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ABSTRACT

Parallel Algorithms for Inductance Extraction. (May 2006)

Hemant Mahawar, B.Tech., Indian Institute of Technology;

M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. Vivek Sarin

In VLSI circuits, signal delays play an important role in design, timing verification and

signal integrity checks. These delays are attributed to thepresence of parasitic resistance,

capacitance and inductance. With increasing clock speed and reducing feature sizes, these

delays will be dominated by parasitic inductance. In the next generation VLSI circuits, with

more than millions of components and interconnect segments, fast and accurate inductance

estimation becomes a crucial step.

A generalized approach for inductance extraction requiresthe solution of a large,

dense, complex linear system that models mutual inductive effects among circuit elements.

Iterative methods are used to solve the system without explicit computation of the system

matrix itself. Fast hierarchical techniques are used to compute approximate matrix-vector

products with the dense system matrix in a matrix-free way. Due to unavailability of system

matrix, constructing a preconditioner to accelerate the convergence of the iterative method

becomes a challenging task.

This work presents a class of parallel algorithms for fast and accurate inductance ex-

traction of VLSI circuits. We use the solenoidal basis approach that converts the linear

system into a reduced system. The reduced system of equations is solved by a precon-

ditioned iterative solver that uses fast hierarchical methods to compute products with the

dense coefficient matrix. A Green’s function based preconditioner is proposed that achieves

near-optimal convergence rates in several cases. By formulating the preconditioner as a

dense matrix similar to the coefficient matrix, we are able touse fast hierarchical methods



iv

for the preconditioning step as well. Experiments on a number of benchmark problems

highlight the efficient preconditioning scheme and its advantages over FastHenry.

To further reduce the solution time of the software, we have developed a parallel im-

plementation. The parallel software package is capable of analyzing interconnects con-

figurations involving several conductors within reasonable time. A two-tier parallelization

scheme enables mixed mode parallelization, which uses bothOpenMP and MPI directives.

The parallel performance of the software is demonstrated through experiments on the IBM

p690 and AMD Linux clusters. These experiments highlight the portability and efficiency

of the software on multiprocessors with shared, distributed, and distributed-shared memory

architectures.
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CHAPTER I

INTRODUCTION

A. Motivation

In VLSI circuits, signal delays play an important role in design, timing verification and sig-

nal integrity checks. These delays are attributed to the presence of parasitic resistance (R),

capacitance (C) and inductance (L). Among these parasitic components, primarily capaci-

tance and inductance are functions of operational frequency. As a result of newer technol-

ogy that uses thicker copper wires, the influence of parasitic resistance has decreased. On

the other hand, with operational frequency of modern VLSI circuits approaching gigahertz

(GHz) range and shrinking feature sizes, parasitic inductance will have dominating effect

on signal delays. For the next generation VLSI circuits withmore than millions of compo-

nents and interconnect segments, there is a significant needfor fast and accurate inductance

extraction software.

In a VLSI circuit, the changes in current flow create a varyingmagnetic field that leads

to inductive coupling among the different components. Thiseffect is more pronounced

when these components are in close physical proximity. Chipsdesigned with sub-micron

VLSI technology are prone to parasitic inductive effects because of the tightly packed com-

ponents. The property of an electrical circuit to resist change in its own current due to the

presence of associated magnetic field is calledinductance. Self inductance of a conductor

refers to the impedance offered to current flows by the induced magnetic field due to its

own current. Mutual inductance between a pair of conductorsrefers to the impedance in

one conductor due to current flow in the other. The process of estimating these inductive

couplings among different components of VLSI circuits is called inductance extraction.

The journal model is SIAM Journal of Scientific Computing.
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B. Previous Work

There are three types of inductance extraction algorithms:loop inductance, partial induc-

tanceandshape based inductance. The loop inductance algorithms are the most accurate

but slowest, while the shape-based algorithms are the leastaccurate but the fastest. Fas-

tHenry [12] is a commonly available software package that computes the loop inductance.

Due to its high accuracy, FastHenry is often used as a reference for all other extraction

algorithms. Partial inductance was first proposed by Rosa andintroduced to circuit de-

sign by Ruehli [21]. A number of algorithms have been proposed, such as Krauter [14]

and He [10]. Partial inductance algorithms are faster than loop inductance algorithms.

However it is shown that partial inductance without currentreturn paths is inaccurate [5].

Shape-based algorithms, such as [13, 25], are fast but inaccurate for complex structures. In

this work, we study the extraction of loop inductance of 3D electrical conductors.

A quasi-static approach is often used to compute the parasitic inductance for a set of

conductors at a particular frequency. To estimate inductance among a set of conductors

in a particular configuration, one needs to determine the current in each conductor under

appropriate equilibrium conditions. The general technique is to discretize the surface of

each conductor by a uniform two-dimensional mesh that represents a network of smaller

conductors or filaments, and a linear system of equations is solved to determine the induc-

tive coupling [12]. The linear system is derived from Kirchoff’s current and voltage laws

that determine the current flow into mesh nodes and the potential drop across filaments,

respectively. The potential drop across the end points of a filament is due to its own resis-

tance and due to the inductive coupling with other filaments.The resulting linear system

consists of both sparse and dense sub-matrices. Kirchoff’scurrent law results in a sparse

sub-matrix, while the inductive coupling constitutes the entries of the dense and complex

sub-matrix.
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The cost of computing and storing the dense submatrix becomes prohibitive as the

problem size grows beyond a few thousand filaments. Hence, these systems are often

solved by iterative methods such as Generalized Minimal Residual (GMRES) method [22].

At each iteration, a matrix-vector product with the coefficient matrix is required. To avoid

the memory and computational penalties of exact matrix-vector product, fast hierarchical

schemes, such as the Barnes-Hut method [3] and Fast MultipoleMethod (FMM) [7, 8], are

often used to compute approximate matrix-vector products with the system matrix. These

approaches have a trade-off between accuracy and speed. These methods can lead to a

matrix-freealgorithm that does not require explicit computation of thecoefficient matrix.

The success of the underlying iterative methods depends on the rate of convergence that

can be accelerated by preconditioning the system. The preconditioning step transforms the

original system into an easier one for the iterative methods. If one usesmatrix-freealgo-

rithms for computing matrix vector product with system matrix, then the task of developing

preconditioners becomes complicated due to the unavailability of the coefficient matrix.

FastHenry [12] is a commonly used software package for inductance extraction. It

uses the above described approach to compute accurate estimates of a circuit’s parasitic in-

ductance. Matrix-vector products are computed efficientlyby using FMM. Preconditioners

are obtained by approximating the dense coefficient matrix with a sparse matrix that is de-

rived from the FMM hierarchical structure. Although the software is used as a benchmark

for accuracy comparison, it has found limited use in the VLSI-CAD community due to the

long simulation time and large memory requirements. Since FastHenry is available only

for uniprocessor workstations, the size of problems that can be solved is severely limited.

Hence, there is significant interest in developing fast and accurate parallel algorithms for

inductance extraction of large VLSI circuits.
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C. Outline

This work presents a class of parallel algorithms for fast and accurate inductance extrac-

tion of VLSI circuits. We proposed a solenoidal basis approach for [20] that represents

the filament currents in terms of circular cell currents. This approach converts the linear

system into a reduced system with fewer unknowns. The reduced system of equations

is solved by a preconditioned iterative solver that uses FMMto compute products with

the dense coefficient matrix and the preconditioner. We relyon the characteristics of the

system matrix to devise the preconditioner. To handle largeproblem instances and to fur-

ther reduce the solution time of the software, we have developed a parallel implementa-

tion [15, 16]. A two-tier parallelization scheme enables mixed mode parallelization, which

uses both OpenMP and MPI directives. Mixed mode parallelization enables the software to

run on shared, distributed and distributed-shared memory machines. Experimental results

presented in [15, 20] highlight the preconditioning scheme’s effectiveness and the parallel

performance of the software. To the best of our knowledge, this is the first parallel software

for inductance extraction that can run on various multiprocess machines.

The dissertation is organized as follows: Chapter II describes the discretization of the

integral equation formulation for the inductance extraction problem and the associated lin-

ear system of equations. Chapter III outlines the solenoidalbasis method that represents

the filament currents in terms of circular cell currents. This approach transforms the linear

system into a reduced system. This is followed by a description of the preconditioning

approach in Chapter IV. The preconditioning scheme for the reduced system is very ef-

fective in reducing the solution time and memory requirements. Experimental results show

the effectiveness of the devised preconditioner. The proposed algorithm is compared with

FastHenry in Chapter V. Experiments conducted on a set of benchmark problems demon-

strate the superiority of our approach. Chapter VI describesthe parallel formulation of the
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algorithm and the software implementation details. This chapter also includes an overview

of the hierarchical multipole-based methods for computingdense matrix-vector products.

We present a set of experiments that show the parallel performance of the software on var-

ious multiprocessor systems - from supercomputers to workstation clusters. Concluding

remarks are presented in Chapter VII.
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CHAPTER II

MATHEMATICAL BACKGROUND

A. Problem Statement

The inductance extraction problem for a set ofns conductors consist of determining an

ns × ns complex impedance matrixZ(ω) that denotes pairwise mutual impedance among

the conductors at a given frequencyω. Thekth column ofZ(ω) is computed by applying

unit current to thekth conductor and zero current to all the remaining conductors. Under

this boundary condition, the potential drop across thelth conductor gives theZkl entry.

Solutions tons such instances with different boundary conditions yields the completeZ(ω).

