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STOCHASTIC MODELING OF THE RAINFALL-RUNOFF PROCESS FOR
NONPOINT SOURCE POLLUTANT LOAD ESTIMATION

ABSTRACT:

A stochastic simulation methodology was developed for the rainfall-
runoff process to assist in the assessment of nonpoint source pollutant loads,
particularly for ungaged watersheds where there is a scarcity or complete lack of
historical data. The methodology was developed based on simulating individual
rainfall-runoff events. A simulation model employed a rainfall simulator to
stochastically generate rainfall event characteristics for input into basin hydrologic
iransformation functions which then predicted the corresponding runoff
hydrography characteristics.

Also addressed was the impact of limited data availability on the ability
to model the rainfall-runoff process. An evaluation was conducted to the degree
to which committing valuable resources to expand the data base would provide
measurable improvement in model results. Specifically, the probability of
achieving certain levels of accuracy with the simulation model was statistically
assessed as a function of the number of observed rainfall-runoff events used for
model development. The probability of monitoring various numbers of rainfall-
runoff events in specified time intervals was also established as an aid for
planning field monitoring studies.

The simulation methodology was applied to a study watershed in the
Lake Ray Hubbard reservoir drainage basin near Dallas, Texas. Regional rainfall
characteristics were established using historical hourly data from the Federal
Aviation Administration rain gage at Love Field Airport in Dallas, Texas. Hourly
rainfall data were resolved into individual rainfall events and probability density
functions were identified for event volume, time between events, and event
duration. Linear hydrologic transformation functions were derived and
incorporated into the simulation model by applying a unique stepwise least
squares optimization procedure using observed data from the study watershed.
Both total direct runoff and peak runoff rate were shown to be functions of

rainfall event volume and a white noise component. Verification of the mode! was



iy

achieved by statistically demonstrating that long-term simulation results and

observed field data were drawn from the same underlying population.
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CHAPTER 1
INTRODUCTION

Purpose |

Effective and maximum protection and use of surface water sources is
essential 10 long term resolution of the water supply needs of the nation,
particularly for many urbanized areas which may rely almost exclusively upon
surface water systems or which may be encountering limits upon their
groundwater use. Nonpoint source (NPS) pollution can pose a significant
threat to the long term quality and use of surface lakes and reservoirs for
municipal and industrial water supply. Effective control is considerably
hampered by the inability to adequately quantify NPS pollution because of its
inherent complexity and the consequent time and financial resources that
become necessary to adequately measure and monitor NPS loads in a
particular region or watershed.

The rainfall-runoff process is the driving force behind generation of NPS
pollution. Rainfall and subsequent runoff provide the energy and medium
whereby soil is eroded and transported to surface waters as suspended
sediment. Suspended sediment is the primary NPS pollutant (U.S.
Environmental Protection Agency 1973) and it produces the high turbidity levels
that characterize runoff events. Turbidity reduces light penetration in the water
column and, thus, can decrease primary productivity. Furthermore, suspended
sediment can be directly harmful to aquatic animals because the sediment

particles can interfere with respiratory processes and cause abrasion damage



to the soft parts of sensitive tissues. Upon sedimentation, the particles can
destroy nesting sites of fish, smother fish eggs, and alter habitats of benthic fiora
and fauna (Farnworth 1979).

Another, even more important, problem associated with suspended
particles is their role in transporting nutrients and agricultural chemicals into
surface waters. Phosphorus and nitrogen adsorbed to the suspended matter
can induce excessive growth of algae and other aquatic plants. Matabolic by-
products produced by these plants can impart objectionable tastes and odors to
the water.

Agricultural organic chemicals, such as pesticides, also tend to be
adsorbed to soil particles. The rainfall-runoff process and resulting soil erosion
can result in the transport of these toxic chemicals into surface waters (U.S.
Environmental Protection Agency 1973).

This research seeks to develop a statistically based simulation
methodology for the rainfall-runoff process to assist in the assessment of NPS
pollutant load generation in small watersheds that are typified by sporadic and
il-defined runotf and by limited and difficult to obtain field data. By describing
the rainfall-runoff behavior in probabilistic terms, variability in pollutant loads
can be assessed with regard fo the need for additional field data in view of the
intended use of poliutant load estimates and the likely increase in the certainty
of pollutant load estimates that may or may not be expected through the
development of additiona! field data. The Monte Carlo based stochastic
simulation strategy of this research provides a means to describe the expected
runoff volumes and flow rates, and then ultimately the pollutant loads, in a
probabilistic fashion as a function of primary driving forces and constraints while

incorporating varying levels of information about those forces and constraints.



Background
Nonpoint Source Pollutant Load Assessment

Even though stochastic modeling ot the rainfall-runoff process is the
specific objective of this research, it is to be tailored in such a way as to facilitate
NPS poliutant load estimation. Therefore, it seems appropriate to review briefly
current methods for NPS load assessment. There are three current strategies
for the estimation of NPS poliution generation in a given watershed:

(1) Average regional or national scale data, such as that developed in

the National Urban Runoff Program (Niedzialkowski and Athayde
1985, U.S. Environmental Protection Agency 1983) are used as
surrogates for site specific data,

(2) Site specific data are collected to deduce basically empirical

estimates of the NPS loads; and

(3) A deterministic model of the rainfall-runoff process coupled with

empirically oriented pollutant load generation functions is used to
attempt to deterministically simulate the NPS pollution generation
process.

Use of average regional or national scale data, even when enhanced by
identification of statistical correlations such as those currently under
investigation by the USGS (Driver and Lyston 1986), does not identify the
mechanisms at work in the NPS pollution process: such identification is seen by
some (Ellis 1986; Sonnen 1986; Terstriep, Noel, and Bender 1986) as crucial to
reliable prediction of NPS pollution. Average of statistical correlations do little
to explain why NPS loads do in fact assume certain magnitudes. Furthermore,
empirical NPS pollution data and relations not having their origin in actual data

from a watershed under study will often be suspect because of the recognized



and considerable variability that such data demonstrate from one site to the next
and even from one event to the next at the same site (Roesner 1982).

On the other hand, comprehensive and reliable site specific data bases for
NPS poliution are difficult to develop. Site specific field studies are extremely
costly and, since NPS pollution is strongly rainfall event dependent, sampling
programs are logistically difficult and/or equipment intensive (Jennings 1982).
Consequently, there is always difficulty in funding and conducting a field study
of sufficient scope to develop data of the required detail (Huber et al 1979,
Huber 19886).

Existing simulation models, such as SWMM (Huber et al. 1977}, CREAMS
(U.S. Department of Agriculture 1984}, SWRRB (Arnold et al. 1986, Arnold and
Williams 1985), and others (U.S. Army Corps of Engineers 1974, Marsalek
1986, U.S. Environmental Protection Agency 1971) can be effective in
realistically estimating individual event NPS pollution, but they are very data
intensive in their requirements for calibration and verification. A sizeable site-
specific data base involving meteorologic, hydrologic, or hydraulic conditions is
essential (Brown 1975, Huber 1988, Urbonas and Roesner 1986).
Development of such data bases may require more time and financial
resources than available. Furthermore, and importantly, such simulation
models attempt to describe the generation of NPS pollution in a deterministic
fashion: no specific attempt is made to treat key factors as being inherently
random and thus incapable, at least from a practical standpoint, of a
deterministic description.

Recognition of the inherent uncertainty in NPS pollution generation due to
the underlying stochastic nature of the rainfall-runoff process may provide a
more direct solution to development of the level and type of information that is

needed in certain applications. Despite the obvious limitations of a



deterministic view of the NPS pollution problem, only limited attention has been
given to nondeterministic modeling of NPS pollution (Hemain 1986, Marsalek
1986, North Central Texas Council of Governments 1984, U.S. Department of
Agriculture 1985) and that has focused upon statistical modeling rather than
stochastic modeling, that is, use of statistical correlations or frequency curves as
the basis for deducing relations among factors influencing NPS pollution rather
than constructing a model incorporating random processes (Driver and Lystrom
1986, Mancini and Plummer 1986, Medina 1979, Roles and Jonker 1985).
Such statistical models do not allow interacting factors to adequately describe
NPS ioad variability since the relations used are ones which represent,
effectively, a statistical smoothing.

A need exists for new strategies that address the fundamental stochastic
nature of NPS pollutant generation due to the underlying stochastic nature of

the rainfall-runoff process.

Stochastic Rainfall-Runoff Model

Information about stream flow rates is essential for the analysis and design
of water resource systems and NPS poliution management strategies. Stream
flows are subject to the fundamental uncertainties of natural hydrologic
phenomena and, as such, are the result of a mechanism with underlying
random or stochastic components. Therefore, in order to address the reliability
of water resource systems, including NPS pollution management systems, and
to assess the risks of failure to achieve system objectives, it is necessary to
describe the probabilistic nature of stream flow rates.

The basic data used to generate the statistics to describe the probabilistic
nature of stream flows comes from historical stream gaging records. These

records are likely to span a relatively short period of time, commonly less than



25 to 50 years, and can be thought of as only one of the infinite number of
possible realizations of the underlying stochastic process. Thus, future
sequences of stream flows are likely to differ significantly from the observed
historical sequence. A common technique is to extend the historical record to a
longer sequence, or multiple sequences of a given duration, by synthesizing or
generating stream flow data using time series stochastic modeling techniques.

Some of the first applications of time series modeling techniques for
stream flow synthesis were conducted by Fiering (1962), Matalas (1967), and
Fiering and Jackson (1971). Since this early work, a vast body of literature has
been generated on the subject. There are several excellent recent references
that summarize the theory and application of time series analysis in hydrology
(Bras and Rodriguez-lturbe 1985; El-Shaarawi and Esterby 1982; Hipel 1985;
Kottegoda 1980; Loucks, Stedinger, and Haith 1981: and McCuen and Snyder
1986). Additional theoretical development of time series analysis can be found
in the classic work by Box and Jenkins (1970) and in Bhat (1984). Time Series
models of the autoregressive (AR), moving-average (MA), autoregressive
moving-average (ARMA), and autoregressive integrated moving-average
{ARIMA) types have been used to generate synthetic stream flow sequences for
application to the optimization of designs and development of operating
strategies for water resource systems. These models require a record of
historical streamflows spanning at least 20.to 30 years,

Unfortunately, many practical problems of great interest deal with
watersheds where historical stream gaging data are limited or non-existent. In
addition, the statistics of stream flow can be altered greatly by anthropogenic
changes in land cover, land use, stream flow regulation, and groundwater use.
These factors can render the historic sequence of flows almost useless for

predicting future events or, at least, make questionable the stationarity



assumption typically invoked when performing time series analysis on
hydrologic data.

Where stream flow data are available but limited (a minimum of 5 years of
data is usually required) and long-term historical climatoiogical data are
available, time series stochastic modeling of the rainfall-runoff process has
sometimes been used. The usual procedure is to apply a linear transfer
function model with a noise component for the residuals. White noise and
autocorrelated noise components have both been used. The theory of linear
transfer function-noise models has been discussed in detail by Box and Jenkins
(1970). The transfer function typically addresses the cross-correlation between
stream flow at some desired point as the response variable with stream flow at
upstream points and/or rainfall within the watershed as input time series
(Chang, Kavvas, and Delleur 1982; Mimikou and Rao 1982; and Sharma 1985).
The transfer function sometimes invoives cross-correlation between stream flow
as the response variable with rainfall and antecedent rainfall effects as inputs
(Caroni, Mannocchi, and Ubertini 1882), or with rainfall at multiple gage sites
and temperature at multiple sites as inputs (Hipel, McLeod, and Noakes 1982;
Thompstone, Hipel, and McLeod 1985; Tong, Thanoon, and Gadmundsson
1985).

For ungaged watersheds where there is a complete lack of historical
streamflow data, or where recent non-stationarity has been induced by the
activities of man, a common alternate procedure is to estimate the statistical
characteristics of stream flow rates using a suitable deterministic rainfall-runoff
model to simulate the watershed response to a stochastic rainfall input. The
stochastic properties of the rainfall input are estimated from long-term historical

precipitation data collected at a rain gage in the same geographic and climatic



region as the study watershed. This is the approach to be used in this work
where a small, ungaged watershed is studied.

Much work on the stochastic-deterministic modeling of the rainfall-runoft
process has focused on the theoretical development of probability density
functions (pdf's) for runoff volume given some simple assumed pdf's for
pertinent rainfall characteristics. Simplified basin transfer functions are used in
this type of analysis to facilitate the theoretical computations.

A common technique has been to model the basin response as a single
linear reservoir (Frind 1969, Klemes 1974, and Singh and Birsoy 1977). Other
researchers have extended this work by using a cascade of linear reservoirs
(Tarboton, Bras, and Puente 1987). The development of linear reservoir theory
for simulation of basin storage effects has been discussed in detail by Chow
(1964) and Singh {1988).

Linear reservoirs are used to simulate only the lime lag associated with
basin storage effects. This approach does not deal with the complex task of
estimating runoff velume when given the input rainfall volume, which involves
consideration of the many basin hydrologic factors that influence the
transformation of rainfall to runoff. These factors include interception,
evapotranspiration, infiltration, and accretion of soil water to the deep
groundwater, all of which abstract or remove somae rainfall before it can runoff.
Some researchers have avoided dealing with the complex hydrologic
abstraction process by assuming that some simple pdf is known directly for the
rainfall excess (Frind 1969, Klemes 1974, and Singh and Birsoy 1977), or by
just ignoring the abstiaction altogether and acknowledging the serious
limitations this imposes on applying their theoretical work to practical stream

flow synthesis problems (Tarboton, Bras, and Puente 1987).



Another technique employed to simulate basin response to allow
theoretical development of pdf's for runoff volume is the application of kinematic
wave theory for hydrograph forecasting as applied by Eagleson (1971). Rather
than completely ignore rainfall abstraction, Eagleson assumed a very simple
constant rainfall abstraction rate to make the theoretical calculations tractable.
He assumed that rainfall event duration was exponentially distributed and that
event rainfall volume possessed an exponential pdf conditional on duration.
Time between storms was assumed to be independent of volume and duration
and assumed to be exponentially distributed.

Eagleson (1972) used the same general approach to derive theoretical
pdf's for peak flood flow rate. Here he assumed rainfall volume and duration to
be jointly exponentially distributed to facilitate his calculations. Similar work
was carried out by Bras and Chan (1978) to derive pdf's for runoff volume
above some given threshold value.

~ Eagleson (1978) extended his earlier theoretical work by using the Phiiip
infiltration equation to estimate rainfall abstraction coupled with kinematic wave
theory to simulate basin lag, and simplifying assumptions about the pdf's of
rainfall event random variables.

A conceptual mode! using the Horton infiltration equation to simulate
hydrologic abstractions and single linear reservoirs to simulate storage effects
for both surface flow and subsurface flow has been developed by Koch (1985).
Because of the increased complexity over Eagleson's models (1971, 1972, and
1978), Koch was unable to derive pdf's but derived relatively complex
theoretical equations for the statistical moments of the stream flow distribution.
Koch assumed that time between rainfall events, average rainfall intensity, and

rainfall event duration were independent random variables with each
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possessing a simple exponential distribution in order to make possible his
calculations.

Other work has been done on ungaged watersheds using the U.S. Soil
Conservation Service (SCS) runoff curve number method and other simple
conceptual models to simulate basin response to a stochastic rainfall input.
Barton (1974) used a two-stage conceptual model of watershed response to
generate monthly stream flows from a stochastic monthly rainfall input for British
catchments. Hanson and Woohiser (1978) developed a rainfall-runoff Monte
Cario simulation model where daily rainfall volume was assumed to possess an
exponential distribution conditional on the occurrence of rainfall. The
occurrence of rainfall was simulated by a simple two-state Markov chain. Then,
the runoff coefficient (i.e., the ratio of runoff volume to rainfall volume) was
assumed to possess a beta distribution. The model was used to evaluate the
potential impacts of weather modification on stream flows in western South
Dakota. Thames (1984) used a stochastic model of daily precipitation coupled
with the SCS runoff formula to convert rainfall to runoff and an autoregressive
evaporation mode! to evaluate the performance of small water impoundments in
Arizona.

Most stochastic modeling of the rainfail-runoff process has been based on
discrete time intervals for annual (Frind 1969, Klemes 1974, Singh and Birsoy
1977), monthly (Barton 1974; Hipel, McLeod, and Noakes 1982: Sharma 1985),
weekly (Thompstone, Hipel, and MclLeod 1985), or daily (Hanson and
Woolhiser 1978; Mimikou and Rao 1982; Morris, Hood, and Ferguson 1984;
Thames 1984; Tong, Thanoon, and Gudmundsson 1985) runoff volumes. Even
the considerable body of literature dealing with stochastic rainfall modeling has
dealt almost exclusively with a time interval no shorter than one day (Austin and

Houze 1972; Caskey 1963; Chang, Kavvas, and Delleur 1984: Feyerherm and
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Bark 1967; Gabriel and Neumann 1962; Green 1965; Kavvas and Delleur 1981;
Woeiss 1964; Wiser 1865).

Some work has been done with discrete time divisions of less than one
day primarily for short-term, real-time flood forecasting. Hourly time steps were
used by Caroni, Mannocchi, and Ubertini (1982) and 6-hour time steps were
used by Georgakakos (1986).

A continuous time scale is most appropriate for rainfall-runoff modeling for
NPS pollution load estimation where rainfall data is characterized on an
individual event basis. Characterization of individual rain events was the
approach used by Eagleson (1971, 1972, 1978), Koch (1985), Bras and Chan
(1978). Basically, a daily time step is too long for accurate NPS pollution load
estimation because it is the characteristics of individual rainfall events, such as
intensity and duration, that control soil erosion losses from a watershed. On the
other hand, an hourly discrete time step is too short for efficient generation of
long-term sequences of synthetic stream flows because of the great
preponderance of zero values in hourly rainfall records.

This research employs a continuous time approach by characterizing

rainfall on an individual event basis.

Objectives
Stochastic Mode! Development and Use
The first objective of this research is the structuring of a stochastic
simulation model of the rainfall-runoff process as the driving force for generation
of NPS pollutant loads. The magnitude of NPS loads is strongly dependent on
the nature of individual rainfall-runoff events so that the model will be designed
to conduct Monte Carlo simulations for the evaluation of runoff statistics on an

event basis.
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On the other hand, it is the cumulative NPS pollutant load, particularly
nutrients, that develops over a long period of time, on the order of months or
years, that is of particular concern to the protection of the water quality of
surface water supplies (Dallas Water Utilities 1977, Herricks 1986, Huber 1986,
Marselek 1986). This results from the integrating dynamics of large bodies of
water. Sufficient information on the impacts of pollutant loads can often be
provided by a statement on the probability that over a period of time the NPS
load will lie within certain ranges. A probabilistic statement about such
cumulative loads can, in fact, be of more utility because it provides not only an
estimate of average loads but an appropriate measure of the variability in loads
that can be expected. Therefore, the model will also be structured to

accumulate statistics over monthly and annual time periods.

Development of Methodology for Use of Limited Data Bases

Site specific field data available for use in defining strongly empirically
based descriptions of NPS poliution or traditional calibration and verification of
deterministically oriented simulation models will, in a practical sense, always be
limited and commonly viewed as insufficient because of practical limits on time
and resources to accumulate site-specific data. Expansion of a data base
should, however, be viewed in the context of the additional information that can
result from such expansion. This present research examines the application of
a procedure to maximize the information on runoff variability that can be
obtained from a given set of field data and demonstrate how that information is

impacted by increases in data availability.
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General Modeling Methodology

Monte Carlo simulation coupled with a limited field measurement program
has been used in this research. A lumped parameter stochastic simulation
model has been structured to describe the generation of runoff from a
watershed, assumed to be small and of sporadic runoff, as a function of random
inputs of rainfall. The field data collection effort was undertaken to provide real
data for demonstration of the stochastic simulation methodology and the
technique proposed for dealing with limited data availability. The Mante Carlo
simulation strategy has been used to deduce rainfall-runoff event statistics and
probability distributions.

The lumped parameter event oriented simulation model is intended to be
reasonably simple and parsimonious (i.e., minimal number of model param-
eters) since the research focuses upon the stochastic features of rainfall-runoff
and is intended for use with limited data bases. Runoff volume is estimated as a
function of random variables characterizing rainfall events; volume, duration,
time between events. Antecedent rainfall volume also plays a role, but it is
calculated by accumulating preceding rainfall volumes.

Regionally representative probabilistic descriptions of rainfall event
volume, duration, and time period between events can be deduced from
available precipitation station data (North Central Texas Council of
Governments 1984, 1978; Court 1979). These random variables, because of
the controlling effects of short term infiltration, longer term percolation to the
groundwater, and evapotranspiration on runoff production, are crucial to NPS
pollution simulation (Hemain 1986). These data are described by empirical or
fitted theoretical distributions which are randomly sampled to generate event
rainfall magnitudes, durations, and inter-event times for Monte Carlo

experimentation.
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The simulation model incorporates parameters quantifying the probability
distributions of the random variables in the model. These parameters will be
determined through a combination of regionalized estimates and site spacific
calibration. Identification of parameters is feasible since the number of
parameters in the lumped model is limited. These distributions then become

the basis for Monte Carlo simulation of rainfall-runoff events.
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CHAPTER 2
FIELD DATA COLLECTION AND ANALYSIS

Field Methodology
Introduction

A field monitoring program was conducted for 13 months from June 1987
to June 1988 to collect rainfall, streamflow rate, and water quality data for a
small watershed within the Lake Ray Hubbard drainage basin. An ideal
monitoring site was found on a small tributary to Squabble Creek near the town
of Rockwall, Texas which is on the east shore of Lake Ray Hubbard about 20
miles east of Dallas as shown in Figure 2.1. The watershed has an area of 298
acres. Land use was approximately 80 percent rural (predominately grassland)
with the remaining area being residential. There were no known point source
waste discharges within the study watershed. There was a U.S. Weather
Service cooperative observer rain gage for daily rainfall measurement within
the study area.

In order to well define the processes involved in the generation of runoff
from rainfall, and to determine NPS poliutant loads as accurately as possible, it
was decided early in the planning of this study that automatic and continuous
measurement of rainfall, streamflow rate, and a suitable indicator water quality
parameter was necessary. Turbidity was chosen as the indicator water quality
parameter because it is directly related to the total suspended solids (TSS)
concentration, and because relatively inexpensive instrumentation for

continuous turbidity measurement is readily available from several
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manufacturers. Suspended matter is of primary importance for the analysis of
NPS pollutant foads since most of the nitrogen, phosphorus, and pesticides
from nonpoint sources are associated with particulate matter as discussed in

Chapter 1.

: ¢ Monitoring Stat

An innovative automatic stream monitoring station was designed and
installed at the outlet of the study watershed on the property of the Rockwall
County YMCA. Electrical power was readily available and only about 300 feet
of direct burial electrical cable was required to bring power to the equipment
enclosure. Power was then distributed to the various pieces of equipment
through a breaker panel and 110 volt receptacles.

Overall system configuration is shown schematically in Figure 2.2. The
primary components of the monitoring station were as follows:

1. Compound Weir - A sharp-crested compound weir was installed in a

section of stream with almost vertical sides; the stream cross-section
was roughly trapezoidal with a bottom width of approximately 7 feet, a
top width of approximately 10 feet, and a height of approximately 8
feet. The weir consisted of a rectangular portion with a 7.25 foot top
width for measurement of high flows and a 90° V-notch portion with a
total height of 1 foot for low flow measurement.

o Flow meter - An ISCO Model 2870 bubbler-type open channel flow
meter was installed for continuous flow rate measurement. It included
its own air compressor, chart recorded, and microprocessor to convert
head measurements directly into flow rate. It also had a port for an

ASCII digital output signal. Flexible 1/8-inch plastic tubing was used
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to convey the air to the outlet point in the stream where it was
discharged at the same elevation as the vertex of the V-notch weir.
Automatic Sampler - An 1SCO Model 2700 automatic sequential
sampler with 24 1-liter bottles was installed to collect water samples.
The sampler was equipped with a self-priming tubing pump, a suction
line of 1/4-inch flexible plastic tubing, and a programmable controller
that provided flexibility in choosing sampling frequency. It could aiso
interface with the flow meter to aliow flow paced sampling. For this
study, samples were collected on a sequential basis with the
frequency of sample collection paced by the flow meter at a rate of
one sample per 5000 cubic feet of runoff.

Turbidimeter - An H.F. Scientific Model DRT-200B continuous flow-
through turbidimeter was installed for turbidity measurement. The unit
had a flow-through module equipped with a glass cuvette, light
source, and photocells to measure the light scattered at 90° from the
light source. The instrument read directly in NTU and produced a 4-
20 ma analog output signal.

Tubing Pump - A self-priming tubing pump was installed to deliver a
continuous 1 gpm flow of sample from the stream to the turbidimeter.
Flexible, 1/4-inch, plastic tubing was used with the pump. The pump
was actuated when there was runoff in the stream by a low-pressure
pressure switch installed on the flow meter bubbler line. The pump
started when the depth above the vertex of the V-notch weir was
about 4 inches, which corresponds to a flow rate of 0.156 cfs.
Computer - A Texas Instruments Professional Computer was installed
to act as a sequential data logger using output signals from the flow

meter and turbidimeter. An analog-to-digita! converter was added to
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the computer to handle the analog signal from the turbidimeter. The
data were stored in the field on floppy disks. The data were then read
directly from the field diskettes into a Lotus 1-2-3 spreadsheet file on a
personal computer. The spreadsheet program was used as a
convenient tool to store, analyze, and plot the observed data.

7. Recording Rain Gage - A Universal weighing bucket-type recording
rain gage was installed at the monitoring site. Rainfall data were
recorded continuously on a clock driven paper chart in order to
provide detailed information on rainfall rates and rain event timing.
The gage was not operational until July 2, 1987, consequently the first
nine rainfall events of the study lack recording rain gage data.

A lockable metal building was erected adjacent to the waeir installation to

house the equipment.

The site was visited at least once weekly to calibrate and maintain the

equipment. Water samples collected by the automatic sampler were analyzed

by the Dallas Water Utilities Research Laboratory.

Data Analysis

Runoft Data

Raw flow rate data were input directly into a spreadsheet file on a personal
computer for convenient manipulation and analysis. Hydrographs for all 45
runoff events monitored during the field study were plotted using the
spreadsheet software as shown in the top graph of Figures A.1 through A.45 in
Appendix A.

The first task in analysis of the hydrographs was to develop and apply a
technique for separation of base flow from direct runoff. The point at which the

flow rate first increased above previous base flow rates was easily identified as
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the start of direct runoff. Then, based on a qualitative and quantitative review of
all hydrographs in conjunction with the corresponding continuous turbidity
measurements (turbidities tended to be high during direct runoff and low during
base flow as expected), it was decided to define the end of direct runoff for all
hydrographs as the point on the recession limb where the slope of the
hydrograph first dropped below 0.10 cfs per hour. A straight line connecting the
points at the start and end of direct runoff was then used for hydrograph
separation.

Numerica! integration of the area between the hydrograph and the base
flow line yields the total direct runoff volume for the event. The area below the
line is the total base flow volume during the event.

An analysis of all hydrographs produced the detailed runoff event data
shown in Table A.1 in Appendix A. Table A.1 contains the following information:

(1) date

(2) total direct runoff volume, Q (inches of equivalent rainfall)

(3) peak runoff rate, q, (cfs), defined as the difference between the
hydrograph peak flow rate and the base flow rate at the time of the
hydrograph peak

(4) time to peak, i, (hours), defined as the time from the start of direct
runoff to the peak runoff rate

(5) volume to peak, V, (inches of equivalent rainfall), defined as the
volume of direct runoff between the start of direct runoff and the peak
runoff rate.

There are 44 runoff events listed in Table A.1, instead of 45, because the

events of June 17, 1987 and June 18, 1987 (shown in Figures A.7 and A.8 in
Appendix A) have been combined and treated as a single event starting on

June 17. This was necessary because they occurred closely spaced in a way
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that prevented resolution of the rainfall data from the daily gage into two
Separate events. The recording gage was not yet operational to assist in the
resolution of the events. Notice, also, that the runoff volumes are missing for the
three events of November 16, 1987; December 26, 1987; and December 27,
1987. These data were omitted because of erroneous flow rate measurements
due to clogging of the weir by debris. This leaves a total of 41 events for which
runoff volume data are listed.

An evaluation of hydrographs in Figures A.1 through A.45 indicates that
events with a runoff volume less than 0.01 inch tend to possess unusual and
highly variable hydrograph shapes. It is believed that this is a consequence of
only a portion of the watershed contributing runoff to these events. Runoff
events above the 0.01 inch cut-off generally possess classical hydrograph
characteristics. It is believed that these events receive runoff from all parts of
the watershed. Detailed statistical analyses performed in Chapter 4 confirm that
events with volumes greater than or equal to 0.01 inch produce more consistent
mode! results. Therefore, runoff events of 0.01 inch and larger are designated

as significant events. There are 28 such events listed in Table A1,

Rainfall Data

Daily rainfall data were available from the U.S. Weather Service gage at
Rockwall spanning the entire field study. The recording gage became
operational on July 2, 1987 so that rainfall intensity data are only available after
that date. Recording rain gage data were compiled in hourly increments to
simulate the form of historical hourly rainfall records. Historical hourly records
are described in detail and definitions of pertinent rainfall event variables are

given in Chapter 3.
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Detailed rainfall event field data are shown in Table A.2 in Appendix A,

Table A.2 contains the following information:

(1)
(2)
(3)

(4)
(9)
(6)

(7)

date

total direct runoff volume, Q (inches of equivalent rainfall)

recording rain gage data

(a.) total event rainfall volume, R, (inches)

(b.) duration of the event, D (clock hours)

(c.) maximum hourly rainfall intensity, Inax (inches/hour)

(d.) weighted hourly average rainfall intensity, l,, (inches/hour)

(e.) time between rainfall events, T (clock hours)

daily gage rainfall event volume, Ry (inches)

area weighted average rainfall event volume, R, (inches)

elapsed time since last runoff event, T (clock hours), actually
computed as the elapsed time since the end of the last rainfall event
that produced runoff

elapsed time since the last runoff event with Q20.01 inch, T, (clock
hours), actually computed as the elapsed time since the end of the

last rainfall event that produced Q20.01 inch.

All rainfall data collected are included in Table A.2 regardless of whether both

gages recorded rain for a given event and regardiess of whether the rainfall

event produced runoff. Runoff volumes were repeated in Table A.2 for easy

identification of the rainfall events that did, in fact, produce runoff (i.e. Q>0). The

units "clock hours" refers to the integer number of hours in a continuous

sequence that begins on an exact clock hour (i.e. 01:00, 02:00, 03:00, etc.) and

ends on an exact clock hour.

When recording rain gage data were not available, the elapsed time

variables T, T, and T, were estimated from an analysis of the runoff
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hydrographs; the timing between rainfall events was approximated by the time
from the peak of the previous hydrograph to the start of runoff for the current
event. All or part of the recording rain gage data are missing for the eight
events prior to July 2, 1987 and for December 13, 1987 when the total rain
volume was measured but intensity data were missed because the rain gage
ciock malfunctioned. Also, elapsed time variables T, and T, are missing for the
runoff event of February 17, 1988 because several preceding precipitation
events were produced by snow and ice which made it impossible to relate
precipitation to runoff. Fortunately, no further freezing weather occurred after
February 17.

The area weighted average rainfall volume, R,,, was computed using

weighting factors derived by the standard Thiessen polygon method:

(2.1) Ry = 0.393 R, + 0.607 Ry .

Table A.2 contains a total of 82 rainfall events of which 40 possessed
useable runoff data along with known values of R,,, T, T, and T,. Of these 40
events, 27 produced significant runoff (i.e. Q20.01 inch). Of the 40 events, 9
lacked intensity data such that there were 31 events that possessed a complete
set of known values of all rainfall and runoff variables. Of these later 31 events,
19 produced significant runoff.

Summing over the calendar year from July 1987 to June 1988, for which
the complete set of rainfall-runoff event data were collected, yields a total
weighted rainfall volume of 28.89 inches and a total runoff volume of

approximately 1.49 inches.
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Antecedent Rainfall Data

Values of nine different cumulative antecedent rainfail volume variables

were computed (from the data in Table A.2 in Appendix A) for each rainfall

event that produced runoff. The following general notation was used:

iRj = rainfall volume occurring between the end of day i and

the end of day j (inch).

The nine specific cumulative rainfall volume variables compiled were,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(9)

0R1

oR2

0R15

OR31

rainfall volume in the 24 hours (1 day) antecedent to the
current event (inch)
raintall volume in the 48 hours (2 days) antecedent to the
current event {inch)

rainfall volume in the 72 hours (3 days) antecedent to the

current event (inch)

rainfall volume in the 96 hours (4 days) antecedent to the

current event (inch)

rainfall volume in the 120 hours (5 days) antecedent to the

current event (inch)

rainfall volume in the 144 hours (6 days) antecedent to the
current event (inch)
rainfall volume in the 168 hours (7 days) antecedent to the
current event (inch)
rainfall volume in the 360 hours (15 days) antecedent to the

current event (inch)

rainfall volume in the 744 hours (31 days) antecedent to the

current event (inch)
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These data are shown in Table A.3 in Appendix A. Only data for the 41
rainfall-runoff events for which the runoff volume was known (see Table A.2 in
Appendix A) are shown.

Cumulative totals were employed so that a single index variable could
represent the entire sequence of antecedent rainfall amounts. This approach
was confirmed as acceptable by a preliminary analysis that demonstrated that
an entire chronological series of daily antecedent rainfall volumes (i.e., 4R+, {R..
2R3, 3R4 4Rs. sRs. 6R7. 7R1s5. and 15R3¢) was less effective than a single cumulative

rainfall total for prediction of runoff volume.

Water Quality Data

Liquid samples collected by the automatic sequential sampler were
analyzed for the principal NPS pollutants: TSS, nitrogen, and phosphorus.
Other miscellaneous chemical and biological laboratory tests were also
performed. Raw laboratory results are not presented in this report since they
were not explicitly used.

However, in order to provide some insight into the typical magnitude of
NPS poliutant loads, the continuous field turbidity data and laboratory TSS
results were used to estimate the TSS load for the rainfall-runoff events. To
accomplish this, a correlation was developed between the TSS in the liquid
samples to the corresponding field turbidity measurements. A linear regression
analysis was conducted with TSS as the dependent variable and turbidity as

the independent variable which produced the following relationship:

(5.2) Y = 0.86 X-2.223



27

where,

Y = TSS (Mo/)

X

turbidity (NTU).
The linear correlation coefficient was 0.97 which indicated an excellent linear
relationship between TSS and turbidity as anticipated.

The regression equation of equation 5.2 was used, with the spreadsheet
software, to convert the continuous field turbidity measurements into a
continuous graph of TSS concentration versus time for each storm event
monitored.

These are shown as the middie graphs in Figures A.1 through A.45 in
Appendix A where field turbidity data were available.

Continuous graphs of TSS mass loading (in pounds of TSS per minute)
were then computed from the hydrograph and TSS graph for each event.
These TSS loading graphs are shown as the bottom graphs of Figures A.1
through A.45 where turbidity data were available. Numerical integration of the
area under the TSS mass loading graphs yields the total TSS mass load (in
pounds) for each event. These data are shown in Table A.4 in Appendix A. The
maximum load from a single event was approximately 11,750 pounds for the
event of April 17, 1988. The total load for the 13 month study (neglecting the
events for which turbidity data were not available) was approximately 52,220
pounds. On an annual areal average basis this is approximately 162 pounds
per acre per year.

The highly variable nature of the TSS concentration and mass loading
rates shown in Figures A.1 through A.45 indicates that, for this watershed at
least, continuous measurement of TSS concentrations is essential for obtaining

accurate pollutant load estimates. A set of sequential samples would tend 10



28

miss the high peaks of TSS concentration and mass loading and resuit in

underestimation of the total load.
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CHAPTER 3
HISTORICAL RAINFALL DATA ANALYSIS

Regional Rainfall Data

Runoff volumes and flow rates, and hence NPS pollutant foads, are related
to specific rainfall event characteristics: rainfall volume, rainfall rate or intensity,
event duration, and the spacing of sequential rainfall events in time. A statistical
description of these pertinent rainfall event characteristics is indispensable for
stochastic modeling of the rainfall-runoff process. Consequently, a long-term
historical sequence of rainfall data for the study area is needed to facilitate
estimation of the appropriate statistical distributions and parameters.

