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ABSTRACT 
 
 

In Situ Characterization of Soil Properties Using Visible Near-Infrared Diffuse 

Reflectance Spectroscopy. (May 2006) 

Travis Heath Waiser, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Cristine Morgan 
 
 
 

 Diffuse reflectance spectroscopy (DRS) is a rapid proximal-sensing method that 

is being used more and more in laboratory settings to measure soil properties.  Diffuse 

reflectance spectroscopy research that has been completed in laboratories shows 

promising results, but very little has been reported on how DRS will work in a field 

setting on soils scanned in situ.  Seventy-two soil cores were obtained from six fields in 

Erath and Comanche County, Texas.  Each soil core was scanned with a visible near-

infrared (VNIR) spectrometer with a spectral range of 350-2500 nm in four different 

combinations of moisture content and pre-treatment:  field-moist in situ, air-dried in situ, 

field-moist smeared in situ, and air-dried ground.  Water potential was measured for the 

field-moist in situ scans.  The VNIR spectra were used to predict total and fine clay 

content, water potential, organic C, and inorganic C of the soil using partial least squares 

(PLS) regression. The PLS model was validated with data 30% of the original soil cores 

that were randomly selected and not used in the calibration model.  The root mean 

squared deviation (RMSD) of the air-dry ground samples were within the in situ RMSD 

and comparable to literature values for each soil property.  The validation data set had a 

total clay content root mean squared deviation (RMSD) of 61 g kg-1 and 41 g kg-1 for the 
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field-moist and air-dried in situ cores, respectively.   The organic C validation data set 

had a RMSD of 5.8 g kg-1 and 4.6 g kg-1 for the field-moist and air-dried in situ cores, 

respectively.  The RMSD values for inorganic C were 10.1 g kg-1 and 8.3 g kg-1 for the 

field moist and air-dried in situ scans, respectively.  Smearing the samples increased the 

uncertainty of the predictions for clay content, organic C, and inorganic C.  Water 

potential did not improve model predictions, nor did it correlate with the VNIR spectra; 

r2-values were below 0.31. These results show that DRS is an acceptable technique to 

measure selected soil properties in-situ at varying water contents and from different 

parent materials.  
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CHAPTER I 

 INTRODUCTION 

Precision management of land at the sub-field (management zones) and smaller 

10 m grid-sized scale has increased over the past 10 years because of inexpensive 

personal computers and innovations such as global positioning system (GPS) and 

geographical information system (GIS) technologies.  In production agriculture, these 

technologies have led to yield monitors, tractors with GPS guidance systems, and GIS 

systems with the capability of monitoring daily farming activities in real-time.  Precision 

farming advances have compelled the development of models based on high spatial and 

temporal resolution inputs that aid farm management and model water movement and 

solute transport across agricultural landscapes.  Both precision agriculture and precision 

management are limited by our ability to quantify the spatial variability of SOIL.  The 

soil survey has traditionally been the resource for quantifying soil variability; however, 

soil surveys have proven to be at spatial resolutions that are too low for in-field 

modeling (Packepsky et al., 2001; Ellert et al., 2002; Morgan et al., 2004; Sadler, 2004). 

The research presented in this study investigates a new tool that may provide rapid and 

reliable quantification of soil constituents across the landscape in greater detail, leading 

to mapping soils at higher resolutions. 

 The overall goal of this research is to evaluate the feasibility of visible near-

infrared diffuse reflectance spectroscopy (VNIR-DRS) for in situ characterization of soil  

____________ 
This thesis follows the style of Soil Science Society of America Journal. 
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properties.  Specifically, this research addresses the following objectives:  1) Evaluate 

the precision of 350 to 2500 nm (VNIR region) soil reflectance measurements in 

quantifying soil clay content, organic C, inorganic C, and water potential of in situ soils 

at field-moist and air-dry water contents; 2) Quantify any change in measurement error 

or prediction accuracy for in situ, field-moist soil with a smeared surface; and 3) 

Quantify any change in prediction accuracies using regional calibration models.  The 

results of this research will help determine the feasibility and limitations of using a 

portable VNIR-DRS in the field.   

Literature Review 

VNIR Spectroscopy 

 Spectroscopy is the study of light as a function of wavelength that has been 

emitted, reflected, or scattered from a solid, liquid, or gas (Clark, 1999).  When light 

strikes a material, light is absorbed, reflected, or transmitted, and spectral measurements 

can quantify the amount of light reflected or transmitted (Fig. 1.1) (Workman and 

Shenk, 2004).  Diffuse reflectance spectroscopy measures the scattering of light reflected 

at all angles from a surface.  When the diffuse reflectance of a material is measured, the 

absorbance bands provide information about the material’s molecular composition.  

