
MAXIMUM AND MINIMUM SENSITIZABLE TIMING ANALYSIS USING DATA

DEPENDENT DELAYS

A Thesis

by

KARANDEEP SINGH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2007

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4272847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAXIMUM AND MINIMUM SENSITIZABLE TIMING ANALYSIS USING DATA

DEPENDENT DELAYS

A Thesis

by

KARANDEEP SINGH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Sunil P. Khatri
Committee Members, Weiping Shi

Hank Duncan Walker
Head of Department, C. Georghiades

May 2007

Major Subject: Computer Engineering

iii

ABSTRACT

Maximum and Minimum Sensitizable Timing Analysis Using Data Dependent Delays.

(May 2007)

Karandeep Singh, B.E., Panjab University-Chandigarh

Chair of Advisory Committee: Dr. Sunil P. Khatri

Modern digital designs require high performance and low cost. In this scenario, timing

analysis is an essential step for each phase of the integrated circuit design cycle. To mini-

mize the design turn-around time, the ability to correctly predict the timing behavior of the

chip is extremely important. This has resulted in a demand for techniques to perform an

accurate timing analysis.

A number of existing timing analysis approaches are available. Most of these are pes-

simistic in nature due because of some inherent inaccuracies in the modeling of the timing

behavior of logic gates. Although some techniques use accurate gate delay models, they

have only been used to calculate the longest sensitizable delay or the shortest topological

path delay for the circuit. In this work, a procedure to find the shortest destabilizing delay,

as well as the longest sensitizable delay of a static CMOS circuit is developed. This proce-

dure is also able to determine the exact circuit path as well as the input vector transition for

which the shortest destabilizing (or longest sensitizable) delay can be achieved.

Over a number of examples, on an average, the minimum destabilizing delay results in

an improvement of 24% as compared to the minimum static timing analysis approach. The

maximum sensitizable timing analysis results in an improvement of 7% over sensitizable

timing analysis with pin-to-output delays. Therefore, the results show that the pessismism

in timing analysis can be considerably decreased by using data dependent gate delays for

maximum as well as minimum sensitizable timing analysis.

iv

To my parents, sister, brother-in-law and my nephews

v

ACKNOWLEDGMENTS

I am very grateful to my advisor Dr. Sunil P. Khatri for giving me this opportunity to

work under him. Without his constant guidance, suggestions and encouragement, this work

would not have been possible. I owe him gratitude for showing me this way of research. He

has supported and encouraged me whenever I needed him and answered all my questions

very openly. The informal group meetings organized by him have been a constant source

of knowledge and inspiration. I also want to thank him for all the facilities and support he

has given to me. Thanks a lot Dr. Khatri for everything.

I would, also, like to express my sincere acknowledgment to Rajesh Garg, Nikhil

Jayakumar and Kanupriya Gulati. Their constant support, valuable comments and guidance

have helped me throughout the course of my master’s study. They have also helped me learn

new things, given me time to discuss problems, and have been a source of inspiration all

along.

I would, also, like to thank my parents, sister and brother-in-law who taught me the

value of hard work by their own example. I would like to share my moment of happiness

with them. Without their encouragement and confidence in me, I would have never been

able to pursue and complete my master’s study.

Finally, I would like to thank all my friends who, directly and indirectly, supported

and helped me in completing this thesis.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I-A. Previous Work . 2
I-B. Thesis Summary . 6
I-C. Thesis Organization . 7

II BACKGROUND . 8

II-A. Setup Time and Hold Time Violations 8
II-B. Static Timing Analysis (STA) 9
II-C. Sensitizable Timing Analysis 9
II-D. Gate Delay Model . 10
II-E. Conclusion . 23

III DATA DEPENDENT SENSITIZABLE TIMING ANALYSIS 24

III-A. Introduction . 24
III-B. Example . 25
III-C. Data Dependent Shortest Destabilizing Delay Algorithm . . 29
III-D. Justify . 31
III-E. Data Dependent Longest Sensitizable Delay Algorithm . . 34
III-F. Implementation . 37

III-F.1. Reduced Search Justify 37
III-F.2. Caching . 38

IV EXPERIMENTAL RESULTS . 40

IV-A. Setup . 40
IV-B. Destabilizing Minimum Delay Results 40
IV-C. Sensitizable Maximum Delay Results 43
IV-D. Caching . 43

V CONCLUSION AND FUTURE WORK 46

V-A. Conclusion . 46
V-B. Future Work . 47

vii

Page

REFERENCES . 48

VITA . 51

viii

LIST OF TABLES

TABLE Page

II.1 Transitions for a NAND gate that cause its output to switch 11

IV.1 Comparison of our Minimum Destabilizing Delay approach with minSTA 41

IV.2 Comparison of paths generated by minSTA and our approach 42

IV.3 Comparison our Maximum Sensitizable Delay approach with Sense
and STA . 44

ix

LIST OF FIGURES

FIGURE Page

II.1 Pin to pin minimum delays for the NAND2 gate 11

II.2 Pin to pin maximum delays for the NAND2 gate 12

II.3 Example of Timing Analysis using a NAND2 gate 13

II.4 Plot of arrival times at output of NAND2 gate calculated through var-
ious means for the transition 00 → 11 15

II.5 Plot of arrival times at output of NAND2 gate calculated through var-
ious means for the transition 11 → 00 16

II.6 Same as the Figure II.4, with the input arrival time difference in the
range of -60ps to 60ps . 16

II.7 Same as the Figure II.5, with the input arrival time difference in the
range of -60ps to 60ps . 17

II.8 Plot of error in arrival times at output of NAND2 gate w.r.t. SPICE,
for the transition 00 → 11 . 17

II.9 Plot of error in arrival arrival times at output of NAND2 gate w.r.t.
SPICE, for the transition 11 → 00 . 18

II.10 Example of a circuit where Sensitizable Timing Analysis can be inaccurate 18

III.1 Example of a circuit accurately solved using data dependent delay model . 25

III.2 Condition for a node to be stable 1 in the time interval t ′ to t ′′′ 34

III.3 Generic representation of a network . 38

IV.1 Runtime variation using cache of different sizes 45

IV.2 Runtime variation using cache of different sizes-II 45

1

CHAPTER I

INTRODUCTION

Timing analysis is a critical task in VLSI design today. Static timing analysis (STA) is

the most commonly used type of timing analysis, since it is fast (linear in the size of the

circuit). However, STA only identifies the structurally longest paths and does not consider

the contribution of false paths. Thus, with the current thrust towards high performance

devices, it is necessary to perform a more accurate analysis in estimating the maximum (or

minimum) delay of our circuits.

There has been much research on sensitizable timing analysis (or false-path aware

timing analysis) and on techniques to make this analysis more efficient [1, 2, 3, 4]. The

objective of the maximum-delay sensitizable timing analysis is to determine the largest

time when all the primary outputs of a digital circuit reach their stable final values, given

the maximum delays of each gate in the circuit and the arrival times at the primary inputs

of the circuit. While sensitizable timing analysis does perform a more accurate timing

analysis than STA, it has still some inaccuracies which arise from the manner in which the

delays of a gate are represented.

Another important timing analysis metric is the shortest destabilizing delay [5], which

indicates the earliest time that the outputs become unstable after the inputs switch. This

delay must be determine to check for hold time violations in a sequential circuit. Again,

the existing approaches have handled this problem with an inaccurate gate delay model and

hence have been pessimistic in their analysis.

In this thesis, sensitizable timing analysis is used to refer either to (i) maximum-delay

sensitizable timing analysis or (ii) shortest destabilizing delay analysis, depending on con-

This thesis follows the style of the IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

2

text. The main objective of this thesis is to present a technique to perform sensitizable

timing analysis for static CMOS based combinational circuits while considering input ar-

rival times and data dependent gate delays. Traditional timing analysis only utilizes the

minimum (or maximum) pint-to-output delay of a gate to compute the shortest destabiliz-

ing (or longest sensitizable) path of the circuit. In static CMOS circuits, the differences

in arrival times at the inputs of a gate can cause different delays at the output of the gate.

This input transition dependence of gate delays is typically ignored in traditional timing

analysis approaches. Our approach, on the other hand, utilizes the difference in arrival time

and results in significantly more accurate sensitizable timing analysis numbers than regular

STA and existing sensitizable timing analysis techniques. Although there exist some tech-

niques which incorporate a data dependent delay analysis, they are used only to determine

the longest sensitizable delay paths. In our technique, we are able to determine the longest

sensitizable delay as well as the shortest destabilizing delay using a data dependent gate de-

lay model. We use a unified formulation for both these problems with minor differences. In

addition, we also determine the input vector transitions and the circuit path which sensitize

both the longest sensitizable path and the shortest destabilizing path.

I-A. Previous Work

There has been a significant amount of work in the area of timing analysis. The first ap-

proach to compute the delay of the critical paths, without simulating all the input vectors,

was based on the PERT (Program Evaluation and Review Technique) algorithm [6]. Since

this approach determines the topologically longest (shortest) path without taking the log-

ical dependencies into account, it is very likely to find a false path. The PERT delay was

therefore used as an upper (lower) bound for the length of the critical paths. However, due

to the growing complexity of combinational circuits the demand for tighter bounds gained

3

importance. This has resulted in different timing analysis approaches targeting the longest

sensitizable (or shortest destabilizing) path of the circuit. In our approach we not only per-

form a sensitizable timing analysis, but also use a data dependent delay model to find the

accurate maximum (minimum) delay of a circuit.

