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ABSTRACT

New Skyrme Nucleon-Nucleon Interaction

for the Mean-Field Approximation. (May 2007)

Au Kim Vuong, B.S., Hue University, Viet Nam

Chair of Advisory Committee: Dr. Shalom Shlomo

The effective Skyrme type interactions have been used in the mean-field mod-

els for several decades, and many different parameterizations of the interaction have

been realized to better reproduce nuclear masses, radii, and various other data. To-

day, there are more experimental data of nuclei far from the β stability line. It is time

to improve the prediction power of the Skyrme type effective nucleon-nucleon inter-

actions. In this dissertation, we present the procedure of the fitting of the mean-field

results to an extensive set of experimental data with some constraints on the Skyrme

parameters and some approximations in the Hartree-Fock mean-field to obtain the

parameters of the new Skyrme type effective interactions, namely, KDE and KDE0.

We investigate the long-standing discrepancy of more than 20% between the values of

the incompressibility coefficient Kn.m. obtained within relativistic and non-relativistic

models. We show that this difference is basically due to the differences in values of

the symmetry energy coefficient J and its slope L associated with the relativistic and

non-relativistic models. We also present the results of fully self-consistent Hartree-

Fock based Random Phase Approximation calculations for the centroid energies of

the breathing modes in four nuclei, namely, 90Zr, 116Sn, 144Sm, 208Pb, obtained with

our new Skyrme interaction KDE0. A good agreement with the experimental data is

achieved.
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CHAPTER I

INTRODUCTION

In nuclear physics, the knowledge of the nucleon-nucleon interaction inside the nucleus

is very important for describing the nuclear structure properties. Our understanding

of the nucleon-nucleon potential is still not clear. Basically, the effective nucleon-

nucleon potential can be identified using two approaches. The first one is that the

nucleon-nucleon interaction in nuclear matter is constructed from free nucleon-nucleon

interaction [15, 16, 17]. The second approach which is called the phenomenological

model begins with a parametrized effective interaction. The effective nucleon-nucleon

interactions in case of relativistic mean-field models are generated through the ex-

change of mesons. The parameters of the Lagrangian which represent a system of

interacting nucleons are obtained by fitting procedure to some bulk properties of a

set of spherical nuclei [18]. In the non-relativistic approach, the parameters of the

effective nucleon-nucleon interaction are obtained by fitting the Hartree-Fock mean-

field results to the experimental data. In this dissertation, we concentrate on the

non-relativistic models to study nuclear properties.

Since the first work of Vautherin and Brink [19], who performed fully micro-

scopic self-consistent mean-field Hartree-Fock calculations with the Skyrme type ef-

fective nucleon-nucleon interaction [20, 21, 22], many different parameterizations of

the Skyrme interaction have been realized to better reproduce data on nuclear masses,

radii and other physical quantities. The reason why the effective Skyrme interaction

is popular is due to its simple expression in term of the δ(r1 − r2) interaction, which

makes the calculations in the Hartree-Fock mean-field much simpler. Most of the

The journal model is Physical Review C.
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parameter sets of the Skyrme interaction available in the literature are obtained by

fitting Hartree-Fock results to experimental data on the ground state properties, such

as charge radii and binding energies of a few closed shell nuclei. We point out that the

values obtained for some of the parameters of the Skyrme interaction depend on the

selected set of nuclear data used in the fit. In 1972, Vautherin and Brink produced

two sets of parameters SI and SII [19] by fitting the ground state properties, such

as binding energies and radii, to experimental data for two spherical nuclei 16O and

208Pb. In 1975, Beiner et al. generated SIII, SIV, SV, and SVI parameter sets [23],

using more experimental data, the binding energies and charge radii for 40Ca, 48Ca,

56Ni, 90Zr and 140Ce. The SIII interaction, with its density dependence (α = 1), is

associated with a very high value of the incompressibility coefficient (Kn.m. = 356

MeV). At this time, experimental information about isoscalar giant monopole reso-

nance (ISGMR) was not available. The first experimental measurement of the ISGMR

on 208Pb [24, 25] provided information on the nuclear matter incompressibility coeffi-

cient Kn.m.. The SkM interaction [26], with α ≤ 1/3, was obtained by including this

new experimental data on the monopole energy in the fit. The SkM* [27] which is a

modified interaction of the SkM interaction was generated by also studying the fission

barriers [28] of 240Pu. The self-consistent Hartree-Fock and Random Phase Approx-

imation formalism describe very well the ground state of nuclei and also the giant

resonances states. The incompressibility coefficient Kn.m. which is one of the impor-

tant nuclear matter properties is extracted from the centroid energy of the ISGMR.

With different Skyrme interactions, we have a wide range of values for the incom-

pressibility coefficient Kn.m.. In 1981, Nguyen Van Giai and Sagawa produced two

Skyrme interactions, namely, SGI and SGII [8], by including additional constraints

on the Landau parameters G0 and G′
0. These interactions reproduced quite well the

values of the incompressibility coefficient Kn.m. and of G′
O (Kn.m. = 215 MeV and
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G′
0 = 0.503 for SGII). However, the term t3ρ

αδ(r − r′), leading to the particle-hole

interaction, is not fully anti-symmetric. In 1984, the Skyrme interactions E, Es, Z, Zs

[29] were introduced. These interactions yield values of Kn.m. which are quite high.

More recently, many sets of the Skyrme parameters have been generated, such as,

SkI1-5 [30], SLy4-7,10 [2, 31], SKX [32] and SkO [33], to reproduce the nuclear matter

properties, properties of nuclei at the β-line and of nuclei near the proton/neutron drip

line. For the SKX interaction, the exchange term of the Coulomb energy is neglected,

and the direct term is determined by replacing the point-proton distribution by the

charge distribution. This interaction reproduces well the values for the Coulomb

displacement energy (CDE), which is the binding energy differences between mirror

nuclei. A systematic investigation of Skyrme parameterizations by Stone et al [34]

showed that only 27 out of 87 different sets of Skyrme parameters are appropriate

for the study of the properties of neutron stars. The symmetry energy coefficient J

(at ρ = ρ0) is very important in the study of properties of neutron star. The SKX

interaction is not suitable for the study of neutron stars. The reason is that the

quantity P = 3ρdS
dρ

, which is directly related to the slope of the symmetry energy

coefficient S, is negative for nuclear matter densities ρ below 3ρ0 (ρ0 = 0.16 fm−3).

The SkI1-6, SLy1-10 and SkO Skyrme interactions are suitable for the study of the

properties of neutron stars [34]. However, these sets of Skyrme parameters give very

low values for the CDE because the Coulomb exchange term was included. The family

of Skyrme interactions Skz0-4 [35] were obtained with stability requirements for the

equation of state.

Although the Skyrme type effective nucleon-nucleon interactions have been in-

troduced by parameterizing the interaction as a whole, it is not fully fundamental.

However, the Hartree-Fock mean-field calculations with using Skyrme interaction have

been very successful in studying the ground state properties of nuclei. Today there
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are more experimental data available for nuclei at and far from β-line. Therefore,

it is desirable to generate a new Skyrme type interaction which includes the mer-

its of many sets of existing Skyrme parameters, as we discussed earlier. In our HF

mean-field formalism, there are approximations for the Coulomb interaction and the

center of mass corrections not only to the binding energy and but also to charge radii.

The details of these approximations will be given in Chapter II. We also include the

constraints on the Skyrme parameters by using the stability conditions of the Lan-

dau parameters for symmetric nuclear matter and pure neutron matter. In Landau

theory for the Fermi liquid model, the particle-hole interaction is characterized by

the Landau parameters. The Landau parameters, which are written in terms of the

Skyrme parameters [35, 36], have to satisfy the stability conditions. We also use an

extensive set of experimental data for the fitting. For the first time the experimental

data include the breathing mode energies of the isoscalar giant monopole resonances,

the spin orbit splittings, and the root mean square radii for the valence neutron. The

details of selection of the available experimental data will be given in Chapter II.

The procedure of fitting the HF mean-field results to the a set of experimental

data is very important for the quality of the Skyrme parameters. We introduce for

the first time the simulated annealing method (SAM), which is a generalization of a

Monte Carlo simulation based on the Metropolis algorithm [37], initially developed

for studying the equation of state (EOS). The SAM is a popular method for the op-

timization problems of large scale, especially for searching the global extrema hidden

among many local extrema. It has been used in many different area of science. The

SAM is very close to the the thermodynamics processes. In this process, the liquid is

initially at high temperature and the molecules inside the liquid move freely. If the

temperature decreases slowly, the thermal motion of molecules is lost and they form

an ideal crystal. In other word, the liquid reaches the state of minimum energy. We
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use the SAM to obtain the parameters of the Skyrme type effective nucleon-nucleon

interaction by searching the global minimum in the hyper-surface of the χ2 function.

The detail of the χ2 function will be discussed in Chapter III.

It is well known that the HF mean-field model describes well the ground-state

properties of nuclei. The existence of collective motion is a common feature of quan-

tum many-body system. Studies of collective modes in nuclei improve our knowledge

on the nuclear matter properties, excited states, and nuclear forces. The giant reso-

nance states are the elementary vibrational collective modes which are described as

the resonance peaks in the transition strength distribution of a weak external field

that excites the nucleus. The giant resonance states are classified by the the amount

of total angular momentum J , spin ∆S, and isospin ∆T transferred to the nuclear

ground state as a result of the excitation. In this dissertation, we study only the case

of electric isoscalar resonance, where ∆S = 0, and ∆T = 0. One of the theoretical

models providing a good microscopic description of nuclear collective giant resonance

is the Random Phase Approximation (RPA). In the RPA, the excited states of nuclei

are considered as a superposition of one particle - one hole excitations of a correlated

ground state. All properties of the ground states of nuclei are well described by the

self-consistent mean-field, therefore it is obvious to build a formulation of RPA on

the single particle wave function basis of the HF model. The HF-RPA has been ex-

tensively studied for many years and has been a successful formalism for describing

the properties of the ground state and the excitation states, especially the giant res-

onances. The study of collective modes gives important information on properties of

the nuclear system. Among different collective modes, the isoscalar giant monopole

resonance (ISGMR) and isoscalar giant dipole resonance (ISGDR) are very important

in the study of the nuclear matter incompressibility coefficient Kn.m.. It is very desir-

able to know an accurate value of Kn.m., which is mainly extracted from the centroid
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energy of the ISGMR, in order to improve our knowledge of the nuclear matter equa-

tion of state (EOS) around the saturation point. There have been many experimental

works carried out in order to determine an accurate value of the centroid energy E0 of

ISGMR. The recent very accurate experimental results [11, 12, 38] for E0 allow us to

pin down the value of the incompressibility coefficient Kn.m.. There are many theoret-

ical approaches for determining the value of Kn.m. in relativistic and non-relativistic

models. In the relativistic models based RPA [39, 40], the value of Kn.m. is in the

range of 250− 270 MeV. The recent non-relativistic HF-RPA calculations using the

Skyrme interaction [41, 42] gives the value of Kn.m. about 210−220 MeV. We analyze

this discrepancy in the value of Kn.m. between these models in Chapter IV and provide

a simple explanation. We also carry out the fully self-consistent HF-RPA calculation,

using our new set of Skyrme parameters, for the centroid energy of the ISGMR for

90Zr, 116Sn, 144Sm, and 208Pb, and compare our results to experimental data and to

the values obtained using the NL3 and SGII interactions.

The structure of this dissertation is the following. In Chapter II we present the

Hartree-Fock method with Skyrme interaction and describe some approximations in

the mean-field and constraints that will be used in the next chapter. In Chapter

III the simulated annealing method, which is used to obtain the new set of Skyrme

parameters, is described. In Chapter IV the Random Phase Approximation is summa-

rized briefly and the results of fully self-consistent of HF-RPA calculations of strength

functions for four nuclei are presented. The conclusions are given in Chapter V.
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CHAPTER II

HARTREE-FOCK WITH SKYRME INTERACTION

A. Hartree-Fock formalism

The basic idea of the Hartree-Fock method is that the mutual interactions among

nucleons leads to an average potential felt by each one of the nucleons. The nucleus

is a many-body system of fermions so the wave function of the nucleus of any state

must be antisymmetric under the interchange of the coordinates of any two nucleons.

In the Hartree-Fock (HF) approximation the ground state wave function Φ of the

nucleus with A nucleons is a Slater determinant built from the single-particle wave

function φi(ri, σi, qi), where ri, σi, qi are the spacial, spin, and isospin coordinates of

the i-th nucleon, respectively. For a proton qi = 1
2

and for a neutron qi = −1
2
.

Φ =
1√
A!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1, σ1, q1) φ2(r1, σ1, q1) . . . φA(r1, σ1q1)

φ1(r2, σ2, q2) φ2(r2, σ2, q2) . . . φA(r2, σ2, q2)

...
...

...
...

φ1(rA, σA, qA) φ2(rA, σA, qA) . . . φA(rA, σA, qA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.1)

The ground state wave function Φ gives the lowest possible expectation value of the

total Hamiltonian. The total Hamiltonian of the nucleus is:

H = T + V (2.2)

where the kinetic energy operator

T = − h̄
2

2

A
∑

i=1

−→∇i

2

mqi

(2.3)
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and the two-body interaction V (ri, rj) is written in term of the effective nucleon-

nucleon interaction V NN
ij and the Coulomb nucleon-nucleon interaction V NN

Coulomb

V =
1

2

∑

i6=j

V (ri, rj) =
1

2

∑

i6=j

(V NN
ij + V NN

Coulomb), (2.4)

where the Coulomb nucleon-nucleon interaction is written as

V NN
Coulomb =

e2

4

A
∑

i,j=1

q2
ij − qij
|ri − rj|

, qij = qi + qj. (2.5)

The total energy E is obtained as the expectation of the total Hamiltonian with the

total wave function Φ

E = 〈Φ|H|Φ〉

= − h̄2

2m

A
∑

i=1

∫

φ∗
αi

(r)4φαi
(r)dr +

A
∑

i<j

∫

φ∗
αi

(r)φ∗
αj

(r′)V (r, r′)φαi
(r)φαj

(r′)drdr′

−
A
∑

i<j

∫

φ∗
αi

(r)φ∗
αj

(r′)V (r, r′)φαi
(r′)φαj

(r)drdr′. (2.6)

Now we apply the variation principle to derive the Hartree-Fock equations with the

constraint that the number of nucleons is conserved.

A
∑

i=1

∫

|φi(r)|2dr =
∑

σ,q

∫

ρσ,q(r)dr = A. (2.7)

We have

δ[E −
∑

i

εαi

∫

φ∗
αi

(r)φαi
(r)dr] = 0, (2.8)

where εαi
is the Lagrangian. We carry out the variation with respect to the single-

particle function,

δ =
∂

∂φ∗
αi

(r)
δ(φ∗

αi
(r)). (2.9)

We obtain the Hartree-Fock equations for the single-particle wave functions,

− h̄2

2m
4φαi

(r) +
A
∑

j

∫

φ∗
αj

(r′)V (r, r′)φαi
(r)φαj

(r′)dr′



9

−
A
∑

j

∫

φ∗
αj

(r′)V (r, r′)φαi
(r′)φαj

(r)dr′ = εαi
φαi

(r). (2.10)

The Lagrangian turn out to be the single-particle energies. The above Hartree-Fock

equations (2.10) can be rewritten in the form,

− h̄2

2m
4φαi

(r) + UH(r)φi(r)−
∫

UF (r, r′)φi(r
′)dr′ = εiφi(r), (2.11)

with the direct potential affecting the nucleon motion in the nucleus, UH(r),

UH(r) =
∑

i∈F

∫

φ∗
i (r

′)V (r, r′)φi(r
′)dr′, (2.12)

and the exchange potential UF (r, r′),

UF (r, r′) =
∑

i∈F

φ∗
i (r

′)V (r, r′)φi(r). (2.13)

The iterative Hartree-Fock method is that for a given effective potential V (r, r′), we

start from an initial guess for the single-particle wave functions φi(r), we calculate

UH(r), UF (r, r′) and solve the Hartree-Fock equations to get the new values of the

single-particle wave functions and the single particle energies. One can proceed in

this way until reaching convergence with a given certain accuracy. At the end, we

obtain the single-particle wave functions φi(r), the single-particle energies εi, and the

minimal value of the total energy. In the next section we will derive the Hartree-Fock

equations for the Skyrme type effective nucleon-nucleon interaction.

B. Hartree-Fock with Skyrme interaction

In this thesis we adopt the following standard form for the Skyrme type effective NN

interaction [19, 31]:

V NN
ij = t0

(

1 + x0P
σ
ij

)

δ(ri − rj)
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+
1

2
t1
(

1 + x1P
σ
ij

)

×
[←−
k

2

ijδ(ri − rj) + δ(ri − rj)
−→
k

2

ij

]

+t2
(

1 + x2P
σ
ij

)←−
k ijδ(ri − rj)

−→
k ij

+
1

6
t3
(

1 + x3P
σ
ij

)

ρα
(

ri + rj

2

)

δ(ri − rj)

+iW0
←−
k ijδ(ri − rj)(−→σ1 +−→σ2)× −→k ij, (2.14)

where ti, xi, α andW0 are the parameters of the Skyrme interaction; P σ
ij = 1

2
(1 + ~σi~σj)

is the spin exchange operator; ~σi is the Pauli spin operator;
−→
k ij = −i(−→∇ i − −→∇j)/2

and
←−
k ij = i(

←−∇ i−←−∇ j)/2 are the momentum operators acting on the right and on the

left, respectively. The parameters of the Skyrme interaction are obtained by fitting

the Hartree-Fock results to the experimental data. In Table I, we give some of the

existing sets of the Skyrme parameters. The total energy E of the nucleus is given

by

E = 〈Φ|H|Φ〉 = 〈Φ|T +
1

2

∑

ij

(V NN
ij + V NN

Coulomb)|Φ〉

=
∫

[K(r) +HSkyrme(r) +HCoulomb(r)] dr =
∫

H(r)dr. (2.15)

The kinetic energy density is

K(r) =
h̄2

2mp

τp(r) +
h̄2

2mn

τn(r). (2.16)

The expression for the local energy density HSkyrme is derived in details in Appendix

A and [19].