Absorbance peaks are viewed as valleys of the spectral signature when presented as 

reflectance (Fig. 1.1).  The three key parameters in a spectrum that are important are the 

following: 1) the wavelength at which peaks occur, 2) the amplitude of the peak 

compared with a 100% reflected or transmitted standard, and 3) the bandwidth, which 

refers to the broadness of the peak (Workman and Shenk, 2004).   
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Fig.1.1.  Soil reflectance of three soils from Erath County, Texas. 
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Visible to mid-infrared (MIR) spectroscopy has been used to quantify soil 

properties with varying accuracies and results.  The visible, near-infrared (NIR), and 

MIR spectral ranges are 350 to 700 nm, 700 to 2500 nm, and 2500 to 25000 nm,  

respectively.   McCarty et al. (2002) have shown that when measuring organic and 

inorganic C, the MIR region produced higher r2-values and lower root mean squared 

deviations than NIR.  Mid-infrared spectroscopy works better because the fundamental 

absorptions of interest in soils exist in the MIR range (McCarty et al., 2002).  However, 

though MIR has been proven to give better prediction accuracies, MIR is less feasible 

for field and laboratory studies because of cost, portability, and required sample 

preparation.  Hence, the majority of spectroscopy research in soils has occurred in the 

VNIR regions.  The visible region gives information on iron oxides like hematite 

(Gaffey et al., 1993) while the NIR region is dominated by vibration overtones of SO4
2-, 

CO3
2-, and OH- and combination bands of H2O and CO2 (Clark, 1999; McCarty et al., 

2002).  Though the overtones and combination bands in the NIR spectrum are more 

indirect signatures of key soil constituents, VNIR spectrometers are smaller, cheaper, 

and field portable as compared to MIR units (Janik et al., 1998).   

Spectra  

Before the reflectance measurements can be used for model calibration, the 

spectral data require pretreatment, which includes transformations, averaging, splicing, 

and smoothing.  Transformations are used to condition the data for better model fits or to 

meet model assumptions such as normality.  First and second derivatives of 

transformations are used to reduce albedo effects.  For air-dried, ground samples, the 
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first derivative generally performs best (Reeves III et al., 1999).  Splicing is required 

when the spectrometer contains several detectors across the wavelength spectra to 

eliminate interruptions in reflectance where detectors overlap.  Smoothing the data 

reduces noise caused by changes in atmospheric pressure and temperature and light 

intensity variations (Williams, 1987; Workman, 2004).   

Statistical Analysis of Spectra 

Once spectral data have been processed, several techniques are available to 

extract information.  Regression techniques, such as step-up, step-wise, partial least 

squares (PLS), and boosted trees, as well as principal component analysis have been 

used previously.  Confalonieri et al. (2001) compared step-up regression, step-wise 

regression, and modified PLS regression methods and found that modified PLS 

regression created the calibrations with the best fit to the data.  Partial least squares 

regression is the most common in soil science literature (Janik et al., 1998; Reeves III, 

1999; Reeves III and McCarty, 2001; Dunn et al., 2002; Lee et al., 2003).  Partial least 

squares regression is an orthogonal data compression method that allows researchers to 

look at two dimensional spectra in multidimensional space.  The advantage of looking at 

the data in multidimensional space is that some of the redundancy is removed, patterns 

can be described from the center of the spectra, and the distances between peaks can be 

quantified (Workman and Shenk, 2004). 

Partial least squares regression is used to construct a predictive model with many 

factors (also called predictors or X-variables) that are highly collinear (Tobias, 1995; 

Wold et al., 2001).  One advantage PLS has over multiple linear regression and principal 
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components is that PLS is more robust, meaning that the calibration model changes little 

with new calibration samples (Geladi and Kowalski, 1986).  There are several 

assumptions with PLS.  The first assumption is that the model is built from a small 

number of latent variables (Wold et al., 2001).  These latent variables are the most 

important points to the model and carry more weight in determining the predicting 

property.  The concept of latent variables allows the assumption that the X and Y 

variables are not independent, allowing for a few spectrum versus the spectra to predict 

some property of a given material (Wold et al., 2001).  The second assumption is that a 

multidimensional function F(u,v) is created from the X and Y data (Wold et al., 2001).  

The u-vector describes changes in the observations and the v-vector describes changes 

within the spectra variables (Wold et al., 2001).  A third assumption is made concerning 

homogeneity of samples, meaning that the parameters that influence X on Y stay the 

same (Wold et al., 2001).   

Partial least squares regression starts by converting the X-variables (X, spectral 

data) into two vectors called X-scores (T) and X-loadings (P’) (Fig. 1.2), which makes 

PLS similar to principal component analysis (Geladi and Kowalski, 1986).  The Y-

variables (Y, soil laboratory data) are treated the same way by creating Y-score (Q’) and 

Y-loading (U) vectors.  The following formulas express these two outer relationships,  

X = TP’ + E and          (1.1) 

Y = UQ’ + F*.          (1.2)  

The E and F* values are errors or the residuals.  An inner relationship which links the X 

and Y blocks together is,  
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Fig. 1.2.  Diagram showing how X-loadings (P’) are converted from columns in the X-
variable matrix and the X-scores (T) from the rows in the X-variable matrix in partial 
least squares regression.  The same technique is used with the Y-matrix as well.  (Figure 
from Geladi and Kowalski, 1986) 
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U = bT,          (1.3) 

where b is the regression coefficient.  These three equations are used in principal 

component analysis, but in PLS the P’ value is replaced by weights (W’).  Weights have 

to be used in PLS because the order of operations is changed, and otherwise the 

orthogonal t-values would not get calculated (Geladi and Kowalski, 1986).  Equations 