Rainfall data are readily available for numerous rain gage locations
nationwide as published by the National Oceanic and Atmospheric
Administration (NOAA) of the U.S. Department of Commerce. The vast majority
of these data are obtained with rain gage instruments that are placed into two
classifications based on the time interval over which rainfali volumes are
totaled: daily gages and hourly gages. The data are published in summaries
as calendar day totals for daily gages and as clock hour totals (i.e. midnight -
1:00 am, 1:00 am - 2:00 am, ..., 11:00 pm - midnight) by calendar day for hourly
gages. The published data are obtained from rain gages operated by the U.S.
Weather Service and the Federal Aviation Administration (FAA).

In order to statistically describe rainfall rates and event durations,
information about the timing of rainfall volumes within individual events is

necessary. This means that data obtained from hourly rain gages represent the
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minimum level of detail that is generally applicable for stochastic modeling of
the rainfall-runoff process. Daily gages yield only daily rainfall totals and,
therefore do not define rainfall rate characteristics for events less than 24 hours
in duration.

Published hourly rainfall records are available from NOAA through the
National Climatic Data Center (NCDC) in Asheville, North Carolina. These
records are available in paper copy by state, and in digital form on magnetic
tape by state or on diskette by individual rain gage. It is also to be noted that
rainfall data can be obtained from the NCDC for shorter totalizing time intervals
in some cases. Intervals of 15 minutes are available for a very restricted
number of rain gages. Intervals of 5 minutes can be obtained for an even
smaller number of gages in the form of daily paper charts only. In order to make
the methodology developed in this study as generally applicable as possible, it
was decided to utilize hourly data records because hourly is the shortest time
interval for which data are widely available.

The nearest hourly rain gage station, with a long-term record, to the study
area is the FAA weather station at Love Field Airport in Dallas, Texas. The
designation for this station in NOAA printed publications is "Dallas FAA AP."
The distance from the rain gage at Love Field to the study area is only
approximately 30 miles and there are no apparent differences in the
geographical and climatological characteristics of the two sites. Therefore, it
can be reasonably assumed that the FAA gage at Love Field adequately
describes the rain event characteristics for the study area and the surrounding

region.
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Event Data From Hourly Records

Format of NOAA Hourly Records

Hourly precipitation records on diskette were obtained from the NCDC for
the Love Field rain gage. A pair of diskettes with a total of 10 sequential data
files contained the hourly data. A summary of the dates spanned by each file is
shown in Table 3.1. Brief comments about any gaps in the data or changes in
measurement technique are also shown in Table 3.1.

General information about the format of the data on the diskettes was also
obtained (U.S. Department of Commerce 1085, 1986). A summary of the format
is shown in Table 3.2. Each data line in the files contains a numeric code in
field 1, called the line-type, which identifies the type of data contained in the
remainder of the line. The first 5 lines of each file contain general descriptive
information about the file and are identified with line-types 1 through 5,
respectively. Lines 6 through the next-to-last line of each file are designated
either line-type 8 or line-type 9 (there are no line-types 6 or 7). Line-type 8
identifies a line containing the date and data identification information. There is
one line-type 8 for each day on which raintall occurred during the record of
each file. Days with zero rainfall are not included in the files. A line-type 8 is
then followed by as many lines, each with line-type 9, as necessary to contain
the hourly rainfall data for that day. There is one line-type 9 for each hour in
which rain fell for that day, plus one additional line-type 9 for daily total rainfall.
Hours with zero rainfall are not included in the files. The last line of each file,
with line-type 10, identifies the end of the file.

An abbreviated sample of one of the files, HP12244D.PRN, is reproduced
in Table 3.3. As described above, the first line identifies the record-type as

hourly precipitation data, "HPD". The second line identifies the station name



32

File Name

TABLE 3.1

NCDC HOURLY PRECIPITATION DISKETTE FILES
LOVE FIELD IN DALLAS, TEXAS

Dates

Comments

HP12244A.PRN

HP12244B.PRN

HP12244C.PRN

HP12244D.PRN
HP12244E.PRN
HP12244F PRN
HP12244G.PRN

HP12244H.PRN

HP122441.PRN
HP12244J.PRN

11/1940 - 12/1944

1/1945 -12/1949

1/1950 - 12/1954

1/1955 - 12/1959
1/1860 - 12/1964
1/1865 - 12/1969
1/1970 -12/1974

1/1975 -12/1979

1/1980 - 12/1984

1/1885 - 5/1987

Data recorded to the nearest 0.01
inch until noted otherwise.

Data is missing beginning 24:00
on 12/31/46; the last rain recorded
before the gap occurred at 12:00
on 12/31/46.

Missing data ends at 01:00 on
10/1/47; the first rain recorded after
the gap occurred at 02:00 on
10/8/47.

Data is missing beginning 24:00
on 2/26/73; the last rain recorded
before the gap occurred at 06:00
on 2/26/73.

Missing data ends at 01:00 on
3/1/75; the first rain recorded after
the gap occurred at 16:00 on
7/2/75. Data recorded to the
nearest 0.10 inch after 01:00 on
3/1/75 due to a change in
instrumentation.
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TABLE 3.3

NCDC HOURLY PRECIPITATION DATA FILE SAMPLE
File - HP12244D.PRN

Line No. Listing of File Comments
1 1, "HPD" The first 5 lines indicate
2 2, "Dallas, TX" that this file contains hourly
3 3,412244,412244,0,0,0,0,0,0,0,0 precipitation data for
4 4, 1955, 01, 1959, 12 Station 412244 in Dallas,
5 5, "HPCP", = nn v e e Texas from January 1955
through December 1959.
6 8,955,1,1,"HI", 2 January 1, 1955 is the first
7 8,1,0,"0", "0" day of record and there was
8 8,25,0,"0", "0" no precipitation on this date.
9 8,955, 1, 5 "HI", 2 The first rain fell on January
10 9,94, "0' "0" 5, 1955, 0.04 inch fell in the
11 9,25,4,"0","0" hour ending at 9:00 am.
The daily total was 0.04
inch.
n-13 8, 959, 12, 31, "HI", 12 December 31, 1959 is the
n-12 9,9,1,"0","0" last day of record. Rain fell
n-11 9, 11, 8 "0", "o" during 11 clock hours; the
n-10 9,12,23,"0","0" first hour ending at 1:00 am
n-9 9,13, 25, "0", "0" and the last hour ending at
n-8 9, 14, 15,"0", "0" midnight. Hourly rain
n-7 9, 15, 25, "0", "0" volumes ranged from 0.01
n-6 9,16,13,"0", "0" inch to 0.25 inch with a
n-5 9,17,1,"0", "0" daily total of 1.13 inches.
n-4 9,18, 2 "o", "0"
n-3 9,19,1,"0", "0"
n-2 9,24,1,"0","0"
n-1 9, 25, 113 "o", "o"

n 10, "FILE-END" End of file.
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and state as Dallas, Texas. The third line indicates that all of the data in the file
are from the same gage: beginning station-id #1 and ending station-id #1 are
both 412244 (which identifies the gage at Love Field) aﬁd the remaining four
sets of station-id numbers are zeros. These first three lines are identical for all
10 of the data files. The fourth line indicates that this particular file spans the
time period from month 01 in 1955, that is January 1955, to month 12 in 1959,
that is December 1959. This line is different for each of the 10 files to indicate
the time period spanned by each individual file. The fifth line indicates that the
first element-type present in the file is hourly precipitation data, coded as
"HPCP", and the remaining 4 possible element types are not present in the file,
coded as " ". This simply indicates that the file contains only hourly precipitation
data. This line is identical for all 10 files.

The actual rainfall data begins with the sixth line of each file. There was no
rainfall on the first day of record for the particular file shown in Table 3.3, but the
first and last day of record is always included in each file regardliess of the
presence or absence of rain. The sixth line shown in Table 3.3 begins with a
line-type designation of 8 indicating the start of a day. The next three elements
of this line indicate the date. The 955 is the year with the leading 1 omitted (i.e.,
1955) to save storage space, the second element, 1, indicates the month and
the third element, 1, indicates the day (i.e., January 1). The next element in the
line, "HI", indicates that the rainfall data for this date are in units of hundredths of
inches. The final element, 2, indicates that there are 2 lines of line-type 9
immediately following which contain the hourly rainfall data for this date and the
daily total rainfall.

In general, the last element of a line-type 8 ranges from 2 to 25. A value of
2 indicates that rain fell in only one clock hour of the current day and that the

first line-type 9 that follows contains the data for that hour. A second line-type 8
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then follows to give the daily total rainfall, which equais the hourly rainfall for a
day with only one hour of rain. A value of 25 indicates that rain fell in all 24
hours of the current day and that 24 lines of line-type 9 follow with the hourly
data. A 25th line-type 9 then follows with the daily total rainfall, which is just the
sum of all hourly values. Obviously, a value between 2 and 25 indicates that
rain fell in some given number of hours between the two possible extremes.

All lines with line-type 8 are in an identical format for all of the files.

The seventh line shown in Table 3.3 begins with a line-type designation of
9 indicating that it contains hourly rainfall data or total daily rainfall. The second
element, 1, of this line indicates the end of the clock hour, in military clock time,
covered by the current line. In this case, it is 01:00 or 1:00 am. The third
element, 0, indicates the rain volume for this hour. As discussed previously,
zero rainfalls are included only for the first and last days of the file. All others
are omitted. The fourth element, "0", of this line is the flag indicating that the
data is acceptable. Any other symbol in this location indicates that the data for
the current hour is erroneous or missing. The fifth element, "0", is a flag not
currently in use by the NCDC. Every line-type 9 of all 10 data files has the
symbol "0" as the fifth element.

The eighth line of Table 3.3 begins with a line-type designation of 9. The
second element of this line, 25, specifies the ending clock hour as 25:00, which
is the flag used to signify that this line contains the daily total rainfall. The third
element, 0, indicates that there was zero total rainfall on the current day. The
fourth and fifth elements, both "0", are the data flags.

All lines of line-type 9 are in an identical format for all of the data files.

The remaining lines of the file, except for the last line, are line-types 8 and
9 and they contain the remainder of the hourly data and daily totals. As

indicated in Table 3.3, the first rain of the file fell on February 5, 1955 and had a
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duration of one clock hour with a rainfall amount of 0.04 inch. The last rain fell
on the last day of the file: December 31, 1959. On this date, rain fell in 11
different clock hours between 1:00 am and midnight with hourly volumes
ranging from 0.01 inch to 0.25 inch. The total for this date was 1.13 inches.

The last line of the file is of line-type 10 and contains only the character
string "END-FILE" indicating the end of the current file. All 10 files end with this

line.

Besolution of Hourly Data Into Separate Events .
In order to simulate the rainfall-runoff process, the NCDC data files must be

resolved into individual storm events. The pertinent rainfall event variables are;

R = total event rainfall volume (inches)
T = time between events (clock hours)
D = duration of the event (clock hours)

lnax = Maximum hourly rainfall intensity (inches/hour)

|, = weighted hourly average rainfall intensity (inches/hour)

Total rainfall volume, R, can be obtained to the nearest 0.01 inch by simply
summing the hourly values spanning the given event. Time between events, T,
is an integer variable representing the number of clock hours with zero rainfall
between two successive rainfall events. Duration, D, is an integer variable that
represents the number of clock hours that the given event spans.

The maximum hourly rainfall intensity, |y, @nd weighted hourly average
rainfall intensity, I, are intended to characterize the event rainfall rate. Other
intensity variables could be devised, but these two were selected because a
maximum and average seem to be physically plausible indicators of intensity
given the limitations of hourly rainfall data. Unfortunately, it is not possible to

estimate instantaneous rainfall intensities from hourly records. Hourly data
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represent a piecewise integration of the instantaneous rainfall intensity function
to give rainfall volume in one hour increments. As such, the hourly raintfall
amounts can be thought of as the average hourly rainfall intensity (inches/hour)
over that hour. Thus, Iy, is numerically equivalent to the maximum hourly
volume of rain that fell during the storm event and is thought of as the maximum
average hourly intensity for the event. The other intensity variable, |, is a
simple weighted average intensity where each hourly intensity during an event
is weighted by the fraction of the total event volume that fell during that hour.

This can be stated as:

D ,
(3.1) = ij[

j = average hourly intensity for hour j (inches/hour)

o
It

volume of rain that fel during hour j {inches)
D

.

=

Of course, R and D are as defined before. It should be noted that for hourly

u ¢
fl

data, i, and r are numerically equal so that this expression can be simplified to;

b [rj/1 hour]z
(3.2) e =

In order to separate the hourly data files into individual events, a
continuous interval of time of fixed length with zero rainfall must first be

specified as the separation criterion. A detailed evaluation of the hydrographs
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and associated rainfali data presented in Chapter 2 revealed that hydrographs
produced by closely spaced rainfall events could be resolved into separate
runoff events only for intervening periods without rain of 3 clock hours or more.
If the intervening dry period between occurrences of rain lasted for only 1 or 2
hours, the hydrographs did not fully recede to base flow conditions before the
flow rate began to rise again. Therefore, a 3 clock hour intervening period
between occurrences of rain was selected as the appropriate criterion for
resolution of hourly rainfall data into separate events. Other researchers have
also found 2 to 3 hours to be suitable for rainfall event separation (Eagleson,
1970).

As a consequence of the clockhour - calendar day - calendar month -
calendar year format of the NCDC data files, it is somewhat difficult to separate
the data into individual events. Difficulties arise because a single event can
frequently span from one day to the next, fairly frequently from one month to the
next, and occasionally even from one calendar year to the next. Also,
erroneous or missing data due to equipment failures and recording errors can
further complicate the separation process.

In order to overcome these problems, a carefully designed computer
program for separation of the events was developed. The program, written in
the Basic language, is listed in Table B.1 of Appendix B. The program requires
an IBM compatible personal computer with a hard disk with Microsoft Basic
installed. Upon execution of the program, the user interactively specifies the
output sequential data file name for storage of the separated event data. The
user then specifies the names of the NCDC input sequential data files, one at a
time, in chronological order, when requested by the program. As the program is
currently structured, the input data files and the program itself must be stored on

the hard disk. The output file is also written to the hard disk.
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As the program processes each of the input files, the date and time of the
current hour of rain is compared to the date and time of the last hour of rain. If
the intervening time is less than 3 hours, the current hour of rain belongs to the
same rain event as the last hour of rain. If it is greater than 3 hours, then the
current hour of rain represents the first hour of a new rain event.

in practice, the actual computation of R, D, Inax, and 1, are relatively simple
such that most of the steps in the computer program deal with the task of
determining the intervening time between each pair of successive hourly rainfall
values. If the last hour of rain and the current hour of rain are in the same

calendar day, then the intervening time is given by:
(3.3) twg = (0, - 1) -h,
where,

n = index variable indicating the total number of hourly rainfall

values already included in the current event (n > 0)

thet = intervening number of hours between the ending clock hour
of the last hour of rain and the beginning clock hour of the
current hour of rain (0 <t < 22)

h, = ending clock hour of the last hour of rain (1 < h, < 23)

Rned = ending clock hour of the current hour of rain (2 < h, 4 < 24)

(ho.1-1) = beginning clock hour of the current hour of rain

[1 < (hg1-1)<23]
Now, if the last hour of rain and the current hour of rain are in different

calendar days, then t,, 4 is given by:

(3.4) t =(h  -1+c, , (24 hours/day) + (24 — h,)

n+1



41

where,
(24-h,) = number of hours from the ending clock hour of the last hour of
rain to the end of the calendar day on which it occurred
[0<(24-h,) £ 23]
Cna = number of intervening days from the end of the last calendar

day in which rain occurred to the beginning of the calendar
day of the current rain (c,,{ 2 0)
(hnet -1) = number of hours from the beginning of the current calendar

day to the beginning clock hour of the current hour of rain
[0 <(h,1-1)£23]

The variable t,,, is defined as before except that it no longer has an upper

bound (i.e., t,,1 20 ) since the two successive hourly rains do not occur on the

same calender day. The variables h, and h,,4 are as defined before.

The number of intervening calendar days, c¢,,q, iS kept track of by
computing the number of the day of the year (1 to 365, or 1 to 366 for a leap
year) for each day of the record using subroutine YEARDAY of the program.
Then, if the last day in which rain fell and the current day in which rain fell are in

the same calendar year, ¢, 1 is given by:

(3.5) Chyt = (day1—1) dy
where,
Chst = day of the year in which the current hour of rain fell
(1=d,,, <365 0r 366 in a leap year)
d, = day of the year in which the last hour of rain fell (1 < d, < 364

or 365 in a leap year)
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(dn.q -1) = day of the year preceding the day in which the current hour of
rain fell [0 < (d,,4 -1) < 364 or 365 in a leap year].
The quantity (d,,,4 -1) in this equation is necessary to satisfy the definition of c,,
as the number of intervening days without rain.
Now, if the last hour of rain and the current hour of rain are in two

successive calendar years, €, is given by:

(3.6} Chyt = (dpyr —1) +(ny — dp)

where,

ny = number of days in the last calendar year (n, = 365 for a

normal year, n, = 366 for a leap year).

(ny~ dy) = number of days without rain from the end of the last day with
rain to the end of the last calendar year [0 < (n, - d,) < 364 or
365 in a leap year].

(d,,1 -1) = number of days without rain from the beginning of the current
calendar year to the beginning of the day with the current
hourly rain [0 <(d,,4-1) <364 or 365 in a leap year).

The definition d, is the same as before except that it now has an upper
bound of 365 or 366 since the current day of rain is in the next calendar year.
The variable d,,  is as defined before.

The first year of record, 1940, was a leap year. Therefore, since leap years
occur once every 4 years, subsequent leap years can be identified as those

years in which the following mathematical condition holds:

(3.7)

(YEAR - 1940) (YEAR - 1940)
INT 4 = 2
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where,
YEAR = calendar year (e.g. 1944)
INT = a function that returns the largest integer that is less than or

equal to the argument of the function.

Once the value of t,, is established, it is checked to see it it is less than 3
hours or greater than or equal to 3 hours. If it is less that 3 hours, then the
current hourly rainfall is part of the current event and it is annexed to the set of
all hourly rainfalls that make-up the current event. Data processing then
proceeds to the next hourly rainfall for another iteration. If t,.¢ iS greater than or
equal to 3 hours, the current hourly rainfall is the first hour of the next event. In
this case, the values of the pertinent rainfall variables for the current event are

computed and written to the output file. The variables are computed as follows:

(3.8) R= E- d
(3.9) T=1
n
(3.10) D=n+3 1
4 1
j=2
(3.11) Inax =max(r,, r,, ..., Fieee r)

n

D (rj /1 hour)2
(3.12) | = j=1

w R

where,
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Y = intervening number of hours between the ending clock hour of
the (j-1)th hour of rain and the beginning clock hour of the j-th
hour of rain of the current event.

ty = intervening number of hours between the ending clock hour of
the last event and the beginning clock hour of the current event.

max = a function that returns the maximum value among the set of

arguments.

All other variables are as defined previously. Obviously, the t; are the set of
(n-1) values of t,,; previously computed for the current event. The last value of
t,,+ computed for the current event was greater than 3 hours and, thus, it
becomes t, for the next event.

When the NCDC files are processed in the manner described above, all
data lines that include total daily rainfall (i.e., when the time is indicated as
25:00) or zero rainfall volume are appropriately skipped.

Otherdifficulties arise when there are grroneous or missing data in the
NCDC files. Erroneous and missing data are flagged in the files as discussed
previously. For an event with any erroneous or missing hourly data, the values
of R, D, k. and |, are indeterminate. In this situation, they are all set to a value
of -1 as a flag to omit the event from later data analyses. The value of T is
indeterminate if erroneous or missing data is present in the last hour of the last
egvent and/or the first hour of the current event. In either case, Tissetto~1as a
flag to omit the event from later data analyses. As a special case, the value of T
is also set to -1 for the very first event of record since T cannot be determined
for this event.

The computer program described above was applied to process the 10
data files for the Love Field rain gage received from the NCDC. A total of 3741

individua!l events occurred composed of 17,420 clock hour rainfall amounts
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from 3,645 calendar days. The actual output sequential data file contained
3740 events because the computer program omits the last event of record from
the data set. This was done because, in general, there is no way to insure that
the iast hour of record is actually the last hour of the last event of record.

For various reasons, not all of the 3740 events can be used for developing
statistical descriptions of the pertinent rainfall event characteristics. First of all,
some events have indeterminate values of R, T, D, lyax, and l,, as discussed in
detail above. Omitting all events that have indeterminate values for any of these
variables reduces the data set to 3604 events.

Second, two large gaps occurred in the data as shown in Table 3.1.
Documentation received from the NCDC on the data files clearly identified
thess gaps. The first occurred from midnight at December 31, 1946 to 1:00 am
on October 1, 1947 and the second from midnight on February 26, 1973 to 1:00
am on March 1, 1975. These gaps resulted from temporary termination of the
precipitation measurement program at Love Field. Unfortunately, the data flags
included in the files do not flag missing data due to termination of measurement.
This caused the computer program to compute unrealistic values of T for the first
event following each gap: 6733 hours for the first gap and 11,817 hours for the
second. The two events following the gaps must be omitted, which reduces the
data set to 3602 events.

Finally, when the precipitation measurement program at Love Field was re-
instituted the second time, the rainfall measurement instrumentation was
changed. The new equipment recorded rainfall volumes only in increments of
0.10 inch. Prior to the change, the data had been recorded in 0.01 inch
increments. A sensitivity of only 0.10 inch is not adequate for the research
purpoées of this study. Therefore, all data collected after 1:00 am on March 1,

1975 were omitted from the data set. Only the data with a measurement
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sensitivity of 0.01 inch is used herein. This spans from November 4, 1940 to the
last event before the equipment change on February 26, 1973. This reduces

the final data set to 2760 individual storm events.

Probability Distributions For Rainfall Event Variables
S le_Statisti
Sample statistics, computed using the set of 2760 individual storm events,

for R, T, D, |, and |, are listed in Table 3.4. Sample statistics were computed

using the following definitions (SAS Institute, Inc. 1985a and 1985b):

(3.14)
(3.15) Minimum Value, x__=min (X, X, ..., X, ..., X, )
(3.16) Maximum Value, x___ =max { x, x_, ..., X, ..., X )
max T2 i n
s
(3.17) Standard Error of the Mean, e, =—
in
- _ Sy
(3.18) Coefficient of Variation, C,, =%



Statistic

Mean, x

Standard
Deviation, s,

Minimum
Value, Xqpin

Maximum
Value, Xmax

Standard Error of
the Mean, e,

Coefficient of
Variation, Gy

Skewness
Coefficient, Cey

TABLE 3.4
SAMPLE STATISTICS FOR RAINFALL EVENT DATA
R T D Imax
(in.) (hr.) (hr.) (in./hr.)
0.3933  92.8141 4.4370 0.1905
0.6549 136.6676 4.9213  0.3005
0.01 3. 1. 0.01
6.17 1186. 82. 3.08
0.0125 2.6014 0.0937 0.0057
1.6651 1.4725 1.1092 1.5776
3.3791 2.8574 3.7289  3.3448
15.8497  11.6859 31.8798 15.9970

Kurtosis, Ky

(in.;r'ur.)

47

0.1461

0.2266

0.01

2.27

0.0043

1.5512

3.3464

15.9904
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> ( "7‘)3

(3.19) Coefficient of Skewness, C,, = ——| i1
X (n-1)(n-2) ——"—53

X

n _+4
n (n+1) 2 (xi _XJ 3 (n-1)°
(n—1)(n-2)(n-3) LS“—~ T (n-2)(n-3)

X

(3.20) Kurtosis, k, =

Where X represents any of the five pertinent random variables in the set (R, T,
D, lmax: lw}, Xj represents any arbitrary value of X in the sample data set, and n is
the total number of observed values of X in the data set.

The mean rainfali volume for the 2760 events was 0.3933 inches while it
ranged from 0.01 inches to 6.17 inches. The mean time between storms was
92.8141 hours, or about 4 days. Time between storms ranged from 3 hours to
1186 hours, which is about 50 days. Event duration averaged 4.4370 hours
and ranged from 1 hour to 82 hours, which is 3.4 days. Maximum hourly
intensity averaged 0.1905 inch/hour and weighted intensity averaged 0.1461
inch/hour. These variables ranged from 0.01 to 3.08 inches/hour and 0.01 to
2.27 inches/hour, respectively.

All of the random variables are positively skewed, which is common for
hydrologic variables, as indicated by the skewness coefficients of Table 3.4.
The values of kurtosis shown in Table 3.4 imply relatively peaked probability
density functions (pdf's) for all five of the random variables. These factors, and
the fact that all of the variables have non-negative lower bounds and are
unbounded in the direction of positive infinity, indicate that the gamma family of
pdf's, the log-normal pdf, and the Weibull pdf may be applicable for describing

the nature of the random variables. The low coefficient of variation for event
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duration, 1.1092, implies that the exponential pdf, which is a special case of the
general gamma pdf, may be useful for describing duration.

Further insight into the nature of the random variables can be achieved by
ordering and ranking the observed values. A frequency analysis for R values is
presented in Table B.2 of Appendix B. The observed values of R have been
ranked and shown in ascending order along with the frequency of occurrence
and percent of total occurrences with the given value. Also shown are the
cumulative frequency of occurrence and the cumulative percent occurrence,
which is the percent of total occurrences with a value less than or equal to the
given value. Frequency analyses are presented for T, D, lnax. @nd iy in Tables
B.3, B.4, B.5, and B.6, respectively, in Appendix B.

In each case, the frequency analysis demonstrated that the most common
frequency of occurrence was the minimum observed value. Specifically:

(1) 15.8 percent of the events had a value of R = 0.01 inch

(2) 8.4 percent of the events had a value of T = 3. hours

(3) 31.0 percent of the events had a value of D = 1. hours

(4) 21.4 percent of the events had a value of |max = 0.01 inch/hour

(5) 22.5 percent of the events had a value of |, = 0.01 inch/hour.
Furthermore, in each case the frequency decreased rapidly as the observed
value increased. This implies that the gamma family of pdf's with a shape
parameter, a, less than one may be particularly useful. The Waeibull pdf with a
less than one may also have some potential applicability.

The degree of correlation between the five random variables can be
measured by the sample correlation coefficients for each pair of variables.

Sample correlation coefficients are computed as follows:
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>0 %lx-7)

(321) rxy = ll (n l)sxsy (—1eryS1J

where X and Y are any arbitrary members of the set of 5 pertinent variables. All
other symbols are as defined previously.

if Ny s +1, then there is a perfect positive concordance between x and Y,
that is, as one increases the other increases in some specific predictable way. If
ryy IS =1, then there is a perfect negative correspondence between x and y, that
is, as one increases the other decreases in some specific predictable way. An
ryy value of zero implies no correlation, no predictability, between X and Y
values. Although, by definition, two independent random variables have a zero
correlation coefficient, the converse does not necessarily hold. However, the
magnitude of r,, gives a qualitative indication of the probability of showing
independence by statistical procedures.

The symmetric matrix of correlation coefficients for R, T, D, |,,,, and ly is
shown in Table 3.5. It is apparent from these statistics that T is poorly correlated
with the other four random variables since the correlation coefficients are near
zero. |t is also apparent that |,,, and |, are highly correlated with R having
correlation coefficients of 0.8603 and 0.7733, respectively. A relatively
moderate correlation exists between D and R with a correlation coefficient of
0.6047.

In order to develop a stochastic mode! of the rainfall-runoff process in a
direct and straightforward manner, independence of the important input random
variables is a desirable property. Furthermore, D, {,,,, and Iy are all essantially
measures of the rainfall intensity (R/D is the overall average intensity), such that

only one of the three would be sufficient for development of the rainfall-runoff
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1.0000
-.0155

.6047
.8603

TABLE 3.5
MATRIX OF SAMPLE CORRELATION COEFFICIENTS
T D Imax [
—-.0155 .6047 .8603 7733
1.0000 -.0193 -.0052 .0027
-.0193 1.0000 .2965 .1903
-.0052 .2965 1.0000 8797
.0027 .1903 8797 1.0000

7733
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model. Thus, the appropriate choice among the three is D based on the
criterion of minimum degree of correlation with R. Fortunately, D is a better
predictor of runoff from the study watershed than either I, or |, as
demonstrated in the detailed analyses presented in Chapter 4. Therefore, |,
and |,, have been deleted from the set of pertinant random variables.

The remaining analyses for fitting pdf's to the observed data will deal
exclusively with the random variables R, T, and D.

One final point must be emphasized before proceeding with the task of
fitting pdf's to the observed data. Rainfall volume, time between events, and
event duration are, in the strictest physical sense, continuous random variables.
However, the nature of the instrumentation used for measuring precipitation, in
concert with the convention of reporting the data in intervals of one clock hour,
discretizes the data into fixed incremental classes. Rainfall volume is
discretized into integer multiples of 0.01 inch, and time between events and
event duration are discretized into integer numbers of clock hours. As is the
common practice in hydrology, continuous pdf's and their associated
cumulative distribution functions (cdf's) have been fit to these sets of discrete
data, where possible, to approximate the actual underlying continuous

functions.

Raintall Volume
A 3-parameter gamma pdf was fit to the observed rainfall volume data.
The gamma pdf has been commonly recommended for this purpose (Eagleson

1970, Haan 1977, Yevjevich 1972). This pdf is of the general form:
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0, r<ih
(3.22) fr) =<9 1 1 et —(r=2)
B“ _F(a) (r—12) e—pF— r>2A
where,
r = any arbitrary value of the random variable R {r > 1)
o = shape parameter (o > 0)
B = scale parameter { > 0)
A = location parameter (0 <A < .01)
(e} = gamma function of a.

By definition, then, the cdf will be,

0, r<A N
4 -{U-4)
(3.23) Fin =y 1L _1_ e du,r>A
BD: r(a) _[L (U 1)

As discussed previously, reported values of R have a lower bound of 0.01
inch {i.e., R 2 .01). Since rainfall volume cannot be negative, A must be in the
range of 0 < A <.01. The value of A cannot be 0.01 inch because this implies
F(r = 0.01) = 0 which is physically incompatible with the tact that 0.01 inch is the

single most frequently observed value at 15.8 percent of the total observations.

Therefore, by practical necessity, A was assumed to have a known value of
0.005 inch so that any values of R in the range 0.005 < r < .01 will round
numerically to 0.01 inch. This assumption was based on physical reasoning
solely for practical purposes and is, thus, independent of the sample data.

The pertinent population moments for parameter estimation for the 3-

parameter gamma pdf are given by,
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(3.24) Mean, u=of + X

(3.25) Variance, 62 = off2

(3.26) Skewness Coefficient, y= —J%
(3.27) Kurtosis, k= 3 + % .

The parameters of the distribution were estimated by the Method of Moments
(MOM) by equating the sample mean and variance to the population mean and

variance in equations 3.24 and 3.25 as follows (Haan 1977, Yevjevich 1972):

(3.28) T=6f+2
(3.29) 52 = 6ff°
where,

=i

sample mean for R

s‘,? = sample variance for R
6 = estimator of o

A »

B = estimatoroff .

Equation 3.29 is not in strict conformance with the MOM since sf involves the
denominator (n-1) instead of n as required by the definition of sample moments.

However, the error is small, especially given the large sample size.
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Solving equations 3.28 and 3.29 simultaneously yields the simple

A
expressions for & and p:

(3.30) &=(Lf
Sr
2
A S,

(3.31) \ =t

Notice that & is dimensionless and the scale parameter ﬁ has the same
dimensions as R (inches) as required by the pdf.
Substituting the computed values of T and s, from Table 3.4, and
assuming A is known to be 0.005 inch, yields the following:
& = 0.3515
8 = 1.1046inch .
Notice that & < 1 such that the gamma pdf is of the reverse J-shape form

already expected from inspection of Table B.2.

It is also instructive to compare ¥ and K to the sample skewness

coefficient, Cg,, and the sample kurtosis, k,, respectively. The estimators of y

and x are,
A 2
3.32 Y= =
23 7
(3.33) k= 3+%
o



Substituting the value of & into these expressions yields the following

comparisons to C,, and k, from Table 3.4:

_ skewness kurtosis
¥ =3.3734 ¥ = 20.0697
C,, = 3.3791 k. = 15.8497 .

Agreement is excellent between the skewness coefficient which inspires
confidence in the parameter estimates. Agreement is only fair for kurtosis, but
even this is deemed acceptable given that kurtosis involves fourth moments.

Considerable effort was also made to estimate the parameters of the 3-
parameter gamma pdf by the method of Maximum Likelihood Estimation (MLE).
A procedure described in detail by Haan (1977) and Yevjevich (1972) was
applied. The MLE method generated estimates of the parameters o and B that
produced relatively poor agreement between observed data and the resulting
theoretical pdf. It is believed that this is a consequence of the shape parameter
o being less than unity (Kottegoda 1980). As a result, the parameter estimates
developed using the MOM have been used to fit the theoretical pdf.

A visual test for goodness of fit of the theoretical gamma cdf to the
observed cumulative frequency data is shown on log-normal probability graph
paper in Figure 3.1. The theoretical cdf is shown as a smooth solid curve and
the observed cumulative frequencies taken from Table B.2 are shown as the
plotted data points. Visual inspection readily demonstrates that there is
excellent agreement between the theoretical gamma cdf and the observed
empirical cdf.

in order to provide an objective evaluation of the fit, a chi-square test for

goodness of fit was conducted. This test involves placing the observed data
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into class intervals and then computing the chi-square test statistic defined as

follows:
2
m {n.—np)
(334) XE = Z ! !
i1 np;
where,
%2 = chi-square test statistic
n; = observed sample frequency of occurrence for the i-th class
n = total number of observed values
p; = theoretical probability that the random variable will have a value in

the i-th class interval obtained by integrating the pdf between the
limits of the class interval
np; = expected frequency in the i-th class interval for a random sample of
size n from the theoretical pdf
m = number of class intervals used to categorize the data.
The chi-square statistic is approximately distributed, for a large sample (n > 30),

as a chi-square random variable with degrees of freedom as follows:

(3.35) v=(m-1)-q

where,

v

degrees of freedom

]

q number of parameters estimated for the theoretical pdf from the

observed data.
The chi-square test for goodness of fit for the theoretical 3-parameter

gamma pdf is presented in detail in Table 3.6. Common practice involves



TABLE 3.6

CHI-SQUARE TEST FOR RAINFALL VOLUME PDF

3-Prameter Gamma CDF
(0 =0.3515,B = 1.10486,

59

A = 0.005)
Observed Cumulative Expected Chi-Square

Range Frequency Frequency Frequency Statistic
0.01 435 464 464 1.812
0.02 225 681 217 0.295
0.03 131 813 132 0.008
0.04 119 913 100 3.610
0.05 110 995 82 9.561
0.06 - 0.10 286 1279 284 0.014
0.11-0.15 185 1467 188 0.048
0.15-0.20 135 1610 143 0.448
0.21 -0.25 100 1726 116 2.207
0.26 - 0.30 110 1822 96 2.042
0.31-0.40 154 1976 154 0.000
0.41 - 0.50 106 2096 120 1.633
0.51 - 0.60 115 2191 95 4211
0.61-0.70 74 2269 78 0.205
0.71 - 0.80 65 2334 65 0.000
0.81 - 0.90 55 2389 55 0.000
0.91 - 1.00 47 2435 46 0.022
1.01 - 1.50 145 2587 152 0.322
1.51 - 2.00 69 2664 77 0.831
2.01-2.50 38 2705 41 0.220
2.51 - 3.00 22 2728 23 0.043
3.01 - 3.50 17 2741 13 1.231
3.51-7.00 17 2760 19 0.211
2760 2760 28.974

Null Hypothesis, H,:

Alternative Hypothesis, H: The data were not drawn from a population

The data represent a random sample from a population with a
3-parameter gamma pdf with parameters

o = 0.3515, p = 1.1046, A = 0.005.

specified pdf.

v=(23-1)-2=20 (the parameters o and p were estimated from the data:
parameter A was assumed known).
Total Chi-Square Statistic: x? = 28.974.
Critical Region at 0.05 Leve! of Significance: x§ > 31.410.