B. Integral Equation

A number of techniques based on the integral form of Maxwell’s equations have been used

to model VLSI circuits [4, 21]. Maxwell’s equations at steady sinusoidal state are given

by:

∇× E = −jωµH (2.1)

∇× H = jωǫE + J (2.2)

∇ · (ǫE) = ρ (2.3)

∇ · (µH) = 0 (2.4)

whereE is electric field,H is magnetic field,J is current density,ω is frequency of

operation,µ is the magnetic permeability,ǫ is the electric permittivity andj =
√
−1.

Equations (2.1-2.4) describe, respectively, how changingmagnetic field produce electric

fields (Faraday’s law), how currents produce magnetic fields(Ampere’s law), how electric
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charges produce electric fields (Gauss’s law), and the absence of magnetic field. Addition-

ally, by Ohm’s law, the electric field within the conductor isrelated to the current density

by:

E = ρJ. (2.5)

whereρ is the resistivity of the material. Applying quasi-static assumption that the dis-

placement currentjωǫE is negligible, the divergence of (2.2) yields current conservation:

∇ · J = 0. (2.6)

We wish to eliminate the fieldsE andH, and represent the Maxwell’s equations in

terms of the current densityJ and applied voltage only. From (2.4), the magnetic flux can

be represented as:

µH = (∇× A) (2.7)

whereA is the magnetic vector potential. Using it in conjunction with (2.1), we get:

∇× (E + jωA) = 0.

This implies that there exists a scalar potential functionΦ such that:

−∇Φ = E + jωA. (2.8)

To relate the vector potentialA to the current densityJ we use (2.7) and the Coulomb

gauge relation:∇ · A = 0. Under quasi-static assumptions, it converts (2.2) into:

−∇2
A = µJ.

Hence magnetic vector potentialA is represented as:
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A(r) =
µ

4π

∫

V

J(r′)

‖r − r′‖dV ′ (2.9)

wherer andr
′ denote three-dimensional position vectors,V is the volume of the conductor,

anddV ′ is the incremental volume with respect tor
′.

Substituting (2.5) and (2.9), into (2.8), we get the following integral equation that

relates the current densityJ(r) and potentialΦ(r) at steady state:

ρJ(r) +
jωµ

4π

∫

V

J(r′)

‖r − r′‖dV ′ = −∇Φ(r). (2.10)

Using (2.6) and (2.10), the current densityJ and scalar potentialΦcan be computed.

C. Linear System

To obtain a numerical solution of (2.6) and (2.10), each conductor surface is discretized

using a uniform two-dimensional mesh (see, e.g., Fig. 1). Current carrying filaments form

the edges of the mesh. Given the quasi-static assumption, there is no charge accumulation

on the conductor surface. Hence, current density is assumedto be constant within each

filament and the current is assumed to flow only along the length of the filament. The

vector of filament currentsIf is related to the vector of potential drop across filament end

pointsVf by the following equation, which is a discrete form of (2.10):

[R + jωL] If = Vf , (2.11)

whereR is ann × n diagonal matrix of filament resistances for a mesh withn filaments

f1, f2, . . . fn, andL is ann× n dense inductance matrix. Thekth diagonal element ofR is

assigned the valueρ · lk/ak, wherelk andak are the length and cross-sectional area ofkth
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Node

Filament

Current
Source

Fig. 1. Discretization of a conductor surface using two-dimensional mesh.

filament, respectively. The entries of the inductance matrix L are:

Lkl =
µ

4π

1

akal

∫

rk∈Vk

∫

rl∈Vl

uk · ul

‖rk − rl‖
dVkdVl,

whereuk denotes the unit vector along thekth filament, andrk and rl denote position

vectors for points in filamentsk and l, respectively. The integral is calculated over the

volume of the two filaments.

Kirchoff’s current law specifies that the net flow of current is zero at each node of the

mesh. It is represented by the following equation:

B
T
If = Is, (2.12)

whereB
T is a sparsem × n branch index matrix ofm nodes andn filaments andIs is

the known branch current vector of lengthm with non-zero values corresponding to the

source currents. The(k, l) entry of branch index matrix has the value−1 if the lth filament
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originates at nodek, 1 if it terminates atk, and zero otherwise. For anx ×ny array of cells,

the entries ofBT are:

(ny + 1) ny

B
T =

















︷ ︸︸ ︷

T

T

T

. ..

T

︷ ︸︸ ︷

I

−I I

−I
. . .

. . . I

−I

















,

whereI is the identity matrix of size(nx+1)×(nx+1) andT is a matrix of size(nx+1)×nx

given below:

T =















1

−1 1

−1
. . .

. . . 1

−1















.

The nodes are numbered from left to right in bottom to top fashion. The filaments are

numbered in a similar fashion, first the horizontal filamentsand than the vertical ones.

Potential drop across filamentsVf can be expressed in terms of unknown node poten-

tialsVn as follows:

Vf = BVn. (2.13)

Equations (2.11), (2.12), and (2.13) give rise to a linear system of equations that must be

solved to determine the unknown filament currentsIf and node potentialsVn:



11






R + jωL −B

B
T 0











If

Vn




 =






0

Is




 . (2.14)

D. Iterative Solvers

The coefficient matrix of the linear system (2.14) consists of sparse and dense sub-matrices.

The first diagonal block is dense and the off-diagonal blocksare sparse. A straightforward

approach to solve this linear system involves removal ofIf by a block-step of Gaussian

elimination. The resulting system is defined in terms of the unknownsVn only, and can be

expressed as:

B
T [R + jωL]−1

BVn = Is.

Even for a few thousands of unknowns, use of direct methods becomes prohibitively expen-

sive due to memory constraints and the size of the system. Forsuch large linear systems,

iterative methods such as GMRES are often used. When solving this system by an iterative

method, each iteration involves a matrix-vector product with the system matrix. In practice,

the system matrix is never computed explicitly. Instead, the matrix-vector product with a

vectorx is computed as a sequence of three steps:

u = Bx, [R + jωL]v = u, y = B
T v.

The second step may require an inner iterative scheme, resulting in expensive outer itera-

tions. Moreover, the structure of the coefficient matrix makes it very difficult to precondi-

tion the linear system.

The computational cost of iterative methods depends on matrix-vector calculation with

the coefficient matrix. The number of operations needed to compute an accurate matrix-
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vector product with ann × n dense matrix isO(n2). In (2.14),R andB both are sparse

matrices, hence the cost of matrix-vector product is dominated by the cost of computing

product withL. Even for a small problem with few thousands filaments, it is expensive

to compute and storeL. On the other hand, if the matrix entries are functions of the

form 1/r, approximations to these products can be computed efficiently throughmatrix-

freehierarchical based methods. These methods exploit the decaying nature of1/r kernel

and can be used to compute approximations for the matrix-vector products withL. These

methods include FMM and variants of the Barnes-Hut method. When the filaments are

uniformly distributed, FMM requiresO(n) operations while multipole-based variants of the

Barnes-Hut method requireO(n log n) operations to compute these matrix-vector products.

These approaches have a trade-off between accuracy and speed. Higher degree multipoles

can be used to reduce the approximation error. However, the computational cost grows

proportional tod4, whered is the multipole degree.

Use of iterative methods to solve a linear system is meaningful only if the underly-

ing iterative method has a fast rate of convergence. With efficient preconditioning of the

coefficient matrix, one can accelerate the convergence of underlying iterative scheme. Pre-

conditioning may be considered as a process of transforminga linear system into one that

can be solved more efficiently by the iterative process. The use ofmatrix-freehierarchical

methods ensures that the coefficient matrix is never constructed. However, construction

of preconditioners in the absence of the coefficient matrix turns out to be a formidable

challenge.
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CHAPTER III

SOLENOIDAL BASIS METHOD

Solenoidal functions are divergence-free functions that satisfy conservation laws such as

the Kirchoff’s current law in electrical circuits and the mass conservation law in fluid me-

chanics. These functions have been applied to a variety of engineering applications such

as computational fluid dynamics (CFD) etc. [23]. A solenoidalvector fieldG satisfies:

∇ · G = 0. If this condition is satisfied, there exists a vectorD, such that:G = ∇ × D.

Equation (2.6) states that the current is a divergence-freevector function. Hence, one can

represent current as curl of a vector function. For inductance extraction problem with uni-

form mesh discretization, it is easy to construct a solenoidal basis that represent the curl

operator in the discrete sense.

The second block of (2.14) represents Kirchoff’s current law. SinceBT enforces the

current conservation, the null space ofB
T represents a basis for current that obeys Kir-

choff’s law. Any full-rank matrixP that satisfiesBT
P= 0, can be used to compute the

current vector via the matrix-vector product as follows:

I = Px.

There are several ways to compute a basis for the null space ofa matrix. A purely alge-

braic approach such as QR factorization ofB
T cannot be used to computeP due to the

prohibitive cost of computation and storage of a large densematrix. However, to construct

a sparse basis, observe that a current flow of fixed magnitude along any closed path in the

mesh satisfies the constraints imposed byB
T . Figure 2 shows several instances of discrete

solenoidal current flows that can be used to construct the solenoidal basis. Each flow con-

sists of a constant amount of current flowing anticlockwise through the four filaments of a
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Fig. 2. Examples of solenoidal current flows in a section of a uniform two-dimensional

mesh.

cell in the mesh. Since the net inflow of these circular currents into any node is zero, the

flows satisfy Kirchoff’s current law. The solenoid basis method for (2.14) uses these mesh

currents to represent the unknown currentIf . A basis consisting of such functions can be

viewed as alocal solenoidal basis.