(1.2) and (1.3) are combined to give the mixed relationship in PLS where U’ is a row 

vector and B is b1b2 (Geladi and Kowalski, 1986), 

W’ = U’X/U’U and         (1.4) 

Y = TBQ’ + F.          (1.5) 

Soil Properties in VNIR Spectrum 

Visible near-infrared DRS scans of air-dried, ground soil have been used to 

directly measure soil properties such as mineralogy, clay content, organic C, inorganic 

C, and water content (Ben-Dor et al., 1999).  These soil properties are considered direct 

measurements because each has absorption bands in the VNIR region (Ben-Dor et al., 

1999).  Figure 1.3 shows the reflectance of four clay minerals commonly found in soil.  

Other soil properties like cation exchange capacity, potassium, phosphorus, pH, sodium 

(salt), electrical conductivity, and extractable bases have also been predicted using 

VNIR, but are considered indirect measurements, sometimes leading to lower prediction 

accuracies (Malley et al., 2004).  These measurements are considered indirect because 

the soil properties do not have direct absorbance bands in the VNIR region, but are 

related to soil properties with absorptions in the VNIR region.   
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Fig. 1.3.  Comparison of visible near-infrared reflectance of four common soil minerals 
(Figure from Mustard and Sunshine, 1999). 
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Clay content, organic C, inorganic C, and water potential will be discussed in 

proceeding chapters, but the air-dried, ground soil sample r2-values for clay content, 

organic C, and inorganic C have ranged from 0.56 to 0.79, 0.49 to 0.96, and 0.69 to 0.96, 

respectively.  Soil water correlations with VNIR reflectance have not been previously 

made where water is expressed as potential but have been studied in terms of gravimetric 

and volumetric water content.  The VNIR-DRS literature demonstrates the use of VNIR 

to quantify soil clay content, organic C, and inorganic C on air-dried, ground samples, 

which suggest that VNIR can quantify these same properties on in situ soil samples, with 

some loss in prediction accuracy.  Sudduth and Hummel’s (1993) research predicted 

organic C in the field (in situ) with r2-values of 0.85 and 0.89, exhibiting the potential 

exists for VNIR-DRS to be used in situ to quantify soil properties in real-time.   
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CHAPTER II 
 

IN SITU CHARACTERIZATION OF SOIL CLAY CONTENT 
 

Synopsis 

 Diffuse reflectance spectroscopy (DRS) is a rapid proximal sensing method that 

has proven useful in quantifying constituents of dried and ground soil samples.  

However, very little is known about how DRS will perform in a field setting on soils 

scanned in-situ. The overall goal of this research was to evaluate the feasibility of visible 

near-infrared (VNIR) DRS for in situ quantification of clay content of soil from a variety 

of parent materials.  Seventy-two soil cores were obtained from six fields in Erath and 

Comanche Counties, Texas.  Each soil core was scanned with a visible near-infrared 

spectrometer, with a spectral range of 350-2500 nm, at four different combinations of 

moisture content and pre-treatment:  field-moist in situ, air-dried in situ, field-moist 

smeared in situ, and air-dried ground.  The VNIR spectra were used to predict total and 

fine clay content of the soil using partial least squares (PLS) regression. The PLS model 

was validated with 30% of the original soil cores that were randomly selected and not 

used in the calibration model.  The validation data set had a root mean squared deviation 

(RMSD) of 61 g kg-1 and 41 g kg-1 for the field-moist and air-dried in situ cores, 

respectively.   The RMSD of the air-dry ground samples was between the two in situ 

RMSDs and comparable to values in the literature.  Smearing the samples increased the 

field-moist in situ RMSD to 74 g kg-1. Measured water potential did not improve model 

predictions.  Whole-field holdout validation results showed that soils from all parent 

materials need to be represented in the calibration samples for maximum predictability.  
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In summary, DRS is an acceptable technique to measure soil clay content in situ at 

variable water contents and different parent materials. 

Introduction 

The resolution of a 1:24,000 scale soil survey map is too coarse to capture soil 

variability within soil mapping units and transitions between soil mapping units when 

used as inputs for some agriculture or environmental uses. However, soil maps that 

capture soil variability at a 10-50-m scale are necessary for resource management such 

as, precision agriculture, non-point source pollution modeling, and resource use planning 

(Packepsky et al., 2001; Ellert et al., 2002).  A typical method for creating such a high 

resolution soil map includes some sort of survey technique to capture the spatial 

variability followed by collecting soil cores and laboratory analyses of those cores.  

