
WATERD3 0.0 Q0.0
ELECTRICITY
FOR IRRIGATION PURCHASED GENERATED
MONTH 2 £754 .09 1739.68
MONTH 3 23T44L.40 8026.42
MONTH 4 2138.4A8 1056,.,33
MCNTH S EA488.33 1901.29
MONTH & 2+ 56 - 56
MONTH 7 2EEES .87 4274264
MONTH 8 26108, 71 3852 .50
MONTH 9 10%52.53 2020.02
CROPL AND ACRES SHADOW
CROPPED PRICE
14277 0.0



SUMMARY FOR YEAR 1S5

ACTIVITY LEVELS

CORNES02F
GRSD3OLF
PPCORN23
PPGR 5031
PPWHETO92

28.21
28.21

0.01
35.78
24.91

IRRIGATYION NATER

WATER22Z2
WATER23
WATER31
WATER32
WATERI]3
WATER4 1}
WATERS42
WATERS1
WATERS3
WATERG2
WATERG63
WATERT}
WATERT2
WATERT3
WATERS1
WATERE2
WATERS3
WATER91
WATERS2
WATER93

ELECTRICITY

FOR

CROPL AND

IARIGAT ION

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

Do~0mepuan

187

GRSC101F
GRECAOILF
PPCLRN33
FPGEFSC32
PPUWFETO3

ACRE=FEET
PUMPED

18,55
000
20.£7
12,78
20,87
0.0
B.29
.29
8.29
0.0
Q.0
20.87
9,39
20.E7
9,39
20.87
20. 87
S» 39
14,52
0.00

FURCHASED
6776, 20
23C88,€E2
3£29.52
7305.24
0.,€3
2S50€1.42
2EREBL 67
11470.23

ACRES
CROPPED
144,00

2821
€.24
28.21
21.51
0,00

GE

GRS0202F
WHET301F
PPGRSO22
PPGRS5033

SHADOW
PRICE
0.0
0.0
=372
0.0
=3,72
0.0
0.0
Ce0
0.0
0.0
0«0
43,09
0.0
113.39
0.0
98.60
25.88
0.0
0.0
Q.0

NERATED
1817.33
E240.39
1237.62
2229.04

=63
4323.€8
3896.43
2279. 42

SHADOW
PRICE
11.45

28221

248.91

25263
T+57
0.0



SUMMARY FOR YEAR 16

ACTIVITY LEVELS

CORNSO2F
GRSOI01LF
PPCORNZ23
PPGR D031
PPWHET92

29.11
29.11

0.00
34,26
2576

IRRIGATION WATER

WATER22
WATER23
WAYER31
WATER32
WATER33
WATER4 1
WATERS2
WATERE )
WATERS3
WATERSG2
WATERG3
WATERTI1
WATERTZ2
WATER7 3
WATERB]
WATERS82
WATERS3
WATERS)
WATER92
WATERS93

ELECYRICITY
FOR -IRRIGATION

CROPLAND

MONTH
MONTH
MCONTH
MONTH
MONTH
MONTH
MONTH
MONTH

LI B A B T )

188

GRSC10LF
GRSUAQILF
PRCCRN33
PPGRS032

ACRE=FEET
PUMPED
14,91
0.00
19.58
14,09
19.98
0.0
8.58
B.58
8.58
0.0
C.0
19.98
Q.69
19268
Se69
IS.G8
19.98
F.6%9
15,032
Q.0

PURCHASELD
CE2T7.C8
23C¢80.68
JEE3 .65
T€E24.43
3.06
24€657T.50
25C¢50.%2
11999.71

ACRES
CROPPED
144,00

29.11

179
2911
24,156

GRSO202F
WHET301F
PPGRS022
PPGRSLA3

0.0

SHADOW
PRICE
0.0
0.0
=3,89
0.0
=3, 89
0.0
0.0
0.0
0.0
0.0
0.0
41.65
0.0
113.73
0.0
58,93
25.32
0.0
D0
0.0

GENERATED
1891 .44
BE32.75
1333.35
2409.57

=306
4385.,27
39%52.25%
2457 .47

SHADOW
PRICE
10467

2911

25.76

25.56
5«18
0.0



SUMMARY FOR YEAR 17

ACTIVITY LEVELS

CORN4Q1F
GRSO202F
PPCORN2Z23
PPGRSO31
PPYHETO2

1.5
27.9
0.0
327
275

IRRIGATION WATER

WATER22
WATER23
WATER31
WATER3Z2
WATER33
WATERS1
WATER32
WATERS1
WATERS3
WATERG2
WATERG3
WATERT!
WATERT2
WATERT3
WATERS81
WATERSB2
WATERS3
WATERS1
WATERG2
MATER93