A local solenoidal basis for a two-dimensional mesh is a complete basis with linearly

independent components. The linear independence of the columns ofP is established by

observing that the matrixPT
P is the standard two-dimensional Laplace operator matrix.

In a uniform two-dimensional mesh of sizenx × ny, the number of nodes, edges, and cells

are given bym = nx.ny, n = 2m − nx − ny, ands = n − m + 1, respectively. Since the

number of cells equals the dimension of the null space of the discrete divergence matrix

B
T , it follows that the local solenoidal basis is complete. It may be noted thatB has a

rank-deficiency of 1 to allow the potential to vary by a constant. The rank deficiency can

be removed by specifying the value of the potential at a single node, and the solenoidal

basis can be modified accordingly.
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The solenoidal basis matrixP is ann× s matrix that is derived from the current flows

in the mesh cells. The columns ofP correspond to the cells in the mesh. Each column ofP

consists of four non-zero entries that denote the current flow in the cell:1 indicates a unit

current flow along the edge, and−1 indicates a unit current flow opposite to the direction of

edge. Construction of the solenoidal basis matrix in this manner ensures that the following

condition is satisfied:

B
T
P = 0. (3.1)

For annx × ny array of cells, the entries ofPT are:

(ny + 1) ny

P
T =













︷ ︸︸ ︷

I −I

I −I

. .. . ..

I −I

︷ ︸︸ ︷

W

W

. . .

W













,

whereI is the identity matrix of sizenx ×nx andW is a matrix of sizenx × (nx +1) given

below:

W =












1 −1

1 −1

. .. . ..

1 −1












.

The meshes are numbered from left to right in bottom to top fashion. The filaments are

numbered in a similar fashion, first the horizontal filamentsand than the vertical ones.

The linear system (2.14) must be transformed before one can use the solenoidal basis

method. The first step is to determine a particular current vector Ip that satisfies the con-
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Filament

Node
Current
Source

Fig. 3. Current flow along an arbitrary path in the mesh can be used to satisfy the constraints

imposed by the external current source. The bold line indicates a path for current that

satisfies boundary conditions.

straints imposed by the external current source. The vectorIp represents the current flow

along an arbitrary path between the nodes where the externalsource is connected. The

current vectorIp can easily be found by a number of techniques. For instance, when the

known branch current has unit magnitude, one can assign a unit current to filaments on

an arbitrary path from the node with input source current to the node with output source

current (see Fig. 3). This approach can be extended to more general boundary conditions

in a straightforward manner. By splitting the currentIf into a particular currentIp and an

unknown currentI, the linear system (2.14) can be transformed to an equivalent system

with a different right hand side:






R + jωL −B

B
T 0











I

Vn




 =






F

0




 , (3.2)

where
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I = If − Ip, F = − [R + jωL] Ip.

The difference between (2.14) and (3.2) is that the first system satisfies current boundary

conditions whereas the second system satisfies voltage boundary conditions.

The next step is to represent the unknown currentI in the solenoidal basis:

I = Px,

wherex is an unknown vector of sizes. From (3.1), it follows thatI satisfies the divergence-

free constraints imposed by the second block of equations in(3.2). By restricting the un-

known current to the solenoidal subspace, the linear system(3.2) can be transformed to the

following system:

[R + jωL]Px − BVn = F.

The vector of unknown node potentialsVn can be eliminated by multiplying the system

with P
T from the left:

P
T [R + jωL]Px = P

T
F. (3.3)

The above system is areducedlinear system of orders that must be solved to determine

x. Since the coefficient matrix is never computed explicitly,an iterative method such as

GMRES must be used to solve the system. Oncex has been computed, the filament current

vectorIf and the vector of unknown potential differences across the filamentsVf can be

computed as follows:

If = Ip + Px, Vf = [R + jωL] If .
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Table I. The sizes of the original and reduced systems arising in the inductance extraction

of a ground plane.

Mesh Size Nodes Filaments Unknowns Solenoidal

(m) (n) (n + m) Functions (s)

32 × 32 1089 2112 3201 1024

64 × 64 4225 8320 12545 4096

128 × 128 16641 33024 49665 16384

256 × 256 66049 131584 197633 65536

When a unit current is applied by the external source, the impedance between any pair

of nodes is equal to the potential difference between the nodes. This potential difference

can be calculated by adding the potential differences across the filaments on an arbitrary

path connecting the nodes.

A. Benefits of Solenoidal Basis

The transformation of the linear system (3.2) to the reducedsystem (3.3) has several ad-

vantages. The number of unknowns reduces considerably whenever two-dimensional dis-

cretization is employed. Table I shows the number of unknowns in a ground plane problem

that involves computing the self impedance of a square conductor. The use of a local

solenoidal basis results in a sparse matrixP that is amenable to efficient matrix-vector

product computations. Furthermore local nature ofP ensures that operations such as com-

putation and storage ofP and matrix-vector products withP can be implemented efficiently

in parallel. Matrix-free implementations are also possible since explicit construction ofP

is not necessary. The local solenoidal basis has another property that is useful in construct-

ing preconditioners for the reduced system in (3.3). The application ofP andP
T to vectors

is analogous to computing the discrete curl of a function.
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CHAPTER IV

PRECONDITIONING SCHEME

Even for the reduced system (3.3), the use of direct methods to compute the unknown cell

current becomes prohibitively expensive for modest sized problems. Direct methods suffer

from high computational costs and large memory requirements. To overcome these hurdles,

iterative methods are used. Use of iterative methods to solve a linear system is meaningful

only if the underlying iterative method has a fast rate of convergence.

The rate of convergence of iterative methods is related to the spectral properties of

the system matrix. For instance, a large separation betweenthe smallest and largest eigen-

values of a matrix often results in a large number of iterations required for convergence.

Preconditioning is a process of transforming a linear system into one that has more favor-

able spectral properties. The linear systemAx = b may be preconditioned from the right

side by a matrixM as shown below:

AMy = b, x = My. (4.1)

The transformed system is solved by an iterative method. Thecoefficient matrixAM is

never computed explicitly. Instead, each iteration now requires an additional precondition-

ing step that involves computing a matrix-vector product withM.

A preconditioning approach is advantageous only if the overall time to compute the

solution is reduced. For this to happen, the preconditionermust be easy to compute, the

preconditioning step must be relatively inexpensive, and the matrixM should be an effec-

tive preconditioner that reduces the number of iterations considerably. Preconditioning can

be done from the left side by pre-multiplication, from the right side by post-multiplication,

or from both sides [22]. A good preconditioner can be characterized in a variety of ways.
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In general, clustering of eigenvalues of the preconditioned system can lead to rapid con-

vergence. In many cases, a preconditioned system with a small condition number can be

solved in a few iterations. Condition number of a matrix can beestimated by the ratio of

the largest singular value to the smallest. A preconditioner is said to beoptimalwhen the

condition number of the preconditioned system is bounded bya constant. In such a case,

iterative methods may converge to the solution in fixed number of iterations regardless of

the problem discretization.

It is common to use the symbolM−1 instead ofM in (4.1) to indicate that the pre-

conditioner is an approximation of the matrixA. In such cases, the preconditioning step

requires the solution of a linear system with the preconditioner as the coefficient matrix.

Such approximations are obtained implicitly by computing incomplete factorizations ofA.

Although the coefficient matrix in the reduced system (3.3) is not available, one can com-

pute a “sparse” approximation by ignoring interactions between distant filament pairs. An

incomplete factorization of this sparse matrix yieldsL andU factors that can be used to

define the preconditioner for the reduced system. FastHenry[12] uses a similar approach in

which the matrix is sparsified by several different strategies in order to obtain inexpensive

but effective preconditioners. These schemes are describes in more detail in Chapter V.

Unfortunately, the sparsification schemes in the package tend to be very slow and have

huge memory requirements. This has restricted the use of thesoftware to solving small

benchmark problems only.

A. Spectral Analysis of Reduced System

The ability to precondition the reduced system effectivelyis critical to the success of the

solenoidal basis method. The task of designing effective preconditioners is made especially

challenging due to the unavailability ofL. An effective preconditioning approach can be
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Table II. Estimates of the extremal eigenvalues of matricesthat form the reduced system for

a ground plane problem.

Matrix λmin λmax

R c c

L O(h) O(1)

P
T
RP O(h2) O(1)

P
T
LP O(h2) O(h)

Re(PT [R + jωL]P) O(h2) O(1)

Im(PT [R + jωL]P) O(ωh2) O(ωh)

developed by analyzing the reduced system (3.3) carefully.The use of local solenoidal

flows defined on a uniform two-dimensional mesh for a ground plane (see Fig. 1) provides a

basis for this analysis. Consider the matrices that form the reduced system:R is a diagonal

matrix with positive entries,L is a dense symmetric positive definite (SPD) matrix, andP

is a sparse matrix. The matricesP andP
T implement discrete curl operators, andP

T
P is

a two-dimensional discrete Laplace operator. Table II provides estimates of the largest and

smallest eigenvalues of these matrices for a discretization with filament lengthh. To be

consistent with physical laws, conductor surfaces must be discretized using filaments with

a fixed length-to-width ratio. As a result, the eigenvalues of R are always constant.