Researchers have developed methods for mapping the variability of soil properties 

across landscapes, including remote sensing, proximal landscape sensors (GPS, 

electromagnetic), and terrain modeling (Moore et al., 1993; Sudduth et al., 1997; Zhu et 

al., 1997).  Each of these methods has the advantage of creating a high-resolution map of 

horizontal soil variability, but is limited in the ability to get high-resolution, vertical soil 

information.  Collecting and analyzing soil cores to capture that vertical variability is 

time consuming and cost prohibitive.  For example, current laboratory soil analyses can 

take several weeks to months for each pedon and costs upwards of $2,000.  The lack of 

soil sensors that can rapidly quantify soil profile information demonstrates the need to 

find new methods for soil mapping.  One such method is visible and near-infrared 

diffuse reflectance spectroscopy (VNIR-DRS).  Recent research has shown the 



 13

effectiveness of VNIR-DRS in providing a non-destructive rapid prediction of soil 

physical, chemical, and biological properties of air-dried ground soil samples in the 

laboratory (Shepard and Walsh, 2002).  However, it is uncertain how VNIR-DRS will 

handle in situ soil analysis in the field (Sudduth and Hummel, 1993).   

 Sudduth and Hummel (1993) tested a portable near-infrared (NIR) spectrometer 

to measure soil properties in situ.  Their research concluded that VNIR-DRS could be 

used to accurately predict cation exchange capacity and moisture content in the 

laboratory, but the technique was not sufficiently accurate at quantifying soil organic 

matter in a furrow.  They concluded that movement of the sample across the sensor 

while scanning was the main contributor in poor estimates of organic matter.  Most 

spectroscopy work has focused on air-dried, ground soil samples (Slaughter et al., 2001; 

Brown et al., 2005b; Sorensen and Dalsgaard, 2005).  Air-drying the sample reduces the 

intensity of bands that are related to water so the signals associated with other soil 

properties are not masked or hidden.  Additionally, particle size affects accuracy of the 

spectral scan.  Smaller particles increase reflectance scatter which reduces the absorption 

peak height (Workman and Shenk, 2004).  The most common sample preparation has 

been drying the soil and grinding the sample into a fine powder (< 0.6 mm) for VNIR 

scanning (Ben-Dor and Banin 1995; Reeves III et al., 1999; Confalonieri et al., 2001; 

Reeves III and McCarty, 2001; Dunn et al., 2002; Lee et al., 2003).   

Soil Properties in VNIR Spectrum 

Measuring soil water content can be made with numerous kinds of equipment.  In 

the VNIR region, water has four absorption features associated with the OH group (Ben-
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Dor et al., 1999).  The absorption peaks associated with water are 1900, 1400, 1200, and 

950 nm, ordered from very strong signal to a very weak signal (Ben-Dor et al., 1999).  

Slaughter et al. (2001) and Islam et al. (2003) predicted soil gravimetric moisture with 

r2-values ranging from 0.81 to 0.98 using the VNIR spectrum.  Lobell and Asner (2002) 

showed that reflectance decreased with increasing water content and suggested that the 

longer wavelengths in the VNIR region were better at predicting volumetric water 

content.   

In the VNIR spectrum, absorptions by water bonds associated with clay content 

and other bonding associated with clay type provide the opportunity to use VNIR for 

quantifying clay information in soil.  Previous research on air-dried, ground soil samples 

has shown VNIR predictions of soil clay content with r2-values ranging from 0.56 to 

0.91 and RMSD’s ranging from 23 g kg-1 to 10.8 g kg-1 (Ben-Dor and Banin, 1995; Janik 

et al., 1998, Shepherd and Walsh, 2002; Islam et al., 2003; Brown et al., 2005b).  Clay 

mineralogy can be inferred in VNIR reflectance measurements by looking at overtones 

and combination bands that occur from chemical bonds within the minerals (Brown et 

al., 2005b).  Kaolinite [Al2Si2O5(OH)4] is an aluminum silicate with two very strong 

hydroxyl bands near 1400 and 2200 nm (Hunt and Salisbury, 1970; Clark et al., 1990).  

Smectite (montmorillonite) has two very strong water bands around 1400 and 1900 nm 

due to molecular water and an Al-OH band at 2200 nm (Hunt and Salisbury, 1970; 

Goetz et al., 2001).  Brown et al. (2005b) compared X-ray diffraction to VNIR ordinal 

“peak intensity” values and showed that 96% and 88% of the time kaolinite and 

montmorillonite, respectively, were within one ordinal unit from agreeing.  Goetz et al. 
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(2001) investigated using NIR spectroscopy to measure smectite content in selected 

Colorado soils.  Their prediction models had a correlation coefficient (r) of 0.83.  

Muscovite [KAl3Si3O10 (OH)2] displays hydroxyl bands at 1400 nm and between 2200 to 

2600 nm (Hunt and Salisbury, 1970).  The iron oxides, hematite and goethite, have 

absorptions in the visible range of the spectrum.  Hematite (Fe2O3) has absorption bands 

at 860, 630, and 450 nm (Gaffey et al., 1993).  Goethite (α-FeOOH) has absorption 

bands at 940, 660, and 493 nm (Scheinost and Schwertmann, 1997).   

 In the field, DRS measurements pose problems that have not been addressed by 

research on air-dried ground soils.  Problems that need to be addressed in research for in 

situ analysis are varying amounts of soil moisture, varying particle size and aggregation, 

smearing of soil surfaces, small scale heterogeneity (mottles, accumulations, and redox 

features), and regionality of calibration models. Sudduth and Hummel (1993) indicated 

that local buried residue and roughness of the soil surface varying from moisture content 

caused a reduction in their prediction accuracies.  Smearing of the soil causes the 

reflectance properties to change, possibly altering prediction accuracies.  The smearing 

problem was likely visited by Sudduth and Hummel (1993) who noted differences with 

changes of soil surface roughness.   

