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ABSTRACT

Parallel Algorithms for Inductance Extraction. (May 2006)
Hemant Mahawar, B.Tech., Indian Institute of Technology;
M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. Vivek Sarin

In VLSI circuits, signal delays play an important role in s timing verification and
signal integrity checks. These delays are attributed tgptheence of parasitic resistance,
capacitance and inductance. With increasing clock spegdeatucing feature sizes, these
delays will be dominated by parasitic inductance. In theé gexeration VLSI circuits, with
more than millions of components and interconnect segmeasisand accurate inductance
estimation becomes a crucial step.

A generalized approach for inductance extraction requinessolution of a large,
dense, complex linear system that models mutual inductieets among circuit elements.
Iterative methods are used to solve the system without@kpbmputation of the system
matrix itself. Fast hierarchical techniques are used topgmapproximate matrix-vector
products with the dense system matrix in a matrix-free waye © unavailability of system
matrix, constructing a preconditioner to accelerate thevemence of the iterative method
becomes a challenging task.

This work presents a class of parallel algorithms for fast accurate inductance ex-
traction of VLSI circuits. We use the solenoidal basis applothat converts the linear
system into a reduced system. The reduced system of egsiasi@olved by a precon-
ditioned iterative solver that uses fast hierarchical mdghto compute products with the
dense coefficient matrix. A Green’s function based predamr#r is proposed that achieves
near-optimal convergence rates in several cases. By fotimgiletne preconditioner as a

dense matrix similar to the coefficient matrix, we are ablade fast hierarchical methods



for the preconditioning step as well. Experiments on a nunatbdbenchmark problems
highlight the efficient preconditioning scheme and its add&ges over FastHenry.

To further reduce the solution time of the software, we haasetbped a parallel im-
plementation. The parallel software package is capablenalyaing interconnects con-
figurations involving several conductors within reasoedlbrhe. A two-tier parallelization
scheme enables mixed mode parallelization, which uses®ogmMP and MPI directives.
The parallel performance of the software is demonstratexditih experiments on the IBM
p690 and AMD Linux clusters. These experiments highligktgbrtability and efficiency
of the software on multiprocessors with shared, distrithuded distributed-shared memory

architectures.
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CHAPTER |

INTRODUCTION

A. Motivation

In VLSI circuits, signal delays play an important role in ggs timing verification and sig-
nal integrity checks. These delays are attributed to thegoree of parasitic resistance (R),
capacitance (C) and inductance (L). Among these parasitigpoaents, primarily capaci-
tance and inductance are functions of operational frequeksa result of newer technol-
ogy that uses thicker copper wires, the influence of pacagsistance has decreased. On
the other hand, with operational frequency of modern VL8&lts approaching gigahertz
(GHz) range and shrinking feature sizes, parasitic incwogtawill have dominating effect
on signal delays. For the next generation VLSI circuits withre than millions of compo-
nents and interconnect segments, there is a significantfoetedt and accurate inductance
extraction software.

In a VLSI circuit, the changes in current flow create a varymggnetic field that leads
to inductive coupling among the different components. Tifect is more pronounced
when these components are in close physical proximity. Giteégggned with sub-micron
VLSI technology are prone to parasitic inductive effectsaaese of the tightly packed com-
ponents. The property of an electrical circuit to resistngein its own current due to the
presence of associated magnetic field is calheldictance Self inductance of a conductor
refers to the impedance offered to current flows by the indunagnetic field due to its
own current. Mutual inductance between a pair of conduaefess to the impedance in
one conductor due to current flow in the other. The processtohating these inductive

couplings among different components of VLSI circuits iBezhinductance extraction

The journal model is SIAM Journal of Scientific Computing.



B. Previous Work

There are three types of inductance extraction algorithomg inductancepartial induc-
tanceandshape based inductanc&he loop inductance algorithms are the most accurate
but slowest, while the shape-based algorithms are the deastate but the fastest. Fas-
tHenry [12] is a commonly available software package thatjmates the loop inductance.
Due to its high accuracy, FastHenry is often used as a referfar all other extraction
algorithms. Partial inductance was first proposed by Rosairgnobduced to circuit de-
sign by Ruehli [21]. A number of algorithms have been proppsedh as Krauter [14]
and He [10]. Partial inductance algorithms are faster tlap linductance algorithms.
However it is shown that partial inductance without curnettirn paths is inaccurate [5].
Shape-based algorithms, such as [13, 25], are fast buturetedfor complex structures. In
this work, we study the extraction of loop inductance of 3Bc#iical conductors.

A quasi-static approach is often used to compute the parasituctance for a set of
conductors at a particular frequency. To estimate indwetaamong a set of conductors
in a particular configuration, one needs to determine theeotiin each conductor under
appropriate equilibrium conditions. The general techeiguto discretize the surface of
each conductor by a uniform two-dimensional mesh that sgmis a network of smaller
conductors or filaments, and a linear system of equatiordved to determine the induc-
tive coupling [12]. The linear system is derived from Kirdf®current and voltage laws
that determine the current flow into mesh nodes and the patahbp across filaments,
respectively. The potential drop across the end points ¢daméint is due to its own resis-
tance and due to the inductive coupling with other filameiitse resulting linear system
consists of both sparse and dense sub-matrices. Kirclmifient law results in a sparse
sub-matrix, while the inductive coupling constitutes tméries of the dense and complex

sub-matrix.



The cost of computing and storing the dense submatrix besgrahibitive as the
problem size grows beyond a few thousand filaments. Henesgtbystems are often
solved by iterative methods such as Generalized Minimaldres(GMRES) method [22].
At each iteration, a matrix-vector product with the coeéfidi matrix is required. To avoid
the memory and computational penalties of exact matrixergaroduct, fast hierarchical
schemes, such as the Barnes-Hut method [3] and Fast Multipetleod (FMM) [7, 8], are
often used to compute approximate matrix-vector produdfs the system matrix. These
approaches have a trade-off between accuracy and speede Trtethods can lead to a
matrix-freealgorithm that does not require explicit computation of toefficient matrix.
The success of the underlying iterative methods dependbeorate of convergence that
can be accelerated by preconditioning the system. The pdgaming step transforms the
original system into an easier one for the iterative methdidsne usesnatrix-freealgo-
rithms for computing matrix vector product with system matthen the task of developing
preconditioners becomes complicated due to the unaviiyadsi the coefficient matrix.

FastHenry [12] is a commonly used software package for itzshoe extraction. It
uses the above described approach to compute accuratatestion a circuit’s parasitic in-
ductance. Matrix-vector products are computed efficiemylysing FMM. Preconditioners
are obtained by approximating the dense coefficient matitix a'sparse matrix that is de-
rived from the FMM hierarchical structure. Although thetsadre is used as a benchmark
for accuracy comparison, it has found limited use in the VCAID community due to the
long simulation time and large memory requirements. SirasgtHenry is available only
for uniprocessor workstations, the size of problems thatlmsolved is severely limited.
Hence, there is significant interest in developing fast aswiaate parallel algorithms for

inductance extraction of large VLSI circuits.



C. Outline

This work presents a class of parallel algorithms for fast accurate inductance extrac-
tion of VLSI circuits. We proposed a solenoidal basis apphofor [20] that represents
the filament currents in terms of circular cell currents. sTapproach converts the linear
system into a reduced system with fewer unknowns. The redagstem of equations
is solved by a preconditioned iterative solver that uses FMMompute products with
the dense coefficient matrix and the preconditioner. We oelyhe characteristics of the
system matrix to devise the preconditioner. To handle largblem instances and to fur-
ther reduce the solution time of the software, we have deeela parallel implementa-
tion [15, 16]. A two-tier parallelization scheme enables@i mode parallelization, which
uses both OpenMP and MPI directives. Mixed mode parallédinanables the software to
run on shared, distributed and distributed-shared memaighines. Experimental results
presented in [15, 20] highlight the preconditioning schisreéfectiveness and the parallel
performance of the software. To the best of our knowledgejdhhe first parallel software
for inductance extraction that can run on various multipgscmachines.

The dissertation is organized as follows: Chapter Il dessribe discretization of the
integral equation formulation for the inductance ext@eiproblem and the associated lin-
ear system of equations. Chapter Il outlines the solendidais method that represents
the filament currents in terms of circular cell currents.slépproach transforms the linear
system into a reduced system. This is followed by a desoripdif the preconditioning
approach in Chapter IV. The preconditioning scheme for tlkeiged system is very ef-
fective in reducing the solution time and memory requiretseBxperimental results show
the effectiveness of the devised preconditioner. The megalgorithm is compared with
FastHenry in Chapter V. Experiments conducted on a set ofimeauk problems demon-

strate the superiority of our approach. Chapter VI desctibeparallel formulation of the



algorithm and the software implementation details. Thegptlr also includes an overview
of the hierarchical multipole-based methods for computiegse matrix-vector products.
We present a set of experiments that show the parallel pegioce of the software on var-
lous multiprocessor systems - from supercomputers to watike clusters. Concluding

remarks are presented in Chapter VII.



CHAPTER I

MATHEMATICAL BACKGROUND

A. Problem Statement

The inductance extraction problem for a setngfconductors consist of determining an
ns X ny, complex impedance matriZ(w) that denotes pairwise mutual impedance among
the conductors at a given frequency The kth column ofZ(w) is computed by applying
unit current to thekth conductor and zero current to all the remaining condsctomder
this boundary condition, the potential drop acrossitheconductor gives the/,; entry.

Solutions ton, such instances with different boundary conditions yieth#sdomplete (w).