The initial path sensitization criteria are were based on the D-algorithm technique [7,

8]. Each of these criterion associates a given path with a set of logical conditions. The path

is claimed to be sensitizable if there is no conflict in its set of conditions. A condition is de-

noted by a pair {lead,value} which indicates that the signal lead has assumed an associated

value. After deriving all the conditions for all the input leads to the gates along the path,

the D-algorithm is used to propagate these original conditions to induce new conditions,

and then to check whether there is a conflict between conditions. A conflict is flagged if

any lead is required to stabilize at both logic 0 and logic 1 in the final set of conditions.

The static sensitization criteria [7] detects a transition at the output of a gate if only the

on-input of the gate is set to its controlling value and all the side-inputs are set to stable

non-controlling values. However, it has been shown in [9] that the static criteria may over-

estimate or even underestimate the circuit delay. Hence it is not a reliable metric to find the

critical delay of a circuit. Our approach is free from this problem since we do not intend

to statically set the side-inputs of a gate as in [7] but compute the primary input vector

transition which results the maximum (minimum) delay.

A dynamic sensitization criteria also proposed in [10, 11]. A path is dynamically

sensitizable if and only if the side inputs of each node n are non-controlling at the arrival

time of the sensitizing input signal at n. The dynamic sensitization criteria can result in an

underestimate of the circuit delay when the bounded delay model 1 is used [10]. However,

for fixed delays the dynamic sensitization is an exact criteria.

1The bounded delay model assumes that gate delays fall in a range [min,max].

4

Floating mode sensitization was proposed in [2]. This criterion was developed so as

to satisfy the monotone speedup property2 [10] under the bounded delay model. In this

criterion, the state of each primary input is assumed stable but unknown before applying a

change to a known value at time t . This assumption on the primary input behavior leads to

waveforms on the internal nodes of the circuit which also have only one transition – from an

unknown possibly changing value X to some final defined value. When such primary input

behavior is assumed, the circuit is said to operate in floating-mode. Such a behavior yields

a true upper bound to the critical path delay, but makes some conservative assumptions

which may considerably overestimate the true critical delay. Our approach makes no such

assumptions and is a closer bound to the true critical path delay. Also, since the floating-

mode gate delay model does not specify the initial state of the primary inputs, it cannot be

used to find the minimum sensitizable delay whereas our approach is more general and can

be used to find both the maximum sensitizable delay and the minimum destabilizing delay.

In [3] the author explains that the false path problem inherently incorporates a delay

model and a given solution is valid only in the context of the delay model considered. In

order to compute the exact delay of a circuit the extended bounded delay-0 model (XBD0)

model is introduced. Under this model, each gate has a maximum (positive) delay while the

minimum delay is zero. The sensitization at each node is described in terms of a Boolean

characteristic function which evaluates to the set of input vectors that sensitize a path. If the

associated boolean expression of the path is computed to equal logic 0, the path is claimed

to be a false path. This approach is further approximated in [4] by handling control and data

paths separately. In both the approaches the problem of the dependence of critical path on

the accuracy of the gate delay model persists. Also the XDB0 model used in this approach

2The monotone speedup property assumes that every circuit is infact a family of topo-
logically identical circuits. For a true path on any member, there must exist a path of atleast
the same length in the slowest member of the family.

5

assumes an unknown initial state, which cannot be used to find the minimum destabilizing

delay. In our approach, we use a data dependent delay model which can be significantly

less conservative than the XBD0 model, and is also equally effectively used in finding the

minimum destabilizing delay, using a unified formulation.

In [12], Cheng et. al. introduce the concept of using the shortest destabilizing path

to find the minimum sensitizable delay of a combinational circuit. A modified version of

the loose sensitization criteria defined in [2] to find the shortest destabilizing path. It has

been recognized in [13] that the destabilizing criteria used in [12] may lead to incorrect

circuit clocking as it may lead to the destabilizing path having more delay than an exact

sensitizable path. The author in [13], therefore introduces a loose destabilizing criteria 3 to

correct this problem. In both [12, 13], the underlying gate delay model is still a pin-to-pin

delay model which is inherently conservative. In our approach, we address the problem of

finding the minimum destabilizing path under the data dependent delay model and achieve

a true minimum destabilizing delay of the circuit.

The concept of timing analysis using data dependent delays was first introduced in [14].

A data-dependent delay model for analyzing the gate delay was developed. A modified

topological longest-path algorithm is developed based on the data dependent delay model.

The approach of [14] uses a path sensitization algorithm based on the Loose Sensitization

Criteria [2] to generate the longest sensitizable path. This sensitization algorithm is based

on a bounded delay model. Finally the two algorithms are combined – the authors itera-

tively generate the next longest path using the path sensitization algorithm and then use the

topological longest-path algorithm to find the data dependent delay for the path generated.

This is the first attempt to use data dependent delays, but the algorithm is used only to find

3The loose destabilizing criteria assumes a path to be destabilizing, if under a given
input vector each input to a gate on the path is either controlling, or the earliest non-
controlling input for its corresponding gate.

6

the longest data dependent sensitizable path. Our technique does a sensitizable timing anal-

ysis based on the data dependent delay model, Additionally, we are able to find the shortest

destabilizing path without restoring to a two step procedure. Again, we are also able to

determine the vector transitions that sensitize both the minimum and maximum delay paths

which may have to be explicitly enumerated in [14]. Our formulation on the other hand

lends itself to a fully implicit implementation.

In [15], Chen et. al. use a gate delay model for simultaneous input switching. This

model uses a data dependent delay for simultaneous to-controlling transitions, whereas a

pin-to-pin delay model is still used for simultaneous to-non-controlling transitions. The

proposed model is used in STA and a tighter bound on the minimum delay is achieved.

However, this technique may still be considerably conservative as it cannot be used to find

the minimum destabilizing path. In our approach we use the data dependent delay model

for all the transitions at the output of a gate (instead of only the simultaneous to-controlling

transitions in [15]) and also use an accurate sensitization technique to be able to find the

minimum destabilizing path.

I-B. Thesis Summary

The demand for high performance and the improvements in VLSI design techniques make

it necessary for circuit analysis techniques to be as accurate as possible. Timing analysis is

one of the most important step in evaluating the performance of a VLSI circuit and to de-

termine the clock speed at which the circuit can operate. Traditional techniques like Static

Timing Analysis are highly pessimistic in their approach. The existing sensitizable timing

approaches have developed various sensitization criteria such as dynamic sensitization cri-

teria, floating sensitization criteria and exact and loose sensitization criteria. These criteria

are used to determine the longest and shortest sensitizable paths of a circuit. However, most

7

of these techniques do not incorporate accurate gate delay models which yield significantly

more accurate timing estimates.

It has been recognized that using data dependency in the gate delay model can remove

a great deal of pessimism in the earlier approaches. This idea of incorporating a more

accurate estimate of the delay of a gate into a sensitizable timing analysis framework forms

the basis of this thesis. Note that the proposed framework is generalized enough to be able

to determine both the longest sensitizable and shortest destabilizing delays of a circuit. Our

analysis also determines the circuit paths that result in the minimum and maximum delays,

and the primary input vector transitions which sensitize these delays.

I-C. Thesis Organization

The rest of this thesis is organized as follows: Chapter II provide some background infor-

mation which will be helpful in understanding the concept of sensitizable timing analysis.

This chapter also highlights the inadequacies of the sensitizable timing analysis and details

the data dependent gate delay model which is used for accurate timing analysis. Chapter III

explains the approach of this thesis in performing “input arrival time aware” sensitizable

timing analysis. In Chapter IV, experimental results are presented and in Chapter V the

conclusions and future work are discussed.

8

CHAPTER II

BACKGROUND

In this chapter we discuss some of the basic concepts needed to understand the work in this

thesis. First we discuss the setup and hold time violations. This is followed by a discussion

on Static and Sensitizable Timing Analysis. Further, the data dependent gate delay model

used in this thesis is explained, along with an analysis of the accuracy of this model.

II-A. Setup Time and Hold Time Violations

The setup time of a flip-flip F is defined as the minimum time before the arrival of the clock

pulse by which the data at the input of the F must be stable. If the input to any flip-flip has

an arrival time AT such that AT > tclk − tsetup then the Setup Time Violation is said to have

occurred. Such a violation occurs in a sequential circuit when the sum of the maximum

delay of the combinational circuit between two flip-flops and the setup time of the second

flip-flop is more than one clock period.

Similarly, the hold time of the flip-flop F is defined as the minimum time that the input

should remain stable at the input of F after the arrival of the clock edge, for it to be able

to latch it properly. If the input to any flip-flip has an arrival time AT such that AT < thold

then the condition is called a Hold Time Violation. In a sequential circuit the Hold Time

Violation usually occurs if the minimum delay of the combinational circuit between two

flip-flips is smaller than the hold time of the second flip-flop.

Note that the Setup Time Violation depends on both the clock period and the maxi-

mum delay of the combination circuit can be corrected by running the circuit on a slower

clock. However, the Hold Time Violation only depends on the minimum delay of the circuit.

Hence, it is more critical to determine the minimum delay accurately. This work mainly

concentrates on finding the accurate minimum delays of the circuit.

