TR-114
1981

4

Texas Water
Resources Institute

make every drop count

Contaminant Transport in Hydrogelogic Systems

C. Chin
D.L. Reddell

Texas Water Resources Institute

Texas A&M University



RESEARCH PROJECT COMPLETION REPORT

Project Number A-048-TEX
(October 1, 1978 - March 31, 1981)

Agreement Numbers

14-34-0001-9046
14-34-0001-0146
14-34-0001-1146

CONTAMINANT TRANSPORT IN HYDROGEOLOGIC SYSTEMS

Chia-Shyun Chen

Donald L. Reddell

The work on which this publication is based was
supported in part by funds provided by the Office of
Water Research and Technology (Project A-048-TEX),
U. S. Department of the Interior, Washington, D.C.,
as authorized by the Water Research and Development
Act of 1978.

Technical Report No. 114
Texas Water Resources Institute
Texas A&M University

March 1981

Contents of this publication do not necessarily
reflect the views and policies of the Office of Water
Research and Technology, U.S. Department of the
Interior, nor does mention of trade names or commercial
products constitute their endorsement or recommendation
for use by the U.S. Government.




ii

ABSTRACT

Contaminant Transport in Hydrogeologic Systems
by
Chia-Shyun Chen
and

Docnald L. Reddell

Contaminant transport in hydrogeologic systems requires knowledge of
transmissivity, storage coefficient, and dispersivity. Techniques for eval-
uating transmissivity and storage coefficient under field conditions are well
known. However, the evaluation of dispersivity under field conditions is a
costly and time consuming job.

The process of transporting a specific conservative ion species in an
aquifer is analogous to the transport of heat in the system. Because of
this analogy, the original objective of this research project was to evaluate
the use of low-grade thermal water to measure aquifer dispersivity. However,
available thermal models of groundwater aquifers proved difficult to use for
evaluating the thermal properties (and dispersivity) of an aquifer. There-
fore, additional objectives were developed to (1) derive analytical solutions
describing the steady and unsteady temperature distribution around a well
with a finite caprock thickness and (2) establish a technique for determining
the thermal properties (including thermal dispersivity) of an aquifer using
field measurements of temperature distribution within the aquifer.

Analytical models of hot water injection into groundwater aquifers were

developed in this study. Available analytical models of this problem assume



that the caprock overlying the aquifer is of infinite thickness. However,
many groundwater aquifers have caprock thicknesses of only a few meters.

This paper shows two mathematical models which were developed to examine the
influence of a caprock with finite thickness on the thermal response of an
aguifer. In both models, the horizontal heat conduction and heat convection
in the aquifer plus the vertical heat conduction in the caprock are considered.
The first model (Model 1) assumed that the vertical temperature gradient in
the caprock is linear, which can be approached in a caprock with a relatively
small thickness. The second model (Model 1I) removed this restriction and
allowed the vertical temperature gradient in the caprock to be nonlinear.

For Model I, a steady state and an unsteady state solution for the water
temperature distribution sﬁrrounding an injection well were obtained. For
Model 11, a steady state and two unsteady state solutions for the water temp-
erature distribution surrounding an injection well were obtained. One of

the two unsteady state solutions is for a short-time period and the other

one is for a long-time period.

A graphical technique was developed for determining four pertinent
aquifer thermal properties: (1} the horizontal thermal conductivity of the
aquifer (thermal dispersivity), (2) the thermal capacity of the aquifer, (3)
the vertical thermal conductivity of the caprock, and (4) the thermal capacity
of the caprock. Dimensionless type curves are constructed from the steady
state solution and the unsteady state solution for short time periods in
Model II, respectively. Using field data, one curve is constructed using
long-term temperature observations (approaching steady state) from several
observation wells, and a second curve is constructed ysing short-time temper-

ature observations from any one of the observation wells. These curves are
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CHAPTER I
INTRODUCTION

Thermal energy storage in aquifers is one of the most promising
alternatives for seasonal storage of low-grade thermal energy. In
the past, low-grade thermal energy has been stored in the form of
hot or cold water in above-ground storage tanks. The size of such
facilities are restricted by economic and space limitations. Thus,
the storage of thermal water in above-ground water tanks is severely
restricted. Since water can be injected, stored, and easily recovered
from aquifers, the concept of aquifer thermal energy storage (ATES)
has received much recent attention.

Davison et al. (1975) proposed that hot water produced by solar
heaters during the summer be stored in aquifers and recovered during
the winter for space heating. They also proposed that the winter's
cold be used to chill water, which would then be stored in an aquifer
and recovered during the summer for air conditioning. Davison et al.
(1975) named their ATES system the "solaterre” system.

When injecting hot or cold fluids into confined aguifers, most
of the thermal loss is caused by thermal conduction across the top
and bottom of the aquifers. These losses decrease with time and
approach a constant value. The effectiveness of ATES systems

depends on the magnitude of the thermal losses from the system.



To evaluate these losses, temperature distributions around thermal
injection wells are needed.

In this paper, results of analytical studies of thermal injection
into confined aquifers are reported., These analytical studies provide
an understanding of the basic principles involved when thermal energy
is injected into an aquifer. In addition, analytical solutions:

1 provide an understanding of the basic nature of the movement
of the thermal front, and the relative importance of the variables
involved in its propagation,

2 PpProvide a method for estimating the temperature distribution
throughout an aquifer under a wide variety of conditions .

3 Provide assistance in interpreting results from laboratory
tests, transposing these results to field experiments, and vice versa.

Most work in the area of thermal injection has been conducted in
the field of petroleum engineering. Only recently has an interest in
this area developed in the groundwater industry. Existing analytical
models of this problem assume that the caprock overlying the aguifer
is infinite in vertical extent. This condition can be approached
in 0il reservoirs. However, groundwater aquifers are found at depths
of only a few meters. Obviously, assuming that the caprock is infinite
in thickness can not be taken for granted in groundwater hydrology -
Thus, it is important to investigate the influence of this assumption
on the thermal response of agquifers.

The application of mathematical models to field problems of thermal
injection requires the evaluation of thermal parameters involved in

the partial differential equations. Usually, the thermal parameters



can not be measured directly, but must be determined from field
measurements of temperature as a function of distance and time.

In recent years, considerable attention has been directed toward
developing either graphical or numerical procedures for evaluating
aquifer parameters. Numerical procedures to evaluate aquifer para-
meters have been developed which make extensive use of optimization
principles and high speed computers. Graphical procedures, utilizing
type curves constructed from analytical solutions and data plots pre-
pared from field measurements, have also been used to evaluate aquifer
properties. In the graphical method, field data plots are matched
with the type curves and values of the aquifer parameters evaluated.
A graphical method for evaluating aquifer thermal properties is

developed in this study.

Objective

This study has the following objectives:

1 Develop an analytical solution describing the steady and
unsteady temperature distribution around a well with a finite caprock
thickness when hot water is injected.

2 Establish a technique for determining the thermal properties
of an aquifer using field measurements of temperature distribution in

the aquifer.

Scope

Two mathematical models are developed to examine the influence

of the caprock thickness on the thermal response of an aquifer. The



first model assumes that the temperature distribution across a finite
caprock thickness is linear; a condition which could be approached in
a relatively thin caprock. The second model uses a caprock of finite
thickness and allows the heat flux through the caprock to follow
Fourier's Law. The graphical method for determining aguifer thermal
properties employs the steady and unsteady state solutions from the

second model,



Chapter 11
PREVIOUS WORK
Thermal Response of Aquifers

Several analytical and numerical treatments of the problem of hot
fluid injection into oil reservoirs or groundwater aguifers have been
presented. For analytical models, some restrictive physical and
mathematical assumptions must be made to obtain the analytical
solutions. In numerical models, many of the restrictive assumptions
used in the analytical models can be partially or totally removed.
However, analytical solutions to mathematical models are still important
in the study of many physical science and engineering problems. The
scope of this paper is oriented toward an analytical study of the
aquifer thermal injection problem.

Jenkins and Aronofsky (1954) studied three mechanisms of heat
transfer during the injection of a hot fluid into an oil reservoir.
The three mechanisms were:

1 Heat transfer due to the physical movement of the injected

water.

2 Heat conduction from warmer to colder portions of the

system.
3 Convective heat transfer between the sand grains in the
reservoir and the surrounding fluid.
They indicated that convective transfer (mechanism 3) could be

neglected by assuming that the temperature of the sand grains in the



reservoir and the surrounding fluid reached thermal equilibrium
instantaneously. Since the work of Jenkins and Aronofsky {1954),
mechanisms 1 and 2 have been widely adopted as the two most
significant mechanisms of heat transfer in underground reservoirs.

Lauwerier {1955) presented an analytical solution for
calculating the temperature distribution in a 1inear flow system.
He neglected the horizontal heat conduction in the reservoir, and
assumed that the vertical thermal conductivity in the reservoir was
infinite so that no vertical temperature gradient existed across the
reservoir. In the caprock, the horizontal thermal conductivity was
assumed zero, but vertical heat conduction was considered.

Avdonin (1964) allowed horizontal heat conduction to occur in
the reservoir, but kept the other assumptions in his model the same
as those in Lauwerier's (1955) model. The analytical solution obtained

by Avdonin was:

i
2yw 2
- r -r- Kxv¥ 1 dx
U= Ttwj [ETE—} EXp[ﬂrTX] ! EY‘fC[Zam} X]“'m s sas ['[]
0
T -7
where U= ﬁ’”?"TP is the dimensionless temperature of the reservoir,
i 0

To is the initial reservoir temperature (°C), T, s

the injection fluid temperature {°C),and T is the

reservoir temperature (°C};



o, . . .
w =7 p5 K 1S the dimensionless convection parameter,
mm

(pC)f is the product of fluid density and fluid specific

heat (J/m3°C), Q is the constant injection rate (m3/hr),

bm is the reservoir thickness {m) and Km is the horizontal

thermal conductivity in the reservoir (w/m°C);

R = %£~ is the dimensionless radial distance and r is the

m
radial distance from the well (m);

4o t
T = m2 is the dimensionless time, t is the time since

bm

injection started (hr) and - is the thermal diffusivity
of the reservoir (mz/hr);

K= KE' is the dimensionless thermal conductivity and Kr is
m

the vertical thermal conductivity of the caprock

(w/m°C);

a y1/2
a = [Er} is the dimensionless thermal diffusivity and

m

o, is the thermal diffusivity of the caprock (m2/hr)s

T{w) is the Gamma function of w; and
Erfc(x) 1is the Complementary Error function of x.
According to Avdonin (1964), the horizontal thermal conductivity
in the caprock can be neglected for w > 10 and in the range of time

from 0 to 6 years. However, when time equals infinity, Equation 1



gives U = 1, which implies that at steady state the temperature at-
every location in the reservoir is equal to the injected water
temperature. Thus, the temperature distribution given by Equation 1
at steady state is unreal, and cannot be used.