At higher frequencies, the reduced system is dominated by the imaginary part whose

condition number is proportional toh−1. The real part dominates at lower frequencies,

and the condition number grows proportional toh−2. Figure 4 shows the spectrum of the

reduced system (3.3) obtained from the ground plane problemwith ω = 2π×10GHz. A

uniform two-dimensional mesh is used to discretize the ground plane of size 1cm×1cm.

For annx × nx size mesh, the filament length ish = 1/nx cm. The eigenvalues of the

system lie on a straight line in the complex plane. The condition number of the reduced
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Fig. 4. The spectrum of the reduced system that arises from a uniform discretization of a

square ground plane. The condition number of the system is denoted byκ (ω = 2π×
10GHz).

system doubles every time the mesh is refined.

The entries of the matrixL are derived from the Green’s function for the three-

dimensional Laplace operator. WhilePT
P is a two-dimensional Laplace operator with

a condition number proportional toh−2, the matrixPT
LP tends to have a condition num-

ber that is proportional toh−1 only. As shown in Fig. 5, the matrixLP is a well-conditioned

matrix with a condition number that is nearly independent ofh, indicating thatL andP are

approximate “inverse” of each other. To exploit this fact, we expressLP as shown below:
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Fig. 5. Singular values ofLP (black) andPL̃ (color) for the square ground plane prob-

lem. The condition numbers ofLP andPL̃ are denoted byκ1 andκ2, respectively

(ω = 2π× 10GHz).

LP = PL̃ + P̂L̂,

whereL̃ represents the mutual inductance among hypothetical filaments placed at the center

of each mesh cell and oriented perpendicular to the mesh plane, L̂ represents the inductive

effect of these filaments on the boundary of the conductors, and P̂ updates the boundary

filaments. This representation can be viewed as a set of filaments placed at the center of

the mesh cells with an additional set of ghost-cells along the boundary. The filaments at

the mid-points of the ghost cells carry no current. Since theeffect ofP̂L̂ is limited to the
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boundary, one can expectPL̃ to be a good approximation ofLP. Figure 5 shows that a

large number of singular values of these two matrices are identical.

The matrixL̃ is defined as follows:

L̃kl =
µ

4π

1

akal

∫

rk∈Vk

∫

rl∈Vl

1

‖rk − rl‖2

dVkdVl.

The matrix element̃Lkl equals the mutual inductance between a pair of parallel filaments

placed at the centers of cellsk andl. At high frequencies, when the imaginary part of the

reduced system dominates,L̃ can be used as a preconditioner for the reduced system. Since

P
T
LPL̃ ≈ P

T
L

T
LP,

the preconditioner is expected to yield a well-conditionedsystem.

SinceL̃ represents an approximate inverse ofP, using the characteristics of the re-

duced system, we propose the following efficient preconditioning scheme for inductance

extraction:

M = L̃

[

R̃ + jωL̃

]
−1

L̃, (4.2)

whereR̃ is a diagonal matrix of resistance to mesh currents. At each iteration, the precon-

ditioning step consists of the matrix-vector productz = Mr that can be computed in the

following three steps:

u = L̃r, v =
[

R̃ + jωL̃

]
−1

u, z = L̃v.

The matrix-vector products in the first and third steps use approximate hierarchical tech-

niques identical to those used forL. The second step is implemented via an inner iterative

solver that is used to solve the system
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[

R̃ + jωL̃

]

v = u

to obtainv. At low and high frequencies, one can use the following approximations to the

preconditioner without any significant change in the rate ofconvergence:

Mlow = L̃R̃
−1

L̃, Mhigh = −jω−1
L̃

In each case, the preconditioning step is relatively cheap since it does not involve an inner

solve. For intermediate frequencies, however, one should use the preconditioner (4.2).

Figure 6 shows that the eigenvalues of the preconditioned reduced system are clus-

tered, almost independent of the filament widthh. The system was preconditioned using

Mhigh. The preconditioned system can be solved in few iterations only, and the precon-

ditioner appears to be effective for the mid-frequency range as well. However, for low

frequency problems, one should use a two-dimensional Laplace matrix to precondition the

real part of the reduced system. It should be noted that accurate inductance extraction may

not be needed at low frequencies.

B. Effectiveness of the Preconditioning Approach

There are several advantages of our preconditioning approach. The preconditioning step

requires a matrix-vector product that is relatively inexpensive compared to incomplete fac-

torization based preconditioners. The latter involve incomplete factorizations of a partially

computed coefficient matrix and triangular solves, which can be expensive, especially on

parallel platforms. In addition, experimental evidence suggests that unlike incomplete fac-

torization, our preconditioner is robust and very effective over a wide range of frequencies.

To illustrate the effectiveness of the preconditioning scheme, we consider three benchmark

problems.
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1. Ground Plane

The first problem involves computing the self-inductance ofa square ground plane of size

1cm× 1cm (see Fig. 1). The ground plane is used to provide a uniformground poten-

tial to all the components of a VLSI circuit. The plane is discretized by a uniform two-

dimensional mesh with mesh widthh varying from2−5cm to 2−9cm. The width of each

filament is one-third of its length, and the thickness is 1µm. A toleranceτ = 10−6 was

specified on the relative residual norm of GMRES. Table III shows the effectiveness of the

preconditioner for the ground plane problem. It can be seen that the number of iterations



27

Table III. Iterations for convergence of preconditioned GMRES method to compute the self

impedance of the ground plane conductor problem. Unpreconditioned GMRES

iterations are shown in parenthesis (τ = 10−6).

Mesh Filament Frequency (f)

Size Length(cm) 1 MHz 10 MHz 100 MHz 1GHz 10 GHz 100 GHz

32 × 32 1/32 26 (75) 24 (68) 11 (36) 8 (30) 8 (30) 8 (30)

64 × 64 1/64 36 (143) 33 (129) 15 (63) 9 (43) 9 (43) 9 (43)

128 × 128 1/128 49 (–) 44 (–) 21 (118) 10 (62) 10 (60) 10 (60)

256 × 256 1/256 65 (–) 58 (–) 29 (–) 12 (94) 11 (83) 11 (83)

512 × 512 1/512 85 (–) 76 (–) 38 (–) 16 (159) 13 (114) 13 (113)

required by the right-preconditioned GMRES algorithm to solve the linear system (3.3)

is almost constant in the high frequency range (1 GHz - 100 GHz) when either the mesh

width h or the angular frequencyω = 2πf is changed. The entries marked “–” indicate the

inability of iterative solver to reduce the relative residual norm below the threshold set by

τ within 200 iterations.

Figures 7 and 8 compare the preconditioning scheme for the ground plane problem

with an unpreconditioned GMRES solve. We plot the results fora maximum of 200 it-

erations and a maximum tolerance of10−8. It can be seen that over a range of problem

discretization, the preconditioning scheme significantlyreduces the number of iterations re-

quired for convergence. Figure 7 shows that for the high frequency simulations, the growth

in iterations across problem discretization is very slow when tolerance is increased, indi-

cating an effective preconditioning scheme. As shown in Fig. 8, the rate of convergence

of preconditioned GMRES usingMhigh is significantly better than the unpreconditioned

approach even for the mid-frequency range.
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Fig. 9. Cross over problem with a view of a discretized conductor.

2. Cross Over

The second benchmark problem is thecross overproblem shown in Fig. 9. In VLSI cir-

cuits, this is a typical layout configuration with interconnect segments crossing each other

on different layers. The problem consists of determining the impedance matrix for these

segments. The segments are 2cm long and 2mm wide, and are separated by 300µm in

the horizontal direction and by 3mm in vertical direction. The discretization is similar to

that of the ground plane problem. These simulations were conducted for a frequency of

10GHz. Tables IV reports the range of iterations required bythe right-preconditioned GM-

RES method to compute the complete impedance matrix,Z(ω). For the preconditioned

GMRES method, the growth in number of iterations is minimal asthe number of conduc-

tors in the configuration is increased. Furthermore, the growth in iterations is slow as the

mesh is refined. These results illustrate the effectivenessof the preconditioning scheme for

typical extraction problems.
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Table IV. Iterations for convergence of preconditioned GMRES method for the cross over

problem with multiple right-hand sides. UnpreconditionedGMRES iterations are

shown in parenthesis (τ = 10−6).

Mesh Size Filament Conductor Layout

Length (cm) 1+1 2+2 4+4

16 × 160 1/80 11 (34) 13 (37) 15 (38-39)

32 × 320 1/160 12 (47) 14 (51) 17 (53-54)

64 × 640 1/320 13 (65) 15-16 (70) 18-19 (73-74)

128 × 1280 1/640 15 (89-90) 17-18 (95-96) 20-21 (99-102)

3. Pin Connect

The third benchmark problem is thepin connectproblem shown in Fig. 10. This kind of

layout provides connectivity to a chip’s pin to various components of the VLSI circuit. The

problem consists of determining the complete impedance matrix representing the interac-

tion among the pin structures. This benchmark illustrates the preconditioner’s performance

for a 3-dimensional problem. We use a two-dimensional discretization of conductor sur-

faces, similar to that of the ground plane problem. These simulations were conducted

for a frequency of 10GHz. Table V reports the range of iterations required by the right-

preconditioned GMRES method to compute the complete impedance matrixZ(ω), with

multiple right-hand sides. For a very coarse mesh discretization, the rate of convergence

of the preconditioned GMRES method is weakly dependent on thediscretization mesh

width h. For thin conductor segments, one dimensional discretization could suffice for the

computation of the impedance value.
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Fig. 10. Pin connect problem with 6 pin.