9

II-B. Static Timing Analysis (STA)

The objective of static timing analysis is to calculate the minimum and maximum delay at

the primary outputs of any given digital circuit. It is a vectorless approach i.e. the timing

analysis is done without using any input vectors. The maximum and minimum delay at the

output pin for any given node n in the circuit are given by:

AT max
n = MAX

ni s.t. ni∈FI(n)
[AT max

ni +Dmax
ni→n]

AT min
n = MIN

ni s.t. ni∈FI(n)
[AT min

ni +Dmin
ni→n]

Here FI refers to the immediate fanins of the node n, AT max
n and AT min

n are the maxi-

mum and minimum arrival time at n and Dmax
ni→n and Dmin

ni→n and the maximum and minimum

pin-to-output1 delays of a gate from input pin ni to the output n.

The minimum and maximum arrival times over all the primary output of the circuit

define the lower and upper bound of the delay of the circuit respectively. However, the

path followed to achieve these delays may be a false path (i.e. it may not be sensitizable)

and these delays may never be achieved in the real circuit. Inspite of this deficiency, the

major appeal of STA is its ability to provide a minimum and maximum delay estimate of

the circuit in time that is linear in the size of the circuit.

II-C. Sensitizable Timing Analysis

The STA approach find an upper (lower) bound of the delay of the longest (shortest) topo-

logical path of the circuit. STA ignores the ignores the logical functionality of the circuit.

1The minimum(maximum) pin-to-output delays from the input ni to the output n of
a gate is defined as the minimum(maximum) delay when a transition at the input pin ni
produces a transition at output n.

10

Hence, the paths reported after STA may not even be sensitizable. When the functionality

of the circuit is considered, there may be no possible assignment of values to the primary

inputs which could cause a transition to propagate along this path. Such paths are known

as false paths. They do not determine the delay of the circuit and should reported.

Techniques for timing analysis which implicitly or explicitly remove the false paths,

and report the minimum (maximum) sensitizable paths are classified as Sensitizable Tim-

ing Analysis techniques. The generic approach in these cases is to develop a parameterized

Boolean function called the sensitization condition or the sensitization criteria. The sensi-

tization criteria determines if a transition at the primary inputs of a circuit can produce a

transition at the primary outputs. The longest path of the circuit for which the sensitization

criteria is met is called the longest sensitizable path. Similarly, the shortest path to meet

the sensitization criteria criteria is called the smallest destabilizing path.

II-D. Gate Delay Model

In regular static timing analysis, we find the structurally worst case, (either minimum or

maximum) circuit delay. In sensitizable timing analysis, false paths are implicitly removed

from the analysis. In both these type of timing analysis, however, the method of propagat-

ing arrival times forward through a circuit are the same. They both consider the worst case

delay of a gate when propagating arrival times. However, the delay of gate is not always the

worst case value. It depends on the arrival times of the inputs to the gate. The difference

in the results is explained below with a couple of examples. Let us first consider just the

nominal delay of a NAND2 gate.

Table II.1 is a list of input transitions that cause the output of a 2-input NAND gate

(with inputs a and b, and output c) to change its logic value. Let AT f all
i denote the arrival

time of a falling edge at signal i and AT rise
i denote the arrival time of a rising edge at signal

11

Table II.1. Transitions for a NAND gate that cause its output to switch
Rising Transition # ab → ab Delay(ps)

1 11 → 00 30.5
2 11 → 01 50.5
3 11 → 10 53.0

Falling Transition # ab → ab Delay(ps)
1 00 → 11 55.3
2 01 → 11 46.5
3 10 → 11 42.7

Output FallingOutput Rising

30.5 42.7

46.530.5a a

b
c

b
c

Fig. II.1. Pin to pin minimum delays for the NAND2 gate

i.

In the case of regular STA for calculating the minimum delay of a circuit (minSTA),

the rising time (delay) at the output c of a NAND2 gate is calculated as

AT rise
c = MIN[(AT f all

a +MIN(D11→00,D11→01)),

(AT f all
b +MIN(D11→00,D11→10))]

where, MIN(D11→00,D11→01) is often referred to as the minimum pin-to-pin rising output

delay from the input a, while MIN(D11→00,D11→10) is referred to as the minimum pin-to-

pin rising output delay from the input b.

Similarly, in minSTA the falling time (delay) at the output c of a NAND2 gate is given

by

AT f all
c = MIN[(AT rise

a +MIN(D00→11,D01→11)),

12

55.3

55.3

Output FallingOutput Rising

50.5

53.0

a

b
c

a

b
c

Fig. II.2. Pin to pin maximum delays for the NAND2 gate

(AT rise
b +MIN(D00→11,D10→11))]

where, MIN(D00→11,D01→11) is often referred to as the minimum pin-to-pin falling output

delay from the input a, while MIN(D00→11,D10→11) is referred to as the minimum pin-to-

pin falling output delay from input b. Figure II.1 illustrates the minimum pin-to-pin rising

and falling delays and Figure II.2 illustrates the maximum pin-to-pin rising and falling

delay for the example of Table II.1.

For example, if the falling or rising arrival time at inputs a and b was 10ps and 35ps

respectively, then the rise delay at c would be calculated to be = MIN(10+30.5, 35+30.5)

= 40.5ps. Similarly for a falling c output, the delay would be MIN(10+46.5, 35+42.7) =

56.5ps. However this is a pessimistic method of calculating the delay. In our approach we

attempt to remove some of this pessimism.

Let us first consider the rising output. The output of the NAND2 gate switches high

when any of the two inputs switches low. Such an input vector transition induces a tran-

sition on the gate output. Let us assume that this input transition was 11 → 00 for the

NAND2 gate. Again assume that the input a and b arrive at 10ps and 35ps respectively.

Based on the arrival times, we can say that the gate effectively goes through the tran-

sition 11 → 01 → 00 rather than 11 → 00 directly. Note that the output of the NAND2 gate

13

10ps 35ps 60.5ps

30.5ps

50.5ps

55.3ps

42.7ps

10ps 35ps 77.7ps

b) Rising Output

a) Falling Output

b

a c

b

a

c

a

b

c

Fig. II.3. Example of Timing Analysis using a NAND2 gate

14

falls for the vector 01 as well. Hence, we calculate the delay to be

AT rise
c = MIN((AT f all

a +D11→01),(AT f all
b +D11→00))

In our example, the delay is hence MIN(10+50.5,35+30.5) = 60.5. Figure II.3 (b)

illustrates this graphically. Note that we used the minimum of the two delays in this case

since any one input falling causes the output to switch. Also note that the rising delay

calculated (60.5ps) is much larger than the minimum worst case rising delay calculated

using minSTA (40.5ps). The reduction in pessimism in our approach occurs due to the fact

that we have information about the input transition for the gate.

Now consider the case of the falling output. The output of the NAND2 gate switches

low only when both the inputs switch high. Let us assume that the input transition for the

NAND2 gate was 00 → 11. Additionally, we know that a arrives at 10ps and b arrives at

35ps. As a result, we can say that the gate effectively goes through the transition 00 → 10

→ 11 rather than 00 → 11 directly. Hence, in our approach, we calculate the delay to be

AT f all
c = MAX((AT rise

a +D00→11),(AT rise
b +D10→11))

In our example, the delay is hence MAX(10+55.3,35+42.7) = 77.7. Figure II.3 (a)

illustrates this graphically. Note that we used the maximum of two delays in this case

since both inputs need to switch to cause the output to switch. Also note that the delay

calculated (77.7ps) is again larger than the worst case minimum delay calculated using

minSTA (56.5ps).

The accuracy of the computed falling and rising delays of our method were compared

with SPICE [16]. The results are shown graphically in the Figures II.4 and II.5. These

plots show the arrival time of the output c of a NAND2 gate, for the 00 → 11 and 11 → 00

transitions respectively. The arrival time of one of the inputs a is fixed to zero and the

arrival time of the other input b swept between -150ps to 150ps. The output delays are

15

-100

-50

 0

 50

 100

 150

 200

-150 -100 -50 0 50 100 150

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

 SPICE
 OURS

STA
minSTA

Fig. II.4. Plot of arrival times at output of NAND2 gate calculated through various means
for the transition 00 → 11

shown for STA, minSTA and our method, along with the delay found by SPICE [16].

Figures II.6 and II.7 show the same analysis as Figures II.4 and II.5 respectively, but the

sweep of the arrival times at b is restricted between -60ps and 60ps. Figures II.8 and II.9

show the relative error in the output delay value with respect to SPICE, with the arrival time

of input b swept between -60ps and 60ps. As can be seen from these plots, our method of

calculating the arrival times for multiple switching inputs matches SPICE quite accurately,

(with an error of no more than 10% of the SPICE delay) and is significantly better than

a traditional minSTA or STA method for computing arrival times (these methods have an

error of upto 60 % as compared to SPICE delay).

We have thus seen how considering the data dependent delay of a gate (based on the

input arrival times) can generate significantly different results than when considering just

the minimum delay of a gate.