B. Integral Equation

A number of techniques based on the integral form of Maxweljuations have been used

to model VLSI circuits [4, 21]. Maxwell's equations at stgasinusoidal state are given

by:

VxE = —juuH (2.1)
VxH = jweE+J (2.2)
V-(E) = p 2.3)
V-(uH) = 0 (2.4)

whereE is electric field,H is magnetic field,J is current densityw is frequency of
operation, ;. is the magnetic permeability, is the electric permittivity ang = +/—1.
Equations (2.1-2.4) describe, respectively, how changuagnetic field produce electric

fields (Faraday’s law), how currents produce magnetic fighaspere’s law), how electric



charges produce electric fields (Gauss’s law), and the abs#frmagnetic field. Addition-

ally, by Ohm’s law, the electric field within the conductorrédated to the current density

by:

E = pJ. (2.5)

wherep is the resistivity of the material. Applying quasi-statesamption that the dis-

placement curreniweE is negligible, the divergence of (2.2) yields current couagon:

V.J=0. (2.6)

We wish to eliminate the fieldE and H, and represent the Maxwell's equations in
terms of the current densityy and applied voltage only. From (2.4), the magnetic flux can

be represented as:

pH = (V x A) (2.7)

whereA is the magnetic vector potential. Using it in conjunctiothwi@.1), we get:
V x (E+ jwA) =0.

This implies that there exists a scalar potential functiosuch that:

—V® =E + jwA. (2.8)

To relate the vector potentidl to the current density we use (2.7) and the Coulomb

gauge relationV - A = 0. Under quasi-static assumptions, it converts (2.2) into:
~V?A = pJ.

Hence magnetic vector potentialis represented as:



p J@)
Ar)=— [ ——=dV 2.9
=5 ) el @9
wherer andr’ denote three-dimensional position vectdrss the volume of the conductor,
anddV” is the incremental volume with respectito

Substituting (2.5) and (2.9), into (2.8), we get the follogiintegral equation that

relates the current densifi{r) and potentiatb(r) at steady state:

JWi J(r') r_
pJ(r) + . /\/Hr—r'HdV =—V®(r). (2.10)

Using (2.6) and (2.10), the current densltyand scalar potentiabcan be computed.

C. Linear System

To obtain a numerical solution of (2.6) and (2.10), each ceotat surface is discretized
using a uniform two-dimensional mesh (see, e.g., Fig. 1)re&@aicarrying filaments form
the edges of the mesh. Given the quasi-static assumptierg ikyno charge accumulation
on the conductor surface. Hence, current density is asstiobe constant within each
filament and the current is assumed to flow only along the keogthe filament. The
vector of filament currents; is related to the vector of potential drop across filament end

pointsV ; by the following equation, which is a discrete form of (2.10)

[R—i—ij] If :Vf, (211)

whereR is ann x n diagonal matrix of flament resistances for a mesh witllaments
f1, f2, ... fn, andL is ann x n dense inductance matrix. Théh diagonal element AR is

assigned the value- I, /a;, wherel, anda, are the length and cross-sectional areatbf



Current
Source

Node

Filament

Fig. 1. Discretization of a conductor surface using two-elsional mesh.

filament, respectively. The entries of the inductance airare:

L — / / W Wy gy
47T Aray re€Vy JrieVy ||r]€ I'l”

whereuy denotes the unit vector along th¢h filament, andr, andr; denote position
vectors for points in filaments and/, respectively. The integral is calculated over the
volume of the two filaments.

Kirchoff's current law specifies that the net flow of curremizero at each node of the

mesh. It is represented by the following equation:

B'I, =1, (2.12)

whereBTis a sparsen x n branch index matrix ofn nodes and: filaments and, is
the known branch current vector of length with non-zero values corresponding to the

source currents. Thg, [) entry of branch index matrix has the valué if the /th filament



10

originates at nodg, 1 if it terminates at, and zero otherwise. Forg, x n, array of cells,

the entries oB” are:

(ny +1) Ty
T I
T 11
B = T -1 )
I
T I

where! is the identity matrix of sizén,+1) x (n,+1) andT is a matrix of sizén,+1) xn,

given below:

1

-1
The nodes are numbered from left to right in bottom to top itash The filaments are
numbered in a similar fashion, first the horizontal filameartd than the vertical ones.
Potential drop across filameri¥s; can be expressed in terms of unknown node poten-

tials V,, as follows:

V;=BV,. (2.13)

Equations (2.11), (2.12), and (2.13) give rise to a lineateay of equations that must be

solved to determine the unknown filament currdntand node potentialy’,:



11

R+juL —B || I, 0 214

BT 0 V., I,
D. lterative Solvers

The coefficient matrix of the linear system (2.14) consi$tgparse and dense sub-matrices.
The first diagonal block is dense and the off-diagonal bl@rkssparse. A straightforward
approach to solve this linear system involves removal0by a block-step of Gaussian
elimination. The resulting system is defined in terms of thknownsV, only, and can be

expressed as:

B[R + jwL] 'BV, =1I..

Even for a few thousands of unknowns, use of direct methocsrbes prohibitively expen-
sive due to memory constraints and the size of the systemsukadr large linear systems,
iterative methods such as GMRES are often used. When solimgytstem by an iterative
method, each iteration involves a matrix-vector produthwie system matrix. In practice,
the system matrix is never computed explicitly. Instead, rtiatrix-vector product with a

vectorx is computed as a sequence of three steps:

u = Bz, R+ jwL]v = u, y =BT,

The second step may require an inner iterative schemetirgginl expensive outer itera-
tions. Moreover, the structure of the coefficient matrix gk very difficult to precondi-
tion the linear system.

The computational cost of iterative methods depends onx»actor calculation with

the coefficient matrix. The number of operations needed toptte an accurate matrix-
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vector product with am x n dense matrix i€J)(n?). In (2.14),R andB both are sparse
matrices, hence the cost of matrix-vector product is dotathéy the cost of computing
product withL. Even for a small problem with few thousands filaments, ibigemsive
to compute and stor&. On the other hand, if the matrix entries are functions of the
form 1/r, approximations to these products can be computed effigigmbugh matrix-
free hierarchical based methods. These methods exploit the/itdgcaature ofl /r kernel
and can be used to compute approximations for the matrisov@coducts withL.. These
methods include FMM and variants of the Barnes-Hut method. Wthe filaments are
uniformly distributed, FMM require®(n) operations while multipole-based variants of the
Barnes-Hut method require(n log n) operations to compute these matrix-vector products.
These approaches have a trade-off between accuracy ardl $figher degree multipoles
can be used to reduce the approximation error. However, dhguatational cost grows
proportional tad*, whered is the multipole degree.

Use of iterative methods to solve a linear system is meanirggfly if the underly-
ing iterative method has a fast rate of convergence. Witkiefft preconditioning of the
coefficient matrix, one can accelerate the convergenced#nying iterative scheme. Pre-
conditioning may be considered as a process of transforenlimggar system into one that
can be solved more efficiently by the iterative process. ®eeaimatrix-freehierarchical
methods ensures that the coefficient matrix is never cartslu However, construction
of preconditioners in the absence of the coefficient matrmg out to be a formidable

challenge.
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CHAPTER IlI

SOLENOIDAL BASIS METHOD

Solenoidal functions are divergence-free functions th#isgy conservation laws such as
the Kirchoff’s current law in electrical circuits and the ssaconservation law in fluid me-
chanics. These functions have been applied to a varietygiheering applications such
as computational fluid dynamics (CFD) etc. [23]. A solenoidadtor fieldG satisfies:
V - G = 0. If this condition is satisfied, there exists a ved®rsuch thatG = V x D.
Equation (2.6) states that the current is a divergencevieewr function. Hence, one can
represent current as curl of a vector function. For indum#agxtraction problem with uni-
form mesh discretization, it is easy to construct a solealdidsis that represent the curl
operator in the discrete sense.

The second block of (2.14) represents Kirchoff’s current I8inceB” enforces the
current conservation, the null spaceBf represents a basis for current that obeys Kir-
choff’s law. Any full-rank matrixP that satisfiedB?P= 0, can be used to compute the

current vector via the matrix-vector product as follows:

I=Pzx.

There are several ways to compute a basis for the null spaaemaitrix. A purely alge-
braic approach such as QR factorizationB¥ cannot be used to compul® due to the
prohibitive cost of computation and storage of a large demsteix. However, to construct

a sparse basis, observe that a current flow of fixed magnitodg any closed path in the
mesh satisfies the constraints imposed3y Figure 2 shows several instances of discrete
solenoidal current flows that can be used to construct trenealal basis. Each flow con-

sists of a constant amount of current flowing anticlockwiseugh the four filaments of a
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Fig. 2. Examples of solenoidal current flows in a section ofndoum two-dimensional
mesh.

cell in the mesh. Since the net inflow of these circular cusr@mo any node is zero, the
flows satisfy Kirchoff’s current law. The solenoid basis heat for (2.14) uses these mesh
currents to represent the unknown currbntA basis consisting of such functions can be
viewed as docal solenoidal basis