Decision: Do not reject Ho'

that follows the

the
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dividing the observed data into categories using class intervals of constant size
or using class intervals of uneven size but so selected that the expected
frequency is constant from one class to the next. Neither of these procedures
was practical for the data in this study for two reasons. First, the data are so
positively skewed (15.8 percent of the observations had the minimum possible
value of 0.01 inch) that using uniform class sizes produces either too few class
intervals in light of the large sample size (m < 5) or too many intervals with low
expected cell frequencies (np; < 10). Second, the latter approach cannot be
used because the observed data have been discretized and, thus, are not truly
continuous. This requires that the theoretical frequencies match the class
interval boundaries exactly. Therefore, uneven class sizes were chosen such

that the intervals increased as the R values become larger, as follows:

Class Size =™ __Range __

.01 .01 - .05
.05 .06 - .30
10 31 - 1.00
1.50 1.01 - 7.00

In this way, a sufficient number of class intervals was obtained with a large
expected frequency in each class. The sizes of the intervals were increased in
a simple rational progression that does not depend in any way on the observed
data. Therefore, the fundamental assumption of independence among the
observed class frequencies has not been violated. Overall, this approach is
consistent with the general guidelines for practical application of the chi-square

test (Steger 1971, Daniel 1978, Hoel 1984).
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As shown in Table 3.6, the total chi-square statistic had a value of 28.974

which lies outside the critical region of the test (xg > 31.410) at a 0.05 level of
significance. The decision rule suggests not to reject the null hypothesis that

the observed data represent a random sample of size 2760 from a 3-parameter

gamma pdf with the specified parameters.

Therefore, the final pdf to be used for simulation of rainfall volume is given

by,
0, r<.005
[r—.oosl
(3.36) fir} = 1 i (r~ 005).3515-1 eﬁ 11046 | aos
(1.1046)>"® T (:3519)

and the corresponding cdf is given by,

(3.37)
0, r<.005 i " - 005
F(n) = 1 __ 1 u-.005 """ e [""’46 ] Gu, r> .005 .
(1.1048)’ T(.3515) *40s
im W ven

Fitting a pdf to the data for time between events, T, proved to be
considerably more challenging than fitting a pdf to the R data. The high
coefficient of variation, 1.4725 from Table 3.4, indicates that the exponential pdt
has little applicability to this set of data. On the other hand, the relatively high
skewness and kurtosis, 2.8574 and 11.6859 respectively, of the data suggest
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that gamma or Weibull pdf's with a < 1 may be useful. These pdfs are of a
general reverse J-shape.

The general form of a 3-parameter gamma pdf for T is given by,

0, t<A

(3.38) W= _1_ 4" e-[ta—l] t>1
B“ I (o) '

where t is any arbitrary value of the random variable T (t > A). All other

parameters and functions are as defined in the previous section, except that the

possible range of values for A is now 0 £ A < 3. The corresponding cdf is as

follows:
0, rsi { _[ Y ]

(3.39) Ft) =91 _1_ j w-0"el ? Jauts>ar.
g® T (o)

Assuming that A is known (or can be guessed) a priori, and using the MOM

as discussed in detail in the previous section, the estimators & and ﬁ are given

by,

(3.40) & =

>
I
|_, o

(3.41)

—|
|
>
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where tand s, are the sample mean and standard deviation of the observed

data.

The general 3-parameter Weibult pdf has the form:

{ 0,tsh .
3.42 fit) = -l
842 at-2""" (p-1) " e[ "] >R

where,
o = shape parameter (o > 0)
B = scale parameter ( > 0)
A = location parameter (0 < A < 3.0).

The corresponding Weibull cdf is known to be,

(3.43) F(t) = -2

The pertinent population moments of the Weibull pdf, in terms of the

parameters of the distribution, are as follows (Haan 1977, Yevjevich 1972):

(3.44) Mean, p = A+(B-A) T (1 +=)

(3.45) Variance, o° = (B —1)2 [I' (1 +%) -1? (1 +é)]
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(3.46) Coefficient of Skewness,
ra+3)-ar+2)ra+g)+2ri(t+4)
= 3r

[r(1 2P +‘10T)]

where
I'(+) = gamma function of the argument
2 («) = a-th power of the gamma function of the argument.

The equations for p and o2 can be rearranged as follows:

(3.47) B=u+cA(x)
(3.48) A=P-0B(w
where,
1
(3.49) Alo) = [1 +T (1 +5)] B(x)
-1/2
(3.50) B(c) =[F(1+-§-)—F2(1+f;)]

The parameters of the Weibuil pdf can be estimated using the MOM by
equating the sample mean and standard deviation to the population mean and

standard deviation in equations 3.47 and 3.48 as follows:

(3.51) B=1+s Al



(3.52) A = B+s B@) .

Since A is assumed known, these two equations can be solved simuitaneously
for & and ﬁ However, a trial and error solution is necessary because of the
extreme complexity of the interdependent functions A(a) and B(a).

A computer program was written to solve this problem using the Statistical
Analysis System (SAS) software package (SAS Institute, Inc. 1985a and
1985b). The program is listed in Table B.7 of Appendix B. The program

computes the values of the complicated A (&) and B (ﬁ) functions for various
trial values of &.. A separate value of 6 is then computed from equations 3.51

and 3.52 using the trial values of & as follows:

(3.53) B, = T+s,A®)

(3.54)

>
n
1k

A8 B(&) .

The analysis is complete upon determination of the specific trial value of & that

makes ﬁ1 = ﬁz‘ The program also computes the value of ¥ for comparison o
the sample skewness by substituting & into equation 3.46 for the coefficient of

skewness.

Values of T have a lower bound of 3 hours (i.e., T 2 3). Since time
between events cannot be negative, A must be in the range 0 < A < 3.0. The
value of A cannot be 3.0 hours because this implies F(t = 3.0) = 0 for both the
gamma and the Weibull pdf, which is physically incompatible with the fact that
3.0 hours is the single most frequently observed vaiue at 8.4 percent of the total

observations.
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Considerable effort was expended on fitting the general 3-parameter
gamma pdf and the 3-parameter Weibull pdf to the observed data for T. Several
alternative guesses of the value of A were tried in an attempt to improve the fit.
The parameter estimates & and ﬁ were computed using the assumed value of

A and values of tand s, of 92.8141 hours and 136.6676 hours, respectively,

from Table 3.4. In these trials, a graphical test of goodness of fit was employed.
The theoretical cdf frequencies and the observed cumulative frequencies were
plotted on log-normal probability paper and the fit was evaluated visually. This
is, admittedly, a subjective test but it gives insight into the specific values of T
where the greatest deviation from theoretical frequencies occur. In order to
provide an objective evaluation of fit, the chi-square test for goodness of fit was
also conducted in each case. The analyses are summarized in Table 3.7. No
acceptable fit to the data was obtained.

In every case, the graphical analysis showed a poor fit to the data at values
of T below approximately 50 hours and a good fit to the data above that point.
Also, it was found that the gamma pdf produced a significantly better fit to the
data over the entire range of T values than did the Weibull pdf. Therefore, no
additional consideration was given to fitting the Weibull pdf.

The disparity between the goodness of fit between low and high values of
T suggests that the lower values may represent a sample from a different pdf
than that of the higher values. A possible explanation for this has been given at
the end of this section.

As a result of the generally good fit to the data achieved with the gamma
pdf for T values of 50 or above, it was decided to fit a 3-parameter gamma pdf to

the upper tail of the data. The fitted function is a conditional pdf which is
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conditional on the value of T being greater than or equal to some specified
lower bound, t,, defined as follows:
t, = lowest integer value of t for which the fitted cdf has a non-
zero value.
A trial and error approach was used to determine the lowest value of t, for
which an acceptable fit to the upper tail could be achieved. Each time a new
trial value of t, was used, a different subset of the observed data become

applicable for which tand s, had to be determined in order to compute the

estimators & and ﬁ These sample statistics are shown in Table 3.8 for the 6
values of t, used in the analysis.

As before, a graphical test of goodness of fit was used as the primary
method of selecting a suitable pdf. This analysis is summarized in Table 3.9.
Again, the value of A is assumed known and was chosen as either (t, - 1) or
{t, - 0.5), whichever gave the best fit of the theoretical cdf at t; by graphical
inspection. A chi-square test of goodness of fit was conducted to provide a
comparison to the graphical analysis.

As shown in Table 3.9, the subset of data comprised of T values of 12
hours or larger can be acceptably fit by a 3-parameter gamma pdf with

parameters as follows:

a = .6575
B = 183.3745 hours
A = 11.5 hours.

A visual test for goodness of fit of the theoretical gamma cdf to the observed
cumulative frequency data is shown on log-normal probability graph paper in

Figure 3.2. The theoretical cdf is shown as a smooth solid curve and the



Data
(T=t)

T=24
T=25
T=28
T29
T210
T212

TABLE 3.8

TIME BETWEEN EVENTS

t
(hours)

JEE—————

101.0178
107.3957
120.8721
124.4289
127.2825
132.0614

St
(hours)

139.9298
142.1561
146.0827
146.9648
147.6319
148.6872

SAMPLE STATISTICS FOR DATA SUBSETS FOR

Number of

Observations

2529
2373
2095
2031
1982
1904

69



70

TABLE 3.9
UPPER TAIL PDF's FOR TIME BETWEEN EVENTS

Gamma Probability Density Decision
Data Subset Function Parameters Graphical Chi-Square

(T=1) & B A CDF Test

T4 4907  189.7632 3.0 Do Not Accept H, Do Not Accept H,
T25 5290  195.4468 4.0 Do Not Accept Hy Do Not Accept H,
T=28 6023 188.2311 7.5 Do Not Accept Hy Do Not Accept H,
T29 6222 186.3095 8.5 Do Not Accept H, Do Not Accept Hy
T=10 6370  185.0460 9.5 Do Not Accept Hy Do Not Accept H,
T=212 6575 183.3745 11.5 Do Not Reject Hy, Do Not Reject H,

Null Hypothesis, Hy: The specified subset of data is drawn from a 3-parameter

gamma pdf with the specified parameters.

Alternative Hypothesis, H;: The specified subset of data is not drawn from the

hypothesized pdf.

Decision Rule, Graphical: If, by visual inspection of the graph on log-normal
probability paper, the cdf does not fit the observed
cumulative frequencies of the subset of data then do
not accept H,. Otherwise, do not reject M.

Decision Rule, Chi-Square: Using a 0.05 level of significance, do not accept Hy

if the chi-square statistic exceeds the critical value
(xﬁ) for the appropriate degrees of freedom.
Otherwise, do not reject H,.
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observed cumulative frequencies taken from Table B.3 in Appendix B are
shown as the plotted data points. Visual inspection clearly demonstrates that
there is excellent agreement between the theoretical cdf and the observed

empirical cdf.

The chi-square test for goodness of fit for the fitted pdf is shown in detail in
Table 3.10. As was done for rainfall volume previously, uneven class sizes
have been used so that a sufficient number of class intervals could be obtained
with large expected frequencies (at least 10) in each class. As shown, the total
chi-square statistic was 34.618 which is outside the critica! region of the test

(xg > 35.172) at a 0.05 level of significance and 23 degrees of freedom. The
decision rule suggests not to reject the null hypothesis that the subset of the

observed data represents a random sample of size 1904 from a 3-parameter

gamma pdf with the specified parameters.

The entire data set, that is lower and upper tails, for time between events
can now be represented as a composite pdf. The upper tail of the distribution is
characterized by the continuous 3-parameter gamma pdf just developed, and
the lower tail (i.e., 3 < T < 12) is characterized by a discrete probability function.

The composite pdf takes the form:

0 ,t<3

P, t=i (=3 4,..,11)
(3.55) ft) = <
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TABLE 3.10
CHI-SQUARE TEST FOR UPPER TAIL PDF FOR TIME BETWEEN EVENTS

3-Parameter Gamma PDF
(0.=0.6575,B = 183.3745,

A=115)

Observed Cumulative Expected Chi-Square
Range Frequency EFrequency Frequency Statistic
12 49 43 43 0.837
13 30 89 46 5.565
14 27 125 36 2.250
15 36 155 30 1.200
16 34 183 28 1.286
17 33 208 25 2.560
18 25 232 24 0.042
19 26 254 22 0.727
20 24 275 21 0.429
21-25 92 369 94 0.043
26-30 78 449 80 0.050
31-35 71 520 71 0.000
36-40 51 585 65 3.015
41-50 121 698 113 0.566
51-60 108 796 98 1.020
61-70 101 882 86 2.616
71-80 72 959 77 0.325
81-90 62 1029 70 0.914
91-100 67 1092 63 0.254
101-200 389 1497 405 0.632
201-300 183 1690 193 0.518
301-400 123 1789 99 5.818
401-500 48 1841 52 0.308
501-600 19 1869 28 2.893
601-700 14 1885 16 0.250
701-1300 21 1904 19 0.211
1904 1904 34.329

Null Hypothesis, Hy: The data represent a random sample from a population with a
conditional (T 2 12) 3-parameter gamma pdf with parameters

o= .6575, p = 183.3745, A = 11.5.
Alternative Hypothesis, H;: The data were not drawn from a population that follows the
specified pdf.
v = (26-1) - 2 = 23 (the parameters a and B were estimated from the data, the
parameter A was assumed known).

Total Chi-Square Statistic: 2 = 34.329.Critical Region at 0.05 Level of Significance:
15> 35.172.

Decision: Do not reject H0

o
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where,

p; = theoretical probability that the random variable T has the value i.

The accompanying cdf is of the form:

(3.56)
0 ,1t<3
ipi,t=j(j=3,4,...,11)
Fit) =< =3
3 1 3 d 1 t(u—?u)me_[u';l]du >12
\%pi‘{‘ —épi B"‘l“(oc);L » 12

The estimators of the p; by either the MOM or MLE are

A ni
(3.57) P, =T
where,
n; = number of observations with T = i
n = total number of observations.

The p; values were computed using the frequency data of Table B.3 in Appendix

B. The resulting final pdf is then:



(3.58)

ft) =

oA

P [ We s N e W I O O

1 1
(183.3745)%°"° T (6575)

0.6898

t-115
6575 -1 | 183.3745

(t-115) e } L t212.

The associated final cdf is then given by:

(3.59)

Fit) =

.3102 + .6898

(T T 1 S T L I | B

_m~ e OO~ WOW

- O

1 1
(183.3745)°7° T (6575)

1

[u—n_s
6575 -1 | 183.3745
j (u-11.5) e

11.5

]

du

75

t=12.
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As a final check, a chi-square test of goodness of fit was conducted for the
final composite pdf. This analysis is shown in detail in Table 3.11. The total chi-
square statistic had a value of 33.182 which lies outside the critical region of the

test (xg > 35.172) at the 0.05 level of significance and 23 degrees of freedom.
The decision rule suggests not to reject the null hypothesis that the data are

drawn from the specified composite pdf. Notice that 11 parameters were
estimated from the data: o and B for the upper tail continuous pdf and P3

through p, for the lower tail discrete probabilities.

The final composite cdf is shown graphically in Figure 3.3 along with the
observed empirical cdf. The agreement is excellent.

At this point, it seems appropriate to address the question as to why the
vaiues of T below 12 hours appear to represent a difierent pdf than the values
above. This probably occurs because of the way T is defined and reported as
an integer number of clock hours. This means that for any given reported value
of T, the actuail sequential time elapsed, T,, can be as much as two hours

longer. This can be stated mathematically as:
(3.60) T=i implies isT,<i+2 (i=34,..).

This has been demonstrated graphically in Figure 3.4 for the specific case of
T =3. As shown, the only way that the actual sequential time elapsed between
events can be exactly 3 hours is when the first rain event stops exactly on a
clock hour and then the next rain starts on the clock hour exactly 3 hours later.
At the other extreme, if 0.01 inch of rain fell 1 minute after a clock hour and then
a second 0.01 inch fell 1 minute before the clock hour 5 hours later, then the

actual sequential elapsed time would be 4 hours and 58 minutes but still T = 3



Range

OO~ AW

10
11
12
13
14
15
16
17
18
19
20
21-25
26-30
31-35
36-40
41-50
51-60
61-70
71-80
81-90
91-100
101-200
201-300
301-400
401-500
501-600
601-700
701-1300

TABLE 3.11
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CHI-SQUARE TEST FOR FINAL C.OMPOSITE PDF
FOR TIME BETWEEN EVENTS

Observed
Frequency
231
156
118
87
73
64
49
29
49
49
30
27
36
34
33
25
26
24
92
78
71
51
121
108
101
72
62
67
389
183
123
48
19
14
21

2760

inal
Cumulative
Frequency
231
387
505
592
665
729
778
807
856
900
945
981
1011
1039
1064
1088
1110
1131
1225
1306
1377
1441
1554
1652
1738
1815
1885
1948
2353
2546
2645
2697
2725
2741
2760

for T
Expected
Erequency

231

156

118

87

73

64

49

29

49

44

45

36

30

28

25

24

22

21

94

81

71

64

113

98

86

77

70

63

405

193

99

52

28

16

19

2760

Chi-Square
Statistic
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.568
5.000
2.250
1.200
1.286
2.560
0.042
0.727
0.429
0.043
0.111
0.000
2.641
0.566
1.020
2.616
0.325
0.914
0.254
0.632
0.518
5.818
0.308
2.893
0.250
0.211

33.182
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TABLE 3.11  (Continued)

CHI-SQUARE TEST FOR FINAL COMPOSITE PDF
FOR TIME BETWEEN EVENTS

Null Hypothesis, H,: The data represents a random sample from a population
with a composite discrete-continuous 3-parameter gamma
pdf with parameters
P3 = .0837, py = .0565, ps = .0428, pg = .0315, p7 = .0264,
Pg = .0232, pg =.0178, pyy=.0105, p,y =.0178,

a =.6575, B = 183.3745, A - 11.5.

Alternative Hypothesis, H,: The data were not drawn from a population that

follows the specified pdf.

v=(35-1)-11=23 (the parameters Pa through psq, o, and B were estimated
from the data: the parameter A was assumed known).

Total Chi-Square Statistic : 2 = 33.182.

Critical Region at 0.05 Level of Significance: xZ > 35.172.

Decision: Do no reject H,.
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because T is defined as the number of clock hours with zero recorded rainfall
between the successive events.

The 2 hour range of difference between T and T, is relatively large for
small values of T: for T = 3 the actual elapsed time can be as much as 67
percent longer. However, this 2 hour difference is small compared to large
values of T: for T = 12 the actual elapsed time can only be as much as 17
percent larger. At the mean observed value of T, 92.8141, the 2 hour difference
is a mere 2 percent larger. Basically, the larger the value of T, the closer it is to
the true elapsed time between events. This phenomena is exacerbated by the
fact that the lower the value of T the higher the frequency of occurrence. The
net result is that values of T below 12 hours effectively comprise a random

sample from a different population from the values above.

Event Duration

The sample statistics of Table 3.4 show that D had a coefficient of variation
of 1.1092, a skewness of 3.7289, and a very high kurtosis of 31 .8798. The
coefficient of variation near unity indicates that the 2-parameter exponential pdf
might be particularly applicable. The exponential distribution has sometimes
been recommended for fitting duration data (Eagleson 1970). The more
general 3-parameter gamma pdf or the 3-parameter Weibull pdf, each with
a < 1, may also have some applicability. All 3 of these functions are of the
reverse J-shape form that is suggested by the resuits of the frequency analysis
for D shown in Table B.4 in Appendix B.

The general form of the 2-parameter exponential pdf for D is given by,
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0, d<a
(3.61) =44 —d-2
_B—e_-ﬁ—— ' d>A

where,
d = any arbitrary value of the random variable D (d > A)
B = scale parameter (p > 0)
A = location parameter (0 <A < 1).

The accompanying cdf is given by,

0, d<i
(3.62) F(d)= . -(d-14)

Reported values ot D have a lower bound of 1 hour {i.e., D 2 1). Since

event duration cannot be negative, A must be in the range of 0 <A < 1. The

value of A cannot be 1 hour because this implies F(d = 1) = 0 which is physically

incompatible with the fact that 1 hour is the single most frequently observed

value at 31.0 percent of the total observations as shown in Table B.4 in

Appendix B. This same argument holds for the gamma and Weibuli pdf's.

The pertinent population moments for estimation of parameters for the 2-

parameter exponential pdf are given by,

{3.63) Mean,u=pf+2A

(3.64) Variance, o2 = 2



83

Assuming that A is known a priori, and using either the MOM or MLE, the

estimatorﬁ is given by

(3.65) B =d-2
or by,
(3.66) B = s

whered and sqare the sample mean and standard deviation of the observed
data.

The general form, the population moments, and the parameter estimators
for the 3-parameter gamma pdf and the 3-parameter Weibull pdf are as shown
in the previous section. The only difference is that the range of possible values

for & is now 0 €A < 1. The computer program listed in Table B.7 of Appendix B

was again applied to compute o and ﬁ for the Weibull pdf.

Considerable effort was devoted to fitting the 2-parameter exponential pdf,
3-parameter gamma pdf, and 3-parameter Waeibull pdf to the observed data for
D. Several alternative values of A were tried in an attempt to improve the fits.
The parameter estimates were computed using the assumed value of A and
values of d and s, of 4.4370 and 4.9213, respectively, from Table 3.4. In these
trials, a graphical test of goodness of fit was used, as in the previous section, in
order to give insight into the specific values of D where the greatest deviation
from theoretical frequencies occur. In order to provide a more objective

education of fit, the chi-square test of goodness of fit was also conducted in
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each case. These analyses are summarized in Table 3.12. No acceptable fit to
the data was obtained.

In every case, the graphical analysis showed that the theoretical cdf
frequencies were lower than the observed frequencies over virtually the entire
range of observed data. It was also found that the fit was extremely poor below
about 8 hours and somewhat better, although still only fair, above that point.
None of the 3 pdf's demonstrated an obviously superior ability to fit the data
than the others.

The disparity between the goodness of fit between low and high values of
D suggests that the lower values may represent a sample from a different pdf
from that of the higher values, just as it did for the T data. A possible
explanation is given for this at the end of this section. However, this does not
explain why the theoretical cdf's are offset from the observed data toward lower
frequencies.

A clue to the reason for the offset was obtained by inspection of the
frequency data in Table B.4 in Appendix B. The values of D form an almost
continuous sequence of integers from 1 hour to 35 hours: only missing values
of 29 hours and 34 hours interrupt the sequence. Then, suddenly, the next
value jumps to 42 hours, then a bigger leap to 56 hours, and finally all the way
to 82 hours. These last 3 values are so far out of line with the remaining 2657
values of D that they have a highly disproportionate affect on the sample
statistics. When taken together, the 3 outliers make-up only about one-tenth of
one percent of the data. Omitting these 3 outliers from the data set solved the
offset problem as demonstrated by the quality of the fit eventually achieved as
shown below. Although it should be emphasized that these data are not
erroneous nor does their omission necessarily imply that they are drawn from a

different population than the rest of the data. They are simply extremely rare
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events which, by random chance, occurred during the period of record and thus
distorted the sample statistics. The sample statistics for the random variable D
were particularly susceptible to distortion by a few extremely large values since
almost 50 percent of the observed values were either 1 hour or 2 hours.

Since the lowest values of D can effectively be considered drawn from a
different population from the higher vaiues, it was decided to utilize a composite
pdf as was done for the T data. A continucus pdf was fit to the upper tail of the
data and a discrete probability function was used for the lower values. The
function fit to the upper tail is a conditional pdf which is conditional on the value
of D being greater than or equal to some specified lower bound, d,, which is as
defined in the previcus section.

A trial and error approach was used to determine the lowest value of d, for
which an acceptable fit to the upper tail could be achieved. Each time a new
trial value of d,was used, a different subset of the observed data became

applicable for which d and sy had to be determined in order to compute the
applicable parameter estimates. Only two trial values of d;, 2 hours and 3 hours,
were required before getting an acceptable fit to the data using the simple 2-

parameter exponential distribution. The sample statistics for these two values of

d;were as follows:

d, (hours) 1 (hours) Sq(hours)  Number of Observations

2 5.8943 4.7336 1802
3 5.1581 48121 1436.
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Since the exponential pdf is much simpler mathematically than the gamma
and Weibull pdf's, and it fit the data acceptably, it was decided not to proceed
with any further analyses for the more complex functions.

| The single unknown parameter, B, of the 2-parameter exponential pdf was
estimated three ways: using d, then using sy, and then computing the average

of the first two. This can be stated mathematically as:

(3.67) B, =d-%
(3.68) B, = s,
(3.69) B, = (B, +B,)/2

This was done for both trial values of d,. As before, a graphical test of goodness
of fit was used as the primary method of selecting the most suitable pdf. This
analysis is summarized in Table 3.13. The value of A was assumed known and
was chosen to have a value equal to (d, - 1). A chi-square test for goodness of
fit was conducted in each case to provide an objective alternative to the
graphical analysis.

As shown in Table 3.13, the subset of data comprised of D values of 3
hours or larger can be acceptably fit by a 2-parameter exponential pdf with
parameters,

B = 4.8121 hours
A = 2.0 hours.

A visual test for goodness of fit of the theoretical exponential cdf to the

observed cumulative frequencies is shown in Figure 3.5. The theoretical cdf is
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shown as a smooth solid curve and the observed cumulative frequencies taken
from Table B.4 in Appendix B are shown as the plotted data points. Visual
inspection clearly demonstrates that there is good agreement between the

theoretical cdf and the observed empiricai cdf.

The chi-square test for goodness of fit for the fitted pdf is shown in detail in
Table 3.14. Above a value of 19 hours, the data were grouped into classes so
that an expected frequency of a least 10 was obtained for each class interval.
As shown, the total chi-square statistic was 20.998 which lies outside the critical

region of the test (xg > 28.869) at a 0.05 level of significance and 18 degrees of
freedom. The decision rule suggests not to reject the null hypothesis that the

subset of the observed data represent a random sample of size 1436 from a 2-
parameter exponential pdf with the specified parameters.

The entire data set, that is lower and upper tails, for event duration can
now be represented as a composite pdf. The upper tail of the distribution is
characterized by the continuous 2-parameter exponential pdf just developed,
and the lower tail (i.e., 1< D < 3) is characterized by a discrete probability

function. The composite pdf takes the form:

r 0, d<«i
p1 d=1

(3.70) @) =< P2 9=2

The accompanying cdf is of the form:
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TABLE 3.14
CHI-SQUARE TEST FOR UPPER TAIL PDF FOR EVENT DURATION

Exponential CDF
B=48121:4=20

Observed Cumuiative Expected Chi-Square

Value Frequency Frequency Frequency Statistic
3 307 269 269 5.368

4 223 488 219 0.073

5 182 666 178 0.090

6 139 811 145 0.248

7 105 928 117 1.231

8 91 1023 95 0.168

9 65 1101 78 2.167
10 59 1164 63 0.254
11 45 1215 51 0.706
12 47 1256 41 0.878
13 30 1290 34 0.471
14 26 1317 27 0.037
15 18 1340 23 1.087
16 17 1358 18 0.056
17 18 1372 14 1.143
18 9 1384 12 0.750
19 9 1394 10 0.100
20-21 22 1408 14 4571
22-23 B 1418 10 1.600
24-41 18 1436 18 0.000
1436 1436 20.998

Null Hypothesis, Hy: The data represent a random sample from a population
with a conditional (D > 3) 2-parameter exponential pdf with
parameters p = 4.8121, 1 =2.0.

Alternative Hypothesis, H;: The data were not drawn from a population that

follows the specified pdf.

v = (20 - 1) - 1 = 18 (the parameter B was estimated from the data: the parameter

A was assumed known).

Total Chi-Square Statistic: 32 = 20.998.

Critical Region at 0.05 Level of Significance: x2 > 28.869.

Do not reject Ho'



92

( 0, d<1
p1 d=1
(3.71) F(d) =< {p1+ pz] de2

L [p1+p2)+[1—p1—p2][1_9‘[%q , d23

The estimators of p, and p, by either the MOM or MLE are:

A n1 A n2
(3.72) P, =1 and P, =4

ny = number of observations with D = 1

oo ]
n
[

number of observations with D = 2

o
i

total number of observations.

The estimates of p, and p, were computed using the frequency data of Table

B.4 in Appendix B. The resulting final pdf is then:

(" 0, d<1
3098, d=1

_[d-z.o]
5214 1 4812UF 453,
_ 4.8121

The associated final cdf is then given by:
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[ 0, d<1

3098, d=1
(3.74) F(d) =< .4786, d=2

_[d-z.o]
4786 + 52141 _ o L4812 , d23.

As a final check, a chi-square test of goodness of fit was conducted for the
final composite pdf. This analysis is shown in detail in Table 3.15. The total chi-
square statistic had a value of 21.125 which lies outside the critical region of the

the test (x§> 28.869) at the 0.05 leve! of significance and 18 degrees of
freedom. The decision rule suggests not to reject the null hypothesis that the

data are drawn from the specified composite pdf. Notice that 3-parameters
were estimated from the data: B for the upper tail continuous pdf and p; and p,

for the lower tail discrete probabilities.

The final composite cdf is shown graphically in Figure 3.6 along with the
observed empirical cdf. The agreement is excellent.

It now seems appropriate to address the question as to why the values ot D
below 3 hours appear to represent a different pdf from the values above. This
occurs because of the way D is defined and reported as an integer number of
clock hours. This means that for any given reported value of D above 1 hour,
the actual sequential time elapsed, D,, can be as much as 2 hours shorter.
When D = 1, D, can be as much as 1 hou;' shorter. This can be stated

mathematically as,
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TABLE 3.15
CHI-SQUARE TEST FOR FINAL COMPOSITE PDF FOR EVENT DURATION
i .

Observed Cumulative Expected Chi-Square

Value Frequency Frequency Frequency Statistic
1 855 855 855 0.000
2 466 1321 466 0.000
3 307 1590 269 5.368
4 223 1809 219 0.073
5 182 1987 178 0.090
6 139 2131 144 0.174
7 105 2249 118 1.432
8 91 2344 85 0.168
9 65 2422 78 2.167
10 59 2485 63 0.254
11 45 2536 51 0.706
12 47 2577 41 0.878
13 30 2611 34 0.471
14 26 2638 27 0.037
15 18 2661 23 1.087
16 17 2679 18 0.056
17 18 2693 14 1.143
18 9 2705 12 0.750
19 9 2715 10 0.100
20-21 22 2729 14 4.571
22-23 6 2739 10 1.600
24-41 18 2757 18 0.000
2757 2757 21.125

Null Hypothesis, Hy:  The data represent a random sample from a population
with a composite discrete-continuous 2-parameter
exponential pdf with parameters py = .3098, p, = .1688,
f=4.8121,1=2.0.

Alternative Hypothesis, Hy: The data were not drawn from a population that

follows the specified pdi.
v=(22-1)-3=18 (the parameters p4, p,, and B were estimated from the data:
the parameter A was assumed known).

Total Chi-Square Statistic: %2 = 21.125.

Critical Region at 0.05 Level of Significance: x2 > 28.869.

Decision: Do no reject Hg.
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(3.75) D=1 implies 0<D, <1
D =i implies (i-2) <Dy <i (i=2,3,...).

This has been demonstrated graphically in Figure 3.7 for the specific cases of
D=2and D=5. As shown, the only way for the actual sequential elapsed time
of a continuous period of rainfall to equal the event duration is for the event to
start exactly on a clock hour and then end exactly on some later clock hour.
Otherwise, the elapsed time will be less than the event duration, and can be as
much as 2 hours less.

The 2 hour range of difference between D and D, is relatively large for
small values of D. At D =1 and D = 2 the actual elapsed time can be as much
as 100 percent less than D. In fact, the observed data reveal such an extreme
tendency toward high frequencies at the lowest values of duration that it is very
likely that the great majority of events with D = 1 and D = 2 have an actual
elapsed time that is only a tiny fraction of D. On the other hand, the relative
effect of the 2 hour difference declines rapidly as D increases: for D = 5 the
actual elapsed time can be at most only 20 percent less. Basically, the larger
the value of D, the closer it is to the true elapsed time duration of the event. The
net result is that values of D below 3 hours effectively comprise a random

sample from a different population than the values above.

Preliminary Simulation of Rainfall Event Variables
The purpose of fitting theoretical pdf's to the historical rainfall event data
was to allow Monte Carlo simulation techniques to be used to generate multiple
synthetic sequences of rainfall data. To accomplish this, a SAS computer
program was written to randomly sample the fitted theoretical distributions for R,

T, and D. The program is listed in Table B.8 in Appendix B.
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The program uses the SAS internal function for generating gamma
deviates to randomly sample the theoretical pdf for R. Once an R value is
generated, it is rounded upwards to the nearest integer multiple ot 0.01 inch in
order to mimic the step function behavior of the empirical cdf of the observed R
data.

The SAS internal function for sampling a uniform cdf on the interval 0 to 1
was used to map into the discrete portion of the composite cdf for T. For
example, if a uniform random number was generated with a value at 0.2000,
then T = 6. This is true because the probability that T < 5 is 0.1830 and the
probability that T < 6 is 0.2145, therefore, the generated value of T lies in the
interval 5 < T £ 6, but T has only integer values so that it must be that T = 6. If
the generated uniform random number exceeds 0.3102, then the upper tail
continuous gamma pdf applies and it is subsequently sampled using the SAS
internal function for generating gamma deviates. Once an upper tail T value is
generated, it is rounded upwards to the nearest integer to mimic the step
function behavior of the empirica! cdf for the observed T data.

For sampling D values, the SAS internal function for sampling a uniform
cdf on the interval 0 to 1 was used to map into the discrete portion of the
composite pdf in the exact manner used for T values. If the generated uniform
deviate exceeds 0.4786, then the upper tail continuous exponential pdf applies
and it is subsequently sampled using the SAS internal function for generating
exponential deviates. Once an upper tail D value is generated, it is rounded
upwards to the nearest integer to mimic the step function behavior of the
empirical cdf for the observed D data.

More detail on the nature and application of SAS random number

functions is given in the chapter dealing with simulations.
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The SAS program was used to generate a sequence of 2760 values for
each of the rainfall event variables R, T, and D. If the fitting of theoretical pdf's
has truly been successful, then these generated sets of data should have the
same statistical characteristics as the observed data and, hence, the same as
the fundamental stochastic process that produced the observed data. This can
be tested by application of the chi-square test of homogeneity.

Generally, the chi-square test of homogeneity tests the null hypothesis that
multiple sequences of sample data are random samples from the same
population without specifying the underlying distribution. This hypothesis can

be written mathematically as follows:

(3.76) Ho: Pit =Pi2 = =Pjj= - = Pic (i=1,2,..,m)
(i=1,2,...C)
where,
Pj = theoretical probability that the random variable has the i-th class

value of the distribution in the j-th realization
m = number of class values used to categorize the data
c = number of realizations being compared.

Then, the chi-square statistic is computed from (Daniel 1978, Hoel 1984),

a3 i~ " P
(3.77) x2 = 2 ( — )
i1 ot Pj
where,
nj = number of observations with the i-th class value in the j-th

realization

P }
i

total number of observations in the ¢ realizations
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np; = expected frequency in the i-th class interval in the j-th realization

for a random sample of size n.

The estimators of the p; by MLE are given by,

(3.78 A n. N,
78) Py =~ 3
where,
n, = total number of observations with the i-th class value for all
realizations
n; = total number of observations in the j-th realization for all class

values.

Substituting, the chi-square statistic is then given by,

379 ?=3 3 |

Since there are {mxc) values of ﬁi; to be estimated from the data, the number of
degrees of freedomisv=(m- 1) (c-1).

In this analysis, the observed data will be compared to a single
synthetically generated sequence of data of the same sample size. This means
that ¢ = 2, and the preceding equation for the chi-square statistic can be re-

written as,
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or, more briefly as,
2=
where,
xﬁ = sum of the chi-square statistics for all class values for the first
realization
x?z = sum of the chi-square statistics for all class values for the second

realization.
Since, in this case, both realizations have the same number of observations

(2760) then,

(3.81) n,=n,= 1/2 n
so that,
n n n. n_.+n
b e _ it i2
(3.82) o= —3
and that,
n n n n._+n
i1 i

.2 _ 2
(3.83) =
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This simply means that the estimated theoretical frequency of occurrence for the
i-th class value in either realization is just the average of the two observed

frequencies. This means that when only two realizations are compared,

384 G

The chi-square test for homogeneity between the observed data and
simulated data for R is shown in detail in Table 3.16. The total chi-square
statistic has a value of 12.764 which lies well outside the critical region of the
test (x2 > 33.924) at the 0.05 level of significance and 22 degrees of freedom.
In fact, the test statistic would even lie outside the critical region at more than the
0.90 level of significance. Therefore, do not reject the null hypothesis that the
two sets of data are homogeneous, that is, that they are random samples from

the same popuiation.

The chi-square test for homogeneity between the observed data and
simulated data for T is shown in Table 3.17. The total chi-square statistic was
17.716 which lies well outside the critical region of the test (xg > 41.337) at the
0.05 level of significance and 28 degrees of freedom. The test statistic would
even lie outside the critical region at more than the 0.90 level of significance.
Therefore, do not reject the null hypothesis that the two sets of data are drawn

from the same population.