Rubinshtein (1959) presented an analytical solution which allowed
heat losses through the caprock. In this model, the horizontal and
vertical heat conductions in both the reservoir and caprock, and heat
convection in the reservoir were considered. Rubinshtein (1960)
simplified his earlier model by neglecting the vertical heat conduction
in the reservoir, and gave a solution for the temperature distribution
in the reservoir. However, this solution was only valid for relatively
small values of the convection parameter (w). Rubinshtein (1963)
developed another solution for relatively large values of the
convection parameter {(w) to compliment his 1960 model.

Spillette {1965) indicated that all the previously discussed
analytical models were subject to the assumptions that the fluid flow
is one-dimensional and imcompressible, and the reservoir is homogeneous
with constant physical properties. He developed a numerical model
without using these assumptions to calculate the temperature distri-
bution in the reservoir. He prepared curves of temperature versus
radial distance using his model and compared them with the analytical
solutions obtained by Lauwerier (1955) and Avdonin (1964). Spillette's
comparison showed reasonable agreement among the three models. As a
result, he concluded that the common assumptions made in the analytical

models were reasonable,



Thomas (1967) gave three approximate methods for calculating the
temperature distribution in a reservoir. These three approaches were
applied to problems where the reservoir was relatively thin and the
injection rate was relatively large. In Thomas's third method, the
application of Schapery's (1962) direct method for approximating the
inversion of Laplace transforms was illustrated. Thomas indicated
that the use of Schapery's direct method yielded satisfactory results
for the problems in his work.

Schapery (1962) proposed two methods for approximating the
inversion of Laplace transforms; one of which is called the direct
method. The direct method simply states that if d[pF{p)1/d[log(p)]
is a slowly varying function of log p, then the inversion formula can

be written as

£(£) ~ [F(p)I, 1

2t
where F(p) is the Laplace transform of f(t), p is the transform
variable, and t is the original function variable.

Baker (1967) conducted experimental studies of the heat injection
problem, and compared his experimental results with the analytical
solutions obtained by Avdonin (1964), Lauwerier (1955) and Spillette
(1965)}. Baker indicated that the assumption of no vertical temperature

change in the reservoir appeared reasonable.
Evaluation of Aquifer Thermal Properties

Theis (1935) developed a mathematical model describing the problem
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of radjal flow to a well with a constant pumping rate in an extensive
homogeneous and isotropic confined aquifer system. Theis (1935)
obtained an analytical solution to this problem and proposed a graphical
matching technique to determine two aquifer parameters from field
observations of drawdown. Drawdown is defined as the difference between
the initial piezometric head in the aquifer and the piezometric head

in the aquifer at any given time after pumping test. The type curve

is prepared by using the analytical solution. Superposition of the
data curve onto the type curve makes it possible to find a match point.
From this match point, values for the different variables are obtained,
and the two aquifer parameters are uniquely determined.

To the same problem investigated by Theis (1935}, Cooper and
Jacob (1946} suggested a straight 1ine approximation method for the
determination of the two confined aquifer parameters. Chow (1952)
developed a graphical method which was intended to take into account
gradual changes in the aquifer parameters and avoid curve fitting.

Kriz et al. (1966) also established a dimensionless type curve method
for determining aquifer parameters.

To date, no information has been found on the use of graphical
techniques for determining aquifer thermal properties. An analogy
between fluid flow in aquifers and thermal flow in aquifers exists.
Graphical procedures have been successfully developed for evaluating
fluid flow parameters (Theis, 1935), Because of this success in fluid
flow problems and the analogy between fluid flow and thermal flow, it

is expected that graphical technigues can be developed for evaluating



the thermal properties of aquifers from field data.

Summary

From the previous review, the following results are important

to the present study:

1

The assumption of an infinitly thick caprock is not accurate
for all purposes in groundwater hydrology, and the effects of

this assumption need additional study.

11

The assumption of no vertical temperature change in the aquifer

(reservoir) appears reasonable for many groundwater problems.
The assumptions that the fluid flow is one-dimensional and
jncompressible, and that the aquifer is homogeneous with
constant physical properties are widely accepted and used in
groundwater studies.

The -temperature of the individual sand grain is assumed to
instantaneously become that of the fluid surrounding the sand
grain.

In the aquifer, the horizontal heat conduction and heat
convection caused by fluid movement are important.

In the caprock, horizontal heat conduction can be neglected
during a limited period of time when the convection parameter
is large. Vertical heat conduction in the caprock is
significant and should be considered.

Schapery's (1962) direct method for approximating the inverse

of Laplace transforms might be useful in this analytical work.
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It should be possible to develop graphical techniques for
determining thermal properties of aquifers using field

measurements from thermal injection tests.

12
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CHAPTER TIII

MATHEMATICAL REVIEW FOR THIS STUDY

In the present work, transcendental functions, Laplace trans-
forms, and Laplace-Carscon transforms are extensively used. Properties
of each are introduced and discussed in the following three sections:
(A) Transcendental Functions, (B) Laplace Transforms, and {C) Laplace-

Carson Transforms.
Transcendental Functions

The hyperbolic cotangent function is an elementary transcendental
function. It is customarily denoted by coth(x), where xcR (R is the
set of all real numbers). The definition of coth(x) is
-X

X =X
e ~e

X
coth(x) = £ e

From the above definition, it is easy to show that coth(x)
approaches unity when x is large. For example, when xzzJO, the
difference between the true value of coth{x) and unity is less than
0.5 percent. The function coth(x) can also be represented

(Abramowitz and Stegun, 1970} as an infinite series,

3 28, .
1 X X 2 5 2n_2n-
coth{x) = *t 3 - EtamEr- ....+—(—T«2n P + ... 12]

h

where B2n is the 2nt Bernoulli number and (2n)! is the factorial of
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2n. When x is small coth(x) can be approximated by retaining only
the first two terms in Equation 2. For example, when xzfj.O the error
of truncating the series after the second term is less than 2.2

percent,

The Error function, denoted by Erf(x), is defined as

Erf(x) =

The complementary error function, Erfc(x), is defined as 1 - Erf(x),

and may be written as

w© 2
Erfc(x) = J e Y Y. [4]

X

I

The Gamma function is an important and fundamentatl higher trans-
cendental function, which can be expressed several ways. For x>0

and xeR, Euler's integral for r{x) is

From Euler's integral representation, Equation 5, the incomplete

Gamma function y(a,x) is defined as

X _ya-
v{a,x) = J e yya 1 1 e [6]

0
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and the complementary incomplete Gamma function, r'(a,x), is defined as

r(a,x) = Im e'yya'] AY . e e | [71]
X
The Gamma function is a meromorphic function (i.e. the function
is analytical except for some poles), with poles at zero and all
negative integers. When x>0, I'{x) is a rapidly-increasing function.
Mathematically, this can easily be seen by evaluating its first

derivative:
T'(nt1) = nllog{n+1),

where the prime denotes the first derivative of r{n+1) with respect
to n, and n is any large positive integer. Numerically, this fact

can best be understood by some practical values. For example r{1)=1,
5

62 78

r(10)=3.6288 x 10°, r(50)=610828 x 10°°, r{59)=2.3505 x 10", and

155

r(100)=9.3326 x 10 . Extensive numerical values of the Gamma function

can be found in Ambramowitz and Stegun {1970).
The Gamma function has many special and nice properties. However,

in this study, only the following two properties are used. They are
T(XIT(T=X) = T/STNTX, vvireieeeannsnansrcanonennns [8]

and

L X X /f2n
F(x)-e X _-;(—; X‘—"')'m- T AE AT FKELTERLT YL AR [9]



Equation 9 is the well known Stirling formula for approximating the
Gamma function.

The above material concerning the Gamma function can be found
in many applied mathematics books, e.g. Henrici (1977), Olver(1974),
Whittaker and Watson (1927), and Abramowitz and Stegun (1970).

There are many differential eguations whose solutions can be
expressed in terms of Bessel functions, another large and important
family of transcendental functions. In this study, only the modified
Bessel function of the first kind of order v with parameter v,

Iv(¥ax), and the modified Bessel function of the second kind of order

16

v with parameter /A, Kv(v/ix), are used; where v and VA eR., A complete

and imformative discussion of Bessel functions was given by Watson

(1922).

The function Iv(v¥ax) can be expressed in an infinite series as

(ﬁx)2m+v
_ - 7 10]
I\)(/)TX) = mzo m N VER . i e, [

If v is an integer, then I-u{Vix)} = Iv(Vix). If v is not an integer,

then
. (—‘%&)Zm—v
I—\)(EX)= mzom, v > 0. P ANt e rr s e [11]

The function Kv(v¥Ax) can be expressed by the linear combinition of

Iv(v/ax) and I-v(¥2x) as
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(/i) = 1 I"’(@‘%ﬂ; WOAX) [12]

If v is an integer, Equation 12 assumes the indeterminate form 0/0;
but by L'Hospital's rule a limit exists. This limit is lengthy and
complex and is not reproduced here (the interested reader may refer to
Wylie, 1960). The existence of the 1imit proves that Kv(vax) is inde-
pendent of Iv{vax), even if v is an integer (Wylie, 1960). Some
properties of Iv(vix) and Kv(vax), veR, which are used in this study
are as follows.