We now present an example to show how a sensitizable timing analysis (which uses

the minimum delays of a gate) can give an inaccurate timing result. Consider the circuit in

Figure II.10. Let the arrival times at the primary inputs be zero. The delays of the NAND2

16

-100

-50

 0

 50

 100

 150

 200

-150 -100 -50 0 50 100 150

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

SPICE
OURS

STA
minSTA

Fig. II.5. Plot of arrival times at output of NAND2 gate calculated through various means
for the transition 11 → 00

-20

 0

 20

 40

 60

 80

 100

 120

-60 -40 -20 0 20 40 60

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

 SPICE
 OURS

STA
minSTA

Fig. II.6. Same as the Figure II.4, with the input arrival time difference in the range of -60ps
to 60ps

17

-40

-20

 0

 20

 40

 60

 80

 100

 120

-60 -40 -20 0 20 40 60

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

SPICE
OURS

STA
minSTA

Fig. II.7. Same as the Figure II.5, with the input arrival time difference in the range of -60ps
to 60ps

-80

-60

-40

-20

 0

 20

 40

 60

 80

-60 -40 -20 0 20 40 60

Er
ro

r i
n

Ar
riv

al
 T

im
e

at
 o

ut
pu

t w
.r.

t.
sp

ice
(p

s)

Time Difference(ps)

 OURS
STA

minSTA

Fig. II.8. Plot of error in arrival times at output of NAND2 gate w.r.t. SPICE, for the transi-
tion 00 → 11

18

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

-60 -40 -20 0 20 40 60

Er
ro

r i
n

Ar
riv

al
 T

im
e

at
 o

ut
pu

t w
.r.

t.
sp

ice
(p

s)

Time Difference(ps)

 OURS
STA

minSTA

Fig. II.9. Plot of error in arrival arrival times at output of NAND2 gate w.r.t. SPICE, for the
transition 11 → 00

1

2
a

b
c

o

Fig. II.10. Example of a circuit where Sensitizable Timing Analysis can be inaccurate

gate used are given in Table II.1. From this table we can state that the pin-dependent

minimum rising delay for the output of the NAND2 gate is 30.5ps for both the input pins.

Similarly the pin-dependent falling delay for the output of the NAND2 labeled ‘2’ is 46.5ps

for the input pin a and 42.7 for the input pin b. This is shown graphically in Figure II.1.

Considering the pin-to-pin delay model the shortest delay for the circuit in Figure II.10 is

30.5ps. This delay is sensitizable when the internal node c remains is non-controlling (i.e.

c = 1). One of the sensitizable vector transitions (on the primary inputs) is 10→00 which

causes the node c to remain at a stable 1 and the output node o to switch high at 30.5ps

under the pin-to-pin delay model (since the minimum delay for the output rising is 30.5ps

19

from either input). Hence the output rising delay of 30.5ps is the minimum destabilizing

delay using the pin-to-pin delay model.

However, when we utilize the data dependent delay model (from Table II.1), we get

a different delay value. Let us first validate the minimum delay transition generated by

the pin-to-pin delay model, using the data dependent delay model. Let the initial state of

the output be a stable 0. When the primary inputs transition is 10→00, the gate labeled

1 (which drives node c) does not change the state of the output and it remains at stable

1 from time t =0. So the input transition on the gate labeled 2 (which drives the primary

output o) is 11→01. From Table II.1 the delay for this transition is found to be 50.5ps.

This delay clearly more than that obtained using a pin-to-pin delay model (which reported

a delay of 30.5ps). Now let us consider the initial state of the output being stable 1. We

do this to check whether the minimum falling delay under the data dependent delay model

yields a value smaller than 50.5ps. The minimum transition delay can be achieved when

the internal node c is non-controlling. When the transition on the primary inputs of the

circuit is 00→10 the node c remains at a stable 1 state. So the transition on the inputs of

the gate labeled 2 (which drives the output node o) is 01→11. The delay for this transition

according to Table II.1 is 46.5. This is therefore the minimum destabilizing delay of the

circuit under the data dependent delay model. From the above example it is clear that the

pin-to-pin delay model not only is underestimates the smallest destabilizing delay but also

can generate a wrong input vector to sensitize the delay. Hence, the data-dependent delay

model is a closer estimate to the true behavior of the circuit.

Now, let us see how we incorporate the data-dependent delay model in our sensitizable

timing analysis approach. We represent the feasibility of a transition at any node n at a time

t in terms of its transition function τ. The transition function τt
n,s of a node n in the circuit

is defined as the the set of transitions at the primary inputs for which the node n has a state

s ∈ {0,1,rise, f all} (where 0 and 1 represent a corresponding stable state at n and rise and

20

f all represent a transition at n) at time t.

Again consider the example of a NAND2 gate. Let the delay corresponding to each

transition be represented as Dinit vec→ f inal vec, where init vec and f inal vec are the initial

and final input vectors at the inputs of the node. The output c can rise if any one of the

inputs is at a stable 1 and the other input falls, or if both inputs fall at the same time.

Hence the transition function representing a rising transition at node c is given by:

τt
c,rise = τt−D11→10

a,1 · τt−D11→10
b, f all

+τt−D11→01
a, f all · τt−D11→01

b,1

+τt−D11→00
a, f all · τt−D11→00

b, f all

+Στ(t−D11→01)<ti<(t−D11→00)
a, f all · τt−D11→00

b, f all

+τt−D11→00
a, f all ·Στ(t−D11→10)<ti<(t−D11→00)

b, f all (2.1)

We can do a similar analysis for the falling transition at the output node c for the same

gate. The output c falls if one of the inputs is at a stable 1 and the other input rises, or if

both the inputs rise at the same time. The transition function representing a fall transition

at node c is given by:

τt
c, f all = τt−D00→11

a,1 · τt−D10→11
b,rise

+τt−D01→11
a,rise · τt−D00→11

b,1

+τt−D00→11
a,rise · τt−D00→11

b,rise

+Στ(t−D00→11)<ti<(t−D01→11)
a,rise · τt−D00→11

b,rise

+τt−D00→11
a,rise ·Στ(t−D00→11)<ti<(t−D10→11)

b,rise (2.2)

Each row in the above expressions represent a separate condition that makes the output

21

node c sensitizable at time t, depending on the transition functions of its inputs a and b.

Each row of the above expression will be referred to as a term of the transition function.

Note that each term may require the evaluation of the transition function a fanin of c at a

particular time instant or at a range of times. Each term represents a different condition that

triggers a transition (rising /falling) at node c.

Also, note here that the stable 1(stable 0) condition for the input pins (a,b) is denoted

by a single time instant (lets say t ′) for the sake of simplicity of representation. It actually

represents the range of time from t ′ to t, when the transition occurs at the output node c

at time t. For example, the term τt−D11→10
a,1 in the first expression for the transition function

τt
c,rise denotes that the input a remains at a stable 1 from time t −D11→10, upto time t.

We will use a recursive formulation to find the transition function at each node until

the primary inputs are reached. At any primary input x a transition can occur only at arr(x),

which is a user specified arrival time of the primary input x. The transition function of a

primary input x is expressed in terms of its input state at the time t. We define the input state

xs of a primary input x as a four-valued variable which, for s ∈ {0,1,rise, f all}, indicates

that node n is either

1. Statically 0: This means that x was statically 0 from time t = -∞, and never transi-

tioned (i.e. arr(x) = -∞).

2. Statically 1: Similarly, this means that x was statically 1 from time t = -∞, and never

transitioned (i.e. arr(x) = -∞).

3. Rising: This means that x rose at an infinitesimally small delay after arr(x).

4. Falling: Similarly, this means that x fell at an infinitesimally small delay after arr(x).

At the primary inputs(x), the transition function can be defined as

22

τt
x,rise =











xrise if t = arr(x)

0 otherwise

τt
x, f all =











x f all if t = arr(x)

0 otherwise

τt
x,1 =











x1 if t ≤ arr(x)

xrise + x1 if t > arr(x)

τt
x,0 =











x0 if t ≤ arr(x)

x f all + x0 if t > arr(x)
(2.3)

Note that the first condition in τt
x,1 and τt

x,0 is reasonable since x rises (falls) an in-

finitesimal delay after arr(x). With this ability to model τt
x,s (where s ∈ {0,1,rise, f all}) in

terms of arr(x) our framework can elegantly incorporate the situation where primary inputs

arrive at arbitrary times.

We now explain the need for the condition that an input rises or falls an infinitesimal

delay after arr(x). Consider the NAND2 gate of Table II.1. Suppose we want to know if the

output can fall at 42.7ps. This is done by a call to τ42.7
c, f all. When this call is expanded, one

of the terms is:

τ0
a,1 · τ

0
b,rise

Note that if arr(a) = arr(b) = 0ps, τ0
a,1 = a1 and τ0

b,rise = brise. Based on the delays of

Table II.1, the stable 1 condition on a and the rising condition on b does yield a delay of

42.7ps.

Now, if we did not assume that an input rises slightly after arr(x), then we would have

23

τ0
a,1 = a1 + arise. Note that τ0

b,rise still evaluates to brise. These transitions for the primary

inputs a and b suggest that a delay of 42.7ps on c is possible in two ways – (i) a and b both

rise at t = 0ps and (ii) a is stable 1 and b rises at t = 0ps. While the later transition function

correctly yields a delay of 42.7ps as per Table II.1, the former actually yields a delay of

55.3ps. Hence the former transition is incorrect. If an input x is assumed to rise slightly

after arr(x), then this error is avoided.

II-E. Conclusion

This chapter briefly covered the background information which will be required to un-

derstand this thesis. The next chapter will describe the algorithm for the data dependent

sensitizable timing analysis.