Table V. Iterations for convergence of preconditioned GMRESmethod for the pin connect

problem with multiple right-hand sides. UnpreconditionedGMRES iterations are

shown in parenthesis (τ = 10−6).

Conductor Layout

Filament 1 Pin 3 Pin 6 Pin

Length Solenoidal Solenoidal Solenoidal

(cm) Flows Iter. Flows Iter. Flows Iter.

1/20 92 8(14) 270 11(15) 540 12(15)

1/40 368 10(19) 1080 13(20-21) 2160 15(21)

1/80 1472 12(28) 4320 15-16(29-30) 8640 17-18(30-31)

1/160 5888 14(40) 17280 18-19(42-43) 34560 20-21(43)



33

C. The Inductance Extraction Algorithm

An outline of the preconditioned solenoidal basis method for computing the impedance

matrixZ(ω) is given below.

Algorithm 1 Preconditioned Solenoidal Basis Method for Inductance Extraction.

1. Discretize the surfaces of the conductors with two-dimensional uniform meshes.

2. Compute the solenoidal basis matrixP for each conductor.

3. For conductorl = 1, . . . , ns:

(a) Compute the particular solutionI(l)
p for a unit current flow through conductorl

and the corresponding induced potential difference vectorF
(l).

(b) Solve the preconditioned system

P
T [R + jωL]PL̃x = P

T
F

(l), x(l) = L̃x

to determinex(l), and compute filament current and filament potential differ-

ence vectors:

I
(l)
f = Px(l) + I

(l)
p , V

(l)
f = [R + jωL] I

(l)
f .

Use right-preconditioned GMRES to solve the system. Use approximate hierar-

chical methods such as FMM or Barnes-Hut to compute matrix-vector products

with L andL̃ at each iteration.

(c) For conductork = 1, . . . , ns, determineZ(ω)k,l by adding the potential differ-

ence across all the filaments along a path between the two endsof conductor

k.
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An efficient implementation of this algorithm is based on a number of optimizations.

The matrixP is never computed explicitly. A matrix-vector product withP is used to

compute filament currents from mesh currents. Since this computation is defined locally,

it can be performed by accumulating the contribution of eachmesh current to the four

filaments that comprise the mesh or loop. Knowledge of the structure of the discretization

mesh is sufficient to develop an implementation in whichP is not computed and stored

explicitly. Similarly, matrix-vector products withPT are used to compute mesh currents

from filament currents. These products can also be computed without explicitly computing

P
T . This approach leads to significant saving in storage without increase in computation.

The cost of the orthogonalization step in GMRES is proportional tok2, wherek is the

number of iterations. Hence, the parallel performance of GMRES degrades ask increases

due to increased communication overhead of orthogonalization step. By using an effective

preconditioner that requires very few iterations, we reduce the computational cost as well

as the storage requirement of GMRES. Furthermore, the parallel implementation does not

suffer from the effects of the orthogonalization step. In the next chapter we demonstrate

the numerical and computational superiority of the preconditioner over existing techniques

for several benchmark problems.
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CHAPTER V

COMPARISON WITH EXISTING WORK

In this chapter, we compare our algorithm with a public domain inductance extraction

package called FastHenry [12]. Due to its high accuracy, FastHenry is often used as a

reference for all other extraction algorithms. FastHenry uses mesh currents similar to the

local solenoidal flows to generate a reduced system. The reduced system is solved by

the preconditioned GMRES method to compute accurate estimates of a circuit’s parasitic

inductance. Matrix-vector products with the dense matrixL are computed via FMM. The

similarities between FastHenry and solenoidal basis method make a compelling case to

compare the performance of the two approaches.

The mesh currents in FastHenry are slightly different from the local solenoidal flows

in our approach. FastHenry represents the discretized problem as a graph with filaments

and external sources as branches in the graph. A mesh currentis defined as a current flow

along a loop of branches in the graph that does not enclose anyother branch. This graph

based approach for mesh currents does not exploit the fact that the circular solenoidal flows

are discrete curl operators to construct preconditioners.

The main difference between the two algorithms lies in the preconditioning step. Fas-

tHenry uses preconditioners that are derived from incomplete factorizations of sparsified

forms of the reduced system. These sparse approximations are constructed in a variety of

ways. One approach is to use the inverse of blocks of the reduced system. This approach

relies on the fact that physically close meshes are tightly coupled. A sparse approximation

of the reduced system is obtained by retaining interactionsamong closely coupled meshes.

The preconditioner is then formed by using rows of locally inverted coupling matrix. This

approach tends to work well when only a few meshes are close by. Another approach is

to use the incomplete LU factors of the reduced system. The preconditioning step is then
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implemented as a sequence of forward and backward substitutions.

Other techniques to construct more effective preconditioners for FastHenry include

approximation of the dense inductance matrixL with a sparse matrixLsp followed by di-

rect factoring of the reduced system. The software allows preconditioners such as DIAG

whereLsp = diag(L). Other preconditioners such as CUBE and SHELL are also proposed,

which explicitly restrict the off-diagonal non-zeros in each column ofL to those resulting

from coupling between specific filament pairs. For the SHELL preconditioner, the problem

domain is divided into disjoint regions. The sparse approximationLsp is constructed by

placing diagonal blocks of filament interactions in each such region. For the CUBE pre-

conditioner, the 3-dimensional space is divided into cubesandLsp is composed of blocks

of filament interactions in each such cube (see [11] for more details).

Although FastHenry is used as a benchmark for accuracy comparison, it has found lim-

ited use in the VLSI-CAD community due to the long simulation time and large memory

requirements. Since FastHenry is available only for uniprocessor workstations, the size of

problems that can be solved is severely limited. The solenoidal basis method, uses FMM

variant to compute products with the system matrixL and the preconditioner̃L directly

without explicitly computing these matrices. The resulting implementation is a matrix-free

code in which neither the system matrix nor the preconditioner matrix is ever computed.

This reduces the storage requirement considerably, thereby allowing larger problems to be

solved. Chapter VI provides additional details and outlinesan efficient parallel implemen-

tation of the solenoidal basis approach.

The performance of the solenoidal basis method was comparedto FastHenry on four

representative problems: the 2D ground plane problem, the cross over problem in 3D,

the pin connect problem and the planar spiral inductor problem. These experiments were

conducted on a 1.5 GHz Pentium Workstation with 1 GB of memoryrunning Redhat Linux

operating system. Multipoles of degree two were used in all the FMM computations.
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Table VI. Comparison of solenoidal basis method and FastHenry for the ground plane prob-

lem at 10GHz frequency (Memory in MB and time in seconds).

Mesh FASTHENRY-DIAG FASTHENRY-CUBE Solenoidal Method

Size Iter. Time Mem. Iter. Time Mem. Iter. Time Mem.

32 × 32 28 2.8 12 22 2.8 13 5 1.3 3

64 × 64 37 18.5 51 32 20.6 55 5 6.1 6

128 × 128 54 139 219 45 171 233 6 30.2 20

256 × 256 76 1132 965 63 1596 1036 7 142 78

512 × 512 – – – – – – 7 575 294

A. Ground Plane

Table VI shows the number of iterations needed by preconditioned GMRES to compute

the self impedance of a ground plane at 10 GHz (see Fig. 1). A toleranceτ = 10−3 was

specified as the stopping criterion for GMRES for both methods. FastHenry was allowed

to use default values for all the parameters. In these experiments, the inductance computed

by the solenoidal basis method was within 2% of that obtainedby FastHenry.

FastHenry requires significant amount of memory to construct the preconditioner ma-

trix and to compute its LU factors. The entries marked “–” indicate the inability of Fas-

tHenry to solve the problem within the available system memory. For an unpreconditioned

GMRES solve, FastHenry takes 79 iterations for the ground plane problem with a256×256

conductor refinement. The number of iterations required forconvergence of GMRES using

DIAG preconditioner was similar to that of the unpreconditioned system. This indicates

that the DIAG preconditioning scheme is ineffective for theground plane problem. Fur-

thermore, a growth in the number of iterations with mesh sizeindicates a sub-optimal

preconditioning scheme that contributes an additional factor towards the increase in cost of
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Table VII. Comparison of the preconditioned solenoidal basis method with FastHenry

(Memory in MB and time in seconds).

Conductor FASTHENRY-DIAG FASTHENRY-CUBE Solenoidal Method

Layout Iter. Time Mem. Iter. Time Mem. Iter. Time Mem.

Mesh size: 32× 320

1 64 73 138 40 65 143 5 16 13

1 + 1 67-73 277 270 43 216 280 6 68 25

2 + 2 74-80 1225 557 44-49 864 574 7-8 344 48

Mesh size: 64× 640

1 89 515 648 58 561 679 6 75 53

1 + 1 – – – – – – 7 326 102

2 + 2 – – – – – – 8-9 1566 201

solving these systems as the mesh size is increased. Effortsto reduce the storage require-

ments through greater sparsification tend to decrease the effectiveness of the preconditioner.

In contrast, the solenoidal basis method is able to solve thesystems in almost fixed number

of iterations. One can also restrict memory requirements byfixing the number of Krylov

subspace basis vectors in GMRES and using a restarted-GMRES. But, this approach also

increases the iterations and solution time.