Researchers have studied how the regionality of soils affects prediction 

accuracies.  Ben-Dor and Banin (1995) used soils with an organic matter range of 0.09% 

to 13.23% and obtained poor predictions compared to Dalal and Henry (1986).  Dalal 

and Henry (1986) used three soils which had a smaller range of organic C.  Ben-Dor and 

Banin (1995) speculate that the samples Dalal and Henry (1986) used were in similar 
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decomposition stages, which indicates a regionality effect, resulting in high r2-values.  

Sudduth and Hummel (1996) concluded that the geographic range of the soil samples 

affects the prediction accuracies of NIR. 

Research Objectives 

The overall goal of this research is to evaluate the feasibility of VNIR-DRS for in 

situ quantification of clay content of soil profiles from a variety of parent materials.  

Specifically this research addresses the following objectives:  1) Evaluate the precision 

of 350 to 2500 nm (VNIR region) soil reflectance measurements in quantifying soil clay 

content and water potential of in situ soils at field-moist and air-dry water content; 2) 

Quantify any change in prediction accuracies with consideration to inter-field 

regionality; and 3) Quantify any change in measurement error or prediction accuracy for 

in situ, field-moist soil with a smeared surface.   

The results of this research will allow a quantitative determination of the 

feasibility of using a VNIR spectrometer in the field as a proximal sensor to aid soil 

mapping activities.  For VNIR-DRS to be considered useful in the field, it must be 

reliable, meaning that the errors should be equal to or less than current field techniques 

and it must be rapid, meaning that it should quantify clay much faster than any current 

techniques.  There is no question that VNIR-DRS is faster than hand texturing or lab 

particle size methods (i.e. pipette and hydrometer). Therefore the accuracy of VNIR-

DRS is considered adequate if VNIR-DRS can quantify clay content accurate enough for 

precision management and watershed modeling needs. 
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Materials and Methods 
 
Soil Coring 

Seventy-two soil cores were collected using a Giddings hydraulic soil sampler 

(Windsor, CO) attached to a truck from six fields in Erath County (fields 1, 2, 3, and 6) 

and Comanche County (fields 4 and 5), Texas in May 2004.  Each soil core was 

collected to a maximum depth of 105 cm or to the depth of a coring-restrictive horizon.  

The soil cores were contained in a 6.0-cm diameter plastic sleeve that was capped on 

both ends.  The soil cores that were collected were chosen to represent the large 

variability in soil properties over these two counties.  For example, 21 soil series were 

mapped by the Natural Resources Conversation Service in these fields (Table 2.1), and 

the parent material of these soils included alluvium, sandstone, shale, and limestone. 

VNIR-DRS Scanning 

An ASD “FieldSpec® Pro FR” VNIR spectroradiometer (Analytical Spectral 

Devices, Boulder, CO), with a spectral range of 350-2500 nm, 2-nm sampling resolution 

and spectral resolution of 3 nm  at 700 nm and 10 nm at 1400 and 2100 nm and equipped 

with a contact probe, was used to scan the soil cores.  The contact probe has a viewing 

area defined by a 2-cm diameter circle and its own light source.  A Spectralon® panel 

with 99% reflectance was used to optimize the spectrometer each day; the same panel 

was used as a white reference before scanning each core.  The 72 soil cores were 

prepared for the first scan by first slicing lengthwise the plastic sleeve surrounding each 

core with a utility knife, and then halving the soil core lengthwise (surface to subsoil) 

with a piano wire.  One-half of the core was smeared using a stainless steel spatula to  
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Table 2.1. Series and taxonomic names of the soils mapped by the Natural Resources 
Conservation Service within the fields which were used for VNIR-DRS clay content 
predictions (USDA, 1973; USDA, 1977; USDA, 2005). 
 
Soil series Taxonomic name Field 

number 
Abilene Fine, mixed, superactive, thermic Pachic Argiustolls 4 
Altoga Fine-silty, carbonatic, thermic Udic Haplustepts  6 
Blanket Fine, mixed, superactive, thermic Pachic Argiustolls 6 
Bolar Fine-loamy, carbonatic, thermic Udic Calciustolls  1,5,6 
Bosque Fine-loamy, mixed, superactive, thermic Cumulic 

Haplustolls  
5 

Brackett Loamy, carbonatic, thermic, shallow Typic Haplustepts  5 
Bunyan Fine-loamy, mixed, active, nonacid, thermic Typic 

Ustifluvents  
2 

Chaney Fine, mixed, active, thermic Oxyaquic Paleustalfs  4 
Cisco Fine-loamy, siliceous, superactive, thermic Typic 