From Equation 10, it is evident that the

Tim Iv(Vax) = = , N N [13]
X300

while the
19m Ku(VaX) = 0 0 iii it it it it [14]
prav

As x approaches zero, only the first term in Equations 10 and 11
are needed to determine the value of Kv(/ax). Therefore, subsitituting

the first term from Equations 10 and 11 into Equations 12 results in

B (3%
. U 2
llg K(¥ax) = llrg 2 sinmv { T{T-v} 7 1{1+x) b

or
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SNV ] Y
(7) Ne=9) s.m—(~m))lltg X . [15]

1im Kv({Vax) =
x>0

hVIE

The above equation indicates that Kv(v/ax) is infinite at the origin.
However, multiplying Equation 15 by x" gives
Dy ] 1

. v = F
llg x kv(¥ax) = E'(“?J sin{mv) T(1-v)

The right hand side of this equation can be simptified by using the

property of the Gamma function shown in Equation 8; which yields:

Tim X Ku(V3X) = 2 A F(9) v e [16]
x-+0

There are various ways to represent Kv(x) in integral form. One

of them is (Watson, 1922)
v e 2
d
i) =3 G [ ety - s

By making a change in variable, z = g;-, in the above equation, the

following result is obtained,
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A
Y o 2
1 4,2 v=1
Ku(x) = 5 {—) f exp{-z - 5=} z dz
2 x2 0 4z
or
o 2 2 v/?
J exp{-z - %;} z\)'1 dz = 2Ku(x)(§m v e ceeen 7]
0

A large group of differential equations have their solutions
expressed in terms of Bessel functions. This group of differential
equations and the associated solutions can be generalized by the

following theorem (Wylie, 1960):

Theorem 1. If (1-a2)3ﬂg and if neither d,f, nor q is zero, then,
except in the case where it reduces to Euler's equation, the differential

equétion
Tl
x2y + x{a + 2exf)y' + [g + dx2q + e(a+f-1)xf + EZXZf]y =0 :

has the following complete solution:

y = e e 1v(u®) + cke(u®]
)
dea e, JEL . f0-a) - ag
where yu = 5 B = F A= T v = T , and d<0,
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Laplace Transforms

Laplace transforms have been widely used to solve differential
equations. To apply a Laplace transform to a function, the function
must meet certain requirements so that an integral transform will
exist (Sneddon, 1972). For most functions invoived in engineering
problems, Laplace transforms are applicable. In this study, the

Laplace transform of f(x,t) with respect to t is denoted as
LIf(x,t)] = Flx,p)

where p is the transform variable, and the definition of L[f(x,t)] is

L[F(x,t)] = [Z e'ptf(x,t) dt

pt is called the kernel of the

In the above equation, the function e~
Laplace transform.

The following properties of Laplace transforms are directly
verifiable from the integral definition of a Laplace transform. They
are presented here without showing the detailed mechanics of the

mathematical calculations.

For a function f(x,t),

L[Efé%zilq = PF(x,p) - FOGO),  eeeennnn. i, [18]



21

and

JMf0ut)] L aF(xp)

,n=1,2,3 .... . . ..... [19]
ax" ax"
For a constant C,
LLCT = B D v et e e e e [20]

The Laplace inversion of F(x,p) with respect to p is f(x,t),

the original function. Customarily, this relation is expressed as

L™ IF(x,p)] = F(x,1) .

When F(x,p) is prescribed, any formula enabling us to derive the
form of the original function f(x,t) is called an inversion formula.
Several inversion formulas are available for calculating the original
functions. However, the use of these inversion formulas, except for
simpie functions, is extremely difficult and sometimes impossible.
Fortunately, the original functions for a large number of Laplace
transforms are available (i.e. Roberts and Kaufman, 19663 Bateman,
1953) . By applying many operational laws, their applications can
be extended.

If the original function of F(x,p) is f(x,t), then the change of

scale law states that
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L V[F(x,ap)] = %$(§J DU [21]

and the translation law states that

CIF(GpHa)T = @7 30F00E) © e [22]

If L_][F(X,P)] = f(x,t) and L-1[G(x,p)] = g(x,t), then the convolution

law states that
-1 t
L™ [F(x,p)G{x,p}] = IO F(x u)G{x,t-u) du . .......... [23]

For the function, F(x, p) = pv/sz(h/ﬁ), Carslaw and Jager (1959)

give the inverse as:

v Az
\) — —

U e O/R)] = —2me P [24]
(2t)

Laplace-Carson Transforms

As previously stated, the kernel of the Laplace transform is e-pt.
However, the Laplace-Carson transform has the kernel pe_pt, thus, the
definition of the Laplace-Carson transform of a function f{x,t) with

respect to t is
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Lelf(x t)] = J; pe'ptf(x,t) dt = F(x, p)

The symbol Lc[f(x,t)] represents the Laplace-Carson transform of
f(x,t) with respect to t.

From the definition of the Laplace-Carson transform; the following
relationships are easily shown:

For a function f(x,t),

Lciéig%izll- PF(x,p) -~ pf{x,0) , oo, [25]

and

n n
Ll fOGt)] L 3 Flp) o, 3

............. [26]
5 X! ax"
For a constant C,
o3 1O R AR [27]

Several similarities exist between the Laplace and Laplace-Carson
transforms. However, the Laplace-Carscon transform was particularly
appropriate for solving one of the differential equations in this

study. The following operational rules for the Laplace-Carson inversion

(Ditktn and Kuznetsov, 1951) were used,



The Laplace-Carson inversion of F(p) is denoted as

L™ IF(p)T = F{x)

Then,

2
e —2- F(p+vp)] = J: L explzPiyIf(y) dy .

pt/p
The change of scale law becomes
LT F@P)T = FE) o

Also,

24

[28]
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CHAPTER TV
DEVELOPMENT OF MATHEMATICAL MODELS

Two mathematical models of thermal injection into wells {Model I
and Model I1) are developed in this Chapter. Each is mathematically

formulated in two sets of linear partial differential equations.

The two mathematical models only differ in the method used for
thermal transfer into the caprock and bedrock. In Model I, the temper-
ature distribution across a finitely thick caprock and bedrock is
assumed to be linear. In Model II, this restrictive assumption is
removed, and the temperature distribution across a finitely thick cap-
rock and bedrock is allowed to be nonlinear.

A polar coordinate system is adopted, as shown in Figure 1. A
few simplifying assumptions for this type of problem are made and
listed below:

1 The aquifer is assumed to be horizontal and of uniform

thickness bm. The caprock and bedrock are impermeable to
fluid flow and of finite thickness br‘ The system is symme-

trical with respect to the midplane of the aguifer.

2 Flow is assumed to be steady. The injection rate Q is assumed
to be constant. The injection well fully penetrates the
aquifer.

3 The heat loss through the caprock and bedrock is governed by
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conduction in the vertical direction only, i.e., the horizontal
thermal conductivity of the caprock and bedrock is assumed
zero.

Heat transfer in the aquifer is governed by horizontal conduc-
tion and convection. The vertical temperature change 1is
neglected in the aquifer, i.e., the vertical thermal conduc-
tivity in the aquifer is assumed infinite,

A11 the physical and thermal properties of the aquifer, caprock,
and bedrock are assumed constant in time and space.

Convective heat transfer between the individual sand grains in
the aquifer and the surrounding fluid is neglected, i.e., the
sand grain instantaneously has the temperature of the surround-
ing fluid.

Initially, the water and sand in the aquifer, caprock and
bedrock are at the same temperature Ti' The injected water

is kept at a constant temperature To'

The temperature remains constant and equal to the initial

temperature, T, at z = * b

General Heat Equation in the Aquifer

In the aquifer, the solid phase refers to the sand or rock in the

The fluid phase exists in pores between the grains of sand

Since heat conduction occures through both the solid phase

and f1u1d'phase of the aquifer, the thermal conductivity of the

aqui fer, Km’ is thus defined as
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Ky = ¢Kf + (1 - ¢)KS s ettt aeeeeaeai e [31]

where ¢ is the porosity of the aguifer (dimensionless), and Km, Kf and

Ks are the thermal conductivities of the aquifer, fluid phase and

solid phase, respectively, {w/m°C).

The thermal capacity of the aquifer is defined as

(6C), = oloC)e # (1= )6C)y +  weereraanns i [32]

where p is the density (Kg/ms), C is the specific heat (J/m3°C), and
the subscripts m, f and s denote aquifer, fluid and selid,respectively.

The governing heat equation in the aquifer describes the heat
transfer caused by horizontal conduction and convection in the aquifer,
and heat losses by conduction across the caprock and bedrock. This
equation is the same for both models. Applying the conservation of
mass and energy principles, and using the assumptions previously

stated, the resulting heat equation is:

m 1 - 2w m r r 1 m
2 r ar T Kb 8z, TR v e [33]

3

where all symbols have been previously defined. A detailed development

of Equation 33 is given in Appendix A,
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Partial Differential Equations For Model I

In addition to assumptions 1 through 8 on pages 25 and 27, Model I
assumes that the temperature distribution across the caprack is linear,

Considering the boundary conditions prescribed for the caprock, namely

that Tr(r, br’ t) = TO and Tr(r, 0, t) = Tm, the linear temperature

distribution across the caprock is given by

Equation 34 is the temperature distribution function in the caprock.