B. Cross Over

Table VII shows the number of iterations needed by preconditioned GMRES at a frequency

of 10GHz for the cross over problem (see Fig. 9). Again, a stopping toleranceτ = 10−3

was used for GMRES for both methods. FastHenry was allowed to use default values for

all the parameters. The column marked “Iter.” gives the range of iterations needed to

solve multiple instances of the linear system. Though FastHenry was able to amortize the
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Table VIII. Performance of solenoidal basis method and FastHenry for the pin connect prob-

lem at 10GHz frequency (Memory in MB and time in seconds).

No of No of FASTHENRY-DIAG FASTHENRY-CUBE Solenoidal Basis

Pins Filaments Iter. Time Mem. Iter. Time Mem. Iter. Time Mem.

3 8.5K 64-73 103 58 46-52 79 56 8-9 32 7

6 17K 72-81 492 104 49-55 330 100 9-10 159 12

9 26K 76-94 1169 218 50-54 698 209 10-11 411 18

cost of preconditioner construction over calculating multiple columns ofZ(ω) matrix, the

solenoidal basis method still outperforms it. Results show that the reduction in precondi-

tioner construction time and memory when using the DIAG preconditioner are offset by the

increased cost of the orthogonalization step in GMRES since alarger number of iterations

are required. Additional memory is also required to store the Krylov subspace basis vectors

in GMRES. These results also demonstrate the comparative advantage of the solenoidal ba-

sis method. The accuracy is similar to the ground plane problem with the inductance value

within 3% of that obtained by FastHenry.

C. Pin Connect

Table VIII shows the performance of the solenoidal basis method and FastHenry for the

pin connect problem (see Fig. 10). The stopping criterion was the same as the ground

plane problem. FastHenry was allowed to use the default CUBE preconditioner. For thin

segments, FastHenry primarily discretizes the conductor surface using long filaments along

the width only. The number of filaments and meshes obtained bysuch an approach would

be similar. On the other hand, solenoidal basis method uses two-dimensional approach that

yields nearly twice the number of filaments compared to the number of meshes. We report

the performance of the two approaches with a conductor surface discretization that yields
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similar number of filaments. Results in Table VIII show that with increase in number of

filaments, the growth in the number of iterations for the solenoidal basis method is minimal.

Although the cost of preconditioner construction for FastHenry is significantly less for this

problem, the increase in iterations results in a higher solution time. One can expect further

increase in time and memory requirements for FastHenry as the problem size is increased.

In these experiments, the inductance computed by the solenoidal basis method was

within 4% of that obtained by FastHenry. The difference in the inductance value between

the two appraoches is also due to the difference in modellingof the angular joints within

each pin. FastHenry uses overlapping regions at the turns, whereas solenoidal method

uses non-overlapping regions. One should note that for FastHenry the one dimensional

discretization scheme requires less time and memory as compared to a two dimensional

discretization, irrespective of the preconditioning approach.

D. Spiral Inductor

Another benchmark problem that we use to compare the performance of solenoidal method

with FastHenry is thespiral-inductorproblem shown in Fig. 11. The spiral inductor prob-

lem is a challenging example consisting of a coil shaped conductor which is used in electro-

magnetic circuitry such as in magnetic access cards. The problem consists of determining

the self-impedance of the structure. The segments are 1mm wide, and are separated by

approximately 1mm. The discretization is similar to that ofthe ground plane problem. The

simulations were conducted for a frequency of 10GHz.

Table IX compares the performance of the solenoidal basis method with FastHenry.

The growth in the number of iterations for the solenoidal basis method is minimal due

to the preconditioning scheme. For FastHenry, the preconditioner construction cost for

spiral-inductor is similar to that of ground plane problem.The growth in time and memory
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Fig. 11. Spiral inductor.

requirement with increase in problem size further ascertain this. To do a fair comparison

of the the two approaches, we force FastHenry to generate a discretization with similar

number of filaments as used by the solenoidal method. The 3 rows of the Table IX cor-

responds to a discretization of 7, 9 and 13 meshes along the width of each spiral turn for

the solenoidal method and 9, 7 and 15 meshes for FastHenry. Inthese experiments, the

inductance computed by the solenoidal basis method was within 6% of that obtained by

FastHenry. The additional difference in the inductance value between two approaches is

Table IX. Comparison of solenoidal basis method and FastHenry for the spiral inductor

problem at 10GHz frequency (Memory in MB and time in seconds).

No of FASTHENRY-DIAG FASTHENRY-CUBE Solenoidal Method

Filaments Iter. Time Mem. Iter. Time Mem. Iter. Time Mem.

24K 55 76 132 37 94 131 10 35 17

40K 66 151 201 42 191 205 10 59 26

80K 81 312 464 53 648 457 11 125 49
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due to the modelling difference of the turns of the spiral, and does not necessarily indicate

lower accuracy.

The modest performance of the preconditioners in FastHenrycome with a significant

cost of computing the preconditioners as well as storing them. While these storage re-

quirements can be reduced by computing incomplete factorizations, often this results in a

weak preconditioner. The slower convergence rates associated with ineffective precondi-

tioning may lead to overall higher computational cost. The comparative advantage of the

solenoidal method is expected to grow with larger problems.

The performance of the solenoidal method can be further boosted by using additional

memory. It is possible to store direct interactions during the initial matrix-vector product

with L andL̃, and to reuse them later. This approach is beneficial when there are multiple

right hand sides.
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CHAPTER VI

PARALLEL FORMULATION*

The most computationally intensive steps in the algorithm are the matrix-vector products

with the reduced system matrixPT [R + jωL]P and the preconditioner matrixM. The

cost of multiplying a vector with the dense matrixL is significantly greater than the mul-

tiplication with P or P
T . It is worthwhile to use multipole-based hierarchical methods to

compute matrix-vector products withL. Furthermore, since the structure of the precon-

ditioner L̃ is similar toL, these fast methods should be used to compute matrix-vector

products in the preconditioning step as well. A number of such techniques have been de-

veloped including the Appel’s algorithm [1], Barnes-Hut [3]method and the well known

Fast Multipole Method (FMM) [7]. Other vector operations inGMRES can be parallelized

in a straight-forward manner. The implementations based onthe hierarchical methods are

matrix-freeapproaches in which neither the system matrix nor the preconditioner matrix is

ever computed. This reduces the storage requirement considerably, thereby allowing larger

problems to be solved.

A. Hierarchical Dense Matrix-Vector Products

The cost of computing an accurate matrix-vector products with a densen×n matrix require

O(n2) operations. If the entries of the dense matrix have a1/r decaying kernel, approxi-

mations to these products can be computed efficiently through hierarchical multipole-based

methods. The nature of the elements inL andL̃ allows use of fast hierarchical algorithms in

which reduction in computational complexity is obtained atthe expense of accuracy. In par-

*Part of this chapter is reprinted from Parallel Computing, Vol. 29, by H. Mahawar and
V. Sarin, “Parallel Iterative Methods for Dense Linear Systems in Inductance Extraction”,
1219-1235., Copyright (2003), with permission from Elsevier.
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ticular, one can exploit the rapid decay of the kernel with distance to compute approximate

matrix-vector products inO(n log n) or O(n) operations. For the inductance extraction

problem, these algorithms use a truncated series to approximate the effect of a cluster of fil-

ament currents on other clusters that are well-separated. The Barnes-Hut method relies only

on filament-cluster interactions to achieve anO(n log n) computational bound whereas the

FMM uses both filament-cluster and cluster-cluster interactions to achieve anO(n) bound

for uniform filament distributions. The accuracy of FMM can be improved by increasing

the multipole degreed, which determines the number of terms used in the approximation.

A hierarchical multipole method (HMM) [18] has also been developed. The HMM im-

plementation can be treated as either augmented Barnes-Hut or modified FMM, and has

the implementation advantages of Barnes-Hut and accuracy similar to FMM. Similar to

Barnes-Hut, HMM relies only on filament-cluster interactions to achieve anO(n log n)

computational bound. In this work, we use a variant of FMM algorithm to compute ap-

proximate matrix-vector products with bothL andL̃. These matrices compute potential at

each filament due to current flow in all the filaments. Filamentmid-points form the set of

particles for FMM. It is sufficient to represent the filamentsby their mid-points to compute

the inductive effect between a pair of filaments. Self-inductance of a filament is computed

by closed form formula [9].

These hierarchical algorithms work in two phases: the oct-tree construction phase and

the potential evaluation phase. An oct-tree is used to compute a hierarchical spatial decom-

position of the mid-points of the filaments. The root of the tree represents a cubical domain

containing all the points. Eight children nodes are createdby partitioning the domain into

eight equal non-overlapping subdomains. The points are also partitioned among the subdo-

mains. The process is repeated on each subdomain recursively until every subdomain has

at mosts filaments, wheres is a parameter chosen to maximize computational efficiency.

This recursive strategy yields an oct-tree with a hierarchical spatial ordering of the points.
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A subdomain is represented by a subtree whose leaf nodes contain the filaments in the sub-

domain. Since the oct-tree stores non-empty cubes only, this scheme yields non-uniform

oct-trees for unstructured point distributions. During the potential evaluation phase, each

internal node in the tree computes and stores the effect of all the particles contained in

its sub-tree. The effect at a node is computed from the effectof its children through an

up-traversal of the nodes from the leaves to the root. To compute the effect of remaining

particles that belong to other subtrees, each internal nodeuses the information stored at the

roots of other subtrees that are well-separated. Well-separateness is established by using

a distance metric to determine if the nodes are sufficiently “far-off” such that the error in

accuracy is below a threshold. Using a top-down scheme, the accumulated effect at the root

of a subtree is passed down to the leaf nodes. The effect of nearby filaments are calculated

directly.