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MONTH
MONTH
MONTH
MCNTH
MONTH
MONTH
MONTH

4
5
Q
9
8

e~ &N

189

CORKRS02F
GRSQ301F
PPCLCRAN33
PPGRS0O32

ACRE=FEETY

PUMPED
14,81
0. 00
19.13
14, £4
16512
0.0
Sa.18
Sa18

g.18

00

0.0

19.13
10..23
19.13
10,32
19.13
19,13
10.332
16409

Qs 0

FURCHASED
£ECR.CB
22E60.,69
3%40. 12
ET76.%51
00
2428755
24709.90
12889,12

ACRES
CROPPED
144,00

29+ 49
27295
31.03
2%.44
0.0

GE

GRSUO101F
WHET30 1F
PPGRS5022
PPGRSO33

SHADOW
PRICE
0.0
0.0
=4,07
0.0
8,07
0.0
0.0
0.0
0.0
0.0
0.0
55.00
0.0
99 .59
0.0
129.25
7939
0.0
Q0
G+ 0

NERATED
19€3. 04
8754,.54
14G4,72
26%3.18
Q.0
4482.17
4039,82
27844,75

SHADOW
PRICE
1785

29.49

27.58

25.40
1«76
0.0



SUMMARY FOR YEAR 18

ACTIVITY L
CORN4OIF
GRSD20C2F
PPCORN23
PPGRSO22
PPWHET92

IRRIGATION

ELECTRICIT
FOR IRRI

CRUPL AND

EVELS
4.1
25.45
0.0
251
30,0

WATER

WATER22
WATER23
WATER31
WATER32
WATERI]
WATERS1
WATER42
WATERS!
WATERS3
WATERG 2
WATERG3
WATERT1
WATERT2
WATER73
WATERB1
WATERS2
WATERS3
WATERD1
WATERD92
WATER93

Y
GATION
MGONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

1
0
o
8
5

Vodoneumn

190

CORNED2F
GRSC301F
PPCLRN3 1
PPGRS5031

ACRE=FEET
PUMPED
14.865%
0,00
18.29
1£.20
1829
0.0
10.04%
10,01
10.01
0.0
0.0
18,29
11.20
18.29
12.20
18,29
18,29
11,20
17,53
Va0

PURCHASED
C158.73
22C74,€3
4289.06
8%15.55
Ga 0
23457.91
24422,68
14C79.58

ACRES
CROPPED
144,00

29.%52

25440
2.27

29.4G8
0.0

GE

GRSO101F
WHET3O0IF
PPCORN33
PPGRS032

SHADD W
PRICE
0.0
0.0
=&, 25
0.0
=4.,25
0.0
0.0
. 0.0
0.0
0.0
0.0
54,25
0.0
99 .53
0.0
129 .89
79,68
0.0
0.0
0.0

NERATED
2036.05
8930.80
1T03.06
3068.70
G.0
4609.21
4154 .44
3122.22

SHADOW
PRICE
1749

29.52
30.05
J1.35
26,07
Q.0



CORN4QLF
GRSOZ02F
PPCOERN31
PPGRSO31
PPYHETS3

ACTIVITY LEVELS

6.6
228
62
23.6
2%

IRRIGAYION WATER

WATER22
WATER23
WATER 31
WATER32
WATER33
WATERA]
WATER42
WATERSY
WATERS3
WATERG2
WATERG3
WATER71
WATERT2
WATER73
WATERA1
WATYERB2
WATERSE]
WATYER91
WATER9Z
WATER93