Because Equation 34 is linear, its derivative is

Substituting Equation 35 into Equation 33, a condensed equation for

Model 1 is
327 AT 2K (T - T) aT
m, 1 =20 m ro m’ _ 1 m
5+ r 57 T Kb b o At e [36]
ar mom m
and
Tm(r, 0) = T0 s eeree et eiireeaeeet et [37]
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where Equation 37 is the initial condition and Equations 38 and 39 are
the two boundary conditions given for this model.
For simplicity, the dimensionless parameters, T, 17, R and K are

introduced into Equations 36 through 39, yielding

Z

a T T - 2w 8T _aT
—2"‘ R B—R—ET——B"_L-_', ........................ [40]
aR

and
T(R, 0) T [41]
U0, T) T 1 ittt iienenerernannssnsncnsnsacsnnaens 1421
T, T) = 0 ettt ittt ittt er et e e [43]

K 2b
where £ = ¢ and b = E—L is the thickness ratio.

m

Partial Differential Equations For Model II

The limitation of the assumed linear temperature distribution

across the caprock is removed in Model II. This does not affect the
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heat equation developed for the aquifer; but the heat eguation in the
caprock is affected. According to the assumption that only vertical
heat conduction occurs in the caprock, the governing heat equation in

the caprock is the one-dimensional heat conduction equation

32T aT
——vgz-l--a—‘% e, [44]
3z %y
with
Tr(r’ z, 0) = TO S e aaeeeeeaeeraenertae s [45]
Tr(r, 0, t) = Tm(r, 1% P [46]
and
Tr(r, br’ t) = To 8t et emsenearesuareece e e n [47]

where Equation 45 is the initial condition and Equations 46 and 47

are the two boundary conditions used in this model. Equations 44
through 47 fully describe the heat conduction problem in the caprock.
A complete description of heat transfer for Model II is obtained by
combining Equations 36 through 39 and Equations 44 through 47. Again,
for simplicity, dimensionless parameters T, t, R, K, a, b and

= Zz/bm are introduced into Equations 36 through 39 and Equations

44 through 47. Consequently, Model II becomes:



with

and

2 .

e

822 a2 aT

2T, 1=zl , P e
AR B R R
TR, Z,0) =0 , oo

—I
—
-~

w
o
e
13
(o]
-

T(Os T) =] ’

T(m: T) =0 ,

T -T
T r

1T, -1
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.....................
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.....................
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~ TO is the dimensionless caprock temperature.

[48]

[49]

[50]

[51]

[52]

[53]

[541

[55]
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CHAPTER V

RESULTS AND DISCUSSTONS

Model I is solved using Laplace transforms. Model II is solved
using Laplace and Laplace-Carson transforms. Two asymptotic solutions
for the unsteady state condition are obtained for Model II. One of
the two asymptotic solutions is for long time periods, which is solved
using Laplace transforms. The other asymptotic solution is for short
time periods, which is solved using Laplace-Carson transforms. The
solutions are in integral form and methods of numerical integration

are discussed.

Analytical Solution For Model I

Model 1 was mathematically given by Equations 40 to 43, and for

convenience these equations are reproduced here:

zR;URZ“—g—;—-gT—%} s e [56]
TR, 0) = 0 4 iieiiiieieeinracosesnanncnsasansanns £57]
T(0, T) = 1 s et (581
T0y 1) = 0 o et e e [59]
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The Laplace transform is applied to T(R, t) with respect to t,

U(Rs p) = L[T(Rs T)J

Applying the relationships given in Equations 18, 19 and 57 to Equation

56 gives
d2u+1-2mg_q_u=u ‘601
dRZ R dR £ Pl i it i et e

Equation 60 is a two-point boundary value problem. The two boundary
conditions associated with Equation 60 are obtained by applying

Laplace transforms to Equations 58 and 59, i.e.

U0, ) = 1Py i e e e [61]
and
LT o [62]
The solution for the problem posed by Equations 60, 61 and 62 is
T=— mexp(-x - 9yl gy [63]
FTET . X 5 sa s sagssssenuvenaery
where
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B A
STTFTT % b K
Ym m

A detailed derivation of Equation 63 is given in Appendix B.

Equation 63 is the unsteady state solution for the aquifer tem-
perature distribution for Model I. The unsteady state condition in
engineering problems is time-dependent. The steady state condition is
time-independent, and is theoretically approached as time approaches
infinity.

In Equation 63, u is the only time-dependent parameter. When
time equals infinity, u = 0. Hence, the steady state solution for

the aquifer temperature distribution is

.1 rr gy ,w-1
T= fT—j'JO exp(-x - ) x*T dx . [64]

w

Equation 64 can be expressed in terms of a Bessel functicn. By
comparing the integral on the right hand side of Equation 64 with

Equation 17, it is found that

Equation 65 can also be obtained by solving the original differ-

ential equation (Equation 56), with 8T/5t = 0.

)

In Equation 63, if r = 0, then u = 0 = 0. This makes



for the integral part of the above equation is by definition r(w)
(Equation 7). Thus the boundary condition at r = 0 is satisfied.

If r ==, then 4 = 6 = =. With both u and o equal to infinity, the
integral equals zero, and the other boundary condition is satisfied.
The initial condition is easily checked by letting t = 0; then u = =,
making the integral equal 0, and giving T = 0. Furthermore, if the

caprock is insulated and Kr = 0, then ¢ = 0, and

1 w-1 . _ T{w,u)
T = mfu EXD(-X)X dx = '—I:-(—w*)——

In probability functions, I'{w, u)/T(w) is the cumulative Chi-Square
distribution with degrees of freedom 2w. (Abramowitz and Stegun,
1972). Therefore, if the caprock is insulated, the aquifer tempera-
ture distribution follows the cumulative Chi-Sguare distribution

with degrees of freedom 2.

Analytical Solutiens For Model II

The differential equations for Model II are:

AT

o,
3R ot

=170
2

36
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Then

32T+]'2‘“§_T. +K& - 8T

;‘F R 3R Y4 7=0 O AR R R E R
Ti(Ry Z,0) =0
Ty(Ry by 1) =0,
7R, 0, 7} = TR, ©) e
TRy B) = 0 4 ottt et e e
T{0, T) = 1 e
T, 1) = 0 L i e e et e et
Let

U](R’ Z, p) = L[T'l(R: zZ, T)] 3

U(R, p) = LIT(R, )]

the mathematical model is transformed to

£67]

(e8]

[69]

[70]

[71]

[72]

[73]
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:Rg 31 i 2w %%‘* K—H%-Zzo =pU L e [75]

UI(R’ by P) = 0 e et e [76]

Uy (R 0, p) = U(R, P) 4 e [77]

{0, P) = 1 D s ittt iieeneeeeeianrernnnnnaeans [78]
and

U, P = 0 i ittt e i ettt e a e [79]

Equation 74 is solved first, then Equation 75 is subsequently
solved. The solution of the two-point boundary value problem posed

by Equations 74, 76 and 77 is (Sneddon, 1972)

u. = ysinhl(b - z}Vpfal e, [80]
sinh[bvp/al
Thus
du
= 2 cotn(R)
Z=0 * “

Placing the above result into Equation 75 gives

38
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O
[amd

1z oady o + KB cotn@ Bw=0 . ... [81]

A

Following the detailed derivation given in Appendix B, the

soTution to Equations 81, 78 and 79 is

T{w) p ’

where

The inversion of Equation 82 is difficult by any known inversion
formulas. However, approximate solutions, one for sufficiently short
time periods and the other for sufficiently long time periods, can be
obtained.

The parameters (t and p) in the Laplace transform are inversely
related. Thus, as t becomes small, p becomes large. The solution for
short time periods is obtained from Equation 82 when p becomes large.
When p is large the argument of the hyperbolic cotangent in Equation
83 approaches unity. As discussed in Chapter III, for bzp/a2 > 10,
the hyperbolic cotangent may be replaced by unity without appreciably
changing the value of Equation 82. Using this approximation, Equation

82 is written as
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2 1-w RY {p + —Jr-wlz Kw(RVp + -2 vp)

u-= F(UJ) D P bt s [84]

Even with this approximation, no inversion formula to Equation 84 in
Laplace transforms was found. Instead, lLaplace-Carson transforms were
used to solve this problem. The derivation of the solution for short
time periods using Laplace-Carson transforms is given in Appendix C.

The solution is

T= - j e ¥Erfe =27 Ny L [85]
u x(x - u)
where
1/2
n_ﬁhlr_&[fm]/
4y 2 bm Km o,

The time criterion for short time periods is n < 0.1 bz/u2
2
t < 0.1 br /ur.

Making the change of variable, y = %-, in Equation 85 results in

w ]
= U -u _ny
T ?TE)JO exp(y ) Erfc [ — y)} ; +m

2
Substituting u = g?-and n = gg—into the above equation gives
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1 ‘
2 2
1 R\w -R Kv't d
T = () J exp(7-) Erfc(z L —) TL ,
I‘Ew} 4 g Aty 20 '/-IT)? y +uw
which is identical with the solution of Avdonin (1964}, which was
given in Equation 1. Recalling that Avdonin assumed the caprock
thickness to be infinite while Equation 85 assumes a finite caprock
thickness, then it can be concluded that the caprock thickness, br’

is not important for short time periods where t < 0.1 brz/ar.

The parameter br is not directly involved in the solution of
Equation 85, but appears only in the time criterion inequality,
t < 0.1 brz/ar' This indicates that the thermal response in the

aqufier for some time period after injection starts is independent
of the caprock thickness. The duration of this time period is propor-
tional to the square of the caprock thickness. Therefore, the larger

br is, the longer Equation 85 is applicable.

In Figure 2, Equation 85 is graphically presented for different

values of w with n equal to 0.5: Note that the thermal front

extends further for larger values of w. Physically, a Targer injection
rate will increase w, and accelerate the movement of the thermal front
because more heat is added to the aquifer. On the other hand, a
thinner aquifer will also increase w. A thin aguifer has less aquifer
volume per unit radius than a thick aquifer, and will absorb less heat;
thus the thermal front will extend further for a thin aquifer (all the

properties being equal).



43

In Figure 3, Equation 85 is graphically presented for different
values of n with w equal to 90. The parameter n is a combination
of the thermal properties K/o and geometric distance R. A larger
vertical thermal conductivity in the caprock makes n larger; conse-
quently more heat is lost through the caprock and the thermal front
does not advance as far. This explains why the curves with larger
values of n always have smaller values of T.

