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ABRSTRACT

A simulation study was performed to analyze the relationship between
the volume of moisture stored in a soil profile and the rate of
percolation and subsurface return flow. The simulation study was
derived on the basis of the Richards equation. The one-dimensional form
of the Richards equation was used for the percolation process and the
two-dimensional form of the Richards equation was used for the
subsurface return flow process. In each case the Richards equation was
transformed to a set of nonlinear algebraic equations using the finite
element method to transform the space derivatives and the finite
difference method to transform the time derivatives. The system of
nonlinear algebraic equations were solved using the Gaussian
elimination procedure and an under-relaxation procedure.

To characterize the percolation and subsurface return flow
processes a sensitivity analysis was performed by varying parameters of
the soil systems. It was found that the relationships between stored
soil moisture and deep percolation and between stored soil moisture and
subsurface return flow each form hysteresis loops. The percolation
loops were most sensitive to soil texture class, and water application
rate. Soil layering, soil evaporation, water table depth, and
evapotranspiration did not greatly influence the percolation loop. The
subsurface return flow loops were sensitive to soll texture, soil slope
angle, length of the soil slope relative to soil depth, and water
application rate. The subsurface return flow loops were not greatly
influenced by soil layering.

The resulting percolation and subsurface return flow
characteristics suggest the possibility of utilizing the derived
characteristics in the physical representation of these processes in
comprehensive hydrologic models.
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Chapter 1

INTRODUCTION

There is significant value in the endeavor to improve the capability to
predict or forecast phenomena of the hydrologic cycle. This value is
quantifiable in terms of improved designs of water control and water
supply systems, improved flood warning capability, improved water
management in the agricultural, range and forestry sector, improved
land management capability and enhanced capabllities to analyze and
understand ecosystems. Much of the past improvement in hydrologic
modeling capabilities lies in the fact that statistical models of
hydrologic variables are continually evolving and with time the data
base for statistical analysis continues to broaden. Other improvements
in modeling lie in the development of models that simulate components
of the hydrologic cycle. Improvements in this capability are very
important because it is this category of hydrologic model that is
useful in the assessment of the hydrologic input ©of land use changes,
in the analysis ‘of forecasting of floods (or droughts), and in the

analysis of ecosystems.

A multitude of detailed studies have been performed and are
currently being performed to increase the knowledge regarding the land
phase components of the hydrologic cycle. Example studies include those
reported by Woolhiser and Liggett(1967) on overland flow, Philip(1969)

on infiltration, Freeze (1972a,b) on subsurface flow and baseflow,
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Liggett and Cunge (1975) on flood routing, Freeze (1969) on groundwater
recharge, Colgeck (1978) on snowmelt, Gupta(l973) on precipitation, and
Brutsaert (1982) on evapotranspiration. Each of these studies utilized
to socme degree high level mathematical methéds to represent each

process.

Comprehensive models for simulating hydrologic phenomena oOn
catchments generally use empirical relationships to represent each
component of the hydrologic cycle included in the model (Scorooshian,
1983). It would be Ldeal if thorough mathematical descriptions, like
those used in many single component hydrologic studies, could be
employed in the comprehensive hydrologic models. The problem though is
that the information to determine the parameters of the detailed
mathematical models is not available on a routine basis and one
generally must work with rainfall and watershed discharge to calibrate
the model. Thus there appears to be an advantage to using simplified
models of the hydrologic components since then the unknown hydroloegic

jnformation can be "lumped" into a few empirical parameters.

The fact that information is not generally available to determine
parameters for mechanistic hydrologic modeling does not preclude the
value of hydrologic studies that are mechanistic in nature. Rather, it
should be possible to derive from these mechanistic studies the
information that could improve the physical representativeness of the

empirical relationships currently employed in comprehensive hydrologic

models.
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The objective of the present study is to develop relationships
between the moisture stored in a soil profile and the fluxes of deep
percolation and interflow. These relationships will be developed based
on a sensitivity analysis using mathematical médels of one-dimensional
and two-dimensional flow in porous media. Since comprehensive
hydrologic models generally use stored soil moisture as a state
variable the information derived from this study should be useful in

calibrating the deep percelation and interflow parameters in

comprehensive hydrologic models.



Chapter 2

MATHEMATICAL FORMULATION

The description of the flow of moisture in a rigid porous media as a
mathematical boundary value problem can be expressed in general by the

Richards equation,

C 3¢/t = V(KV¢) &)

where;

h=)
[]

¢(X,y,2,t) = h+e = hydraulic head [L],
h = pressure head [L],

e = elevation head [L],

K = K(6) = hydraulic conductivity [L/T],

C = C(h)

d8/dh = specific moisture capacity [1/L],
t = time [T],
X,y.z = Cartesian coordinates [L], and

Vv = "del" operator [1/L].

The Richards equation is an expression for the law of conservation of
mass (moisture) with Darcy's law (generalized for unsaturated flow
conditions) substituted for the flux components in the conservaticn
equation. Equation (1) applies only to incompressible fluid and
incompressible porous media conditions, but it does allow for

anisotropic as well as nonhomogeneous conditions.
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Expressions for the coefficients C(h) and K(@) adopted from Verma

and Brutsaert'(1971) are given by

cay = m g hF Y azaay? (2a)
N
R(8) = Ks ((9-81.)/(85- Br)) (2b)
where; m= es—er = drainable porosity,
es = gaturated moisture content,
er = residual moisture content, and
A,8,N = soil related constants.

The solution of eguation (1) for a specific problem depends upon
the particular boundary conditions and initial conditions specified for
the problem. For example, the character of the boundary conditions and
the initial conditions will depend upon whether the problem béing
solvad is one-dimensional, two-dimensional, three-dimensional,
steady-state, or transient-state. Since the conditions considered in
this study are for one~-dimensional and two-dimensional transient flow
the boundary conditions and initial for each case will be presented
separately. The actual solution procedure for both cases will be

presented in the next section.