HSkyrme = H0 +H3 +Heff +Hfin +Hso +Hsg, (2.17)

where H0 is the zero-range term, H3 the density-dependent term, Heff an effective-

mass term, Hfin a finite-range term, Hso a spin-orbit term, and Hsg is a term that

is due to tensor coupling with spin and gradient. For the Skyrme interaction of Eq.
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(2.14), we have,

H0 =
1

4
t0
[

(2 + x0)ρ
2 − (2x0 + 1)(ρ2

p + ρ2
n)
]

, (2.18)

H3 =
1

24
t3ρ

α
[

(2 + x3)ρ
2 − (2x3 + 1)(ρ2

p + ρ2
n)
]

, (2.19)

Heff =
1

8
[t1(2 + x1) + t2(2 + x2)] τρ +

1

8
[t2(2x2 + 1)− t1(2x1 + 1)] (τpρp + τnρn),

(2.20)

Hfin =
1

32
[3t1(2 + x1)− t2(2 + x2)] (∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)]

[

(
−→∇ρp)

2 + (
−→∇ρn)2

]

, (2.21)

Hso =
W0

2
[J · ∇ρ+ Jp · ∇ρp + Jn · ∇ρn] , (2.22)

Hsg = − 1

16
(t1x1 + t2x2)J

2 +
1

16
(t1 − t2)

[

J2
p + J2

n

]

. (2.23)

where the nucleon ρq(r), the kinetic energy τq(r), and the current Jq(r) densities are

obtained from the single-particle wave function φi(ri, σi, qi);

ρq(r) =
∑

iσ

φ∗
i (r, σ, q)φi(r, σ, q), ρ(r) =

∑

q

ρq(r), (2.24)

τq(r) =
∑

iσ

−→∇φ∗
i (r, σ, q)

−→∇φi(r, σ, q), τ(r) =
∑

q

τq(r), (2.25)

Jq(r) = −i
∑

iσσ′

φ∗
i (r, σ, q)

[−→∇φi(r, σ
′, q)× 〈σ|~σ|σ′〉

]

, J(r) =
∑

q

Jq(r). (2.26)

The total energy density H(r) is

H(r) =
h̄2

2mp

τp(r) +
h̄2

2mn

τn(r) +HSkyrme(r) +HCoulomb(r). (2.27)

The symmetric infinite nuclear matter is considered as a Fermi gas in a volume V

large enough so that the surface effects can be neglected, and the ground state wave

function is a Slater determinant built from plane wave states with the momentum ~k,

which has a range from 0 to the Fermi momentum ~kf . We have Z = N , no Coulomb

field, ρp(r) = ρn(r) = 1
2
ρ(r), τp(r) = τn(r) = 1

2
τ(r), spin current densities vanish, and
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TABLE I. Some of the existing sets of the Skyrme parameters.

Parameter SI SII SkM SGII

t0(MeV·fm3) -1057.3000 -1169.9000 -2645.0000 -2645.0000

t1 (MeV·fm5) 235.9000 585.6000 385.0000 340.0000

t2 (MeV·fm5) -100.0000 -27.1000 -120.0000 -41.9000

t3(MeV·fm3(1+α)) 14463.5000 9331.1000 15595.0000 15595.000

x0 0.5600 0.3400 0.0900 0.0900

x1 -0.0588

x2 1.4250

x3 0 0.06044

W0 (MeV·fm5) 120.0000 105.0000 130.00 105.0000

α 1.0 1.0 0.16667 0.16667
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with assumption mp = mn = m. The total energy density becomes

H(r) =
h̄2

2m
τ(r) +

3

8
t0ρ

2 +
1

16
t3ρ

α+2 +
1

16
ρτΘ, (2.28)

with

τ(r) =
3

5
k2

fρ, ρ(r) =
2

3π2
k3

f , Θ = 3t1 + t2(5 + 4x2). (2.29)

So the total binding energy per nucleon in nuclear matter is

E

A
=
H(r)

ρ
=

3h̄2

10m

(

3π2

2

)2/3

ρ2/3 +
3

8
t0ρ+

1

16
t3ρ

α+1 +
3

80

(

3π2

2

)2/3

Θρ5/3. (2.30)

The saturation point of the symmetric infinite nuclear matter is very important for

the construction of the Skyrme type effective interaction. The saturation density ρ0

is obtained from the saturation condition

ρ2
0

(

dE/A

dρ

)

ρ=ρ0

= 0, (2.31)

or

h̄2

5m

(

3π2

2

)2/3

ρ
5/3
0 +

3

8
t0ρ

2
0 +

α+ 1

16
t3ρ

α+2
0 +

1

16

(

3π2

2

)2/3

Θρ
8/3
0 = 0. (2.32)

The experimental value of the saturation density is ρ0 = 0.16 ± 0.005 fm−3. From

this value we can determine the value of the Fermi momentum kf using (2.29). The

incompressibility coefficient Kn.m. of nuclear matter is defined as,

Kn.m. = k2
f

∂2
(

E
A

)

ρ0

∂k2
f

= 9ρ2
0

(

∂2 E
A

∂ρ2

)

ρ0

. (2.33)

In term of the Skyrme parameters

Kn.m. = −3h̄2

5m

(

3π2

2

)2/3

ρ
2/3
0 +

9α(α+ 1)

16
t3ρ

α+1
0 +

3

8

(

3π2

2

)2/3

Θρ
5/3
0 . (2.34)

The experimental results of the giant breathing mode in nuclei allow us to estimate
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the value of the compressibility coefficient Kn.m.. Detail discussion on the incompress-

ibility coefficient Kn.m. will be given in the next section. The isoscalar effective mass

is defined as (from the total binding energy per nucleon Eq. (2.30))

m∗ = m
(

1 +
m

8h̄2ρ0Θ
)−1

. (2.35)

The total binding energy per nucleon is rewritten as

E

A
=

3h̄2

10m∗

(

3π2

2

)2/3

ρ2/3 +
3

8
t0ρ+

1

16
t3ρ

α+1. (2.36)

For the nuclear matter with Z 6= N , we expand the proton, neutron densities

ρq(r) = 2
3π2kf

3
q and the kinetic density τ(r) = 3

5
k2

fρq = 3
5
(3π2

2
)2/3ρq

5/3 around the

saturation density ρ0 = ρp + ρn. We limit ourself to the second order term

E

A
=
(

E

A

)

ρ0

+ J
(

N − Z
A

)2

, (2.37)

where
(

E
A

)

ρ0

is given in Eq. (2.36), and J is the symmetry energy coefficient

J =
h̄2

6m

(

3h̄2

2

)2/3

ρ2/3 − 1

8
t0(2x0 + 1)ρ +

1

24

(

3π2

2

)2/3

[t2(5 + 4x2)− 3t1x1] ρ
5/3

− 1

48
t3(2x3 + 1)ρα+1. (2.38)

The Hartree-Fock equations for the Skyrme interaction are obtained from the

fact that the total energy is stationary with respect to the normalized single-particle

wave-function φi(r). It requires that

δ

δρσ,q

[

E −
∑

i

εi

∫

ρσ,qdr

]

= 0. (2.39)

We have

δE =
∑

σ,q

∫

[

h̄2

2m∗
q(r)

δτσq(r) + Uq(r)δρσq(r) +Wq(r)δJσq(r)

]

dr, (2.40)
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where δτσq(r), δρσq(r), δJσq(r) are the variations of spin-isospin kinetic energy, matter,

and the spin current densities. The effective mass m∗
q(r), the central potential Uq(r),

and the spin-orbit potential Wq(r) are expressed in terms of Skyrme parameters,

matter density, charge density and the current density as,

h̄2

2m∗
q(r)

=
h̄2

2mq
+

1

4

[

t1(1 +
x1

2
) + t2(1 +

x2

2
)
]

ρ(r)

−1

4

[

t1(
1

2
+ x1)− t2(

1

2
+ x2)

]

ρq(r), (2.41)

Uq(r) = t0

(

1 +
x0

2

)

ρ(r)− t0
(

1

2
+ x0

)

ρq(r) +
1

4

[

t1

(

1 +
x1

2

)

+ t2

(

1 +
x2

2

)]

τ(r)

−1

4

[

t1

(

1

2
+ x1

)

+ t2

(

1

2
+ x2

)]

τq(r) +
α + 2

12
t3

(

1 +
x3

2

)

ρα+1(r)

− α

12
t3

(

1

2
+ x3

)

ρα−1(r)
(

ρ2
p(r) + ρ2

n(r)
)

− 1

6
t3

(

1

2
+ x3

)

ρα(r)ρq(r)

−1

8

[

3t1

(

1 +
x1

2

)

− t2
(

1 +
x2

2

)]−→∇2
ρ(r)

+
1

8

[

3t1

(

1

2
+ x1

)

+ t2

(

1

2
+ x2

)]−→∇2
ρq(r)

−1

2
W0

[−→∇J(r) +
−→∇Jq(r)

]

+ δq, 1
2

e2
∫

ρch.(r)

| r− r′ |dr
′, (2.42)

Wq(r) =
1

2
W0

[−→∇ρ(r) +
−→∇ρq(r)

]

+
1

8
(t1 − t2)Jq(r)−

1

8
(t1x1 − t2x2)J(r). (2.43)

Because of the time reversal invariance, the variations δτσq(r), δρσq(r), and δJσq(r)

are written as

δτσq(r) = δ
∑

i

−→∇φ∗
i (r, σ, q)

−→∇φi(r, σ, q) =
∑

iσ′

−→∇φi(r, σ
′, q)
−→∇δφ∗

i (r, σ
′, q), (2.44)

δρσq(r) =
∑

i

[δφ∗
i (r, σ, q)φi(r, σ, q) + φ∗

i (r, σ, q)δφi(r, σ, q)]

=
∑

i

[

δφ∗
i (r, σ, q)φi(r, σ, q) + φ∗

i (r, σ, q)δφi(r, σ, q)
]

=
∑

i

[δφ∗
i (r, σ, q)φi(r, σ, q) + φi(r,−σ, q)δφ∗

i (r,−σ, q)]
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=
∑

i,σ′

φi(r, σ
′, q)δφ∗

i (r, σ
′, q), (2.45)

δJσq(r) = −iδ
∑

iσ′′

φ∗
i (r, σ, q)

[−→∇φi(r, σ
′′, q)〈σ|~σ|σ′′〉

]

= −i
∑

iσ′σ′′

δφ∗
i (r, σ

′, q)
[−→∇φi(r, σ

′′, q)〈σ|~σ|σ′′〉
]

. (2.46)

Substituting all variations in Eq. (2.40), we obtain

∑

i,σ′

∫

drδφ∗
i (r, σ

′, q)

[

h̄2

2m∗
q(r)

−→∇φi(r, σ
′, q)
−→∇ + Uq(r)φi(r, σ

′, q)

−iWq(r)
∑

σ′′

(−→∇ × 〈σ′|~σ|σ′′〉
)

φi(r, σ
′′, q)− εiφi(r, σ

′, q)

]

= 0. (2.47)

Since all the coefficients of the variation δφ∗
i (r, σ

′, q) vanish, we have

∑

i,σ′

∫

dr

[

h̄2

2m∗
q(r)

−→∇φi(r, σ
′, q)
−→∇ + Uq(r)φi(r, σ

′, q)

−iWq(r)
∑

σ′′

(−→∇ × 〈σ′|~σ|σ′′〉
)

φi(r, σ
′′, q)− εiφi(r, σ

′, q)

]

= 0. (2.48)

Integrating by parts, we finally obtain the equations:

[

−−→∇ h̄2

2m∗
q(r)

−→∇ + Uq(r)− iWq(r)
(−→∇ × ~σ

)

]

φi(r, q) = εiφi(r, q). (2.49)

These equations are known as Hartree-Fock equations, by solving these equation

we can obtain the single-particle wave functions φi(r, σ, q) with the single-particle

energies εi. From here we can build the total wave function Φ and know the properties

of the ground state nucleus. All the nuclei considered in this dissertation are spherical

closed shell nuclei. The single-particle wave function φi(ri, σi, q) is written in term of

the radial function Rα(r), spherical harmonic function Yjlm(r, σ), and isospin function

χmq
(q), as

φ(r, σ, q) =
Rα(r)

r
Yjlm(r, σ)χmq

(q), (2.50)
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where α stands for quantum numbers n, j, l, mq, and

Yjlm(r, σ) =
∑

ml,ms

〈l1
2
mlms|jm〉Ylml

(r)µms
(σ), (2.51)

with

χmq
= δq,mq

; µms
(σ) = δδ,ms

. (2.52)

We also have
∑

m

Y ∗
jlm(r, σ)Yjlm(r, σ) =

2j + 1

4π
, (2.53)

τ(r) =
1

4π

∑

n,jα,lα

(2jα + 1)





(

dRα(r)

dr

)2

+
lα(lα + 1)

r2
R2

α(r)



 , (2.54)

Jq(r) = Jq(r)r = −i
A
∑

i=1

φ∗
i (r, q)

r

r

(−→∇ × ~σ
)

φi(r, q)
r

r
, (2.55)

with

Jq(r) =
1

4πr2

∑

n,jα,lα

(2jα + 1)
[

jα(jα + 1)− lα(lα + 1)− 3

4

]

R2
α(r). (2.56)

The Hartree-Fock equations become

h̄2

2m∗
q(r)

[

−R′′
α(r) +

lα(lα + 1)

r2
Rα(r)

]

− d

dr

(

h̄2

2m∗
q(r)

)

R′
α(r)

+



Uq(r) +
1

r

d

dr

(

h̄2

2m∗
q(r)

)

+

[

jα(jα + 1)− lα(lα + 1)− 3
4

]

r
Wq(r)



Rα(r)

= εαRα(r). (2.57)

Using iteration to solve these equations, we can find the radial part of the single-

particle wave functions of the states α.
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C. Approximations and constraints

1. Coulomb energy

The Coulomb energy can be written as a sum of a direct and an exchange terms

〈Φ|1
2

∑

i6=j

V NN
Coulomb|Φ〉 =

e2

2

∫

drdr′
[

ρch.(r)ρch.(r
′)− |ρch.(r, r

′)|2
|r− r′|

]

=
∫

HCoulomb(r)dr, (2.58)

HCoulomb(r) = Hdir.
Coulomb(r) +Hex.

Coulomb(r). (2.59)

where ρch.(r) is the local charge density, in the case of the proton is treated as a point

charge, we have ρch.(r) = ρp(r), and the ρch.(r, r
′) is the non-local charge density

ρch.(r, r
′) =

∑

i,σ,σ′

φ∗
i (r, σ,

1

2
)φi(r

′, σ′,
1

2
). (2.60)

The direct term of the Coulomb energy density is written as

Hdir.
Coulomb(r) =

1

2
e2ρp(r)

∫

ρp(r
′)d3r′

| r− r′ | , (2.61)

and with the Slater approximation [43], the exchange term is given as

Hex.
Coulomb(r) = −3

4
e2ρp(r)

[

3ρp(r)

π

]1/3

. (2.62)

The contributions of the Coulomb self-interaction in both Eqs. (2.61) and (2.62) have

opposite signs and will cancel out in Eq. (2.59). It is obvious that if one ignores the

exchange term in Eq. (2.59), the direct term has the contribution of self interaction

which has to be removed. The direct term of the Coulomb interaction given by Eq.

(2.61) is proportional to Z2 and not to Z(Z − 1), as it should be for a direct term

[44, 45]. For the Coulomb displacement energy (CDE) of mirror nuclei, the magnitude

of the self-interaction term is CDE/(2Z), this means that one has a spurious increase



19

in the calculated CDE of about 6.3% and 2.5% for the A=17 and 41 systems of mirror

nuclei, respectively.

It was first shown in Ref. [45, 46] that within the mean-field approximation,

adjusted to reproduce the experimental values of the charge rms radii, the calculated

CDE of analog states which is obtained by using Eq. (2.59) are smaller than the

corresponding experimental values by about 7%. This discrepancy which is referred

to as the Nolen-Schiffer anomaly [46] can be understood when the contributions that

are due to long-range correlations (LRC) and the charge symmetry breaking (CSB)

in the NN interaction are taken into account (Refs. [45, 47]). The CSB is due to the

fact that the NN interaction is not charge independent. In fact the neutron-neutron

(n− n) interaction is more attractive than the proton-proton (p− p) interaction. We

know that for the mirror nuclei with A=17 and A=41, the contribution of each the

LRC and the CSB is about half of the discrepancy between theory and experiment

[45]. The magnitude of the bona fide exchange Coulomb term is about the same as

that due to LRC, but with opposite sign. So, if one neglects the bona fide Coulomb

exchange term, although this way does not solve the discrepancy between theory and

experiment, one can account for the contribution of LRC. And it was also shown in

Ref. [48] that by dropping the Coulomb exchange term in the form of Eq. (2.62) from

the Coulomb interaction density Eq. (2.59), (as is the case for the SKX interaction),

one could reproduce the experimental values of the CDE. We have to emphasize that

by accepting the form of Eq. (2.61) for the Coulomb direct term one not only ne-

glects the bona fide Coulomb exchange term, but also adds the spurious contribution

of the self-interaction term in the Coulomb interaction Eq. (2.59). Therefore, the

unphysical neglect of the bona fide Coulomb exchange term together with the spu-

rious contribution of the self-interaction term results in a contribution to CDE that

is similar in magnitude to that obtained from the LRC and CSB terms. Therefore,



20

in this dissertation, only the direct term of the Coulomb energy density given in Eq.

(2.61) is used.

2. Center of mass corrections to the binding energy and charge radii

The expectation value of the mean-field Hamiltonian with respect to the total wave

function Φ gives us not only the ground state energy but also the energy of the nucleus

moving around its center of mass (CM) and the rotation energy of the nucleus as a

whole. All the nuclei in this dissertation are spherical nuclei, so the rotation energy

is zero. Calculating the exact value of the ground state energy as the expectation

value of the Hamiltonian is very difficult because the contribution from the motion

of the nucleons around the center of mass and the motion of the center of mass

in the total wave function Φ is not clearly separated. An exact way which can

restore the translational invariance is to use the projection method, but it is extremely

difficult. The HF method applied to finite nuclei violates the translational invariance,

because the center of mass motion is not separated and thus introduces the spurious

states. Thus, one has to extract the contributions of the CM motion to the total

binding energy B, radii and other observables. Therefore, the purpose of our work

is to develop simple schemes for the CM corrections to various observables. In the

literature, one usually makes the CM corrections only to the binding energy and not

to the radii. However, the CM corrections to the rms radii for light nuclei may be

as large as 2% [44]. In this dissertation we carry out the CM corrections not only to

the binding energy but also to charge rms radii used in the fit for determining the

Skyrme parameters.

For the CM correction to the total binding energy, one must subtract from it the
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so-called CM energy, given as,

ECM =
1

2mA
〈P2〉. (2.63)

One good approximation is that the ground state energy is calculated by subtracting

the expectation value of the center of mass kinetic energy from the expectation value

of the total Hamiltonian,

E = 〈Φ|T +
1

2

∑

ij

(V NN
ij + V NN

Coulomb)|Φ〉 − 〈Φ|
P2

cm

2M
|Φ〉, (2.64)

with M = mA is the total mass of nucleus and the total linear momentum operator

P is given as

P = −ih̄
A
∑

i

−→∇ i. (2.65)

We have

K− P2

2mA
=

A
∑

i

p2
i

2m
−
(

∑A
i pi

)2

2mA
=

A
∑

i

p2
i

2m
− 1

2mA





A
∑

i

p2
i −

A
∑

i6=j

pipj





=
1

2m

(

1− 1

A

) A
∑

i

p2
i −

1

2mA

A
∑

i6=j

pipj. (2.66)

Traditionally, one simplifies the calculation by taking into account only the one-

body terms. It means that in the kinetic energy term, the factor 1
m

is replaced by

1
m

(

1− 1
A

)

. The second term in Eq. (2.66) is the two-body term, which is difficult to

calculate. The effects of neglecting the two-body term of Eq. (2.66) are compensated

by renormalization of the force parameters, and thus induce some correlations in

the values of the parameters. This approach may induce in the forces an incorrect

trend with respect to A that becomes visible in the nuclear matter properties. It

was shown in Ref. [49] that this approximation which is an oversimplified treatment

of ECM obtained by re-normalizing the nucleon mass appearing in the kinetic-energy

term gives a larger value of the surface-energy coefficient than those obtained using
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the full CM correction. For the case of the super deformed states, this approach also

increases the differences in the deformation energy that becomes quite large. Very

recently, it was also found [50] that a large value of the surface-energy coefficient will

give a smaller value for the critical density. Therefore an appropriate and simple

scheme to evaluate Eq. (2.63) is very much needed.