The chi-square test for homogeneity between the observed data and
simulated data for D is shown in detail in Table 3.18. The total chi-square
statistic was 10.638 which lies well outside the critical region of the test
(xg > 33.924) at the 0.05 leve! of significance and 22 degrees of freedom. In

fact, the test statistic would even lie outside the critical region at more than the
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TABLE 3.16
CHI-SQUARE TEST FOR HOMOGENEITY FOR RAINFALL VOLUME
Column
i=1) (=2
Observed Simulated hi- atisti
Range Row  Frequency Frequency  n. xﬁ xi22
0.01 i=1 435 464 899 0.468 0.468
0.02 i=2 225 230 455 0.027 0.027
0.03 i=3 131 136 267 0.047 0.047
0.04 i=4 119 104 223 0.504 0.504
0.05 i=b5 110 84 194 1.742 1.742
0.06-0.10 i=6 286 276 562 0.089 0.089
0.11-0.15 i=7 185 1920 375 0.033 0.033
0.16-0.20 i=8 135 138 273 0.016 0.016
0.21-0.25 i=9 100 112 212 0.340 0.340
0.26-0.30 i=10 110 106 216 0.037 0.037
0.31-0.40 i=11 154 148 302 0.060 0.060
0.41-0.50 i=12 106 116 222 0.225 0.225
0.51-0.60 i=13 115 85 210 0.952 0.952
0.61-0.70 i=14 74 76 150 0.013 0.013
0.71-0.80 i=15 65 67 132 0.015 0.015
0.81-0.90 i=16 55 53 108 0.019 0.019
0.91-1.00 i=17 47 41 88 0.205 0.205
1.01-1.50 i=18 145 144 289 0.002 0.002
1.51-2.00 i=19 69 86 155 0.932 0.932
2.01-2.50 | =20 38 37 75 0.007 0.007
2.51-3.00 | =21 22 25 47 0.096 0.096
3.01-3.50 i =22 17 12 29 0.431 0.431
3.51-10.5 i=23 17 20 37 0.122 0.122
n =2760 n =2760 n=5520 X;=6.382 X.,=6.362

Null Hypothesis, H,: The synthetic data and observed data populations are

Alternative Hypothesis, Hy: The populations are not homogeneous.

homogeneous.

v=(23-1)(2-1) =22 (the 46 p; parameters were estimated from the data).

Total Chi-Square Statistic: X2 = x2 + x5 = 12.764.

Critical Region at 0.05 Level of significance: xg > 33.924.

Decision: Do not reject Hy,.
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TABLE 3.17
CHI-SQUARE TEST FOR HOMOGENEITY FOR TIME BETWEEN EVENTS
Column
i=1) (=2)

Observed Simulated i- r isti

2 2

Range Row Frequency Frequency N,y yo X5
3 i=1 231 231 462 0.000 0.000
4 i=2 156 157 313 0.002 0.002
5 i=3 118 120 238 0.008 0.008
6 i=4 87 82 169 0.074 0.074
7 i=5 73 64 137 0.296 0.296
8 i=6 64 69 133 0.094 0.094
9 i=7 49 57 106 0.302 0.302
10 i=8 29 31 60 0.033 0.033
11 i=0 49 45 94 0.085 0.085
12 i=10 49 41 90 0.356 0.356
13 i=11 30 47 77 1.877 1.877
14 i=12 27 32 59 0.212 0.212
15 i=13 36 34 70 0.029 0.029
16-20 i=14 142 125 267 0.541 0.541
21-25 i=15 92 101 193 0.210 0.210
26-30 i=186 78 81 159 0.028 0.028
31-35 i=17 71 80 151 0.268 0.268
36-40 i=18 51 54 105 0.043 0.043
41-50 i=19 121 120 241 0.002 0.002
51-60 i=20 108 98 206 0.243 0.243
61-70 i=21 101 82 183 0.986 0.986
71-80 i=22 72 77 149 0.084 0.084
81-90 i=23 62 78 140 0.914 0.914
91-100 i=24 67 69 136 0.015 0.015
101-200 i=25 389 414 803 0.389 0.389
201-300 i =26 183 182 365 0.001 0.001
301-400 i=27 123 98 221 1.414 1.414
401-500 i=28 48 41 89 0.275 0.275
501-1200 i=29 54 50 104 0.077 0.077

n.,=2760 n.,=2760 5520 7 =8858 x2,-8858
Null Hypothesis, Hy: The synthetic data and observed data populations are
homogeneous.
Alternative Hypothesis, H;: The populations are not homogeneous.

v=(29-1)(2-1) =28 (the 58 p; parameters were estimated from the data).
Total Chi-Square Statistic: x2 = x:‘; + x22 =17.716.

Critical Region at 0.05 Level of Significance: xg > 41.337.

Decision: Do not reject Hy,



105

TABLE 3.18
CHI-SQUARE TEST FOR HOMOGENEITY FOR EVENT DURATION
Column
=1 (=2

Observed Simulated hi- re Statisti

Range Row  Frequency Frequency  n, xﬁ xfz
1 =1 855 837 1692 0.096 0.096
2 i=2 466 465 931 0.001 0.001
3 i=3 307 274 581 0.937 0.937
4 i=4 223 234 457 0.132 0.132
5 i=5 182 189 371 0.066 0.066
6 i=6 139 145 284 0.063 0.063
7 i=7 105 103 208 0.010 0.010

8 i=8 91 93 184 0.011 0.011
9 i=9 65 83 148 1.095 1.095
10 i=10 59 67 126 0.254 0.254
11 i=11 45 48 23 0.048 0.048
12 i=12 47 37 84 0.595 0.595
13 i=13 30 33 63 0.071 0.071
14 i=14 26 24 50 0.040 0.040
15 i=15 18 23 41 0.305 0.305
16 i=16 17 18 35 0.014 0.014
17 i=17 18 16 34 0.059 0.059
18 i=18 9 8 17 0.029 0.029
19-20 i=19 21 18 39 0.115 0.115
21-22 i=20 12 19 31 0.790 0.790
23-24 =21 7 11 18 0.444 0.444
25-30 i=22 10 8 18 0.111 0.111
31-82 =23 8 7 15 0.033 0.033

n =2760 n =2760 n45520

¥3=5.319 %»=5.319

Null Hypothesis, Hy: The synthetic data and observed data populations are

homogeneous.

Alternative Hypothesis, Hy: The populations are not homogeneous.

v =(23-1)(2-1) =22 (the 46 p; parameter were estimated from the data).

Total Chi-Square Statistic: 2 = x5 + %5 = 10.638.

Critical Region at 0.05 Level of Significance: x2 > 33.924.

Decision: Do not reject Hy.
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0.95 level of significance. Notice that the 3 outliers identified in the previous
section have been re-inserted into the observed data set.

It can be conciuded that the program written to simulate R, T, and D using
the fitted theoretical pdf's does, in fact, generate randomly sampled sequences
of rainfall event data that are drawn from the same populations as the actual

observed data.

Independence of Rainfall Event Variables

In order to make the development of a stochastic mode! of the rainfall-
runoff process straightforward, and to make the resulting model useful in
engineering practice, it is important to demonstrate, .or at least reasonably
assume, independence between the rainfall event variables. Random variables
can be tested for independence using the chi-square test of independence.

Generally, the chi-square test of independence uses a two-way
contingency table. The data in a contingency table consist of n pairs of
observations. Each pair of observations must represent two different
measurements on the same object or event. The null hypothesis is that the two
sets of observations represent random samples from populations of two
independent random variables. Using the definition of independent random

variables, the null hypothesis can be written mathematically as follows:

(3.85) HO: pij = PP, (i=1,2,..,m)
(=12,...0)
where,
p; = theoretical probability than an (X,Y) data pair lies in the i-th row

and j-th column (i.e., the ij-th cell) of the contingency table

2
I

theoretical probability that an (X,Y) data pair lies in the i-th row
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P, = theoretical probability that on (X,Y) data pair lies in the j-th column
m = number of rows in the contingency table
¢ = number of columns in the contingency table

XY = any two arbitrary numbers of the set of pertinent random variables.
in this specific application, X and Y represent members of the set {R,T,D}.

The chi-square test statistic is given by (Daniel 1978, Hoel 1984),

m c (n..—np..]2
(3.86) =3 3 |

i=1 j=1 nplj
where,
nj = observed frequency of occurrence for the ij-th celi of the table
n = total number of observations (i.e., the number of X,Y pairs)
np; = expected frequency in the ij-th cell for a random sample of size n

given that X and Y are independent.

Under Hy, it is known that,

(3.87) P, =P, p_j .

Using MLE, the estimators of p; and p, are as follows:

A ni. A n.i
(3.88) pi_ =7 and gj =T
where,
n. = total number of observations in the i-th row

e
n

total number of observations in the j-th column.
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Substituting these estimators into the equation for the test statistic yields,

m n. —
(3.89) x2 = Z i | n

The number of degrees of freedom is v = (m-1)(c-1).

Contingency tables were created for (R,T), (T,D), and (R,D) as shown in
Tables B.9, B.10, and B.11 in Appendix B. The format of the tables is such that
each cell contains the observed frequency, theoretical expected frequency, chi-
square statistic, percent of total observations located in the cell, percent of the
row total of observations located in the cell, and percent of column total of
observations located in the cell. Also, at the end of each row and column is
shown the total number of observations in that row or column, and the percent
of total observations in that row or column. The last page of each table contains
summary test statistics including the total chi-square statistic.

The contingency tables were constructed with uneven class intervals for
both the rows and column. This was done to maintain a minimum expected
frequency of about 5 in every celi and yet to provide a sufficient number of cells
for the large sample size.

The contingency table for (R,T), of dimension 11 by 8, is shown in Table
B.9 of Appendix B. The chi-square test of independence for R and T can be
summarized as follows:

Null Hypothesis, Hy: The random variables R and T are independent.

Alternative Hypothesis, Hy: The random variables R and T are not

independent.
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Degrees of Freedom: v=(11-1)(8-1) =70.
Total Chi-Square Statistic: 2 = 77.725.
Critical Region at 0.05 Level of Significance: xg > 90.531.

Do Not Reject Ho‘

The chi-square test statistic lies well outside the critical region of the test. In fact,
the test statistic would lie outside the critical region even at the 0.246 level of
significance. It can be concluded, with a high degree of confidence, that R and
T can be treated as independent random variables in the modeling analysis.

The contingency table for (T,D), of dimension 8 by 10, is shown in Table
B.10 of Appendix B. The chi-square test of independence for T and D can be
summarized as follows:

Nuli Hypothesis, Hy: The random variables T and D are independent.

Alternative Hypothesis, Hy: The random variables T and D are not

independent_

Degrees of Freedom: v =(8-1)(10-1) = 63.

Total Chi-Square Statistic: ¥° = 75.672.

Critical Region at 0.05 Level of Significance: x2 > 82.529.

Decision: Do Not Reject Ho“
The chi-square test statistic lies well outside the critical region of the test. The
null hypothesis would not be rejected even at the 0.131 level of significance. It
can be concluded, with a high degree of confidence, that T and D can be
treated as independent random variable in the modeling analysis.

The contingency table for (R,D), of dimension 11 by 10, is shown in Table
B.11 in Appendix B. The chi-square test of independence for R and D can be

summarized as follows:

Null Hypothesis, Hy: The random variables R and D are independent.
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Alternative Hypothesis, H,: The random variables R and D are not
independent.

Degrees of Freedom: v =(11-1){(10-1) = 90.

Total Chi-Square Statistic: %2 = 1739.126.

Critical Region at 0.05 Level of Significance: xg > 113.145.

Do Not Accept Ho'
It cannot be concluded from this test that R and D are independent random
variables.

A visual inspection of Table B.11 shows that events with small values of R

tend to have small values of D and large values of R tend to have large values

of D. At first glance, it seems intuitively obvious that the longer it rains the larger
the amount of rain received. Unfortunately, the physics of rainfall is not that
simplistic. Rainfall intensity, that is rate of rainfall, is also an important
consideration. Physically, it is known that very high intensity rainfalls tend to be
of relatively short duration (e.g. thunderstorms), which means that relatively
large volumes can sometimes be measured in a short time. On the other hand,
very long duration events tend to be of fairly low intensity (e.g. weather front
storms). This means that modest volumes can sometimes be measured over a
fairly extended period of time. These factors, among others, account for the
poor correlation between R and D previously discussed and demonstrated in
Table 3.5.

A detailed evaluation of the correlation between R and D is imperative.
Several sample correlation coefficient matrices for various subsets of the
observed data are shown in Table 3.19. The variable T is included only for

comparison and completeness. The sample mean and standard deviation for
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TABLE 3.19
CORRELATION COEFFICIENT MATRICES FOR DATA SUBSETS

o R i

-1 3

-

=

Statistics
Correlation Coefficient Matrix Standard
R T D Mean Deviation
ALL RAIN VOLUME VALUES (n=2757)
R 1.0000 -.0119 .5829 .3889 .6405
T -.0119 1.0000 -.0132 92.899 136.717
.5829 -.0132 1.000 4.3765 4.5368

EVENTS WITH VOLUME > .01 INCH (n=2322)

1.000 -.0224 .5468 .4599 6747
-.0224 1.0000 -.0268 94.828 138.815
.5468 -.0268 1.0000 5.0090 4.6801

EVENTS WITH VOLUME > .10 INCH (n=1451)

1.0000 -.0440 4334 .7075 .7515
-.0440 1.0000 -.0433 96.641 139.624
4334 -.0433 1.0000 6.6389 5.1565

EVENTS WITH VOLUME > .18 INCH (n=1182)

1.0000 -.0462 .4010 .8307 7761
-.0462 1.0000 -.0334 95.674 139.483
.4010 -.0334 1.0000 7.1804 5.3664

EVENTS WITH VOLUME > .28 INCH (n=962)

1.0000 -.0314 .3740 9736 .8002
-.0314 1.0000 .0043 91.619 127.059
.3740 .0043 1.0000 7.7422 5.5256



112

each variable are also shown to emphasize the overall effects of omitting
selected subsets of the data.

The top matrix in Table 3.19 simply omits the three storm events for which
D > 35 because they have already been shown to be outliers for computation of
sample statistics involving the variable D. At best, the correlation between R
and D can be classified as weak with a correlation coefficient of 0.5829. When
events with rainfall volumes of 0.01 inch are omitted from the analysis, the
correlation coefficient drops to 0.5468. These avbhts unfairly bias the
correfation between R and D because every event with a volume of 0.01 inch is
constrained to have a duration of exactly one hour by the measuring apparatus
and method of reporting the data. When avents with volumes of 0.10 inch or
less are omitted, the correlation coefficient drops farther to 0.4334. Then, as
Table 3.19 shows, the correlation coefficient is & poor 0.4010 when events of
0.18 inch or less are omitted. This specific volume of 0.18 inch was chosen
because no rain event with a volume of less than 0.19 inch produced runoff
during the field study as discussed in Chapter 2. In fact, the three rains
observed during the field study that had volumes near 0.20 inch produced only
negligible runoff. This points out that the correlation between R and D is very
weak in the range of R values which produce runoff of even the smallest
amount.

Finally, the correlation coefficient is a very poor 0.3740 when events of
0.28 inch or less are omitted. This last volume of 0.28 inch was chosen as a
data separation point because no rain event with a volume of less than 0.29
inch produced significant runoff (i.e., runoff equalling or exceeding 0.01 inch in
volume) during the field study as discuésed in Chapter 2. This clearly

emphasizes that the correlation between R and D is weakest in the range of R
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values which produce significant runoff. It is precisely these events which are
the focus of this study.

The conclusion to be reached from this analysis is that R and D are
dependent random variables, but that the correlation between them is extremely
poor in the range of R values of most importance. Of course, poor correlation
means that there is little predictability between R and D and that the
dependence relationship between them is very weak.

In hydrologic research, two approaches have been commonly used to deal
with the dependence of R and D. First, approximate conditional pdf's have
been developed for R conditional on selected ranges of D (Eagleson 1971,
1972, and 1978). This approach suffers from the serious flaw that accurately
fitting theoretical conditional pdf's to the small subsets of data is virtually
impossible. Often, in order to provide a convenient and practical way to
proceed, a mathematically simple conditional pdf type is assumed (usually an
exponentia! pdf to facilitate analytical solutions). Invariably, the appropriate
parameters are then estimated from the data subsets without regard to the
goodness of fit. Obviously, this is a simplification which could introduce
significant error.

The second approach is to simply assume that R and D are independent
while recognizing this as a potential source of error in simulations (Koch 1985;
Tarboton, Bras, and Puente 1987).

In this study, the latter approach has been used and it has been assumed
that R and D are independent random variables. It is believed that this
approach will introduce the least amount of error because of the excellent fit
obtained with theoretical marginal pdf's for both R and D, and because the

dependence between R and D is very weak.
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Furthermore, the runoff variable that has the greatest influence on nonpoint
source pollutant loads is runoff volume. The function derived for runoff volume
in Chapter 4 does not include D as a random variable, thus, the independence
assumption introduces little or no error into the estimation of runoff volume. The
variable D enters the direct analysis of runoff only in evaluation of peak runoff
rate.

In conclusion, it is believed that the assumption of independence between
R and D introduces on acceptably small level of error into the rainfall-runoff
modeling analysis for the purpose of estimating nonpoint source pollutant

loads.
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CHAPTER 4
BASIN RAINFALL - RUNOFF TRANSFORMATION FUNCTIONS

Derivation of Fundamental Runoff Equations
Dependent Runoft Variables

Simulation of runoff volumes and flow rates is essential for the estimation
of NPS pollutant loads generated by rainfall-runoff events. Ideally, an entire
runoff hydrograph, which provides a detailed time history of volumes and flow
rates throughout a runoff event, would be generated for each simulated rainfall-
runoff event. This would provide the greatest flexibility for estimation of NPS
loads.

Generation of a complete runoff hydrograph for each simulated rainfall-
runoff event has been accomplished in this study by simulation of total runoff
volume and peak flow rate, which are the two runoff variables with obvious
significant influence on NPS pollutant loads, coupled with a modification of the
standard U.S. Soil Conservation Service (SCS) unit hydrograph shape.
Consequently, two principal basin rainfall-runoff transformation functions have
been derived for the study watershed with one equation having runoff volume
as the dependent, or simulated, variable and the other with peak flow rate as

the dependent variable.

Runoff Volume

The hydrologic budget equation developed around a watershed for a
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single rainfall-runoff event can be written in its fundamental form as:

{(4.1) Q=R-AS
where,
Q = runoff volume for the event (inch)
R = rainfall volume for the event ( inch)
AS = change in basin storage (inch).

This equation is based on the assumptions that evapotranspiration and
groundwater seepage are negligible over the duration of a single rainfall event.
Basin storage can be divided into two components: initial abstraction and
soil storage. Initial abstraction is that fraction of the rainfall volume that does not
come in contact with the soil because it adheres to surfaces on vegetation and
structures (i.e., interception) or is retained in depressions in impervious surfaces

(e.g. pavements). Let A, be the initial abstraction and modify equation 4.1 as

follows:

Q = R-AS+A-A
or,

Q = (R-A)-(AS-A).
Now define,

AS; =  AS-A
where,

ASgy = change in soil storage

which upon substitution yields,

(4.2) Q = (R-A) - AS..
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The volume added to the soil, ASg, for any given rainfail event that
produces runoff is a function of the volume of rain available to be stored in the
soil, (R-A;), the amount of water lost from the soil since the previous rainfall-
runoff event by evapotranspiration and accretion to the deep groundwater, the
amount of water gained by the soil from non-runoff producing rains occurring
between the previous and the current rainfall-runoff events, and the rainfall
intensity relative to the limiting soil infiltration rate. The loss of soil moisture by
evapotranspiration and by accretion to the groundwater are, in turn, related to
the elapsed time since the previous runoff event. All of this can be stated in a

concise mathematical form as:

(4.3) AS, =1[(R-A),E, A, (I- fc)]

where,

m
Il

elapsed time variable which is an index of evapotranspiration

and groundwater accretion losses

2>
n

antecedent rainfall variable which is an index of the water

gained by the soil between consecutive rainfall-runoff events

intensity of rainfall variable

f, = critical, or limiting, scil infiltration rate.

All other symbols are as defined previously. The critical infiltration rate for
a particular soil, f,, is a constant which represents the saturated soil
permeability of the limiting layer of the subsurface soil column. Observed
surface infiltration rates commonly exceed {. during the first minutes of storm
events, but this is due to soil storage effects which are quantified in the other

three terms of the functiona! relationship.
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Using a linear transformation function to describe the process yields,

(4.4) AS, =a (R-A) +BE —yA - 8 (I-f) —¢,

where,
o B.v 0

€y

parameters of the linear model

residual (i.e., random error or white noise component).
Algebraic signs for the parameters in this equation are dictated by the

physical hydrologic principals that the volume of water entering the soil during a
rainfall-runoff event increases with increasing available rainfall volume, (R-A);
increases with increasing elapsed time between events, E: decreases with
increasing antecedent rainfall amounts, A; and decreases with increasing
rainfall intensity over and above the limiting infiltration rate, (I-f.). Now,

substituting the expression for AS; into equation 4.2, yields,

(4.5) Q = (R-A) - [a (R-A) + BE —yA - & (I-1) - ev]

which upon combining like terms yields,
(4.6) Q = [(a—1)Ai—8fc]+(1 — )R- BE + YA + 8l +¢,
Assuming that A; is constant from one event to the next, as is the custom in

most hydrologic studies, allows this equation to be written in a more general

form:

(4.7) O=B0+B1R+B2E+B3A+B4I+ev
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where,

B, = (o—1)A, - 8,

B, = (1-a)
B, =-B
By =7
B, =3

This is the fundamental functional form that transforms rainfall event
variables R, E, A, and | into runoff volume Q. Equation 4.7 emphasizes that
runoff volume can be described as a linear function of no more than four
independent variables, one of which must be the corresponding rainfall volume.

The B parameters (j= 0,1, 2,3,4)and the residual term &y, which is a
normally distributed random variable with zero mean, all depend on the
hydrologic characteristics of the given watershed. These hydrologic
characteristics, and hence, the parameters and residual term, are assumed to
be time invariant,

The linear form of the transformation function, and the assumptions
associated with its derivation, have been verified by the high correlation
coefficient achieved with the final model and by objective statistical tests
performed on the parameters and residuals of the model as shown in the

"Runoff Volume Model" section below.

Peak Fiow Rate

Unit hydrograph theory states that for a rainfall-runoff event resulting from a

single rainfall pulse of uniform intensity and areal distribution, the direct runoff
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flow rate at any time on the observed hydrograph is a linear function of total
runoff volume. Specifically, then, the flow rate corresponding to the direct runoff

hydrograph peak, qp, can be written as,

(4.8) q, = rQ

where,
XA = parameter of the model.

However, this simple proportionality does not encompass the more general and
common situation where the underlying assumptions of unit hydrograph theory
(e.g. spatially and temporally uniform rainfall) are not precisely satisfied. In this
case, the value of g, could be considered to have a random error or noise
component that results from the interaction of the random variables
characterizing the rainfall event over and above the effects already incorporated
into the observed value of Q. Assuming that the linear nature of the flow rate

generation function of equation 4.8 still holds, this can be written as,

(4.9) g, = 7LC)+.°,f

where,

& = residual or random error component.

Substituting the expression for Q from equation 4.6 and rearranging yields,

(4.10) Gy =[Ma-1)A - ABf,| + A(1-0)R = ABE + AyA + A3l + (he,+e,).
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This equation can be written in a more general form as:

(4.11) - qp=[30+[31R+[32E+[33A+[341+asq

where,
[30 = A{o—1 )Ai - &f,

B, = A(1-a)
B, = —AB
By = My

[34 = A8

g = Ag, tE

This linear model for peak fiow rate is of an identical form to that for total
runoff volume. Of course, the Bi and the residual component are different for the
two models.

Equation 4.11 emphasizes that g, can be represented by a linear model
involving four independent variables which are measures or indices of the
effects of rainfall-runoff event volume, elapsed time between events, antecedent
moisture, and rainfall intensity plus some random effect.

The five B; parameters and the residual term g, which is normally
distributed with zero mean, are all functions of the hydrologic characteristics of
the watershed and are assumed to be time invariant.

The linear form of the transformation function for peak flow rate, and the
assumptions underlying the derivation, have been verified by the high
correlation coefficient achieved with the final model and by objective statistical
tests performed on the parameters and residuals of the model as shown in the

"Peak Flow Rate Model" section below.
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n ndent Varigbl

Potentially applicable independent variables for inclusion in the basin
rainfall-runoff transformation functions for runoff volume and peak flow rate can
be placed into one of four classifications or sets:

(1) a set of variables that measure the volume of water involved in the

event

(2) a set of elapsed time variables which are indices of evapotranspira-

tion and groundwater accretion losses from the soil between
consecutive rainfall events

(3) a set of antecedent rainfall variables which are indices of the water

gained by the soil of the watershed between consecutive rainfali-
runoff events

{(4) a set of rainfall intensity variables.

No more than one variable from each of these four sets can be included in
a model because all of the variables in a given set are measures or indices of
the same physical phenomenon.

The only pertinent element of the set of volume variables is the area
weighted rainfall volume R,,. Values of R, were computed using the Thiessen
polygon method applied to rainfall measurements from the two rain gages in the
study area as explained in Chapter 2.

The three elapsed time variables compiled for evaluation were:

(1} T = elapsed time between rainfall events (hours)

(2) T, = elapsed time since the last runoff event {hours)

{3) T, = elapsed time since the last runoff event with Q > 0.01 inch

(hours).
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Values of 9 different cumulative antecedent rainfall volume variables were

compiled using field data from the study watershed using the following notation:

iR = rainfall volume occurring between the end of day i and the end of day |

(inch).

The 9 specific cumulative rainfall volume variables compiled were,

(1) of4

(2) oR2

(3) oRs

(8) oRis

(9) oRay

rainfall volume in the 24 hours (1 day) antecedent to the
current event (inch)
rainfall volume in the 48 hours (2 days) antecedent to the
current event {inch)
rainfall volume in the 72 hours (3 days) antecedent 10 the
current event (inch)
rainfall volume in the 96 hours (4 days) antecedent to the

current event (inch)

rainfall volume in the 120 hours (5 days) antecedent to the

current event (inch)

rainfall volume in the 144 hours (6 days) antecedent to the
current event (inch)
rainfall volume in the 168 hours (7 days) antecedent {o the
current event (inch)
rainfall volume in the 360 hours {15 days) antecedent to the
current event {inch)
rainfall volume in the 744 hours (31 days) antecedent to the

current event (inch).

Cumulative totals were employed so that a single index variable could

represent the entire sequence of antecedent rainfall amounts. This approach
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was confirmed as acceptable by a preliminary analysis that demonstrated that
an entire chronological series of daily antecedent rainfall volumes (i.e., HRy,
1Rz, 2R3, 3Ry, 4Rs, 5R6, gR7. 5R4s, and 15R31) was less effactive than a single
cumulative rainfall total for prediction of runofi volume.

Values were compiled for three rainfall intensity variables as follows:

(1} lnax = maximum hourly intensity during the rainfall event

(inch/hour)

2) I,

(3) I
Definitions of |, and 1, were given in detail in Chapter 3.

weighted average intensity (inch/hour)

1

average intensity, R, /D (inch/hour).

Selection of the optimum predictor variable from each of the four sets of
independent variables, and simultaneous optimization of the corresponding
parameter estimates, is the objective of the methodology derived in the

following section.

Variable Seclection and Parameter Optimization Methodology
Either of the two pertinent rainfall-runoff transformation functions can be

represented mathematicaily in the form of a general linear model as follows:

(4.12) Y=B0+B1V+[32E+BSA+B4I+5
where,

Y = dependent variable

V. = volume variable

E = elapsed time variable

A = antecedent rainfall variable
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I intensity variable

1l

e = residual (i.e., random error or noise component)
Bj = parameters of the mode! (j=0, 1, 2, 3, 4).
Using set notation,
Ye {O,qp}
Ve {Fiw}
Ee {T.T,T}

Ae {ORV o 0By Ry s o Rz oPis 0R31}

le {Imax, [ Ia},
A value of each of these dependent and independent variables, among
others, was measured for each rainfall-runoff event monitored in the field. For

any given model, the data can be presented as follows:

Y, =B+ BV, +BE, + ByA, + B, e,

Y, =Byt BV, +B,E, + B,A, + B, *E,

Yn = B0+ Blvn + BQEn + BSAn + B4|n +€n

where n is the number of rainfall-runoff events monitored. In matrix form, this

can be shown as,



126

p— — — - -
Y, 1V, E A | By 3
Y, TV, B A, P, &
Bs
Y, 1V, E, A, | B €,
- — b Mt 4 h— —t

This can be written more concisely in matrix notation as,

(4.13) Y = X B + ¢

(nx1) {nx5) (&x1) (nx1)

where boldface type is used to distinguish a matrix from a real-valued variable.
The dimension of each matrix is shown in parenthesis. This can be rearranged

in terms of the column vector of residuals as,

(4.14) € =Y-XB

In order to compute the optimum values of the estimators ['3}, the least

squares optimization criterion can be used. That is, choose the ﬁj such that the
sum of the squares of the &i is minimized. The sum of the squares of the gis a

. " . A ] 0
real-valued linear function of the B} and it can be represented as an inner

product of vectors as follows:

(4.15) 3 2 =€'¢
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where the prime denotes the transpose matrix. Substituting from the previous
equation and using the estimator matrix B in place of B yields,
n FAY

(4.16) | 2e$=(v—xﬁ)'(v—xrs).

=1

In order to minimize, take the partial derivative of both sides of this equation with
respect to each of the ﬁi and set to zero. This produces five equations in terms

of the five ﬁj unknowns. This can be written in matrix notation as,

(4.47) 0 = -2 [(v-xBy (v-xB)
of

where 0 is the null matrix of dimension (5x1) and the differential operator is

defined as,

B,
9
o,
9
= aB2
_0

o,

9
3B,

Q)
a>]°—’

Differentiating the right-hand side yields,
0 = -2X' (Y-XB).
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Multiplying both sides of the equation by the scalar % and rearranging

produces the normal equations,

(4.18) X' XB=X"Y.

Premultiplying both sides by the inversé matrix (X' X)-1, assuming that it exists,

yields,

(4.19) B=(x x)" X V.

This shows that the computation of the five optimum 'ﬁj values involves a
simple matrix inversion of a (5x5) matrix and elementary matrix multiplication.

For future reference, hotite that the matrix (X' X) is a (5x5) symmetric
matrix made up of the sums of squares and sums of cross products of the

observed values of the independent variables. The sums of squares lie along

the principal diagonal with the cross products symmettic about the diagonal as

follows:
o Zv, ZE ZA, I
v, Vi IVE, IvA Zv)
- p
(4.20) X'X = ZEi ZEiVi in ZEiAi Zvi]‘i

IA, ZAV, ZAE ZA ZAl
|3, iy, ZIE Sia Xf
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where all summations are fromi=1t0oi=n.

For any given model, it is not necessary that all of the B; be non-zero.
Stated another way, a model may contain less than the maximum of four
independent variables. Under these circumstances, the matrix inversion may
involve only a (4x4) matrix for three independent variabies, a (3x3) matrix for
two independent variables, or a (2x2) matrix for one independent variable.

Although at most four independent variables are 1o be included in any
given model, each of the four can be chosen from an entire set of possible
variables. These sets are as defined above. Choices must be made among
one volume variable, three elapsed time variables, nine antecedent rainfall
variables, and three rainfall intensity variables. This is a total of 16 independent
variables from which to choose.

A stepwise least squares optimization procedure was empioyed to
determine how many and which specific independent variables to include in a

given model, and to simultaneously compute the optimum values of the
pertinent parameter estimators ﬁi using equation 4.19. The optimization
criterion employed for variable selection was to maximize the coefficient of

determination, r2, which was defined as,

‘<>U,N

(4.21) ré =

- mw

where,
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w
- M

Sample variance of the mode! predicted values of the dependent

variable

Sample variance of the observed values of the dependent

variable.

Maximization of the r? value was chosen as the optimization criterion because r2

represents the fraction of the variation in the dependent variable that is

accounted for by the model. The multiple correlation coefficient, r, is defined

simply as the positive square root of r2,

The stepwise optimization procedure for choosing the best four

independent variables from among a total of m independent variables involves

the following sequence of steps:

(1)

Begin by finding the model with one independent variable that has
the largest r2 value. All m possible models are evaluated and
compared.

While maintaining the first variable in the model, the specific variable
that produces the greatest increase in r2 is added to the model as the
second independent variable. All of the possible choices for the
second variable are evaluated and compared. There are at most
(m-1) such choices. As a check, each of the two variables now in the
model is compared to the remaining, at most (m-2), variables not in
the model. For each comparison, the procedure determines if
removing one variable and replacing it with the other increases the
value of r2. After comparing all, at most 2(m-2), possible switches, the

switch that produces the largest increase in r2 is made. Once the
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switch is made, comparisons begin again and the process continues
until no switch increases r2. Thus, the best model with two
independent variables is obtained.

While maintaining the first two variables in the model, the specific
variable that produces the greatest increase in r2 is added to the
mode! as the third independent variable. All of the possible, at most
(m-2), choices for the third variable are evaluated and compared. As
a check, each of the three variables in the model is compared to the
remaining, at most (m-3), variables not in the model. The comparing
and switching process described in Step (2} is repeated, there are at
most 3(m-3) comparisons made in each iteration, until no switch
increases r2. This yields the best three variable model.

Finally, a fourth independent variable, the one that increases r2 the
greatest, is added to the model. All of the possible, at most (m-3),
choices are evaluated and compared. Again, as a check, each of the
four variables now in the model is compared to the remaining, at most
(m-4), variables not in the model. The comparing and switching
process is repeated, there are at most 4(m-4) comparisons made in
each iteration, until no switch increases r2. The resulting model is the
best four variable model.

If the final four variable model contains only one variable from each of
the four sets of independent variables, then the model is optimal.
Otherwise, the | variables that were entered into the modei prior to the

specific choice that repeated a set are retained in the model. The
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unselected variables contained in the sets from which the j selected
variables were obtained are eliminated from further consideration,
Then, the procedure returns to Step (j+1) with a new total of m'
independent variables from which to choose where,
i
m'= m- ; m. (j=1,2,3)
and where,

my = number of variables in the set corresponding to the first

variable entered into the model

mz = number of variables in the set corresponding to the second
variable entered into the model
mz = number of variables in the set corresponding to the third

variable entered into the mode!.
For example, suppose that the first three variables selected were Ru»
T, and I, and then the fourth variable selected was !,. The fourth
choice repeated a selection from the set of intensity variables. In this
case, the first three variables selected are retained in the model (i.e.,
j=3) and all other variables in the sets from which these three were
obtained are eliminated from further consideration. The procedure
returns to Step 4 (i.e., j+1=4) for the selection of the fourth variable

from the set of nine (i.e., m'=9) antecedent rainfall variables.

This optimization protédure used equation 4.19 and numeérical matrix

inversion and matrix multiplication techniques to compute the many sets of ﬁj
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values needed. Equation 4.21 was used for computation of r2. All computations
and data manipulation operations were made with computer programs
employing the linear modeling procedures from the SAS software package
(SAS Institute, Inc. 1985a, 1985b).

The fundamental assumptions inherent in the linear modeling procedures
discussed above are as follows:

(1) the relationship between the dependent variable and each of the

independent variables is fixed

(2) the linear form of the model is correct

the expected value of the residuals is zero

)
)
(4) the variance of the residuals is a constant across all observations
) the residuals are uncorrelated

)

(5
(6

Given these assumptions, it is possible to construct a statistical test to establish

the residuals are normally distributed.

that the specific variables selected by the stepwise least squares optimization
procedure do, in fact, significantly influence the value of the dependent variable.
This is accomplished by testing the null hypothesis that the [5; associated with a
given variable is equal to zero against the alternative hypothesis that it is
different from zero. If the null hypothesis is not rejected, then it is concluded that
the associated independent variable does not belong in the model for the
specified level of significance. On the other hand, it the null hypothesis is not
accepted, it is concluded that the associated independent variable does belong
in the model.

Under the null hypothesis that B; = 0, and given that the basic
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assumptions hold, the ratio of the ﬁj to the standard deviation of ﬁj is distributed

as Student's t (Haan 1977):

(4.22)

where,

-
1]
o |

Student's t statistic for ﬁ} with v degrees of freedom

Sample standard deviation of the ﬁj which is called the

standard error of the estimate.