2.1 ONE-DIMENSIONAL CASE

The one—dimensional case concerns the vertical flow of soil
moisture in an essentially horizontal soil profile as illustrated in
Figure 1. The soil profile is generally composed of layers of different
texture. The upper boundary of the region is the soil surface and the

pottom boundary is the water table at a depth D.

The equation governing the moisture flow in the soll mass above the
water table boundary is derived by simplication of equation (1) to the

one-dimensicnal case to yield,

C ag/dt = 3/0z (K 2¢/0z)

(3

with the boundary conditions

1) K(9) d¢/3z = -9 , h S0 z=D
2) ¢=D+d, h=4d z=D
3) ¢=0, h=0 z=0

vhere q is the specified flux rate at the soil surface and d is the
depth of ponding. The specified flux rate can be either rainfall
intensity or evaporatlon. The boundary condition at the surface is cone
of specified flux unless the surface becomes ponded by a flux
application rate in excess of the infiltration rate in which case the
surface becomes ponded to a depth of d. At the bottom boundary the
water table is maintained at a constant level by assuming that flow in
the groundwater body is sufficiently high to remove all molisture

percolating to the water table.
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2.2 TWO-DIMENSIONAL CASE

To derive the flow region of interest for the two-dimensional case
consider the watershed catchment area illustrated in Figure 2. Taking a
vertical cross-section of the soil mass aloné a "flow-line" of the
topographic surface produces the two-dimensional region to be examined
in this study. The soil profile is assumed to be underlain by an
impervious horizon such as a fragipan, hardpan, br bedrock. A further
simplication for this study is to make the slope profile and soil depth
uniform for the entire length of the slope. The resulting region of

flow is illustrated in Figure 3.

The governing equation for this case is derived by simplication of

equation (1) to the two-dimensional case to yield,

C 3¢/0t = 3/3x (K 3¢/ 3x) + 3/3y (K d¢/3y)

(4)

The boundary conditions for equation (4) for the conditions illustrated

in Figure 3 are!

1l.Boundary AB.

—KB¢/an=qn OSxle;x <x<L cos ¥

2

z=xtany + d/cosy

h=0, ¢=e x15x5x2

z=xtany + d/cosy

2. Boundary BC.

~K 3¢/0n=0 x=0
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3. Boundary CD.
-K 3¢/9n=0 0<xSL cosvy
Z=X tanvy
4, Boundary DA.
-K 9¢/2n=0 x=L cosvy
L sinySz<siny + d/cosy

where 9, is the flux normal to the boundary, 4 is the soil depth, and n

is the unit normal vector.

-

The initial condition can be one of static equilibrium,
steady-state flow,or transient flow. This condition is expressed in

general terms by
¢(xlzrt=0)=¢o(xlz)

Boundary AB is the boundary of potential seepage, it is 'the
rainfall infiltration boundary, and it is also the Dboundary across
which the evapotranspiration flux occurs. Boundary BC at the base of
the slope is an impermeable boundary because the hillslope considered
in this study belongs to the first-order valley basin class (Huggett,
' 1975) and for this hillslope type there is no incised stream channel at
the base of the slope. It is assumed that the hillslope opposing the
hillslope considered is ddentical in character so that boundary BC

becomes a line of symmetry and therefore an impermeable boundary.
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Boundary CD is an impermeable boundary because of the impermeable soil
condition at the base of the soil profile and boundary DA is an

impermeable boundary since it corresponds to the topographic divide of

the catchment.
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Chapter 3

NUMERICAL SOLUTION

The solution of equationg (3) and (4) with the corresponding
boundary conditions and initial conditions cannot be achieved by
analytical means except for a narrow range of idealized problems. For
the problems considered in this research it is not possible to derive
analytical solutions and so numerical solutions are resorted to. The
particular numerical method chosen to derive the numerical sclutions is
the finite element method in combination with the finite difference
method. The derivations of the finite element equations for the
one-dimensional and the two-dimensional cases are presented in detail

in the Appendix.

The finite element equations for both the one-dimensional flow case

and the two-dimensional flow case are represented by the matrix

equations
k _ k-1 _
where; ¢§, ék*§ = hydraulic head

. at node j at time levels k and k-1, respectively,

Qi = net flux rate at node i during time
interval At,
At = time step,

Dij'Eij = coefficient matrices evaluated at

time level k+1/2, and
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M = the number of node points.

particular attention should be paid to the detailed mathematical
definitions of Dij' Eij' and Qi given in the Appendix. The definitions
will be different for the one-dimensional case and the two-dimensional

case.

The system of equations represented by equations (5) is nonlinear
because the coefficients appearing in the coefficient matrices are
known at the beginning of a given time step but are not known for the
end of the time step until the correct solution is known. To solve the
system of equations for the vector of wvalues @? the Gaussian
elimination procedure is employed. To do this though, it is necessary
to have values for the coefficient matrices which are not available

since the coefficients are unknown a priori. The under-relaxation

iterative procedure described below is used to resolve this problem.

For any given time step the hydraulic heads @k-g and the

corresponding coefficients C and K are known for the beginning of the
time step, but the hydraulic heads ¢§ and the corresponding
coefficients C and K for the end of the time step are not known. So for
the first iteration an estimate is made for the values of ¢§ (call it

k
¢j(0)) and the coefficient matrices are evaluated based on the

hydraulic head values

1

j)/2

(@13?(0) , 5
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With the coefficient matrices evaluated the equations (5) are solved by
' . k

Gaussian elimination to yield an improved estimate for Qj' that is

¢§(1). This new estimate is then averaged with ¢k-§

and an improved set of coefficient matrices derived. Equations (5) are

in the same manner

again solved to yield an improved @?, that is @?(2). The process of

iteration continues in this fashion until the following criterion is

met,
k k
d, - &, (n-1) 5
)(n) J(n ) €

where n is the iteration level,and ¢ is an arbitrarily small numerical

constant.