We note that it was shown in Ref. [2] that the SLy6, SLy7 and SLy10 interactions

were obtained by including the one- and two-body terms of Eq. (2.63). In the

harmonic oscillator (HO) approximation, which means that the single-particle wave

function is treated as the HO wave function, the center of mass energy ECM of Eq.

(2.63) is given as

EHO
CM =

3

4
h̄ω. (2.67)

A value of h̄ω = 41A−1/3 MeV is used in many relativistic mean-field calculations

[10, 51]. The SKX interaction was obtained in in Ref. [32] by modifying the oscillator

frequency as h̄ω = 45A−1/3 − 25A−2/3 MeV. However, this modification gives an

overestimated value for the binding energy of light nuclei (e.g., 16O and 40Ca) by

about 1− 2 MeV, which is very significant.

We also use the HO approximation but give a simple and consistent scheme to

evaluate the ECM. We calculated the oscillator frequency h̄ω in Eq. (2.67) by using

the mean-square mass radii 〈r2〉 obtained in the HF approach as

h̄ω =
h̄2

mA〈r2〉
∑

i

[Ni +
3

2
], (2.68)

where the sum runs over all the occupied single-particle states for the protons and

neutrons and Ni is the oscillator quantum number. We would like to emphasize that

this approach is very reliable even for the nuclei away from the β-stable line, where

the values of the rms radii deviate from the A1/3 law.
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In order to compare the full CM correction to that evaluated in this scheme,

we calculated the total binding energy for the SLy7 interaction using our simple

approximation for the CM correction, Eq. (2.68), and compare them with those

given in Ref. [2], obtained by using one- and two-body terms of the Eq. (2.63).

We found that for the 16O, 40Ca, 132Sn and 208Pb nuclei the total binding energy

B = 128.65 (128.55), 344.98 (344.90), 1102.38 (1102.77), and 1636.29 (1636.76) MeV,

respectively, where the values in parenthesis are taken from Ref. [2]. These results

clearly show that the CM correction to the binding energy can be reliably estimated

using Eqs. (2.67) and (2.68).

We now consider the CM correction to the charge rms radii. The mean-square

radius for the point-proton distribution corrected for the CM motion was obtained in

Ref. [44], and is given as

〈r2
p〉 = 〈r2

p〉HF −
3

2νA
, (2.69)

where, ν = mω/h̄ is the size parameter. Therefore the corresponding mean-square

charge radius to be fitted to the experimental data is obtained as

〈r2
ch.〉 = 〈r2

p〉HF −
3

2νA
+ 〈r2〉p +

N

Z
〈r2〉n +

1

Z

(

h̄

mc

)

∑

nljτ

(2j + 1)µτ 〈~σ ·~l〉lj, (2.70)

where, 〈r2〉p and 〈r2〉n are the mean-squared radii of the proton and neutron charge

distributions, respectively. The last term in Eq. (2.70) is due to the spin-orbit effect

[52]. We use, 〈r2〉n = −0.12 fm2 and the recent [53] value of 〈r2〉p = 0.801 fm2.

3. Critical density

In this section we estimate the value of the critical density ρcr. which will be included

in the fit to determine the parameters of Skyrme interaction by using the stability

conditions of the Landau parameters for the symmetric nuclear matter and pure



24

neutron matter. In the Landau’s theory for an infinite nuclear matter, the particle-

hole interaction is given by [54]

Vp−h = δ(r1 − r2)N
−1
0

∑

l

[Fl + F ′
l q1q2 +Gl~σ1~σ2 +G′

l(~σ1~σ2)(q1q2)]Pl(cosθ), (2.71)

with

N−1
0 =

h̄2

2m∗

π2

kf
, (2.72)

where Fl, F
′
l , Gl and G′

l are Landau parameters, l is a multi-polarity, N0 is the number

of state per unit volume. The stability condition are given as [54],

Xl > −(2l + 1), (2.73)

where, Xl are the Landau parameters.

We know that the Skyrme interaction only contains mono-polar and dipolar

contributions to the particle-hole (ph) interaction then Xl = 0 for l > 1. Therefore,

we have 12 different Landau parameters, 8 parameters Fl, F
′
l , Gl and G′

l (l = 0, 1)

for the symmetric nuclear matter and 4 parameters F
(n)
l , G

(n)
l (l = 0, 1) for the pure

neutron matter. These Landau parameters Xl have to satisfy the inequality condition

given by Eq. (2.73). All the Landau parameters can be written in terms of the

Skyrme parameters, see Refs. [35, 36]. The Landau parameters for the symmetric

nuclear matter are:

F0 =
[

3

4
t0 +

1

16
(α + 1)(α+ 2)t3ρ

α
]

2m∗kf

π2h̄2 − F1, (2.74)

G0 =
[

1

4
t0(2x0 − 1) +

1

24
t3ρ

α(2x3 − 1)
]

2m∗kf

π2h̄2 −G1, (2.75)

F ′
0 =

[

−1

4
t0(2x0 + 1)− 1

24
t3ρ

α(2x3 − 1)
]

2m∗kf

π2h̄2 − F ′
1, (2.76)

G′
0 =

[

−1

4
t0 −

1

24
t3ρ

α
]

2m∗kf

π2h̄2 −G′
1, (2.77)
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F1 = −3T0
m∗

h̄2 ρ, (2.78)

G1 = −3T1
m∗

h̄2 ρ, (2.79)

F ′
1 = 3T2

m∗

h̄2 ρ, (2.80)

G′
1 = 3T3

m∗

h̄2 ρ. (2.81)

The Landau parameters for the pure neutron matter are:

F
(n)
0 =

[

1

2
t0(1− x0) +

1

24
(α + 1)(α+ 2)t3ρ

α(1− x3)
]

2m∗kf

π2h̄2 − F
(n)
1 , (2.82)

G
(n)
0 =

[

1

2
t0(x0 − 1) +

1

12
t3ρ

α(x3 − 1)
]

2m∗kf

π2h̄2 −G
(n)
1 , (2.83)

F
(n)
1 = −3(T0 − T2)

m∗
n

h̄2 ρ, (2.84)

G
(n)
1 = −3(T1 − T3)

m∗
n

h̄2 ρ. (2.85)

Here we have defined,

T0 =
1

8
[3t1 + t2(5 + 4x2)] , (2.86)

T1 =
1

8
[t1(x1 − 1) + t2(2x2 + 1)] , (2.87)

T2 =
1

8
[t1(2x1 + 1)− t2(2x2 + 1)] , (2.88)

T3 = t1 − t2, (2.89)

h̄2

m∗
n

=
h̄2

m
+ (T0 − T2)ρ. (2.90)

We can obtain the values of the Landau parameters at any density for a given set of

the Skyrme parameters. Therefore, the critical density is the maximum density up

to which all the stability (inequality) conditions are met can be easily determined.

There are many approximations and improvements that have been made to

achieve more realistic Skyrme parameters. In Ref. [35], the stability requirements of

the equation of state (EOS) defined by the inequality conditions for the Landau pa-



26

rameters for symmetric nuclear matter and pure neutron matter was used to constrain

the Skyrme parameters. It means that the Skyrme parameters which are not well de-

termined by fitting the results of Hartree-Fock calculations to a set of experimental

data can be restricted with a condition that the inequality conditions are satisfied up

to a maximum value of the nuclear matter density, called as the critical nuclear matter

density ρcr.. In Ref. [34], a first systematic study using many different parameters of

the Skyrme interactions shows that there are only 27 out of 87 different parameters

of the Skyrme interaction, having a positive slope for the symmetry energy coefficient

at nuclear matter densities ρ up to 3ρ0 (ρ0 = 0.16 fm−3), are suitable for the study

of the neutron star model. It means that the symmetry energy coefficient J has very

important role in determining the properties of neutron star.

Therefore, the combination of the results of Ref. [35] and of Ref. [34] for de-

termining the parameters of the Skyrme interactions will be taken into account. We

study the dependence of the critical density ρcr. on the nuclear matter saturation

density ρn.m., binding energy coefficient B/A, isoscalar effective mass m∗/m, incom-

pressibility coefficient Kn.m., surface energy Es, and the symmetry energy coefficient

J .

The difference between our calculation and that carried out in Ref. [35] is that we

calculate the critical density ρcr. in terms of the enhancement factor κ, the coefficient

L = 3ρdJ/dρ and the Landau parameter G′
0 (at ρn.m.) instead of the combinations

tixi (i = 1, 2, and 3) of the Skyrme parameters used in Ref. [35]. We note that the

quantities κ, L and G′
0, which can be expressed in terms of the Skyrme parameters,

are related to some physical processes. The enhancement factor κ [31],

κ =
m

4h̄2 [t1(2 + x1) + t2(2 + x2)] ρ, (2.91)

which accounts for the deviations from the Thomas-Reiche-Kuhn (TRK) sum rule in
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the case of the isovector giant dipole resonance [31] has the value of about 0.5 at the

ρn.m. [31, 55]. From Eq. (2.38), the slope of symmetry energy coefficient is written as

L =
h̄2

2m
k2

f −
3

4
t0

(

x0 +
1

2

)

ρ− 1

8
t3(α + 1)

(

x3 +
1

2

)

ρα+1

+
5

24
(t2(4 + 5x2)− 3t1x1) ρk

2
f . (2.92)

The slope of the symmetry energy coefficient at ρ ≤ ρ0 determines the neutron skin

thickness [56, 57] in nuclei and it must be positive for ρ up to 3ρ0; a condition necessary

for Skyrme interaction to be suitable for the study of the properties of neutron stars

[34]. The Landau parameter G′
0 given in Eq. (2.77) has to be positive at ρ ≤ ρn.m. in

order to reproduce the position of the isovector M1 and Gamow-Teller states [55, 58].

The Skyrme parameters ti, xi and α for a fixed value of W0 can be expressed

in terms of the quantities associated with the symmetric nuclear matter as follows

[9, 31, 35, 59].

t0 =
8

ρn.m.





(

−B/A+
(

2 m
m∗
− 3

)

h̄2

10m
k2

f

) (

1
27
Kn.m. −

(

1− 6m∗

5m

)

h̄2

9m∗
k2

f

)

−B/A+ 1
9
Kn.m. −

(

4m
3m∗
− 1

)

h̄2

10m
k2

f

+
(

1− 5m

3m∗

)

h̄2

10m
k2

f

]

, (2.93)

t1 =
2

3
[T0 + Ts] , (2.94)

t2 = t1 +
8

3

[

(

1

4
t0 +

1

24
t3ρ

α
n.m.

)

2m∗

h̄2

kf

π2
+G′

0

]

h̄2

m∗ρn.m.

, (2.95)

t3 =
16

ρα+1
n.m.

(

−B/A + (2m/m∗ − 3)
(

h̄2/10m
)

k2
f

)2

−B/A+ 1
9
Kn.m. − (4m/3m∗ − 1)

(

h̄2/10m
)

k2
f

, (2.96)

x0 =
4

t0ρn.m.

[

h̄2

6m
k2

f −
1

24
t3(x3 +

1

2
)ρα+1

n.m. +
1

24
(t2 (4 + 5x2)− 3t1x1) ρn.m.k

2
f − J

]

− 1

2
,

(2.97)

x1 =
1

t1

[

4
h̄2κ

mρn.m.
− t2(2 + x2)

]

− 2, (2.98)
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x2 =
1

4t2
[8T0 − 3t1 − 5t2] , (2.99)

x3 = − 8

αt3ρα+1
n.m.

[

h̄2

6m
k2

f −
1

12
((4 + 5x2)t2 − 3t1x1) ρn.m.k

2
f − 3J + L

]

− 1

2
, (2.100)

α =
B/A− 1

9
Kn.m. + (4m/3m∗ − 1)

(

h̄2/10m
)

k2
f

−B/A + (2m/m∗ − 3)
(

h̄2/10m
)

k2
f

, (2.101)

where,

T0 =
1

8
(3t1 + (5 + 4x2)t2) =

h̄2

mρn.m.

(

m

m∗
− 1

)

, (2.102)

Ts =
1

8
[9t1 − (5 + 4x2)t2] , (2.103)

and

kf =

(

3π2

2
ρn.m.

)1/3

. (2.104)

In the above Eqs. (2.93)-(2.101), the various quantities characterizing the nuclear

matter which are taken at the saturation density ρn.m. are the binding energy per nu-

cleon B/A, isoscalar effective mass m∗/m, nuclear matter incompressibility coefficient

Kn.m., symmetry energy coefficient J , the coefficient L which is directly related to the

slope of the symmetry energy coefficient (L = 3ρdJ/dρ), enhancement factor κ and

Landau parameter G′
0. It must be pointed out that the expression for the parameter

G′
0 used in the above Eq. (2.95) includes the contributions from the spin-density term

present in the Skyrme energy density functional [60].

When we know the value of T0, then Ts can be calculated for a given value of

the surface energy Es as [35],

Es = 8πr2
0

∫ ρn.m.

0
dρ

[

h̄2

36m
− 5

36
T0ρ+

1

8
Tsρ−

m∗

h̄2 Vsoρ
2

]1/2 [
B(ρn.m.)−B(ρ)

A

]1/2

(2.105)

where, B(ρ)
A

is the binding energy per nucleon given by,

B(ρ)

A
= −

[

3h̄2

10m∗
k2

f +
3

8
t0ρ +

1

16
t3ρ

α+1

]

, (2.106)
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and,

r0 =

[

3

4πρn.m.

]1/3

, (2.107)

Vso =
9

16
W0

2. (2.108)

The way in which Eqs. (2.93) - (2.101) can be used to calculate the Skyrme parameters

ti, xi and α is the following. At first, the parameters t0 and α can be calculated, in

terms of B/A, ρn.m., Kn.m. and m∗/m, using Eqs. (2.93) and (2.101). Then, the

parameter t3 can be determined using Eq. (2.96). Next, T0 and Ts can be calculated

using Eqs. (2.102) and (2.105), respectively. Once, the combinations T0 and Ts of

the Skyrme parameters are known, one can calculate the remaining parameters in the

following sequence, t1, t2, x2, x1, x3 and x0.

We have checked the values of κ, L and G′
0 for many different parameters of

the Skyrme interaction in Refs. [2, 31, 29, 8, 61, 62, 30]. We found that the values

of κ, L and G′
0 vary over a wide ranges 0 − 2, 40 − 160 MeV and −0.15 − 1.0,

respectively. It shows that the experimental data used in the least-square procedure

to fit the parameters of the Skyrme interaction can not constrain well the values of

these quantities. We only have a very crude knowledge of these three quantities at

the saturation density as discussed above. These quantities can be constrained by

requiring a reasonable value for the critical density. Thus, we use the set of standard

values for six quantities ρn.m. = 0.16 fm−3, B/A = 16 MeV, Kn.m. = 230 MeV,

m∗/m = 0.7, Es = 18 MeV and J = 32 MeV as the standard values for the nuclear

matter input. These values are precisely the same as those used in Ref. [35]

We study the dependence of ρcr. on the ρn.m., B/A, m∗/m, Kn.m., Es and J by

considering the variations of these quantities around their standard values as given

above. For a given set of values for these quantities, we calculate the maximum value

of ρcr., denoted as ρ̃cr., by varying κ, L and G′
0 at the saturation density ρn.m. within
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acceptable limits. We note the difference between our calculation and that of Ref.

[35] by the fact that we constrain the values of κ, L and G′
0, whereas, in Ref. [35],

the value of ρ̃cr. was calculated by varying the combinations tixi (i = 1, 2, and 3) of

Skyrme parameters with no restrictions. We now discuss some limits of the results

in Ref. [35]. If the range of the combinations parameters tixi is not restricted, one

can obtain unreasonable values of κ and L. For example, with the standard values

of nuclear matter input, ρ̃cr. is about 3.5ρ0 for κ = 1.0, L = 36 MeV and G′
0 = 0.20

(at ρ0). The value of G′
0 is acceptable, but the value of κ = 1.0 is significantly

large [31, 55]. And also for ρ > ρ0 the value of L decreases with increasing ρ and it

becomes negative for ρ > 1.6ρ0, which makes the interaction not suitable to study

neutron stars. We show in Fig. 1 the results for ρ̃cr. obtained by varying the various

quantities associated with the nuclear matter around their standard values. We set

up the ranges following 0.25 ≤ κ ≤ 0.5, 0 ≤ L ≤ 100 MeV and 0 ≤ G′
0 ≤ 0.5 at the

saturation density ρn.m., we also require that L > 0 at 3ρ0. We can see from Fig. 1

that ρ̃cr. depends strongly on m∗/m and Es; ρ̃cr. depends weakly on ρn.m., B/A and

Kn.m. and it is almost independent of J . These results for ρ̃cr. are qualitatively the

same as the ones in Ref. [35]. But, with the restrictions on the values of κ, L and

G′
0, the values of ρ̃cr. are smaller than the one obtained in Ref. [35] by up to 25%.

With the effective mass m∗/m = 0.6 (0.7) and keeping all the other nuclear matter

quantities equal to their standard values, we obtained ρ̃cr. = 4.5ρ0 (2.8ρ0) compared

to 6ρ0 (3.5ρ0) obtained in Ref. [35]. With a given set of values for the nuclear matter

input, we should present the values of κ, L and G′
0 required to obtained ρ̃cr.. We find

that κ lies in the range of 0.45−0.5 for variations in the nuclear matter input by up to

±15% relative to their standard values. These features of κ indicate that restricting

κ to take values in the range of 0.25− 0.5 delimits the ρ̃cr. to a lower value. In Figs.

2 and 3 we show the values of L and G′
0 (at saturation density ρn.m.), respectively,
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FIG. 1. The dependence of critical density ρ̃cr. on the relative variation of ρn.m. (dot-

ted line), B/A (dashed line), m∗/m (solid line), Kn.m. (open circles), Es

(dashed-dot line), and J (dashed-filled squares) around their standard val-

ues.
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which are needed to yield the ρ̃cr..

We see that for different values of the nuclear matter input, the value of L varies

from 20 to 60 MeV, and L = 47 MeV at ρ = ρ0. This value is large compared to

the values of L = 35, 27 and 16 MeV associated with the the Skz0, Skz1 and Skz2

interactions in [35], respectively, which were obtained for the same standard values

of the nuclear matter input, but varying the combinations t1x1 and t2x2 with no

restrictions and the value of t3x3 is fixed to some arbitrary values. From Fig. 3,

except for J , the value of G′
0 (at saturation density ρn.m.) depends strongly on the

values of the various quantities associated with nuclear matter. The dependence of

G′
0 on the surface energy coefficient Es is very prominent. We know that Es is mainly

determined by the ground state properties of light nuclei. Therefore, the center of

mass correction to the binding energy and charge radii which are very important for

this case and may affect the values obtained for Es have to be taken into account

appropriately. In Fig. 3, the value of G′
0 tends to vanish rapidly with increasing Es.