Now, v is given by,

(4.23)

where,

number of observations in the data set

number of Bj parameters estimated for the given model (p = 2, 3, 4,

or 5).

The standard deviation of ﬁj is given by,

(4.24)

—— v -1 2
sj = + /(X )I()jj Se
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where,
(X X)j_; = j-th diagonal component of the matrix (X' X) 1, which is
known from the solution for ﬁj
sg = sample variance of the residuals, €, which is called the mean
square error (MSE).
In turn, sg is given by,
o 2
2
(4.25) g2 = =

This technique allows a Student's t test to be conducted for each ﬁi for
each model developed to confirm that the variables included in the modei are

appropriate for estimation of the dependent variable.

Runoff Volume Model

Variable Selection and Parameter Qptimization

The optimization procedure outlined in the previous section was applied to
develop a model with runoff volume, Q, as the dependent variable. The mode!

can be written as,

(4.26) Q=P+ By Ry+BE+ B3 A+Bsl+g,
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where the variable R,, and the sets of independent variables E, A, and | are as
defined previously and ¢, is the residual component.

Since a rainfall intensity variable is to be included in the model, only the
field data gathered after July 2, 1987 can be used. This was the date of
installation of a recording rain gage, from which intensity data is generated, in
the study area.

The stepwise least squares optimization analysis for the runoff volume
model is summarized in Table 4.1. Analyses were completed for four different
subsets of the data. In Part (A.) of Table 4.1, the analysis was conducted for all
rainfall-runoff events, that is all events with nonzero runoff volume, for which
intensity data were available. There were 31 such events. The variable of
greatest intluence on Q, that is the first entered into the model, was rainiall
volume as expected. Then the elapsed time variable T, was entered followed
by antecedent moisture and intensity variables oR7 and |,, respectively.
However, the fact that the last variable added, [a, resulted in an extremely slight
increase in r2 (from 0.7890 to 0.7899) implies that rainfall intensity has a
negligible influence on runoff volume. This conclusion was confirmed by the
statistical tests of significance conducted for the parameters of the model as
shown in detail in the next section. Therefore, the three-variable model is the
best achievable mode! based on the data of Part (A.). The r2 value of 0.7890
indicates that this model accounts for approximately 79 percent of the variation
in Q.

In the second part of Table 4.1, only the 19 events with significant runof

(i.e., Q 2 0.01 inch) were included in the analysis. As before, the variables R,,
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and T, were the first variables entered into the mode!. An antecedent rainfall
variable was again entered third, but this time the variable chosen was gRg.
The fourth variable entered was the intensity variable I,. As before, the
negligible increase in r2 from 0.8476 to 0.8500 with the addition of |, to the
model, in conjunction with the statistical tests of the next section, indicate that
the three-variable model is optimal based on the data of Part (B.). The final
three-variable model accounts for about 85 percent of the variation in Q.
Obviously, the use of rainfall-runoff events with Q equalling or exceeding 0.01
inch measurably enhances the model.

The analyses of Part (A.) and Part {(B.) of Table 4.1 conc¢lusively
demonstrate that a three-variable model (i.e., B4 = 0) is appropriate for
estimation of runoff volume. This allows inclusion into the data set of the nine
rainfall-runoff events for which intensity data are not available. Eight of these
events were monitored prior to the installation of the recording gage on July 2,
1987 and the ninth occurred on December 13, 1987 when the recording gage
malfunctioned. Part (C.) of Table 4.1 summarizes the optimization analysis for a
three-variable model using all 40 rainfall-runoff events monitored during this
study regardless of the magnitude of the runoff volume. Again, the two most
important variables were R, and T,. The antecedent rainfall variable 4R5 was
the third variable added. This three-variable model accounted for 79 percent of
the variation in Q. .

Finally, in Part (D.) of Table 4.1, only the 27 events with significant runoft
volume were included in the analysis. As before, the exclusive use of events

with significant runoff improved the model. The same three variables were
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included as for the previous model. The model accounted for about 83 percent
of the variation in Q.

The models fit to the data subsets of Parts (B.) and (D.), which both include
only significant runoff events, have very similar parameter values throughout.
The only difference between the models is that the antecedent rainfall variables
are different: oRg for the former and gRj for the latter. This difference is fairly
unimportant since the antecedent rainfall variable has a relatively modest
influence on the r2 value compared to R, and T,. A plot of the model predicted
values of runoff volume, (5 versus the observed values, Q, is shown for both
models in Figure 4.1. A 45 degree line with zero intercept is shown for
reference. It is apparent that both models describe the data well, although with
a relatively high degree of random error. That is, the &, values are of a
significant magnitude.

The greater values of r2 achieved in each step of the optimization
procedure for the first model, the model of Part (B.), was probably due to the
greater accuracy of the rainfall data achieved with use of the recording rain
gage. The area weighted rainfall volume, R,,, was more accurate because two
rain gages were used to determine R,, rather than only one. The elapsed time
variable, T,, was more accurate because the second rain gage was a recording
instrument (the other is only a daily gage) which allowed accurate
measurement of timing between rainfall events. Without the use of the
recording gage, elapsed time between rainfall events was approximated from
an analysis of the associated runoff hydrographs. Finally, the antecedent
rainfall variable was more accurate because of the improved ability to account

for the timing of consecutive rainfall events using recording rain gage data.
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Based on the greater accuracy of the data, and the larger rZ value, the
three-variable model of Part (B.) of Table 4.1 has been chosen as the final basin

transformation model for runoff volume:

(4.27) Q=-.05017 +.1671 (R,,) - .0001263 (T,) + .02976 {,Rg) + &,

with r2 = 0.8476 and, thus, r = 0.9207. _

There are several additional important points to emphasize about the
analyses summarized in Table 4.1. First, the elapsed time variable of most
significance, without exception, was time between runoff events with Q = 0.01
inch, T,. This was true regardiess of whether all runoff data (Q > 0.0 inch) were
included or only significant events (Q = 0.01 inch) were inciuded. This
reinforces the conclusion that the entire basin becomes saturated to the point of
contributing runoff only for events with Q > 0.01 inch, and it emphasizes that T,
is the best indicator of basinwide areal average soil drainage and evapo-
transpiration moisture losses among the variables considered. Second, the
model parameters were estimated using data collected from all seasons of the
year. Therefore, the success of the final model in accounting for 85 percent of
the variation in the runoff volume indicates that any seasonal factors that may
influence runoff have been adequately quantified by the model. This depends,
of course, on the fact that the remaining 15 percent of the variability is due to
normally distributed random error, which is successfully demonstrated in the
"Analysis of Residuals" section below. Third, the parameters of the derived

models have algebraic signs and magnitudes that are consistent with the
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physics of the rainfall-runoff process:

(1)

Q increases with increasing R,, which implies B;>0. Furthermore, Q
cannot exceed R,, such that 0 < By < 1. These conditions were
satisfied by the values of B1 throughout the analysis.
Q decreases with increasing T, which implies B, < 0. This condition
on the algebraic sign of B, was satisfied by all values of 62.
Q increases with increasing antecedent rainfall volume which implies
Bs > 0. The parameter estimator 63 satisfied this condition throughout
the analysis.
Moditying equation 4.5 to omit the negligible rainfall intensity term,
(- f.), and then rearranging, yields

Q = (a—1)Ai+ {(1-a)R - BE + YA +¢,.
Clearly, then, By = (a-1)A; and By = (1-a). Solving these simulta-

neously for A;,

This indicates that B, < 0 since A; > 0 and B, > 0. This condition on
the sign of By was satistied by the values of 60 throughout the

analysis. Also, for the final model,

A=~

t

-0.05017 inch .
[ 0.1674 inch/inch | = 0-3002 inch,
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which is a physically reasonable value.
Obtaining physically realistic values for the model parameters inspires
confidence in the methodology and the predictive ability of the final model.

Objective statistical tests to confirm the applicability of the model

parameters are presented in the following section.

The Student's t test described in detail in the methodology section was
employed 1o verify the applicability of the parameters, and thus, the
independent variables included in the runoff volume model. Computations and
results of the test of significance for each parameter of the four-variable models
developed in the previous section are shown in detail in Table 4.2. Analyses for
the model developed using all runoff volume data (Q > 0.0 inch, n = 31) are
shown in Part (A.) of Table 4.2. Analyses for the model developed using only
significant runoff events (Q 2 0.01 inch, n = 19) are shown in Part (B.). The
critical values of the test statistic were chosen based on a 0.05 level of
significance using a two-sided test.

Test statistics for 34 lie well outside the critical region of the test for both
models such that the null hypothesis that B, = 0 is not rejected in either case. In
fact, the null hypothesis would not be rejected even at the 0.741 level of

significance for Part (A.) nor at the 0.647 level of significance for Part (B.).

Therefore, it can be concluded that B, is not significantly different from zero and

that rainfall intensity is not pertinent to estimation of Q.

Test statistics for B3 are borderline. In Part (A.), the test statistic for 5 lies

just outside the critical region of the test and for Part (B.} it lies just inside.
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Further evaluation of the significance of B4 is required via a similar analysis for
three-variable models.

Computations and results of the test of significance for each parameter for
three-variable runoff models are shown in detail in Table 4.3. Only the two
models involving significant runoff events {(Q 2 0.01 inch) are shown for the sake
of clarity and conciseness. The absolute values of the Student's t test statistic
for all parameters of both models exceed the critical value. Therefore, the
conclusion in statistical terminology is, do not accept the null hypotheses that
the B; are zero at the 0.05 level of significance. Based on these results, it can
be concluded that all of the parameters and variables in the models are
pertinent to estimation of Q.

Model parameters evaluated in Part (A.) of Table 4.3 are from the final
model selected in the previous section. It is relevant to emphasize several
important points about the analyses for this model. First, test statistics for the
parameters B, and B, lie far within the critical region of the test. This
emphasizes the major influence that R, and T, have on the observed values of
Q. Second, the test statistic for the parameter B, is a relatively moderate
distance inside the critical region, but the null hypothesis that B, = 0 would still
not be accepted even at the 0.01 level of significance. Third, the test statistic for
B4, 2.33, is borderline. The null hypothesis that B; = 0 would not be rejected at a
level of significance of 0.0342. This emphasizes the relatively small impact that

oReg has on the observed values of Q.

nalysis of idual
A critical step in verifying the applicability of the derived runoff volume

model is to demonstrate that the model residuals are normally distributed with
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zero mean and standard deviation o, . If the residuals can be shown to possess
this distribution, it can be conciuded that all deterministic sources of variation in
the dependent variable Q have been accounted for and only random error, or
noise, remains in the residual component of the model.

The population mean of the residuals is known a priori to be zero (i.e.,

i, = 0) because the least squares optimization procedure requires this condition
regardiess of the pdf of the residuals. The population standard deviation, o,
must be estimated from the sample data using equation 4.25: s, = 0.03148
inch. Plots of the observed empirical cfd and the theoretical normal cdf with
He = 0 and o, = 0.03148 are shown in Figure 4.2. The empirical cdf is the step
function and the theoretical cdf is shown as the smooth curve. The agreement
between them is generally acceptable.

The next step was to conduct an objective test for goodness of fit. As a
result of the small sample size, n = 19, the chi-square test for goodness of fit
used extensively in Chapter 3 was not practical. Consequently, the
Kolmogorov-Smirnov one-sample test was employed. This is a computationally
simple nonparametric statistical test for goodness of fit that involves the
maximum deviation of the empirical cdf, E(e), from the hypothesized theoretical

cdf, F(e), as the test statistic:

(4.28) Brax = meax{max“E(si) —F(e) | , |E(Ei—l) - F&) ‘ ”
i
where,
Brmax = absolute value of the maximum difference between

the empirical and theoretical cdf's
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ma { } = a function that returns the maximum value of the

£
i

argument over all gj values; i=1,2,...,n.

The second term in the function argument, | E (g;.4) - F (g;) |, is necessary
because the maximum deviation of E (g) from F (g) does not necessarily occur at
an observed value of g;, but could occur at some other point along the empirical
step function. Close scrutiny of Figure 4.2 illustrates that the maximum
difference between the empirical step function and the smooth theoretical curve
must occur at one of the corner points of the empirical cdf. For any given value
of F (g)), there are two corresponding corner point values: E (g;) and E (g;.q).
Therefore, the maximum deviation must be compared for all E (g;) and E (g4} in
order to establish the true A,

The Kolmogorov-Smirnov one-sample test for the normal cdf fit to the
residuals of the runoff volume model is shown in detail in Table 4.4. The
maximum deviation was 0.147. The critical value of the test statistic, Ay = 0.301,
was obtained from standard statistical tables for a two-sided test with n = 19
(Daniel 1978). The test statistic lies well outside the critical region of the test at
the 0.05 level of significance. Therefore, do no reject the null hypothesis that
the residuals of the runoff volume mode! represent a random sample of size 19
from a normal pdf with u. = 0.0 and o, = 0.03148.

The result of this analysis verifies the applicability of the runoff volume

model.
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Peak Flow Rate Model

Variable Selection and Parameter Qptimization

The stepwise least squares optimization procedure was applied to

develop a model for peak flow rate, q,, as the dependent variable. The model

can be written as:

(4.29) g, =B0+B1RW+B2E+B3A+B4I+E

where the variable R,, and the sets of independent variables E, A, and | are as
defined in the methodology section.

Peak flow rate was expected to be highly dependent on rainfall intensity.
Therefore, as for the runoff volume model, only the field data collected after
installation of the recording rain gage could be used.,

The stepwise least squares optimization procedure for the peak flow rate
mode! is summarized in Table 4.5. Analyses were completed for two subsets of
the observed data. in part (A.) of Table 4.5, the analysis was conducted for all
rainfall-runoff events, that is, all events with nonzero runoff volume for which
intensity data were available. There were 31 events meeting this requirement.
The variable of greatest influence on g, was rainfall volume, R,. Then, the
elapsed time variable, T, was entered followed by the intensity variable, |,. The
fourth variable entered was the antecedent rainfall variable gR34.

The fact that the addition of the last variable gRa¢ resulted in only a slight
increase in r2 (from 0.8337 to 0.8425) implies that antecedent rainfall has a
relatively insignificant influence on peak flow rate. This conclusion was
confirmed by the statistical tests of significance conducted for the parameters of

the mode! as shown in detail in the following section. Therefore, the three-
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variable model is the best achievable model based on the data of Pant (A.). The
r2 value of 0.8337 indicates that this mode! accounts for approximately 83
percent of the variation in qgp.

In the second part of Table 4.5, only the 19 events with significant runoft
volume were included in the analysis. The best three-variable model involved
Ry, la. @and T, as before. Although, in this case, the intensity variable was
selected second in preference to the elapsed time variable T, The fourth
variable entered was, again, the antecedent rainfall variable, gRzy. As before,
the slight increase in r2 from 0.8444 to 0.8533, in conjunction with the statistical
tests of the next section, indicate that the three-variable model is optimal based
on the data of Part (B.). The final three-variable mode! accounts for about 84
percent of the variation in q,. Use of rainfall-runoff events with Q = 0.01 inch
improves the predictive performance of the mode!, especially considering that
only 19 of the 31 runoff events were used.

It has been conclusively demonstrated that a three-variable model (i.e.,
B = 0) is appropriate for estimation of q,. Based on the larger r2 value, and for
the sake of consistency with the final runoff volume mode! with respect to the
data subset used, the model of Part (B.) of Table 4.5 has been selected as the

final basin transformation model for peak flow rate:

(4.30) q, = -4.6053 + 12.3698 (R,) —.02144 (T) + 32.4367 (I,)

with r2 = 0.8444 and, thus, r = 0.9189. A plot of model predicted values of peak

flow rate,ap, versus the observed values, qp, is shown in Figure 4.3. A 45
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degree line with zero intercept is shown for reference. It is apparent that the
model describes the data well, although with a relatively high degree of random
error. That is, the g, values are of a relatively large magnitude.

There are several additional important points to emphasize about the
analyses summarized in Table 4.5. First, the fact that I3, which is just the ratio of
" Ry, to D, is the preferred intensity variable means that event duration is the only
rainfall variable related to intensity (other than, of course, rainfall volume) that

must be simulated. This is significant, and fortunate, since D is the only intensity

variable that can be reasonably assumed to be independent of R, as
discussed in detail in Chapter 3. Second, the parameters of the final model
have algebraic signs that are consistent with the physics of the rainfall-runoff
process:

(1) ap increases with increasing R,,, which implies B,y > 0. This condition

on the algebraic sign of By was satisfied by the values of

throughout the analysis.
(2) qp decreases with increasing elapsed time between runoff events,
which implies Pz < 0. This condition on the sign of B2 was satisfied by

all values of 62‘

(3) gp increases with increasing rainfall intensity, which implies B4 > 0.
The parameter estimator 64 satisfied this condition on algebraic sign
throughout the analysis.

Third, in order to independently estimate the parameter . and to evaluate its

magnitude for physical realism, it is possible to write an equation with two

independent variables where dp is a function of runoff volume, Q, and an

intensity variable as follows:
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(4.31) o = A Q4 (1=1).

A two-variable model of this form is expected because the runoff volume model

of equation 4.27 expresses Q as a function of the three independent variables

Ry, T,, and gRg but does not include an intensity variable. Therefore, equation
4.31, by incorporating an intensity term, expresses g, as a function of the four
general classes of independent variables in a manner analogous to equation

4.29. Rearranging equation 4.31,

(4.32) gp = —xzfc+l10+3\2| .

Applying the least squares optimization procedure using the observed data

subset of Part (B.) of Table 4.5 yields,

(4.33) q, = —4.2851 +83.8863 (Q) + 36.6401 (I,) .

Notice that the intensity variable |, was again chosen and that the intercept
parameter and coefficient of |, are very near those of the final model of equation
4.30. This two-variable model has a coefficient of determination of r2 = 0.8313
and, thus, r = 0.9118. These values are only slightly lower than the values of

the final model. Finally, notice that,

I _ 4.2851 cis
fe=—1"% = —|36.6401 cfs/inch/hour

2

t. = 0.1170 inch/hour

c
which is a physically realistic value for the clayey soils found in the study

watershed. Obtaining physically realistic algebraic signs and values for the
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model parameters promotes confidence in the methodology and the predictive
ability of the final model.
Objective statistical tests to confirm the applicability of the model

parameters are presented in the following section.

Statistical Tests of Significance for Model Parameters

The Student's t test was employed to verify the applicability of the
parameters, and thus the independent variables, included in the peak flow rate
model. Computations and results of the test of significance for each parameter
of the four-variable models derived in the previous section are shown in detail
in Table 4.6. Analyses for the model which was developed using all runoff
volume data (i.e., @ > 0.0 inch, n = 31) are shown in Part (A.) of Table 4.6.
Analyses for the model developed using only significant runoff events (i.e.,
Q = 0.01 inch, n = 19), are shown in Part (B.). The critical values of the test
statistic were chosen based on a 0.05 level of significance using a two-sided
test.

Test statistics for B5 lie well outside the critical region of the test for both
models such that the null hypothesis that B, = 0 is not rejected in either case. In
fact, the null hypothesis would not be rejected even at the 0.241 level of
signiticance for Part (A.) nor at the 0.370 level of significance for Part (B.).
Therefore, it can be concluded that B is not significantly different zero and that
antecedent rainfall volume is not pertinent to estimation of q,,.

Test statistics for B, are borderline. In Part (A.), the test statistic for 3, lies a
moderate distance inside the critical region of the test and for Part (B.} it lies just
outside. Further evaluation of the significance of B, is required via a similar

analysis for the three-variable models.
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The values of the test statistics for all remaining parameters of both models

exceed the critical value. Therefore, do not accept the null hypotheses that the

remaining [3; are zero at the 0.05 level of significance. Based on these results, it
can be concluded that the parameters B4, B,, and B, and their associated
variables are pertinent to estimation at g, However, this must be confirmed by
re-evaluation of the significance of the B; using a similar analysis for three-
variable models where it is known a priori that B; = 0.

Computations and results of the test of significance for each parameter of
the three-variable peak flow rate models are shown in detail in Table 4.7. For
both models, the absolute values of the Student's t test statistic for 4, 85, and B,
exceed the critical value. Therefore, do not accept the null hypotheses that
these parameters are zero. Based on these results it can be concluded that B,,
B, and B, and their associated variables are pertinent to estimation of gp- In
fact, the test statistics for By and B, lie well within the critical region of test, which
emphasizes the major influence that R,, and |, have on the observed values of
Ao

Test statistics for B, are again contradictory. In Part (A.) of Table 4.7, the
test statistic for By, - 3.42, lies well inside the critical region of the test. The null
hypothesis that B, = 0 would not be accepted at a level of significance of
0.0020. In Part (B.), the test statistic for By, - 1.85, lies just outside the critical
region of the test. The null hypothesis that By = 0 would not be accepted at a
level of significance of 0.0841. Since the analysis of Part (A.) strongly suggests
a high degree of importance for the intercept parameter and the analysis of Part
(B.) yields a very borderline value of the Student's t test statistic, it has been

decided to retain the intercept parameter B, = -4.6053 cfs in the final model.
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The decision on the final form of the peak flow rate model has been
verified in the next section where the resulting residuals are successfully shown

to be normally distributed.

Residual
The population mean of the residuals for the peak flow rate model is
known a priori to be zero (i, = 0). The population standard deviation, c,, must
be estimated from the sample data using equation 4.25 : s, = 4.5806 cfs. A plot
of the observed empirical cdf and the theoretical normal cdf with p, = 0 and

o, = 4.5806 cfs is shown in Figure 4.4. The empirical cdf is the step function and

the theoretical cdf is shown as the smooth curve. The agreement between them
is generally acceptable.

An objective evaluation of the goodness of fit was obtained by application
of the Kolmogorov-Smirnov one-sample test. This analysis for the normal cdf fit
to the residuals of the peak flow rate mode! is shown in detail in Table 4.8. The
maximum deviation was 0.167. The critical value of the test statistic was
Ag = 0.301 for a two-sided test with n = 19 at a 0.05 level of significance. The
test statistic lies well outside the critical region of the test. Therefore, do not

reject the null hypothesis that the residuals of the peak flow rate model
represent a random sample of size 19 from a normal pdf with u, = 0.0 and

o, = 4.5806.

The result of this analysis verifies the applicability of the peak flow rate

model.
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Hydrograph Shape

ifi ndard Sh

The synthetic unit hydrograph method developed by the U.S. SCS uses a
standard dimensionless hydrograph shape derived from an analysis of a large
number of natural unit hydrographs for watersheds varying widely in size and
geographic location (U.S. Department of Agriculture 1971). This standard unit
hydrograph has been applied frequently throughout the world for design of
hydrologic structures and systems.

The SCS standard unit hydrograph is shown graphically in Figure 4.5.
The dimensionless ordinates are expressed as (h/h,) where h is the flow rate
per inch of runotf volume at any time t, and h,, is the peak flow rate per inch of
runoff volume. The dimensionless values along the abscissa are expressed as
(tt,) where 1, is the time-to-peak, which is the time from the beginning of direct
runoff to the peak of the hydrograph.

Derivation, and application, of the SCS hydrograph is based upon the
volume-to-peak, time-to-peak, and peak flow rate being interrelated as they
would be for a triangular hydrograph shape. For any arbitrary hydrograph with

a triangular shape,

112t q
=z —00W=FP P
(4.34) Q =—3
where,
Q, = volume-to-peak, which is the volume between the start of runoff and

the peak flow rate, {inches)

1

o time-to-peak, (hours)
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peak flow rate, (acre-inch/hour)

B
A

watershed surface area, (acres).

Rearranging this in terms of q, and dividing both sides by the total runoff

volume, Q, yields

g, 2(Q,/Q)A
Q-

Now, define
U= Op /Q

which is just the ratio of volume-to-peak to total volume. The ratio U is a

parameter that describes the shape of the hydrograph. Also, recall that,

h, =g,/Q
Substituting yields,
(4.35) h, = 2YA .
b

Equation 4.35 defines the relationship between the peak flow rate he, the time
lag parameter t,, and the shape parameter U for any triangular unit hydrograph.
In a similar fashion, the volume under the recession limb of a triangutar
hydrograph is given by,
12tq,

(4.36) Q = —4

where,
Q; = recession limb volume, which is the volume between the peak flow

rate and the end of runoff, (inches)
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tr = recession time, which is the time between the peak flow rate and the

end of runoff, (hours).

But,
Q =Q- Op

Substituting, rearranging in terms of q,, and dividing both sides by the total
runoff volume, Q, yields,

9, _ 210-Q;)/Q]A

Q t,
But, recall that,
% Qp
hp =q and U = Q-
Substituting yields,
(4.37) h, = 2(1'tU)A

Equation 4.37 defines the relationship between the peak flow rate hy, the
recession time parameter t,, and the shape parameter U for any triangular unit
hydrograph.

The SCS method is based upon the assumptions that the shape
parameter U is a constant, U = 3/8, and that the relationships for triangular unit
hydrographs of equations 4.35 and 4.37 also hold for the standard shape
defined in Figure 4.5. Therefore, the basic relationships between h,, to, and t,

for the standard SCS dimensionless unit hydrograph are given by:

= 34 A
(1) h, = A
o
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_ B[ A
@ h, =S4
r

3) t, = 53t

Unfortunately, the observed hydrographs in this study were found to have
a highly variable ratio of volume-to-peak to total volume as discussed in
Chapter 2. In fact, the parameter U of equations 4.35 and 4.37 has been shown
to be an independent random variable possessing a log-normal pdf as
demonstrated in the following section. Therefore, the SCS procedure has been
modified in this study to allow for a variable value of the parameter U which acts
to modify the standard shape of Figure 4.5.

The modified SCS procedure for generating a .synthetic hydrograph
involves using the observed, or simulated, values of q,, Q,, and Q to compute
hp = (qp/Q) and U = (Q,/Q). Equations 4.35 and 4.37 are then used to compute
the appropriate values of t; and t,. Then, the flow rates for the synthetic
hydrograph are obtained, as they are in the standard procedure, by multiplying

the ordinates of Figure 4.5 by the product of hy and Q. The values on the time

scale that correspond to the flow rate values are then computed as follows:

(4.38) t =<

The term (t/t;) represents the standard SCS abscissas on the rising limb of the
dimensionless unit hydrograph from Figure 4.5. The term (t'/t,) represents the

standard SCS abscissas on the recession limb of the hydrograph from Figure



169

4.5, but reported in terms of t, rather than t, and with the origin of the time scale
shifted to correspond to the peak of the hydrograph. This shift is accomplished
by defining the new time variable t' as,

t=t-1
that is, t' is just the time after the hydrograph peak. Any abscissa value, (i),

from Figure 4.5 can be written as

-5
L)-[E)-

by simple substitution. But, for the standard shape, we already know that

or,

to = 3/5t,. Substituting this on the right-hand side yields,

t t
— ==+ 1
{tp ] [3/5 t, )
Rearranging,

{)-»)]

Equation 4.39 is used to accomplish the transformation from the abscissas of
Figure 4.5 to the equivalent form (1'/1,) for use in Equation 4.38.

Application of equation 4.38, in conjunction with the computed values of t,
and t, based on the shape parameter U from equations 4.35 and 4.37, yields a
synthetic hydrograph with a modified shape from that produced by the standard
SCS procedure. The modified and standard SCS synthetic hydrographs have
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identical total volumes and peak flow rates; but the distribution of flow rates in
time, time-to-peak, recession time, and overall time base of the hydrographs are
different.

A visual comparison of several observed direct runoff hydrographs to
synthetic hydrographs are shown in Figures 4.6, 4.7, and 4.8. Synthetic
hydrographs were generated using the modified SCS shape based on the
observed values of q,, Q,, and Q for each event. Therefore, the total volume,
volume-to-peak, recession limb volume, and peak flow rate of the synthetic
hydrographs are identical to those of the observed hydrographs. The overall
agreement between observed and computed hydrograph shapes is generally
good. The events selected for presentation in Figures 4.6, 4.7, and 4.8 were
chosen to represent small, medium, and large runoff events, respectively.

r ili istribution for the Sh r r
As defined in the previous section, the parameter U is the ratio of volume-
to-peak to total volume for a direct runoff hydrograph. In order to generate a
complete hydrograph for each stochastically simulated rainfall-runoff event, it is
necessary to obtain a simulated value of U for each event. Therefore, a 2-
parameter log-normal pdf was fit to the observed data for U. This was actually
accomplished by fitting a normal pdf to the log-transformed variable V, defined

as follows:
V = In(U).

The normal pfd for V is of the familiar form,

2
v-u,
(4.40) f(v) = ——o e“’z[ S ] | _co<V<oo

{2nc




171

o

18/71/720 40 IN3A3 HOd SHAVHOOUUAH

9'v 3HNOId

(SHNOH) INIL
9

v

(§40) 31VvH 440NN



172

L8/G2/lL 40 IN3A3 HOd SHAVHOOHOAH
Lv 39NOI4

(SHNOH) INIL

(§40) A1vH 440NNY



173

ot

88/.1/¥0 40 1N3A3 HOd SHAVHOOHUAH
8 34NOid

(SHNOH) JNLL

0C

- 0E

ov

(S§30) 31VvH JJONNY



174

where,
v = any arbitrary value of the random variable V (—co<v<oo)
Ky, = population mean (—oo<, <o)
o, = population standard deviation {c,>0).

The population mean and standard deviation must be estimated from the

sample data using the MOM as follows:

(4.41) i, =v =2

(4.42) o

Where, of course, v and s, are the sample mean and sample standard
deviation of the observed data. Equation 4.42 is not in strict conformance with
the MOM since s, involves the denominator (n-1) instead of n as required by the
definition of sample moments. However, the error is acceptably small in this
case.

Since observed hydrographs with total runoff volumes of less than 0.01
inch were of extremely unusual and highly variable shape, as discussed in
Chapter 2, it was decided to use only significant runoff events with total volume
greater than or equal to 0.01 inch to characterize U. Using the data for the 27
events meeting this specification monitored during the field study, the sample

moments for the log-transformed variable V were computed as,
v = —1.8316
s, = 0.5332.

v
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Plots of the observed empirical cdf and the theoretical normal cdf with
i, = - 1.8316 and o, = 0.5332 are shown on normal probability paper in Figure
4.9. The agreement between them is very good.

An objective test of the goodness of fit was obtained by application of the
Kolmogorov - Smirnov one-sample test. This analysis is shown in detail in
Table 4.9. The maximum deviation between empirical and theoretical cdf's was
Apax = 0.107. The critical value was Ay = 0.254 for a two-sided test with n = 27
at a 0.05 level of significance. The test statistic lies well outside the crucial
region of the test. Therefore, do not reject the null hypothesis that the observed
values of the log-transformed variable V represent a random sample of size 27
from a normal pdf with the specified mean and standard deviation.

Before the fitted cdf for V can be legitimately used in simulations to
generate randomly sampled values U to allow deveiopment of synthetic runoff
hydrographs, it must first be shown that U is statistically independent of runoff
volume, Q. Because of the small sample size, n = 27, the chi-square test of
independence used extensively in Chapter 3 was not practical here.
Consequently, Kendall's tau test of independence was employed. This is a
computationally simple nonparametric statistical test of independence between
two random variables. The data required to conduct the test consists of n pairs
of observations of the two variables. Each pair of observations must represent
two different measurements on the same object or event.

Kendall's tau, 1, is a population parameter defined as the probability of
concordance minus the probability of discordance between two arbitrary pairs
of observations. Pairs of observations (x;, y;) and (x;, y;) are defined as

concordant if the algebraic sign of the ditference (x; - x;) is the same as the sign
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of the difference (y; - y;). Pairs of observations are said to be discordant if the
algebraic signs differ.

The null hypothesis in Kendall's T test is that the random variables X and
Y are independent which, in turn, requires that T = 0. For the two-sided test
used here, the alternative hypothesis is that X and Y are not independent such
that 1= 0. The test statistic is the sample estimator 2 which is evaluated using
the following procedure:

(1) Arrange the n pairs of (X, Y) values in columns ranked by increasing
values of X.

(2) Then, for each of the n pairs, count and tabulate the number of
concordances and the number of discordances for all subsequent
pairs in the table.

(3) Determine N, which is the sum of the number of concordances for all
pairs. Determine Ny, which is the sum of the number of discordances
for all pairs.

(4) Then, the test statistic is computed from,

o 2{Ne-N,) e
(4.43) b=y o et

The decision rule for the test is based on comparing the absolute value of 7 to
tabulated critical values, 1., from standard statistical tables. Then, do not accept
Mo if |2 ]> 1o Otherwise, do not reject Ho.

The Kendall's T test of independence for the random variables Uand Qis
shown in detail in Table 4.10. Using equation 4.43, T = -0.191. The critical

value of the test statistic, 1, = 0.271, was obtained from standard tables for a
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TABLE 4.10

KENDALL'S = TEST OF INDEPENDENCE FOR
THE RANDOM VARIABLES U AND Q

Runoff Volume, Q U= (Qn/Q)
Value Value Subsequgnt Subsequent
{inch) Rank {inch/inch)  Concordances Discordan
011 1 .053 26 0
013 2 315 2 23
014 3 .164 12 12
.014 4 479 0 23
.015 5 .080 21 1
.020 6 .180 11 10
.023 7 .200 7 13
.023 8 .239 4 15
.028 9 225 4 14
.031 10 313 1 16
.039 11 .256 2 14
.042 12 224 2 13
.044 13 075 14 0
.049 14 176 3 10
.052 15 173 3 9
057 16 154 3 8
.064 17 .092 10 0
077 18 .338 0 9
.083 19 .093 8 0
.086 20 140 2 5
.085 21 129 2 4
135 22 119 2 3
156 23 .263 0 4
161 24 .099 2 1
170 25 100 1 1
.245 26 192 0 1
.264 27 .095 0 0
N = 142 Ng = 209

Null Hypothesis, Hy: The random variables Q and U are independent; © = 0.

Alternative Hypothesis, H;: The random variables are not independent; 1 = 0.

Test Statistic from Equation 4.43 for n=27: 7 = -0.191.

Critical Value of the Test Statistic at 0.05 Level of Significance (Two-Sided Test): 1, =0.271.

Decision Rule: Do not accept H,, if the absolute value of Kendall's T test statistic, | |, exceeds
the critical value, 1., for a two-sided test at the 0.05 Level of Significance.
Otherwise, do not reject H,,

Decision: Do Not Reject H,.
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two-sided test with n = 27 (Daniel 1978). Therefore, since |7 ] < 1, do not reject
the null hypothesis that U and Q are independent random variables.
This analysis confirms that the hydrograph shape parameter U can be

simulated as an independent random variable using the log-transformed

variable V and it's associated padf.
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CHAPTER 5
STOCHASTIC MODEL DEVELOPMENT AND SIMULATION

Stochastic Rainfall Runoff Model

Model Development
A stochastic simulation model was developed to generate synthetic

sequences of rainfali-runoff event data for the study watershed. The simulation

model was developed in the form of a SAS computer program which is listed in

Table C.1 in Appendix C. There are numerous comment statements in the

program listing to make the program as self-explanatory as possible. A detailed

discussion of the operations performed by the program is presented in the
following paragraphs. The variable names used in the computer program are
shown in parenthesis in the discussion as a cross-reference to the listing in

Table C.1 in Appendix C.

The stochastic simulation model performs the following general
procedures in sequence:

(1) An initialization period in years is specified by the user (STARTYRS). All
events in the .initialization period are omitted from the final results of the
simulation in order to eliminate any bias introduced by the initial
conditions. A minimum initialization period of 5 years is recommended.

(2) The number of years for simulation output (NYEARS) is set by the user.
Thus, the total number of years simulated for a given execution of the
program is the sum of the initialization period and the simulation output

period (i.e., STARTYRS + NYEARS).
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variables which accumulate the elapsed time since the last runoff event
(TL) and the elapsed time since the last runoff event with a volume of 0.01
inch or more (TR) are initialized to zero.

All counter variables are initialized to zero. Four counters are maintained
by the model; the total cumulative time in hours since the beginning of the
simulation (CUMHOURS), the calendar year since the beginning of the
simulation (YEAR), the total number of rainfall events simulated (NRAINS),
and the total number of runoff events simulated (NRUNOFFS).

Theoretical probability distributions are randomly sampled for rainfall event
volume (R), time between events (T), and event duration (D). Derivation of
the theoretical distributions and development of the computer program for
random sampling of these distributions were presented in detail in Chapter
3. During simulation of the initial rainfall event, the initial value of the time
between events (T) is chosen to exceed 144 hours, or 6 days, so that the
initial condition for the antecedent rainfall variable (ROT6) will be zero (i.e.,
ROT6 = 0O initially}.