The investigation of the control of soil moisture levels over deep
percolation and subsurface return flow reguires a sensitivity analysis
of the numerical solution to the various parameters of the system. The
characteristics of the sensitivity analyses for the one-dimensicnal and

two-dimensional cases will be presented separately in the following

subsections.

3.1 ONE-DIMENSIONAL CASE

The objective of investigating the one-dimensional case of soil
moisture flow is to quantify the relationship between the percolation
of soil moisture below a specific depth of the soil profile and the
volume of moisture stored in the soil lying above that depth. In this
study a one meter soil profile depth was cﬁosen since the one meter
depth 1s most representative of the depth used in comprehensive

hydrologic models. A sensitivity analysis was performed to assess the
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influence of csoil properties, depth to the water table, rainfall
intensity, evapotrénspirative flux, and soil layering on this
relationship. The soil properties considered are represented by sand,
loam, and clay textures. The constants in eﬁuations (2) used to
represent these soil textures are presented in Table 1. The
characteristic parameters used to produce each simulation in the

sensitivity analysis are presented in Table 2.

TABLE 1

Constants in equations (2a) and (2b) for sand, loam and clay textures

Parameter
Texture 9 6. K (m/min) a - B8 N
Sand 0.46 0.02 0.0018 1.43 1.32 4.89
Loam 0.50 0.05 0.0006 2.04 0.89 5.23
Clay 0.55 0.07 0.0003 3.40 0.63 5.47

To provide broadly applicable conclusions the results presented in
the next chapter are presented in dimensionless form. The dimensionless
variables are Q; = QP/K: and v* = v/vsat' where Qp is the percolation
rate through the one meter depth, Kz is the equivalent saturated
hydraulic conductivity, and V and vsat are respectively the volume and
saturated volume of moisture stored in the one meter profile. The
dimensionless application rate parameter is q* = q/K:. For all

simulations the depth to the water table was taken as 10 meters except

for one simulation where the depth was taken as 1 meter.
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Simulation
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10
11

12

13

14

15
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flow that occurs at

D(meters)

10
10
10
10
10
10
10
10

10

1
10

10
10
10

10
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TABLE 2

in the sensitivity analysis of the

problem
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TWO-DIMENSIONAL CRSE

Parameter

Soil Texture

loam
sand
clay
loam
loam
sand
clay
loam

loam

loam
loam/clay

loam/clay
loan/clay
loam/clay/sand

loam/clay/sand

percolation

Comments

homogeneous
homogeneous
homogeneous
homogeneous
homogeneous
homogeneous
homogeneous
soil evaporatiomn
at 12 mm/day
evapotranspiration
at 12 mm/day
homogeneous
5 cm thick clay
layer
10 cm thick clay
layer
four 5 cm thick
clay layers
10 cm clay layer
25 cm sand layer
10 cm clay layer
25 cm sand layer

two-dimensional case is the subsurface return

the base of the slope. Conditions ex

and rainfall intensity.

The set

analysis are presented below.

soil characteristics,

slope

of parameters

amined in the

angle, soil

The results from the
ed on the basis of -

chosen for the
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*
Vo=v/a, voe=aza, 8 8 @ = aRg

Q = Q/Qmax' and V* = V/Vmax
where; Q = the flux of subsurface return flow,
Qmax = the rate of subsurface return flow that exists when the
entire slope is saturated,
Vv = the volume of moisture stored in the slope corresponding to
the rate Q, and
vmax = the volume of moisture stored in the slope at complete

saturation of the slope.

All other parameters have been defined previously. It is of interest to
note briefly that the parameter al/ﬂ is a measure of the ratio between
the magnitudes of the capillary fringe and the soil depth. This same
parameter was used by Verma and Brutsaert (1971) in an analysis of the

recession characteristics for shallow aquifers deeply incised by

streams.

The parameter values used in the sensitivity analysis for the
two-dimensional case are tabulated in Table 3. The simulations with
layered soils were performed by allowing the soil parameter A to
increase linearly into the soil profile while § and N remained
constant. This increase in A essentially causes a decrease in soil
nydraulic conductivity for increasingly deeper layers of the soil

profile. Three of these layered simulations were run with the parameter

A varying at a 10%, 20% and 40% rates.
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TABLE 3

parameter values used in the sensitivity analysis of the subsurface
return flow problem

Parameters
Simulation * ¥ 1/8 *
Number L (degrees) o B N q Comments

1 20 15 0.233 3.0 3.0 0.10 homogeneous

2 20 15 0.233 5.0 3.0 0.10 homogeneous

3 20 15 0.233 3.0 3.0 0.50 homogeneous

4 20 15 0.233 3.0 3.0 1.00 homogeneous

5 10 15 0.233 3.0 3.0 0.10 homogeneous

6 30 15 0.233 3.0 3.0 0.10 homogeneous

7 50 15 0.233 3.0 3.0 0.10 homogeneous

8 20 15 0.464 3.0 3.0 0.10 homogeneous

9 20 15 1.00 3.0 3.0 0.10 homogeneous

10 20 15 1.71 3.0 3.0 0.10 homogeneous

11 20 5 0.233 3.0 3.0 0.10 homogeneocus

12 20 20 0.233 3.0 3.0 0.10 homogeneous

13 20 30 0.233 3.0 3.0 0.10 homogeneous

14 20 20 1.71 3.0 3.0 0.10 homogeneous

15 20 30 1.71 3.0 3.0 0.10 homogeneous

16 30 20 1.71 3.0 3.0 0.10 homogeneous

17 50 20 1.71 3.0 3.0 0.10 homogeneous

13 30 30 1.71 3.0 3.0 0.10 homogeneous

19 50 30 1.71 3.0 3.0 0.10 homogeneous
20 20 15 - 3.0 3.0 0.10 layered - 10%
21 20 15 - 3.0 3.0 0.10 homogeneous - 10%
22 20 15 - 3.0 3.0 0.10 layered — 20%
23 . 20 15 - 3.0 3.0 0.10 homogeneous - 20%
24 20 15 - 3.0 3.0 0.10_. layered - 40%
25 - 20 15 - 3.0 3.0 0.10 homogenecus - 40%

Simulations were run with homogeneous scoils having a hydraulic
conductivity equivalent to the apparent anisotropic hydraulic
conductivity of the layered soil profiles. The equivalent hydraulic

conductivity Ke was calculated by the formula,

/2

_ 1
Ke = (Kn KP)

where; K. 1/D E (Ki/Li) '

=
il

. p 1/b L Ki Li '
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b
]

hydraulic conductivity of soil layer i, and

=
1

thickness of soil layer i.