Haplustalfs  
4 

Denton Fine-silty, carbonatic, thermic Udic Calciustolls  1,6 
Frio Fine, smectitic, thermic Cumulic Haplustolls  1,4,5 
Houston Black Fine, smectitic, thermic Udic Haplusterts  1 
Karnes Coarse-loamy, carbonatic, thermic Typic Calciustepts  5 
Lewisville Fine-silty, mixed, thermic Udic Calciustolls 5,6 
Maloterre Loamy, carbonatic, thermic Lithic Ustorthents  1 
Nimrod Loamy, siliceous, active, thermic Aquic Arenic Paleustalfs  3,4 
Pedernales Fine, mixed, superactive, thermic Typic Paleustalfs  4 
Purves Clayey, smectitic, thermic Lithic Calciustolls  1,5,6 
Selden Fine-loamy, siliceous, active, thermic Aquic Paleustalfs  3 
Venus Fine-loamy, mixed, thermic Udic Calciustolls  5 
Windthorst Fine, mixed, active, thermic Udic Paleustalfs  2,3,6 
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mimic possible smearing by a soil probe and the other half was left unsmeared.  A wire 

grid was used to identify two columns and 3-cm wide rows within each core half (Fig. 

2.1).  Each row within each column was scanned twice with the FieldSpec® Pro FR with 

a 90º rotation of the contact probe between scans.  Both halves of each core, smeared 

and unsmeared, were scanned at field-moist water content.  The water potential was 

measured at each soil horizon from each core, with a maximum of six samples per core, 

using a SC-10 thermocouple psychrometer (Decagon, Pullman, WA) (Rawlins and 

Campbell, 1986).  The cores were then placed in a drier at 44°C for two days for air-

dried in situ scans.  Before air-dried scans, the cores were removed from the drier and 

left on the countertop in the laboratory to equilibrate to room temperature.  The soil core 

half that was scanned in unsmeared condition was then rescanned, in situ, at air-dry 

moisture content. 

 Each row of the unsmeared soil core was ground and passed through a 2-mm 

sieve, and re-scanned as air-dried, ground.  The air-dried, ground soils were scanned 

with a mug lamp connected to the FieldSpec® Pro FR.  The same Spectralon® 99% 

reflectance panel was used to calibrate the spectrometer each day, as well as being used 

as the white reference to set reflectance to 100%.  Approximately 28 g of ground soil 

was placed into a borosilicate glass “puck”.  Each sample was scanned twice with a 90º 

rotation between scans. 

Sampling for Laboratory Analysis 

 The soil cores were divided by row for laboratory analysis (Fig. 2.1).  The entire 

row from each half of the core was used for particle size analysis.  Particle size  
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Fig. 2.1.  Schematic of a vertically sliced soil core used for clay content.  Columns and 
rows indicate locations scanned using the contact probe for in situ scans. 
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distribution was determined in the laboratory using the pipette method with an error of 

±1% clay (Steele and Bradfield, 1934; Kilmer and Alexander, 1949; Gee and Or, 2002).  

Eighteen samples were selected for determination of clay mineralogy.  Clay mineralogy 

by X-ray diffraction was completed following techniques described in Hallmark et al. 

(1986); no pretreatment was done.  The mineralogy technique used was to determine the 

absence or presence of clay minerals, existing in quantities of greater than 5 % by 

volume of clay fraction. 

Pretreatment of Data 

 Pretreatment of the spectral data included, splicing, averaging, and taking the 1st 

and 2nd derivatives.  The spectral data were spliced where the three detectors overlapped.  

Results of the two scans, 0º and 90º, were averaged (mean).  The mean and 1st and 2nd 

derivatives were taken on 10-nm intervals from 360-2490 nm after a cubic smoothing 

spline, implemented in the R “smooth spline” function (R Development Core Team, 

2004), was fit to each raw spectral curve. 

Model Building and Validation 

 Four different models were built to help determine how in situ scans and water 

content affect prediction accuracies for clay content.  The input for the models were 

from the air-dried ground, air-dried in situ, field-moist in situ, and smeared field-moist in 

situ scans.  Water potential models were built using the field-moist in situ scans.  The 

models for clay content and water potential were produced using 70% of the soil cores 

randomly chosen as the calibration samples.  Whole cores were used to maintain 

independence between the calibration and validation data (Brown et al., 2005a).  Two 
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prediction models for clay content were built using soil reflectance, one model used the 

1st derivative and the other used the 2nd derivative of soil reflectance.  The prediction 

models were built using 1/25th cross validation PLS method in Unscrambler 9.0 (CAMO 

Tech, Woodbridge, NJ).  The remaining 30% of the cores were used to validate the 

model.  Negative clay content predictions were changed to zero clay content before 

comparison of measured to predicted clay.  Measured versus predicted values of the 

validation samples were compared using simple regression.  The coefficient of 

determination (r2), root mean squared deviation (RMSD), ratio of standard deviation 

(SD) to RMSD (RPD) and bias were calculated to compare the accuracy of different 

PLS models.  Statistical formulas to calculate RMSD, RPD, and bias follow Gauch et al. 

(2003), Brown et al. (2005a) and Chang et al. (2005): 

( )∑ −=
n

2
measpred N/YYRMSD ,       (2.1) 

RPD = SD/RMSD, and        (2.2) 

(∑ −=
n

measpred ;N/YYBias )         (2.3) 

where Ypred are predicted values of the validation set using the PLS model, and Ymeas are 

the laboratory measurements of the validation set, and N is the total number of samples 

in the validation data.   