24

CHAPTER III

DATA DEPENDENT SENSITIZABLE TIMING ANALYSIS

III-A. Introduction

Sensitizable timing analysis (as described in Chapter I) is used to perform false-path aware

timing analysis. There exist various sensitizable timing analysis approaches, all of which

take into account the logical functionality of the circuit. This helps them to correct the

pessimism of STA, by removing the topologically long (short) paths which can never be

sensitized due to the functionality of the circuit. However, the underlying gate delay model

used by these approaches (the pin-to-output delay model) does not allow them to accurately

model the behavior of a circuit. As seen in Chapter II, we can say that the true delay of

the circuit can be significantly different from the delay estimated by any technique using a

pin-to-output gate delay model. This thesis formulates an approach to use a data dependent

delay model for performing sensitizable timing analysis. This approach can be used to

find the both the minimum destabilizing and the maximum sensitizable delay of the circuit

under the improved gate delay model.

This chapter presents the key contribution of this thesis i.e. a sensitizable timing anal-

ysis framework to evaluate the minimum destabilizing and the maximum sensitizable delay

of a digital circuit using a data dependent gate delay model. In the next section, the overall

approach is demonstrated with the example circuit discussed in Section II-D. Sections III-

C and III-D formalize the methodology, and presents the main algorithms of the approach.

The Section III-F discusses the implementation details, along with the pruning techniques

used to make the procedure more efficient.

25

III-B. Example

Let us revisit the example of the circuit in Figure II.10. The delays for the NAND2 gate are

given in Table II.1. This example demonstrates how the timing analysis approach proposed

in this thesis is able to perform a sensitizable timing analysis utilizing the data dependent

gate delay model.

1

2
a

b

o

c

Rise Fall

Fall

Rise

30.5
50.5
53.0 55.3

46.5
42.7

30.5
73.2
97.0

42.7
77.0
99.5

50.5
85.8

46.5 55.3
97.085.8

53.0
95.7

99.5 108.3

108.3105.8

Fig. III.1. Example of a circuit accurately solved using data dependent delay model

As a first step, we obtain a list of all the possible rise/fall times at the each node of the

circuit. These lists are illustrated in Figure III.1. The lists are generated by a topological

traversal from the primary inputs to the primary outputs of the circuit. The list of all the

possible rise/fall times at the output of a gate is calculated using the corresponding lists at

its inputs and its data dependent delays. At this point, only the rise/fall times have been

calculated but no check for sensitizability has been performed.

We also generate the list of input values for which each node remains at a static 0 or

static 1 value from time t = 0 ps. These lists are calculated at each node n in the circuit

and are called the stable0 / stable1 lists for the node n. Each element of these lists is a

cube in the offset (onset) of the logic function of node n. Note that the initial value at any

primary input x is assumed to be stable at time t = -∞ and the only possible transition is at t

= arr(x). This assumption allows us to use the stable0 / stable1 lists to evaluate the logical

conditions under which each node n is a static 0 / static 1 at a time earlier than its arrival

26

time. For the sake of simplicity let us assume that the arrival times of all the inputs of the

circuit are 0 ps.

In order to check for the minimum destabilizing path we evaluate the worst case (mini-

mum) delay among all the primary outputs and check for its sensitizability. In this example

we have only one primary output, so we start from its lowest possible delay (30.5 ps – from

the “Rise” list for node o in Figure III.1. The transition function for the output o to rise at

time 30.5 ps is given by:

τ30.5
o,rise = τ30.5−53.0

a,1 · τ30.5−53.0
c, f all

+τ30.5−50.5
a, f all · τ30.5−50.5

c,1

+τ30.5−30.5
a, f all · τ30.5−30.5

c, f all

+Στ30.5−50.5<ti<30.5−30.5
a, f all · τ30.5−30.5

c, f all

+τ30.5−30.5
a, f all ·Στ30.5−53.0<ti<30.5−30.5

c, f all

Let us analyze each term of this expression. In the first term the transition function

τ30.5−53.0
a,1 requires the primary input a to remain static 1 from t = -22.5 ps to t = 30.5ps.

This would be given by the stable1 list at the node a. However, the fall time for c is required

to be -22.5 ps which is clearly not feasible. A transition is said to be infeasible if it yields a

transition function equal to 0. Thus, first term does not result in a feasible transition at the

output c. Similarly, for the second term the static 1 on node c will be given by its stable1

list (since t = -22.5 ps) but the falling transition at a at t = -22.5 ps is infeasible. Clearly, the

transition at a is not feasible. In the third term, the transition function τ30.5−30.5
a, f all evaluates

to a f all but the transition function τ30.5−30.5
c, f all is again infeasible. The falling transition at

node c is infeasible simply because the time t = 0 ps does not occur in the fall time list

for node c (see Figure III.1. In the fourth term, the range of falling transitions at a is t =

27

(30.5 - 50.5) ps to (30.5 - 30.5)ps. Note that the inequality calculates the possible transition

functions for a falling between -20 ps and 0 ps. This is an infeasible range for a since the

primary inputs are allowed only to transition at 0ps. Again, in the fifth term for the node

c the range t = (30.5 - 53.0) to (30.5 - 30.5) does not contain any valid value from the fall

time list of the node c. Since no term results in a feasible transition function, we say that

the rising output transition at 30.5 ps is not sensitizable.

Since the output fails to transition at t = 30.5ps, we evaluate the next lowest output

transition from the Rise and Fall lists for node o. Therefore we next test if a falling edge at

o at time t = 42.7ps is feasible. The transition function for o to fall at t = 42.7 ps is given

by:

τ42.7
o, f all = τ42.7−55.3

a,1 · τ42.7−42.7
c,rise

+τ42.7−46.5
a,rise · τ42.7−55.3

c,1

+τ42.7−55.3
a,rise · τ42.7−55.3

c,rise

+Στ42.7−55.3<ti<42.7−46.5
a,rise · τ42.7−55.3

c,rise

+τ42.7−55.3
a,rise ·Στ42.7−55.3<ti<42.7−42.7

c,rise

By doing a similar analysis as in the first case, we can check that none of the terms

of the above transition function results in a feasible transition at the output o. So the

sensitization of the falling output transition at t = 42.7 ps fails.

Now we consider the next higher possible transition time at o, which is 46.5ps. The

possible output transition at this time is falling. The transition function for o to fall at t =

46.5 ps is given by:

τ46.5
o, f all = τ46.5−55.3

a,1 · τ46.5−42.7
c,rise

28

+τ46.5−46.5
a,rise · τ46.5−55.3

c,1

+τ46.5−55.3
a,rise · τ46.5−55.3

c,rise

+Στ46.5−55.3<ti<46.5−46.5
a,rise · τ46.5−55.3

c,rise

+τ46.5−55.3
a,rise ·Στ46.5−55.3<ti<46.5−42.7

c,rise

Only the second term of interest here. All of the others can be removed with similar

analysis as was done for the first 2 cases. The condition for the second term is τ0
a,rise (a

rising transition on a at t = 0 ps), which evaluate to arise, and τ−8.8
c,1 (c is a static 1 from t =

-8.8 ps to 46.5 ps). The transition function τ46.5−55.3
c,1 evaluates to the node c rising at a time

before t1 = -8.8 ps and not falling till t2 = 46.5 ps. Since t1 < 0 ps, the valid input states are

calculated using the stable1 list for c. This is done because of the initial assumption that

a static 0 (static 1) value at a primary input is treated as though the input has fallen (risen)

at time t = -∞. Thus, conditions generated for τ46.5−55.3
c,1 is a0 + b0. Using the above two

expressions the final transition function at the output is given by:

τ46.5
o, f all = τ46.5−46.5

a,rise · τ46.5−55.3
c,1

= (arise) · (a0 +b0)

= arise ·b0

This example illustrates how the approach followed in this algorithm not only gener-

ates the true minimum destabilizing delay, but also finds the correct input vector transition

which sensitizes this delay. Note that the same formulation can find the maximum sensiti-

zable delay of the circuit as well.

29

III-C. Data Dependent Shortest Destabilizing Delay Algorithm

This section presents the main algorithm to perform data dependent sensitizable timing

analysis. Consider a Boolean network η. First the network η is decomposed and mapped

using 2-input NAND gates and inverters only. Let the modified network be represented

by η∗. Now η∗ is sorted in a breadth-first manner. The resulting array of nodes is sorted

in levelization1 order, and placed into an array L. Thus the nodes of η∗ are stored in A in

topological order from the inputs to the outputs.

Now a node n is fetched from the array A in index order. Then the generate transition lists

routine is used to generate the rise/ fall time lists at the node n using the rise/fall time lists

of its immediate fanins and a data dependent gate delay model. Since sensitization is not

checked in the creation of these lists, the values present in the list may correspond to the

delay values which are not sensitizable by any primary input vector transition. After this,

the generate stable condition generates the stable0/ stable1 lists for the node n. As dis-

cussed in the previous example, these lists contain the input vectors which would make the

node a static 0 or static 1 respectively.

The next shortest delay routine starts by selecting the shortest (rising or falling) de-

lay at any primary output of the circuit. It returns the shortest delay td , the primary output

node o at which the delay td may be achieved, and the output state s corresponding to the

delay td . Successive calls to this routine return the next higher value of the delay, along

with the corresponding node and transition values. Note that although s ∈ {0,1,rise, f all}

is a four valued variable, we only care about the rise or f all states at the primary outputs.

The Justify routine is used to check if the delay td at the primary output node o for

a state s is actually sensitizable. On success, the Justify routine returns the set of input

1Primary inputs are assigned a level 0, and other nodes are assigned a level which is one
larger than the maximum level among all their fanins.