During potential evaluation phase of Barnes-Hut method, onecalculates thecenter

of massat the internal nodes in a bottom-up fashion. The center of mass at each node

approximates the effect of all particles in its subtree. To compute the effect due to the

node’s particles at an observation point, a top-down traversal is done to identify nodes that

satisfy the multipole acceptance criteria. The acceptancecriteria requires that the ratio of

the node’s size to the distance between the node’s center andthe observation point be less

than a threshold value. To get the effect of the particles in anode’s subtree, one has to use

the center of mass of the node. More details on it can be found in [3].

The potential evaluation phase of FMM consists of two traversals of the tree. For

each node, FMM computes a set of multipole coefficients in a bottom-up fashion. These

coefficients can be used to compute the potential due to all the filaments within the node’s

subdomain at an observation point outside the subdomain. The observation point must be

outside a sphere that encloses the subdomain completely. For simplicity, a larger cube con-

taining the sphere can be chosen as the neighborhood of a subdomain. The computational
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complexity of this step isO((d + 1)4n) for a problem withn points (see [7] for additional

details). At any point, the net inductive effect due to far-off points can be determined from

the multipole coefficients of onlyO(log n) nodes. To reduce the complexity further down

to O(n), FMM computes a set of local coefficients for each node. Theselocal coefficients

can be used to compute the potential at any point inside a node’s subdomain due to points

outside its neighborhood. These coefficients are computed from the multipole coefficients

of nodes that are adjacent to the leaf’s neighborhood as wellas from local coefficients of

the leaf’s parent. The inductive effect at any point in the leaf node is calculated as a sum

of two values: afar-field due to the points outside the leaf’s neighborhood and anear-field

due to the points that lie within the neighborhood. The far-field is computed using the local

coefficients at the leaf node whereas the near-field is found by direct computation.

1. Impact of Parameters

For FMM, when usingd degree multipoles, the number of multipole and local coefficients

at each node is(d+1)2 and the cost of computing these coefficients is proportionalto (d+

1)4. Increase in multipole degree has dual benefits. In additionto the increase in accuracy of

the approximation, the parallel performance improves significantly due to rapid growth in

the computation. The speedup often exhibits superlinear behavior due to the cache-friendly

nature of these computations. Tables X and XI show the effectof increasing multipole

degree on the ground plane and cross over interconnects problems, respectively. These

experiments were conducted on a 128-processor SGI Origin2000 with 250MHz clock speed

at the National Center for Supercomputer Applications (NCSA)at the University of Illinois.

OpenMP directives were used to parallelize the code. Figures 12 and 13 show that for

a fixed problem size, the parallel efficiency increases with multipole degree for a fixed

number of processor (see [15] for more details).
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Table X. Parallel performance of the ground plane problem for different choices of multi-

pole degree (s=32, conductor mesh size=256×256, time in seconds).

Multipole No. of processors (p)

degree p = 16 p = 32 p = 64

(d) Time Speedup Time Speedup Time Speedup

1 36 9.2 21 16.1 17 20.2

2 91 13.6 51 24.1 30 40.8

4 604 14.7 320 27.8 167 53.4

6 2298 18.1 1195 34.7 642 64.5
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Fig. 12. Effect of multipole degree on the ground plane problem. The dashed lines indicate

maximum theoretical speedup onp processors.
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Table XI. Parallel performance of the overlapping panels problem for different choices of

multipole degree (s=32, conductor mesh size=64×256, time in seconds).

Multipole No. of processors (p)

degree p = 16 p = 32 p = 64

(d) Time Speedup Time Speedup Time Speedup

1 42 9.4 22 17.8 20 19.5

2 100 13.1 55 23.3 33 39.2

4 757 15.0 395 28.8 175 64.9

6 2325 18.7 1213 35.8 642 67.6
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Fig. 13. Effect of multipole degree on the cross over problem. The dashed lines indicate the

maximum theoretical speedup onp processors.
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Table XII. Effect of the multipole degree on the serial execution time for different choices of

maximum particles per leaf box (conductor mesh size =32×32, time in seconds).

Multipole Particles per leaf box (s)

degree (d) s = 2 s = 8 s = 32 s = 128

1 50 18 13 30

2 226 63 25 33

4 1513 398 111 51

The performance of the hierarchical multipole algorithms also depends on the max-

imum number of particles allowed per leaf box (s). The dominant computation in FMM

consists of multipole-to-local translations (M2L) with computational cost proportional to

(d + 1)4. Table XII shows that with increase ind, the FMM time increases proportional to

(d + 1)4. The execution time for FMM decreases whens is increased due to a decrease in

the number of M2Ls. The cost of direct interactions is proportional tos2 and is negligible

for small values ofs. Direct interactions begin to dominate the overall cost forlarge values

of s, resulting in higher execution time. These experiments were conducted on a 64-bit

AMD Opteron workstation with a 1.4GHz processor running SuSE-Linux operating sys-

tem. Table XII shows that whens is increased, the FMM execution time reduces rapidly

due to reduction in M2Ls, until the direct interactions begin to dominate the computational

cost. For a given problem, one can identify (d, s) pair that minimizes the execution time

(see [18] for more details).

B. ParIS - Parallel Inductance Extraction Software

We have developed an object-oriented parallel implementation of the solenoidal basis algo-

rithm for inductance extraction. This software combines the advantages of the solenoidal

basis method, fast hierarchical methods for dense matrix-vector products, and a highly ef-
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fective preconditioning scheme to provide a powerful package for inductance extraction. In

addition, the software includes an efficient parallel implementation that reduces the overall

computation time on parallel architectures [16, 17, 19].

The building blocks ofParIS are conductor elements. Each conductor is uniformly

discretized with a mesh of filaments. To exploit parallelismat the conductor level, each

conductor is assigned to a different processor. All the datastructures that are native to

a conductor are local to its processor. This includes the filaments in a conductor and the

associated FMM tree. With the exception of matrix-vector products, all other computations

are local to each conductor. Only matrix-vector products incur communication cost as they

involve interactions among different conductors that are distributed across processors.

The matrix-vector product with the inductance matrixL and the preconditioner̃L in-

volve interactions among filaments of the same conductor as well as between the filaments

of different conductors. Interactions between the filaments of the same conductor are com-

puted locally by the associated processor. To get the effectof filaments in other conductors,

a processor needs to exchange multipole coefficients with other processors. During a pre-

processing step,ParIS identifies the nodes in a conductor’s tree that are required by other

conductors. The cost of this step is amortized over the iterations of the solver. While

computing the dense matrix-vector product, communicationis needed to translate the mul-

tipole coefficients of these nodes to the nodes on other processors. Communication is also

needed when computing direct interactions between adjacent nodes that belong to different

subtrees. This type of communication is proportional to thenumber of filaments on the

subdomain boundary.

A straightforward approach for parallelization of matrix-vector product can be imple-

mented by constructing a single oct-tree with filament mid-points as set of particles. Such

a tree structure can easily identify the nodes that participate in the communication phases

without significant overheads. At every level of the hierarchical oct-tree, nodes should be
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Fig. 14. Two-tier parallelization scheme implemented inParIS

assigned to the processors such that the computational workis evenly distributed. This can

be achieved by using a cost function that accounts for cost ofall interactions for a given

node. To reduce communication costs, particles should be partitioned across processors in

such a way that the boundary points on the processor subdomain are contiguous in memory

locations. This can be achieved by various space filling curves such as Morton ordering,

Hilbert ordering, Gray code, etc. [2]. A parallel FMM implementation using such a scheme

for capacitance extraction problem has been presented in [30]. Various parallel formula-

tions of multipole-based techniques have been developed byseveral groups [6, 24, 27, 29].

Additional parallelism is available within each conductorthrough the FMM structure.

Partitioning of the oct-tree of a conductor among multiple threads is achieved by assigning

non-overlapping subdomains at a particular levelk of the oct-tree. The internal nodes at

level k are roots of subtrees of the corresponding subdomains. Withthis partitioning, a

thread is responsible for calculating the multipole and local coefficients of its own sub-tree.

The computation involving these coefficients requires no communication between threads.

The computation for the levels abovek can be be assigned to small number of threads to

increase the parallel efficiency. With different sized conductors, one can have more threads

associated with larger conductors. This scheme allows loadbalancing to a certain extent.
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A two-tier parallelization approach shown in Fig. 14 allowsthe algorithm to be im-

plemented in hybrid or mixed mode using both MPI and OpenMP directives. The software

can be executed on a variety of platforms ranging from shared-memory multiprocessors to

workstation clusters seamlessly.

C. Parallel Performance

The software design ofParIShas the dual advantage of portability and performance across

a variety of platforms. This is achieved through a two-tier parallelization approach that uses

MPI processes for conductor level parallelism, while OpenMP directives are used to exploit

parallelism within a conductor. We present experiments to demonstrate the parallel perfor-

mance of the software on multiprocessors with shared, distributed, and distributed-shared

memory architectures. We consider distributed memory platforms such as the 64-bit AMD

Linux cluster where parallelism can be exploited via MPI processes only. Distributed-

shared memory platforms such as the IBM p690 that allow mixed mode parallelization

with both MPI and OpenMP are also considered.

We present numerical experiments to study the parallel performance of the software.

These experiments were designed to illustrate the parallelefficiency and scalability of the

implementation for benchmark problems. We report the execution time and parallel effi-

ciency of the iterative solver. Efficiency is defined as the percent utilization of the proces-

sors, and is computed as the ratio of speedup to the number of processors used. Speedup

refers to the speed improvement obtained by the parallel code over a single processor exe-

cution.