ELECTRICITY
FOR IRRIGATION

CROPLAND

MONTH
MONTH
MONTH
MONTH
MONTH
NMONTH
MONTH
MONTH

So~NOOIPWN

SUMMARY FOR YEAR 19

S
9
{ <]
&
S

191

CORNSO2F
GRSO301LF
FPUCRN32
FPGR5032

ACRE=FEET

PUNPED
14.56
0.0
17.46
15.57
1746
0.0
10.82
10,82
10.82
00
0+ 0
17.46&
12. 05
17T4¢€
1205
17486
1748
12,05
17.4¢&
149

FURCHASED
&712.59
21477,59
4€29.49
GE3%.07
2,22
23721.27
24190.13
15259.30

ACRES
CROPPED
144,00

29.%4
22489
2553
26 .68

0.C

GE

GRSO101F
WHET301F
PPGRS0O22
PPHHETY92

SHADOW
PRICE
0.0
D.0
LE Y 13-
020
md 45
0.0
0.0
0.0
0.0
0.0
0.0
£3.49
0.0
9947
0.0
130.52
79 .96
0.0
2,62
00

NERATED
211270
9120.36
1926,00
3475.90

w222
4T747,12
4278.26
3E27.62

S5rADCW
PRICE
17.14

29.54
3248
28.96
29.93
Q.0



SUMMARY FOR YEAR 20

ACYIVITY LEVELS

CORANS&OIF
GRSOZ202F
PPCOENZS
PPGRSC22
PPWHETYS2

9.1
20.4
G. 0
2447
28.5

IRRIGATION WATER

WATERZ22
WATERZ23
WATER31
WATER32
WATER33
WATERS1
WATER42
WATERS1
WATERS3
WATERG?2
WATERG3
WATERT1
WATERT2
WATER73
WATERS1
WATERSB82
WATERB3
WATERS1
WATER92
WATER93

ELECTRICITY
FOR IRRIGATION

CROPL AND

MONTH
MOUNTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

4
2
0
5
Fy

Vo~ e Wn

192

CCRNS02F
GRSC30LF
FPCCRN31
FPGRSG31}
PPYWEHETYG2

ACRE=FEET
PUMPED
18,44
0.00
16265
15.62
1E.ES
Q.0
11.6}
11.61
11.€1
Q0.0
0.0
16,65
12.89
16..65
12,89
1665
16+ 65
12.89
16695
3.70

FURCHASED
€E714.69
210S54.,16
4658,37
10423.45
2021
23€13.,7C
28C56.74
1€547.61

ACRES
CRAFPPED
144,00

2G,57
20.42
1017
18,37

€234

GE

GRSOLOLF
WHET301F
PPCORN33
PPGRSO32

SHADOY
PRICE
0.0
0.0
g, 67
3.0
=4,67
0.0
0.0
0.0
Q0.0
0.0
0.0
52.29
0.0
99.43
0.0
121.£5
80,51
0.0
w275
0.0

NERATED
2197 .76
5325.,03
2170.43
3914.15

"2e21
4895,25
8412.,20
3967 .16

SHADC W
PRICE
16,50

29 .57
34.88
c8B.Sn
2729

Ca



YR

QDN WN-

10
11
12
13
14
15
16
17
i8
19
20

IRR.

WATER

ACRES PUMPED

144,
144 .,
1484,
i44.
144,
144,
136,
133,
135.
136,
138,
140,
141,
143,
154,
144,
144,
144,
144,
144,

203.
203.
203.
203,
203,
203,
210.
21%.
215.
216,
217«
218.
219,
220,
221
219,
219,
221 .
223,
224,

PRESENT VALUE OF
PRESENT VALUE OF
PRESENT VALUE OF

WELL

80Ca
800,
800.
800.
800,
783,
757,
731,
705,
679,
684,
662G,
604,
S80.
556,
832,
505,
487,
465,
4473,
RETURNS
RETURNS
RETURNS

IRRIGATION FUEL
YIELD *82%%&5 2555555k kEkEkn
PURCHASED WIND GENa

80116,
8153S.
B33s2,
EABCT.
B6306.
87821,
S$130€.
94352,
95870,
9738E,
CB282,.
SSEBOE,
101348,
102180,
102721«
102967,
103437,

104568,

108€2¢8,
107451,

15113,
15113,
15113,
15113,
15113.
15443,
16204,
17032,
178%1.»
18740,
19674,
20E74,
21733,
22868,
24023.
24959,
26172,
27624%,
29186,
30880C.

ELEC.
SCLD

T4251 .
74251,
74251 .
T425%
74251,
73954,
732645,
72523,
T1787.
70986,
70146,
69248,
68293,
67271,
6€232.
65389
GA29E,
E2990.
61585,
6006},

AT 33X DISCCGUNT RATE
AT SX DISCOUNT RATE
AT 10X DISCCUNT RATE

NET
RETUFRNS

122112
11916.
11842,
1'17€5,
11686,
‘11499,
1121,
10923,
10568,
102173,
9863,
5541,
9190,
8910.
8YEST.
8273
7921,
7548,
7179,
67€9.
1E1193.62
128842,50
138712



195

APPENDIX D

PHYSICAL RESULTS FROM TEMPORAL ANALYSIS
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