Kn i= +the equivalent hydraulic conductivity in. the direction normal to
the layers and Kp is the egquivalent hydraulic conductivity in the

direction parallel to the layers.
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Chapter 4

RESULTS AND DISCUSSION

4.1 ONE-DIMENSIONAL CASE

The typical form of the relationship between Q; and V* for the
one-dimensional case is illustrated in Figure 4. The relationship shown
in Figure 4 was derived from simulation 1. It is observed that the Q;
Vs, v* relationship is not unique but is instead hysteretic. In all of
the simulations performed in this analysis the wetting curve lies below
the drying curve. The results produced for the different simulations
differ because of the influence of the various parameter sets used in

each simulation.

The influence of the soil type is illustrated by the results of
simulations 1-3 (Figures 4-6). The soil types considered were sand,
loam, and clay. These three types include the range of soil moisture
characteristics expected. It is observed that the Q; vs. V* loop is
broadest for the sand, narrowest for the clay, and intermediate in
width for the loam. The Q; vE. v* loop is quite nonlinear for both the
sand and the loam, but for the clay the relationship is quite close to
being linear. There is also an apparent tendency for the percolation to
continue at a lower level of saturation as the texture of the soll
increases in coarseness (i.e., going from clay to sand). The results

observed can be interpreted in terms of the pore size distribution of a
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soil and the imaximum pore size. The sand will have a larger fraction of
pore sizes than the loam or clay. The capillary forces will then be
stronger in the locam and clay than in the sand. Thus it will be
possible to release a greater fraction of the ‘available soll moisture
from the sand than from either the loam or the clay. Thus the Q; on the
drying boundary curve will tend to be higher for the sand than for the

*
lgam and in turn the loam QP drying boundary curve will be higher than

that for the clay.

* o
The influence of the relative application rate on the Qp vs., V

curve for the loam soil is illustrated in simulations 1 and 4 (Figures
4 and 7). In simulation 1 the application rate was equal to the
saturated hydraulic conductivity and in simulation 4 the application
rate was twice the saturated hydraulic conductivity. It is observed
that the boundary drying curves are essentially the same for both
gsimulations. The major difference between the Q; vSs. v* relationships
for the two simulations is in the lower portion of the boundary wetting
curve. The boundary wetting curve for the simulation with the higher
application rate lies to the right of the boundary wetting curve for
simulation with the lower applicétion rate. The same observation can be
made for the sand profile in simulations 2 and 6 (Figures 5 and 9) and
for the clay profile in simulations 3 and 7 {(Figures 6 and 10). The
explanation for this result for all soils is simply that the higher
application rate prcduces a steeper wetting front in the soil profile.
The influences of the steeper wetting front is not felt by the deep
percolation process until a higher degree of saturation is reached, A

lower relative application rate for the loam soil is 1illustrated by
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» * w
simulation 5(Figure 8) where q = 0.5, Comparing the QP vs. V relation
in Figure 4 to that in Figure 8 indicates a slight dependence on

relative application rate, but no drastic differences are seen.

The influence of evaporation from the soil surface or
evapotranspiration (extraction of moisture directly from the soll
profile) on the Q; Vs, V* relationship for the loam soil is illustrated
by the results of simulations 1, 8, and 9 (Figures 4, 11, and 12). It
is eaxpected that evaporation or evapotranspiration would have an
influence on the boundary drying curve of the Q; Vs, V* relationship.
However, comparing the relations illustrated in Figure 4, 11, and 12
demonstrates that even a high evaporative demand of 12 mm/day has
insignificant influence on the resulting boundary drying curve of the

] *
QP vs. V relationship.

*

The influence of the depth to the watér table on the Q; vs., V
relationship is illustrated in Figures ¢ and 13(simulations 1 and 10).
In simulation 1 the water table was at a depth of 10 meters and in
cimnlztion 10 the water table was at a 1 meter depth. Comparison of
"these two results indicate that water table depth has insignificant
influence on the Q; vs. V* relationship. The influence of soil layering

*

on the Qp Vs, V*- relationship was tested in simulations 1,
11-15(Figures 4, 14-18). Simulation 1 consists of a uniform profile of
loam soil. Simulations 11,12, and 13 have one, two, and four layers of
clay, respectively, contained within the one meter profile of loam.

Each layer'of clay is 5 centimeters thick. In simulation 12 the layers

are adjacent to each other and form a single layer 10 cm thick. In
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simulation 13 the layers are separated from each other by a 15 cm layer
of loam. Therresults illustrated in Figures 4 and 14-16 demonstrate
that at least for the simulations performed here the clay layers had no
influence on the resulting Q; vs. V* relationshib observed in Figure 4.
In simulations 14 and 15 the 1 meter profile was composed of a 10 cm
layer of clay, a 25 cm layer of sanﬁ, and a 65 cm layer of loam.
Simulation 14 had the application rate equal to the equivalent
saturated hydraulic conductivity of the profile and in simulation 15
the application rate was twice the equivalent saturated hydraulic
conductivity of the profile. Comparison of these two simulations
indicates that the application rate has only a slight influence on the
width of the Q; Vs, V* loop. The effect is seen to be similar to the
effect Seen earlier in comparing Figures 4 and 7. In addition,
comparison of Figures 4 and 17 indicates that the presence of the clay
and sand layers does influence the width of the Q; vS. V* loop but

otherwise the relations are very similar.