From Fig. 1, we can see that the dependence of ρ̃cr. on ρn.m., J , and B/A is very

weak. Therefore, it may be good enough to calculate ρ̃cr. as a function of m∗/m,

Es and Kn.m. only. In Fig. 4 we show the variation of Es as a function of effective

mass m∗/m, in this case we fixed the values of ρ̃cr. and the remaining nuclear matter

quantities were kept equal to their standard values. We see from Fig. 4 that with a

fixed value of ρ̃cr., Es decreases while m∗/m increases. It is very interesting to note

that for Es = 18± 1 MeV (for most of the Skyrme interactions), ρ̃cr. = 2ρ0 and 3ρ0

for m∗/m = 0.72− 0.85 and 0.63− 0.73, respectively. To obtain ρ̃cr. = 4ρ0 one must

have m∗/m ∼ 0.65 for not too low value of Es. The value of the effective mass m∗/m

is also constrained by the centroid energy of the isoscalar giant quadrupole resonance

[61] which has m∗/m ≥ 0.7. So, for reasonable values of Es and m∗/m, one should

obtain a Skyrme interaction with ρ̃cr. = 2ρ0 to 3ρ0.
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FIG. 2. The coefficient L = 3ρdJ/dρ|ρn.m.
as a function of the various quantities asso-

ciated with the nuclear matter. The value of L is determined by maximizing

the critical density for a given set of values for the nuclear matter quantities.
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FIG. 3. The coefficient G′
0 as a function of the various quantities associated with the

nuclear matter. The value of G′
0 is determined by maximizing the critical

density for a given set of values for the nuclear matter quantities.
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4ρ0, as labeled. All the other nuclear matter quantities are kept equal to their

standard values
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4. Breathing mode

Beside the typical set of experimental data, we also include in our fit for the first

time the experimental data on the breathing-mode energy for four nuclei, namely,

90Zr, 116Pb, 144Sm, and 208Pb [38]. We consider the fully self-consistent values for the

breathing-mode constrained energy, given as

Econ =

√

m1

m−1
, (2.109)

where mk are the energy moments

mk =
∫ ∞

0
EkS(E)dE, (2.110)

of the response function

S(E) =
∑

n

|〈n | F | 0〉|2 δ(E − En). (2.111)

The energy moments mk and the response function S(E) will be discussed in Chapter

IV. For the isoscalar giant monopole resonance, we have F (r) =
∑A

i=1 f(ri), with

f(r) = r2. The moments mk for k = −1 and 1 appearing in Eq. (2.109) can be

obtained using the constrained HF (CHF) and the double-commutator sum rule,

respectively [63, 64, 65]. The moment m1 can be expressed in terms of the ground-

state density ρ as

m1 = 2
h̄2

m
〈r2〉, (2.112)

where

〈r2〉 =
∫

r2ρ(r)dr. (2.113)
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As described in detail in Ref. [63, 64, 65], m−1 can be evaluated via the CHF approach

and is given as,

m−1 =
1

2

d

dλ
〈r2

λ〉
∣

∣

∣

∣

∣

λ=0

, (2.114)

where 〈r2
λ〉 = 〈Φλ |r2|Φλ〉, where Φλ being the HF solution to the CHF Hamiltonian

H − λf .
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CHAPTER III

SIMULATED ANNEALING METHOD FOR THE MINIMIZATION OF THE χ2

FUNCTION

A. Statement of the problem

The simulated annealing method (SAM) is a generalization of a Monte Carlo tech-

nique, based on the Metropolis algorithm [37], initially developed for examining the

equation of state (EOS) of a many-body system. The SAM is a popular technique for

optimization problems of large scale, especially ones where a desired global extrema is

hidden among many local extrema. The concept of SAM is an analogy with thermo-

dynamics, in which liquids freeze or metals recrystallize in the process of annealing.

In this process, at high temperature, a metal is disordered. The metal is gradually

cooled down so that the system at any time is in thermodynamic equilibrium. The

essence of the annealing process is slow cooling so that the metals have ample time to

recrystallize. As cooling proceeds, the system becomes more ordered and approaches

the state of minimum energy. This method has been used in many different areas of

science [66, 67, 68] for minimization problems of large non-linear systems, and the

SAM was used in Refs. [69, 70] to generate some initial trial parameter sets for the

point coupling variant of the relativistic mean field model.

We use the SAM to determine the parameters of the new Skyrme type effective

nucleon-nucleon interaction by searching for the global minimum in the hyper-surface

of the χ2 function,

χ2 =
1

Nd −Np

Nd
∑

i=1

(

M exp.
i −M th.

i

σi

)2

, (3.1)

with Nd is the number of experimental data points, Np is the number of fitted pa-

rameters, σi is the theoretical uncertainty and M exp.
i and M th.

i are the experimental
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and the corresponding theoretical values, respectively, for a considered observable.

The values of χ2 depends on the Skyrme parameters, since, the M th.
i in Eq. (3.1) is

calculated by using the HF approach with a Skyrme type effective nucleon-nucleon

interaction.

B. The procedure

We carry out the SAM to search for the global minimum of the χ2 function as given

by Eq. (3.1). One of the main requirements in the SAM is to search the global

minimum within the limits of parameters. In our case, we need to determine the

lower and the upper limits for each of the Skyrme parameters. We know that the

Skyrme parameters vary over a wide range [34, 59]. All the Skyrme parameters can

be written in terms of the quantities related to the nuclear matter properties, as

described in Sec. 3 of Chapter II. In the literature, the difference between the lower

and the upper limits of these nuclear matter quantities vary within 10% − 20%. To

make the search process more efficient and convenient, we define a vector v with the

components as nuclear matter quantities and other quantities

v ≡ (B/A,Kn.m., ρn.m., m
∗/m,Es, J, L, κ,G

′
0,W0). (3.2)

Where B/A, Kn.m., ρn.m., m
∗/m, Es, J , L, κ, G′

0, and W0 are the binding energy per

nucleon, incompressibility coefficient, nuclear matter density, effective mass, surface

energy, symmetry energy coefficient, the quantity which is related to the slope of the

symmetry energy coefficient (L = 3ρdJ/dρ), the IVGDR EWSR enhancement factor,

Landau parameter, and the Skyrme spin-orbit parameter, respectively. We search for

the global minimum for the χ2 function within these limits of the component of vector

v. If we know the value of the vector v, then we can calculate the values of all the
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Skyrme parameters as discussed in Sec. 3 of Chapter II. We also define the vectors

v0 as the lower limit, v1 as the upper limit, and d as the maximum displacement

allowed in a single step for the components of the vector v. Following the Metropolis

algorithm, we implement the SAM algorithm using the following steps,

(1) Start with an initial value for the vector v and calculate χ2 (namely, χ2
old) using

Eq. (3.1) for a given set of the experimental data and the corresponding HF

results, together with the theoretical errors.

(2) Generate randomly a new set of Skyrme parameters by first using a uniform

random number to select a component vr of the vector v, and then change the

value of vr by a second random number η by

vr → vr + ηdr, (3.3)

with −1 < η < 1. The second step is repeated until the new value of vr is

found within its allowed limits of v. We then use this modified v to generate a

new set of Skyrme parameters. It may be noted that a change in the value of a

component of the vector v may lead to changes in the values of several Skyrme

parameters.

(3) The newly generated set of the Skyrme parameters is accepted by using the

Metropolis algorithm as follows. We calculate the quantity

P(χ2) = e(χ
2

old
−χ2

new)/T , (3.4)

where χ2
new is obtained by using the newly generated set of the Skyrme param-

eters and T is a control parameter (an effective temperature). The new set of
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Skyrme parameters is accepted only if

P(χ2) > β, (3.5)

where β is a uniform random number that lies between 0 and 1. If the new

Skyrme parameters are accepted [i.e. Eq. (3.5) is satisfied], it is called a ”suc-

cessful reconfiguration”.

We start with a reasonable value of the control parameter (the effective tem-

perature) T = Ti to search for the global minimum of the χ2 function. With initial

value of Ti, we repeat steps (2) and (3) for, say, 100Np reconfigurations, or for 10Np

successful reconfigurations, whichever comes first. Then, the effective temperature

is reduced by following a suitable annealing schedule, we use the Cauchy annealing

schedule [68] given by

T (k) = Ti/ck, (3.6)

where c is a constant, which is taken to be unity, and k = 1, 2, 3, ..... is the time index.

One keep on reducing the value of T by using Eq. (3.6) in the subsequent steps until

the effort to reduce the value of χ2 further becomes sufficiently discouraging. The

values of all the components of the vectors v, v0, v1 and d used in the numerical

computation are showed in Table II. We have varied the components of the vector

v over a wide range. The values of the maximum displacement as defined by the

components of d are so chosen that the corresponding component of the vector v can

be varied over the entire range given by the vectors v0 and v1, within the adopted

number of reconfigurations. We have carried out several sample runs and found that

Ti = 1.25 along with the Cauchy annealing schedule yields reasonable values of the

Skyrme parameters. We must mention here that the range for the quantities L, κ and

G′
0 as given in Table II are so chosen that they vary within acceptable limits [50].
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TABLE II. Values of the components of the vectors v, v0, v1 and d used for imple-

menting the SAM based algorithm for searching the global minimum of χ2

. The vector v initializes the value of χ2, whereas, v0 and v1 limits the

search space for the Skyrme parameters. The components of the vector d

correspond to the maximum displacements allowed for the reconfiguration.

v v0 v1 d

B/A(MeV) 16.0 17.0 15.0 0.40

Knm(MeV) 230.0 200.0 300.0 20.0

ρnm(fm−3) 0.160 0.150 0.170 0.005

m∗/m 0.70 0.60 0.90 0.04

Es(MeV) 18.0 17.0 19.0 0.3

J(MeV) 32.0 25.0 40.0 4.0

L(MeV) 47.0 20.0 80.0 10.0

κ 0.25 0.1 0.5 0.1

G′
0 0.08 0.00 0.40 0.10

W0 (MeV.fm5) 120.0 100.0 150.0 5.0
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C. Set of experimental data and constraints

Beside the typically used experimental data on the binding energy, charge radii and

spin-orbit splitting, our set of experimental data also include radii of valence neutron

orbits and the breathing mode energies of several nuclei, as shown in Table III. These

experimental data are taken from Refs. [1, 3, 4, 5, 6, 7, 38]. For the fitting procedure,

we take the error of 1.0 MeV for the binding energy except for the 100Sn nuclei. The

binding energy for the 100Sn nucleus is determined from systematics and is predicted

to have large uncertainty. Therefore, we take a theoretical error of 2.0 MeV for this

case. We assign the theoretical error of 0.02 fm for the charge rms radii except for the

case of 56Ni nucleus. The charge rms radius for the 56Ni nucleus is calculated from

systematics and we take the theoretical error of 0.04 fm. The experimental data on

the spin-orbit splittings for the 2p neutrons and protons in the 56Ni nucleus are taken

from Ref. [7],

ε(2p1/2)− ε(2p3/2) =















1.88MeV Neutrons

1.83MeV Protons.
(3.7)

Here ε is the ”bare” single-particle energy determined by unfolding the experimental

data for the energy levels in 57Ni and 57Cu nuclei by appropriately accounting for

the coupling to excitations of the core. For the rms radii of the valence neutron

orbits in 17O and 41Ca nuclei we use rv(ν1d5/2) = 3.36 fm and rv(ν1f7/2) = 3.99 fm

[5, 6], respectively. The theoretical error taken for the spin-orbit splitting data is 0.2

MeV and for the rms radii for the valence neutron orbits we use the experimental

error of 0.06 fm. The choice of the theoretical error on the rms radii for the valence

neutron orbits is due to the large uncertainties associated with their extraction from

the experimental measurements. We do not include the center of mass correction to

these data, consistent with the method used in the experimental analysis.
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TABLE III. Selected experimental data for the binding energy B, charge rms ra-

dius rch., rms radii of valence neutron orbits rv, spin-orbit splitting S-O,

breathing mode constrained energy E0 and critical density ρcr. used in the

fit to determine the parameters of the Skyrme interaction.

Properties Nuclei Ref.

B 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb [1]

rch.
16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 208Pb [3, 4]

rv(ν1d5/2)
17O [5]

rv(ν1f7/2)
41Ca [6]

S-O 2p orbits in 56Ni [7]

ρcr. nuclear matter see text

E0
90Zr, 116Sn, 144Sm, 208Pb [38]

The experimental data for the breathing mode constrained energies E0 included

in our fit are 17.81, 15.90, 15.25 and 14.18 MeV for the 90Zr, 116Sn, 144Sm and 208Pb

nuclei [38], respectively, with the theoretical error taken to be 0.5 MeV for the 90Zr

nucleus and 0.3 MeV for the other nuclei. We also include the critical density ρcr. in

the fit assuming a value of 2.5ρ0 with an error of 0.5ρ0. Further, the values of the

Skyrme parameters are constrained by requiring that (1) P ≥ 0 for ρ ≤ 3ρ0 (P ≡ L

at ρ = ρn.m.), (2) κ = 0.1− 0.5 and (3) G′
0 ≥ 0 at ρ = ρ0.

D. Results and discussion

We use the SAM to fit the values of the Skyrme parameters to the given set of the

experimental data (see Table III). We carry out two different fits with the same set

of experimental data along with some constraints as discussed in Sec. C. The results
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for the Skyrme parameters are denoted by [9]

(1) KDE0, only the Coulomb direct term in the form of Eq. (2.61) is included,

(2) KDE, the direct and the Coulomb exchange terms in Eqs.(2.59)-(2.62) are in-

cluded.

The CM corrections, not only to the total binding energy, Eqs. (2.67) and (2.68),

but also to the charge rms radii, Eqs. (2.69) and (2.70), are analyzed with the some

simple approximations described in Sec. 2 of Chapter II.

As we discuss the SAM earlier, there are two important points that control the

calculation time and the quality of the fit: (1) initial value for the control parameter

T = Ti and (2) annealing schedule that determines the subsequent value for T .

If we start with a smaller value of Ti, or use a faster annealing schedule, we can

miss the global minimum of the objective function and also may get stuck in one

of the local minima that we do not want. There are several annealing schedules

such as linear, exponential, Boltzmann, and Cauchy. The Boltzmann schedule is the

slowest one, and the exponential annealing schedule is the fastest one. We use the

Cauchy annealing schedule which has a faster cooling rate than that of the Boltzmann

schedule, but, a slower rate than the exponential annealing schedule. We find that

with Ti = 1.25 and the Cauchy annealing schedule given in Eq. (3.6), reasonable

values for the best-fit parameters are obtained. For checking the quality of the fit, we

start with the final values of the Skyrme parameters obtained from the SAM and try

to minimize further the value of χ2 using the Levenberg-Marquardt (LM) method [71]

as conventionally used, but we find no further decrease in the value of the χ2. Fig.

5 shows the average value 〈χ2〉T as an inverse function of the effective temperature

T for the KDE0 interaction. The value of 〈χ2〉T is determined by averaging over all

the successful reconfigurations for a given T . The curves labeled v (solid line) and
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FIG. 5. Variation of the average value of chi-square, 〈χ2〉T , as a function of the inverse

of the control parameter T for the KDE0 interaction for the two different

choices of the starting parameters.
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FIG. 6. Variation of the fluctuations ∆χ2
T in the value of χ2 as a function of 1/T for

the KDE0 interaction for the two different choices of the starting parameters

(see text for detail).

v1 (dashed line) (their values are given in Table II) show the results obtained from

two different choices of the starting values for the Skyrme parameters. We see from

Fig. 5 that the value of 〈χ2〉T decreases rapidly at initial stages and then oscillates

before saturating to a minimum value for T ≤ 0.05. The value of χ2 at lower T is

almost independent of the starting values for the Skyrme parameters. The variation

of ∆χ2
T = 〈(χ2 − 〈χ2〉)2〉T as an inverse function of T is presented in Fig. 6. We

can see that as T decreases the fluctuations of χ2 also decrease rapidly. From this

investigation, the initial value for the control parameter T should not be too small,
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because at smaller T it is less likely to jump from a configuration with lower value

of χ2 to one having a higher value. Therefore, it is possible to get trapped in a local

minima. In Table IV, the values of the parameters for the KDE0 interaction at the

minimum value of the χ2 are obtained from different choices for the starting values for

the Skyrme parameters. We can see that the final value of the χ2 and the resulting

Skyrme parameters are less sensitive to the choice of the initial parameters. The

starting values to generate KDE0 and KDE are the components of v0 given in Table

II.

The values of the Skyrme parameters obtained from the fits and the standard

deviations are showed in Table V. The values of the standard deviations on the

parameters for the KDE0 and KDE interactions are obtained from the LM method.

The LM method requires the set of the experimental data and the starting values of

the interaction parameters. The set of experimental data is the one used to generate

the KDE0 and KDE interactions. The starting values of the interactions parameters

used are the ones obtained using SAM for the KDE0 and KDE interactions. The

values for the quantities characterizing the nuclear matter calculated at the minimum

value of the χ2 for KDE0 and KDE interaction are showed in Table VI and compared

to those obtained from SLy7 interaction. We note that the values of the Kn.m. and

m∗/m come out automatically from the fitting, unlike the SLy type interactions where

the values for these quantities were fixed. The values of the Kn.m. and m∗/m in our

fitting are constrained by including the experimental data on breathing-mode energy

and the value of critical density ρcr = 2.5ρ0 ± 0.5ρ0 [35, 50].

The deviation ∆B = Bexp. − Bth. for the values of the binding energy and the

charge rms radii rch. determined from KDE0, KDE, Sly7 [2] interactions are showed in

Table VII and Table VIII, respectively. From Table VII for the KDE0 interaction the

error in the binding energy is quite less than 0.5%, and in case of KDE interaction,
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the error in the values of the binding energy is about (0.6− 1.0%) for the 16O, 48Ni

and 100Sn nuclei. We know that, for the SKX interaction, the binding energy for the

56Ni nucleus was not considered in the fit and for the 100Sn nucleus was included in

the fit with the theoretical error of 1.0 MeV. We find that if one attempt to do so, the

binding energy for the 56Ni becomes off by more than 3 MeV. In Table VIII, except

for the 16O and 48Ca nuclei, the error in the charge rms radii for the KDE0 interaction

is less than 0.5%. We emphasize that the experimental value rch. for 132Sn was not

included in our fit, but our results are in very good agreement with the very recent

experimental data [72]. In Table IX, the value of ρcr. is greater than 2ρ0. Our values

for the radii of valence neutron orbits and the spin-orbit splittings are in reasonable

agreement with the corresponding experimental data. In Table X, we see that the

breathing mode constrained energies obtained for KDE0 and KDE interactions are

close to the experimental data.

We can see from Table VII that the binding energy difference B(48Ca)−B(48Ni)

= 67.23 and 64.02 MeV for the KDE0 and KDE interactions, respectively. The

experimental value is 68.85 MeV. The difference in the case of SKX interaction is

66.3 MeV, which is about 1.0 MeV lower than the results for KDE0 interaction. We

note that most of the Skyrme interactions that include the contribution from the

exchange Coulomb term yield B(48Ca)− B(48Ni) ≈ 63 MeV, which is about 6 MeV

lower than the corresponding experimental value. In Table XI, the values obtained

for the neutron skin, rn − rp, which is the difference between the rms radii for the

point neutrons and protons density distributions, are shown for the KDE0 and KDE

interactions. The values of the single-particle energies for the 40Ca and 208Pb nuclei

[73, 74] are shown in Tables XII and XIII together with the available experimental

data. We can see that the single-particle energies for the occupied states near the

Fermi-energy are quite close to the experimental ones. We note that the experimental
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single-particle energies are not included in our fit. The values of the symmetry energy

coefficient S(ρ) and the resulting EOS for pure neutron matter at higher densities

(ρ > 2ρ0) are the key to understand the various properties of neutron star [75, 76].