30

Algorithm 1 Data Dependent Shortest Destabilizing Delay Algorithm
Data Dependent Short Destabilize(η)

η∗ = decompose and map(η)

A = levelize(η∗)

i = 1

while i ≤ size(A) do

n = array fetch(A,i)

generate transition lists (η∗, n)

generate stable condition (η∗, n)

end while

while 1 do

(o,s, td) = next shortest delay(η∗)

vec = Justify (o, s, td)

if vec != NULL then

break

end if

end while

31

vector transitions vec, which sensitize the delay td . If no vector transitions are able to

sensitize the delay td at the primary output o, then Justify returns an empty vec and the

next shortest delay routine is called again. The delay corresponding to this Justify call is

the minimum destabilizing delay for the given circuit η∗. The details of the Justify routine

are explained in the next section.

III-D. Justify

Justify is a key algorithm in our approach. This algorithm is used to check if a transition

(rising/falling) at some time t at a node n in the circuit can be sensitized by one or more

primary input vector transitions using a data dependent gate delay model.

As discussed in Chapter II, the sensitizablility of a transition to a state s at time t for a

node n is expressed in terms of its transition function τt
n,s. Further, the transition function at

the output of any gate can be expressed in terms of the transition functions of its fanins using

a data dependent gate delay model (as explained in the Equations 2.1 and 2.2 in Chapter II).

This recursive formulation allows us to express the transition function for any node of the

circuit in terms of the transition functions of the primary inputs of the circuit. Now, since

the transition function (transitioning to a state s for the node n at time t) is represented only

in terms of primary input transitions, we can check for compatibility in the primary input

vector transitions to determine the sensitizability of the required transition. Consider any

term of a transition function τ. It contains the logical AND of two other transition functions

τ′ and τ′′. Each of τ′ and τ′′ are expressed as a set of cubes represented in terms of circuit

primary inputs. Each literal of a cube is four-valued, with values {0, 1, rise, fall}. To check

if τ′ and τ′′ is compatible we perform a pairwise AND of the cubes of τ′ and τ′′. If any

resulting cube is non-null, τ′ · τ′′ is compatible.

Algorithm 2 describes the Justify routine. This routine performs two steps: (i) it

32

Algorithm 2 Justify for node n, checking state s at time t
Justify(n,s, t)
if n == primary input then

return node state(n,s, t)
end if
for each term ∈ tran f n(n,s) do

for each f = fanin(n) do
s f = state(term, f)
d = delay(term , f)
if s f = rise/ f all then

if type(d) == range then
f easible vec[term][f] = Justify range(f ,s f , t - min(d), t - max(d))

else
f easible vec[term][f] = Justify(f ,s f , t - (d))

end if
else

if s f = 0 then
sin = f all
s′in = rise

else
sin = rise
s′in = f all

end if
f easible vec[term][f] = Σ0<ti<t−min(d) (Justify (f ,sin, ti) · !Justify range(f , s′in,ti,t -
max(d)))

end if
end for

end for
return Compatible(f easible vec)

uses a recursive technique to express the transition function at any node in terms of the

transition functions of its immediate fanins and (ii) checks for conflicts in the transition

function (represented in terms of the primary inputs of the circuit).

The routine is called with node n, transition state s (rising/falling) and a time t. It

returns a set of vector transitions at the primary inputs of the circuit, which sensitize the

given transition at node n at time t. The first step in this routine is to check if the node

is a primary input. For a primary input, the vector transition can be trivially determined

by using the checking the arrival time (Equation 2.3. For any other node, the transition

33

function at the node is evaluated based on the transition functions of it immediate fanins,

as explained in Equations 2.1 and 2.2 in Chapter II. The routine computes each term of

the transition function of the node n at a state s and a time t in a recursive manner in order

to finally create the desired transition function at n in terms of transition functions of the

immediate fanins of n. Note that the transition function at any node n has a fixed number

of terms, as evident from the Equations 2.1 and 2.2 of Chapter II.

The state routine returns the state s f of the fanin f of node n for each term. The delay

routine is used to find the delay of the fanin transition. The delay d for each term of the

transition function of n is different and is also specific to each fanin f . Note that depending

on the term of the transition function, the delay d may be a range or a single value.

For a rising/ falling state s f for the fanin f , if d is a range then the Justify range

routine is called, else the Justify routine is called recursively. The Justify range routine

as seen in Algorithm 3 in turn makes successive calls to the Justify routine for all possible

transition times in the interval tmin to tmax.

However, if the fanin node state s f is a stable 1(0) , then the Justify routine accumu-

lates all the transition functions which cause the fanin f to rise (fall) before t-d and not

fall (rise) till time t. To evaluate this, the Justify routine is invoked for all possible ris-

ing (falling) times (ti) between 0 and t - d at node f for the state sin. Also, the transition

functions which allow the fanin to fall (rise) between ti and t are obtained by calling Jus-

tify range for the interval ti to t at the node f for the state s′in. Now, by combining the

result from the Justify call with the compliment of the result from the Justify range call,

the final result for the fanin node f to be stable 1(0) in the range t−d to t is obtained. Note

that as shown in Figure III.2, to check for an intermediate node n in the circuit to be stable

1 for the time duration t ′ to t ′′′, we need to generate the transition functions which cause the

node n to rise before time t ′ and not fall until time t ′′′. Therefore, we need to validate the

condition that the same vector transition at the primary inputs which causes n to rise at any

34

time before t ′ does not cause it to fall at time t ′′, where t ′ < t ′′ < t ′′′. As a result, we need

to maintain the complete list of all possible rise/fall times at a node. Considering a subset

of the possible rise/fall transition times may lead to inaccurate results. Thus, the rise/fall

arrival time lists cannot be pruned.

t ′′ t ′′′t ′

Fig. III.2. Condition for a node to be stable 1 in the time interval t ′ to t ′′′

After generating the transition functions for all the fanins of n, the Compatible routine

checks for the compatibility of the input vector transitions (i.e. it checks for the non-

emptiness of the set of transition functions on the primary inputs which would allow the

state s to occur at the node n at time t). If the result of the Compatible routine results in a

non-empty set of vector transitions at the primary inputs, then the node n is sensitizable to

a state s at a time t.

III-E. Data Dependent Longest Sensitizable Delay Algorithm

We can easily find the longest sensitizable delay by a small variation in the Data Depen-

dent Shortest Destabilizing Delay Algorithm. The only change required is to replace

the next shortest delay routine in the initial algorithm with a next longest delay rou-

tine. This is shown in Algorithm 4. The next longest delay routine starts by selecting the

longest rising or falling delay at any primary output of the circuit. It returns longest a delay

td (from all the output rise / fall lists created during generate transition lists), the primary

35

Algorithm 3 Justify for node n, checking state s during the interval (tmin,tmax)
Justify range(n,s, tmin, tmax)

vec = NULL

tran list = transition time list (n, s)

for each t ∈ tran list do

if t is in (tmin,tmax) then

vec += Justify(n,s, t)

end if

end for

return vec

output node o at which the delay may be achieved and the output state s corresponding to

the delay td . Successive calls to this routine return the next lower value of the delay and the

corresponding node and transition values. This is the only change required in the algorithm

and all the other steps remain the same.

As explained in Section III-D, we use a recursive formulation to represent the tran-

sition function at the output of a node in terms of the fanins of the node. This allows us

to represent the transition function at any node in terms of the transition functions at the

primary inputs. Using this technique, we start from a primary output and recursively create

its transition function, until the transition function is expressed in terms of the primary in-

puts of the network. Thus, this approach traverses the circuit in a depth first search (DFS)

manner. Another possibility is to start from the primary inputs of the network and create

the transition functions of all the nodes, in a forward pass of the network (in a breadth first

search (BFS) fashion). However, this approach requires the computation of the transition

functions for any node at all times and for all states (rise/fall) before the transition function

at its immediate fanouts are evaluated. The BFS technique was evaluated and found to be

36

Algorithm 4 Data Dependent Longest Sensitizable Delay Algorithm
Data Dependent Long Sensitize(η)

η∗ = decompose network(η)

A = levelize(η∗)

i = 1

while i ≤ size(A) do

n = array fetch(A,i)

generate transition lists (η∗, n)

generate stable condition (η∗, n)

end while

while (1) do

(o,s, td) = next longest delay(η∗)

vec = Justify (o, s, td)

if vec != NULL then

break

end if

end while

37

computationally much more intensive as compared to the DFS technique, since most of the

transition functions calculated at a node were never used in the evaluation of the transi-

tion function at the node’s fanouts. However, it is not known apriori if any such transition

function can be pruned before computing the output transition functions. This causes a

significant memory utilization, yielding an inefficient approach.

III-F. Implementation

The algorithms above illustrate the use of the recursive technique in computing the true

delay of a circuit under the data dependent gate delay model. In small and moderate circuits

it is generally easy to construct the transition function and determine the precise path for

the minimum destabilizing delay. However, in large circuits the construction of transition

functions for each delay may become very intensive. Therefore, some implementation

techniques can be utilized to avoid the problem. In this section we will discuss 2 such

techniques.

III-F.1. Reduced Search Justify

At each step during the recursive calls in Justify, we compute the set of feasible input

vector transitions that would allow the final transition to be sensitized. The Compatible

routine combines the vector transitions generated at the fanins of a node n to determine

the sensitizablilty of the transition at n. The compatibility check is required to be done to

ensure that the immediate fanins of n do not require conflicting states on the same primary

input pin. The condition when the two fanins of a node require conflicting states at any

primary input pin is defined as an incompatibility.