The accumulated time elapsed since the last runoff event (TL) is
incremented either by the time between rainfall events (T) for the current
event if the prior event produced runoff, or by the time between raintall
events (T) for the current event plus the event duration (D) for the prior
event if the prior event did not produce runoff. An upper bound of 1513
hours is set for the time elapsed since the last runoff event (TL). The
reason for this upper bound is explained below.

The accumulated time elapsed since the last runoff event with a volume of
0.01 inch or greater (TR) is incremented either by the time between rainfall
events (T) for the current event if the prior event produced 0.01 inch of

runoff or more, or by the time between rainfall events (T) for the current
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event plus the event duration (D) for the prior event it the prior event
produced tess than 0.01 inch of runoff. An upper bound of 1513 hours is
set for the time elapsed since the last runoff event with a volume of 0.01
inch or greater (TR). The reason for this upper bound is explained below.
All rainfall event volumes in the 6 days preceding the current rainfall event
are summed to yield the antecedent rainfall variable (ROTS). This requires
maintaining, in computer memory, the values of all rainfall event variables
(R, T, and D} for the 36 storms immediately preceding the current event.
No more than 36 storms can occur in 6 days because of the way hourly
rainfail data is resolved into individual events as explained below.
Theoretical normal pdf's are randomly sampled for the runoff volume white
noise component (QEPS) and for the peak runoff rate white noise
component (QPEPS). The program uses the SAS internal function for
generating normal deviates. The white noise component of the runoff
volume mode! has a mean of zero and a standard deviation of 0.03148
inch and the white noise component of the peak runoff rate mode! has a
mean of zero and a standard deviation of 4.5806 cfs as shown in Chapter
4,

(10) The areal weighted rainfall volume (RW) is assumed equal to the

simulated point rainfall volume (R), and the average rainfall intensity (1A) is

computed (i.e., IA = RW/D).

(11) The direct runoff volume (Q) and the peak runofi rate (QP) are then

(5.1)

computed using equations 4.27 and 4.30, respectively. In the computer

model, these equations assume the form,

= -.00017+.1671+«RW-.0001263xTR+.02976+ROT6+QEPS.
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and,

(5.2) QP = - 4.6053+12.3678+RW-.02144xTL+32.4367xIA+QPEPS.

(12) The results of the simulation are checked for consistency. If either the
simulated runoff volume (Q) or peak runoff rate (QP), or both, is non-
positive then the rainfall event is treated as a non-runoff producing event
(i.e., Q=0 and QP=0). If the random components of the runoff equations
produce a rainfall-runoff event with a runoft volume that exceeds the
rainfall volume (i.e., Q>RW), then the rainfall event is discarded, the
appropriate variables are reset to their previous values, and the iteration is
restarted at Step (5.). Preliminary simulations indicated that this occurs
with negligible frequency.

(13) The counters for number of rainfall events (NRAINS) and cumulative
simulation hours (CUMHOURS) are incremented and the antecedent
rainfall variables are reset.

(14) If the current rainfall event does not produce runoff (i.e., Q and/or QP is
non-positive), then the program returns to Step (5.) for simulation of the
next rainfall-runoff event.

(15) If the given rainfall event produces runoff (i.e., Q>0 and QP>0), then the
counter variables for number of runoff events (NRUNOFFS) and current
calendar year of the simulation (YEAR) are incremented.

(16) If the rainfall-runoff event occurs in a calendar year after the initialization
pariod (STARTYRS) and before the end of the simulation period (i.e.,
STARTYRS + NYEARS), then the simulation results are written to the

output file.
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(17) The elapsed time between runoff events (TL) is reset to zero and the
elapsed time between runoff events with a volume of 0.01 inch or greater
(TR) is reset to zero, if appropriate. The program then returns to Step (5.)
for another iteration until the simulation is completed {i.e., until YEAR »
STARTYRS + NYEARS).

The initial conditions specified in the program correspond to assuming that
the rainfall event that occurred immediately prior to the start of the simulation
produced a runoff volume of 0.01 inch or more and that it occurred more than 6
days before.

As a practical hydrologic matter, an upper bound was placed on the values
of the two elapsed time between runoff event variables (i.e., TL and TR). These
elapsed time variables are measures of the evapotranspiration and gravity
drainage moisture losses from the soil between runoff events as discussed in
Chapter 4. The larger the numerical magnitude of these variables, the more
moisture that has been lost from the soil. However, since there is obviously a
finite amount of moisture stored in the soil of a given watershed, there must be
an upper bound on the values of the elapsed time variables above which there
is no additional moisture loss. The best estimate of this upper bound is the
maximum observed values of the elapsed time variables from the field study.
The maximum observed value in the field data was 1513 hours, or 63 days, for
both the time elapsed since the last runoff event (TL) and the time elapsed since
the last runoff event with a volume of 0.01 inch or more (TR). These upper
bounds were incorporated into the simulation model.

An explanation is needed for the statement that no more than 36 raintall
events can occur in 6 days. The absolute maximum number of events for any
period of time must involve a sequence of events all having a duration of one

hour, because this is the minimum possible duration obtained with hourly data.



187

Since 3 hours is the time used to resolve hourly data into individual events, the
sequence of 1-hour events must be separated from each other by a minimum of
3 hours with no rainfall and the last event must be followed by a minimum of 3
hours without rain to separate it from the current event. Therefore, for 36
consecutive 1-hour events, the minimum possible total elapsed time is
36(1 hour)+36(3 hours)=144 hours, which is 6 days. Conversely, no more than
36 rainfall events can occur in 6 days.

The output file created by the simulation model is a permanent, machine
language SAS file stored on disk. This file can be readily accessed by easily
constructed programs using SAS procedures for detailed analysis of the
simulation results. For example, it is a simple matter to obtain summary
statistics and frequency analyses of simulated runoft volumes and peak runoff
rates or to generate hydrographs using the synthetic hydrograph procedure
derived in detail in Chapter 4. The variable values stored in the output file for
each event simulated, in the actual sequence in which they appear in the file,
are as follows:

(1)  cumulative number of rainfall events (NRAINS)

(2)  cumulative number of runoff events (NRUNOFFS)

(3) cumulative time since the beginning of the simulation in hours

(CUMHOURS)

(4)  the calendar year since the beginning of the simulation (YEAR)

(5)  runoff volume in inches (Q)

(6)  peak runoff rate in cfs (QP)

(7)  rainfall volume in inches (R)

(8)  elapsed time since the last rainfall event in hours (T)

(9)  duration of the rainfall event in hours (D)

(10) elapsed time since the last runoff event in hours (TL)
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(11) elapsed time since the last runoff event with a volume of 0.01 inch or
more in hours (TR)

(12) antecedent rainfall volume in the preceding 6 days (ROTS).

imulation Resy|

The stochastic simulation model was used to generate long-term runoff
event data for the study watershed. An initialization period of 5 years was used
and the simulation was set at 100 years. This means that the model simulated
runoff events for 105 years and the first 5 years were omitted from the results
and then years 6 through 105 were written to the output file as the simulation
results. A series of relatively elementary SAS programs were then used to read
the output file and to perform the desired statistical analyses on selected
variables.

The 100 years of simulated data which followed the 5 year initialization
period involved 8800 rainfall events which resulted in 1570 runoff events being
written to the output file. Simple statistics were computed and a frequency
analysis was performed for runoff event volume and for peak runofi rate for the
1570 simulated runoff events. The results of these analyses are summarized in
Table 5.1. The average runoff event volume was 0.160 inch and the average
peak runoff rate was 27.3 cfs. These arithmetic mean values have been
measurably influenced by the few extreme flood events as revealed by the
significantly lower median values of 0.115 inch and 16.7 cfs, respectively.
Empirical cdf's for runoff volume and peak runoff rate, developed using
simulation output data, are shown graphically in Figures 5.1 and 5.2,
respectively.

These final analyses of the simulation results satisfy the primary objective

of this study, which was to develop a stochastic simulation mode! capable of
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STATISTICS FOR SIMULATED RUNOFF VOLUME AND PEAK RUNOFF RATE

Statistic

Number of Observations, n

Mean, X
Standard Deviation, s,
Minimum Value, Xqin

5 Percentile Value, X5
10 Percentile Value, X4q
25 Percentile Value, X35
50 Percentile Value, x50
75 Percentile Value, X75
90 Percentile Value, Xgq
95 Percentile Value, Xgs

Maximum Value, Xmax

Runoff Volume

Q
(inches)

1570
.160
154
.000268
0111
.0216
.0536
15
216
.348
464
1.25

Peak Runoff

Rate, q,
(cfs)

1570
27.3
32.3
.00110
1.30
2.57
6.54
16.7
35.7
62.9
86.3
316.
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defining the detailed statistical characteristics of the rainfall-runoff process for
the study watershed. These results, and the simulation model itself, are ideally

suited for application to NPS pollutant load estimation for the study watershed.

rificati f Simulation Resul

It is appropriate to verify that the simulation results are consistent with
observed field data. The calendar year from July 1987 to June 1388 over which
the complete set of rainfall-runoft event data were collected happened to be an
unusually dry year. A total weighted rainfall volume of only 28.89 inches was
recorded for the study watershed over this period as shown in Chapter 2. A
frequency analysis for total annual rainfall volume for the 50 years from 1939 to
1988 at the rain gage at Love Field (NOAA 1939-1988) is shown in Table C.2 in
Appendix C. Only 34 percent of the annual rainfall amounts are less than or
equal to the 28.89 inches that fell on the study watershed during the calendar
year monitored.

The total annual runoff volume for each calendar year of the simulation
was computed and then a frequency analysis was performed on these 100
annual totals as shown in Table C.3 of Appendix C. The total annual runoff
volume for the study watershed over the year monitored was approximately
1.49 inches as shown in Chapter 2. Only 27 percent of the simulated annual
runoff amounts are less than or equal to 1.49 inches. This is remarkably
consistent with the 34 percentile value for the corresponding rainfall volume.
This verifies that the simulation mode! produces long-term results that are
consistent with physical reality.

Another way of verifying simulation results is to demonstrate that the
observed sequence of runoff event volumes could have been generated by the

simulation model. This was done by selecting a calendar year from the
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simulation results that had a total annual runoff volume approximately the same
as the observed year and then performing a Kolmogovov-Smirnov two-sample
test to test the null hypothesis that the two independent annual sequences of
-runoff volume were obtained from the same population. The Kolmogorov-

Smirnov two-sample test employs as the test statistic the maximum deviation
between the observed empirical cdf, E(Qq), and the simulated empirical cdf,

E (Q,), for runoff event volume spanning one calendar year:

(5.3) Bax = Max {]Ei (Q)-E Q)| }

where,

A, = absolute value ofthe maximum difference

between the two empirical cdf's

i = index variable; i=1,2,..., (m+n)

m = number of data values in the observed
empirical cdf, E(Q)

n = number of data values in the simulated

empirical cdf, E(Q,).

The Kolmogorov-Smirnov two-sample test is shown in detail in Table 5.2
for the observed sequence of 21 runoff event volumes and the simulated
sequence of 15 runoff event volumes for simulation year 36. Empirical cdf's for
the test were developed using only significant runoff events with total runoff
volumes of 0.01 inch or greater since these were the events with accurate

observed runoff volume data. The total annual runoft volume for events of 0.01
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TABLE 5.2

KOLMOGORQV-SMIRNOV TWO-SAMPLE TEST FOR
OBSERVED AND SIMULATED RUNOFF VOLUMES

Observed
Empirical cdf Simulated Empirical cdf Deviations, A,
Row  Qqfin)  Ei(Qo) Qs (in)  E(Q)  IEi(Qo)Ei(Qy)
i=1 011 .048 -- 0 .048
i=2 .014 095 -- 0 .095
i=3 .014 .143 -- 0 .143
i=4 015 190 -- 0 .190
=5 - .190 0169 067 123
i=6 - .190 0172 .133 057
i=7 - .190 .0175 .200 .010
i=8 - .190 .0180 267 077
i=9 .023 .238 -- .267 .029
i=10 .023 .286 -- 267 .019
i=11 .028 .333 -- 267 .066
1=12 .030 .381 - 267 114
i=13 .031 429 - .267 162
i=14 - .429 .0344 .333 .096
i=15 .042 476 -- .333 .143
i=16 .044 524 -- .333 191
i=17 .049 571 -- .333 .238
i=18 052 619 -- 333 .286
i=19 - 619 0607 .400 219
i =20 .064 .667 -- .400 267
=21 077 714 -- .400 .314
i =22 - 714 0796 467 .247
=23 .083 .762 -- 467 .295
i=24 .085 .810 -- 467 343
i =25 .086 .857 -- .467 .390
i=26 - .857 .0979 533 324
i =27 - .857 .0983 .600 257
i=28 - .857 .1047 .667 .190
i =29 -- .857 1271 .733 124
i=30 - .857 .1288 .800 .057
i=31 - .857 .1488 .867 .010
i=32 .161 .905 -- .867 .038
i =33 245 952 -- .867 .085
i=34 .264 1.000 -- 867 .133
i =35 - 1.000 .2681 933 .067

i =36 - 1.000 3172 1.000 0
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TABLE 5.2 (Continued)

KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST FOR
OBSERVED AND SIMULATED RUNOFF VOLUMES

Null Hypothesis, Hy:  The observed sequence of runoff event volumes and the
simulated sequence of runoff event volumes for
simulation year 36 were drawn from the same
population.

Alternative Hypothesis, H;:  The observed and simulated sequences were not
drawn from the same population.

Kolmogorov-Smirmnov Test Statistic: Ampay = 0.390 .

Critical Region at 0.05 Level of Significance for m = 2iand n=15
(Two-Sided Test): Ao >0.486 .

Decision: Do Not Reject Hy
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inch or greater for the observed year was 1.441 inches and for simulation year
36 was approximately 1.535 inches.

Notice in Table 5.2 that the empirical cdf's are step functions which have a
maximum deviation of An., = 0.380. The critical value of the test statistic,
A = 0.486, was obtained from standard statistical tables for a two-sided test with
m=21 and n=15 (Harter and Owen 1970). The test statistic lies well outside the
critical region of the test at the 0.05 level of significance. Therefore, do not
reject the null hypothesis that the observed and simulated sequences of runoff
event volumes were drawn from the same population.

it can, therefore, be concluded that the simulation model produces
sequences of runoff event volumes that are consistent with field observations.
In other words, the observed annual sequence of runcff event volumes is one
possible realization that could have been produced by the random processes
described by the simulation model.

The results of the analyses in this sub-section verify the applicability of the
model for simulation of rainfall-runoff events for the study watershed.

Ironically, the rare nature of the particular year monitored during the field
study emphasizes the inherent superiority of the stochastic simulation model
developed here over deterministic models for rainfall-runoff and NPS pollutant
load modeling. As discussed above, only 27 percent of annual runoff volumes
are expected to be less than or equal to that of the observed year. Predictions
of long-term annual runoff volumes and associated NPS pollutant loads would,
therefore, be grossly underestimated if only the observed data were utilized for
making deterministic estimates. On the other hand, it was just as likely that the
observed year would be unusually wet which would result in gross
overestimation of long-term magnitudes using deterministic methods. This

emphasizes that the inherent stochastic nature of rainfall event characteristics
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as the driving force behind generation of runoff events and NPS pollutant loads
requires application of stochastic simulation methods for reliable estimation of
long-term trends. Stochastic modeling provides not only estimates of numerical
magnitudes for pertinent variables, but also probabilities of occurrence of these

magnitudes which is vital for decision making in real world applications.

Evaluation of Dala Base Sample Size

The second major objective of this work was to address the real-world
problem of evaluating the minimum acceptable data base sample size for
development of a stochastic simulation model of the rainfall-runoff process.
Sample size, in turn, reflects the relative cost of collecting the field data needed
for model development.

The 100-year sequence of simulation results can now be used as the
given set of long-term data that is needed to evaluate the probabilities of
successfully deriving models from samples of various sizes. That is, in this
evaluation, the simulation results were treated as a long-term observed record
of rainfall-runoff events for the study watershed.

Runoff volume, Q, was selected as the indicator variable for the analysis of
sample size. The form of the linear model derived for runoff volume in Chapter

4 was assumed known:

(5.3) Q = Bo+P1(Ru)+BaT)+BaloRe)+E v -

Using this form of model and the long-term simulated record, runoff volume
models can be derived from various size samples of rainfall-runoff event data.
Sample sizes of 5, 10, 15, 19, 25, 30 and 40 were utilized. The unusual

sample size of 19 was chosen because if corresponded to the actual size used
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to develop the original simulation model. A minimum sample size of 5 is
required to develop a linear model with four parameters as discussed in
Chapter 4.

The long-term simulation results contain 1429 rainfall-runoff events with a
runoff volume of 0.01 inch or more. These events were used for the sample size
analysis because the original model was derived for runoff events of this
magnitude.

The approach used was to fit the linear model of equation 5.3 to all
possible subsets of the 1499 events for each chosen sample size, n. The total

number of such subsets is given by,

(5.4) N = (1499-n) + 1

n = sample size

N = total number of subsets of sample size n from a set of 1499 events.
For example, for samples of size 10, a total of 1490 different samples can be
drawn from the 100-year record. The first sample of size 10 includes events 1
through 10, the second includes events 2 through 11, and so on until the 1490th
sample of size 10 includes events 1430 through 1499.

The linear model of equation 5.3 was fit to the various samples of size n
using the method of least squares. A SAS computer program was written to
carry out the necessary computations using as the input file the simulation
mode| output file which was previously described in detail. The program listing
is shown in Table C.4 in Appendix C. Cramer's Rule was used to solve the four
normal equations simultaneously for the parameters B, B4, Bo, and B for each

L]

finear model.
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Once the value of the coefficients was determined for a specific sample of
size n, the mean square error was then computed and used as the goodness of
fit parameter for comparisons between the derived models. For each derived
model, the mean square error was computed from the difference between the
observed values and model predicated values for all 1499 events of the long-

term record. That is, for this analysis, the mean square error is defined as,

1499 A ¥
E[Oi—oi]
2 _ i

(6.5) Se = T(1499 - 4)
where,

55 = mean square error

Q = observed runoff volume for event i of the

long-term simulated record

6.' = model predicted runoff volume for event i
Of course, the model predicted values of runoff volume, @i , ware computed
using,
(5.8} & = B0+B1(Rw)+Bz(Tr)+B3(ORS) :

where all coefficients and variables are as defined in Chapter 4. The
denominator (1499-4) was used because four parameters were estimated from
the data.

The SAS program steps through the entire input file fitting the linear model

and computing Sg for the first set of data of sample size n, then the second, and
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so on until all N possible subsets of sample size n have been analyzed. The
program then creates an output file containing the square root of Sf , which is
the sample standard deviation of the errors, for each model derived from
samples of size n. Thus, there was a permanent, machine language SAS file
created on disk containing the [(1499-n)+1] values of s for each of the seven
sample sizes evaluated. These files can be readily accessed by easily
constructed programs using SAS procedures for detailed statistical analyses.

Simple statistics were computed and a frequency analysis was performed

for s, values using SAS procedures for samples of size 5, 10, 15, 19, 25, 30,
and 40 as summarized in Table 5.3. As expected, the value of s, decreases (i.e.
the goodness of fit improves) as the sample size increases. For example, the
median value of s, was 0.06747 inch for samples of size 5 while the median
value was only 0.03181 inch for samples of size 40.

The results are summarized in a more readily understandable graphical
manner using the results of the frequency analysis as shown in Figure 5.3. A
family of curves are presented for various probabilities of success {i.e. non-

exceedence probabilities or percentile values for s.) with s, shown on the

vertical axis and sample size shown on the horizontal axis. Curves for
probabilities of success in obtaining given values of s. or lower are shown for
probabilities of 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95. All curves
asymptotically approach a value of 0.03032 inch, which was the sample
standard deviation of the white noise component for the 100-year simulation

record. This value represents the estimate of the population standard deviation

of the model residuals, 85. The practical implications of this asymptotic
behavior will be discussed in more detail later.
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Statistic

Number of Observations, n

Mean, X

Standard Deviation, sy
Minimum Value, Xmin

5 Percentile Value, g
10 Percentile Value, x4g
25 Percentile Value, xg5
50 Percentile Value, x5
75 Percentile Value, xyg
90 Percentile Value, xgg
95 Percentile Value, xgg

Maximum Value, Xmax

TABLE 5.3
SAMPLE STANDARD DEVIATION OF ERRORS FOR RUNOFF VOLUME

Sample Size

RIVED FROM RANDOM SAMPLES
OF VARIOUS SIZES
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s

1495

11694

17604
03058
.03540
.03778
.04529
06747
12160
22463
.34024

3.59268

10

1430

04398

.01872

.03042

.03198

.03289

.03482

.03849

.04578

.05833

.07302

.25613

15

1485

.03752

.00872
.03038
03112
.03156
03277
.03493
.03854
.04510
.04952

.140156

19

1481

.03536

.00667

.03043

.03093

.03136

03217

.03384

.03625

.04054

04346

.12376

25

:1475
.03370
.00369
.03033
.03089
03102
03176
.03278
.03443
03717
.03084

08017

30

1470

.03285
00223
03032
03064
03084
.03149
03227
.03349
03526
.036%80

.056232

40

1460

.03208
.00131
.03033
03082
03074
03115
03181
.03265
.03365
.03458

.03929
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For now, Figure 5.3 allows statements about the probability of obtaining
runoff volume models with certain s, values for samples of various sizes. As a
preliminary example, if it was desired to develop a linear model of runoff volume
using the methdology developed in Chapter 4, and the standard deviation of the
white noise component is to be no more than 1.25 times the actual value (i.e.,

s, < 1.25 (0.03032)=.03790), then the approximate number of samples that must

be collected for selected probabilities of success in obtaining the target value of

s, or lower as estimated from Figure 5.3 are:

Probability Risk of Sample

of Success Eailure Size
0.10 0.90 5
0.25 0.75 8
0.50 0.50 11
0.75 0.25 17
0.90 0.10 23
0.95 0.05 28

Thus, if a field study were planned to collect the data to compute the necessary
runoff volume mode! parameters, and at least a 90 percent chance were wanted
that the standard deviation of the white noise component would be no more
than 1.25 times the actual value, then a schedule and budget should be allotted
to sample 23 or more rainfall-runoff events.

The cost to perform such a field study would be approximately directly
proportional to the length of time required to obtain a sample of the desired size.
To provide a means of estimating the length of time required, the long-term
simulation results were used to develop empirical cdf's for the time to collect

samples of various sizes. This was done by computing the length of time
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between rainfall-runoff events with a runoff volume of 0.01 inch or greater for all
possible samples of the desired size n. Again, the number of such samples can
be obtained from equation 5.4. Empirical cdf's for the time to collect samples of
sizes 5, 10, 20, 30, and 40 are shown graphically in Figure 5.4.

For example, if a set of data with 20 samples is to be collected, the median
length of time a sampling program would need to last would be approximately
10,500 hours, which is 438 days or 1.2 years. If a field study to collect these 20
samples were to be completed with a specified 90 percent chance of being
within the allotted budget, the length of time to be budgeted would be about
19,500 hours, which is 813 days or 2.2 years.

Practically speaking, the asymptotic behavior of the curves in Figure 5.3
as the sample increases clearly emphasizes that a sort of "law of diminishing
returns” applies. Very little improvement in accuracy results from relatively large
increases in the sample size (and cost} when the sample size is already large.
A practical criterion is needed to decide at what sample size and at what
corresponding level of accuracy the diminishing improvement in accuracy no
longer warrants collecting additional samples.

The criterion recommended here involves the accuracy of the rainfall
measuring instrument since rainfall volume was found to be the single most
important independent variable in the rainfall-runoff transformation process.
The best rain gages are accurate to 0.01 inch of rainfall. The coefficient of
rainfall volume in the runoff volume transtormation model, equation 4.27 in
Chapter 4, is 0.1671 which means that the accuracy of the rain gage when
transformed to runoff volume is 0.001671 inch. Now, since a minimum of 5
samples is needed to develop a runoff volume model of the form of equation
4.27 with 4 parameters, and since the median time to collect 5 samples is

approximately a calendar quarter {actually 82 days from Figure 5.4) which is a
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common budgeting period, a rational approach would be to plan and budget a
field study to collect samples based on increments of 5. Therefore, it is
recommended that field studies not be continued beyond the point at which
collecting 5 more samples would not be expected to reduce s, by 0.001671
inch. In other words, a field study should be terminated when the slope of the
selected curve in Figure 5.3 (selected based on the acceptable level of risk) is
approximately equal to -0.0003342 inch per sample (i.e., -0.001671/5).

These points were computed for the seven risk curves of Figure 5.3 by
using quadratic interpolation of selected points from each curve. A quadratic
polynomial, y = a+bx+cx2, was fit to the points on each curve in the
neighborhood of the critical slope value. The critical point on each curve was
then obtained by differentiating the polynomial to obtain the slope function,
setling the slope function equal to -0.0003342 inch per sample, and solving for

the critical value of the sample size: xc = (-0.0003342-b)/2c. Results were as

follows:
Probability Risk of Critical Point
0.95 0.05 32.53 .03617
0.90 0.10 29.29 .03548
0.75 0.25 22.37 .03507
0.50 0.50 18.19 .03385
0.25 0.75 13.64 .03332
0.10 0.90 ‘ 13.06 .03168
0.05 0.95 11.80 03159

These critical points were plotted on Figure 5.3 and a smooth curve was drawn
through them as shown.
At a level of acceptable risk of 0.10 (i.e. 0.90 probability of success), the

field study should be planned to collect 30 samples since the critical sample
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size was 29.29. Collecting an additional 5 samples would not reduce s¢ by the

transformed accuracy of the rain gage, 0.001671 inch of runoff. Hence,

collection of additional samples would not be economically justified. With 30

samples, s, would be less than or equal to 0.03526 inch (from Table 5.3) or

1,16 times GE with a probability of 0.90. Using Figure 5.4, and again choosing

an acceptable risk of 0.10 (i.e. the 90 percentile value), the time to collect 30
samples should be less than or equal to 27,500 hours, or 3.1 years. Therefore,
the field study to collect 30 samples should be scheduled and budgeted for 3 or
3-1/4 years.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A new and innovative field monitoring station was designed and
constructed to continuously and automatically measure and record in computer
memory rainfall, runoff, and water quality data. Data were collected over a
period of 13 months from June 1987 to June 1988. During this time, 45 rainfall-
runoff events occurred. Of these, 19 events were of significant runoff volume
{Q= 0.01 inch) with a complete and detailed set of rainfall-runoff data.

Long-term historical hourly rainfall data from the FAA rain gage at Love
Field Airport in Dallas, Texas were used to establish pertinent rainfall event
statistica! characteristics. To make fullest use of this massive amount of data in
a practical and manageable way, a computer program was developed to accept
input hourly rainfall data using a format compatible with readily available
diskette data files from the National Climatic Data Center (NCDC). The program
reads the NCDC diskette files; resolves the hourly rainfall totals into individual
rainfall events; and then stores the resulting data on rainfall event volume, event
duration, and time between events to a disk file. The program was written in the
BASIC language for use on personal computers so that it could be easily
applied by practicing engineers. Event data for Love Field were used to derive
regionally applicable marginal pdf's for event volume, duration, and time

between events.
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A new stepwise variable selection and parameter optimization
methodology was developed for derivation of linear transtormation functions for
the rainfall-runoff process from field data. This innovative approach is practical
and readily applied to real-world engineering problems. Using this
methodology, transformation functions, with white noise components, were

derived for runoff volume and peak runoff rate as functions of rainfall event

variables:
(6.1) = -.05017+.1671(R,,)-.0001263(T,)+.02976(;Rg) +€,
where,
Q = runoff volume (inches)
R, = rainfall volume (inches)
T = time since the last runoff event with a volume of 0.01 inch or

greater (hours)

oRs = total rainfall volume in the six days antecedent to the current

event {inches)
g, = normally distributed white noise component with 1 =0 and

c = .03148 inch (inches)

and,

(6.2) g, = -4.6053+12.3698(R,)-.02144(T)+32.4367(1,)+¢,

where,

peak runoff rate (cfs)

= £
([

time since the last runoft event (hours)

average rainfall intensity, R,/D (inches/hour)
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€q = nhormally distributed white noise component with u = 0 and
G = 4.5806 cfs

Also, a new modification of the standard U.S. SCS dimensionless
hydrograph procedure was developed. The modification involves the use of a
random variable describing hydrograph shape rather than using a constant
shape as in the standard method. This random shape variable, in conjunction
with known or simulated values of Q and gp, €an be used to generate complete
runoff hydrographs for rainfall-runoff events,

A stochastic simulation mode! was developed for generation of synthetic
sequences of rainfall-runoff event data. A Monte Carlo simulation technique
was used to randomly sample pdf's for rainfall volume, time between rainfall
events, event duration, and white noise components of transformation functions.
Various tracking and summation routines were then used to compute values of
variables that were dependent upon the time sequencing of rainfall-runoff
events, such as, time between runotff events and antecedent rainfall volumes.
The simulation model then used the derived rainfall-runoff transformation
functions for Q and q to create a disk file of long-term synthetic rainfall-runoff
event data. In order to make the simulation mode! as widely applicable as
possible in engineering practice, the mode! was developed in the form of a SAS
computer program. The SAS statistical software package is readily available to
most practicing engineers.

The simulation model was used to generate a 100-year sequence of
rainfall-runoff data for the study watershed. Results of the simulation mode!
were verified using statistical tests for comparing observed field data to
simulated data. Ironically, successful verification of the model under the
unusually dry conditions of the particular year monitored during the field study

emphasizes the inherent superiority of the stochastic simulation model
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developed here over deterministic models for rainfall-runoff and NPS poliutant
modeling. Predictions of long-term annual runoff volumes and associated NPS
pollutant loads would be grossly underestimated if only the field data from this
unusually dry year were utilized for making deterministic estimates. The
inherent stochastic nature of rainfall event characteristics as the driving force
behind generation of runoff events and NPS pollutant [oads requires
application of stochastic simulation methods for reiiable estimation of long-term
trends. Stochastic modeling provides not only estimates of numericai
magnitudes for pertinent variables but aiso probabilities of occurrence of these
magnitudes which is vital for decision-making in real world applications.

Simulation results were then used to satisfy the first of the two major
objectives of this study. Empirical cdf's were developed for runoff volume and
peak runoff rate for the study watershed. These cdf's can now be applied in on-
going research to establish the statistical characteristics and assess the impacts
of NPS pollutant loads within the geographical region of the watershed.

An evaluation was performed of the minimum acceptable field data base
sample size required for application of the practical stochastic simulation
methodology developed here in order to achieve the second major objective of
this study. Based on this evaluation, and using only a 10 percent risk of failure,
it is recommended that a field monitoring program be scheduled and budgeted
for 3 to 3-1/4 years in order to collect 30 samples. Additional sampling would
not be economically justified for the resulting moderate improvement in model
accuracy. Accepting higher levels of risk would, of course, aliow planning for

shorter and less costly field monitoring programs.
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Recommendations for Further Research

Recommendations for further research inciude:

(1)

(3)

Continue with work to develop a stochastic NPS water quality simulation
model to couple with the rainfall-runoff model developed here. NPS
modeling should allow for development of individual event loads and for
the accumulation of event loads to generate annual lcad estimates.
Stochastic modeling of NPS loads provides not only numerical
magnitudes but also probabilities of occurrence for these loads which is
vital for proper allocation of scarce public funds for NPS pollution control.
Modity and extend the methodology developed here for application to
large watersheds. As a minimum, this will require development of a
method to account for spatial variability in event rainfall amounts.

The fact that the hydrographs for the watershed possessed a random
shape parameter with a well defined pdf suggests the potential for a
probabilitistic based method to address hydrograph variability for a given

watershed.
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APPENDIX A
FIELD DATA
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HYDROGRAPH FOR 3—2—88

Event Btart Time: 11:30

200

L) ¥ T L] L L) ¥ v Ll T
2 - L] a 10 12
RELATIVE TIME FROM RUNOFF START (HOURS)

TSS CONCENTRATION FOR 3—2—88

Cvent Start Time: 11150

400 -

300

200 -

T T L) L ¥ Ll T ¥ L L
2 - ] ] 10 =
RELATIVE TIME FROM RUNOFF ETART (HOURS)

TSS LOADING 3—2—88

Event BMart Time: 11:50

T T T T L T T o T L) L

2 - 8 - 10 1”2
RELATIVE TIME FROM RUNOFF START (HOURS)

FIGURE A.32
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FIELD DATA FOR EVENT OF 3-17-88




248

FLOW ((FS)

TsS (ue/1)

TSS {18/}

HYDROGRAPH FOR 3-29—88

Event Start Tima: 7ia”

13 —

12 —

19 —

10 —

2 -

a -

T

n -

5 -

-

2

2 —

T -

o Ly T L al T 1 L) ¥
[ 2 - [} a

RELATIVE TIME FROM RUNOPFF START (HOURS)

TSS CONCENTRATION FOR 3—29—88

Event Start Timeq Ti47
SO0

oo

800

300

“400

300

200 —

100 —

o T L L] Ll T L L L
o 2 -4 L3 L]
RELATIVE TIME FROM RUNOPFF ETART (HOURS)

TSS LOADING 3—29—88

Event Blart Time: 747
40

35

30 -~

20 —

"5~

10 4

° RIT.ATIVI TIME F‘R:M RUNHOFFT .TA:T (HMOURSE) ®
FIGURE A.35
FIELD DATA FOR EVENT OF 3-29-88




ALOW (0FS)

249

HYDROGRAPH FOR 4—1—88

Eveant Btart Time: 18:14

¥ T L) L T L T L] L) L] i Ll L] L T
o .4 o.a 1.2 1.5 2 2.4 2.6 3.2
RELATIVE TIME FROM RUNOFF BTART (HOURS)

FIGURE A.36
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HYDROGRAPH FOR 6—27—88
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TABLE B.1
EVENT SEPARATION COMPUTER PROGRAM LISTING

1000 CLS

1010 CLOSE

1020 REMws» INITIALIZE COUNTERS AND DATA FLAGS

1030 TOTDAYS%:=1

1040 TOTVALX=Q

1050 NUMRAINX=0O :

1060 REHs»x TX IS UNKNOWN FOR FIRST RAIN, SET GOODLAST$="NQ"

1070 GOODLASTS="NO"

1080 GOODDATAS="YES"

1090 REM#*»» OPEN OQUTPUT FILE.

1100 PRINT "ENTER SEQUENTIAL DATA FILE NAME"

1110 INPUT "FOR STORAGE OF PROGRAM OUTPUT " ; NAMEOUTFS

1120 OPEN NAMEOQUTF$ FOR QUTPUT AS #2

1130 REM##» NEXTFILE:

1140 CLOSE ®1

1150 INPUT "ENTER NEXT INPUT SEQUENTIAL DATA FILE NAME (QUIT TO STOP)";MNAMEFS
1160 REM»*x IF NAMEFS$<» QUIT" THEN GOTO NOQUIT.