The proton fraction at any density depends significantly on the value of S(ρ) at that

density, which affects the chemical compositions as well as the cooling mechanism of

the neutron star [77]. In Fig. 7, we present the variation of the symmetry energy S

as a function of the nuclear matter density ρ. The value of S increases with density

for ρ < 3ρ0 for the KDE0 and KDE interactions. These interactions are suitable for

studying the neutron star with masses close to the canonical one [34], because they

yield S > 0 for ρ < 4ρ0. In Fig. 8, we show the EOS for the pure neutron matter

resulting from the KDE0 and KDE interactions and compare them with the ones

obtained for SLy7 interaction and the realistic UV14+UVII model [14]. We do not

include in our fit the neutron matter EOS of the realistic UV14+UVII interaction.
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TABLE IV. Comparison of the parameters for the KDE0 interaction at the minimum

value of χ2 obtained from different choices for the starting values of the

Skyrme parameters.

Parameter KDE0(v) KDE0(v1)

t0(MeV·fm3) -2526.5110 -2553.0843

t1(MeV·fm5) 430.9418 411.6963

t2(MeV·fm5) -398.3775 -419.8712

t3 (MeV·fm3(1+α)) 14235.5193 14603.6069

x0 0.7583 0.6483

x1 -0.3087 -0.3472

x2 -0.9495 -0.9268

x3 1.1445 0.9475

W0(MeV·fm5) 128.9649 124.4100

α 0.1676 0.1673
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TABLE V. The values of the Skyrme parameters for KDE0 and KDE interactions

obtained by minimizing the χ2. For the sake of comparison we have also

listed the values of the parameters for the SLy7 interaction. The values

in parenthesis are the standard deviations for the corresponding Skyrme

parameters.

Parameter KDE0 KDE SLy7

t0(MeV·fm3) -2526.5110 (140.6256) -2532.8842 (115.3165) -2482.41

t1 (MeV·fm5) 430.9418 (16.6729) 403.7285 (27.6336) 457.97

t2 (MeV·fm5) -398.3775 (27.3099) -394.5578 (14.2610) -419.85

t3(MeV·fm3(1+α)) 14235.5193 (680.7344) 14575.0234 (641.9932) 13677.0

x0 0.7583 (0.0655) 0.7707 (0.0579) 0.8460

x1 -0.3087 (0.0165) -0.5229 (0.0298) -0.5110

x2 -0.9495 (0.0179) -0.8956 (0.0270) -1.0000

x3 1.1445 (0.0862) 1.1716 (0.0767) 1.3910

W0 (MeV·fm5) 128.9649 (3.3258) 128.0572 (4.3943) 126.00

α 0.1676 (0.0163) 0.1690 (0.0144) 0.1667
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TABLE VI. Nuclear matter properties for the KDE0 and KDE interactions at the

χ2 = χ2
min..

Parameter KDE0 KDE SLy7

B/A (MeV) 16.11 15.99 15.92

Kn.m.(MeV) 228.82 223.89 229.7

ρn.m. 0.161 0.164 0.158

m∗/m 0.72 0.76 0.69

Es (MeV) 17.91 17.98 17.89

J (MeV) 33.00 31.97 31.99

L (MeV) 45.22 41.43 47.21

κ 0.30 0.16 0.25

G′
0 0.05 0.03 0.04

χ2
min. 1.3 2.2



54

TABLE VII. Results for the total binding energy B (in MeV) for several nuclei. The

experimental data Bexp. used to fit the Skyrme parameters were taken

from [1]. The theoretical error σ was taken to be 2.0 MeV for the 100Sn

nucleus and 1.0 MeV for the other nuclei. In the third and fourth columns

we give the values for ∆B = Bexp.−Bth. obtained from our new fits. The

last column contains the values for ∆B for the SLy7 Skyrme interaction

taken from Ref. [2].

∆B = Bexp. −Bth.

Nuclei Bexp. KDE0 KDE SLy7

16O 127.620 0.394 1.011 -0.93

24O 168.384 -0.581 0.370

34Si 283.427 -0.656 0.060

40Ca 342.050 0.005 0.252 -2.85

48Ca 415.990 0.188 1.165 0.11

48Ni 347.136 -1.437 -3.670

56Ni 483.991 1.091 1.016 1.71

68Ni 590.408 0.169 0.539 1.06

78Ni 641.940 -0.252 0.763

88Sr 768.468 0.826 1.132

90Zr 783.892 -0.127 -0.200

100Sn 824.800 -3.664 -4.928 -4.83

132Sn 1102.850 -0.422 -0.314 0.08

208Pb 1636.430 0.945 -0.338 -0.33
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TABLE VIII. Results for the charge rms radii rch. (in fm). The experimental data

used in the fit to determine the values of the Skyrme parameters are

taken from Refs. [3, 4]. The theoretical error σ were taken to be 0.04

fm for the 56Ni nucleus and 0.02 fm for the other nuclei. The values for

rch. were obtained from our new fits and are compared to the values for

rch. for the SLy7 Skyrme interaction, taken from Ref. [2].

Nuclei rexp.
ch. KDE0 KDE Sly7

16O 2.730 2.771 2.761 2.747

24O 2.778 2.771

34Si 3.220 3.208

40Ca 3.490 3.490 3.479 3.470

48Ca 3.480 3.501 3.488 3.495

48Ni 3.795 3.777

56Ni 3.750 3.768 3.750 3.758

68Ni 3.910 3.893

78Ni 3.969 3.950 3.967

88Sr 4.219 4.211 4.200

90Zr 4.258 4.266 4.101

100Sn 4.480 4.457

132Sn 4.709 4.710 4.685 4.713

208Pb 5.500 5.489 5.459 5.498
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TABLE IX. Critical density ρcr., rms radii of the valence neutron orbits rv, and

spin-orbit splitting (S-O). The experimental values ( and the theoreti-

cal error σ) used in the fit to determine the Skyrme parameters are taken

as follows: For the ρcr. we assume a value of 2.5ρ0 (σ = 0.5ρ0); the values

of rv were taken from Ref. [5, 6] (σ = 0.06 fm); and the spin-orbit in 56Ni

were taken from Ref. [7] (σ = 0.2 MeV). In columns 3 − 6 we give the

results obtained from our new fits.

Experimental KDE0 KDE

ρcr/ρ0 2.5 2.5 2.1

rv(ν1d5/2)(fm) 3.36 3.42 3.41

rv(ν1f7/2)(fm) 3.99 4.05 4.03

εn(2p1/2)− εn(2p3/2) (MeV) 1.88 1.84 1.81

εp(2p1/2)− εp(2p3/2) (MeV) 1.83 1.64 1.63

TABLE X. Comparison of the breathing-mode constrained energies (in MeV) ob-

tained for the KDE0 and KDE interactions with the experimental data.

Nucleus Experimental KDE0 KDE

90Zr 17.81 17.98 17.91

116Sn 15.90 16.42 16.36

144Sm 15.25 15.53 15.47

208Pb 14.18 13.64 13.60
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TABLE XI. Results for the neutron skin, rn− rp (in fm), for all the nuclei considered

to obtain the KDE0 and KDE interactions.

rn − rp

Nuclei KDE0 KDE

16O -0.031 -0.025

24O 0.510 0.510

34Si 0.189 0.192

40Ca -0.051 -0.046

48Ca 0.158 0.159

48Ni -0.282 -0.274

56Ni -0.056 -0.052

68Ni 0.175 0.174

78Ni 0.287 0.285

88Sr 0.095 0.096

90Zr 0.064 0.065

100Sn -0.081 -0.078

132Sn 0.220 0.217

208Pb 0.160 0.155
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TABLE XII. Single-particle energies (in MeV) for 40Ca nucleus.

Orbits Experimental KDE0 KDE

Protons

1s1/2 −50±11 -39.40 -38.21

1p3/2 – -26.95 -26.42

1p1/2 −34±6 -22.93 -22.34

1d5/2 — -14.49 -14.51

2s1/2 −10.9 -9.48 -9.66

1d3/2 −8.3 -7.59 -7.53

1f7/2 −1.4 -2.38 -2.76

Neutrons

1s1/2 – -47.77 -46.13

1p3/2 – -34.90 -33.92

1p1/2 – -30.78 -29.73

1d5/2 – -22.08 -21.66

2s1/2 −18.1 -17.00 -16.78

1d3/2 −15.6 -14.97 -14.48

1f7/2 −8.32 -9.60 -9.58

2p3/2 −6.2 -4.98 -5.15
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TABLE XIII. Single-particle energies (in MeV) for 208Pb.

Orbits Experimental KDE0 KDE

Protons

1g9/2 −15.43 -17.85 -17.34

1g7/2 −11.43 -13.77 -13.39

2d5/2 −9.70 -11.37 -11.23

1h11/2 −9.37 -9.87 -9.68

2d3/2 −8.38 -9.43 -9.30

3s1/2 −8.03 -8.67 -8.62

1h9/2 −3.77 -4.00 -3.99

2f7/2 −2.87 -2.78 -3.00

1i13/2 −2.16 -1.62 -1.72

3p3/2 −0.95 0.60 0.26

2f5/2 −0.47 -0.19 -0.42

Neutrons

1h9/2 −10.85 -12.39 -12.24

2f7/2 −9.72 -11.60 -11.64

1i13/2 −9.01 -9.33 -9.20

3p3/2 −8.27 -8.67 -8.77

2f5/2 −7.95 -8.59 -8.64

3p1/2 −7.38 -7.54 -7.65

2g9/2 −3.94 -2.86 -3.06

1i11/2 −3.15 -1.65 -1.69

1j15/2 −2.53 -0.41 -0.43

3d5/2 −2.36 -0.43 -0.64

4s1/2 −1.91 0.08 -0.08

2g7/2 −1.45 0.38 0.20

3d3/2 −1.42 0.56 0.40
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FIG. 7. Variation of the symmetry energy coefficient S(ρ) as a function of the nuclear

matter density ρ.
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FIG. 8. Energy per particle for pure neutron matter E(n)/A as a function of density.

Results for the two newly generated Skyrme interactions KDE0 and KDE are

compared with those obtained for the SLy7 Skyrme force and the realistic

UV14+UVII model of Wiringa et al. [14].
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CHAPTER IV

HARTREE-FOCK BASED RANDOM PHASE APPROXIMATION

DESCRIPTION OF NUCLEAR EXCITATIONS

A. Nuclear response in the coordinate space

We have learned from Chapter II that for the nuleus many-body system, the Hartree-

Fock (HF) method describes well the properties of ground state of nuclei and the

characteristics of the single-particle excitations, i.e., the HF is a good model for de-

scribing the ground-state properties of the nucleus. But in order to describe the

collective phenomena, one should take into account the residual nucleon-nucleon in-

teraction. In this section, we summarize briefly one of the methods used successfully

to describe the nuclear excitation due to a weak external field. The Random Phase

Approximation (RPA) has been very successful in describing properties of both low

excitation energy collective states and giant resonances in nuclei. In the RPA theory,

the excited state of the nucleus are considered as a superposition of one particle-one

hole (ph) excitations over the RPA correlated ground state. There are many for-

malisms of the RPA theory [78, 79, 80, 81, 82, 83], such as the matrix formulation,

Green’s function approach, collective coordinate RPA and the small amplitude time

dependent Hartree-Fock (TDHF) approach. Also, different numerical methods for

RPA calculations and the treatment of the single-particle continuum were developed

and used [25, 84, 85, 86, 87, 88, 89, 90, 91, 92].

The continuum Green’s function RPA method which was first introduced in Ref.

[88] is a very fast numerical method for continuum RPA calculations. The RPA

Green’s function is given by

GRPA = G0
[

1 + VphG
0
]−1

, (4.1)
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where Vph is the particle-hole interaction and G0 is the free the p-h Green’s function.

In the case of a nucleon-nucleon Skyrme type interaction, the zero range particle-hole

interaction can be obtained by functional differentiation of the energy density, HI(r),

which is the sum of the Skyrme interaction and the kinetic energy density.

Vph(r1, r2) = δ(r1, r2)
∑

s′t′st

1

16

[

1 + (−1)s−s′~σ1 · ~σ2

]

×
[

1 + (−1)t−t′~τ1 · ~τ2
] δ2HI

δρstδρs′t′
. (4.2)

The free p-h Green’s function G0 is given in terms of the HF Hamiltonian H0, its

occupied eigenstates φh, and the eigenenergies εh, as

G0(r1, r2, ω) = −
∑

h

φ∗
h(r1)

(

1

H0 − εh − ω
+

1

H0 − εh + ω

)

φh(r2). (4.3)

The sum in Eq. (4.3) is over the occupied states. Note that the Eqs. (4.1) and (4.3)

are operator equations in coordinate space. If H0 has only a discrete spectrum, then

the single-particle Green’s function is evaluated in coordinate space as

(

1

H0 − E
)

r1r2

=
∑

p

φ∗
p(r1)

1

εp − E
φp(r2). (4.4)

Substituting Eq. (4.4) into Eq. (4.3), we obtain a double sum, where the sum

over p is limited to unoccupied states, since the two terms in Eq. (4.3) will cancel

contributions from occupied orbits. The single-particle Green’s function with the

famous representation [93, 94] for exact treatment of continuum is given as

glj(r1, r2, E) =
1

H0 − E
= −2m

h̄2 ulj(r<)vlj(r>)/W, (4.5)

where ulj is the regular solution of the HF Hamiltonian for the lj partial wave and

vlj is the irregular solution, and r< and r> are the lesser and the greater of r1 and r2,

respectively.
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The irregular solution is determined by the boundary condition at r → ∞. For

negative energies, this is

v(r) ' exp[−
√

2mE/h̄2r], r →∞. (4.6)

For positive energies, v(r) describes an outgoing wave asymptotically,

v(r) ' exp[i
√

2mE/h̄2r], r →∞. (4.7)

The normalization of the Green’s function is determined by the Wronskian, W ,

W = u
dv

dr
− vdu

dr
. (4.8)

The response function S(E) and transition density ρ̂t corresponding to a transition

operator F̂ are the quantities characterizing giant resonances. In general the transi-

tion operator has the form

F̂ =
∑

f̂(i), (4.9)

with

f̂ = f(r) [YL × Sσ]J T q. (4.10)

where J(= 1, 2, ...), L = (0, 1, 2, ...), σ = (0, 1) and q = (0, 1) are the total angular

momentum, orbital angular momentum, spin and isospin , respectively, transfered by

the excitations. Note that T τ = 1 (isoscalar) or ~τ (isovector) and Sσ = 1 (electric)

or ~σ (magnetic).

The response function S(E) is defined by

S(E) =
∑

n

∣

∣

∣〈0 | F̂ | n〉
∣

∣

∣

2
δ(En − E0 − E), (4.11)

where the sum is over the complete set of eigenstates | n〉 with eigenenergies En of

the Hamiltonian H of the many-body system. The energy moments mk, which are
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also sum rules, are given by

mk =
∫

EkS(E)dE =
∑

n

(En − E0)
k
∣

∣

∣〈0 | F̂ | n〉
∣

∣

∣

2

= 〈0 | F̂ (H− E0)
kF̂ | 0〉. (4.12)

The energy weighted sum rule (EWSR) m1 is written as

∑

n

(En − E0)
∣

∣

∣〈0 | F̂ | n〉
∣

∣

∣

2
=

1

2
〈0 | [F̂ , [H, F̂ ]] | 0〉. (4.13)

A giant resonance is a state associated with a large fraction of the EWSR. The

response function S(E) is characterized by certain energies obtained from ratio of the

energy moments mk. The centroid energy, Ec, constrained energy, Econ and scaling

energy, Escal are defined as

Ec =
m1

m0

, Econ =

√

m1

m−1

, Escal =

√

m3

m1

. (4.14)

We can calculate the values of m1, m−1 and m3 within the HF theory, see Chapter

II. If the nucleon-nucleon interaction does not include momentum dependent parts

then for an isoscalar single-particle operator F̂ =
∑

f̂(~ri) only the kinetic energy term

contributes to the commutator [H, F̂ ] and the EWSR becomes

m1 =
1

2
〈0 | [F̂ , [H, F̂ ]] | 0〉 =

h̄2

2m
A〈0 | (~∇f)2 | 0〉. (4.15)

Within the Greens’ function RPA approach the strength function S(E) is obtained

from

S(E) =
∑

n

∣

∣

∣〈0 | F̂ | n〉
∣

∣

∣

2
δ(E − En) =

1

π
Im

[

Tr(f̂Gf̂)
]

, (4.16)

and the transition density ρ̂t = ρt(r) [YL × Sσ]J T q is obtained from

ρ̂t(E) =
∆E

√

S(E)∆E

1

π
Im[f̂G]. (4.17)
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For the case of isoscalar electric resonance the scattering operator f̂ has the form

f̂ = f(r)YL (4.18)

The EWSR associated with isoscalar electric resonance is given as [82]

EWSR(f̂) =
∫

ES(E)dE =
h̄2

2m

A

4π
(2L+ 1)

×


〈0 |
(

df

dr

)2

+ L(L + 1)

(

f

r

)2

| 0〉


 . (4.19)

If there is only one collective state [82] with energy Ecoll, exhausting 100% of the

EWSR associated with the scattering operator f̂L = f(r)YL, then the corresponding

transition density, derived using the continuity equations, is given by

ρL
coll(r) = − h̄2

2m
(2L+ 1)

√

√

√

√

1

EWSR(f̂)Ecoll
[(

1

r

d2

dr2
(rf)− L(L+ 1)

r2
f

)

ρ0 +
df

dr

dρ0

dr

]

. (4.20)

For the ISGMR, we use the scattering operator

f̂0 = r2Y00. (4.21)

From Eqs. (4.19) and (4.20) we find that

EWSR(f̂0) =
h̄2

2m

A

4π
〈r2〉, (4.22)

with

〈rk〉 =

∫

r2ρ0(r)r
kdr

∫

r2ρ0dr
. (4.23)

and the collective transition density associated with 100% of the EWSR is

ρ0
coll(r) =

[

2π
h̄2

mA〈r2〉Ecoll

]1/2 (

3ρ0 + r
dρ0

dr

)

. (4.24)
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For the ISGDR, the scattering operator

f̂1 = rY10 (4.25)

leads to a coherent spurious state associated with the center of mass motion. We

have

EWSR(f̂1) =
h̄2

2m

9A

4π
, (4.26)

and the corresponding spurious state transition density, ρss, has the form

ρss =

[

h̄2

2m

4π

AEss

]1/2
dρ0

dr
. (4.27)

For a fully self-consistent HF-RPA calculation the spurious state appears at zero

energy and no spurious state mixing (SSM) with the ISGDR takes place. However, in

some numerical implementation of the HF-RPA theory, self-consistency is violated,

leading to SSM in the ISGDR. It was shown in Refs. [95, 96] that in order to correct

for the effects of SSM on S(E) and ρt, the scattering operator f̂ is replaced by

f̂η = f̂ − ηf̂1, (4.28)

where

η =
〈f̂ρss〉
〈f̂1ρss〉

. (4.29)

The revised ISGDR response function is written as

Sη(E) =
1

π
Im〈f̂ηGf̂η〉 = S3(E)− 2ηS13(E) + η2S1(E), (4.30)

where S3 and S1 are the response functions associated with f̂3 and f̂1, respectively,

and

S13 =
1

π
Im〈f̂1Gf̂3〉. (4.31)
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The revised transition density is obtained from

ρt(r) = ρη − aρss, (4.32)

where ρη is determined from Eq. (4.17) using f̂η and

a =
〈f̂1ρη〉
〈f̂1ρss〉

. (4.33)

In theoretical investigations of the ISGDR, we adopt the scattering operator f̂ = r3Y1.