Instead of solving the full inductance extraction problem,we report the parallel per-

formance of the algorithm for a fixed number of GMRES iterations. Each iteration involved

dense matrix-vector products with the coefficient matrix aswell as the preconditioner. This
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is indicative of the actual performance since the dense matrix-vector products account for

over 98% of the execution time. The performance of the software depends on various pa-

rameters for FMM, such as the number of particles in leaf nodes (s), the multipole degree

(d), etc. One should note that the higher multipole degree significantly increases the com-

putional cost compared to the communication cost, which in turn improves the parallel

effficiency (see [15] for details).

1. Shared Memory Parallelization

We use the ground plane problem shown in Fig. 1 to illustrate the parallel performance of

the code on a shared memory multiprocessor. These experiments were conducted on a 32-

processor IBM p690 multiprocessor with 1.3GHz processor speed and AIX5.1 operating

system. The code was parallelized with OpenMP directives only.

Table XIII shows the execution time and parallel efficiency of the software for linear

systems of order 32K, 128K and 512K unknowns. For a fixed size problem, a modest de-

crease in parallel efficiency with increase in the number of processors indicates an efficient

parallel implementation. This effect is pronounced due to the increase in the serial compo-

nent of the matrix-vector routine corresponding to the topk levels of the oct-tree. Figure 15

illustrates the scalability of the algorithm. It can be seenthat by increasing the problem size,

parallel efficiency is maintained when the number of processors are increased.
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Table XIII. Parallel performance for the ground plane problem on IBM p690 using OpenMP

(d=4, s=32, time in seconds).

Mesh Size

No. of 128× 128 256× 256 512× 512

processors Time %Eff. Time %Eff. Time %Eff.

1 60.4 100 260 100 1063 100

2 31.3 97 133 98 546 97

4 15.6 97 67 97 276 96

8 8.9 85 37 88 148 90

16 5.5 68 22 73 93 72

1 2 4 8 16
1

2

4

8

16

No of processors

S
pe

ed
up

Linear (Ideal) speedup

Speedup for 128×128

Speedup for 512×512

Fig. 15. Shared memory speedup for the ground plane problem with different conductor

discretization.
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Table XIV. Parallel performance for the cross over problem on IBM p690 using MPI and

OpenMP (conductor mesh size=32×320, d=4, s=64, time in seconds).

PMPI= 1 PMPI= 2 PMPI= 4 PMPI= 8

POMP Time %Eff Time %Eff Time %Eff Time %Eff

1 8012 100 4091 98 2053 98 1119 90

2 4033 99 2028 99 1070 94 598 84

4 2118 95 1098 91 585 86

8 1452 69 753 67

2. Mixed Mode Parallelization

The benchmark problem presented in this section utilizes the two-tier parallel implemen-

tation of the software. The cross over problem shown in Fig. 9is a standard benchmark

problem for inductance extraction. The problem consists ofdetermining the impedance

matrix of 16 overlapping segments in a three-dimensional configuration. These 16 conduc-

tors were spread out in 2 layers of 8 conductors each in 3-dimension. This problem leads

to a non-uniform point distribution for the dense matrix-vector multiplication algorithm.

Mixed mode experiments were conducted on 16 processors of anIBM p690 at NCSA, Illi-

nois. No more than 16 processors were available due to site restrictions. Various combina-

tions of OpenMP (POMP ) and MPI processes (PMPI) were used to demonstrate the mixed

mode parallel performance of the software. MPI processes were assigned conductors and

OpenMP directives were used to parallelize computation within conductors.

Table XIV shows the parallel performance of the software where each conductor has

been discretized by a mesh of size 32× 320. The experiments were setup to compute the

full impedance matrix. For the given problem size, the linear system includes 320K un-

knowns. The speedup obtained by the code resembles the ground plane problem, showing

that parallel performance of the code does not diminish for three-dimensional problems.
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Table XV. Parallel performance for the 8+8 cross over problem using MPI on IBM p690

and AMD-64 Linux cluster (d=4, s=64, time in seconds).

No of IBM p690 AMD-64 Linux

processors Time %Eff. Time %Eff.

Conductor Mesh Size: 32×320

1 8305 100 16270 100

2 4151 100 9183 89

4 2085 99 5019 81

8 1199 87 2436 84

16 659 79 1408 72

Conductor Mesh Size: 64×640

1 31656 100 63890 100

2 15821 100 34445 93

4 7955 99 18877 85

8 4401 90 9360 85

16 2370 84 5168 77

3. Distributed Memory Parallelization

The preconditioned iterative solver outlined earlier can be implemented efficiently on distributed-

memory multiprocessors. The experiments reported in this section were conducted on IBM

p690 at NCSA and a 64-bit AMD Opteron-240 Tensor cluster at Texas A&M University.

The Tensor cluster consists of 1.4GHz 64-bit AMD Opteron processors with SuSE-Linux

operating system. Portland Group (PGI) compilers were usedon the Tensor cluster for

compiling the code.

Table XV shows the execution time and parallel performance of the software for the

cross over problem with 16 conductors. The parallel implementation uses MPI directives
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only. For the two problem instances with variable conductordiscretization, the linear sys-

tem includes 320K and 1280K unknowns. The parallel performance of the software is

nearly identical on both multiprocessors. This indicates that the code utilizes each pro-

cessor efficiently on both systems when the load is distributed uniformly across processes.

Note that the drop in parallel performance is due to increasein communication as well as

computations.

The parallel performance of the algorithm is also analyzed by conducting experiments

with larger number of processors. Table XVI shows the parallel performance of the soft-

ware for the 4-layered cross over problem with 128 conductors on up to 128 processors of

Tensor cluster. These 128 conductors were spread out in 4 layers of 32 conductors each in

3-dimension. Note that we only solve for first 16 columns of the impedance matrix. For

the two problem instance with variable conductor discretization, the linear system includes

2560K and 10240K unknowns. Due to memory restrictions, it was not feasible to run larger

problem instances on fewer than 16 processors. Figure 16 reports the speedup over 16 pro-

cessor run for all problem instances. The results demonstrate that the software is able to

maintain high parallel performance on large number of processors.

The performance of the software can also be compared in termsof the processor uti-

lization of the code. This measure of parallel performance is especially useful to compare

problems that require different number of mutual inductance interactions (see [17] for de-

tails).
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Table XVI. Parallel performance for the 4-layered cross over problem using MPI on

AMD-64 Cluster (d=4, s=32, time in seconds).

Conductor Discretization

No of 32×320 64×640

processors Time %Eff. Time %Eff.

16 19812 100 81182 100

32 10071 98 41685 97

64 5050 98 21013 97

128 3163 78 10841 94

16 32 64 128
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Fig. 16. Parallel performance of the software for 4-layeredcross over problem on up to 128

processor of Tensor cluster.
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CHAPTER VII

CONCLUSIONS

For the modern VLSI circuits, with advances in circuit technology and increasing oper-

ational frequency, there is a significant need for fast and accurate inductance extraction

software. The computation of impedance matrix for the inductance extraction problem

requires solution of dense, complex linear systems of equations.

This work presents a high performance parallel preconditioned software for induc-

tance extraction of VLSI circuits. The software derives itsstrength from an effective pre-

conditioning scheme that results in rapid convergence of the iterative method. We use local

solenoidal flows to convert the system into a reduced system that is solved iteratively by

the preconditioned GMRES method. Fast hierarchical multipole-based methods were used

for the computationally intensive matrix-vector productswith the dense coefficient and

preconditioner matrices. We have proposed a nearly optimalpreconditioner based on the

inductive coupling among filaments of the mesh that does not require explicit construction

of the coefficient matrix. Numerical experiments indicate that for high frequency extrac-

tion in the range of 100MHz - 100GHz, the proposed preconditioner exhibits convergence

in almost fixed number of iterations irrespective of the meshrefinement and operational

frequency. Benchmark experiments indicate that the serial performance of the algorithm is

superior to FastHenry, a well-known inductance extractionpackage.

Furthermore, we present an efficient parallel implementation of the preconditioned al-

gorithm that reduces the overall computation time considerably on multiprocessors. The

software employs a two-tier parallelization approach involving MPI and OpenMP direc-

tives to deliver a high performance parallel software that is portable to a variety of multipro-

cessors. Experimental results demonstrate that the parallel implementation achieves very

high parallel efficiency on shared-memory, distributed-memory, and distributed-shared mem-
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ory multiprocessors.

A. Possible Enhancements

There are a number of enhancements that are possible:

• The two-dimensional uniform discretization of conductor surfaces yields spatially

uniform particle distribution for the hierarchical methods. An adaptive refinement

approach for conductor surfaces, one that is similar to capacitance extraction [26],

can be used.

• Solenoidal basis method gives a reduced system of equationsthat only depend on

unknown mesh currents. One can develop fast hierarchical methods for the1/r3 ker-

nel, which is directly applicable to the reduced system. Themesh based formulation

is same as applying discrete curl operator to1/r kernel. An approach using Gegen-

bauer polynomials can be used to generalize the multipole based hierarchical scheme

to compute fast approximate matrix-vector product withr−λ kernel [28].

• An alternate parallelization scheme bases on a single oct-tree can be used, which

utilizes the particle distribution rather than conductor boundaries. This would result

in a load-balanced parallel implementation for the matrix-vector products.
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