1170 IF NAMEF$<> "QUIT" THEN GOTO 1200

1180 CLOSE #2

1190 END

1200 REM»»x NOQUIT:

1210 OPEN NAMEF$ FOR INPUT AS #1

1220 INPUT #1,LINE1%,RECTYPS

1230 INPUT #1,LINE2%,STNLOCS

1240 INPUT Hl,LINEGX.STNIDl,STNID2.21.22.23.24.25.26.27.28

1250 INPUT Il.LINEQ%.BEGINYRX.BEGINHTH%.ENDYR%,ENDMTHX

1260 INPUT ﬂl.LINESX.ELHTYP$.BIS.BZ$.BG$.B4S

1270 REM=x* CHECK FOR FIRST DAY OF RECORD.

1280 REM»*s IF TOTDAYSX>1 THEN GOTO NEXTDAY.

1290 IF TOTDAYSX>1 THEN GOTO 1410

1300 REM**s INPUT FIRST DAY OF RECORD )

1310 INPUT #1.FLAGIX, YEARX,MONTHX,DAY%,UNITSS, NUMVALX

1320 REM*%* INITIALIZE VARIABLES

1330 REM»** GOSUB YEARDAY.

1340 GOSUB 3120

1350 YEARLAST%=YEARX

1360 MNTHLASTX=HONTHX

1370 DAYLASTX=DAY%

1380 HOURLAST%=0

1390 REM=*xx GOTO FIRSTDAY.

1400 GOTO 1650

1410 REM»*x NEXTDAY:

1420 INPUT #1,FLAG3X

1430 REM»#» FLAG3%=10 INDICATES END OF FILE, GOTO FINISH.

1440 IF FLAG3I%=10 THER GOTO 2530

1450 INPUT #1,YEARX,MONTHX,DAYX,UNITSS$,NUMVALX

1460 TOTDAYSX=TOTDAYSX+1

1470 REM»x« GOSUB YEARDAY.

1480 GOSUB 3120

1490 REM*xx IF YEARX=YEARLASTX THEN GOTO SAMEYEAR.

1500 IF YEARX-YEARLASTX THEN GOTO 1610
1510 REM*»» GOSUB LASTYEAR.
1520 GUSUB 2600

1530 REM*x HRS. ELAPSED SINCE END OF LAST RAIN IN LAST YEAR UP TO 24:00 DEC. 31
1540 HRLASTYRX=DLASTYRX*24+24-HOURLASTX

1350 REM#»»& HRS. ELAPSED SINCE 00:00 JAN. 1 THIS YR. UP TO 00:006 TODAY.
1560 HRTHISYR%=(YRDAYX-1)%24

1570 REM*» TOTAL HRS. ELAPSED SINCE END OF LAST RAIN LAST YR. UP TO 00:00 TODAY
1580 HRPASTDX=HRLASTYRX+HRTHISYRX

1580 REM=** GOTO TODAY.
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16010
1610
i6zo
1630
1640
1650
1660
1670
1680
1650
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1896
1300
1910
1920
1330
1840
1954
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
Z070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2180

TABLE B.1
EVENT SEPARATION COMPUTER PROGRAM L ISTING

GUTD 1860

REHs*x
HEM®+ %
REH®%®xx

SAMEYEAR:

HRS. ELAPSED SINCE THE LAST HOUR CF RAIN IN A FREVIOUS DAY

THIS YEAR UP TO 00:00 TODAY.

HRPASTD%:(YRDAY%—YRDLAST%-l}*24+24-HOURLAST%

REM*«¥
REM*xx
REM*+ %
REM#*xx
REM®* %%
REM¥**
FEM#*xx

FIRSTDAY:
TODAY:

HOURLY DATA LOOP

NOTE: TIME OF END OF CURRENT HR. OF RAIN I5 HOUR% AND
TIME OF START OF CURRENT HR. OF RAIN 15 (HOUR%-1).

NUMWETHR%=0

FOR I=1 Tu NUMVAL%

INPUT #1,FLAG3%, HOUR% ,RAIN,FLAG1$,FLAGZS
TOTVAL%=TOTVAL%+1

AREM**x
REM» % *x

CHECK FOR FIRST HOUR OF RECORD.
I[F TOTVAL%=1 THEN GOTO FIRSTHOUR.

1F TOTVAL%=1 THEN GOTO 2150

REM** &
REM*xx

SKIP DAILY TOTAL VALUES.
IF HOUR%=25 THEN GOTO SKIPDATA.

IF HOUR%=25 THEN GOTO 2470

REMxxx
REM® ®xx
REM* * &

SKIP HOURS WITH GOOD DATA (I.E. FLAGL$="0") WHEN RAIN=O,
BUT DO NOT SKIP HRS. WITH BAD DATA SINCE T% 1S AFFECTED.

1F FLAGIE<> 0" THEN GOTO NOSKIP.

1F FLAGl$<«> 0" THEN GOTC 1880

REM®+x

1F RAIN=CQ THEN GOT{ SKIPDATA.

1F RAIN=¢ THEN GOTO 2470

REM#* &%
REM* xx

NOSKIP:
NUMBER OF HRS. TODAY WITH RAIN>D OR BAD DATA.

NUMWETHR%=NUMWETHR%+1
HRS. SINCE THE END OF THE LAST HR. (F RAIN IN A& PREVIQUS DAY TO THE

REMx%x
REM* %%

START OF THE FIRST HR. OF BAIN TODAY.

IF NUMWETHR%=1 THEN HESINCE%=HRPASTD%+{HOUF3-1)

REH*¥¥
REM* & &

HRS. SINCE THE ERD OF THE PREVIOUS HA. OF RAIN TODAY TO THE

START UF THE CURRENT HR. OF RAIN TODAY .

IF NUMWETHR%»>1 THEN HRSINCE%= ( HOUR%-1)-HOURLAST%

REM*xx%

IF HRSINCE%<3 THEN GOTO SAMERAIN.

IF HRSINCE%¢3 THEN GOTO 2300

REMe* &
REM®*®x
REM®%xx
REM¥** %

NEW RAIN STORH.

FPRINT RESULTS UF LAST RAIN BEFORE RESETTING VARIABLES.
CHECK FOR BAD DATA.

IFf GOODDATA$="YES" THEN GOTO PENTDATA.

IF GOODDATA$="YES” THEN GOTO 2080

REM* 4+ *x

fW=-1
REM&*®

R, D%, IMH, 1W ARE UNCERTAIN BECAUSE GOODDATAS="NO".

FRNTDATA:

WRITE #2,NUMRAIN%,T%,R,D%,IMH,IW

REMx%xx

RESET GOODDATA$ FOR NEXT RAIN.

GOODDATA$="YES"

HEM# ¥

RESET VARIABLES FOR NEW RAIN.

T%=HRSINCE%

REM* 2%
REM*xx*
REM**x %

FiRSTHOUR:

T% 15 UNCERTAIN IF THE LAST HR. OF THE PREVIOUS RATN HAS

BAD DATA (I.E. GOUDLAST$="NO").

IF GOODLASTS="NO" THEN T%=-1
REM®** T% IS UNCERTAIN IF THE FIRST HR. OF THE CURRENT
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TABLE B.1 '
FVINT SFPARATION COMPUTIR PROGRAM L ESTING

2200 REM*«x RATM HAS BAD DATA (I.E. FLAGIZ<>"0").
2210 IF FLAG1$<> 0" THEN T%=z-1

2220 R=RAIN/1UD

2230 Dx=1

2240 IMH=R

2250 IW=R

2260 RSQRSUM=R"2

2270 NUMRAIN%=NUMRAIN%+1

2280 REMews« GOTO NEXTHOUR

2290 GATO 23k0

2300 REMw*x¥ SAMERAIN:

2310 R=R+FAIN/100

2320 D%=D%+HRSINCE%+1

2330 IF RAIN/100>IMH THEN IMH=RAIN/10C
2340 RSWRSUM=REQRSIM+(RAIN/100) 2

2350 IF R=0 THEN IW=0 ELSE IW=RSQRSUM/R
2380 REM*»x NEXTHOUR:

2370 REM=»* RESET VARIABLES FOR PREVIOUS HOUR.
2380 YEARLAST%=YEAR%

2390 MNTHLAST%:=MONTH%

2400 DAYLAST%-DAY%

2410 HOGURLAST%=HOUR%

2420 YRDLAST%=YRDAY%

2430 REM*«+ GCODDATA$="NO" IF ANY HR. DURING THE RAIN HAS FLAG1g%<«>"0"
2440 IF FLAGI$<>"0" THEN GOUDDATAS= "NU"
2450 REM*** GUODLAST$="YES~ IF CURRENT FLAG1E="Q" AND GOODLASTS="NU" UTHENRWICE.
2460 IF FLAG1$="0" THEN GOUODLAST$="YES" ELSE GOODLASTS$="NO~
2470 REM*#x SKIFDATA:

2480 NEXT [

2490 REM+*x IF EOF(1} THEN GOTO FINISH.
2500 IF EOF(1) THEM GOTOH 2530

2510 REMe*s GuTo NEXTDAY

2520 GOTY 1410

2530 REMxxx FINISH:

2540 PRINT TOTDAYS%, TOTVAL%, NUMRAIN%
2550 REM*xx GOTO NEXTFILE

2560 GOTO 1130

2570 END

2580 REM4*xx

2590 REM**x SUBROUTINE LASTYEAR.

2600 REMx»xx LASTYEAR:

2610 IF MNTHLAST%<12 THEN GOTO 2640
2620 DLASTYR%=31-DAYLAST%

2630 RETURN

2640 REM=xx NOV:

2650 IF MNTHLAST%<1l1 THEN GOTO 2580
2660 DLASTYR%=61-DAYLAST%

2670 RETURN

2680 REMxxx (CT:

2690 IF MNTHLAST%<10 THEN GOTO 2720
2700 DLASTYR%=92-DAYLASTY

2710 RETURN

2720 REM*xx SEP:

2730 IF MNTHLAST%<9 THEN GOTO 2760

2740 DLASTYR%=122-DAYLASTX

2750 RETURN

2760 REM==®x AUG:

2770 IF MNTHLAST%<8 THEN GOTO 2800

2780 DLASTYR%=153-DAYLASTY

2790 RETURN



2800
2810
2820
2830
2940
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
23960
2970
2980
2980
3000
3010
3020
3030
3040
30350
3060
3070
308
3gde
31006
Jllo
3120
3130
3140
Jts0
3iso
3170
3180
31390
3240
3210
3220
3230
3240
3250
3260
3270
3280
32380
3300
3310
3320
3330
3340
33580
3360
3370
3380
3380

TABLE B.1
EVENT SEPARATION COMPUTER PROGRAM LIS1ING

REM*x#+x JUL:

IF MNTHLAST%<7 THEN GOTO 2840

DLASTYR%=184-DAYLAST%
RETURN
REM*»** JUN:

IF MNTHLAST%<6 THEN GOTO 2880

DLASTYR%=214-DAYLASTX
RETURN

REM*e*x MAY:

IF MNTHLAST%<6 GOTO 2920
DLASTYR%=245-DAYLAST%
RETURN

REM«=+ APR:

IF MNTHLAST%<4 THEN GOTO 2960

DLASTYR%=275-DAYLASTX
RETURH
REM*+s MAR:

IF MNTHLAST%¢<3 THEN GOTNO 3000

DLAGTYR%=306-DAYLASTX
RET!RN

REM**« FEB:
FEBDATS%=28

IF INT(({YEARLAST%-1940)/4)=(YEARLAST%-1940}/4 THEN FEBDAYS%=29
IF MNTHLAST%<2 THEN GOTC 3060
DLASTYR%=306+FEBDAYS5%-DAYLASTY%

RETURN
REM+*x JAN:

DLASTYR%=337+FEBDAYS%-DAYLASTY

RETURN

END

REM» x %

REMe*x SUBROUTINE YEARDAY
HEM+++¢ YEARDAY:

IF MONTH% -1 THEN GOTO 3160
YRUAY%=DAYT%

RETURN

REM#xx FEB2:

IF MONTH%.2 THEN GOTO 3200
¥YRDAY%=31+DAY%

RETURN

REM« & MARZ:

FEBDAYS%=28

IF INT((YEAR%-1940)/4)=(YEAR%-1940)/4 THEN FEBDAYS5%=29

IF MONTH%>3 THEN GOTO 3260
YRDAY%=31+FEBDAYS%+DAY%
RETURN

REM*xx APRZ:

IF MONTH%>4 THEN GOTO 3300
YRDAY%=62+FEBDAYSX+DAY%
RETURN

REM®»& MAYZ:

IF MONTH%>5 THEN GOTO 3340
YRDAY%=92+FEBDAYS%+DAY%
RETURN

REM* e TUNZ:

IF MUNTH%>6 THEN GUTO 3380
YRDAY%=123+FEBDAYSX+DAY%
RETORN

REH®*» JULZ:

IF MONTH%>7 THEN GOTO 3420
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TABLE B.1
EVENT SEPARATION COMPUTER PROGRAM LISTING

3400 YRDAYX%=153+FEBDAYS%+DAY%
3410 RETURN

3420 REM*xx AUG2:

3430 IF MONTH%>8 THEN GOTO 3460
3440 YRDAY%=1B84+FEBDAYS%+DAY%
3450 RETURN

3460 REM»»x SEP2:

3470 IF MONTHX>S THEN GOTO 3500
3480 YRDAY%=215+FEBDAYS%+DAY%
3430 RETURN

3500 REM*x* OCTZ2:

3510 IF MONTH%>10 THEN GOTO 3540
3520 YRDAY%=245+FEBDAYS%+DAY%
3530 RETURN

3540 REMxx=x NOV2:

35560 IF MONTH%>11 THEN GOTO 3580
3560 YRDAY%=276+FEBDAYS%+DAY%
3570 RETURN

3580 REM#*xx DECZ:

3590 YRDAY%=306+FEBDAYS%+DAY%
3600 RETURN

J610 END



271

'l haoe £°0 L 9%°0
g hi inoe &0 fl st 0
L7 EL £E0e £°0 8 L )
h gL G202 nh'o il e 0
0°¢L 7102 S0 Gl 2o
h'el 6661 £°0 6 L0
172l 0661 L0 61 on’0
LAEYS 1161 3°0 91 6€°0
8704 4661 q° 0 hi gt "0
£°0L Lh6L 70 21 LET0
6°69 6261 7°0 ot 9¢°0
S 69 6161 L0 0e GE'O
g'89 6681 L) I e o
f1°89 gyl LY 0l £E€°0
0°89 8.8l l°0 2L et o
019 0981 6°0 e L£°0
599 9tael 01 ¥ 0E°0
669 6081 60 ni 62°0
069 G6l1 6°0 he 22°0
FAR L 1Ll 870 cc L2°0
h E9 6hli a0 t£e 9z 0
529 gcllt 6°0 9¢ 52°0
9719 0041 [ 1] Gi He'o
L°L9 5891 8'0 Le £2°0
£°09 n9GL h'o el ez’
6°66 2691 6°0 92 te'o
6786 9291 £ 1t 0e°0
9°16 6861t 670 he 61°0
£°96 q941 6°0 hé 8L"0
8769 LhGl 870 £ec Lo
0°64 gL6l 01 L2 9L 0
046 164l n'l oh 4i1°0
929 LGhL 8°0 te qL'0
L°16 ganlt Q1 Lh £L°0
£°09 LBEL Gl eh 2L 0
L'8n Gnel L 6t LL 0
£°Lin 90¢1 L'e 64 oL 0
2 ah inel 2'e 09 6070
0°th e €1 Gt 8070
L' 26lLlL 2'a 09 L1070
976¢ 2601 g2 ¢l 90°'0
0°LE 0201 0'h ot S0’ 0
0'¢E oiL6 £€°h 611 h( "0
L 8e L6L L'n LEL £0°0
6°te 099 c'8 ez c0°0
g Gl 4th 8'al GEh 100
1N3DH3d AONIND3H4 IN3OY3d ADNIND3IYA d

FALIVINAND IALVINKND

JWNT0A TIVANEVH HOJ SISATVYNY ADNIND3IYA
2d 37uvl



noLg 21ne 20 9 26°0
218 90he 0°'0 1 1670
! L°i8 sonz 10 2 06°0
! i1°18 £onzg 1°0 £ 68°0
: 078 0Qne 20 9 88°0
L'98 héee 20 9 1970
$'98 89€£2 2°0 - 98°0
£°98 £8£2 z2°0 3 $8°0
2:98 8l¢£¢ 20 9 180
6769 z1£e 2'0 g £8°0
8768 L9g2 "o Lt 28°0
R4 96¢2 2 0 9 180
168 052 £°0 g 08'0
618 2nee £°0 g 61°0
9°h8 ngee £°0 6 8L°0
2°n8 -gege 2o s L1
L°h8 0z£z £°0 1 91°0
8°¢cg £1€2 £°0 6 SL°0
€8 hoge 20 S 710
£-¢e 6622 £°0 L €L°0
0°£8 2622 L0 £ 2L°0
628 6922 L0 f 12°0
g 28 sgze £°0 6 0L"0
G 28 9,22 H°0 2l 69°0
0°28 n9e2 N 0l 89°0
L18 nG22 20 9 £9°0
18 gnee £°0 6 99°0
1718 6t2e £°0 ] 59°0
6°08 2tee 20 9 190
L 08 9222 L°0 # £9°'0
508 zzze “n°0 o1 29°0
108 212z 00 I 19°0
L 08 L2z 5°0 nl 09°0
9°6L 1612 n°0 ol 660
261 1812 £°0 6 85°0
6" 8L 8i12 50 1l 1570
8L n912 R0 1 96°0
0°8L £612 L0 g1 §6°0
nlL sel1e £°0 6 nG0
0°41L 9212 70 Lt £6°0
9°94 Shle £°0 6 26°0
£°9/ 9012 %0 0l 16°0
6761 9602 50 2L 05°0
661 1802 20 g 640
£°6L 8102 70 ot 8n"0
6L 8902 50 nt h°0
AINIZH3d  AONINDIMI  INIOWId  ADN3ND3Y4 Y

AL LVTIOHND AALLVINWND

JWNTI0A TIVINIVE HO4 SiSATYNY AONINDIHA
2’9 I118vl

272



273

Z2°t6 2Lae 00 L gt 1
2°t6 1462 L0 i LETL
0°€£6 1962 170 £ 9t 1
6726 #9622 L°0 e qE°L
8° 26 2946e 0°0 L hE' L
8°¢6 L9462 1°0 2 €E"L
126 6642 L0 £ et
9°26 9662 i1°0 e te't
626 7562 20 q 0ot’1
126 6n6e L0 Ui 621
2°¢6 1 L L°0 1 gzl
126 LhGe 10 Pt 271
026 6£42 2’0 9 92°1
816 £E6e L0 ] TN}
9°L6 6eae 070 i LT |
9°16. geae 2’0 5 £te’t
n16 £26e 170 € gl
€16 6eae 2'0 9 et
L L6 fLGe £°0 L 02l
806 Lose L0 e 614
2°06 6068 £°0 L gL't
G 06 géne L°0 e LTl
' 06 96he 170 é gL't
06 w62 L°0 é ai'i
€06 26ne 1°0 13 LI
2 06 68ne 170 e €11
L 06 1ene L0 ] L’
0'06 €ehe L°0 2 L1l
6°68 Lgne 270 5 oLt
L 68 9iLne (¢ A1) 1 6071
L 68 Gihe 2’0 S 80" 1
G 68 oine 170 £ L1071
68 19he 170 [ 901
£ 68 q9he 0 L c0°1
£°68 honl L°0 L] ho't
L"68 09ne 170 2 £0°1
L°68 gahe 1°0 L 2071
688 nsne 1°0 < 10"t
888 26ne n°0 (1]} (91¢ B8
c°ge ehne L0 £ 66°0
4©°88 6the 10 é 86°0C
£°e9 LeEne 2’0 4 1670
188 cene 2’0 9 9670
6°1le génc 2°0 5 56°0
L 18 Lehe c'0 9 860
G lg Sihe LG t £€6°0
1N32H3d AONINDIYS 1N33Y3d AJNIND3YA d

AA1LVINKHND AALLVINWND

IWATOA TIVANIVY ¥0J SISATVNY ADNINDIYS
¢'d 374vl



274

L 96
0°96
0°96
6°66
6766
8746
2°66
8 46
166

9746
9766 .

LA
1766
f'G6
2 46
2766
L°66
0°66
0 66
0°466
6°hé
8 h6
L hé
L 06
9°46
Q' w6
G hé
G hé
L0 1.3
£ 6
£ 6
£ 116
2 16
1"%6
L°h6
0" hé
6°€6
6°¢6
8°E6
L' té
1" %6
9°¢t6
G'€6
G g6
LY
£t

AN LVYIN

1692
04592
6492
FRIL F4
99e
ah9e
hh9el
£nee
Z2n9¢e
6£92
8g£92
9£92
ctac
0£92
2292
1292
6292
£29e
229¢
129
0292
1192
G192
hi9e
2192
oLee
6092
809¢
1092
hu9e
£09e
2092
6662
2642
1692
h6Ge
£662
2662
6862
1842
a86e
e84ae
1862
0862
8162
C1G62

d AJNIND3 Y4
Ul

JWNTI0A TTIVANIVY 404 SISATVNY ADNINDIYS

L T

cocooCcoCoODToofcocoooscoocoot

ol = Ly~ T Y = e e gy P L
cococoocoocooccoooo 3

lafiali=S=L ol ol oll gl =l el NaFa) i ~1~]

170
IN32Y3d

JALLVINKWGD

<'8 37dvi

mmNFFMNNm""F’m'—Pm‘-!—MF!—v—NNF’NMPF.—NNF’NN:NI—”'—'——PPN'—'—

AJNINDIHI

e6°1
16"

0L°1

G 1



275

B 86
186
086
£°86
£°86
£°86
Z°86
2°86
L 86
L°@6
086
0°86
0°'86
6716
6°L6
6°L6
916
8°L6
8°'L6
116
9°L6
9° L6
§'16
h L6
W' L6
716
£°L6
2'Lé
2 L6
2°'L6
L°L6
0'Lé6
696
696
8796
8°96
£796
L1796
L796
9796
9°96
£°96
£ 96
£°986
2796
1796

v e W L L e R SR P T e e e A S L e

IN30d
JALLVIA

i1ie
9112
qiie
hilLe
gLie
ZlLic
0Lie
60L2
gOLE
10Le
QoL e
q0L2
tiLe
g£0le
PAV I XA
tode
ooLe
6692
9692
9692
h692
£692
1692
6992
8892
1892
489¢
89l
£99e
2892
6192
8l92
6192
nl92
£192
cl9e
0l9¢
6992
8992
1962
9992
6692
8492
1692
7e9e
£692

3d AON3NDIYA

4 4 4 4 e s+ a4 s » ® & 2 s & & = o+ w v s

B e e e e e e e e e e e e =

—O- o oMo oo~ C - oo o0~ oo rm O o oOOo0Ro0O0RR0 0000 C

1N30¥3d

N IALLVINWND

AWNTOA TIVANIVY HO4 SISATVNY ADNIGDIHA

¢'d 37dvi

[V o Xl T i ol ol oVl ol ol Tl Bl ol AV o ol o VI A VI o S APl ol ol il ol ol R ARl e it

ADNIND3IYI

Gl'e
hWl'e
1L°e
892
1972
59°2
£9°2
1972
09°2
25°2
1672
ésc'e
0s°2
gh°e
an‘e
e
£En'e
en°e
6E°¢
ge°e
9t°¢
GE°2
hE'eg
1% S
2t e
e e
62’2
£2°'e
ge’e
812
4172
it e
€12
60°2
90°E
cu-2
ho e
£f0°2
20" 2
[N+
00°¢
86° 1
l6°1L
96" 1
G671
hé6'L

H



276

g 001 0942 0°0 1 L9
G 00§ 6612 0'0 1 9676
6766 gale 0°0 L 4 I
6 66 1542 00 L eh’'s
666 9612 00 l 91°%
8’66 Gale 0°0 i 96°h
28766 héle 0o 1 68 h
L 66 tele 00 I £9° R
L’ 66 eale 00 1 L
L°66 16ie 0°G ! L% h
966 0sLe 0°0 1 1€'h
9" 66 6hiz2 0°0 [ hl'h
966 enle "o l W't
4766 iwie 0°0 L 96"t
4 66 9ule 0°0 L 26°'E
566 Ghie 0°0 4 6L°¢
h 66 Whie 6'Q i LT
h 66 £nle 170 2 Dh°¢
£°66 Lhic 070 L 8¢
£°66 onie 00 i 9¢°t
2766 6tie G0 L GE't
2 66 8tie 070 L 6c'¢t
e 66 LEL2 070 L LTS
L°66 9tle 00 i FTA
L°66 qEle 0’0 i 81"
166 heELe 170 4 0L°¢
0’66 etle 00 L 10°¢
6 86 Lfle 0°0 1 G0°E
6°86 0gLe 0°0 t o€
686 6eie 170 e <0t
2 86 lele 0°0 l (X108 %
g8°86 9éte 070 L 56°¢
L° 86 qele L70 Z £t6°¢
L°86 t£cie i'0 ¢ 482
9 86 12Le 00 i hg'e
986 0cie 0°0 1 08 e
586 6Ll g0 L 6i°¢
q 86 gLLe 00 L gL e
1N3JH3d AONIND3HA 1N3I0YAd AJNINDIYA 4

A LVINKWND AL LVINKND

JWNT0A TIVANIVY HO4d SISATYNY ADNINDIYY
¢'d 118vl



277

§°6% £e6l G0 €L gh
i "65% 02al £°0 6 ih
P 1 LiGlL w0 2l 9h
£ 1% 6611 60 £l Gh
g-f£4q 98l 670 £t Ll
n°€g ginl LG gl th
1°26 aGh 170 2l FAl
£°26 ghni h'0 L 8]
6°LS 2enl /1] (113 on
G5 2eht ®'o 0l 6t
216 gt £°0 8 8t
6°0% honl 70 ]! FAY
G 0% Hetl 50 £1 9¢
0°0% L8EL L] Gl at
Q' 6h 99t o Zl e
L 6% hGel £ 0 2 £€
g 8n 9hEL L0 0e 4%
0 8h Q2¢tL 9°'0 91 LE
Gy oLel 10 g1 0t
8 9oh 2621 [} ni 6e
£°9h gLz 9°0 91 8e
1 Gh 2921 f1'0 [ F
£ an tact L0 61 92
9 11 2tel L0 61 Q2
6°th gLt h'0 b he
9°tN 2021 G0 qt £c
0°"tn a8til 6°0 RS Z2e
A hoLL 60 %l 1e
£ Ly oht L 60 he 02
f1°0% 9LtLlL &0 92 61
5T 6¢ 0601 670 G2 a1
9°89¢f Q90 2l £t 2l
LAY A% 271 ht gL
2°9¢ 266 £°1 gt Gl
6°h1e 296 o't 1 it
6t GE6 (U | (1] £l
g2t Q06 81 6h <l
0°1¢ 948 gL 64 il
2'62 L0g L1 62 0l
A P 8L2 81 6t 6
t'92 621 £ 2 19 g
[N P 499 9z €L L
n°Le 2646 ¢t '] 9
£ et a05 €N gLt q
0'm {8t LS 961 n
h'e L2 n'g i£e €
IN32Y3d AONINDIYS JLERSEE] ADNINDIY 4 1

AL LVINWND AL LVINHND

SiNIAI NIIML3Y 3WIL HO4 SISATVNY AONINDIYA
£°9 319vi



278

L7 69
£'69
1°69
8°89
4789
689
2'89
0789
8°L9
619
£°19
129
049
9°99
h 99
2°'99
6°69
9°69
£°69
6 "h9
L°h9
10 1%
£€'h9
L9
g°t9
9°t9
c'£9
8°29
829
129
819
619
L9
109
U9
L 66
t ag
1764
P2 14
2°89
6714
L A
L7146
9799
£°9¢
67464

ENID43d
FALLVINKHND

5261
hié6l
BOGL
681
9681
1681t
<8gt
L8l
1281
£981
1681
L5821
6hgl
gt
hegl
8Bl
818l
L8l
208t
L6 1L
(1: 78}
6LLL
9t
0L
call
hGil
LT
etii
L1
GlLil
901 i
2691
B9l
7491
L1991
L9l
on9l
LE9L
0291
1091
8641
leal
116]
£961
£6461
gnalt

ccconoc

L T T

SN ST NNIONM I NI =N N~ o
CoCcoooToooooDoOooOoLDDCoOCoOOLCOeS

Tren un g e e NS

+

cococooooccoco

=S

=

ADNINDIHA 1N3O"3d
IATIVINKGD

Ll o
N
ononen

-
o
@©

VXOOIT = NVLCDUNND NN OO~
-
= N
P~ -]

-
N2
~

— - - ———
&N w0
L =] el

TN AT EMOND N O DO MDD -
-
ke D
[Ta o

ADNINDIA 1

SINIAT NIIMLIE 3HWIL HOZ SISATVNY AONINDIYA

£'d 31ave



o L 8L 961¢ L0 fr oyl
=~ 0'gL 24alé 170 € 6tt
ol 6°LL etiLe 1°0 € gt
81z anie 170 2 LEL
LtL hié L0 € 9%
9Ll L 2 0 4 qtL
Ll 9t e £°0 I HeEt
1 i 62ie L0 | £E1l
0" LL Géle K0 LI 2t
g9 9/ hLte £°0 1 £t
£°91 1012 170 £ OttL
2'9L e 170 4 62et
2°9L coLe 10 ] g2l
0°91 g60e 2°0 q tei
g8°'Gl £602 20 9 921
9 Gl 1802 2o g Gzl
LY A 280¢ 20 q het
: £°6L 1102 £°0 2 £cl
_ 0°62 6902 L0 U] 2¢1
81l 5902 2’0 4 121
g ht 0g90e 2 0 L4 174}
LD/ 7 6602 L0 £ 6LL
€4t 2aue 1°0 t gl
24yt ahr02 1°G Z L1l
Loid gyde L0 h I
0 hi FAI{ I 2'0 q Gl
g ts 1t0¢ £°0 6 il
g el gene £°0 L g1t
FAR YA 120 h'O ot 2Ll
6°2l L0 20 5 Lit
L2l 9002 FAN ] 4 Gt
el Loue 10 h GU1L
el 1661 ¢’ 0 < g0l
2 el 2661 2 0 9 FAVIN
0°2L 9861 L0 £ aqut
g 1L £861 (R V] f (1]
ARV 6161 1°0 f o1
g i qal6l 1’0 f £01L
1L 1161 10 i 201
€71l 1961 L0 f LOL
(SR A £961 [ V] h 001
01l 6661 c'Q 9 66
g 0L £Gb61 £ 0 ¢ a6
G 0L 9461 1°0 £ L6
0L EN6L 'O ol 96
Q0L tE6L £'0 g G6
LIN3DY3d AJNINDIYA 1NIDH3d AININDIYA 1

AT LVINWND AALLVINHND

SINIAT NIIMLIE IWIL HOJ SISATVHY AONINDIHS
£'6 378vL




280

9°t@Q
G't8
£°te
£°t8
2'EB
0°t8
0°t€8
g°28
| A
LAY
G'Z8
g2
i°'cg
G'28
0°'28
6718
6°1L8
L°18
g'Le
h'Le
€18
248
2’8
L8
/- ug
89°08
1708
n 08
" 08
£ 0g
¢ ue
108
008
L 6L
1764
9°6L
' 64
£°64
164
0764
g8l
g 84
g9 8
G'8l
h'8s
£ gL

o D . o e e A S A W W o e e

LNID43d
AATEVTINKWAD

10te
q0ge
6622
g6ee
9622
162¢
0622
ggee
heee
18ec
9iee
Zglade
9922
noce
£92¢
19ee
092e
gee
0622
ghee
fAhce
Lhée
onee
gEee
L€ce
6222
9cee
0éeée
glec
9122
fLee
1122
10e¢e
ooee
6612
9612
2618
6glLe
tgLe
08id
glie
wiie
6912
1912
t91¢
0912

e o e e e e e Yy = P

e, ON RN, O e, M eOm e, OO~ NmeerON—C N~

AJININU Y] JN3241d
JALLVINHAD

TN NMOMIN 2 NMOANNOONRN=IINIO= N N0 TN S = DN

ADNIND3NYA

981
S8l
nel
£81
<l
18t
08l
611
gLt
Lit
9Lt
St
hilt
€Ll
2li
(WY
0Lt
691

SINIAT N3IIMLIE JHIL HOI SISATVNV ADNINDIYA

£°9 37avl



£°88 LEn2 2'0 4 ohe
© L°8¢g 2the 0°'0 1 L£2
by L 88 LEhe L0 P 9£2
088 6ehe 00 1 GE2
0°'98 gzZne 1'0 £ Hwez
648 62he 10 f ££2
118 1ehe 1°0 4 2c2
9°48 Lihe L0 £ L£2
IAFT] LT £°0 L 622
218 10he ] £ gze
L1748 qone 0°0 L 122
1.8 fon2 1°0 £ 922
018 oOne 0o 1 ne2
6'99 66E2 00 1 t22
6798 g6te i'0 ] 2ee
1798 h6ee L0 2 122
198 c6¢2 L0 2 612
9°9g o6se L°0 2 812
6’99 g8tz L°0 £ 2
%98 1A T i°0 2 9i2
£°98 gece 0°0 b G612
£°98 2Bt 20 4 hie
L"98 11€2 L0 2 212
198 Gite 1°0 £ iLe
6768 21tz 1°0 2 a2
6°68 oLge L0 2 602
868 89¢2 L°0 2 ane
LG8 99¢2 L0 £ 102
9°68 £9¢2 0°0 L 902
9768 29te 0°0 L a0z
£ 68 Lot 0°0 1 o2
6 6@ p9te 1°0 P:A £02
hGe gGea L0 2 202
H° 68 96¢2 170 t 102
2°68 2682 0°0 i 002
2748 1582 L0 £ 661
1468 ghee 170 f {61
6 h8 W2 00 1 961
6 " he thee 2'0 9 GHL
i he itge 20 G h6t
c g 2EEe 2°0 9 t6i
W £ e gzrez 20 G 161
| L ne 1282 2'0 s G661
ﬂ 6°¢8 gLge L'0 f 691
g te 2iee i°0 £ 98l
L°t8 &§0t2 [ V] A 181
JUEREL AONINDIYS  INIDHId  ADNINDIYHS L

| AALLVINWND  JALLYINHND

SINIAT NIIMLIE IHIL HO4 SISATVYNY ADNINDI 4
£'9 31avi



9716 8252 0°'0 1 162
9716 1262 0'0 L 062

6716 9262 1°0 £ 682

HL6 €262 L0 £ 892

£°16 0252 L0 z 182

2°16 8162 0'0 ! 992z

2716 1162 L0 2 682

L"16 5162 1°0 £ ng2

0°16 2162 0°0 L £g2

0°16 1162 L0 z 182

6°06 6062 £°0 2 082

2' 06 1062 170 £ 8.2

L°06 4062 170 f 1e

9° 06 0062 L0 2 912

506 26h2 170 u 612

06 nene 0°0 ! hi2

£°U6 £6ne L0 2 €12

£°06 L6he 00 L ET¥-

| 2°06 0642 170 2 E
106 g4z 0°'0 1 692

L 06 19he 1°0 2 192

0°06 <8he 0°0 { 992

| 0°06 ngne L0 2 692
| 669 28n2 60 L n92
6° 68 LEL2 L0 h £92

1768 L1102 0°0 i 292

1768 9Lne L0 £ 192

9°68 £1he 1°0 £ 092

668 oLn2 0°0 | 652

G 68 6912 170 2 962

68 L9ne 00 L 162

€68 9912 L0 F 96e

€68 n9ne L°0 £ 662

268 1912 00 L nG2

1" 68 09H2 L0 £ £62

0°68 Lon2 L0 Z 252

6° 98 sGHe 1°0 £ 162

9°88 2502 0°0 I 062

8- 98 15Nz 170 F 642

1788 6112 0'0 L gnz

L°88 gnnz L0 2 9ne

9°88 9une Lo e &hz

9° 948 e 10 2 the

" ge 2hhe L0 £ £he

| 1" 89 6En2 0°0 1 2u2
£°88 gene 0°0 ! 1h2

LNIOWId  AONINDIYI  INIDH3d  ADNINDIWS 1

JA1LVINKWAD AAAVINKAD

| SINIAT NIIMLIQ 3WIL HO4 SISATIVNY AJNINDIYS
£°49 J1avl

282




283

S h6
h h6
£ hé
£ hé
Z2°hé
2 hé
L th6
L6
0" té
0" hé
8°¢6
8°t6
L'E6
L°E6
9't6
3 ¢6
9°¢6
G €6
h'e6
f1°€6
£ £6
£ €6
2°t6
2't6
e't6
{"£6
0°t6
0°t6
626
626
g'e6
1'26
9°26
6 26
§°26
h'26
£°¢6
2’26
2°26
026
6°16
216
8'1L6
L°16
L6
9°L6

IN31043d
JAHLVINKWND

8092
5092
hO9e
enge
1092
6662
1662
9642
6668
65e
0652
48se
auGe
6852
hese
€862
2pse
1862
6162
LiGge
Gl62
hiGe
tl16e
2162
1162
6962
8962
1962
6562
£962
1962
6662
1662
1462
24962
6hGe
gnge
oh6e
nhGe
6862
9t£62
GE62
hEGS
2£42
062
L PAT

cocococecocoOo0cocococcoconondacoocococesoocoocooR

[ T R R

el e latal == el Rl =R R TR R R S el el N et o Yukel gl ol el elel=Nel o oo felelel il el g ok o
v—v—NN-—v—mn‘\v—I"‘}r—MNF‘JNNNNNv—!-NFU——!—NNNu—v—v—-—v—N{\,‘:‘l—-—r—NNw—N—-m