We have

f̂η = (r3 − ηr)Y1 (4.34)

where

η =
5

3
〈r2〉. (4.35)

Using Eqs. (4.19) and (4.20), we have the corresponding EWSR and ρcoll

EWSR(f̂η) =
h̄2

2m

3A

4π

[

11〈r4〉 − 25

3
〈r2〉2

]

(4.36)

and

ρ1
coll(r) =



3
h̄22π

EcollmA
[

11〈r4〉 − 25
3
〈r2〉2

]





1/2 (

10rρ0 + (3r2 − 5

3
〈r2〉)dρ0

dr

)

, (4.37)

For isoscalar resonances of higher multi-polarities, L ≥ 2, the scattering operator

is given by

f̂L = rLYL. (4.38)

The EWSR, and ρt obtained from Eqs. (4.19) and (4.20) are

EWSR(f̂L) =
h̄2

2m

A

4π
L(2L + 1)2〈r2L−2〉, (4.39)

ρL≥2
coll (r) =

[

h̄22π

mAEcoll〈r2L−2〉

]1/2

rL−1dρ0

dr
. (4.40)
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B. Description of the ISGMR in 90Zr, 116Sn, 144Sm, and 208Pb

In the fully self-consistent HF-RPA calculations, one starts with a specific effective

nucleon-nucleon interaction Vij and solves the HF equations. Then one solves the

RPA equations using the particle-hole (p-h) interaction Vph which is consistent with

Vij. Some available HF-RPA calculations are not fully self-consistent due to the

following approximations: (i) Numerical accuracy and smearing parameter (Γ/2), (ii)

Limiting the p-h space in a discretized calculations and (iii) Vph is not consistent

with Vij by neglecting parts of the p-h interaction Vph such as the spin-orbit and

Coulomb interactions. The consequences of these violations of self-consistency on the

strength function S(E) and the transition density ρt(E) are often ignored. The error

in the centroid energy (especially for ISGMR) can give large error in the extracted

value of the incompressibility coefficient Kn.m., due to the relation ∆Kn.m./Kn.m. =

2∆Ecen./Ecen.. For example, the error ∆Ecen. ∼ 1 MeV on the centroid energy of the

ISGMR for 208Pb can lead an error ∆Kn.m. ∼ 30 − 40 MeV for Kn.m. = 200 − 300

MeV. Note that the current experimental error in Ecen. is about 0.2 − 0.3 MeV. In

this section we give the results of fully self-consistent HF-RPA calculations for the

breathing mode for four nuclei, namely, 90Zr, 116Sn, 144Sm and 208Pb. In the Fig.

9 we show the strength functions and the centroid energies are given in Table XIV.

We use the SGII and KDE0 Skyrme interactions. Note that these interactions are

successful in reproducing not only the ground state properties but also the energies

of the isoscalar giant monopole resonance excitation for nuclei. Our results for the

centroid energy E0 are very close to the experimental values. Note that for our KDE0

interaction the value of the symmetry energy coefficient J and the incompressibility

coefficient Kn.m. are higher than the ones for SGII.
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TABLE XIV. Fully self-consistent HF-RPA results for the ISGMR centroid energy

E0 = m1/m0 (in MeV) obtained using the interactions SGII [8], KDE0

[9] and compared with relativistic RPA results obtained with the NL3

interaction [10] (the energy range ω1 − ω2 (MeV) and the experimental

data is taken from Refs. [11, 12]). The incompressibility (Kn.m.) and

symmetry energy (J) coefficients are given in units of MeV.

Nucleus ω1 − ω2 Expt. NL3 SGII KDE0

90Zr 0− 60 18.7 17.9 18.1

10− 35 17.81±0.30 17.9 18.0

116Sn 0− 60 17.1 16.2 16.6

10− 35 15.85±0.20 16.2 16.6

144Sm 0− 60 16.1 15.3 15.5

10− 35 15.40±0.40 15.3 15.4

208Pb 0− 60 14.2 13.6 13.8

10− 35 13.96±0.20 13.6 13.8

Kn.m. 272 215 229

J 37 29 33
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FIG. 9. Fully self-consistent HF-RPA results for the ISMGR strength functions of
90Zr, 116Sn, 144Sm, and 208Pb obtained using the interactions SGII and KDE0

and compared with the experimental data (circles with error bars) [11, 12].
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C. Nuclear matter incompressibility coefficient

An accurate nuclear matter equation of state (EOS), E = E(ρ) is very important in

the study of nuclear properties, heavy-ion collisions, neutron stars, and supernovas.

From electron and particle scattering experiments and the extrapolation of an empir-

ical mass formula, we know accurately only the saturation point (ρ0, E(ρ0)), where

the density of nuclear matter is ρ0 = 0.16 fm−3, and the binding energy per nucleon

is E(ρ0) = −16 MeV. It is common to use the expansion,

E(ρ) = E(ρ0) +

(

dE

dρ

)

ρ0

(ρ− ρ0) +
1

18
K

(

ρ− ρ0

ρ0

)2

+ .... (4.41)

At ground state the second term vanishes and the symmetric nuclear matter incom-

pressibility coefficient is defined as

Kn.m. = 9ρ2
0

(

d2(E/A)

dρ2

)

ρ0

. (4.42)

Since Kn.m. is directly related to the curvature of the EOS, an accurate value of Kn.m.

will extend our knowledge of the EOS around the saturation point. There have been

many attempts to determine an accurate value of Kn.m. over the years using properties

of nuclei which are sensitive to a certain extent to Kn.m. [97]. In a macroscopic

approach which relies on the liquid drop model of expansion for the breathing mode

restoring force, the value of K was determined by a direct fit to the data. The value

deduced for Kn.m. is in the range of 100 to 400 MeV [98, 99]. We can see that for this

approach, the constrain on the value K is below 50%. In the microscopic approach,

starting with many various effective two-body interactions which have different values

of Kn.m., but can reproduce the data of the other physical quantities, such as binding

energies, radii; one then determines the effective interaction which can fit well the

data for a physical quantity that is sensitive to Kn.m..
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The first two experimental observations of the isovector giant dipole resonance

(IVGDR) by photon excitation [100] and the isoscalar giant quadrupole resonance

(ISGQR) by using inelastic scattering of electrons and hardrons [101, 102] brought

an extensive experimental and theoretical research on collective motion in nuclei.

The measurements of the centroid energy of the isoscalar giant monopole resonance

(ISGMR) provides a very sensitive method [82, 103] to determine the value of Kn.m..

Many attempts have been made to measure very accurately the value of the centroid

energy E0 of the ISGMR. The recent experimental data [38] for the E0 in heavy nuclei

are accurate enough (within 02 − 0.3 MeV) to provide accurate information on the

value of Kn.m. (within 10 MeV).

During the 1970s, HF calculations using the Skyrme interaction for heavy nu-

clei became available. The parameters of the Skyrme type interaction improved over

time to better reproduce the experimental data of a wide range of nuclei, such as nu-

clear mass, charge radii. Then the Skyrme parameters were additionally constrained

by taking into account the experimental data on the nuclear giant resonances. The

Hartree-Fock based random phase approximation (HF-RPA) calculations [19, 23] us-

ing the early introduced Skyrme interactions, which reproduced quite well the proper-

ties of the ground state nuclei, also reproduced quite well the available experimental

data on isovector giant dipole resonance (IVGMR) and isoscalar giant quadrupole

resonance (ISGQR). These interactions are associated with the value of about 370

MeV for Kn.m.. Using these interactions the ISGMR in 208Pb was predicted to be lo-

cated at an excitation energy E0 of about 18 MeV. The experimental observation for

E0 in 208Pb, at an excitation energy of 13.7 MeV [104], led to a revision of the exist-

ing effective Skyrme interaction. At present, the HF-RPA calculations with Skyrme

[41, 42] and Gogny [105] interactions predict a value of Kn.m. in the range of 210-220

MeV.
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The experimental observation on the isoscalar giant dipole resonance (ISGDR)

in 208Pb gives an excitation energy E1 of about 21 MeV [106, 107, 108]. On the

other hand, the value of E1 obtained from HF-RPA calculation in [109], using the

interaction which reproduced the experimental values of E0, is higher than E1 by

more than 3 MeV. Therefore, the value of Kn.m. deduced from ISGMR is quite larger

than the one deduced from ISGDR. We note that this long-standing problem of the

conflicting results deduced for Kn.m. from data on the ISGDR and the ISGMR was

explained by Shlomo and Sanzhur [95] as being due to a missing strength in the

experimental data for the high energy region of the ISGDR.

The relativistic mean-field based RPA (RRPA) calculations, with the neglect

of contribution from negative-energy sea, yielded for Kn.m. a value in the range of

280-350 MeV [110]. With the inclusion of negative-energy states in the calculation of

the response function, RRPA calculations [39, 40] yield a value of Kn.m. = 250− 270

MeV. In a semi-classical approach E0 ∝
√
Kn.m., so the discrepancy of about 20% in

K obtained from relativistic and nonrelativistic models led to the uncertainty of 10%

in value of E0. This discrepancy is significant in view of the accuracy of about 2% in

the experimental data on the ISGMR centroids energies. It was shown in Ref. [13]

that the calculated value of E0 can deviate by about 5% if the particle-hole space is

quite limited and/or self-consistency is not properly maintained. In the literature, the

values of the centroid energy E0 for 208Pb, obtained for the same interaction, differs by

up to 0.3 MeV [111, 112, 113]. It was claimed [111, 114] that this significant difference

is due to the model dependence of Kn.m.. There have been some works to resolve this

problem. It was pointed out in Ref. [115] that the differences in the values of Kn.m.

can come from the differences in the density dependence of the symmetry energy in

relativistic and non-relativistic models. But the analysis in Ref. [115] was limited to

the nucleus 208Pb and also the interaction parameters for the several families of the
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effective Lagrangian considered were fitted only to the empirical values of saturation

density, binding energy per nucleon in symmetric nuclear matter and the charge radius

of 208Pb. In Ref. [116] a reasonable value of the centroid energy E0 for 208Pb was

obtained by using an effective interaction with Kn.m. = 400 MeV, but in case of the

90Zr nucleus this effective interaction overestimated the value of E0. Therefore, to

explain the discrepancy between the relativistic and the non-relativistic calculations,

one must compare the results obtained from these models for many nuclei.

We investigate systematically the discrepancy in the value of Kn.m., which is

deduced from the ISGMR centroid energy, as obtained from relativistic and non-

relativistic models. We generate different parameter sets for the Skyrme interaction

and calculate the ISGMR strength function for several nuclei using the HF-RPA

approach. In order for the comparison to be clear, our calculations using different

parameter sets of Skyrme interaction are performed with the same procedure and

numerical accuracy. The Skyrme parameters are obtained by a least square fit to the

same experimental data for the nuclear binding energies, charge radii, and neutron

radii as used in Ref. [10] for generating the NL3 parameter set for the effective

Lagrangian used in the RMF model.

In a non-relativistic self-consistent HF-RPA calculation [84], one starts with a

specific effective nucleon-nucleon interaction V12 in Eq. (2.14). The parameters of

the Skyrme interaction are obtained by fitting the HF results to a set of experimental

data. Once the HF equations are solved using an appropriate parameter set for the

Skyrme interaction, then one obtains the RPA Green’s function Eq. (4.1) [84] For

the single-particle operator

F =
A
∑

i=1

f(ri), (4.43)

the strength function is given by Eq. (4.16). The effective nucleon-nucleon interac-
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tion in case of relativistic mean field models are generated through the exchange of

many mesons. The effective Lagrangian representing a system of interacting nucleons,

adopted for the NL3 interaction, has the form [10]

L = ψ̄ [γ (i∂ − gωω − gρ
−→ρ −→τ − eA)−m− gσσ]ψ +

1

2
(∂σ)2

−U(σ)− 1

4
ΩµνΩ

µν +
1

2
m2

ωω
2 − 1

4

−→
R µν
−→
R

µν

+
1

2
m2

ρ
−→ρ 2 − 1

4
FµνF

µν, (4.44)

with nucleons ψ with mass m; σ, ω, ρ mesons; the electromagnetic fields; and non-

linear self-interactions of the σ field,

U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4. (4.45)

The Lagrangian parameters are obtained in the same way as in the case of non-

relativistic mean field calculations, by a fitting procedure to some bulk properties of

a set of spherical nuclei [18]. The values of various coupling constants and the meson

masses appearing in Eqs. (4.44) and (4.45) for the most widely used parameter set

NL3 are mσ = 508.194 MeV, mω = 782.501 MeV, mρ = 763.000 MeV, gσ = 10.217,

gω = 12.868, gρ = 4.474, g2 = −10.431 fm−1, and g3 = −28.885.

Beside the same set of experimental data used in Ref. [10] for a least square

fit, we consider the center of mass correction to the total binding energy, finite size

effects of the proton, and the Coulomb energy in a similar way to that employed in

determining the NL3 parameter set in Ref. [10]. However, pairing is not included in

our HF calculations since we study seven closed shell nuclei instead of the ten nuclei

in Ref. [10]. The open shell nuclei 58Ni, 124Sn, and 214Pb are excluded from our least

square fit. We also neglect the proton and the neutron pairing gaps in 90Zr and 116Sn

nuclei, respectively. We found that if we increase the error bars for the experimental
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data on these two nuclei in order to compensate for the missing pairing interaction,

the values of the Skyrme interaction parameters remain practically the same.

We generate a Skyrme interaction having Kn.m. = 271.76 and J = 37.4 MeV

similar to those associated with the NL3 interaction. Also this set of parameters

reproduce with high accuracy the root mean square charge radius of 208Pb. We

denote this set of parameters as SK272. We also generate another set SK255 having

characteristics very close to SK272 set, but with Kn.m. = 255 MeV. The value of

the parameters of SK272 and SK255 are displayed in Table XV together with the

parameters of SGII. In Table XVI we show the nuclear matter properties such as

the saturation density ρ0, effective nucleon mass m∗/m, the slope of the symmetry

energy coefficient (L = 3ρ0 dJ/dρ0) obtained with the SK272 and SK255 interactions

and compare them with those obtained with the NL3 and SGII interactions. In Table

XVII we show the experimental data for the total binding energy E, charge radii rc,

and neutron radii rn used in Ref. [10] and in our least square fit, with error bars in

percent. For comparison we show the corresponding values obtained from the SK272,

SK255, NL3 and SGII interaction. From this table we can see that our results are in

good agreement with those obtained with the NL3 and SGII interactions. The value

of the difference between rms radii for neutrons and protons ∆r = rn − rp, which is

calculated by using rp =
√

r2
c − 0.64, is neglected in the least square fit. We can see

that the values of ∆r for the SK272, SK255, and NL3 interactions are closer, but

are larger compared with the corresponding values for the SGII interaction. This is

explained by noting that the values of the slope of the symmetry energy L associated

with the SK272, SK255, and NL3 interactions are quite larger than that associated

with the SGII interaction (see Table XVI). As is shown in Ref. [57], the value of ∆r

is very sensitive to the density dependent form adopted for the symmetry interaction.

It was demonstrated in Ref. [13] that the strength functions for giant resonances
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are quite sensitive to the numerical approximations such as the size of the box used

for the discretization of the continuum, limiting the maximum energy for the particle-

hole excitations (Emax
ph ) and the value of the smearing parameter (Γ/2) used to smear

the strength function. In order to reproduce the results obtained in the continuum

RPA calculation the size of the box must be consistent with the value used for the

smearing width. For example, for Γ/2 = 1 MeV one must use a large box of size 72

fm. Our box size is 90 fm and Γ/2 = 1 MeV. We note [13] that to obtain an accurate

value for the ISGMR centroid energy E0, with an accuracy within 0.1 MeV, one must

have Emax
ph > 400 MeV. The centroid energy is determined by E0 = m1/m0, where m0

and m1 are the non-energy-weighted and energy-weighted sums of S(E) of Eq. (4.16),

respectively. Our lowest value of Emax
ph is higher than 500 MeV. On the other hand,

the centroid energy depends strongly on the range of the excitation energy interval of

the giant resonance adopted to evaluate E0. We note that in the published literature

the excitation energy interval is sometime not given.

For example, in the case of the 208Pb nucleus using SGII interaction, we find that

E0 = 13.7, 13.9, 14.4 MeV with the excitation energy ranges 0-40, 0-60, and 10-40

MeV, respectively. These differences are very significant, since as we discussed earlier,

a variation of 5% in E0 corresponds to a change in Kn.m. by 10%. For the consistency

of comparison, we used the energy range 0-60 MeV for E0, since the RMF results in

Ref. [111] for the NL3 parameter set were obtained using the same energy range and

the strength function was smeared using Γ/2 = 1 MeV [117].

We show in Table XVIII the fully self-consistent HF-RPA results for the ISGMR

centroid energy obtained by using the SK255 interaction and compare them with those

obtained with the SGII Skyrme interaction and with the RRPA results of Ref. [111] for

the NL3 interaction. The differences between the values of E0 obtained from SK255

and NL3 interaction are within the uncertainty associated with the experimental data
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for E0. The values of E0 for 208Pb nucleus for SK255 and SGII interaction are quite

close within 0.3 MeV, however the difference in the values ofKn.m. for these interaction

is about 40 MeV. Therefore, with a fixed value of E0 if we increase the value of J by

10%, Kn.m. will increase by about 5%. Therefore, from our investigation, we see that

the discrepancy in the values of Kn.m. obtained in the relativistic and non-relativistic

models is mainly due to the differences in the values of the symmetry energy coefficient

J and its slope L associated with these models. We also calculate the values of E0 over

the same energy range as used in experimental determination of the centroid energy

[38]. As can be seen in Table XVIII, our results for E0 with the SK255 interaction,

calculated over the experimental excitation energy range, are a little bit higher than

the experimental data, which is consistent with Kn.m. being some what less than 255

MeV.
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TABLE XV. Skyrme parameters for different interactions used in the present calcula-

tions. Value of the parameters for the SGII interaction are taken from

Ref. [8].

Parameter SK272 SK255 SGII

t0(MeV fm3) -1496.84 -1689.35 -2645

t1(MeV fm5) 397.66 389.30 340

t2(MeV fm5) -112.82 -126.07 -41.9

t3(MeV fm3(1+α)) 10191.64 10989.60 15595

x0 0.0008 -0.1461 0.09

x1 0.0102 0.1160 -0.0588

x2 0.0020 0.0012 1.425

x3 -0.5519 -0.7449 0.06044

α 0.4492 0.3563 1/6

W0(MeV fm5) 106.58 95.39 105
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TABLE XVI. Nuclear matter properties calculated from the RMF theory with the NL3

parameter set and the non-relativistic HF calculations with different

Skyrme parameter sets. The ”experimental data” are the ones used

in Ref. [10] in the least square fit together with the bulk properties

for finite nuclei in obtaining the NL3 parameter set. The values in

parentheses represent the error bars (in percent) used in the fit.