In a water balance study Black et al.(1969) examined the
relationship between deep percolation flux rates and the volume of
moisture stored in the soil profile., The soil considered in their study
was a Plainfield sand and a lysimeter was used to measure the moisture
balance. They used a water balance model in which the percolation rate
was set equal to that hydraulic conductivity associated with the
average water content of the soil profile lying above the point of
specified percolation flux. The water balance model was applied to a
three month period in 1967 and the predicted moisture storage over the

period was found to be within 0.3 cm of the measured storage. The
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drainage rate as predicted by the water balance model was also found to

be gquite close to the drainage rate measured with the lysimeter.

The findings of this study lend support to the work of Black et
al.(1969) except that it was found here that the relationship between
percolation and stored moisture is not unigue but forms a hysteretic
loop. The fact that this loop exists will have some influence on the
accuracy of water balance predictions. However, the results of Black et
al.(1969) indicate that the assumption of a unique relationship between
percolation rate and soil moisture storage is not severe. Further
simulation studies will have to be performed to test the accuracy of

this assumption for various soil and meteorological conditions.

4.2 TWO-DIMENSIONAL CASE
The results of the simulations for the two—dimensional problem are

jllustrated in Figures 19-43 in the same order as given in Table 3.

A particular feature of many of the simulations to be shown is that
on the wetting cycle the Q; VS, V* relationship is not perfectly smooth
in all cases, but many times exhibits a waviness. This waviness appears
to be due to the fact that the node points used to represent the
seepage surface of the slope soil surface are rather distant and the
transient growth of the seepage surface is not well represented in this
way. The seepage surface has to "jump" from node to node to lengthen
and the "jumps” are manifested as waves in the Q; VS, V* relationship.

This same phenomenon was observed to occur in a study by Beven (1977).
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gimulations 1 and 2 are jllustrated in Figures 19 and 20 and
demonstrate that the parameter g has little influence on the Q; VS, V*
relationship as long as the value of al/ﬂ is held constant. This result
is consistent with the findings by Verma and Bfutsaert (1971) in the
analysis of the recession for large confined aquifer discharge into
streams and by Nieber (1982) in the aﬂalysis of the rising hydrograph
for subsurface return flow from hillslopes. In each simulation the
major wetting curve is quite close to the major drying curve. However,

in cases where drainage occurs prior to reaching complete saturation

the drying curve drops significantly below the major drying curve.

The influence of the rainfall intensity on the Q; vS. V* relations
is illustrated through comparison of the results from simulations 1, 3,
and 4 (Figures 19, 21, and 22). The major drying curve is not
influenced by the rainfall intensity but the major wetting curve is
influenced by the rainfall intensity. In essence, as the rainfall
intensity increases relative to the saturated hydraulic conductivity of
the soil the major wetting curve deviates further away from the ma jor
drying curve. The major wetting curves for simulations 3 and 4 are
nearly the same so it is expected that for even higher relative
rainfall intensities the major wetting curve will fall close to the one
for simulation 4. The maximum difference between the major wetting
curves for simulations 1 and 4 is approximately 0.16 Q;. This
difference is not so extreme that in some cases one might wish to use

only one of the curves to represent all rainfall intensities.
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o

The influence of the length—-depth ratio Lf on the Q; vs. V
relations is illustrateﬂ by the comparison of results from simulations
1, 5, 6, and 7 (Figure 19, 23-25). Comparison of the results
demonstrates that the L* parameter has a significant influence on the
Q; vs. v* relationship. For the L* value of 10 (Figure 23) the major
wetting curve is significantly above fhe major drying curve but as L*
increases the major wetting curve approaches the major drying curve (as
in Figure 19) and then crosses the major drying curve in two points (as
in Figure 24 and 25). The waviness in the wetting cycle curve becomes
quite large when L* equals 50(Figure 25). The main drying and wetting
curves cover an increasingly larger portion of the Q; vS. V* domain as
the L* parameter increases. This is expected since as L* parameter
increases an increasingly larger mass of soil becomes available for
drainage of soil moisture. The L* parameter was also found to be
significant by Verma and Brutsaert (1971) in the study of aguifer
drainage and by Nieber (1982) in the study of the rising side of

subsurface return flow hydrographs.

The influence of the soil characteristic 1is iliustrated by the
comparison of results of simulations 1, 8, 9, and 10 (Figures 19,

26-28). The soil characteristics were imposed by changing the parameter
allﬁ. It is already established that the parameter N has an

insignificant influence for all conditions and the parameter f has an

1/8

insignificant influence for a given a value. But Figures 19 and

26-28 demonstrate that the al/B parameter has a significant influence
*

*
on the Q5 vs. V relationships. It is observed from this set of results

that as the al/ﬁ parameter increases the major wetting curve and the
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major drying curve loop becomes wider. It is also apparent that the
fraction of total moisture released as subsurface return flow decreases

1/8 1/8
as the a parameter increases. As described earlier the a
parameter 1s interpreted as the relative measure of the ratio of the

capillary fringe thickness to the soil depth. A high value of al/ﬁ

could correspond to a clay soil with ldrge depth or a gravel with small
depth. A small al/ﬁ value could correspond to a clay soil with a very
ijarge depth (depth large relative to the thickness of the capillary
fringe for clay) or a gravel with a medium depth. Figures 19 and 26-28
demonstrate that as the al/ﬂ parameter (relative ratio of capillary
fringe thickness to soil depth) increases an increasing proportion of
csoil moisture is held in the soil against dralnage. obviously the al/ﬂ
*

=
parameter is a significant factor in determining the Qs vs. V

relations.