AONIND3Y 4 1N30d13d ADNINb3dA
IATIVINWHND

SiNIAT NIIMLIE 3WiL HO4 SISATVNY ADNINUIYS

£°9 3104vl

9G¢
hGe
FASY
16t
nGe
ent
8ne
LY
SHE
Zht
L hE
One
6L L
gt
9t ¢t
GEE
etfe
LEE
Ot
6et
22t
let
92t
G2t
het
£2t
0et
BiE
LIE
ait
G1lE
hig
éLE
1L
OLE
60¢
g0¢g
90¢
St
hit
LOE
662
662
h6e
£62
262

1



0°16 8192 00 ( szn
0°16 1192 0°0 i hah
016 9192 0°'0 ! £2h
6796 c192 L0 £ o02h
8796 2192 10 2 6Lh
£°96 0192 0'0 L gih
1796 © 6992 0°0 L 9Lt
196 8992 L0 z Sin
9°96 9992 00 L it
9796 5992 0°0 L oLh
596 1992 L°0 2 80h
796 2992 00 ! L0h
h° 96 L1992 070 1 90h
©°96 0992 0°0 ! Eon
£°06 6592 60 1 20h
£°96 292 L0 2 66€
2°96 9592 0°0 1 86¢
296 5592 0'0 1 16t
2°96 hG9e t°0 2 96¢
L"96 2692 0°0 ! 133
L°96 1692 0°0 ! £6¢
0796 0692 170 £ L6E
6766 1892 0°0 ' 69¢€
6°66 9n9¢e 00 L 89¢
8766 LT L0 h 18
1766 TE 00 L 99t
1766 0nge L0 2 ¢af
966 8£92 0°0 L 28t
666 1£92 00 ' LgE
S 66 . 9£92 170 2 08e
" 66 wege 1°0 2 6L€
h° 66 2€9¢ 1°0 2 8.
£°66 0£92 1°0 £ I
2°66 1292 0°0 [ 9.¢
166 9292 0" 0 L g
166 ge9e 00 L €1¢
1766 7292 L0 z 2L
0°66 2292 0°0 i Y
0° 66 1292 0°0 ! 0LE
616 0292 L0 2 69¢€
616 8192 0°0 | 19¢
816 1192 L0 2 59t
L°h6 6192 L0 2 hot
L n6 £192 00 L 09¢
9 h6 2192 070 L 65§
916 1192 L0 3 1G¢
INIOHId  AONINDIMS  INIOHId  AON3NDIHA 1

JALLVINKND JALIVIAKWND

SINIAT NIIMLIE IWIL HOJ SISATVNV AONINDIYA
£°9 3ldvl

284




) 2'86 gzle 0°'0 l L9
p 886 1212 00 L 919
ol g 86 9212 0°0 £ 609
L 86 cele 070 1 166

L'86 waie 00 1 266

! L 86 feie 60 i Hes
986 . zale 0'0 1 0BG

986 1242 0°0 i 6hs

9°86 ozle 00 L 4G

G896 6112 0°0 1 8res

G 86 gLLZ 00 1 9¢6

v n' g6 Lz 070 L [§34
: ' 86 9112 00 L 8246
. h' 26 GiLie 00 1 926
£°96 niLz 00 1 ¥14

€86 tLie 00 L £26

£ 86 2L 00 1 2ea

286 Lviz 0'0 1 616

Z 86 oLLe 00 1 hi6

2°86 6012 0°0 t 2La

186 guLe 0°0 L LLG

L°86 Lore 0'0 1 oLs

086 9012 00 1 gan

086 GoLZ 00 t £an

086 note 00 L 6Lh

6°L6 goL2 0'0 L wih

6°16 2012 00 1 £1h

6°1l6 Lo 0°0 t oLy

816 0042 00 l 891

816 6692 0'0 1 59h

816 8692 10 2 Ot

1716 9692 0’0 i 29n

9°16 G69¢ TM1] L L9Y

916 n692 00 i 86h

916 £692 vu i TTA

616 2692 0°'0 i £Gh

§°L6 1692 0o I 26h

616 (G692 00 1 06h

n°L6 6892 1'0 Z gl

nTi6 1892 0°0 L Lhh

£°16 9092 0°0 L thi

€16 6892 ) £ 2ut

2 L6 2992 0’0 t Lith

L 16 1892 0'0 1 GEN

1716 0892 00 L tg4

L'L6 6192 00 1 92h

1N30Y3d AONINDIYY  INIDHI4  ADNINDINHA 1

JA1LVYINKWND AL LVTIOKWND

SINIA3 NI3ML3d W1l HO4 S ISATVNY ADNINDIYS
£°9 379Vl




286

07001 0922 0°0 | 9811
0001 6612 0°0 1 oniL
6°66 9542 0°0 i 2eiL
666 1612 0°0 { 6211
666 9612 00 L 8001
8°66 €612 0°0 L 166

866 nGiz 0°0 L hi6

1766 £G1e 00 i 156

166 26i2 0°0 t 126

166 1642 00 t 9!4

966 0612 00 t 999

9°66 6hl2 00 i 1708

9°66 ahie 00 i n6.L

5 66 thie 00 1 £G4

G 66 ohie 00 i 6hi

G 66 chie 0°0 1 £h

66 whie U0 t zhi

h° 66 thiz 070 L LEL

£°66 Znie 00 1 62L

£°66 Lthiz 00 L g2l

£°66 OhLe 00 I £21

2°66 6812 60 1 169

2°66 8c12 0°0 L 819

2766 igie 0°0 L %19

166 9cs2 0°0 1 569

i 66 cele L°0 2 259

066 £€l2 0°0 i N9

0°66 esie 070 L 2£9

6°96 1£42 170 2 L£9

686 6212 00 l 829
LN30u3d AONIND3¥4  INIDYAd  ADNINDIYA 1

JALLYINWND IALLVIAWGD

SEN3AZ NIIMLIE IWiLl HOF SISATVYNY ADNINDIYA
£°89 319vl



287

0001 0912 670
07001 6642 0°0
6'66 9612 0'0
666 L6Le L°0
8°66 66l 0°0
8°66 ngre’ (VA ¢]
166 £Gie 070
1766 26128 U0
L°66 1aLe 10
9766 énwlc 00
9°66 gule 10
G 66 ahile 10
€66 ehlée L0
266 6tie L0
L1766 Gcgle L°0
066 f£tie h*0
1786 £cie 'O
2786 tLLe £°0
6°L6 el £°0
9°Lb £692 L70
6°96 G192 9°'0
£°96 8592 Lo
L' 66 on9e 6'0
L h6 nL9e Lt
9°€6 hgae L'l
6°16 LEGE 91
£ 06 26he 4
2°88 tEnd f1°e
2°48 g9te £°F
5728 LLée 8¢
L9l elie 04
17t £e0e 99
L°LG 1681 L°g
0" 64 8291l [t
6' LN Letl 6°91
o't 1] 01t
IN302¥3d ADNINDIYS IN3DH3d
JALLVYINWND JALLVINWAD

DN = -
- -

Bl

ADNINDIYS

NO1LYHNA YO+ SISATYNY ADNINDIYA

h'd 31avi

13}

| = QM IO~ 0 Oh

a



288

098
L7418
hig
L7419
g9°'9¢
298
8°qg
h-ag
6" he
L0 1%
2 'hg
2t
£'t8
628
£°28
918
0'L8
108
662
8 8/
6L
LAY
§°94
GGl
9 nL
2 ¢L
9°2L
L°LL
6°69
689
1LY
2°99
h°'69
(VI 11
1729
109
9°94
0°94
6°¢t6G
171G
G 8
844
£ N
0°9¢
1762
h'ie

1N3I3H3d
JALLYINWND

62hng
LEhe
itLhe
£0he
L6te
ogee
g9¢e
late
ghee
£fEe
weee
nlLee
6622
guee
1422
16922
qtee
oLee
héle
911
nsie
atlLe
Liee
o802
6602
ge0e
7002
£961
6261
£061
6981
Gngl
1091
99711
gLl
0991
1191
214Gl
6841
6041
6ELL
1921
oLl
t66

619

164

ADNINDIY A

I L N T T T

COWNRINANNNNT - e OO~ 00RO o0 oCOCoo oo COOoC

OO OV AN NN OOARNON OO NI NI ™M

-
o

1N3IDd3d

JALLVYINAHND

']
0L
8
el
it
¢l
Li
f1L
431
6
0Ot
Gt
it
e
02
91
52
gt
gt
92
Gi
he
92
9z
ig
ht
iy
e
92
e
he
ih
gt
€6
£G
£h
L
FAS
o8
0L
Gl
hei
thi
hii
82¢
1649

ADNINDIYA

9m°0
a0
hh°0
o
e’
th 0
om0
6£°0
ge’0
1€°0
9t°0
5¢°0
he "0
£€°0
2¢°0
1£°0
0£°0
6270
82°'0
1270
92°0
€2 0
At
£2°0
P A ]
12°0
020
6170
g1°0
FA 1]
9179
QL0
2L 0
£EL70
PAR )
tL'o
0oL"0
60°0
200
100
900
00
10" 0
£0°0
200
10°¢

HW1

ALISNILINE ATHNOH WNWIXVH H04 SISATIVNY ADNINDIYA

6'g 3118Vl



289

1796
196
9986
h°96
2°96
196
0°96
8°G6
166
466
t°'66
€66
2'66
L°G6
0 66
L h6
9 16
§° 16
2°hé
2" hé
(W 1%
0°"hb6
6°¢6
L €6
9°€6
£ €6
£ €6
0°'t6
6°26
826
126
[ i
L)
126
9°16
h' L6
L6
6°06
h 06
£°06
006
L°68
G 68
6788
948
h'8g

P ——— TP etttk R e e

INIDH I
JAI1EVINKWND

0192
2992
1992
1992
692
£692
0492
£892
Lhye
6892
L£92
6292
ge9e
n29e
1292
Si9¢
219¢
L09e
Ln9e
009¢
1642
h6se
1662
9862
W8G2
9162
ti16e
8962
£962
19452
6662
£G642
2662
QLT
6262
f12se
g162
0152
96he
tene
hghe
sine
&94e
£Ghe
anhe
6Ehe

ADNIND3YI

P L

COQCC’.‘CODCCOCOCC‘:CCCCCCOC‘C‘I‘C}CCDC

ceddoccsdccosscccoaes

ANMONMMONINMANTIONm NN er OO r = OMMNO

IN]IDY 34

AALIVINHWND

OOV AT OONN = OANNNONONN®MIN = DN mOmMI = NI O e O
— -

o1
AONIND3IYS

160
€6°0
26’0
0670
681}
8870
L8870
980
80
h8"0
£8°0
280
1870
08’0
6L°0
8.0
Lo
SL°0
Wi'n
£€L70
el 0
1L°0
0470
69°0
29°0
19°0
99°0
680
790
£9°0
290
L1970
09°0
65°0
8670
1670
9670
460
hG 0
£6°0
gs’0
L6 0
06°0
&’ 0
8’0
Lh'o

HWI

ALISHIANI ATHNOH WNKWIXvH H04 SISATVNY ADNIND3HI

6’8 379vl



290

66
1766
£°66
£°66
£ 66
266
2 66
2766
L 66
166
i 66
066
686
6°'g6
6’86
886
g 86
L 86
186
186
9°96
6 86
4 86
86
" 86
£ 86
£ 86
286
2'86
186
0°86
67 L6
8°1L6
8°16
g°L6
L'l6
[ X 3
9°'l6
9°16
616
hlé
2°1l6
216
116
696
6°96

IN3IDH3d
JAILLYTINKWAD

ALISNILNI

thite
tnig
ente
thie
onte
6tle
gtie
IR YR
9tie
GEle
heLe
£ELe
1£L2
0gle
62l2
gete
92l2
qele
L TAXA
£€2ie
c¢cle
6i1le
gile
atlz
Slie
hiic
cLie
11le
0LLe
g012
6012
t0L2
onLe
6692
8692
1692
9692
9692
n6G92
2692
8892
hg9c
2892
6192
6192
hi9¢

ADNINDIY 4

COCCCCCoCCCoCOC oo OCoCoooonOoOcoooooocoooooooo

L

inb=Ankalad aliadad ~E=i=felofwk g f fof=fal f Y-l ol dofulaful ¥ o faYa R Y Yl Yl o o Tl = T =T

AALLYINKHND

T TN N e e AN e o 0 e o o () v v [\ = e e e e e = —

ASNINDIY4

QL1
1l L
99"
1571
94" 1
661
0671
6h°1
FA
S
i
£
ch’ 1L
(1 §
on°1
LE' 1
Gt
o N
3 A §
LE" L
0" 1L
g2
2L
£271
12
02’1
6L71
gL
PN
gLt
GLL
L'l
Le° L
oL
60°1L
g0
9Nt
QUL
RO 1L
£0°1
c0"1
1071
001
670
96°0
G6°0

ATHNOH WNKWI XYW 404 SISATVNY AONINDIY4

S°9 IAdvi



291

0°00L
0°001
6°66
6°66
6°66
866
g°'66
L7 66
L 66
L 66
9°66
966
6 66
G 66

1N3DY3Id
FALLVINWND

09Le o'e
64l 00
gale G0
1612 0°0
9612 00
6618 0°0
RGie 0o
£6L2 00
26le 0o
1612 0o
0sie L0
ghic 0°0
nie 0°0
9niLe L0
AONIND3YI 1N30H3d
JALLVINHND

N ==

80" ¢

ALISNIINI ATHNOH WNWIXVH 4H0d SISATVNY ADNINDIHI

6’8 318Vl



292

£°26 ghae £°0 6 945" 0
0°26 6tac £°0 6 S0
L°16 0Ese h'0 1l "0
£°16 6162 €°0 g €h°0
0’16 Lise $°0 hl ento
606 l6he £'0 g Lh 0
2 06 6812 t'0 Ll 0oR’0
868 8ite 170 h 6E°0
9° 69 fiihe S0 Gl g0
L 68 6612 0 cl iE°0
4788 Inhe 570 £l 9870
¢ g8 fEhe L/ V] L GE°0
g'18 tehe L0 6l he'0
1748 hohe hoo el £€E°0
1949 26t S0 £l rAS
2’98 6ite 0 cl LE"O
g°68 L9te 9°0 Li 0t°0
1768 oste LY 411 6270
g 'hg OhEc $°0 Ll 8270
fh*hB 6eee L0 ¢4 Le’0
L°t8 60te L0 gl 9270
0°tg L6ee 01 ie G270
LA h9ée [ 62 he“ 0
0'Lg Gtee g0 1e £E2°0
¢’ o8 hicd B8'0 1é rTARS]
66l £612 870 1e 12’0
L 8L ¢lie LA 3% 02°0
£ L4 heLe £t 1E 61°0
0°G1 1602 £l 9¢ g1L°0
LThi 190 el ct Lo
G EL 6202 ol on 9170
el 6861 71 tt GL°0
6°0L 9661 01 Le L Y]
6°69 661 ¢’ 09 £L°0
L19 6981 171 Bh cL’'0
0°99 {28l o°e 66 LLO
079 9911 52 oL oL O
19 9691 Le 64 60°0
£°66 LETI l'e 5L 8670
9°96 2961 £t 06 L1070
£ fg clirl ¢t e8 90°0
L°0G hetl 91 iel G070
4°ah 1621 14 inl ho°0
hoh oLLL L Q0e £€0°0
0°tt 016 170l gee 20’0
G 2e 2e9 g ec 229 1070
IN3I2Y3d ADNINDIYA 1N3D2d3d AININDIYA Ml

JALIVYTIARWND AALVYINKWAD

ALISNILN| Q3LHDIIM ¥OJ SISATVNY ADNINDIYL
9°9 314vlL



™ 6 86 glLle L°0 € 160
& 86 qiie 1°0 z £6°0
™~ £°86 g1Le 0°0 L 670
£°86 2142 0'0 1 16°0
2 86 tiee 170 n 06°0
L 86 Loz L°0 2 68°0
0" 86 G012 10 £ 88°0
6716 FAYE 0°0 1 1870
6°L6 LoLe 0’0o L 9¢°0
8 L6 ooLe 00 L $8°0
8'L6 6692 170 < £8°C¢
L°16 1692 0°0 L 280
L L6 9692 170 b 080
616 2692 L'0 2 6L°0
616 0692 L°0 e gL’ O
n'L6 8892 170 fi o
2’16 hege L0 | 9.0
1746 0892 0°0 L 6L'0
1" L6 6192 2'0 4 hi'0
6°96 492 1°0 f £L°0
1796 0192 ) £ 2170
996 1992 2'0 9 11°0
196 1992 L°0 £ 0L°0
£ 96 2692 170 £ 69°0
2°96 692 LG H 89°0
1796 1692 L°0 f L1970
6766 Lh9e L0 L] 8970
8°'66 £492 1'0 2 590
166 Ln9e 0'0 1 n9°0
166 0n9e 20 G £9°0
666 GL£92 £°0 L 29°0
2°66 9292 L°0 2 1970
L°66 9292 170 L] 09°0
0°66 229z L°0 £ 65°0
6°N6 6192 L'0 f 860
16 6192 L0 2 16°0
L 16 €192 2°0 9 960
6 6 L09¢ 10 oL 6670
116 1662 20 4 760
6" €6 ¢662 n'o oL £6°0
9° €6 2862 20 9 250
£°¢6 9162 170 £ 160
2'£6 €162 20 9 0$°0
0°té 1962 20 G 6h°0
826 294e £°0 6 gn-o
626 £6G2 e 0 q o
JUELER ADNIND3IYA  ENIO¥Id  ADNINDIUI Mi

JALLVYINWAD JALLVINKHND

ALISNILNI G3I1HO13IM Y04 SISATVNY ADNIND3IY S
9°g 3149vlL




294

0°00t 09
07001 6%
6°66 1]
666 L5
6766 95
8766 44
8766 131
L'66 £
166 <6
L' 66 LG
9766 6t
9°66 81
466 i
G 66 on
466 17
N 66 trh
h 66 £n
€766 ch
£°66 Ot
266 68
2 66 LE
166 Gt
0 66 £t
0°66 et
6 86 Lt
6°86 0t
8 86 ie
2 86 92
186 Ge
L 86 £e
9°86 cd
9 86 1e
1) 61

iN3IDH3d ADN
IAATLVINKAD ELY

ALISN3ILNY

D L

CcoccooocceocooocOoCcodooOcmooccoooaoo

—
[sY]
oL~ 00— OO0 -=- 0o o0 oo oo -ooooooooD

O U e T e (U™ (v b e e e O = e e e —

INDIY4 1N3IDY3d AONINDIHA
1VINWND

U31HO13M H04 SISATVNY ADNINDIHA
9'd 319vl

e’ ¢

£l

02" 1



TABLE B.7
SAS PROGRAM LISTING FOR COMPUTING THE PARAMETERS OF THE

DATA WEIBPARA;

INPUT ALPHA;
MU=92.8141;
SIGMA=136.6676;
LAMBDA=0.0;
SKEWNESS=2.8574;
G1=GAMMA(1+1/ALPHA);
G2=GAMMA(1+2/ALPHA) ;
B3=GAMMA(1+3/ALPHA);
BALPHA=1/SQRT(G2-G1%%2};
AALPHA=(1-G1 ) *BALFHA;
BETAL=MU+SIGHAXAALPHA;
BETAZ2=LAHBDA+SIGMAXBALPHA;
SKEWCHEK = (G3-3%G2%G1+2%G1%*3 ) ¥BALPHA®XS ;
CARDS ;

6.6940

0.6941

0.6942

0.6943

0.699%

0.6945

0.6946

0.6%47

0.6948

0.6949

0.6950

0.6951

0.6952

0.6953

0.6954%

0.6955

0.6956

6.6957

0.6958

0.6959

i
PROC PRINT;
VAR ALPHA BETAl BETAZ SKEWNESS SKEWCHEK MU SIGMA LAMBDA;

WEIBULL PDF
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TABLE B.8

SAS PROGRAM LISTING FOR MONTE CARLO SIMULATION OF

CMS FI WORK DISK TESTSIM WORK B;
DATA WORK.TESTSIM;

RETAIN ITS &;

DO UNTIL (ITS=10) /% {ITS=2760) %/ ;
#%x SAMPLE R PDF . %x%;

R= .005+]1.10G6%RANGAM((, . 3515);

wx% SET R TO THE SMALLEST MULTIPLE OF
R=CEIL{R»*100)/100;
#%% SAMPLE T PDF . »%x;
TUNIFORM=RANUNI(0);
T=3;

IF TUNMIFORM <= ,0837 THEN GOTO TSET;
T=4;

IF TUNIFORM <= ,1402 THEN GOTO TSET;
T=5;

IF TUNIFORM <= ,1830 THEN GOTOQ TSET;
T=6;

IF TUNIFORM <= ,2145 THEN GOTO TSET;
T=7;

IF TUNIFORM <= ,2409 THEN GOTO TSET;
T=8;

IF TUNIFORM <= .2641 THEN GOTO TSET;
T=9;

IF TUNIFORM <= .2819 THEN GOTO TSET;
T=10;

IF TUNIFORM <= ,2924 THEN GOTO TSET;
T=11;

IF TUNIFORM <= .3102 THEN GOTO TSET;
T=11.5+183.3745%RANGAM(D, . 6575);

®%% SET T TO THE SMALLEST INTEGER >=
T=CEIL(T);

¥xx THE VALUE OF T IS NOW SET. ¥¥x;
xxx SAMPLE D PDF., *xx;

TSET: DUNIFORM=RANUNI(D);

D=1;

IF DUNIFORM <= .3098 THEN GOTC DSET;
D=2;

IF DUNIFORM <= .4786 THEN GOTO DSET;
D=2.0+4 8121 %RANEXF(0);

wu% SET D TO THE SMALLEST INTEGER >=
D=CEIL(D);

#%% THE VALUE OF D IS NOW SET. »a¥x;
DSET: ITS= ITS+);

OUTPUT ;

END;

/%

T.

b.

.01 INCH >=

N

¥ ;

TITLELl 'TEST SIMULATION FOR R, T, AND D'

TITLE2 *USING DERIVED PROBABILITY DENSITY FUNCTIONS';

TITLES °*WITH 2760 TRIALS';
PROC FREQ;
TABLES R;

»/

RAINFALL EVENTS

T
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APPENDIX C
SIMULATION RESULTS
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TABLE C.1
SAS PROGRAM LISTING FOR RAINFALL-RUNOFF STOCHASTIC SIMULATION MODEL

CMS FI DAT DISK EVENTSIM DAT A;

DATA DAT.EVENTSIM;

KEEP NRAINS NRUNOFFS CUMHOURS YEAR Q QP R T D TL TR ROTé;

ARRAY RLAST{36};

ARRAY TLAST{3e6};

ARRAY DLAST{Ze6};

»xx SET NUMBER OF YEARS FOR THE INITIALIZATION PERIOD (STARTYRS). »xx ;

* ALL EVENTS IN THE INITIALIZATION PERIOD ARE OMITTED IN ORDER TO

ELIMINATE ANY BIAS INTRODUCED BY THE INITIAL CONDITIONS.
A MINIMUM OF STARTYRS=5 IS RECOMMENDED. * ;

STARTYRS=5;

x%#% SET NUMBER OF YEARS TO BE STMULATED BEYOND THE
INITIALIZATION PERTOD (NYEARS)., %%

NYEARS=100;

»xx% INITIALIZE TIME BETWEEN EVENT VARIABLES. ASSUME THAT THE LAST EVENT
PRIOR TO THE INITIALIZATION PERIOD HAD Q>=0.01 INCH. THEN,
SET TL=0 AS A FLAG THAT THE LAST EVENT HAD Q>0 AND
SET TR=0 AS A FLAG THAT THE LAST EVENT HAD Q>=0.01. *¥x ;

TL=0;

TR=0;

uxx INITIALIZE THE CUMULATIVE TIME SINCE THE BEGINNING OF THE SIMULATION
(HOURS), THE CURRENT CALENDAR YEAR SINCE THE BEGINNING OF THE
SIMULATION, THE COUNTER FOR NUMBER OF RAIN EVENTS SIMULATED,
AND THE COUNTER FOR NUMBER OF RUNOFF EVENTS (I.E., Q>0)
SIMULATED. LEAP YEARS ARE NOT ACCOUNTED FOR IN ASSIGNING THE
NUMBER OF CALENDAR YEARS, =¥x ;

CUMHOURS=0;

YEAR=0;

NRAINS=0;

NRUNOFFS=0;

#%% SIMULATE RUNOFF EVENTS UNTIL THE FIRST EVENT FOR
WHICH YEAR>NYEARS+STARTYRS. *»x ;

DO UNTIL (YEAR>NYEARS+STARTYRS);

%% INCLUDE ONLY RUNOFF EVENTS FOR WHICH Q>0 AND QP>0. EVENTS WITH
Q<=0 AND/OR QP<=0 ARE TREATED AS NON-RUNCFF PRODUCING
RAIN EVENTS. %¥x ;

DO UNTIL (Q>0);

DO UNTIL (QP>01};

*%% SAMPLE R PDF. *xx;

RESTART: R= .005+1.1046%RANGAM{0,.3515);

% SET R TO THE SMALLEST MULTIPLE OF .01 INCH >= R. ¥ ;

R=CEIL(R*100)/100;

u%¥ SAMPLE T PDF, »%x;

TRESET: TUNIFORM=RANUNI{O);

T=3;

IF TUNIFORM <= .0837 THEN GOTO TSET;

T=4;

IF TUNIFORM <= .1402 THEN GOTO TSET;

T=5;

IF TUNIFORM <= ,1830 THEN GOTO TSET;

T=6;

IF TUNIFORM <= .2145 THEN GOTO TSET;

T=7;

1Ff TUNIFORM <= .2609 THEN GOTOD TSET;



TABLE C.1
SAS PROGRAM LISTING FOR RALINI ALL-RUNOFF STOCHASTIC SIMULATION HOLEL
T8
IF TUNIFORM <= ,2641 THEN GOTO TSET;
T=9;
IF TUNIFORM <= .2819 THEN GOTO TSET;
T=10;
IF TUNIFORM <= ,2924 THEN GOTO TSET;
T=11;
IF TUNIFORM <= ,3102 THEN GOTO TSET;
T=11.5+183.3745%RANGAMI O, . 65751} ;
#» SET T TO THE SMALLEST INTEGER >= T, ¥;
T=CEILI(Y);
% INSURE THAT THE INITIAL (I.E., NRAINS=0) VALUE OF T>=144 HOURS
{I.E., 6 DAYS) SO THAT THE INITIAL VALUE OF ROTé=0. ¥* ;
TSET: IF MRAINS=0 AND T<144 THEN GOTO TRESET;
» THE VALUE OF T IS NOW SET. X;
xxx SAMPLE D PDF. %xx;
DUNIFORM=RANUNL(0Q) ;
D=1;
IF DUNIFORM <= ,3098 THEN GOTOC DSET;
D=2;
If DUNIFORH <= .4786 THEN GOTO DSET;
D=2.0+4 _B121%RANEXP(O);
% SET D TO THE SHALLEST INTEGER >= D. %;
D=CEILI(D};
* THIF, VALUE OF D IS NOW SET. ¥;
wu% COMPUTE TL, #xx ;

% IF THE CURRENT VALUE DOF TL=0, THEN THE LAST STORH PRODUCED RUNOFF ,
SET TL=T. IF TL>0, THEN THE LAST STORM DID NOT PRODUCE RUNOFF, 50
INCREASE TL BY D FOR THE LAST EVENT PLUS T FOR THE CURRENT
EVENT. * ;

DSET: I=1;

TLLAST=TL;

IF TL=0 THEN TL=T;

ELSE TL=TL+DULAST{I}+T;
IF TL>1513 THEMN TL=1513;
*¥% COMPUTE TR, xx ;

% IF THE CURRENT VALUE OF TR=0, THEN THE LAST STORM HAD Q>=0.01 INCH,
SET TR=T. IF TR>0, THEN THE LAST EVENT HAD Q<0.0]1 INCH, SO
INCREASE TR BY D FOR THE LAST EVENT PLUS T FOR THE CURRENT
EVENT. ¥ ;

TRLAST=TR;

IF TR=0 THEN TR=T;

ELSE TR=TR+DLAST{I}+T;
IF TR>1513 THEN TR=1513;
xun COHPUTE ROT6, wan ;

* THE MAXIMUM NUMBER OF STORMS THAT CAN OCCUR IN & DAYS IS 36,

1.E., 36%(1-HOUR STORMS + 3-HOUR DRY PERIODS)=144 HOURS=6 DAYS., =»

® INITIALIZE ROTé& AND CUMULATIVE TIME BETWEEN RAIN EVENTS (CUMT), *®
ROT6=0;
CUNT=T;

% IF T>la4a THERE ARE NO RAINS IN THE LAST 144 HOURS, ELSE THERE ARE

BETWEEN 1 AND 36 RAINS. % ;
IF 71>1449 THEN GOTO COMPUTEQ;
DO 1I=1 TO 3é;
ROT6=ROTH+RLAST{I1};
CUMT=CUMT+DLAST{IX}+TLAST{I};

% IF CUMT>144 THEN THE CURRENT RAIN, I, IS THE LAST RAIN YO END IN THE

LAST 144 HOURS, ELSE THERE ARE BETWEEN 1 AND 35 MORE. x ;
IF CUMT>144 THEN GOTD COMPUTEG;
END;
nud COMPUTE Q AND QP, xxu ;
COMPUTEQ: RW=R;
IA=RW/D;
QEPS=.03148%RANNOR(O) ;
QPEPS=4 . 5B06%RANNOR(O) ;
Q=-.05017+.1671%RW-.0001263%TR+.02976XROT6+QEPS;



TARLF .1
AT IHUGCKRAN EISTING FOR RAITHI ALL-HUNOIF STOCHASTIC SI1MULATION MODFL
QP=-u.6053+12.3698%RW- . 021949 TL+32 4367%IA+QPEPS;
axn CHECK SIMULATION RESULTS FOR CONSISTENCY., wxx ;

% IF Q>RW, THEM IGNORE THE EVENT AND RESTART THE SIMULATION FOR THE
CURRENT EVENT. EVENTS WITH Q<0 AND QP>0, OR Q>0 AND GFP<Q ARE
TREATED AS NON-RUNOFF PRODUCING EVENTS. ¥ ;

IF Q<RW THEN GOTO CONSIST;

TL=TLLAST;

TR=TRLAST;

GOTO RESTART;

wxu INCREMENT RAIN EVENT COUNTER. w»» ;

CONSIST: HRAINS=NRAINS+1;

#ux COMPUTE CUMULATIVE HOURS FROM THE BEGINNING OF THE SIHMULATION
T0 THE BEGINMING OF THE CURRENT EVENT. xx ;

# IF THE CURRENT VALUE OF CUMHOURS=0, THEN THIS IS THE FIRST
SIMULATED EVENT, SET CUMHOURS=T. IF CUMHOURS>0, THEM SET
CUMHOURS=CUMHOURS+DLAST{I}+T. x ;

I=1;

IF CUHHOURS=0 THEN CUMHOURS=T;

ELSE CUMHOURS=CUMHOURS+DLAST{I}+T;

wus RESET RLAST(I}, TLAST{I), AND DLAST{I}. %xax ;

# DELETE THE CURRENT DATA FOR I=36, SLIDE ALL REMAINING DATA DOWN

DNE STEP, AND SET THE VALUES FOR I=1 TO CURRENT STORM VALUES. =
DO 1I=36 TO 2 BY -1;
RLAST{I}=RLAST({I-1};
TEAST{IY=TLAST{I-1};
DLAST{I}=DLAST{I-1};
END;
1=1;
RLAST{I}=R;
TLAST{I}=T;
DLAST{I}=D;
END;
END;
x#x INCREMENT RUNOFF EVENT COUNTERS SINCE BOTH Q>0 AND QP>0. xxx ;
NRUNOFFS=NRUNOFFS5+1;
YEAR=1+INT{CUHHOURS/ (365%24)};
wxm ADD EVENT TO SIMULATED DATA SET. xw ;
= OMIT ALL EVENTS OCCURRING DURING THE INITIALIZATION PERIOD AND THE
LAST EVENT, WHICH OCCURS AFTER THE FINAL SIMULATION YEAR ENDS. »
IF STARTYRS < YEAR <= NYEARS+STARTYRS THEN OUTPUT;
®%% RESET TL=0 SINCE Q>0, #ew ;
TL=0;
nwnn RESET TR=0 IF Q>=0.01 INCH. wxx ;
IF Q>=0.01 THEN TR=0;
END;

i
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TABLE C.4
S5AS PROGRAM LISTING FOR EVALUATION OF SAMPLE SIZE

OPTIONS NONUMBER NODATE NOSOURCE NONOTES;
CHS FI 12 DISK HRSAHP LISTING C;

WM

wxx BEGIN USER INPUT.;

PPy

x;

xx% DEFINE THE INPUT PERMANENT SAS DATA SET NAME STORED ON DISK AND THEN

DEFINE SEPARATLY THE FILENAME FILETYPE FILEMODE OF THIS FILE.;

*;

ZLET DATANAME=DAT.EVENTSIM;

%LET FILENAME=EVENTSIM;

%LET FILETYPE=DAT;

#LET FILEMODE=B;

CHS FI SFILETYPE DISK 2FILENAME BFILETYPE &FILEMODE;
*;

xxx SET THE SAHPLE SIZE FOR LINEAR MODELING.;

YZLET SAMPSIZE=40;

x%% SET THE TOTAL NUMBER OF RUNOFF EVENTS IN THE SUBSET OF THE INPUT

DISK FILE TO BE USED.;
%LET TEVENTS=1499;
% SUBSET THE INPUT DATA FILE AS DESIRED.;

r
DATA SIMULATE;
SET ZDATANAME ;
RETAIN NEVENTS 0;
KEEP NEVENTS CUMHOURS Q D TR;
% USE DNLY EVENTS WITH Q=.01 INCH OR GREATER AND
KEEP A CUMULATIVE TOTAL OF THESE EVENTS. ;
IF Q<.01 THEN DELETE;
NEVENTS=NEVENTS+1 ;
RUN;
R
%% END USER INPUT;
K¥R;
*;
xxx THE FINAL OUTPUT DISK FILE NAME IS AUTOMATICALLY
DEFINED AS HRSAHPRSAMPSIZE.;

*3

CMS FI DAT DISK HRSAHPRSAMPSIZE DAT A;
®;

xxx DEFIME THE MACRO FOR CREATING THE DATA SET WITH HOURS REQUIRED
TO COLLECT SAMPLES OF SIZE "ESAMPSIZE™;

*;

ZMACRO TIME;

e $

vuun THIS MACRO READS ALL POSSIBLE SUBSETS OF DATA OF
SAMPLE SIZE "SAWPSIZE™, IN SEQUENCE, FROM THE INPUT
DATA FILE AND THEN CREATES AN QUTPUT DATA FILE CONTAINING
THE TIME (IN HOURS) REQUIRED TO COLLECT SAMPLES OF THAT SIZE.
THE TOTAL NUMBER OF SUCH SUBSETS IS (TEVENTS-SAMPSIZE)+1.;

317
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TABLE G4
SAS PROGRAM LISTING FOR EVALUATION OF SAMPLE SIZ2L

A¥;

%D0O K-RSAMPSIZE %70 STEVENTS;

DATA HRSAHP;

SET SIMULATE;

KEEP HRSAMPLE;

RETAIN START 0;

IF NEVENTS<=(8K-EZSAMPSIZE) THEN DELETE;

IF NEVENTS>RK THEN DELEYE;

% COMPUTE THE STARTING VALUE OF CUMHOURS AT THE END OF THE LAST
RUNOFF EVENT WITH @Q>=0.01 INCH BEFORE THE CURRENT SUBSET;

IF NEVENTS={ (EK-8SAMPSIZE)+1) THEN START=(CUMHOURS-TR);

¥ COMPUTE THE ENDING VALUE OF CUMHOURS AT THE END OF THE LAST
EVENT IN THE SUBSET;

END={CUHHOURS+D } ;

#* COMPUTE THE TOTAL TIME 70O COLLECT THE CURRENT
SAHPLE OF SIZE "SAMPSIZE';

HRSAMPLE=END-START;

IF NEVENTS=RK THEN OUTPUT;

PROC APPEND OQUT=DAT.HRSAMPESAMPSIZE DATA=HRSAMP;

ZEND ;

“HMEND;

®;

#xx  INVOKE THE MACRO TIME;

PROC FREQ DATA-HRSAMPESAMPSIZE;
TABLES HRSAMPLE;
TITLE1l 'FREQUENCY DISTRIBUTION FOR';
TITLE2 "HOURS TO COLLECT A SET OF RUNOFF VOLUME DATA';
TITLE3 "SAMPLES OF SIZE &SAMPSIZE™;
L 74
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