A local solenoidal basis for a two-dimensional mesh is a detefbasis with linearly
independent components. The linear independence of thencsl of P is established by
observing that the matri®” P is the standard two-dimensional Laplace operator matrix.
In a uniform two-dimensional mesh of sizg x n,,, the number of nodes, edges, and cells
are given bym = n,.n,, n = 2m — n, —n,, ands = n —m + 1, respectively. Since the
number of cells equals the dimension of the null space of iberete divergence matrix
B7, it follows that the local solenoidal basis is complete. Hynbe noted thaB has a
rank-deficiency of 1 to allow the potential to vary by a constalhe rank deficiency can
be removed by specifying the value of the potential at a simglde, and the solenoidal

basis can be modified accordingly.
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The solenoidal basis matrR is ann x s matrix that is derived from the current flows
in the mesh cells. The columnsBfcorrespond to the cells in the mesh. Each columR of
consists of four non-zero entries that denote the currewtifiche cell: 1 indicates a unit
current flow along the edge, ard indicates a unit current flow opposite to the direction of
edge. Construction of the solenoidal basis matrix in thismeaensures that the following

condition is satisfied:

B’P = 0. (3.1)

For ann,. x n,, array of cells, the entries &” are:

(n, +1) Ty
I —I %4
b _ I -1 1%
I -1 W

wherel is the identity matrix of size., x n, andWW is a matrix of sizen, x (n, + 1) given

below:

The meshes are numbered from left to right in bottom to topites The filaments are
numbered in a similar fashion, first the horizontal filameartd than the vertical ones.
The linear system (2.14) must be transformed before one smathe solenoidal basis

method. The first step is to determine a particular curreatord,, that satisfies the con-



16

Node I
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Source

Filament

Fig. 3. Current flow along an arbitrary path in the mesh can bd tssatisfy the constraints
imposed by the external current source. The bold line indga path for current that
satisfies boundary conditions.

straints imposed by the external current source. The védgtapresents the current flow
along an arbitrary path between the nodes where the extsonate is connected. The
current vectod, can easily be found by a number of techniques. For instankenhe
known branch current has unit magnitude, one can assigntawment to filaments on
an arbitrary path from the node with input source currenh®rode with output source
current (see Fig. 3). This approach can be extended to moergleboundary conditions
in a straightforward manner. By splitting the curr&ptinto a particular currenk, and an
unknown current, the linear system (2.14) can be transformed to an equivajestem

with a different right hand side:

R+juL -B I F
= , (3.2)
B” 0 V., 0

where
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I=1,-1, F=-[R+julL,

The difference between (2.14) and (3.2) is that the firstesgstatisfies current boundary
conditions whereas the second system satisfies voltagelapuoonditions.

The next step is to represent the unknown curfentthe solenoidal basis:

I1=Pzx,

wherex is an unknown vector of size From (3.1), it follows thal satisfies the divergence-
free constraints imposed by the second block of equatio(3.82). By restricting the un-
known current to the solenoidal subspace, the linear sy&@ethcan be transformed to the

following system:

R+ jwL|Pz — BV, =F.

The vector of unknown node potentidls, can be eliminated by multiplying the system

with PT from the left:

P” R + jwL] Pz = PTF. (3.3)
J

The above system isr@ducedlinear system of ordes that must be solved to determine
x. Since the coefficient matrix is never computed explicidly, iterative method such as
GMRES must be used to solve the system. Qnbas been computed, the filament current
vectorI; and the vector of unknown potential differences across thméntsV; can be

computed as follows:

If:Ip—i—P.I', Vf: [R—i—ij] If.
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Table I. The sizes of the original and reduced systems grisitthe inductance extraction
of a ground plane.

Mesh Size| Nodes| Filaments| Unknowns| Solenoidal
(m) (n) (n +m) | Functions §)
32 x 32 1089 2112 3201 1024
64 x 64 4225 8320 12545 4096
128 x 128 | 16641| 33024 49665 16384
256 x 256 | 66049 | 131584 197633 65536

When a unit current is applied by the external source, the dapee between any pair
of nodes is equal to the potential difference between thesodhis potential difference
can be calculated by adding the potential differences adiwes filaments on an arbitrary

path connecting the nodes.

A. Benefits of Solenoidal Basis

The transformation of the linear system (3.2) to the reduwetem (3.3) has several ad-
vantages. The number of unknowns reduces considerablyavbetwo-dimensional dis-
cretization is employed. Table | shows the number of unkreowwra ground plane problem
that involves computing the self impedance of a square adodu The use of a local
solenoidal basis results in a sparse mafixhat is amenable to efficient matrix-vector
product computations. Furthermore local natur®ansures that operations such as com-
putation and storage & and matrix-vector products witA can be implemented efficiently
in parallel. Matrix-free implementations are also possiihce explicit construction d?

is not necessary. The local solenoidal basis has anothpegyathat is useful in construct-
ing preconditioners for the reduced system in (3.3). Thédieapon of P andP” to vectors

is analogous to computing the discrete curl of a function.
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CHAPTER IV

PRECONDITIONING SCHEME
Even for the reduced system (3.3), the use of direct metledsrhpute the unknown cell
current becomes prohibitively expensive for modest sizedlpms. Direct methods suffer
from high computational costs and large memory requiremértt overcome these hurdles,
iterative methods are used. Use of iterative methods t@solinear system is meaningful
only if the underlying iterative method has a fast rate ofvesgence.

The rate of convergence of iterative methods is related @écsffectral properties of
the system matrix. For instance, a large separation bettheesmallest and largest eigen-
values of a matrix often results in a large number of iteregicequired for convergence.
Preconditioning is a process of transforming a linear syst¢o one that has more favor-
able spectral properties. The linear systAm = b may be preconditioned from the right

side by a matrixM as shown below:

AMy=b, r = My. (4.1)

The transformed system is solved by an iterative method. cDeéficient matrixA.M is
never computed explicitly. Instead, each iteration nownes an additional precondition-
ing step that involves computing a matrix-vector produdhwi1.

A preconditioning approach is advantageous only if the alVéme to compute the
solution is reduced. For this to happen, the preconditiomest be easy to compute, the
preconditioning step must be relatively inexpensive, d&edmatrix M should be an effec-
tive preconditioner that reduces the number of iterati@msitlerably. Preconditioning can
be done from the left side by pre-multiplication, from thght side by post-multiplication,

or from both sides [22]. A good preconditioner can be charamtd in a variety of ways.
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In general, clustering of eigenvalues of the preconditibsgstem can lead to rapid con-
vergence. In many cases, a preconditioned system with d samalition number can be
solved in a few iterations. Condition number of a matrix carebegmated by the ratio of
the largest singular value to the smallest. A preconditiagieaid to beoptimalwhen the
condition number of the preconditioned system is bounded bgnstant. In such a case,
iterative methods may converge to the solution in fixed nunalbé@erations regardless of
the problem discretization.

It is common to use the symbdl~! instead ofM in (4.1) to indicate that the pre-
conditioner is an approximation of the matex In such cases, the preconditioning step
requires the solution of a linear system with the precoodér as the coefficient matrix.
Such approximations are obtained implicitly by computimgomplete factorizations of.
Although the coefficient matrix in the reduced system (33)at available, one can com-
pute a “sparse” approximation by ignoring interactionsgetn distant filament pairs. An
incomplete factorization of this sparse matrix yieldsind U factors that can be used to
define the preconditioner for the reduced system. FastH&B8fyises a similar approach in
which the matrix is sparsified by several different stragegn order to obtain inexpensive
but effective preconditioners. These schemes are desdnbmore detail in Chapter V.
Unfortunately, the sparsification schemes in the package te be very slow and have
huge memory requirements. This has restricted the use cfatteare to solving small

benchmark problems only.

A. Spectral Analysis of Reduced System

The ability to precondition the reduced system effectivslgritical to the success of the
solenoidal basis method. The task of designing effectigeqnmditioners is made especially

challenging due to the unavailability &f. An effective preconditioning approach can be
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Table Il. Estimates of the extremal eigenvalues of matticasform the reduced system for
a ground plane problem.

Matrix Amin Ama

R c c

L o) | o)

PTRP o(r?) | 0(1)
PTLP o(h?) | O(h)
Re(PT[R + jwL]P) | O(h?) | o(1)
Im(PT[R + jwL] P) | O(wh?) | O(wh)

developed by analyzing the reduced system (3.3) careflllhe use of local solenoidal
flows defined on a uniform two-dimensional mesh for a grouad@\see Fig. 1) provides a
basis for this analysis. Consider the matrices that formeétaced systenR is a diagonal
matrix with positive entriesL. is a dense symmetric positive definite (SPD) matrix, Bnd
is a sparse matrix. The matricBsandP” implement discrete curl operators, aBdP is

a two-dimensional discrete Laplace operator. Table Il jpiey estimates of the largest and
smallest eigenvalues of these matrices for a discretizatith filament lengthh. To be
consistent with physical laws, conductor surfaces mustis®etized using filaments with
a fixed length-to-width ratio. As a result, the eigenvalueRare always constant.

At higher frequencies, the reduced system is dominateddyntaginary part whose
condition number is proportional th~!. The real part dominates at lower frequencies,
and the condition number grows proportionalte®. Figure 4 shows the spectrum of the
reduced system (3.3) obtained from the ground plane problgmw = 27 x10GHz. A
uniform two-dimensional mesh is used to discretize the ggdoplane of size 1cmlcm.
For ann, x n, size mesh, the filament lengthis= 1/n, cm. The eigenvalues of the

system lie on a straight line in the complex plane. The caodibumber of the reduced
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Fig. 4. The spectrum of the reduced system that arises fronifarm discretization of a
square ground plane. The condition number of the systemmistdd byx (w = 27 x
10GHz).

system doubles every time the mesh is refined.

The entries of the matrib. are derived from the Green’s function for the three-
dimensional Laplace operator. WhiR'P is a two-dimensional Laplace operator with
a condition number proportional fo-2, the matrixP”LP tends to have a condition num-
ber that is proportional th—! only. As shown in Fig. 5, the matrikP is a well-conditioned
matrix with a condition number that is nearly independerit,ohdicating thafl. andP are

approximate “inverse” of each other. To exploit this fact @presd¥.P as shown below:
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Fig. 5. Singular values oELP (black) andPL (color) for the square ground plane prob-
lem. The condition numbers &P andPL are denoted by, and«,, respectively
(w =27 x 10GH2).