Expt. NL3 SK272 SK255 SGII

E/A(MeV) -16.0(5) -16.299 -16.280 -16.334 -15.67

Kn.m. (MeV) 250.0(10) 271.76 271.55 254.96 214.57

ρ0 (fm−3) 0.153(10) 0.148 0.155 0.157 0.159

m∗/m 0.60 0.77 0.80 0.79

J (MeV) 33.0(10) 37.4 37.4 37.4 26.8

L (MeV) 118.5 91.7 95.0 37.6
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TABLE XVII. Experimental data for E, rc, rn, and the error bars (in percent) are

used in the fit. ∆r = rn− rp is not included in the fit. For comparison,

the results obtained from the SK272, SK255, NL3, SGII interactions

are presented.

Nucleus Property Expt. NL3 SK272 SK255 SGII

16O E -127.62(0.1) -128.83 -127.76 -128.05 -131.93

rc 2.730(0.2) 2.730 2.800 2.813 2.793

rn 2.580 2.662 2.674 2.650

40Ca E -342.06(0.1) -342.02 -341.35 -342.50 -342.42

rc 3.450(0.2) 3.469 3.496 3.504 3.490

rn 3.370(2.0) 3.328 3.363 3.369 3.348

∆r 0.014 -0.047 -0.041 -0.043 -0.049

48Ca E -416.00(0.1) -415.15 -414.17 -413.89 -418.22

rc 3.451(0.2) 3.470 3.524 3.531 3.526

rn 3.625(2.0) 3.603 3.635 3.649 3.582

∆r 0.268 0.227 0.203 0.210 0.147

90Zr E -783.90(0.1) -782.63 -782.73 -783.28 -775.49

rc 4.258(0.2) 4.287 4.282 4.286 4.286

rn 4.289(2.0) 4.306 4.310 4.317 4.266

∆r 0.107 0.094 0.103 0.106 0.056

116Sn E -988.69(0.1) -987.67 -982.37 -984.48 -971.66

rc 4.627(0.2) 4.611 4.617 4.619 4.630

rn 4.692(2.0) 4.735 4.696 4.701 4.639

∆r 0.135 0.194 0.149 0.152 0.079

208Pb E -1636.47(0.1) -1639.54 -1631.78 -1637.48 -1622.21

rc 5.503(0.2) 5.520 5.503 5.503 5.519

rn 5.593(2.0) 5.741 5.687 5.694 5.597

∆r 0.148 0.279 0.243 0.250 0.136
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TABLE XVIII. Fully self-consistent HF-RPA results for the ISGMR centroid energy

(in MeV) obtained using the interactions SK255 [13] and SGII [8] and

compared with the RRPA results obtained with the NL3 interaction

[10] (the range of integration ω1 − ω2 is given in the second column

and the experimental data are from Refs. [11, 12]).

Nucleus ω1 − ω2 Experiment NL3 SK255 SGII

90Zr 0-60 18.7 18.90 17.89

10-35 17.81± 0.30 18.85 17.87

116Sn 0-60 17.1 17.31 16.36

10-35 15.85± 0.20 17.33 16.38

144Sm 0-60 16.1 16.21 15.26

10-35 15.40± 0.40 16.19 15.22

208Pb 0-60 14.2 14.34 13.57

10-35 13.96± 0.20 14.38 13.58
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CHAPTER V

SUMMARY

The main purpose of this dissertation is to determine a new set of parameters of the

Skyrme effective nucleon-nucleon interaction. Since the work of Vautherin and Brink

[19], the effective Skyrme nucleon-nucleon interaction has been used in the mean-

field models for many decades and proved successful to describe the ground state

properties of nuclei. Many different parameterizations of the Skyrme interaction

have been realized to better reproduce nuclear masses, radii, and various data. Most

of the parameters of Skyrme interactions available in the literature are obtained by

fitting Hartree-Fock result to experimental data on the bulk properties, such as charge

radii, binding energies, and other nuclear experimental, for a few closed shell nuclei.

Some of parameterizations of the Skyrme effective interactions have been constructed

depending on the selected set of nuclear properties to be reproduced. Today there

are more available experimental data for nuclei at and far from β-line. Therefore, we

have generated a new set of Skyrme type interaction, named KDE0, which includes

all the merits of many sets of existing Skyrme parameters.

We summarize here the details of the Hartree-Fock calculations using the KDE0

Skyrme interaction. In our mean-field results we carry out the center of mass correc-

tion not only to the binding energy but also for the charge radii. For the correction

to the binding energy, we use the center of mass energy given in Eq. (2.67) and the

oscillator frequency h̄ω given in Eq. (2.68). With this simple approximation, our

results agree quite well in the values of binding energy with the case of taking into

account both the one and two body terms in Eqs. (2.66) [2]. For the correction to

the charge radii, we use Eq. (2.70). There are many approaches for the Coulomb

energy, used to account for the effects of long range correlation (LRC) and charge
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symmetry breaking (CBS) in the strong nucleon-nucleon interaction. In our work we

adopt the approach of including only the direct term of the Coulomb interaction. We

use the stability conditions of the Landau parameters for symmetric nuclear matter

and pure neutron matter to calculate the critical density ρcr. for the Skyrme parame-

ters. We find that the critical density ρcr. can be maximized by adjusting the values

of the IVGDR enhancement factor κ, the quantity L associated with slope of the

symmetry coefficient J , and the Landau parameter G′
0, as these quantities are not

well determined by the Skyrme parameters, conventionally obtained by fitting the

experimental data for the ground state properties of finite nuclei. We have applied

restrictions on these quantities as follows: the range of the value of κ is 0.25 − 0.5,

needed to describe the TRK sum rule for the isovector giant dipole resonance [31, 55];

L > 0 for 0 ≤ ρ ≤ 3ρ0, a condition necessary for a Skyrme interaction to be suitable

for studying the properties of neutron star [34]; and G′
0 > 0 to reproduce the energies

of the isovector M1 and Gamow-Teller states [55, 58]. Our maximum value of the

critical density ρcr. obtained is lower by up to 25% compared to the ones obtained

without any such restrictions [35]. We show that the critical density obtained for

realistic values of the surface energy coefficient (Es = 18 ± 1 MeV) and isoscalar

effective mass (m∗/m = 0.7± 0.1) is in the range of 2ρ0 − 3ρ0. However, we do not

include the effect of pairing correlations.

For the first time we use the simulated annealing method to determine the the pa-

rameters of the Skyrme effective nucleon-nucleon interaction of Eq. (2.14) by search-

ing for the global minimum in the hyper surface of the χ2 function, Eq. (3.1). We

obtain the Skyrme parameters by fitting the Hartree-Fock mean-field results to an ex-

tensive set of experimental data together with the additional constraints mentioned

above. Our set of experimental data consists of the binding energies for 15 nuclei

ranging from the normal to exotic (proton or neutron rich) ones, charge rms radii for
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7 nuclei, spin-orbit splittings for the 2p proton and neutron orbits of the 56Ni nucleus

and rms radii for 1d5/2 and 1f7/2 valence neutron orbits in the 17O and 41Ca nuclei,

respectively, and the breathing mode energy for four nuclei. We also include in the

fit the critical density ρcr determined from the stability conditions for the Landau

parameters. The purpose of selection of experimental data and additional constraints

is to generate Skyrme parameters that describe well not only the ground-state prop-

erties of nuclei at and far from the stability line, but also the properties of neutron

stars. We obtain two sets of Skyrme parameters, KDE0, only the Coulomb direct

term is included; and KDE, the direct and Coulomb exchange terms are included.

Our parameter sets for the Skyrme interaction include the merits of the recent param-

eters sets Sly [2, 31] and SKX [32]. We note here that the quality of the parameters

can be improved by several ways. The set of experimental data can include the giant

dipole and quadrupole resonances. The effects on the binding energy and radii due

to the correlations beyond mean-field [118, 119, 120] can be included in the fit. These

effects are, in particular, important for the light nuclei. One may also include in the

spin-orbit splitting the contributions due to the electromagnetic spin-orbit interaction

[7] and modify the spin-orbit interaction by using the form proposed by Sagawa in

Ref. [121]. In the implementation of SAM, by randomly selecting a component of

the vector v as defined by Eq. (3.2), we change from one configuration to another,

we can perform random selection of a component of v by assigning a more plausi-

ble weight factors to these components. We can try different annealing schedules to

determine the rate of cooling. In Chapter IV, we describe fully self-consistent HF-

RPA calculations for the strength functions, and the centroid energies of the isoscalar

giant monopole resonance for four nuclei using our set of Skyrme interaction KDE0

and compare to the ones obtained by using the SG2 interaction and the available

experiment data. We also analyze in detail the recent claim that the nuclear matter
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incompressibility coefficient Kn.m. extracted from the ISGMR centroid energy calcu-

lated using the relativistic and non-relativistic based RPA models differ by about

20%. We have determined Skyrme parameter sets by a least square fitting procedure

using the same experimental data for the bulk properties of nuclei considered in Ref.

[10] for determining the NL3 parametrization of an effective Lagrangian used in the

relativistic mean field models. In addition, the values of Kn.m., J , and the charge

radius of the 208Pb nucleus are fixed to be close to those obtained with the NL3 in-

teraction. The values of E0 for the deduced SK272 interaction are higher by about

5% compared to the corresponding NL3 results. This means that the discrepancy

between the values of Kn.m. obtained in the relativistic and the non-relativistic mi-

croscopic models would be only about 10% instead of 20%. The SK255 interaction

with Kn.m. = 255 MeV gives values of the ISGMR centroid energies E0 which are

quite close to the NL3 results but a little bit higher than experimental data. From

our investigation, we see that the discrepancy in the values of Kn.m. obtained in the

relativistic and non-relativistic models is mainly due to the differences in the values

of the symmetry energy coefficient J and its slope L associated with these models.
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APPENDIX A

THE SKYRME ENERGY DENSITY

In this appendix, we give details of the calculation of the energy density H(r). First

we want to derive some useful formulas. We assume that the subspace of the occupied

state is invariant under time reversal. This means that if a single-particle state |i〉

is occupied then the time-reversed state |i〉 = K|i〉 is also occupied. For our case of

spin 1
2

particles, the time-reversal operator can be written as, K = −iσyKo, where

Ko is the complex-conjugation operator. The single-particle wave function of the

time-reversed state is given by

φi(r, σ, q) = −i
∑

σ′

〈σ|σy|σ′〉φ∗
i (r, σ

′, q) (A.1)

Where r is the spatial coordinate, σ is the spin, and q is the isospin of the nucleon.

Note that

σy =









0 −i

i 0









, σ+ 1

2

=









1

0









, σ− 1

2

=









0

1









(A.2)

and also

〈σ|σy|σ′〉 = −2iσδ−σ,σ′ . (A.3)

We get

φi(r, σ, q) = −2σφ∗
i (r,−σ, q) (A.4)

With the assumption that the states are invariant under time reversal, we have

∑

i

φ∗
i (r, σ1, q)φi(r, σ2, q) = (A.5)

=
1

2

∑

i

[

φ∗
i (r, σ1, q)φi(r, σ2, q) + φ∗

i (r, σ1, q)φi(r, σ2, q)
]

=
1

2

∑

i

[φ∗
i (r, σ1, q)φi(r, σ2, q) + 4σ1σ2φ

∗
i (r,−σ1, q)φi(r,−σ2, q)] .
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From here we can see that, if σ1 = σ2, we have

∑

i

φ∗
i (r, σ1, q)φi(r, σ1, q) = (A.6)

=
1

2

∑

i

[φ∗
i (r, σ1, q)φi(r, σ1, q) + φ∗

i (r,−σ1, q)φi(r,−σ1, q)]

=
1

2

∑

iσ

φ∗
i (r, σ1, q)φi(r, σ1, q) =

1

2
ρq(r).

In the case of σ1 = −σ2

∑

i

φ∗
i (r, σ1, q)φi(r,−σ1, q) = 0, (A.7)

so we can write
∑

i

φ∗
i (r, σ1, q)φi(r,−σ2, q) =

1

2
δσ1σ2

ρq(r). (A.8)

Since the trace of the Pauli spin matrices is zero and the identities below,

〈σ|σx|σ′〉 = δσ,−σ′ , (A.9)

〈σ|σy|σ′〉 = −2iσδσ,σ′ , (A.10)

〈σ|σz|σ′〉 = 2σδσ,σ′ , (A.11)

the equation A.8 implies that

∑

iσ1σ2

φ∗
i (r, σ1, q)〈σ1|~σ|σ2〉φi(r, σ2, q) = 0. (A.12)

for the two-body interaction

|ij〉sys =
1√
2

(|ij〉 − |ji〉) =
1√
2

(1− P ) |ij〉 (A.13)

where P is the exchange operator, and because V NN
ij = V NN

ji , in other word
[

P, V NN
ij

]

=

0. We calculate the matrix elements for the Slater determinant wave function Φ, for
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the two-body interaction 1
2

∑

ij V
NN
ij is

1

2
〈Φ|

∑

ij

V NN
ij |Φ〉 =

1

4

∑

ij

〈ij|V NN
12 (1− P )2 |ij〉 =

1

2

∑

ij

〈ij|V NN
12 (1− P ) |ij〉, (A.14)

where

P = P r
12P

σ
12P

τ
12, (A.15)

P r
12, P

σ
12, and P q

12 are the exchange operator for space, spin, and isospin, respectively.

For the S-wave P r
12 = 1, P σ

12 = 1
2
(1 + ~σ1 ~σ2), and with the assumption that there is no

charge mixing in the Hartree-Fock single-particle states, so P q
12 = δq1,q2

.

Now we calculate the contribution to the energy density from each term of the Skyrme

potential. For the t0 term

t0
(

1 + x0P
σ
ij

)

δ(ri − rj), (A.16)

∫

H0(r)dr =
1

2

∑

ij

〈ij|t0 (1 + x0P
σ
12) δ(ri − rj) (1− P r

12P
σ
12P

q
12) |ij〉. (A.17)

We have

(1 + x0P
σ
12) (1− P r

12P
σ
12P

q
12) = (1 + x0P

σ
12) (1− P σ

12δq1,q2
)

= 1 +
1

2
(x0 − δq1,q2

) (1 + ~σ1 ~σ2)− x0δq1,q2
,(A.18)

∫

H0(r)dr = (A.19)

=
1

2

∑

ij

〈ij|t0δ(ri − rj)
(

1 +
1

2
(x0 − δq1,q2

) (1 + ~σ1 ~σ2)− x0δq1,q2

)

|ij〉.

We also have

∑

ij

〈ij|δ(r1 − r2)|ij〉 =

=
∑

ij

∫

dr1dr2δ(r1 − r2)φ
∗
i (r1)φi (r1)φ

∗
j (r2)φj (r2)
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=
∑

ij

∫

dr1φ
∗
i (r1)φi (r1)φ

∗
j (r1)φj (r1) =

∫

ρ2dr, (A.20)

∑

ij

〈ij|δ(r1 − r2)δq1,q2
|ij〉 =

∫

(

ρ2
n + ρ2

p

)

dr, (A.21)

and
∑

ij

〈ij|δ(r1 − r2)~σi ~σj|ij〉 =
∑

ij

〈ij|δ(r1 − r2)~σi ~σjδqi,qj
|ij〉 = 0. (A.22)

We get

∫

H0(r)dr =
1

2

∑

ij

〈ij|t0δ(r1 − r2)|ij〉

−1

2

∑

ij

〈ij|x0t0δq1,q2
δ(r1 − r2)|ij〉

+
1

4

∑

ij

〈ij| (x0 − δq1,q2
) (1 + ~σ1 ~σ2) t0δ(r1 − r2)|ij〉, (A.23)

∫

H0(r)dr =
∫ (

1

2
t0ρ

2 − 1

2
t0x0

(

ρ2
n + ρ2

p

)

+
1

4
x0t0ρ

2 − 1

4
t0
(

ρ2
n + ρ2

p

)

)

dr

=
∫

1

4
t0
[

(2 + x0) ρ
2 −

(

ρ2
n + ρ2

p

)

(2x0 + 1)
]

dr. (A.24)

So

H0(r) =
1

4
t0
[

(2 + x0) ρ
2 −

(

ρ2
n + ρ2

p

)

(2x0 + 1)
]

(A.25)

Now we calculate the t1 term.

1

2
t1
(

1 + x1P
σ
ij

)

[←−
k

2

ij +
−→
k

2

ij

]

δ(ri − rj). (A.26)

First, we have

−→
k

2

12 +
←−
k

2

12 = −1

4

[−→∇2

1 +
−→∇2

2 +
←−∇2

1 +
←−∇2

2 − 2
−→∇1
−→∇2 − 2

←−∇1
←−∇2

]

, (A.27)



101

and

−→∇2
ρ =

∑

i

−→∇
[−→∇φ∗

i (r)φi(r) + φ∗
i (r)
−→∇φi(r)

]

=
∑

i

[−→∇2
φ∗

i (r)φi(r) + 2
−→∇φ∗

i (r)
−→∇φi(r) + φ∗

i (r)
−→∇2

φi(r)
]

= 2τ + 2
∑

i

−→∇2
φ∗

i (r)φi(r). (A.28)

Then
∑

i

−→∇2
φ∗

i (r)φi(r) =
∑

i

φ∗
i (r)
−→∇2

φi(r) = −τ +
1

2

−→∇2
ρ, (A.29)

hence

∑

ij

〈ij|δ (r1 − r2)
−→∇2

1|ij〉 =
∑

ij

〈ij|δ (r1 − r2)
−→∇2

2|ij〉

=
∑

ij

〈ij|δ (r1 − r2)
←−∇2

1|ij〉

=
∑

ij

〈ij|δ (r1 − r2)
←−∇2

2|ij〉

=
∫ (

−τρ +
1

2
ρ
−→∇2

ρ
)

dr. (A.30)

Also

∑

ij

〈ij|δ (r1 − r2)
−→∇2

1δq1,q2
|ij〉 =

=
∑

ij

〈ij|δ (r1 − r2)
−→∇2

2δq1,q2
|ij〉

=
∑

ij

〈ij|δ (r1 − r2)
←−∇2

1δq1,q2
|ij〉

=
∑

ij

〈ij|δ (r1 − r2)
←−∇2

2δq1,q2
|ij〉

=
∫ [

−τpρp − τnρn +
1

2
ρp
−→∇2

ρp +
1

2
ρn
−→∇2

ρn

]

dr, (A.31)
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and

∑

ij

〈ij|δ (r1 − r2)
−→∇1
−→∇2|ij〉 =

∑

ij

〈ij|δ (r1 − r2)
←−∇1
←−∇2|ij〉

=
∑

ij

∫

dr1dr2φ
∗
i (r1)

−→∇φi(r1)φ
∗
j(r2)

−→∇φj(r2)δ (r1 − r2)

=
∑

ij

∫

dr1φ
∗
i (r1)

−→∇φi(r1)
∫

dr2φ
∗
j(r2)

−→∇φj(r2)δ (r1 − r2)

=
∑

ij

(

−
∫

dr1
−→∇φ∗

i (r1)φi(r1)
)(

−
∫

dr1
−→∇φ∗

j(r1)φj(r1)
)

δ (r1 − r2)

=
∫

1

4

(−→∇ρ
)2
dr, (A.32)

and

∑

ij

〈ij|δ (r1 − r2)
−→∇1
−→∇2δq1,q2

|ij〉 =
∑

ij

〈ij|δ (r1 − r2)
←−∇1
←−∇2δq1,q2

|ij〉

=
∫

1

4

[

(−→∇ρp

)2
+
(−→∇ρn

)2
]

d3r. (A.33)

We have the identity

(−→∇1
−→∇2

)

(~σ1~σ2) = (A.34)

1

3

(−→∇1~σ1

) (−→∇2~σ2

)

+
1

2

(−→∇1 × ~σ1

) (−→∇2 × ~σ2

)

+
(−→∇1 × ~σ1

)(2)(−→∇2 × ~σ2

)(2)
.