Let n be any node in the circuit with immediate fanins a and b. The f anin pin for

the node n is defined as the set of primary inputs pins, such that for each primary input

38

b

c

e

f

g

a

j

k

l

n

m

i

h
d

Fig. III.3. Generic representation of a network

x ∈ f anin pin, there exists a topological path from x to n in the circuit. In the Justify

routine the primary input vectors transitions returned from the two fanins a and b may have

incompatibility only if f anin pia ∩ f anin pib 6= Ø. This is illustrated in the Figure III.3.

For the node p any primary input vector transitions returned by q and r will never have any

incompatibility. However, at node r the vector transitions returned by f and g may have

incompatibility due to the common primary input pin m.

This analysis suggests that if the Justify call at any node n (with fanins a and b) returns

the primary input vector transitions restricted to the subspace f anin pia ∩ f anin pib, we

can still check for compatibility without any compromise on accuracy. This technique

of reducing the range of vector transitions returned by Justify routine is called Reduced

Search Justify.

III-F.2. Caching

As discussed above, the Reduced Search Justify technique is recursive in nature. A call

τt
c, f all may be made a large number of times in execution of the top-level algorithm. This

39

suggests that it may be beneficial to cache the results of Reduced Search Justify calls.

When a call to Reduced Search Justify routine with a four-tuple (node n, state s, time

t and fanin pi) is made for the first time, the results of the call are stored in the cache.

Any subsequent calls with the same set of parameters need not be evaluated again, and the

result will be read directly from the cache. To control the memory utilization, we limit the

number of entries in the cache. A least recently used (LRU) scheme is used to select the

entries to be removed, if the total number of entries of the cache increases beyond a fixed

number. This number for the total size of the cache is user defined and can be used as a

method to control to memory utilization of the whole process.

With the above stated techniques we can enhance the operation of the Justify routine

without any effect on the accuracy of the results obtained.

40

CHAPTER IV

EXPERIMENTAL RESULTS

IV-A. Setup

The data dependent sensitizable timing analysis approach was implemented in the logic

synthesis environment SIS [17]. The code consists of reading a circuit and mapping it into

2-input NAND gates and inverters. Then the data dependent sensitizable timing analysis

(as discussed in Chapter III) is used to analyze the true delay of a circuit. Results are

presented for both minimum destabilizing and maximum sensitizable delay analysis. A set

of benchmark circuits were used to analyze the effectiveness of our approach.

The gates in the library were characterized for delay in SPICE [16], using a 100nm

BPTM [18] process technology. The gate delays for the 2-input NAND gate are given

in Table II.1. The rising and falling delays for the inverter are 11.67 ps and 11.63 ps

respectively.

IV-B. Destabilizing Minimum Delay Results

The results for the data dependent minimum destabilizing delay are presented in Table IV.1.

In this table, Column 1 lists the circuit under consideration. Columns 2 and 3 show the

number of primary inputs and primary outputs of the circuit under consideration. Column

4 reports the minimum number of levels of among all the primary outputs of the circuit.

The minimum number of levels of a circuit indicates the shortest topological path between

the primary inputs and primary outputs for the circuit. Column 5 reports the delay reported

by minimum STA (minSTA) . Column 6 reports the minimum destabilizing delay evaluated

by our approach. The Column 7 reports the percentage improvement of our results over the

results reported by minSTA. The last column reports the total runtime of our approach.

41

Table IV.1. Comparison of our Minimum Destabilizing Delay approach with minSTA

Ckt. PI PO Levels minSTA Our Approach % Impr. Time (sec)
C432′ 36 3 8 184.56 204.56 10.84 4.55
C499′ 41 32 2 73.2 93.2 27.32 25.22
C880′ 60 2 4 150.2 190.2 26.63 9.78

C1355′ 41 32 2 73.2 93.2 27.32 50.15
C1908′ 33 1 4 127 174.67 37.54 60.23
C2670′ 233 6 5 114.76 155.24 35.27 11.91
C3540′ 50 10 7 169.13 - - -
C5315′ 178 6 6 199.59 245.39 22.95 87.35

i1′ 25 13 2 23.3 23.3 0.00 0
i2′ 201 1 6 157.46 181.26 15.11 17.37
i3′ 132 4 9 222.89 222.89 0.00 0
i4′ 192 4 2 42.13 42.13 0.00 0
i5′ 133 66 2 42.13 54.37 29.05 0.1
i6′ 138 38 4 119.13 149.5 25.49 1.14
i7′ 199 66 4 115.33 141.63 22.80 1.47
i8′ 133 17 6 161.26 201.94 25.23 22.3
i9′ 88 63 4 119.13 151.37 27.06 23.7

vda′ 17 21 9 215.63 259.5 20.35 1.72
table5′ 17 13 8 184.56 229.04 24.10 2.19
table3′ 14 13 6 172.93 205.13 18.62 3.11
apex1′ 45 19 6 172.89 213.57 23.53 2.22
apex3′ 54 14 6 173.5 213.5 23.05 1.98
apex4′ 9 14 7 215.06 283.14 31.66 4.79

k2′ 45 28 7 185.13 227.26 22.76 1.74
rd73′ 7 2 6 161.26 213.64 32.48 0.15
alu2′ 10 2 10 253.96 317.76 25.12 52.76

duke2′ 22 19 5 95.89 115.89 20.86 0.32
clip′ 9 3 6 161.26 209.54 29.94 1.3
vg2′ 25 3 5 130.8 173.3 32.49 0.4
e64′ 65 37 5 126.39 166.91 32.06 0.2
Avg. 24.62

The results show an increase in the minimum destabilizing delay by 24% on average

and 37% in best case, compared to minSTA. In other words minSTA under reports the

minimum destabilizing delay of the circuit by 24% on average.

Note for most of these circuits, the shortest topological path is small (typically 1 or

2 levels). To show the effectiveness of our technique, we have removed these short paths

wherever possible. In other words Column 4 represents the minimum number of levels

after removing the short paths. For C3540 our approach did not finish within a reasonable

amount of time (expt. terminated after 1000 secs).

A comparison of the minimum delay paths generated by minSTA and our approach

42

Table IV.2. Comparison of paths generated by minSTA and our approach

Circuit Path length for min delay Identical # of gates Comments
minSTA Our Approach Path with diff. delay

C432′ 8 8 Yes 1 1 of 4 paths is same
C499′ 2 3 No -
C880′ 4 5 No -

C1355′ 2 3 No -
C1908′ 4 6 No -
C2670′ 5 5 Yes 5 minSTA output rises,

our approach output falls
C5315′ 6 6 Yes 2 1 of 2 paths is same

is presented in Table IV.2. In this table, Column 1 lists the circuit under consideration.

Columns 2 and 3 report the length of the minimum delay path evaluated by minSTA and

our approach respectively. Column 4 indicates whether minSTA and our approach have

evaluated identical paths. Column 5 lists the number of gates on the path for which the gate

delay used by minSTA and our approach was different. Note that the values in this column

are shown only for those circuits for which minSTA and our approach obtain identical

shortest delay path. In Column 5, comments based on the circuit are given.

The results show that for 4 out of 7 circuits(C499′, C880′, C1355′ and C1908′), min-

STA reports different paths as compared to our sensitizable timing analysis approach. In

the case of C432′ and C5315′, our approach reports simultaneous transitions on 4 and 2

primary inputs respectively for the minimum destabilizing delay. In both these cases, 1 of

the paths is identical to the path evaluated by minSTA. Column 5 reports the number of

gates on the identical paths for which minSTA and our approach used different gate delay

values. For C2670′, minSTA evaluates a rising delay while our approach evaluates a falling

delay for the same path. Thus, the delay values for all the gates in this circuit is different.

The above analysis shows that minSTA is not only pessimistic in reporting the minimum

delay of the circuit, but also reports an incorrect path (or different transition) in 5 out of

7 test cases. Hence the analysis performed by our approach is more accurate than that of

minSTA, validating the utility of our approach.

43

IV-C. Sensitizable Maximum Delay Results

The results for the data dependent maximum sensitizable delay are presented in Table IV.3.

In this table, Column 1 lists the circuit under consideration. Columns 2 and 3 show the

number of primary inputs and primary outputs of the circuit under consideration. Column

4 reports the maximum number of levels of among all the primary outputs of the circuit.

The levels indicate the longest topological path between the primary inputs and primary

outputs of the circuit.

Column 5 reports the delay reported by the STA method. Column 6 reports the delay

calculated sense, a sensitizable maximum delay analysis tool in SIS [17]. This tool does

not account for data dependent delays. The approach of sense is reported in [10]. Column

7 reports the maximum sensitizable delay evaluated by our approach. The column 8 and 9

report the percentage improvement of our approach over sense and STA respectively. The

last column shows the total runtime of our implementation.

The results show a decrease in the maximum sensitizable delay of about 7% on average

and about 10% in the best case,compared to sense. Note that our approach results in a lower

sensitizable delay as compared to both sense and STA.