LP = PL + PL,
whereL represents the mutual inductance among hypothetical filsspaced at the center
of each mesh cell and oriented perpendicular to the mesle dlarepresents the inductive
effect of these filaments on the boundary of the conductoms Paupdates the boundary
filaments. This representation can be viewed as a set of fiienpdaced at the center of
the mesh cells with an additional set of ghost-cells alomglibundary. The filaments at

the mid-points of the ghost cells carry no current. Sinceeffiect of PL is limited to the
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boundary, one can expePtL to be a good approximation &P. Figure 5 shows that a
large number of singular values of these two matrices argtichd.

The matrixL is defined as follows:

- 1 1
i, — ﬁ_/ / VW
Amaray Jypevy, Jrev; Itx — 1ill2

The matrix elemenk;; equals the mutual inductance between a pair of parallel éikgm
placed at the centers of cellsandi. At high frequencies, when the imaginary part of the

reduced system dominatdscan be used as a preconditioner for the reduced system. Since

PTLPL ~ PTLTLP,
the preconditioner is expected to yield a well-conditiosgstem.

SinceL represents an approximate inverseRyfusing the characteristics of the re-
duced system, we propose the following efficient precoowlitig scheme for inductance
extraction:

- 71
M=L [R + ij} L, (4.2)
whereR is a diagonal matrix of resistance to mesh currents. At eacation, the precon-
ditioning step consists of the matrix-vector product M that can be computed in the
following three steps:

- -1
u = Lr, v:[R—l—ij} u, z = Lw.

The matrix-vector products in the first and third steps ugg@pmate hierarchical tech-
niques identical to those used fbor The second step is implemented via an inner iterative

solver that is used to solve the system
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[f{ + jwi] v=1u
to obtainv. At low and high frequencies, one can use the following ayxipnations to the

preconditioner without any significant change in the rateasfvergence:

Mlow = ]:R—I]Z’ Mhigh = —jw_lf,

In each case, the preconditioning step is relatively cheaye st does not involve an inner
solve. For intermediate frequencies, however, one shaéddhe preconditioner (4.2).
Figure 6 shows that the eigenvalues of the preconditionddcex] system are clus-
tered, almost independent of the filament widthThe system was preconditioned using
Muign. The preconditioned system can be solved in few iteratiomg and the precon-
ditioner appears to be effective for the mid-frequency eang well. However, for low
frequency problems, one should use a two-dimensional taptatrix to precondition the
real part of the reduced system. It should be noted that atcurductance extraction may

not be needed at low frequencies.

B. Effectiveness of the Preconditioning Approach

There are several advantages of our preconditioning approghe preconditioning step
requires a matrix-vector product that is relatively inexgige compared to incomplete fac-
torization based preconditioners. The latter involve mptete factorizations of a partially
computed coefficient matrix and triangular solves, which ba expensive, especially on
parallel platforms. In addition, experimental evidencggests that unlike incomplete fac-
torization, our preconditioner is robust and very effeztwver a wide range of frequencies.
To illustrate the effectiveness of the preconditioningesuk, we consider three benchmark

problems.
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Fig. 6. The spectrum of the preconditioned reduced systenthé square ground plane
problem. The condition number of the preconditioned sysierdenoted byx
(w = 27 x 10GHz).

1. Ground Plane

The first problem involves computing the self-inductanca sfjuare ground plane of size
1cm x 1cm (see Fig. 1). The ground plane is used to provide a uniffnound poten-
tial to all the components of a VLSI circuit. The plane is d&tzed by a uniform two-
dimensional mesh with mesh widthvarying from2-5cm to2=%cm. The width of each
filament is one-third of its length, and the thickness jisnl A tolerancer = 107% was
specified on the relative residual norm of GMRES. Table lIvehthe effectiveness of the

preconditioner for the ground plane problem. It can be skatthe number of iterations
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Table lll. Iterations for convergence of preconditioned BES method to compute the self
impedance of the ground plane conductor problem. Unprettondd GMRES
iterations are shown in parenthesis{(10~°).

Mesh Filament Frequency (f)

Size Length(cm)| 1 MHz | 10 MHz | 100 MHz| 1GHz | 10 GHz | 100 GHz
32 x 32 1/32 26 (75) | 24(68) | 11(36) | 8(30) | 8(30) 8 (30)
64 x 64 1/64 36 (143)| 33(129)| 15(63) | 9(43) | 9(43) 9 (43)

128 x 128 1/128 49(-) | 44(-) | 21(118)| 10(62) | 10(60) | 10 (60)
256 x 256 1/256 65(-) | 58(-) 29(-) | 12(94) | 11(83) | 11(83)
512 x 512 1/512 85(-) | 76(-) 38(-) |16(159)| 13(114)| 13 (113)

required by the right-preconditioned GMRES algorithm tovedhe linear system (3.3)

is almost constant in the high frequency range (1 GHz - 100)G#en either the mesh

width h or the angular frequeney = 27 f is changed. The entries marked “-” indicate the

inability of iterative solver to reduce the relative resatlnorm below the threshold set by

7 within 200 iterations.

Figures 7 and 8 compare the preconditioning scheme for thengrplane problem

with an unpreconditioned GMRES solve. We plot the resultsafenaximum of 200 it-

erations and a maximum tolerancel6f®. It can be seen that over a range of problem

discretization, the preconditioning scheme significarguces the number of iterations re-

quired for convergence. Figure 7 shows that for the highueegy simulations, the growth

in iterations across problem discretization is very slonewkolerance is increased, indi-

cating an effective preconditioning scheme. As shown in Bjghe rate of convergence

of preconditioned GMRES usind,;., is significantly better than the unpreconditioned

approach even for the mid-frequency range.
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Fig. 9. Cross over problem with a view of a discretized conoluct

2. Cross Over

The second benchmark problem is ttress ovemproblem shown in Fig. 9. In VLSI cir-
cuits, this is a typical layout configuration with interc@wh segments crossing each other
on different layers. The problem consists of determinirgyithpedance matrix for these
segments. The segments are 2cm long and 2mm wide, and aratsepby 30@m in
the horizontal direction and by 3mm in vertical directiorheldiscretization is similar to
that of the ground plane problem. These simulations werelwted for a frequency of
10GHz. Tables IV reports the range of iterations requirethiyright-preconditioned GM-
RES method to compute the complete impedance méifix,). For the preconditioned
GMRES method, the growth in number of iterations is minimath&snumber of conduc-
tors in the configuration is increased. Furthermore, thevtiran iterations is slow as the
mesh is refined. These results illustrate the effectiveoktt®e preconditioning scheme for

typical extraction problems.
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Table IV. Iterations for convergence of preconditioned GNRfEethod for the cross over
problem with multiple right-hand sides. Unpreconditior@dlRES iterations are
shown in parenthesis & 107°).

Mesh Size| Filament Conductor Layout
Length (cm) 1+1 242 4+4
16 x 160 1/80 11 (34) 13 (37) 15 (38-39)
32 x 320 1/160 12 (47) 14 (51) 17 (53-54)
64 x 640 1/320 13(65) | 15-16 (70) | 18-19 (73-74)
128 x 1280 1/640 15 (89-90)| 17-18 (95-96)| 20-21 (99-102)

3. Pin Connect

The third benchmark problem is thpgn connectproblem shown in Fig. 10. This kind of
layout provides connectivity to a chip’s pin to various caments of the VLSI circuit. The
problem consists of determining the complete impedanceixapresenting the interac-
tion among the pin structures. This benchmark illustrategpreconditioner’s performance
for a 3-dimensional problem. We use a two-dimensional diszation of conductor sur-
faces, similar to that of the ground plane problem. Thesailgsinions were conducted
for a frequency of 10GHz. Table V reports the range of iteretirequired by the right-
preconditioned GMRES method to compute the complete imprdaratrixZ(w), with
multiple right-hand sides. For a very coarse mesh dis@eda, the rate of convergence
of the preconditioned GMRES method is weakly dependent ordideretization mesh
width A. For thin conductor segments, one dimensional discratizabuld suffice for the

computation of the impedance value.
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Fig. 10. Pin connect problem with 6 pin.
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Table V. Iterations for convergence of preconditioned GMREShod for the pin connect
problem with multiple right-hand sides. Unpreconditio@RMRES iterations are
shown in parenthesis & 107).

Conductor Layout

Filament 1 Pin 3 Pin 6 Pin

Length | Solenoidal Solenoidal Solenoidal
(cm) Flows Iter. Flows Iter. Flows Iter.
1/20 92 8(14) 270 11(15) 540 12(15)
1/40 368 | 10(19)| 1080 13(20-21) 2160 15(21)
1/80 1472 | 12(28)| 4320 | 15-16(29-30) 8640 | 17-18(30-31)
1/160 5888 | 14(40)| 17280 | 18-19(42-43) 34560 | 20-21(43)
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C. The Inductance Extraction Algorithm

An outline of the preconditioned solenoidal basis methadcfamputing the impedance

matrix Z(w

) is given below.

Algorithm 1 Preconditioned Solenoidal Basis Method for Inductancedexion.