 Model calibration and validation sets were also completed on whole-field 

holdouts as a means to compare to the findings of Brown et al. (2005a).  Whole-field 

holdouts were achieved by calibrating a model using PLS with five of the six fields.  The 
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sixth field was held out as the validation samples.  Six models were created so all six 

fields were represented as a validation set. 

Significant wavelengths were chosen by Unscrambler 9.0 using an uncertainty 

test.  Regression coefficients for each wavelength were calculated with a t-test and 

uncertainty limits that did not cross the zero line were significant.  Uncertainty limits 

corresponded to two standard deviations in an ideal case.   

Results and Discussion 

Sample Descriptions 

 From the 72 soil cores, 270 soil samples were analyzed for clay content and 

water potential.  Of these samples, 188 were used in the calibration model.  The other 82 

samples were used to validate the PLS model.  Though selected randomly, the 

calibration and validation data sets were similar (Table 2.2).  A t-test proved the means 

of the calibration and validation sets were not dissimilar with p>0.1.  Clay content range 

of the 270 soil samples was 12 g kg-1 to 578 g kg-1.  The mean and median for the 

calibration and validation data were similar, indicating that the samples were evenly split 

above and below the mean, and that the prediction model produced should not be 

skewed.  The minimum water potential measured, -5.8 MPa, in the calibration samples 

was from a tilled surface (0-3 cm) of a loamy-textured field.  The maximum water 

potentials, 0 MPa, occurred in deep horizons in several of the irrigated fields.  The 

samples represented a range of clay mineralogy.  The minerals found in the clay 

fractions were: smectite, kaolinite, mica, quartz, calcite, and feldspar (Table 2.3).  The  
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Table 2.2.  Clay content and water potential summary statistics for calibration and 
validation datasets. 
 
 N min. max. mean SD† median 
calibration samples       
Total clay (g kg-1) 188 12 525 255 139 262 
Fine clay (g kg-1) 188 3 380 138 85 140 
Water potential (MPa) 188 -5.8 0.0 -0.49 0.60 -0.35 

 
validation samples 
Total clay (g kg-1) 82 28 578 271 144 247 
Fine clay (g kg-1) 82 18 362 152 79 147 
Water potential (MPa) 82 -2.2 0.0 -0.48 0.47 -0.38 
† standard deviation 
 
 
 
 
Table 2.3.  Clay minerals present (>5% of clay fraction) in soil cores from each field.  
Mineralogy is presented as a summary by field and not all cores are represented.  Cores 
selected for mineralogy were chosen to represent clay minerals within a field. 
 
 Clay Minerals 
Field no. Vermiculite Smectite Kaolinite Mica Calcite Quartz Feldspar 

1  XXX† X§  XX‡ X§  
2  XX‡ X§ X§  X§  
3 t¶ X§ X§ X§  X§ t¶

4  X§ X§ X§  X§  
5  X§ X§ X§ X§ X§  
6  X§ X§ t¶ X§ X§  

† greater than 50% of mineral present 
‡ 20-50% of mineral present 
§ 5-20% of mineral present 
¶ trace amounts of mineral present 
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soils in field 1 were notably high in clay content and were dark colored Vertisols; field 3 

had very few clay-sized particles. 

Model Validation 

 Reeves III et al. (1999) stated that the 1st derivative of the VNIR spectra 

generally created the best prediction model data transformation, but did not explain why 

the 1st derivative performed better than reflectance or the 2nd derivative.  The results of 

this study showed that the 1st derivative of the reflectance did, in fact, produce the best 

model, but the reflectance model performed well also (Table 2.4).  The 2nd derivative 

model performed the worst; therefore, we conclude that the 2nd derivative is least useful 

for predicting clay content in soils (Table 2.4).  The 1st derivative of the soil spectra 

probably works well because the 1st derivative has all the information of the reflectance, 

but removes albedo effects associated with soil moisture or soil condition.  Models to 

predict water potential were not very successful (Table 2.5) and using water potential to 

predict clay content did not improve clay content prediction (Table 2.4). 

Because 1st derivative PLS models performed the best for field-moist in situ, and 

the 1st derivative worked the best in other VNIR work (Reeves et al., 1999; Reeves and 

McCarty, 2001; Brown et al., 2005b), the remaining PLS models reported in this paper 

all use the 1st derivative of the VNIR spectra between 350 and 2500 nm.  Three of the 

four models used to predict clay content were very similar, and the fourth, field-moist in 

situ smeared, had the largest prediction error and scatter about the validation regression.  