If »r =0, then u = 0 and the argument of the Complementary Error

function in Equation 85 is zero. Since Erfc(0) = 1, Equation 85

becomes
_ 1 X -] _
T~—I,—(I)—J0ex dx = 1 .
when r = 0.

In the cases where either r = = or t = 0, the integrand of Equa-
tion 85 exists, and the value of u is infinity. Under this condition,
Equation 85 yields T = 0. These three cases prove that Equation 85
satisfies the initial and boundary condition prescribed for this

problem,

By Tetting t = » { u = 0), Equation 85 yields the steady state

—
1t

temperature distribution, 1. However, to apply Equation 85, the

~o

time criterion, t < 0.1 b, /a s must be met. This indicates that

Equation 85 should not be used to evaluate steady state temperature

distributions.
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A solution for Tong time periods corresponds to that obtained

from Equation 82 if p becomes small (t becomes large). When

2 . . .
b p/u2 < 1.0, the hyperbolic contangent in Equation 83 can be approxi-

mated by o/bvp + b/p/3a. Making this substitutfon for coth{bvp/a)

in Equation 83 gives

where

§'=1+¢8 , and

5 - Kb _ gb_r. (DC)
w235, T,

Using x as defined in Equation 86, Equation 82 is simplified to:

J = 2708 (8'p + &)Y PR (R/ETEF E)
T'(w) p

A detailed derivation of the inversion of Equation 87 is given in

Appendix B. The result is

_ 1 ® gy Jw=1
T = ?TEQ‘J(1+5) uexp(-x - XA L [88]

Equation 88 is the aquifer temperature distribution for long time

periods, T 3,b2/u or t 3-br2/ar' For Equation 88 to be applicable,

the time parameter t must be greater than or equal to the lower limit,
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2 I .

b"/o. No upper Timit exists. Thus 7 can increase to infinity,
yielding a steady state solution for finitely thick caprocks. The
only time-dependent parameter in Equation 88 is u. Therefore, as

T >, U~ 0 and the steady state solution is

1

1 ® -

which is identical with Equation 64, the steady state solution obtained
for Model I. Thus, the steady state solutions are the same for both
models, Comparing the unsteady state solution for Tong time periods

in Model IT (Equation 88) with the unsteady state solution in Model I
(Equation 63)it is found that the only difference between them is

the lower 1imit of the integral; namely, (1+8)u for Equation 88 and

u for Equation 63. Apparently, in Model I the parameter & is zero.

The parameter & being zero could result from a relatively small caprock

thickness (br) or large aquifer thickness(bm). Under these conditions,

Model II for long time period essentially equals Model I and the
assumption in Model I of a linear temperature distribution in the
caprock appears valid.

In Figure 4, Equation 64 is graphically presented for different
values of w. At steady state, a larger » gives a larger value of T
at a fixed point in the aquifer. Also, a larger value of w makes the
thermal front in the aquifer move a greater distance.

In Figure 5, Equation 88 is graphically presented for different

values of w with oequal to 10.0. As previously discussed, larger
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values of w yield larger values of T at a fixed point in the aquifer,
and the thermal front extends a greater distance.

In Figure 6, Equation 88 is graphically presented for different
values of o with w equal to 90.0. Mathematically, a large value of
o makes the integrand in Equation 88 smaller, consequently a smaller
value of T. Physically, a larger value of o results from a larger

value of Kr' When Kr is large, more heat is lost through the caprock,

and less heat is available for transportation through the aguifer.
Numerical Integration of Solutions

The integrals appearing in the above solutions are not solvable
by ordinary means of integration. Accordingly, it was necessary to
use numerical methods. When a definite integral is to be evaluated
by numerical methods, it is essential that the integrand have no
sigularities in the domain of interest. This requirement is satisfied
by each of the previously given solutions.

In groundwater hydrology, values of w usually range from 50 to
250. For such large values of w, I'(w) is an extremely large number,
and is not manageable by most digital computers. However, the Binet
formula {Whittaker and Watson, 1927) gives an expression for log r(x),
which reduces T(x) to smaller and more manageable values. In numerical
Tibraries({IBM System/360 Scientific Subroutine Package), the Binet
foumula for log r{x) is given in the subroutine entitled DLGAM, which
computes the natural lognithm of the Gamma function of a given argue-

ment, x, where 10'9 < X < 1070.
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To use Tn T(x),determined by DLGAM, to evaluate the solution integrals,
the integrands must be modified. Using the steady state solution,as an
example, the integrand used for numerical integration may be expressed

as

?C%T J exp(-x - %J K1 dx
0

J: exp[-x - §-+ (w=1) Tn{x) + Inr{w)] dx

Using this transformation not only overcomes the exponetial overflow
problem of I'{w), but also makes the integral numerically much smaller;
so that it can be numerically evaluated on digital computers.

Gaussian quadrature formulas are approporiate for numerically
integrating the solutions. However, Gaussian quadrature was developed
to evaluate integrals with finite integrétion intervals. Although
several methods are available for transforming an infinite integration
interval into a finite interval, the following method was found
effective for these problems.

Al1 the solution integrands have a common form
X Xw-]

f£(x) = e alx)

where g(x) = Erfc[—ﬂi§;~—i for the short time period solution, and
Yx{x-u



52

g(x) = e'd/X for the remaining solutions. In both cases, g(x) < 1.

Thus,

] Im -X w=1 1 T ex -1
e "x g(x) dx <- J e "x dx
I‘imj u I‘tmj u

Making a change of variable, y = -- , the right hand side of the above

inequality results in

vl

] “ R PR
T{w) u f i €y + .

=
®,
|
=
1=

and

1
_d € .If.y 1 ‘I/.y
J e yLTAL_ "("T J _,T__ﬂgx.+fqaj. : 2__715?1

A value for ¢ must be found so that the first integral on the right

hand side of the above equation may be neglected. It is apparent that

+

1 [ -1y dy g -1/e 1
T{w) Joe y +i i-TIwS € T+w

Introducing the Stirling formula, given in Equation 9,into the above

inequality results in
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1 € -1y dy o ~1/e, e\
r{w) J € Yo = .é?e (E)

0 y

The temm, %;—e'}/g(gﬁ)w in the above inequality is the estimated

error of neglecting the integral from zero to . In the field of
groundwater hydrology, the value of w usually falls within the range
of 50 < w < 250. Therefore, using the Stirling formula to approximate

r(w) appears to be reasonable. The value of e can now be determined

from the estimated error term, /§%°e-1/€(25)w' For example, if

w = 100, and choose ¢ = %Ey then the error due to neglecting the

integral from 0 to ¢ is at worst 7.50536 x 10"13.

The error becomes
even smaller as w becomes larger.
However, the error estimated here is for the transformed variable,

y = 1/x. For the original integral,

o 1/8 ©
1 -x w=1 1 - w=1 1 -x w=1
r‘mfue * 9(X’dXiﬂ;)L e d“fmh,f X

and the term fﬁﬁ-e"1/€(ggjw js used to estimate the error when the

original integral from 1/¢ to = is neglected. Thus, the integration
interval (u, 20) may be used to approximate the integration integral

(u, =) without any appreciably error when values of w > 50 are used.
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From this analysis, the problem of a non-finite integration interval
is overcome, and Gaussian guadrature becomes applicabie. The unsteady
state solutions are numerically evaluated by Gaussian quadature over
the integration interval u to 2.0w.

The steady state solution is evaluated using the following method.
Applying the change of variable, y = 1/x, to the steady state solution,

the following equation is obtained:

© .
a

1 w=1, _ 1 m .1y dy _
TTIJ’JO exp(-x - ;Jx dx = ?TET'JO exp{-oy - y);T¥¢

1 0 exp(-1) © exp(—lJ - exp{-oy - l)
oy, R [ — dy} -
®ro w 0 y
1 exp(—;& - exp(-oy - %J
1 - I‘(wj ,[0 T+ . dy 3 seerwsasasense [89]

where

Two advantages are gained in this way: (1) the integrand

1 1
exp(-7) - exp(-oy - =)
Y Y. s numerically much smaller; and (2) the

-
F(w)y1 v
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- numerical accuracy is improved considerably. The original integration
interval is also changed from (0, «) to (0, 2.0w), so that Gaussian
quadrature can be applied.

In summary, Gaussian quadrature is used to numerically integrate
the solutions from u or zero to 7w, rather than from u or zero to «.
The Tn r{x).determined by DLGAM, is also used to prevent exponential
overflow problem. Results obtained using these procedures are shown in
Figures 2, 3, 4, 5 and 6. The computer programs used to obtain the

solutions are given in Appendix D.
Approximate Solution For Laplace Inversions

In this study, temperature distributions for intermediate ranges

b 2
r

a
r

b 2

r
a
r

of time, 0.1 , are approximated using Schapery's (1962)

2t=

method. According to Schapery's direct method {1962),

21—wa &
T-= TTe) )(1-2- Km(R\/)?.I) s eeeersereeseararestaaaeanes [90}
where
= VK 1 b 1.
X1 7 2t * o /ECOth(a »/21‘?)

From Equation 17, Equation 90 may be expressed in integral form as
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2
Rx.l

_ * w-1
T = TTETJO exp{-z - a7 12 d

7 (911

tEquation 91 is evaluated using the numerical technique developed for

the steady state solution. In Figure 7, results from Equation 91 are
compared with those of Equation 85 for v < 0.1 bz/az, and of Equation

88 for t > bz/uz. Apparently, the approximate method of Schapery

yields satisfactory results only for Targe times, and its use is not

recommended for problems of this nature unless some error in the

solution can be accepted.