1. Discretize the surfaces of the conductors with two-disi@amal uniform meshes.

2. Compute the solenoidal basis mati#Xor each conductor.

3. For conductot =1, ..., n,:

(&) Compute the particular solutidﬁ) for a unit current flow through conductér

(b)

(©)

and the corresponding induced potential difference veetor

Solve the preconditioned system

P’ R + jwL]PLz = PTFO, 20 =Ly

to determiner), and compute filament current and filament potential differ-

ence vectors:
) 1 . l
10 = Pe® +10, VO = R+ jor) 10,

Use right-preconditioned GMRES to solve the system. Usecxxqopate hierar-
chical methods such as FMM or Barnes-Hut to compute matrixewgoroducts

with L andL at each iteration.

For conductok = 1,. .., n,, determineZ(w), , by adding the potential differ-
ence across all the filaments along a path between the twocérusductor

k.
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An efficient implementation of this algorithm is based on aber of optimizations.
The matrixP is never computed explicitly. A matrix-vector product wikhis used to
compute filament currents from mesh currents. Since thigootaion is defined locally,
it can be performed by accumulating the contribution of eaxsh current to the four
filaments that comprise the mesh or loop. Knowledge of theesire of the discretization
mesh is sufficient to develop an implementation in whighs not computed and stored
explicitly. Similarly, matrix-vector products witl?? are used to compute mesh currents
from filament currents. These products can also be computadwy explicitly computing
PT. This approach leads to significant saving in storage withmease in computation.

The cost of the orthogonalization step in GMRES is proposgiom k2, wherek is the
number of iterations. Hence, the parallel performance oREH8 degrades dsincreases
due to increased communication overhead of orthogonalizatep. By using an effective
preconditioner that requires very few iterations, we redine computational cost as well
as the storage requirement of GMRES. Furthermore, the phiraiblementation does not
suffer from the effects of the orthogonalization step. le tiext chapter we demonstrate
the numerical and computational superiority of the predoser over existing techniques

for several benchmark problems.
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CHAPTER V

COMPARISON WITH EXISTING WORK

In this chapter, we compare our algorithm with a public domiaiductance extraction
package called FastHenry [12]. Due to its high accuracytHeasy is often used as a
reference for all other extraction algorithms. FastHersgsumesh currents similar to the
local solenoidal flows to generate a reduced system. Theceedsystem is solved by
the preconditioned GMRES method to compute accurate estinwdta circuit’s parasitic
inductance. Matrix-vector products with the dense mdiriaxre computed via FMM. The
similarities between FastHenry and solenoidal basis nadethake a compelling case to
compare the performance of the two approaches.

The mesh currents in FastHenry are slightly different frown local solenoidal flows
in our approach. FastHenry represents the discretizedgmohas a graph with filaments
and external sources as branches in the graph. A mesh cisgefined as a current flow
along a loop of branches in the graph that does not enclosethry branch. This graph
based approach for mesh currents does not exploit the ftdti circular solenoidal flows
are discrete curl operators to construct preconditioners.

The main difference between the two algorithms lies in tleepnditioning step. Fas-
tHenry uses preconditioners that are derived from incotagkectorizations of sparsified
forms of the reduced system. These sparse approximatieroastructed in a variety of
ways. One approach is to use the inverse of blocks of the egdsigstem. This approach
relies on the fact that physically close meshes are tiglthpted. A sparse approximation
of the reduced system is obtained by retaining interac@ongng closely coupled meshes.
The preconditioner is then formed by using rows of locallyeited coupling matrix. This
approach tends to work well when only a few meshes are closébgther approach is

to use the incomplete LU factors of the reduced system. Téeopditioning step is then
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implemented as a sequence of forward and backward sulmsigut

Other techniques to construct more effective preconditisrior FastHenry include
approximation of the dense inductance maltiwith a sparse matrik, followed by di-
rect factoring of the reduced system. The software allowsqnmditioners such as DIAG
whereL,, = diag(LL). Other preconditioners such as CUBE and SHELL are also peajos
which explicitly restrict the off-diagonal non-zeros incbacolumn ofLL to those resulting
from coupling between specific filament pairs. For the SHEtécpnditioner, the problem
domain is divided into disjoint regions. The sparse appmationL,, iS constructed by
placing diagonal blocks of filament interactions in eachhstegion. For the CUBE pre-
conditioner, the 3-dimensional space is divided into cubesL, is composed of blocks
of filament interactions in each such cube (see [11] for metails).

Although FastHenry is used as a benchmark for accuracy cesopait has found lim-
ited use in the VLSI-CAD community due to the long simulationd and large memory
requirements. Since FastHenry is available only for urdpssor workstations, the size of
problems that can be solved is severely limited. The sotiEidiasis method, uses FMM
variant to compute products with the system maliiand the preconditionek directly
without explicitly computing these matrices. The resgtimplementation is a matrix-free
code in which neither the system matrix nor the precondgianatrix is ever computed.
This reduces the storage requirement considerably, thedédwing larger problems to be
solved. Chapter VI provides additional details and outliaefficient parallel implemen-
tation of the solenoidal basis approach.

The performance of the solenoidal basis method was compauifegstHenry on four
representative problems: the 2D ground plane problem, thescover problem in 3D,
the pin connect problem and the planar spiral inductor groblThese experiments were
conducted on a 1.5 GHz Pentium Workstation with 1 GB of memomning Redhat Linux

operating system. Multipoles of degree two were used irhalRMM computations.
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Table VI. Comparison of solenoidal basis method and FastiHenthe ground plane prob-
lem at 10GHz frequency (Memory in MB and time in seconds).

Mesh FASTHENRY-DIAG FASTHENRY-CUBE Solenoidal Method

Size Iter. | Time | Mem. | Iter. | Time | Mem. | lter. | Time | Mem.

32x32 | 28| 2.8 12 22 | 2.8 13 5 1.3 3

64x64 | 37 | 185 | 51 32 | 206 | 55 5 6.1 6
128 x 128 | 54 | 139 | 219 | 45 | 171 | 233 6 | 30.2| 20
256 x 256 | 76 | 1132 965 | 63 | 1596 | 1036 | 7 142 78
012 x 512 | — — - - - - 7 | 575 | 294

A. Ground Plane

Table VI shows the number of iterations needed by precanditi GMRES to compute
the self impedance of a ground plane at 10 GHz (see Fig. 1).lekalacer = 102 was
specified as the stopping criterion for GMRES for both methdastHenry was allowed
to use default values for all the parameters. In these axgeaits, the inductance computed
by the solenoidal basis method was within 2% of that obtabmeBastHenry.

FastHenry requires significant amount of memory to consthepreconditioner ma-
trix and to compute its LU factors. The entries marked “—"iaade the inability of Fas-
tHenry to solve the problem within the available system mgmigor an unpreconditioned
GMRES solve, FastHenry takes 79 iterations for the grounaggiaoblem with 256 x 256
conductor refinement. The number of iterations requireddowergence of GMRES using
DIAG preconditioner was similar to that of the unprecorahigd system. This indicates
that the DIAG preconditioning scheme is ineffective for tireund plane problem. Fur-
thermore, a growth in the number of iterations with mesh sirkcates a sub-optimal

preconditioning scheme that contributes an additionabfaowards the increase in cost of
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Table VII. Comparison of the preconditioned solenoidal ®asiethod with FastHenry
(Memory in MB and time in seconds).

Conductor] FASTHENRY-DIAG| FASTHENRY-CUBE| Solenoidal Method

Layout Iter. | Time | Mem. | lter. | Time | Mem. | lter. | Time | Mem.

Mesh size: 32« 320

1 64 73 138 40 65 143 5 16 13

1+1 67-73| 277 | 270 43 216 | 280 6 68 25

2+2 74-80| 1225| 557 | 44-49| 864 | 574 | 7-8 | 344 | 48

Mesh size: 64x 640

1 89 515 | 648 58 561 | 679 6 75 53
1+1 - - - - - - 7 | 326 | 102
2+2 - - - - - - 8-9 | 1566 | 201

solving these systems as the mesh size is increased. Bioegduce the storage require-
ments through greater sparsification tend to decreaseftatie¢ness of the preconditioner.
In contrast, the solenoidal basis method is able to solveykems in almost fixed number
of iterations. One can also restrict memory requirementixiyg the number of Krylov
subspace basis vectors in GMRES and using a restarted-GMREShBuapproach also

increases the iterations and solution time.

B. Cross Over

Table VII shows the number of iterations needed by precanmditt GMRES at a frequency
of 10GHz for the cross over problem (see Fig. 9). Again, agtaptolerancer = 103

was used for GMRES for both methods. FastHenry was alloweddalafault values for
all the parameters. The column marked “Iter.” gives the eanfjiterations needed to

solve multiple instances of the linear system. Though Fastidwas able to amortize the
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Table VIII. Performance of solenoidal basis method andHresty for the pin connect prob-
lem at 10GHz frequency (Memory in MB and time in seconds).

No of No of FASTHENRY-DIAG| FASTHENRY-CUBE| Solenoidal Basis

Pins | Filaments| lter. | Time | Mem. | lter. | Time | Mem. | Iter. | Time | Mem.

3 8.5K 64-73| 103 | 58 |46-52| 79 56 8-9 32 7
6 17K 72-81| 492 | 104 | 49-55| 330 | 100 | 9-10 | 159 12
9 26K 76-94| 1169 | 218 | 50-54| 698 | 209 | 10-11| 411 18

cost of preconditioner construction over calculating fipigtcolumns ofZ(w) matrix, the
solenoidal basis method still outperforms it. Results shwav the reduction in precondi-
tioner construction time and memory when using the DIAG pnelitioner are offset by the
increased cost of the orthogonalization step in GMRES sirlaegar number of iterations
are required. Additional memory is also required to stoeektylov subspace basis vectors
in GMRES. These results also demonstrate the comparatiamntatye of the solenoidal ba-
sis method. The accuracy is similar to the ground plane probiith the inductance value

within 3% of that obtained by FastHenry.