The influence of slope angle is illustrated by comparison of
simulations 1, and 11-13 (Figures 19, 29-31). It is apparent by

comparing the results of simulations 1 and 11 (Figures 19 and 29) that
1/8

the slope can have an effect similar to the a parameter. RS the
slope decreases (correspondingly al/ﬁ increases) the major drying and
wetting curves of the Q: vs. V* relationship widen with the major
wetting curve moving upward and the major drying curve moving downward.
For slopes greater than 15 the major wetting curve is displaced to

below the major drying curve as seen from Figures 30 and 31. Obviously

»*
slope is an important parameter in determining the form of the Qs vS.
L]
v relationship. This effect of slope is also seen to be true for the

1/8

case where the « parameter 1is relatively large as seen from
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comparing the results of simulations 10, 14 and 15 (Figures 28, 32 and
33) It is observed that as the slope angle increases the major wetting
and drying curves converge although they never become coincident even

for the 30° angle.

The influence of the L* parameter for conditions of relatively
large al/‘3 is demonstrated by comparison of_ the results from
simulations 14, 16, and 17 (Figures 32, 34, and 35). As the L*
parameter increases from 20 to 50 the major wetting and drying curves
converge slightly. It appears, though, that the major change that

L] »*
occurs in the Qs vs. V relationship is that the relationship stretches

o L
over a greater range of the Qs vs. V domain.

At a relatively high values of slope angle (30°) and ul/ﬂ (1.71)
the effect of the L* parameter can be seen by comparing the results of
simulations 15, 18, and 19 (Figures 33, 36, and 37). The increase in
the L* parameter causes a slight convergence in the major wetting and
drying curves. The most significant effect is that the increase in L*

* ]
causes a stretching of the Qs vs., V relationship over an increasingly

* %
larger portion of the QS vs. V domain.

The errors associated with using a homogenecus soil instead of its
equivalent layered soil is illustrated in gimulations 20-25. 1In
simulation 20 the layering effect is slight in that the soil constant A
increased with depth at the constant rate of 10%. The result of
simulation 20 is illustrated in Figure 38 and the equivalent
homogeneous case (simulation 21) is illustrated in Figure 39.

Comparison of the two results shows the layered case to have a slightly
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* *
wider Qs vs. V loop than the egquivalent homogeneous case, but the

relationships are otherwise very similar.

For simulations 22 and 23 (Figures 40 and 41) where the A value
increased by a constant rate of 20% with depth the layered case has a
significantly wide Q; vs. V* loop thanfthe equivalent homogeneous case.
However, the two relationships have similar form. The major difference
between the two relationships is in the main drying curve since the

main wetting curves hold similar positions on the graph.

Finally, for the condition where the A valuwe increases at a
constant rate of 40% with depth into the soil profile (simulations 24
and 25) the results are presented in Figures 42 and 43. The major
wetting curves appear to be gquite similar here as they were for the 10%
and 20% conditions, but the major drying curves deviate from each other

even more than observed previously.

It appears that when the soil has significant layering as defined
in the conditions imposed for simulations 20, 22, and 24 the use of an
equivalent homogeneous case will be accurate enough for the major
wetting cycle, but the major dryinglcycle will be over predicted. The
purpose for the comparison of the layered case and its equivalent
homogeneous case was to determine whether layering could be eliminated
as a parameter in the develcopment of dimensionless curves. Apparently
it is not completely possible to do so because of the discrepancy in
major drainage curves. It may be that the incorporation of anisotropy
in the two-dimensional model would improve the simulation of the

layered case with an equivalent homogeneous anisotropic condition. The
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principal directions of anisotropy would be taken normal to and

parallel to the slope.

The results of the two-dimensional solutions presented have
demonstrated that there is a set of Q; vs. V* curves useful in the
determination of subsurface return flow controlled by moisture storage.
The form of the curves is rather simple and can be readily used in

water balance models reguiring calculations of the subsurface return

flow component of runoff generation.

In a hydrologic modeling study Beven and Kirkby(1979) developed a
simple physically-based model of watershed hydrology. In this model the
subsurface runoff component was represented by mathematical expressions
that considered the variable-source area phenomenon on hillslopes.
Required input to this subsurface runoff model was the relationship
between subsurface discharge rate and the volume of moisture stored in
the soil profile. Beven and Kirkby(1979) presented graphs for the
Crimple Beck catchment(Yorkshire, England) which illustrated this
relationship. The graphs were derived using watershed discharge
measured during rainless periods. The relative volume of moisture
stored in the soil profile corresponding to a given discharge rate was
estimated from the measured discharges. Due to the lack of resolution
of measurements, that is the measurements were on the catchment scale,
a hysteresis loop in the subsurface flow-moisture storage relationship
was not identified but the form of the curves derived were similar in
nature to those presented in this report. It is felt that the

subsurface return flow relationships derived in this report could be
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useful in deriving the required input for the model presented by Beven
and Kirkby(1979) for ungaged catchments. The next step in the research

process will be to see whether this c¢an be done for gaged catchments.
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Chapter 5

SUMMARY AND CONCLUSIONS

The Richards equation which governs the flow of an incompressible fluid
in an incompressible porous medium was used to investigate the
characteristics of the percolation process in flat deep soll profiles
and the subsurface return flow process in sloping shallow soil
profiles. The one-dimensional form of the Richards equations was used
for the percolation problem and the two-dimensional form of the
Richards equation was used for the gsubsurface return flow problem,
Appropriate boundary and initial conditions were applied for each
problem. The governing equations for each case were solved using the
finite element method to discretize the space derivatives and the
finite difference method was used to discretize the time derivative.
The resulting set of nonlinear algebraic equations were solved by the

Gaussian elimination procedure with an under-relaxation iterative

procedure.

The numerical solution procedure was used in a sensitivity analysis
to examine the relationship of percolation(for the one-dimensional
problem) and subsurface return flow(for the two-dimensicnal problem) to
the volume of moisture stored in the soil profile. The simulation
results were presented in nondimensional forwm so as to lend their

applicability to a wide range of conditions.
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The relationship between percolation out of a one meter soil
profile and the moisture stored in the one meter depth was found to
form a hysteretic loop as expected. The relationship during a wetting
cycle was found to lie below the relationship dﬁring a drying cycle. It
was found that the relationship depended upon soil texture and upon the
rate of application of water at the soil surface during the wetting
cycle. It was also influenced somewhat by layering of the soil.
However, it was influenced little by soil evaportation,

evapotranspiration, and the depth to the water table.