Summary

Solutions for the two models are summarized below:
1 The unsteady state aquifer temperature distribution for Model

I is

_ ” . oy Lw-]
T = ST Ju exp(-x X) X dx

2 The unsteady state aquifer temperature distribution for short

time periods, t < 0.1br2/ar . in Model II is

] f“ -X w1
T = Ty e "Erfc(————) x° 'dx
Tl 1, Yx{x-u?}
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3 The unsteady state aquifer temperature distribution for long

time periods, t > b “/a_, in Model 1T is

1

® -1
T = I exp(-x - &) x*7'd
I'(UJS (-H_S)u X

X

4 The steady state aquifer temperature distribution for both

models is

1

_ ® oy -l
T = ey JO exp{~x - X) x d

X

or

=

252 K (2/3)
TE I'{w}
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CHAPTER VI
GRAPHICAL TECHNIQUES TO EVALUATE AQUIFER THERMAL PROPERTIES
In the present study, four pertinent thermal properties, Kr’ K ,

m

(pC)r and (pC)m, are needed to operate the models. These parameters

are difficult to evaluate under field conditions. Using the previously
developed solutions, a curve matching technique is proposed for esti-
mating the four thermal properties using field data. The values of

Kr and Km are determined using field data collected near steady state

conditions. The values of (pC)r and (pC)m are determined using field

data measured soon after injection starts. Since the steady state
condition is difficult to attain in the field, an approximate graphi-
cal technique for evaluating the parameters is developed without

using the steady state data. In this approximate method, Km is

assumed equal to K, and (pC)r is assumed equal to (pC)m.

ITlustration of the Graphical Technique

1 Prepare a set of dimensionless-type curves from the steady
state solution (hereafter referred to as the steady state
type curves). Steady state type curves are constructed such
that T versus the logarithm of ¢, Each single curve corres-
ponds to a particular value of w.

2 Temperature observations from several wells at different
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radii from the injection well and approaching steady state

are plotted as T versus the logarithm of rz/bmbr'(hereafter)

referred to as the steady state field curve).

Superimpose the steady state field curves onto the steady

state type curves, keeping the coordinate axes parallel and

the logarithmic axes the same until a matching position is ob-
tajned between the steady state field curve and one of the steady
state-type curves. In some cases, interpolation between two
curves may be necessary. Because each steady state type curve

has a unique value of w, the value of Km can be calculated
from the following equation:

w =
41Tmem

In the matching position, select an arbitrary value of o

and its associated value of r?‘/brbm from the steady state
field curve. Since

rm om
and Km is known from step 3, the value of Kr can be calculated.

With @ known, a set of unsteady state type curves are cons-
tructed using the solution for short time periods from Modetl
II. The curves are plotted such that T versus the Togarithm

of u, and each curve is associated with a particular value
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of n, while w is held constant,

Field data from any one of the observation wells at an early
time is plotted such that T versus the logarithm of r2/t (here-
after referred to as the unsteady state field curves).
Superimpose the unsteady state field curves onto the unsteady
state type curves, keeping the coordinate axes parallel and

the Togarithmic axes the same. The field data curve is matched
with one of the unsteady state type curves. Select an arbi-
trary value of r2/t from the field curves and a corresponding

value of u from the type curve. The value of o, €an then be

calculated from the following equation:

2
- _r

a = —

m- 4dut

After a is determined, the value of (pC)m is determined using

K

(oC), = am

=

The matching position also gives a particular value of n.

Since

K. (p
= b r ro
2, R,

the value of 6pC)r can be determined because Kr’ Km, and

(pC)m have previously been determined.
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Sample Calculations

Thefield data used in the following example are hypothetical, and
were developed to illustrate the use of the graphical technique. A
well penetrating a confined aguifer is injected with hot water at a
uniform rate of 90.8 m3/hr. The aquifer thickness, bm is 40 m and the
caprock thickness, br’ is 20 m. Before the hot water with a uniform
temperature of 70°C is injected, the aquifer and the caprock are at a
uniform initial temperature of 20°C. At steady state, the aquifer
temperature during the injection period is observed in five observation
wells located at 10 m, 40 m, 60 m, 80 m and 100 m from the injection
well. The resulting values of Tm in the five observation wells are
listed in Table 1. Values of rz/brbm and T are computed and appear in
the righthand columns of Table 1. |

Soon after injection started, temperatures were observed in the
five observation wells. For this example, the data from the observation
well 40 m from the injection well are used. Observations of t and Tm
are listed in Table 2. Values of rz/t and T are computed and shown
in the righthand columns of Table 2.

First, values of Km and Kr must be determined. To do this,
values of T and r2/brbm (from Table 1) are plotted on logarithmic
paper. Type curves for the steady state solution are constructed on
another sheet of logarithmic paper. The two sheets are superimposed
and shifted (maintaining the coordinate axes parallel) until the
field data points coincide with one of the type curves, as shown in

Figure 8. At this matching position, the type curve gives w = 90. The



TABLE T, TEMPERATURES MEASURED AT STEADY STATE CONDITION

rﬂm)' Tm(°C) rz/brbm T

10 70 0.125 1.000

40 69.35 2.00 0.987

60 68.65 4.50 0.973

80 67.60 8,00 0.952
~100 66.30 12.50 0.926

TABLE 2, TEMPERATURES MEASURED AT UNSTEADY STATE CONDITION

(r = 40 m).
t(hr) ey T

0 20.0 - 0.000
1400 27.8 1.143 0.156
1600 46.8 1.000 0.544
1650 51.5 0.970 0.630
1700 55.05 -0.941 0.701
1750 57.85 0.914 0.757
1800 60.00 0.889 0.800
1850 61.55 0.865 0.831
1900 62.70 0.842 0.854
1950 63.50 0.821 0.870
2000 64.10 0.800 0.883
2100 64.95 0.762 0.899
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value of Km is determined from

W= s
4ﬁmem

where (pC)fis usually considered constant and has the value of

4.187 x 108 (a/m°°C). Thus,

(eC),Q 6
a £* _ (4.187 x 107)(90.8) - 8.404 x ]03(mgc)

Knp = Tnb e T An(A0)(90)

A point selected at the matching position gives rz/bmbr = 109

and o = 60. The value of K. is determined from

2 K
et ol
mer‘ m
or
e |7 3 -1
K, = ZUKm(bmbr) = 2(60)(8.404 x 10°)(109)"" =

3, w
9,252 x 10 (asEJ

After values of Km and Kr are determined, values of (pC)m and
(pC)r can be determined using the early time data. Values of T and
rz/t from Table 2 are plotted on Togarithmic paper. Type curves for

the short time period solution are constructed on another sheet of
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logarithmic paper, using w = 90 (from steady state condition). The
two sheets are superimposed and shifted, with coordinate axes parallel,
until the observed data points concide with one of the type curves,

as shown in Figure 9, From this matching position, the type curve
gives n = 0.5, and u = 90; and from the field data curve r2/t = 1.0,

The value of o is determined from

.m
or
%=ﬁ%§JR$%§m)=2JMx1N%$é
Hence,

K 3
8.404 x 10 6, J
(pC) = = 2aF = 3.025 x 10°(——) .
M a 778 x 10 moc

The value of (pC)r is determined from

= [Et‘(pc)r]wz
"7 2 YK TRC) ’
m m m

where the value of r is the distance of the observation well from the

injection well. In this example, r=40 m. Hence
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2
2b 2,40,2,8.404 x 10° 6
(oC). = 4n —m?—JB(pC) = 4(0.5) (37) (X220 (3,025 x 10°) =
r o SR 407 Y9-952 x 10°
2.748 x 106(-5}-—) .
m °C
Therefore,
K 3 2
r 9,252 x 10 =3.m
o = = = 3.367 x 1077 (M)
r 0l " 5 748 x 10 hr

Discussion

In the mathematical sense, four unknowns can be uniquely deter-
mined by four distinct equations. Also, different curves represent
different equations. So, two curves constructed from steady state and
unsteady state field data represent two distinct equations. In addi-
tion, two curves constructed from the steady state and unsteady state
solutions also represent two distinct equations. In the developed
graphical method, the two field data curves are matched to the respaective
solution type curves. This means the equations are ecuated, so that the
involved unknowns can be uniquely determined.

In the graphical sense, curves with no more than two parameters
are representable in two-dimensional space. For example, Equation 85

has three parameters and is represented in Figures 2 and 3 with two
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parameters, while one of the three parameters is kept constant, i.e.

n = 0.5 1in Figure 2 and w = 90 in Figure 3. Therefore, the use of only
the unsteady state solution curves and data curves will not assure
unique results.

The steady state solution has only two parameters, w and o. This
means.that the steady state solution must inevitably be used to deter-
mine the four pertinent thermal properties. Indeed, making use of the
steady state solution and field data reduces the number of unknown
thermal properties form four to two. It also supplies a value of w
which reduces the number of unknown parameters in the solution for
short time periods from three to two. Consequently, the solution for
short time periods can then be used to determine the remaining two

thermal properties, (pC)m and (pC)r.

After values of Km and Kr are determined from the steady state
condition, the number of unknown parameters in the solution for long
time periods is also reduced to two, namely, & and u. However, & and
u form the lower limit of integration in the solution, (1+8)u, which

involves the remaining two undertermined thermal properties, (pC)m
and (pC)r. In addition, (pC)m and (pC)r do not appear in any other

parameters in this solution. This makes it difficult to develop a
graphical method using the long time period solution.

The preceeding discussion clearly explains the reason why the
steady state solution and short time period solution are adopted for
use in the present graphical method. 1In reality, however, obtaining

field data approaching steady state conditions will be difficult
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because of the extremely Tong times required to reach a steady state
condition. For example in the sample calculation, the steady state
condition would not be approached until the time after the injection

started was longer than

ro__ (20)°

5
- - (
r 3.367 x 10

3 = 1.188 x 107 (hr)

This long period of time is mainly caused by the very low value of
e, However, if the caprock thickness is small, the steady state
condition can be approached within a reasonable period of time after

injection starts. For instance, if br is only 4 m while all other
conditions are the same as in the example calculation, then

2

X = 198.0(days) ,
-

o

Q

which might be achieved in practice. Therefore, the proposed
graphical method for determining thermal properties, from an appli-
cation standpoint, is more useful under conditions where the caprock
thickness is small. For the condition where the caprock thickness
is not small, an approximate method for graphically determining the
thermal properties is developed and presented in the next section.