C. Pin Connect

Table VIII shows the performance of the solenoidal basisheetand FastHenry for the
pin connect problem (see Fig. 10). The stopping criteriols e same as the ground
plane problem. FastHenry was allowed to use the default CUBEogpditioner. For thin

segments, FastHenry primarily discretizes the conductdase using long filaments along
the width only. The number of filaments and meshes obtainextibly an approach would
be similar. On the other hand, solenoidal basis method uaedimensional approach that
yields nearly twice the number of filaments compared to thalyer of meshes. We report

the performance of the two approaches with a conductor sidécretization that yields
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similar number of filaments. Results in Table VIII show thathwincrease in number of
filaments, the growth in the number of iterations for the soldal basis method is minimal.
Although the cost of preconditioner construction for Fastk is significantly less for this
problem, the increase in iterations results in a highertswiuime. One can expect further
increase in time and memory requirements for FastHenryeagrtiblem size is increased.
In these experiments, the inductance computed by the sdiEnmasis method was
within 4% of that obtained by FastHenry. The difference ia itductance value between
the two appraoches is also due to the difference in modetifrtge angular joints within
each pin. FastHenry uses overlapping regions at the turhereas solenoidal method
uses non-overlapping regions. One should note that foHeasy the one dimensional
discretization scheme requires less time and memory asa®uhpo a two dimensional

discretization, irrespective of the preconditioning agguh.

D. Spiral Inductor

Another benchmark problem that we use to compare the pesfozenof solenoidal method
with FastHenry is thepiral-inductorproblem shown in Fig. 11. The spiral inductor prob-
lem is a challenging example consisting of a coil shaped aotwd which is used in electro-
magnetic circuitry such as in magnetic access cards. THegmoconsists of determining
the self-impedance of the structure. The segments are 1nae, \&nd are separated by
approximately Imm. The discretization is similar to thatte ground plane problem. The
simulations were conducted for a frequency of 10GHz.
Table 1X compares the performance of the solenoidal basteadewith FastHenry.

The growth in the number of iterations for the solenoidalibasethod is minimal due
to the preconditioning scheme. For FastHenry, the pretionér construction cost for

spiral-inductor is similar to that of ground plane problerhe growth in time and memory
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Fig. 11. Spiral inductor.

requirement with increase in problem size further asaettéis. To do a fair comparison
of the the two approaches, we force FastHenry to generatecaetlzation with similar
number of filaments as used by the solenoidal method. The 8 ofwthe Table IX cor-
responds to a discretization of 7, 9 and 13 meshes along tité wi each spiral turn for
the solenoidal method and 9, 7 and 15 meshes for FastHenthese experiments, the
inductance computed by the solenoidal basis method waswééb of that obtained by

FastHenry. The additional difference in the inductanceiedletween two approaches is

Table IX. Comparison of solenoidal basis method and FastHBmnrthe spiral inductor

problem at 10GHz frequency (Memory in MB and time in seconds)
No of | FASTHENRY-DIAG

Filaments| lter.

FASTHENRY-CUBEH
Time | Mem. | lter.

24K 55 | 76

= Solenoidal Method
Time | Mem. | lter.
132 | 37 | 94
40K 66 | 151 | 201

Time | Mem.
131 10 35 17
42 | 191 205 10

53 | 648 | 457 | 11

59 26

80K 81 | 312 | 464

125 | 49
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due to the modelling difference of the turns of the spiratl dnes not necessarily indicate
lower accuracy.

The modest performance of the preconditioners in FastHemme with a significant
cost of computing the preconditioners as well as storingnth&Vhile these storage re-
quirements can be reduced by computing incomplete faettioizs, often this results in a
weak preconditioner. The slower convergence rates asedondth ineffective precondi-
tioning may lead to overall higher computational cost. Tomparative advantage of the
solenoidal method is expected to grow with larger problems.

The performance of the solenoidal method can be furthertbdds/ using additional
memory. It is possible to store direct interactions durimg initial matrix-vector product
with L andL, and to reuse them later. This approach is beneficial whee tre multiple

right hand sides.
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CHAPTER VI

PARALLEL FORMULATION*
The most computationally intensive steps in the algoritmenthe matrix-vector products
with the reduced system matrR” [R + jwL] P and the preconditioner matri%xt. The
cost of multiplying a vector with the dense matfixis significantly greater than the mul-
tiplication with P or PZ. It is worthwhile to use multipole-based hierarchical noeth to
compute matrix-vector products wilh. Furthermore, since the structure of the precon-
ditioner L is similar to L, these fast methods should be used to compute matrix-vector
products in the preconditioning step as well. A humber ohsiéchniques have been de-
veloped including the Appel’s algorithm [1], Barnes-Hut [Bethod and the well known
Fast Multipole Method (FMM) [7]. Other vector operationsGMRES can be parallelized
in a straight-forward manner. The implementations basetherierarchical methods are
matrix-freeapproaches in which neither the system matrix nor the paitoner matrix is
ever computed. This reduces the storage requirement @vabig, thereby allowing larger

problems to be solved.

A. Hierarchical Dense Matrix-Vector Products

The cost of computing an accurate matrix-vector produdis a'dense. x n matrix require
O(n?) operations. If the entries of the dense matrix havgadecaying kernel, approxi-
mations to these products can be computed efficiently thrbierarchical multipole-based
methods. The nature of the element&iandL allows use of fast hierarchical algorithms in
which reduction in computational complexity is obtaineth&texpense of accuracy. In par-
*Part of this chapter is reprinted from Parallel Computing).\29, by H. Mahawar and

V. Sarin, “Parallel Iterative Methods for Dense Linear $yss$ in Inductance Extraction”,
1219-1235., Copyright (2003), with permission from Elsevie
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ticular, one can exploit the rapid decay of the kernel wiitalice to compute approximate
matrix-vector products i (nlogn) or O(n) operations. For the inductance extraction
problem, these algorithms use a truncated series to appatithe effect of a cluster of fil-
ament currents on other clusters that are well-separatezlBarnes-Hut method relies only
on filament-cluster interactions to achieve@m log n) computational bound whereas the
FMM uses both filament-cluster and cluster-cluster intiwas to achieve a®w(n) bound
for uniform filament distributions. The accuracy of FMM cam improved by increasing
the multipole degreé€, which determines the number of terms used in the approlomat
A hierarchical multipole method (HMM) [18] has also been eleped. The HMM im-
plementation can be treated as either augmented Barnesrhubdified FMM, and has
the implementation advantages of Barnes-Hut and accuraujasito FMM. Similar to
Barnes-Hut, HMM relies only on filament-cluster interacgaie achieve arO(nlogn)
computational bound. In this work, we use a variant of FMMoallilpm to compute ap-
proximate matrix-vector products with bokhandL. These matrices compute potential at
each filament due to current flow in all the filaments. Filanmaid-points form the set of
particles for FMM. It is sufficient to represent the filamebystheir mid-points to compute
the inductive effect between a pair of filaments. Self-irtdoce of a filament is computed
by closed form formula [9].

These hierarchical algorithms work in two phases: the @&-tonstruction phase and
the potential evaluation phase. An oct-tree is used to coergohierarchical spatial decom-
position of the mid-points of the filaments. The root of theetrepresents a cubical domain
containing all the points. Eight children nodes are creagegartitioning the domain into
eight equal non-overlapping subdomains. The points acepalgitioned among the subdo-
mains. The process is repeated on each subdomain recyrsitélevery subdomain has
at mosts filaments, where is a parameter chosen to maximize computational efficiency.

This recursive strategy yields an oct-tree with a hieraahspatial ordering of the points.
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A subdomain is represented by a subtree whose leaf nodesrctim filaments in the sub-
domain. Since the oct-tree stores non-empty cubes onfy/stifieme yields non-uniform
oct-trees for unstructured point distributions. During ffotential evaluation phase, each
internal node in the tree computes and stores the effectl dalparticles contained in
its sub-tree. The effect at a node is computed from the effeids children through an
up-traversal of the nodes from the leaves to the root. To coenthe effect of remaining
particles that belong to other subtrees, each internal nsele the information stored at the
roots of other subtrees that are well-separated. Wellraggzess is established by using
a distance metric to determine if the nodes are sufficierfdly-6ff” such that the error in
accuracy is below a threshold. Using a top-down scheme ctheaulated effect at the root
of a subtree is passed down to the leaf nodes. The effect diyémments are calculated
directly.

During potential evaluation phase of Barnes-Hut method, caleulates theenter
of massat the internal nodes in a bottom-up fashion. The center cfsna& each node
approximates the effect of all particles in its subtree. dmpute the effect due to the
node’s particles at an observation point, a top-down tsalés done to identify nodes that
satisfy the multipole acceptance criteria. The acceptanteria requires that the ratio of
the node’s size to the distance between the node’s centeharabservation point be less
than a threshold value. To get the effect of the particlesnode’s subtree, one has to use
the center of mass of the node. More details on it can be fauii].i

The potential evaluation phase of FMM consists of two treaky of the tree. For
each node, FMM computes a set of multipole coefficients inteooboup fashion. These
coefficients can be used to compute the potential due toealfiliments within the node’s
subdomain at an observation point outside the subdomaia.obkervation point must be
outside a sphere that encloses the subdomain completelgirfplicity, a larger cube con-

taining the sphere can be chosen as the neighborhood of areabd The computational
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complexity of this step i©)((d + 1)*n) for a problem withn points (see [7] for additional
details). At any point, the net inductive effect due to féfrpmints can be determined from
the multipole coefficients of onlg (logn) nodes. To reduce the complexity further down
to O(n), FMM computes a set of local coefficients for each node. Thes# coefficients
can be used to compute the potential at any point inside assdiedomain due to points
outside its neighborhood. These coefficients are compubed the multipole coefficients
of nodes that are adjacent to the leaf’'s neighborhood asasdlom local coefficients of
the leaf's parent. The inductive effect at any point in thef leode is calculated as a sum
of two values: dar-field due to the points outside the leaf’s neighborhood anda-field
due to the points that lie within the neighborhood. The faldfis computed using the local

coefficients at the leaf node whereas the near-field is foyrdirect computation.