The relationship between subsurface return flow and the moisture
stored in the soil profile was also found to form a hysteretic loop.
The position of the wetting cycle relationship relative to the drying
cycle relationship depended on the hillslope conditions. The parameteré
that were found to have a significant influence on the relationship
were the soil textural class, the slope angle, the length of the slope
relative to the soil depth, and the intensity of water application.
50il lavaring was found to be relatively insignificant except for a

case where the layering was most severe.

Most comprehensive hydrolegic models use fairly simplified
representations of the complicated hydrologic processes since it is
impossible to acquire the needed information for complicated
mathematical formulations when working on a catchment or basin scale of
analysis. Generally the information available for calibration of
hydrologic models 4is the input rainfall, the runoff wvolume, the

discharge hydrograph., and some soils and landuse data. Hydrologic
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models applied 1o these conditions will generally have poor
resolution(that is they will possess a high degree of parameter
lumping) so simple model components will perform just as well as

complicated mathematical formulations.

Two important components of the hydrologic cycle are deep
percolation and subsurface return flow(interflow). Improvements in the
physical representativeness of these components 1in hydrologic models
while maintaining simplicity would be valuable. The results derived in
this study indicate that it is possible to characterize these two
components in a format appropriate for use in comprehensivelhydrologic
models. The range of tests that were run to examine the sensitivity of
the relationships for the percolation problem and the subsurface return
flow problem provide a basis for confidence in the utility of the

generated information in modeling these hydrologic processes.
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Chapter 7

APPENDIX

Derivation of Finite Element Equations for the One-Dimensional
and Two-Dimensional Richards Equation

7.1 ONE-DIMENSIONAL RICHARDS EQUATION

The one-dimensional Richards equation is,

L{¢} = C d¢/3z - 3/0z (K 3¢/9z) = O 0szs1
We seek a solution ¢(z,t) = #(z,t) such that

L{#} = e(z) = residual # 0

To make e(z) vanish in an average sense we use the Galerkin procedure
of the method of weighted residuals (Segerlind, 1976). The procedure is

stated as

1
Gi=.fo Ni G(Z) dz=0 i=l,2'ou-,M

where N, is the weight function and M is the number of node points. For

convenience the integration is performed on discrete element

(subdomain) basis, that is,

Le .
Gi = 0 Ni e(z)dz i=1,2,..4,I

where r is the number of nodes in element e and Le is the length of

eiument e. It is assumed that



-80-

G, =Z_G =0 i=122,...,M

Substituting for e(z) we have

6®, = ILE N, (C 38/8t - 9/0z (K 28/dz)) dz-

The approximation & is expressed by the interpolation polynomial

d=N® +N, 8 + ... NI =N

1l rr

where N N

1! gt ot Nr is a set of linearly independent basis
functions, and Ql, ¢2, e 1 ér is the set of values of ¢ at the node

points of element e.

For the problem examined here r was chosen to be 2 and so the basis

functions are

=
18

1-z/Le

N2

z/Le

The basis functions chosen have C° continuity at element boundaries so
the second order derivative appearing in the integral needs to be
reduced to first order or else the integral will be undefined. This is
desirable for symmetry as well(Becker et al., 1981). This is

accomplished through integration by parts, that is,

Le

® N, 8/8z (K 3%/02) dz = N, K 28/dz . Le

0

s e _ g

0 K aNi/Bz ad/oz dz

The result is

e

= (lLe _ Le
Gi =] 0 (Ni C 3/ot + K aNi/Bz od/0z) dz Ni K 2¢/9z 1

0

Substituting for ¢ in the second term in the integral yields
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Le

o

K 9N, /3z 8N/oz ¢ dz

which in matrix form is

Le Lle '
! 0 (K aul/az aNl/az)dz ) o (K anl/az aﬂz/az)dz -]

Le Le
J 0 (K anz/az aNl/az)dz J 0 (K anz/az aNz/az)dz d

The third term in the expression for G: is just the flux rate at the

end points of the element and yields for i=l;

- N K 39/3z 1"3 = - (0) K ob/3z 1, + (1) K 8¥/8z 1 = a1,
since K 2d/0z = qe at z=0, on element e, and for i=2;

- N, K o®/dz 1'% = - (1) K 39/8z 1) (0) K 2&/0z 1, = i
since K 3d/9z = —qe at z=Le on element e.

Instead of directly replacing & by N ¢ in the time derivative term

it is best (Neuman, 1973) for stable results to use,

Le _ Le
o CNi ad/9t dz = a¢i/at ) 0 CNi dz

I

So for the capacitance matrix we get
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Le
piS N, dz of |e2, /2t
A% ag/at=
0 i® en az | led./at
o U2 2

Now we have

G®=2a%ep/et +B% 2+ g

Combining contributions from each element e according to the assumption

Gi = Z Ge we obtain
e

i

G=A 3/dt + BE + Q =0 (A.1)

where A is the global capacitance matrix, B is the global conductance
matrix and Q is the net flux vector. In the vector Q all of the terms
will in general be zero except for the two at the end points of the
global domain (z=0, z=D). The reason is that for noderpoints on the
interior the contribution q? I0 from element e will cancel with the
contribution qe_i ILe from element (e-1) since they are equal in
ﬁagnitude but opposite in sign. If however one wishes to incorporate
sources or sinks in the computations it is easy to do this by just

setting the value of Qi for node i equal in magnitude to the source or

sink and assign the appropriate sign.