Before a value of o, is determined, no information is available

for evaluating the Timit of the short time period solution. Data

collected immediately after injection starts is presumed to satisfy
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. the short time period criterion. When the value of o, is determined,
2

the short time period creterion, t < 0.1 b,. /e, can be calculated,

and the validity of (pC)m and (pC)r verified,

In this example, the time limit for using the short time period
solution is about 1.188 x 104(hr), or 495 days. Obviously all the
field data used were for times less than 495 days. Thus, the short
time period solution is valid for these data. This targe upper limit
for the short time period reveals that if the caprock thickness is

only moderately large (br > 10m), the solution for short time periods

becomes the dominant equation in the problem. In other words, the
aquifer temperature distribution is given by Equation 85 for most

practical situations, if br > 10m and o, is of the order of 0.003 to

0.004 m2/hr.

Approximate Graphical Method

For most practical cases, Kr and |<m are about the same order of
magnitude and (pC)r and (pC)rrI are also approximately the same order

of magnitude. So, the assumption that K/o = 1.0 appears reasonable.

Thus, the definition of n is simplified to

Since the value of r is the distance of the observation well from the
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injection well, n is no Tonger an unknown. Under this condition,

the solution for short time periods involves only two unknown para-

meters, w and u. One pertinent thermal property, Km, is involved in

w and the other pertinent thermal property, (pC)m is in u. Therefore,

the short time period solution can be independently used to approximate

Km and (pC)m. The procedure for this approximate graphical method is

as follows:

1

Type curves for short time periods are constructed such that
T versus the logarithm of u. Each curve corresponds to a par-

ticular value of w., The parameter n is determined by the

equation
n o= e—
me

where the values of r and bm are known.

A data curve from the observation well in procedure 1 is cons-
tructed such that T versus the logarithm of rz/t. The value
of r should be the same one used to deterrtine n.

Superimpose the data curve onto the type curves for short

time periods, keeping the coordinate axes parallel and the
logarithmic axes the same, until a matching position is
obtained between the data curve and one of the type curves.

At the matching position, the value of « for the matched

type curve can be determined, Sometimes values of w must be

interpolated between two type curves. At the matching
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position, a specific value of r2/t and its associated value

of u are obtained. Then Km is determined from

Km N 4ﬂbmw

o and (pC)m arc determined frcm

m
2 Ko

r _
and (pC)m =

“m ~ dut

An example of this method is given by using the data from the

previous example problem. Since r = 40 m and bm =40 m, n is equal to

0.5. The type curves for short time periods are constructed using

n = 0.5. The field data points (T vs. Tlog rz/t) are plotted on
another curve. The two curves are superimposed and shifted, keeping
the coordinates axes parallel, until the data points coincide with
one of the type curves, as shown in Figure 10. At this matching
position, w equals 90, and a match point gives r2/t = 0.4 and

u=36.3. So, Km is calculated as 8.404 x 103(w/m°C) and (pC)m as

3.05 x 10%(3/m°°c).

It is interesting that the value of Km determined in this manner

is identical with the value obtained by the more precise preceeding

method, and the values of (pC) differ by only 0.1 percent. This
m

good approximation was caused by the fact that K/a = 0.976 in the
original calculations (Km = B.262 x 103 W/m°C, Kr = 9,209 x 103 W/meC,
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(sC), = 2.851 x 108 3/mPeC and (sC),, = 2.435 x 10% 9/m3oc). So, the

assumption that K/o = 1,0 in the approximate method should give good
results for this problem,

To test the influence of the assumption that K/a = 1.0 on the
real condition that K/o # 1.0, four figures, Figures 11, 12, 13 and
14, were prepared. In each figure, curves for the short time period
sofution are plotted for different values of the ratio, K/a; It was
found that when 0.9 < K/a < 1.1, the assumption that K/a = 1.0 yields
reasonable results. The error caused by this assumption was Tess

than 5 percent,
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CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

In this study, two mathematical models, Model I and Model II,
were developed to examine the influence of a finitely thick caprock
on the thermal response in the aguifer during the thermal injection
process. For both models, the caprock thickness was assumed finite.

Model I assumes that the vertical temperature distribution in
the caprock is linear, and has a unsteady state and a steady state

solution. The unsteady state solution for Model I is

1 T ex-o/X w1
T-mjue X dx

The steady state solution for Model I is

1 [T —x-0/%x_w-1
T—m}oe X dx

Model II assumes that the vertical temperature distribution in
the caprock is non-linear and two asymptotic solutions for the unsteady
state case and an exact solution for the steady state case were

obtained. One of the two asymptotic solutions is for short time
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periods, t < 0.1 brz/“r’ and is expressed as

The other asymptotic solution is for long time periods, t > brz/“r’ and

is expressed as

1 r
Tl (145

- e-X—c/Xxw—]d

X

The steady state solution for Model IT is jidentical with that for
Model I. |

Using the.unsteady state solution for short time periods and
the steady state solution in Model 1I, a graphical technique was
developed for determining four pertinent aquifer thermal properties:

(1) the horizontal thermal conductivity of the aquifer, Km’ (2) the
thermal capacity of the aquifer, (pC)m, (3) the vertical thermal

conductivity of the caprock, Ko and (4)‘the thermal capacity of the
caprock, (pC)r. Dimensionless type curves are constructed from the
steady state solution and from the unsteady state solution for short
time periods. Using field data, one field curve is constructed using
long-term temperature observations {approaching steady state} from
several observation wells, and a second curve is constructed using
short-time temperature observations from any one of the observation

wells. These curves are then matched with the appropriate dimension-
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less type curves, and values of the four aquifer thermal properties
evaluated.

Since it is difficult to attain the steady state condition in
the field, an approximate graphical technique for evaluating the
parameters is developed without using the steady state field data. In
this approximate method, Kr is assumed equal to Km, and (pC)r is assumed

equal to (pC)m.

Conclusions

This study permitted the following conclusions to be drawn:

1 The caprock thickness influences the temperature distribution
in the aquifer only when the time after injection is long.

2 Schapery's approximate method for inverting Laplace transforms
yielded satisfactory results to this problem only after large
times.

3 An exact solution for the temperature distribution in an
aquifer was obtained for steady state conditions. Two
asymptotic solutions for the temperature distribution in an
aquifer were obtained under unsteady state conditions; one is
for short time periods, and the other is for long time periods.
No solution was obtained for the intermediate time interval.

4 The short time period unsteady solution will suffice for anal-
yzing most practical problems,

5 A graphical method was developed to evaluate four thermal

properties: (1) the horizontal thermal conductivity in the
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5 (Continued) aguifer, (2) the thermal capacity in the aquifer,
(3) the vertical thermal conductivity in the caprock, and
(4) the thermal capacity in the caprock., This graphical
method uses field measurements of aquifer temperatures and
type curves prepared from the analytical solution.

6 A modified graphical method was developed to evaluate the
horizontal thermal conductivity and the thermal capacity in
the aquifer. In this modified method, the vertical thermal
conductivity in the caprock is assumed to be equal to the
horizontal thermal conductivity in the aquifer, and the ther-
mal capacity in the caprock is assumed to be equal to that

in the aquifer.

Recommendations

This study showed the following areas to be in particular need
of additional work:
1 Comparison of the analytical solutions with field data.

2 The exact Laplace inversion of Equation 82 needs to be found.
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APPENDIX A

DERIVATION OF THE HEAT EQUATION FOR THE AQUIFER

The general heat equation in the aquifer for both models can be
derived by combining the principles of conservation of mass and
energy, Darcy's law and Fourier's law. Because of the assumptions
made, the result is a linear, second order partial differential
equation which involves two dependent variables, time and radial
distance. ATl the assumptions were given in Chapter IV and are not
reproduced here.

The principle of conservation of energy when applied to a volume

element of porous media fixed in space can be stated as:

(Rate of energy inflow) - (Rate of energy outflow) =

(Rate of change of energy inside the volume element)

Applying this principle to the volume element shown in Figure

A-1 results in

Ho= Hoy g - Ho = 3H /8 0 i [A-1]
where
ot
Ho = Ko * (PO VeTeAL

is the rate of energy inflow across face Ar’ Tf is the fluid flow tem-

perature and Vf is the Darcy volume flux of flow;
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AT

= _n
ptdr T CKar T CCIVTEAL L g

H

is the rate of energy outflow across face Ar + dp b

aT

H = -K—F| A ,
c ro8zf,.qg ¢

is the rate of energy outflow dcross the top face of the aquifer Ac;

and

H, = (C)V.T

is the energy contained inside the volume element Vm . Note that the

chosen volume element is assumed to be symetrical about the midpoint
of the aquifer.