1. Impact of Parameters

For FMM, when usingl degree multipoles, the number of multipole and local coeffits
at each node i&l + 1)? and the cost of computing these coefficients is proportitmal +
1)%. Increase in multipole degree has dual benefits. In addititime increase in accuracy of
the approximation, the parallel performance improvesisaantly due to rapid growth in
the computation. The speedup often exhibits superlindzaber due to the cache-friendly
nature of these computations. Tables X and XI show the efitatcreasing multipole
degree on the ground plane and cross over interconnecttepreprespectively. These
experiments were conducted on a 128-processor SGI Origingith 250MHz clock speed
at the National Center for Supercomputer Applications (NC&Ahe University of lllinois.
OpenMP directives were used to parallelize the code. FggilBeand 13 show that for
a fixed problem size, the parallel efficiency increases witlitipple degree for a fixed

number of processor (see [15] for more details).
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Table X. Parallel performance of the ground plane problendiiberent choices of multi-
pole degree (s=32, conductor mesh size=2886, time in seconds).

Multipole No. of processors

degree p=16 p=32 p =64

(d) Time | Speedup Time | Speedup Time | Speedup

36 9.2 21 16.1 17 20.2

91 13.6 51 24.1 30 40.8

1
2
4 604 14.7 320 27.8 167 53.4
6 2298 | 18.1 | 1195| 34.7 642 64.5

70
—>— Speedup for p = 16

64 —=—Speedupforp=32 |~~~ "~ R e
—<— Speedup for p = 64

56

48

40

321

Speedup

24

164

Multipole Degree

Fig. 12. Effect of multipole degree on the ground plane pobl The dashed lines indicate
maximum theoretical speedup prprocessors.
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Table XI. Parallel performance of the overlapping panetdbf@m for different choices of
multipole degree (s=32, conductor mesh size=B86, time in seconds).

Multipole No. of processors

degree p=16 p=32 p =64

(d) Time | Speedup Time | Speedup Time | Speedup

42 9.4 22 17.8 20 19.5

100 13.1 55 23.3 33 39.2

1
2
4 757 15.0 395 28.8 175 64.9
6 2325| 18.7 | 1213| 35.8 642 67.6

70
—b— Speedup for p = 16

64 —=— Speedupforp=32[ "~~~ Y - - - -~ - -~~~
—<— Speedup for p = 64

Multipole Degree

Fig. 13. Effect of multipole degree on the cross over probl&he dashed lines indicate the
maximum theoretical speedup prprocessors.
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Table XII. Effect of the multipole degree on the serial exemutime for different choices of
maximum particles per leaf box (conductor mesh sizexx®2, time in seconds).

Multipole Particles per leaf boxsj

degreed) | s=2|s=8|s=32| s=128

1 50 18 13 30
2 226 | 63 25 33
4 1513| 398 | 111 51

The performance of the hierarchical multipole algorithrsoalepends on the max-
imum number of particles allowed per leaf boy.( The dominant computation in FMM
consists of multipole-to-local translations (M2L) withraputational cost proportional to
(d + 1) Table Xl shows that with increase if) the FMM time increases proportional to
(d + 1)*. The execution time for FMM decreases wheis increased due to a decrease in
the number of M2Ls. The cost of direct interactions is préipoal to s?> and is negligible
for small values ok. Direct interactions begin to dominate the overall costdoge values
of s, resulting in higher execution time. These experimentseveemnducted on a 64-bit
AMD Opteron workstation with a 1.4GHz processor running B#$ux operating sys-
tem. Table XII shows that whesis increased, the FMM execution time reduces rapidly
due to reduction in M2Ls, until the direct interactions lretgi dominate the computational
cost. For a given problem, one can identifly §) pair that minimizes the execution time

(see [18] for more details).

B. ParlS - Parallel Inductance Extraction Software

We have developed an object-oriented parallel implemiemtaf the solenoidal basis algo-
rithm for inductance extraction. This software combines ddvantages of the solenoidal

basis method, fast hierarchical methods for dense magitxev products, and a highly ef-
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fective preconditioning scheme to provide a powerful pgeki@ar inductance extraction. In
addition, the software includes an efficient parallel imnpdmtation that reduces the overall
computation time on parallel architectures [16, 17, 19].

The building blocks ofParlS are conductor elements. Each conductor is uniformly
discretized with a mesh of filaments. To exploit paralleliatrthe conductor level, each
conductor is assigned to a different processor. All the datactures that are native to
a conductor are local to its processor. This includes thenélats in a conductor and the
associated FMM tree. With the exception of matrix-vectadurcts, all other computations
are local to each conductor. Only matrix-vector produatsiirtcommunication cost as they
involve interactions among different conductors that as&rithuted across processors.

The matrix-vector product with the inductance maftixand the preconditionds in-
volve interactions among filaments of the same conductorefisas between the filaments
of different conductors. Interactions between the filam@fthe same conductor are com-
puted locally by the associated processor. To get the effditaments in other conductors,
a processor needs to exchange multipole coefficients whikr grocessors. During a pre-
processing stegRarlS identifies the nodes in a conductor’s tree that are requiyeathoer
conductors. The cost of this step is amortized over thetitara of the solver. While
computing the dense matrix-vector product, communicaioreeded to translate the mul-
tipole coefficients of these nodes to the nodes on other psoce. Communication is also
needed when computing direct interactions between adjaceles that belong to different
subtrees. This type of communication is proportional torthenber of filaments on the
subdomain boundary.

A straightforward approach for parallelization of matvi&etor product can be imple-
mented by constructing a single oct-tree with filament nodhfs as set of particles. Such
a tree structure can easily identify the nodes that padieim the communication phases

without significant overheads. At every level of the hiehdcal oct-tree, nodes should be
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MPI Communication

Conductor Conductor Conductor Conductor
Cluster 1 Cluster 2 Cluster k Cluster n

Fig. 14. Two-tier parallelization scheme implemente®®anlS

assigned to the processors such that the computationalisvevienly distributed. This can
be achieved by using a cost function that accounts for coatl afiteractions for a given
node. To reduce communication costs, particles should tigigaed across processors in
such a way that the boundary points on the processor subd@reacontiguous in memory
locations. This can be achieved by various space fillingesisuch as Morton ordering,
Hilbert ordering, Gray code, etc. [2]. A parallel FMM implemtation using such a scheme
for capacitance extraction problem has been presented]n Y&rious parallel formula-
tions of multipole-based techniques have been developsd\mral groups [6, 24, 27, 29].
Additional parallelism is available within each condudtmough the FMM structure.
Partitioning of the oct-tree of a conductor among multipleetids is achieved by assigning
non-overlapping subdomains at a particular levelf the oct-tree. The internal nodes at
level k£ are roots of subtrees of the corresponding subdomains. Mighpartitioning, a
thread is responsible for calculating the multipole an@l@oefficients of its own sub-tree.
The computation involving these coefficients requires mamainication between threads.
The computation for the levels abokecan be be assigned to small number of threads to
increase the parallel efficiency. With different sized aactdrs, one can have more threads

associated with larger conductors. This scheme allowshagghcing to a certain extent.
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A two-tier parallelization approach shown in Fig. 14 allothe algorithm to be im-
plemented in hybrid or mixed mode using both MPI and OpenMextives. The software
can be executed on a variety of platforms ranging from sharechory multiprocessors to

workstation clusters seamlessly.

C. Parallel Performance

The software design d?arlShas the dual advantage of portability and performance acros
a variety of platforms. This is achieved through a two-ti@rghlelization approach that uses
MPI processes for conductor level parallelism, while Opé&nditectives are used to exploit
parallelism within a conductor. We present experimentstnahstrate the parallel perfor-
mance of the software on multiprocessors with shared,illis&éd, and distributed-shared
memory architectures. We consider distributed memorygiaits such as the 64-bit AMD
Linux cluster where parallelism can be exploited via MPIgasses only. Distributed-
shared memory platforms such as the IBM p690 that allow mixedarparallelization
with both MPI and OpenMP are also considered.

We present numerical experiments to study the parallebp@dnce of the software.
These experiments were designed to illustrate the paedflelency and scalability of the
implementation for benchmark problems. We report the ex@cdime and parallel effi-
ciency of the iterative solver. Efficiency is defined as thecget utilization of the proces-
sors, and is computed as the ratio of speedup to the numbeocégsors used. Speedup
refers to the speed improvement obtained by the paralled cwdr a single processor exe-
cution.

Instead of solving the full inductance extraction probleve, report the parallel per-
formance of the algorithm for a fixed number of GMRES iteradidBach iteration involved

dense matrix-vector products with the coefficient matriwa$ as the preconditioner. This
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is indicative of the actual performance since the denseixaatctor products account for
over 98% of the execution time. The performance of the sotiwi@pends on various pa-
rameters for FMM, such as the number of particles in leaf sdslg the multipole degree
(d), etc. One should note that the higher multipole degree f&gnily increases the com-
putional cost compared to the communication cost, whichuin improves the parallel

effficiency (see [15] for details).