IV-D. Caching

We use caching as a technique to improve the efficiency of our approach. When a cache

hit occurs for the Justify operation at any node n, it saves the computation time required

for all the calls in the transitive fanin of n, which would otherwise be needed to check

for the sensitizability of the required transition at n. For this reason, the size of the cache

plays an important role in the total runtime. Since the complexity of the Justify operation

can be estimated by the maximum number of levels in the circuit, we use it as a function

to control the cache size. An empirical value c has been defined as a constant (400 in

44

Table IV.3. Comparison our Maximum Sensitizable Delay approach with Sense and STA

Ckt. PI PO Levels maxSTA Sense Our Approach % Impr. Sense % Impr. STA Run-time (s)
x1 51 35 21 713.14 713.14 684.76 4.14 4.14 1.24
cps 109 24 23 780.27 780.27 726.53 7.40 7.40 2.9

table5 17 15 27 914.21 914.21 863.39 5.89 5.89 131.69
cm150a 21 1 21 798.3 795.3 728.93 9.11 9.52 0.86
cm151a 12 2 18 637.04 634.04 602.16 5.29 5.79 0.24

cmb 16 4 19 736.01 733.01 690.19 6.20 6.64 0.21
clip 9 5 19 651.01 651.01 613.99 6.03 6.03 0.58
vda 17 39 19 646.17 646.17 591.23 9.29 9.29 2.73

apex6 135 99 21 885.32 885.32 823.68 7.48 7.48 1.13
b12 15 9 25 851.92 851.92 805.38 5.78 5.78 0.58
x3 135 99 37 1370.59 1370.59 1257.1 9.03 9.03 43.69

apex3 54 50 25 849.58 849.58 798.92 6.34 6.34 239.7
t481 16 1 31 1048.15 1048.15 975.88 7.41 7.41 9.6

table3 14 14 22 914.21 914.21 855.79 6.83 6.83 29.44
Avg. 6.87 6.97

our experiments) multiple of the maximum number of levels of the circuit. Figures IV.1

and IV.2 show the variation of runtime based on the size of the cache. These results show

that increase in the size of the cache improves the total runtime of our implementation.

Further, the degree of improvement decreases with increase in the size of the cache. This is

indicated by the flattening of the graph for cache size, greater than 5c. From Figures IV.1

and IV.2, we note that a cache size greater than 2c to 4c achieves minimal incremental

performance improvements.

45

Fig. IV.1. Runtime variation using cache of different sizes

Fig. IV.2. Runtime variation using cache of different sizes-II

46

CHAPTER V

CONCLUSION AND FUTURE WORK

V-A. Conclusion

Sensitizable timing analysis helps reduce the inaccuracy of topological worst case delay

analysis. However, traditional sensitizable timing analysis can be considerably pessimistic

due to the pin-to-output gate delay model used. This thesis presents an approach to incor-

porate “arrival time dependent” delays of a gate in performing sensitizable timing analysis.

This approach can be used to evaluate the minimum destabilizing as well as the maximum

sensitizable delay of a circuit, using the same formulation. In this approach, we have cur-

rently not modeled the gate delay dependence on the input slew and the load capacitance.

However, these parameters can be incorporated in the same framework, by utilizing more

lookup tables for each gate delay (based on different values of the input slew and the out-

put load capacitance). For high fanout nodes, the dependence of the gate delay on output

capacitance may be large. This would result in a smaller change in the gate delay based on

different transitions at the gate inputs. Thus, the overall improvement of our approach may

be less.

The results of our approach underline the effectiveness of using the data dependent

gate delay model in evaluating the minimum destabilizing and maximum sensitizable delay

of a circuit. From the results presented in this thesis, we can also say that the effect of data

dependence is more pronounced while computing the minimum destabilizing delay of the

circuit, and results in an improvement of about 24% as compared to minSTA.

47

V-B. Future Work

The effectiveness of our method can be improved by using a fully implicit representation for

input vector transitions. This would allow us to use efficient logic minimization techniques

like multi-valued ESPRESSO [19] to represent the input vector transitions. Also MDDs

(multi-valued decision diagrams) may be used for an implicit representation of the input

vector transitions.

Another technique to improve the efficiency of our approach could be to partition the

circuit into slices of maximum depth k, in a topological manner from the primary inputs of

the circuit. Each slice would be analyzed independently, with the results of slice i being

used as arrival times for the slice i+1. This approach would result in some loss of accuracy,

which can be traded off against the size of each slice.

The gate library size can be increased by including higher fanin gates. This will en-

hance the applicability of the approach presented in this thesis for any general static CMOS

circuit.

48

REFERENCES

[1] S. T. Huang, T. M. Parng, and J. M. Shyu, “A new approach to solving false path

problem in timing analysis,” in Proc. of the Intl. Conf. on Computer-Aided Design,

Nov 1991, pp. 216–219.

[2] H. C. Chen and D. H. C. Du, “Path sensitization in critical path problem,” IEEE

Transactions on Computer-Aided Design, pp. 196–201, Feburary 1993.

[3] P. McGeer, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli, Logic Synthe-

sis and Optimization, chapter Delay Models and Exact Timing Analysis, pp. 167–189,

Kluwer Academic Publishers, 1993.

[4] Y. Kukimoto, W. Gosti, A. Saldanha, and R. K. Brayton, “Approximate timing anal-

ysis of combinational circuits under the XBD0 model,” in Proc. of the Intl. Conf. on

Computer-Aided Design, Nov 1997, pp. 176–181.

[5] L.-R. Liu, H.-C. Chen, and D. H.-C. Du, “The calculation of signal stable ranges in

combinational circuits,” in Proc. of the Intl. Conf. on Computer-Aided Design, Nov

1991, pp. 312–315.

[6] R. B. Hitchcock Sr., G. L. Smith, and D. D. Cheng, “Timing analysis of computer

hardware.,” IBM Journal of Research and Development, vol. 26, no. 1, pp. 100–105,

Jan 1982.

[7] J. Benkoski, E. V. Meersch, L. J. M. Claesen, and H. D. Man, “Timing verification

using statically sensitizable paths,” in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Sept 1990, vol. 9, pp. 1073–1084.

[8] D. Brand and V. S. Iyengar, “Timing analysis using functional analysis,” in IEEE

Transactions on Computers, Oct 1988, vol. 37, pp. 1309–1314.

49

[9] J. P. M. Silva and K.A. Sakallah, “An analysis of path sensitization criteria,” in Proc.

of the IEE International Conference on Computer Design, Oct 1993, pp. 68–72.

[10] P. C. McGeer and R. K. Brayton, “Efficient algorithms for computing the longest

viable path in a combinational network,” in Proc. of the Design Automation Conf.,

New York, NY, USA, 1989, pp. 561–567, ACM Press.

[11] D.H.C. Du, S.H.C. Yen, and S. Ghanta, “On the general false path problem in timing

analysis,” in Proc. of the Design Automation Conf., New York, NY, USA, June 1989,

pp. 555–560, ACM Press.

[12] S.-W. Cheng, H.-C. Chen, D. H.-C. Du, and A. Lim, “The role of long and short paths

in circuit performance optimization,” in Proc. of the Design Automation Conf., Los

Alamitos, CA, USA, 1992, pp. 543–548, IEEE Computer Society Press.

[13] R. P. Llopis, L. R. Xirgo, and J. C. Bordoll, “Short destabilizing paths in timing veri-

fication,” in Proceedings of the IEEE International Conference on Computer Design:

VLSI in Computer & Processors, Washington, DC, USA, 1994, pp. 160–163, IEEE

Computer Society.

[14] S.-Z. Sun, D. H.-C. Du, and H.-C. Chen, “Efficient timing analysis for CMOS cir-

cuits considering data dependent delays,” in Proceedings of the IEEE International

Conference on Computer Design: VLSI in Computer & Processors, Washington, DC,

USA, 1994, pp. 156–159, IEEE Computer Society.

[15] L.-C. Chen, S. K. Gupta, and M. A. Breuer, “A new gate delay model for simultane-

ous switching and its applications,” in Proc. of the Design Automation Conf., New

York, NY, USA, 2001, pp. 289–294, ACM Press.

50

[16] L. Nagel, “SPICE: A computer program to simulate computer circuits,” Tech. Rep.

UCB/ERL M520, Univ. of California, Berkeley, CA, May 1995.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A System for

Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research

Lab, Univ. of California, Berkeley, CA, May 1992.

[18] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm of pre-

dictive MOSFET and interconnect modeling for early circuit design,” in Proc. of

IEEE Custom Integrated Circuit Conference, Jun 2000, pp. 201–204, Available at

http://www-device.eecs.berkeley.edu/ ptm.

[19] R. Rudell and A. Sangiovanni-Vincentelli, “ESPRESSO-MV: Algorithms for

multiple-valued logic minimization,” in Proceedings of the Custom International Cir-

cuit Conference (CICC-85), May 1985, pp. 230–234.

51

VITA

Karandeep Singh received his Bachelor of Engineering degree in Electronics and Elec-

trical Communication Engineering from the Punjab Engineering College, Chandigarh, In-

dia in June 2002. . He has worked for ST Microelectronics India, Noida, India. In August

2005, he joined Texas A&M University to pursue his master’s degree in computer engineer-

ing. His research at Texas A&M is focused on improvement of timing analysis techniques

for static CMOS based digital circuit design. He received his M.S. in Computer Engineer-

ing in May 2007.

Permanent Address:

Karandeep Singh

331-A WERC,

Texas A&M University,

College Station, TX-77843

E-mail: karandeep@tamu.edu

The typist for this thesis was Karandeep Singh.