Due to the strong dependence of the coefficients C and K on the

variable h(=¢-z) the integrals in A and B are evaluated numerically



rather than

satisfaction of

_ . Le
Ris =00
and

Le
Bij = [ 0
where; Ni =
W =

s
p -
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analytically. This approach provides for Dbetter

mass conservation. The typical matrix terms are

b

CN.dz=L Le XL
e s=1

5
" Ni c_ W

5 S

o ni%) P
/oz dz = (-1) Ze 1/Le zs=l K W

K aNi/Bz oN s Vg

3

value of basis function Ni at Gauss sample point s,
values of K and C at Gauss sample point s,
integration weight associated with Gauss sample point s, and

number of Gauss sample points used.

The ¢zt of nonlinear ordinary differential equations expressed by

equations (A.l) are solved using finite difference discretization for

the time domain.

A backward difference implicit scheme is used, that 1is

ap/at =(8° - 851 /At

and the result is

(A + oot B)8" = (A + (6-1) ot )" - At Q

or

k

pef =& L -AtQ

where & is a weight chosen between 0 and 1. When §=0 the scheme is

explicit; when 6=1, the scheme is fully implicit; when 9=1/2 the scheme

is equivalent to Crank-Nicholson.
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7.2 TWO—DIQENSIONAL RICHARDS EQUATION
The two—-dimensional Richards equation is given by
L{¢} = C d¢/3t -V - (KV¢) = O
with boundary conditions,
$(X,z) = Q(x,2)
and/or,
K 3¢/8n = -q
We seek an approximate solution o(x,y) = ¥(x,y) and
L{d} = e(x,y) = residual # 0.

To force the residual e(x,y) to zero in an average sense over the
solution domain we apply the Galerkin procedure of the method of

weighted residuals.

Gi = Iv Ni e(x,y}av = 0 i=1, 2, coer M

where M is the number of node points and Ni is the weighting function.
The integration is performed on a discrete element (subdomain) basis,

that is

G‘; = Je N [Coad/or -V - (Kv$)] av® i =1, 2, «eer T

where r is the number of node points in the element. The second
derivative appearing in the integral cannot be handled by the basis

functions Ni since they have C° continuity. Thus the second derivative
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should be reduced to first order. This reduction is also desirable from

the point of view of promoting symmetry (Becker et al., 1981).

The second derivative is reduced using the Gauss divergence thecrem

by the following steps.

N, v - (KVd) =V . (Ni Kvd) - K V N, - vé
Thus,

G = fye (N, C 3%/t - V - (N,KV&) + KWN; - V&) av®
By the divergence theorem of Gauss

f, V- odV = [, 0+ ndS

S
and choosing ¢ = Ni KV® we get

e _ . e _ . e
Gi = Ive (Ni C 2%/3t + K VNi vé) av Ise (Ni KV®) - ndS (A.2)

The function & is given by N ¢ = Nl¢1 N2¢2 + ...+ Nr¢r, where the éj 5
are the values of ¢ at the node points of element e and the Hj's are
the basis functions assoclated with element e. The second term in the

volume integral becomes,
e = - e =
Ive KVNi Vb gv = Ive (KVNi VN) ¢dv

e
Ive K (aNi/Bx anj/ax + BNi/By aNj/By) ¢j dv

for i =1, 2, veues T} J =Ly 24y eeey L.

This yields an r x r matrix with the common terms shown. Three node
(r=3) linear triangles are used in this study so the matrix will be 3 &

3. The basis function Ni for a linear triangle has the form
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= =12
Ni ai + bi X +cC Y i e 2, 3
where; a, = X; ¥y, = ¥j4p¥541

By = ¥in 7 Yie2

Ci T Xivp T *in1

and i varies cyclicly.
The time derivative term is handled using
_ e e
a@i/at = Ive CNi ad/at av- / Ive CNi av
since this promotes stable solutions (Neuman, 1973).

The surface integral term is simply the integration along the

element boundary of the flux normal to the boundary. The result is that
[ e (N, KV&) 'nds® = (q,. L,, +q,, L,.)/2 =Q}
S i il Til iz "i2 i

where qyqr q, are the flux rates along two element boundaries
connected to node i in element e and Lil and Li2 are the lengths of the

two element boundaries connected to node i in element e. The result is

e e e e .
G. =LA, ,6 08b. /ot + L B "¢ ~ Q i=1,2,3
i jid 3/ P13 9y e
where; Ai§= IVe CNidVe i=3
A.?= 0 i#3
1]

e_ e
Bij Ive K(aNi/ax anj/ax + aNi/ay auj/ay) dav

Performing the matrix operation Gi = Ze Gi = ( yields

Gi = Zinj 3¢j/at ?jBéj—Qj i=1,2,...,M (A.3)
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. - v} ] ‘s
where; Aij .Ze ae zs=l CS Niws i=j

Ayy =0 1%

il

- P '
Bij Ze ((bibj cicj))/4ae ZS=1 szs

0
]

i = Tg (dyy Lyy * 94y byy)/2

Cs, Ks' Ni = values of the coefficients C and K, and basis function Ni

at Gauss sample point s,

=
n

weight associated with Gauss sample point s,

w
1l

area of element e,

Ay 9ypr Lil' Liz = as defined previously,

bn =¥, Vo1 : n takes on the values 1, 2, 3 cyclicly
c, = X, T X cyclicly
X, ¥, =X and y coordinate locations of the node point n.

Numerical evaluation of the integrals is used instead of analytical
integration because it provides for more complete mass conservation for

this problem where the coefficients C and K are strongly depemndent on

the pressure h.

Equations (A.3) is a nonlinear set of ordinary differential
equations. A set of nonlinear algebraic equations is derived by
approximating the time derivative with finite differences. A backward

difference scheme is used, i.e.
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ap/at = (& - 8571 /bt
Substituting and using the time weighting factor # (058<1l) we get
aroam & =@a@-1as e trag

When 6 = 0 the scheme is explicit; when 8 = 1 the scheme is fully

implicit; and when 6 = 1/2 the Crank-Nicholson scheme results.