With assuming axial symmetry in addition to time-reversal invariance, we have

∑

i

φ∗
i (r)

(−→∇~σ
)

φi(r) =
∑

i

φ∗
i (r)

(−→∇ × ~σ
)(2)

φi(r) = 0. (A.35)

So

∑

ij

〈ij|δ (r1 − r2)
(−→∇1
−→∇2

)

(~σ1~σ2) |ij〉 = (A.36)

=
1

2

∑

ij

∫

dr1dr2δ (r1 − r2)φ
∗
i (r1)

(−→∇1 × ~σ1

)

φi(r1)φ
∗
j(r2)

(−→∇2 × ~σ2

)

φj(r2)
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=
∫

−1

2
J2dr,

where

J(r) = −i
∑

i

φ∗
i (r)

(−→∇ i × ~σi

)

φi(r), (A.37)

or
∑

ij

〈ij|δ (r1 − r2)
(←−∇1
←−∇2

)

(~σ1~σ2) |ij〉 =
∫

−1

2
J2dr, (A.38)

and

∑

ij

〈ij|δ (r1 − r2)
(−→∇1
−→∇2

)

(~σ1~σ2) δqi,qj
|ij〉 = (A.39)

=
∑

ij

〈ij|δ (r1 − r2)
(←−∇1
←−∇2

)

(~σ1~σ2) δqi,qj
|ij〉

=
∫

−1

2

(

J2
p + J2

n

)

dr.

We have

(1 + x1P
σ
12) (1− P ) = (1 + x1P

σ
12) (1− P σ

12δq1,q2
)

= 1 +
1

2
(x1 − δq1,q2

) (1 + ~σ1 ~σ2)− x1δq1,q2
. (A.40)

Thus we get

∫

H1(r)dr =
1

2

∑

ij

〈ij|1
2
t1 (1 + x1P

σ
12) δ(r1 − r2)

(−→
k

2

12 +
←−
k

2

12

)

(1− P ) |ij〉

=
∑

ij

〈ij| − 1

16
t1δ(r1 − r2)

(−→
k

2

12 +
←−
k

2

12

)

|ij〉

+
∑

ij

〈ij| − 1

32
t1δ(r1 − r2) (x1 − δq1,q2

)
(−→
k

2

12 +
←−
k

2

12

)

(1 + ~σ1 ~σ2) |ij〉

+
∑

ij

〈ij| 1
16
t1δ(r1 − r2)x1δq1,q2

(−→
k

2

12 +
←−
k

2

12

)

|ij〉. (A.41)

We have

∫

H1(r)dr =
1

16
t1

∫ (

4τρ− 2ρ
−→∇2

ρ+
(−→∇ρ

)2
)

dr
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− 1

16
t1x1

∫ (

−2τρ + ρ
−→∇2

ρ− 1

2

(−→∇ρ
)2
)

dr− 1

16
t1x1

∫

J2dr

− 1

16
t1x1

∫ (

−2τpρp − 2τnρn + ρp
−→∇2

ρp + ρn
−→∇2

ρn

)

dr

− 1

32
t1

∫ [

(−→∇ρp

)2
+
(−→∇ρn

)2
]

dr +
1

16
t1

∫

(

J2
p + J2

n

)

dr

− 1

16
t1x1

∫ (

−4τpρp − 4τnρn + 2ρp
−→∇2

ρp + 2ρn
−→∇2

ρn

)

dr

− 1

16
t1x1

∫ [

(−→∇ρp

)2
+
(−→∇ρn

)2
]

dr

=
1

16
t1

(

1 +
1

2
x1

) [

4τρ− 2ρ
−→∇2

ρ+
(−→∇ρ

)2
]

− 1

16
t1

(

1

2
+ x1

) [

4τpρp + 4τnρn − 2ρp
−→∇2

ρp − 2ρn
−→∇2

ρn +
(−→∇ρp

)2
+
(−→∇ρn

)2
]

+
1

16
t1
(

−x1J
2 + J2

p + J2
n

)

, (A.42)

H1(r) =
1

16
t1

(

1 +
1

2
x1

) [

4τρ− 3ρ
−→∇2

ρ
]

− 1

16
t1

(

1

2
+ x1

) [

4τpρp + 4τnρn − 3ρp
−→∇2

ρp − 3ρn
−→∇2

ρn

]

+
1

16
t1
(

−x1J
2 + J2

p + J2
n

)

. (A.43)

For the t2 term

t2
(

1 + x2P
σ
ij

)←−
k ijδ(ri − rj)

−→
k ij, (A.44)

we have to calculate

∫

H2(r)dr =
1

2

∑

ij

〈ij|t2 (1 + x2P
σ
12)
←−
k ijδ(ri − rj)

−→
k ij (1− P ) |ij〉. (A.45)

In this case the exchange operator P is given by

P = P r
12P

σ
12P

q
12 = −1

2
(1 + ~σ1 ~σ2) δq1,q2

, (A.46)

and

(1 + x2P
σ
12) (1− P ) = 1 +

1

2
x2 +

1

2
(x2 + δq1,q2

) ~σ1 ~σ2 +
(

1

2
+ x2

)

δq1,q2
. (A.47)
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We have

←−
k ij
−→
k ij =

1

4

[←−∇ i
−→∇ i +

←−∇j
−→∇j −←−∇j

−→∇ i −←−∇ i
−→∇ j

]

. (A.48)

We use the following equations

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇1|ij〉 =

∑

ij

∫

dr1dr2δ(r1 − r2)φ
∗
i (r1)φ

∗
j(r2)

←−∇1
−→∇1φi(r1)φj(r2)

=
∑

ij

∫

dr1dr2|−→∇φi(r1)|2|φj(r2)|2δ(r1 − r2)

=
∫

τρdr, (A.49)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇1δq1,q2

|ij〉 =
∫

(τpρp + τnρn) dr, (A.50)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇2 ~σ1 ~σ2|ij〉 =

∫

−1

2
J2dr, (A.51)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇2 ~σ1 ~σ2δq1,q2

|ij〉 =
∫

−1

2

(

J2
p + J2

n

)

dr, (A.52)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇1 ~σ1 ~σ2|ij〉 =

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇1 ~σ1 ~σ2δq1,q2

|ij〉 = 0, (A.53)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇2|ij〉 =

∑

ij

∫

dr1dr2δ(r1 − r2)φ
∗
i (r1)φ

∗
j(r2)

←−∇1
−→∇2φi(r1)φj(r2)

=
∑

ij

∫

dr1dr2δ(r1 − r2)
−→∇1φ

∗
i (r1)φi(r1)φ

∗
j(r2)

−→∇2φj(r2)

=
∑

ij

∫

dr
−→∇φ∗

i (r)φi(r)
(−→∇φ∗

j(r)φj(r)
)∗

=
1

4

∫

(−→∇ρ
)2
dr, (A.54)

∑

ij

〈ij|δ(r1 − r2)
←−∇1
−→∇2δq1,q2

|ij〉 =
1

4

∫ [

(−→∇ρp+
)2

+
(−→∇ρn

)2
]

dr. (A.55)

Hence

∫

H2(r)dr =
1

2
t2
∑

ij

〈ij|t2 (1 + x2P
σ
12)
←−
k ijδ(ri − rj)

−→
k ij (1− P ) |ij〉

=
1

2
t2

(

1 +
1

2
x2

)

∑

ij

〈ij|
(←−
k ij
−→
k ij

)

δ(ri − rj)|ij〉
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+
1

2
t2

(

1

2
+ x2

)

∑

ij

〈ij|
(←−
k ij
−→
k ij

)

δ(ri − rj)δq1,q2
|ij〉

+
1

4
t2x2

∑

ij

〈ij|
(←−
k ij
−→
k ij

)

δ(ri − rj) ~σ1 ~σ2|ij〉

+
1

4
t2
∑

ij

〈ij|
(←−
k ij
−→
k ij

)

δ(ri − rj) ~σ1 ~σ2δq1,q2
|ij〉

=
1

8
t2

(

1 +
1

2
x2

) ∫ (

2τρ− 1

2

(−→∇ρ
)2
)

dr

+
1

8
t2

(

1

2
+ x2

) ∫ (

2τpρp + 2τnρn −
1

2

(−→∇ρp

)2 − 1

2

(−→∇ρn

)2
)

dr

− 1

16
t2

∫

(

x2J
2 + J2

p + J2
n

)

dr. (A.56)

With

H2(r) =
1

16
t2 (2 + x2)

(

2τρ+
1

2
ρ
−→∇2

ρ
)

+
1

16
t2 (1 + 2x2)

(

2τpρp + 2τnρn +
1

2
ρp
−→∇2

ρp +
1

2
ρn
−→∇2

ρn

)

− 1

16
t2
(

x2J
2 + J2

p + J2
n

)

. (A.57)

For the t3 term

1

6
t3
(

1 + x3P
σ
ij

)

ρα
(

ri − rj

2

)

δ(ri − rj). (A.58)

Again we have

(1 + x3P
σ
12) (1− P ) = 1 +

1

2
x3 −

1

2
δq1,q2

+
1

2
x3 ~σ1 ~σ2 −

1

2
δq1,q2

~σ1 ~σ2 − x3δq1,q2
. (A.59)

We obtain

∫

H3(r)dr =
1

2

∑

ij

〈ij|1
6
t3
(

1 + x3P
σ
ij

)

ρα
(

ri − rj

2

)

δ(ri − rj) (1− P ) |ij〉

=
1

12
t3

(

1 +
1

2
x3

)

∑

ij

〈ij|ρα
(

ri − rj

2

)

δ(ri − rj)|ij〉

− 1

24
t3
∑

ij

〈ij|ρα
(

ri − rj

2

)

δ(ri − rj)δq1,q2
|ij〉
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+
1

24
t3x3

∑

ij

〈ij|ρα
(

ri − rj

2

)

δ(ri − rj) ~σ1 ~σ2|ij〉

− 1

24
t3
∑

ij

〈ij|ρα
(

ri − rj

2

)

δ(ri − rj) ~σ1 ~σ2δq1,q2
|ij〉

− 1

12
t3x3

∑

ij

〈ij|ρα
(

ri − rj

2

)

δ(ri − rj)δq1,q2
|ij〉

=
1

12
t3

(

1 +
1

2
x3

) ∫

ρα+2dr− 1

24
t3

∫

ρα
(

ρ2
p + ρ2

n

)

dr

− 1

12
t3x3

∫

ρα
(

ρ2
p + ρ2

n

)

dr, (A.60)

or

H3(r) =
1

12
t3ρ

α
[(

1 +
1

2
x3

)

ρ2 −
(

1

2
+ x3

)

(

ρ2
p + ρ2

n

)

]

. (A.61)

For the spin-orbit term

iWo
←−
k ijδ(ri − rj) (~σi + ~σj)× −→k ij. (A.62)

This term contributes only in triplet P states therefore P r
12 = −1, P σ

12 = 1. We

calculate

∫

Hsp(r)dr =
1

2

∑

ij

〈ij|iWo
←−
k ijδ(ri − rj) (~σi + ~σj)× −→k ij (1− P ) |ij〉. (A.63)

Note that

←−
k ij × −→k ij =

1

4

(←−∇ i × −→∇ i +
←−∇ j × −→∇j −←−∇j × −→∇ i −←−∇ i × −→∇j

)

, (A.64)

4 (~σi + ~σj)
←−
k ij × −→k ij = ~σi

(←−∇ i × −→∇ i

)

+ ~σi

(←−∇j ×−→∇j

)

− ~σi

(←−∇j ×−→∇ i

)

−~σi

(←−∇ i ×−→∇j

)

+ ~σj

(←−∇ i × −→∇ i

)

+ ~σj

(←−∇j × −→∇j

)

−~σj

(←−∇j ×−→∇ i

)

− ~σj

(←−∇ i × −→∇ j

)

= 2~σi

(←−∇ i × −→∇ i

)

+ 2~σi

(←−∇ j × −→∇j

)

−2~σi

(←−∇j × −→∇ i +
←−∇ i × −→∇ j

)

. (A.65)
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Therefore,

∫

Hsp(r)dr =
iWo

4

∑

ij

〈ij|δ(ri − rj)~σi

(←−∇ i × −→∇ i

) (

1 + δqi,qj

)

|ij〉

+
iWo

4

∑

ij

〈ij|δ(ri − rj)~σi

(←−∇j ×−→∇j

) (

1 + δqi,qj

)

|ij〉

− iWo

4

∑

ij

〈ij|δ(ri − rj)~σi

(←−∇ i × −→∇ j

) (

1 + δqi,qj

)

|ij〉

− iWo

4

∑

ij

〈ij|δ(ri − rj)~σi

(←−∇j ×−→∇ i

) (

1 + δqi,qj

)

|ij〉. (A.66)

The second term will not contribute to the energy density. The integration by parts

of the third term is given by

−~σi

(←−∇ i ×−→∇ j

)

= ~σi

(←−∇j × −→∇j

)

+ ~σi

(−→∇ i × −→∇j

)

+ ~σi

(−→∇j ×−→∇j

)

= ~σi

(−→∇ i ×−→∇ j

)

= −−→∇ j

(−→∇ i × ~σi

)

, (A.67)

and because of time-reversal, the fourth term reduces to

~σi

(←−∇ j × −→∇ i

)

=
←−∇j

(−→∇ i × ~σi

)

=
−→∇ j

(−→∇ i × ~σi

)

. (A.68)

The first term is calculated below

~σi

(←−∇ i × −→∇ i

)

= −~σi

(←−∇j ×−→∇ i

)

− ~σi

(−→∇ i × −→∇ i

)

− ~σi

(−→∇j × −→∇ i

)

= −←−∇ j

(−→∇ i × ~σi

)

−−→∇j

(−→∇ i × ~σi

)

= −2
←−∇ j

(−→∇ i × ~σi

)

= −2
−→∇ j

(−→∇ i × ~σi

)

. (A.69)

So

∫

Hsp(r)dr = −iWo

∑

ij

〈ij|δ(ri − rj)
(

1 + δqi,qj

)−→∇j

(−→∇ i × ~σi

)

|ij〉

= −iWo

∑

ij

∫

δ(ri − rj)
(

1 + δqi,qj

)

φ∗
j

−→∇φjφ
∗
i

(−→∇ i × ~σi

)

φidridrj
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=
Wo

2

∫

(−→∇ρJ +
−→∇ρpJp +

−→∇ρnJn

)

dr

= −Wo

2

∫

(

ρ
−→∇J + ρp

−→∇Jp + ρn
−→∇Jn

)

dr. (A.70)

Or

Hsp = −Wo

2

(

ρ
−→∇J + ρp

−→∇Jp + ρn
−→∇Jn

)

. (A.71)

In summary, the Skyrme energy density is given by:

HSkyrme(r) =
1

4
t0
[

(2 + x0) ρ
2 −

(

ρ2
n + ρ2

p

)

(2x0 + 1)
]

+
1

16
t1

(

1 +
1

2
x1

) [

4τρ− 3ρ
−→∇2

ρ
]

− 1

16
t1

(

1

2
+ x1

) [

4τpρp + 4τnρn − 3ρp
−→∇2

ρp − 3ρn
−→∇2

ρn

]

+
1

16
t1
(

−x1J
2 + J2

p + J2
n

)

+
1

16
t2 (2 + x2)

(

2τρ +
1

2
ρ
−→∇2

ρ
)

+
1

16
t2 (1 + 2x2)

(

2τpρp + 2τnρn +
1

2
ρp
−→∇2

ρp +
1

2
ρn
−→∇2

ρn

)

− 1

16
t2
(

x2J
2 + J2

p + J2
n

)

+
1

2
t3

[(

1 +
1

2
x3

)

ρα+2 −
(

1

2
+ x3

)

ρα
(

ρ2
p + ρ2

n

)

]

−Wo

2

(

ρ
−→∇J + ρp

−→∇Jp + ρn
−→∇Jn

)

=
1

4
t0
[

(2 + x0) ρ
2 −

(

ρ2
n + ρ2

p

)

(2x0 + 1)
]

+
1

16
t1

(

1 +
1

2
x1

) [

4τρ− 3ρ
−→∇2

ρ
]

− 1

16
t1

(

1

2
+ x1

) [

4τpρp + 4τnρn − 3ρp
−→∇2

ρp − 3ρn
−→∇2

ρn

]

+
1

16
t1
(

−x1J
2 + J2

p + J2
n

)

+
1

16
t2 (2 + x2)

(

2τρ+
1

2
ρ
−→∇2

ρ
)

+
1

16
t2 (1 + 2x2)

(

2τpρp + 2τnρn +
1

2
ρp
−→∇2

ρp +
1

2
ρn
−→∇2

ρn

)

− 1

16
t2
(

x2J
2 + J2

p + J2
n

)

+
1

12
t3ρ

α
[(

1 +
1

2
x3

)

ρ2 −
(

1

2
+ x3

)

(

ρ2
p + ρ2

n

)

]

−Wo

2

(

ρ
−→∇J + ρp

−→∇Jp + ρn
−→∇Jn

)

, (A.72)
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or we can wite

HSkyrme(r) =
1

4
t0
[

(2 + x0) ρ
2 −

(

ρ2
n + ρ2

p

)

(2x0 + 1)
]

+
1

16
t1

(

1 +
1

2
x1

) [

4τρ− 3ρ
−→∇2

ρ
]

− 1

16
t1

(

1

2
+ x1

) [

4τpρp + 4τnρn − 3ρp
−→∇2

ρp − 3ρn
−→∇2

ρn

]

+
1

16
t1
(

−x1J
2 + J2

p + J2
n

)

+
1

16
t2 (2 + x2)

(

2τρ+
1

2
ρ
−→∇2

ρ
)

+
1

16
t2 (1 + 2x2)

(

2τpρp + 2τnρn +
1

2
ρp
−→∇2

ρp +
1

2
ρn
−→∇2

ρn

)

− 1

16
t2
(

x2J
2 + J2

p + J2
n

)

+
1

12
t3ρ

α
[(

1 +
1

2
x3

)

ρ2 −
(

1

2
+ x3

)

(

ρ2
p + ρ2

n

)

]

−Wo

2

(

ρ
−→∇J + ρp

−→∇Jp + ρn
−→∇Jn

)

. (A.73)
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