1. Shared Memory Parallelization

We use the ground plane problem shown in Fig. 1 to illustta¢eparallel performance of
the code on a shared memory multiprocessor. These expéasimere conducted on a 32-
processor IBM p690 multiprocessor with 1.3GHz processoed@and AlIX5.1 operating
system. The code was parallelized with OpenMP directivégs on

Table XlII shows the execution time and parallel efficientyh® software for linear
systems of order 32K, 128K and 512K unknowns. For a fixed siablpm, a modest de-
crease in parallel efficiency with increase in the numbero€essors indicates an efficient
parallel implementation. This effect is pronounced dué&increase in the serial compo-
nent of the matrix-vector routine corresponding to thekdgvels of the oct-tree. Figure 15
illustrates the scalability of the algorithm. It can be st&t by increasing the problem size,

parallel efficiency is maintained when the number of prooesare increased.
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Table XllI. Parallel performance for the ground plane pesblon IBM p690 using OpenMP
(d=4, s=32, time in seconds).

Mesh Size

No. of 128 x 128 256 x 256 512 x 512
processors Time | %Eff. | Time | %Eff. | Time | %Eff.
1 60.4 | 100 | 260 | 100 | 1063| 100

2 31.3| 97 133 98 546 97

4 156 | 97 67 97 276 96

8 8.9 85 37 88 148 90

16 5.5 68 22 73 93 72

T T T T T
16 +—*— Linear (Ideal) speedup g
|— ¢ — Speedup for 128x128
|- —o— - Speedup for 512x512 B
[oX
>
=}
(3]
() -
[oR
n
L L L L L L L L 1
1 2 4 8 16

No of processors

Fig. 15. Shared memory speedup for the ground plane problgimdiferent conductor
discretization.
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Table XIV. Parallel performance for the cross over problem®M p690 using MPI and
OpenMP (conductor mesh size=3220, d=4, s=64, time in seconds).

Pypr=1 Pypr=2 Pypr=4 Pypr=8

Poyp | Time | %Eff | Time | %Eff | Time | %Eff | Time | %Eff

1 8012 | 100 | 4091| 98 |2053| 98 | 1119| 90

4033| 99 | 2028| 99 | 1070 94 | 598 | 84

2
4 2118| 95 | 1098| 91 | 585 | 86
8 1452 69 | 753 | 67

2. Mixed Mode Parallelization

The benchmark problem presented in this section utilizedwlo-tier parallel implemen-
tation of the software. The cross over problem shown in Fig. & standard benchmark
problem for inductance extraction. The problem consistdeiérmining the impedance
matrix of 16 overlapping segments in a three-dimensionafigaration. These 16 conduc-
tors were spread out in 2 layers of 8 conductors each in 3+inr. This problem leads
to a non-uniform point distribution for the dense matrixcier multiplication algorithm.
Mixed mode experiments were conducted on 16 processorsIBNp690 at NCSA, llli-
nois. No more than 16 processors were available due to sitiécteons. Various combina-
tions of OpenMP Py, p) and MPI processes?, ;) were used to demonstrate the mixed
mode parallel performance of the software. MPI processes a&signed conductors and
OpenMP directives were used to parallelize computatiohiwitonductors.

Table XIV shows the parallel performance of the software ngteach conductor has
been discretized by a mesh of size 8820. The experiments were setup to compute the
full impedance matrix. For the given problem size, the Im&gstem includes 320K un-
knowns. The speedup obtained by the code resembles thedgptame problem, showing

that parallel performance of the code does not diminishHed-dimensional problems.
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Table XV. Parallel performance for the 8+8 cross over pnoblesing MPI on IBM p690
and AMD-64 Linux cluster (d=4, s=64, time in seconds).

No of IBM p690 | AMD-64 Linux

processors Time | %Eff. | Time | %Eff.

Conductor Mesh Size: 32320

1 8305 | 100 | 16270 100
2 4151 | 100 | 9183 89
4 2085 | 99 | 5019 81
8 1199 | 87 | 2436 84
16 659 79 1408 72

Conductor Mesh Size: 64640

31656, 100 | 63890 100

15821| 100 | 34445| 93

1
2
4 7955 | 99 |18877| 85
8 4401 | 90 | 9360 85

16 2370 | 84 | 5168 77

3. Distributed Memory Parallelization

The preconditioned iterative solver outlined earlier cambplemented efficiently on distributed-
memory multiprocessors. The experiments reported in #u8@ were conducted on IBM
p690 at NCSA and a 64-bit AMD Opteron-240 Tensor cluster ab$ex&M University.
The Tensor cluster consists of 1.4GHz 64-bit AMD Opterorcpesors with SUSE-Linux
operating system. Portland Group (PGI) compilers were wsethe Tensor cluster for
compiling the code.

Table XV shows the execution time and parallel performarfidbe software for the

cross over problem with 16 conductors. The parallel impletatgon uses MPI directives
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only. For the two problem instances with variable condudiecretization, the linear sys-
tem includes 320K and 1280K unknowns. The parallel perfoceaof the software is
nearly identical on both multiprocessors. This indicatest the code utilizes each pro-
cessor efficiently on both systems when the load is dis&ibuniformly across processes.
Note that the drop in parallel performance is due to increasemmunication as well as
computations.

The parallel performance of the algorithm is also analyzaeddmducting experiments
with larger number of processors. Table XVI shows the pakgkrformance of the soft-
ware for the 4-layered cross over problem with 128 condsadorup to 128 processors of
Tensor cluster. These 128 conductors were spread out iredslay 32 conductors each in
3-dimension. Note that we only solve for first 16 columns @& iimpedance matrix. For
the two problem instance with variable conductor discedton, the linear system includes
2560K and 10240K unknowns. Due to memory restrictions, & mat feasible to run larger
problem instances on fewer than 16 processors. Figure bétsgpe speedup over 16 pro-
cessor run for all problem instances. The results demdadtnat the software is able to
maintain high parallel performance on large number of psscEs.

The performance of the software can also be compared in tefrthe processor uti-
lization of the code. This measure of parallel performasaespecially useful to compare
problems that require different number of mutual induceaimteractions (see [17] for de-

tails).
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Table XVI. Parallel performance for the 4-layered crossropsoblem using MPI on
AMD-64 Cluster (d=4, s=32, time in seconds).

Conductor Discretization

No of 32x 320 64x640

processors Time | %Eff. | Time | %Eff.

16 19812| 100 | 81182| 100

32 10071 98 | 41685 97

64 5050 | 98 | 21013 97

128 3163 | 78 | 10841 94

%‘Linear (Ideal) speedup‘ ' '
81— ¢ — Speedup for 32x320 b
—B— Speedup for 64x640 - 1
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Fig. 16. Parallel performance of the software for 4-layemess over problem on up to 128
processor of Tensor cluster.
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CHAPTER VI

CONCLUSIONS
For the modern VLSI circuits, with advances in circuit teglogy and increasing oper-
ational frequency, there is a significant need for fast ammli@ate inductance extraction
software. The computation of impedance matrix for the itdice extraction problem
requires solution of dense, complex linear systems of ezt

This work presents a high performance parallel preconttiosoftware for induc-
tance extraction of VLSI circuits. The software derivessiiength from an effective pre-
conditioning scheme that results in rapid convergenceeoiténative method. We use local
solenoidal flows to convert the system into a reduced sydtainig solved iteratively by
the preconditioned GMRES method. Fast hierarchical muéipased methods were used
for the computationally intensive matrix-vector produetgh the dense coefficient and
preconditioner matrices. We have proposed a nearly optmgdonditioner based on the
inductive coupling among filaments of the mesh that doesewptire explicit construction
of the coefficient matrix. Numerical experiments indicdtattfor high frequency extrac-
tion in the range of 100MHz - 100GHz, the proposed precoowiér exhibits convergence
in almost fixed number of iterations irrespective of the medinement and operational
frequency. Benchmark experiments indicate that the segidpnance of the algorithm is
superior to FastHenry, a well-known inductance extragtiackage.

Furthermore, we present an efficient parallel implemeonadi the preconditioned al-
gorithm that reduces the overall computation time consiolgron multiprocessors. The
software employs a two-tier parallelization approach imvg MPI and OpenMP direc-
tives to deliver a high performance parallel software thaiartable to a variety of multipro-
cessors. Experimental results demonstrate that the ghiralplementation achieves very

high parallel efficiency on shared-memory, distributedmogy, and distributed-shared mem-
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ory multiprocessors.

A. Possible Enhancements

There are a number of enhancements that are possible:

e The two-dimensional uniform discretization of conductarfaces yields spatially
uniform particle distribution for the hierarchical metlsodAn adaptive refinement
approach for conductor surfaces, one that is similar to adtgace extraction [26],

can be used.

e Solenoidal basis method gives a reduced system of equdatah®nly depend on
unknown mesh currents. One can develop fast hierarchichlads for thel /r ker-
nel, which is directly applicable to the reduced system. fiesh based formulation
is same as applying discrete curl operatot to kernel. An approach using Gegen-
bauer polynomials can be used to generalize the multipaledhierarchical scheme

to compute fast approximate matrix-vector product with kernel [28].

e An alternate parallelization scheme bases on a singlereetdan be used, which
utilizes the particle distribution rather than conductoubdaries. This would result

in a load-balanced parallel implementation for the mawextor products.
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