Furthermore, Hr is assumed to include only heat conduction and
convection in the aquifer. The term —KmaTm/ar is the expression for
heat conduction, and the term (pC)foTf is the expression for heat

convection. By assuming that the temperature of the sand in the
aquifer and its surrounding fluid reach thermal equilibrium instan-

taneously, Tf = Tm . Applying a Taylor series expansion about Hr and
neglecting the second and higher order terms,

aH

S -
Hr - Hr v a r L P [A-2]

Substituting



91

aT

= _n
Hr - (—Km 5r T (pc)foTm)Ar

into Equation A-2 and performing the necessary differentions results

in

Hr - Hr +dr
2
aT m Km BTm de
nrbm[Km 2 + (—F - (pC)fV )-5?" (pC)me(Vf+r—HF)]dr . [A-3]

Since the fluid flux Vf is steady, and the injection rate Q is

constant,
V :J_
f 2nb_r .
m
or
de
~ar = Tl ) = Y

and Equation A-3 1is simplified to

2 -
9T K (pC)Q 37
= m _m_ oy m -

He = He s dr "rbm[Km I * r - 2mb r ) ar] dr . .. [A-4]
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The term HC in Equation A-1 is the heat loss from the top
surface of the aguifer into the caprock. Expressing AC in its

differential form, Hc can be written as

K. oT

R e O o B T [A-5]
c UL 74

The term aHV/at on the right hand side- of Equation A-1 is expressed in
differential form as

aH aT

vV _ _m _
St T (pC)m Y‘bm 5t dr s trereseasrsreses ERAERARERREEE [A 6]

Placing Equations A-4, A-5 and A-6 into Equation A-1, and cancelling

the common term (wrbmdr), the heat equation in the aquifer becomes

2
ar " ™m r m z=0 m
Dividing the above equation by Km’ and letting v = e and
m m
Km
o, = TEET; , the heat equation in the aquifer becomes
2T (-20) T . . Ko 9T, )T el
+ + 2 = —— . . A-6
ap? r ar KiPm 22|z=0 om ot

Equation A-6 is the same one given as Equation 33 in the text.
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APPENDIX B

DERIVATION OF SOLUTIONS FOR MODEL I AND MODEL II

The problem to be solved was posed in Chapter V by Equation 60,

61 and 62. They are reproduced here,

2

dU , 1 - 26 dU _

. Fo BRI L B S pU L e [B-1]
UCO, D) = 17D 5 eneeemeeeeneeenanerenanereonrennnn [B-2]
I N [B-3]

Comparing Equation B-1 with the differential equation in Theorem

1 and letting

a=1-2w,e=0,g=0,d=-{c+p),q=1and f#0, then

. -2(1-2m) .
=0 s

A= VErp

vV T ow ’

and all other restrictions stated in Theorm 1 are satisfied. The

complete solution for Equation B-1, is

U= Rm[c]lw(ngib) + czkm(R/gIE)] s e [B-4]
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where C] and C2 are two constants to be determined from the boundary

conditions.
As R approaches infinity, I (RVe+p) approaches infinity while
Ku(Rvg+p) is bounded. Therefore, the boundary condition at R = «,

Equation B-3, forces C1 to be zero.
The constant C2 is determined using the other boundary condition,

Equation B-2. From Equation 16, it is found that

- 21-w(5+p)w/2

CZ T(w)p

Placing these values for CI and 02 into the above equation, Equation

B-4, results in

p1-wpw (E*p)w/zkm(RV5+p)
e (Y P ’

or

2
1-wpw (E"‘P)w/ Kw(RVE+D)
2R -1y . e [B-5]
r{w) P

—
|

The inversion of Equation B-5 is determined as follows. From Equation

24,

w 2

R -R )
(2r)1+“ expl7=l s [8-6]

-1
L (22K (RVP)T =

Applying the translation law, given in Equation 22, to Equation B-6
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results in

UV (ore)/? Ko (R/BE) 1= —R- &
E) K@(R D+E)}~ EE—STia'EXp{E?“"— gt} . can [B—?]
T

Applying the convolution law, given in Equation 23, to Equation B-7,

results in

2

i})
R — exp{aﬁ - gx}dx . .. [B-8]

0 (2x}

{ 5 1=

L (e ) PR (RFE) (o
L J 1+

Placing Equation B-8 into Equation B-5 results in

2 wet 2
_ ] R R dx
"=’ a Jo expigx - EXI Ty

Making a change of variable, y = R2/4x , in the above equation

results in

- ” gy, w-1
T= Piwiju eXP(‘y - y)y dy 4  sesssesavasranasasoes [B-gj

"

r2/4amt . and o = R%/8 = r2/2b b (K /K ).

where u = R /41 mPy KL/ K

In Model II, the solution for long time periods in terms of Laplace

transforms was given in Equation 87,

S1-gu (' pre)/ 2k (RVETPFE)
U= s
I{w) P

or
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27uge (5" p+e ) 2k (RVETHHE)
T=5 Lo 5 e e [8-10]

The inversion of Equation B-10 can be written using the following
identity,

1 (8'B+e) PKo(RVETRHE) _1 (8'p+e)* 2K (RVETPHE)
sy - }

L q D }= 37P

The inversion of the right hand side of the above equation is_ ebtained

using the change of scale law, Equation 21,

L (6 e) Y PKa(RVEPTE) (/6 pu 2

-R
L { } o= f -———j——-exp{m——-- £xidx

It is clear that Equation B-10 becomes

(]

1 o w=1
T = exp{-y - =) ¥ Y .« eieeeineeans [B-11]
r{w) [(]+a)u \

Equation B-11 is the solution for long time periods in Model II.
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APPENDIX €

USING THE LAPLACE-CARSON TRANSFORM TO SOLVE MODEL II.

The solution for short time periods in Model II is obtained

using Laplace-Carson transforms.

IT are

Ty 4o
"“;2'2_’:2"‘3",?"‘ 3 eerences
g p o 2w 2l K?T1

B2 R OR " V5.
T1(R, Z,0)=0 , . ....
TRy b, 7) =0 , ...,
T, (R, 0, ) = T(R, ¥)
TR, 0) =0 , ........
T{0, t) =1 , and ..
T(=y 1) =0 . L........

The mathematical equations for Model

------------------

-------------------------

-----------------

--------------------

............................

The Laplace-Carson transform is applied toT} and T with respect to

T, then



U](R: zZ, p) = LC[T1(R9 E, T)]
and U(R, Z, p) = Lc[T(R, Z, <}]

Thus, Equations C-1 to C-8 become

2

d-u
_'_;= £ U] ......................

dz az .........
dzU yl-_2udl KEEl- = pU

dR2 R dR dZ Z;O ...................
U'I(R! b’ p) = O - 2 I L I N R S R I N N R
U1(R, 0, P) = U(Ry D) s ottt e ans
u(e, p) =1 AN i e,
Utws P) =0

The solution for

U

--------------------------------------

Equations, C-9, C-11, and C-12 is

-y sinh[(b-z/a)/ﬁj

1 sinh b/avp
du
So, —fl =U - ﬁg coth(b/ovp)

=0

Substituting the above equation Equation C-10 results in

98



99

d°U , 1 - 20 du K _
E?Jr = qr - [P + /b coth(b/a/p)IU = 0

The above equation is solved using Theorem 1, and the two boundary

conditions, Equations C-13 and C-14. The result is

1

=Wl
U= S I KRR

For short time periods, p is large. Thus, for bzp/a2 > 10, x is

written as
x = p + Klo/p
Thus
pl-oge w/? —
T = S Lo Llp + /o) “Ku(RVpHK/@/B)] o e [C-15]

Let F{p) denote the function in the brackets of Equation C-15 and

m = K/a, then
F(m%p) = mT(p+/) Y ZRalmRYOHE)] + eervverinarns. [C-16]
Equation C-16 is written in the identity as

Fmp) = m/p B ((p+/D) Y 2 IKu(mRYDHD) ) weveevvne [c-171
p+/p



From Equation 30,

2.2
-1 w/2+1 _ (mr)® m R
te "~ p Kes(mRvp)} = ZE;STxa-EXP(-—E;—J ......... [c-18]
From Equation 28,
Lo P (p+/5)m/2+1Kw(mR p+/p)} =
ptvp
T ? 2.2
- dx
(mR)mJ X ey - ) . [c-19]
Aeox) ~ A ) S The e
0 2/n(c-x)3 2x
By the convolution law,
e 11/p B (p+/)Y K (mRVHR) } =
pt/p
wf® S X X meR? dx
Y 2vn(s-x)

Replacing the result obtained from Equation C-20 into Equation C-16

gives

> X expi —xz_; mZRz} dx
T &XP 4{s-x) 4x (2x)]+m

T
te” iR (alp)) = (mzR)wJ ds
0 o/n(sex)’

0

Applying the change of scale law, given in Equation 29 to the above

100
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equation results in

2
m Tt s P4 2.2
Lc-]{F(D)} = (mZR)m ds| —2—— exp{75—,- I R
0 0., T3 4{s-x)
2Vn{s-x}

) dx
4x (2x)'|+w

Substitutuing the above equation into Equation C-15 results in

yd .
T =) (mZRZ)w m Tds 1 (3 X exp{ % ) mzRZ} dx
o) & 0 (sox) 372 FP A T AT (T

0 2/

Making a change in the order of integration in the above equation

results in

2
2 2 X
__ (mZRZ)w m Te _m2r2 dx 1 [O° exp{ - ETE:ET% x ds
=Ty xp{ 1
MNw 4 0 4)( X1+w 2‘/1? X (S-X)3/2

The inner integration is by definition the Complementary Error

function,

Erfc(—— X Y, Thus

Zl/m T'.'X-
1 mZRZIw sz -m2R2 - X dx
T = ?Taj(hahwj fo exp{ X } Erfc{ H o

2vin 1-x

2,2
Making the change of variable, y = m&%‘ , in the above equation results

in
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202 m2 2 -1/2

X . o 2 m-.[ '
T = ?%ETAJ exp{ny}Erfc(mgs (m™ < - Fﬁ%") )y dy

u

Rearranging the argument of the Complementary Error function in the

jntegrand results in

R mRO-2 L
& v 7yTy-uT
where
KR_1 r [Kr (pC)r]]/Z
mn = e = = . "
da 2 E;; R;; (pf)m
Consequently,
1 fm < A w=1 .
T = exp(~y) Erfc(m———) y* dy . ....... [C421]
I‘le 0 r—(--—-)-y V-u
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APPENDIX D
COMPUTER PROGRAMS USED IN THIS STUDY

Four computer programs are 1isted in this appendix. They are:
(1} Main Program for Short Time Period Solution, (2} Main Program for
Long Time Period Solution, (3) Main Program for Steady State Solution,
and (4) Subroutines Commonly Used for Three Solutions.

A1l real variables used in these four programs are double-pre-
cisionéd and have their definitions stated at the beginning of each
of the main program(Programs 1, 2 and 3). The fourth program (Sub-
routines Eommonly Used for Three Solutions) contains two subroutines,
32-Point Ganssian Quadrature and Gamma Function in Logarithm, which

are called in each of the main program (Programs 1, 2 and 3).
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