Table 2.6 summarizes the prediction accuracies between the four VNIR models.  The 

air-dried ground model was expected to produce the most accurate prediction model  
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Table 2.4.  Results for VNIR models predicting clay content of field-moist in situ soils 
using the VNIR reflectance (R), 1st derivative (D), and 2nd derivative (DD) as the 
predictors. 
 
 r2 RMSD  Bias  
  ----------------------g kg-1--------------------- 
Clay (R) 0.78 71 8.2 
Clay (D) 0.83 61 3.0 
Clay (DD) 0.58 95 5.2 
Clay+water pot. (D) 0.82 64 4.8 
 
 
 
 
Table 2.5.  Results for the log of water potential models on field-moist in situ scans 
using the VNIR reflectance (R), 1st derivative (D), and 2nd derivative (DD) as the 
predictors. 
 
 r2 RMSD  Bias  
  ------------------MPa------------------ 
Water Potential (R) 0.31 1.6 0.13 
Water Potential (D) 0.28 1.7 0.12 
Water Potential (DD) 0.15 1.8 0.11 
 
 
 
 
Table 2.6.  Prediction accuracies of total clay and fine clay content models using the 1st 
derivative of VNIR spectra. 
 
 r2 RMSD  RPD Bias  
total clay  g kg-1  g kg-1

Air-dried ground 0.84 62 2.32 -16.3 
Air-dried in situ 0.92 41 3.51 -2.0 
Field-moist in situ 0.83 61 2.36 3.0 
Field-moist smeared 0.75 74 1.95 7.4 
     
fine clay 
Air-dried ground 0.81 34 2.32 0.65 
Air-dried in situ 0.85 31 2.55 4.2 
Field-moist in situ 0.84 32 2.47 4.4 
Field-moist smeared 0.75 41 1.93 11 
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because the sample was reduced to a uniform size, moisture was uniform, and grinding 

homogenized the soil, but the air-dried in situ model did slightly better (Fig. 2.2).  There 

are two possible explanations for why the air-dried ground model did not perform as 

well as the air-dried in situ model.  One explanation could be just random error.  The 

second possible explanation is that in situ soil has a higher bulk density than dried 

ground soil; and therefore the in situ soil may have a stronger reflectance signal. 

The air-dried ground prediction had a greater bias (-16.3), than all other predictions.  The 

large bias associated with the air-dried ground prediction was attributed to 60% of the 

samples being under predicted in clay content and large discrepancies between measured 

and predicted clay content of soils greater than 450 g kg-1 clay.  Because the air-dried in 

situ model slightly outperformed the air-dried ground model using the 1st derivative of 

VNIR reflectance spectra, we conclude natural soil heterogeneity (clay films etc…) and 

varying particle size associated with aggregation had little effect on model predictions.  

Gaffey (1986) found the same results when looking at different carbonate sizes.  His 

results showed a difference in reflectance but the number of bands, band positions and 

width, and relative band intensities were unchanged.   

Another significant finding was that the field-moist in situ model slightly 

decreased the prediction accuracy from the air-dried in situ model but did just as well 

when compared to the air-dried ground model (Fig. 2.2).  These results indicate that the 

amount of water in the soil sample did not change the prediction accuracy compared to 

air-dried laboratory situations. The soil VNIR literature discusses the affect of water and 

aggregation on hindering prediction accuracy.  Soil water may reduce accuracy 
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Fig. 2.2.  Predicted vs. measured clay content of the validation data set for (a) air-dried 
ground (b) air-dried in situ (c) field-moist in situ (d) field-moist in situ smeared.  Clay 
content predictions were executed from models built with PLS using the 1st derivative of 
VNIR reflectance spectra. 



 29

somewhat (increased RMSD by 20 g kg-1), but this reduction in accuracy was no more 

than air-drying, grinding, and scanning the soil through a borosilicate dish (Fig. 2.2).   

Chang et al. (2005) showed that r2-values decreased slightly from 0.79 to 0.76 from an 

air-dried soil to a moist soil, respectively, which agrees with other findings.  Scanning 

soils in situ with VNIR-DRS allows soil scientist to predict clay content in a small area 

(<7-cm2) within a profile (Fig. 2.3). 

Smearing of the field-moist in situ cores reduced the accuracy of the prediction 

model (Fig. 2.2).  The decrease in the prediction accuracy of the smeared cores was 

probably due to the change in reflectance properties of the soil.  Smearing causes the soil 

surface to become shiny, which changes the reflectance from diffuse to diffuse specular 

reflectance.  Diffuse specular reflectance has a specular component which carries less 

information than diffuse reflectance alone (Coates, 1998).  When comparing the 

significant wavelengths between the field-moist in situ and field-moist in situ smeared 

cores, the number of wavelengths found in the visible portion of the spectra are absent 

from the smeared core.  The absence of these wavelengths may be the source of loss in 

prediction accuracy.  The smearing test was performed to quantify any reduction in 

accuracy that might occur if a soil probe, pushed into the ground smeared the sides of the 

hole.  In this laboratory exercise, smearing moist, high clay content soil required 

multiple passes with the spatula.  Therefore, this test was a worst-case scenario and the 

soil was smeared to its maximum capacity.  In a field situation, the loss of prediction 

accuracy due to smearing might be less. 
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Fig. 2.3.  Laboratory measured and visible near-infrared (VNIR) predicted clay content 
for three soil cores with depth.  Laboratory measurements were taken to represent soil 
horizons, and VNIR predictions were taken every 3-cm depth. 
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The same set of VNIR models was created to predict fine clay.  The amount of 

fine clay in a soil is of interest because fine clay is associated with a soil’s shrink-swell 

potential (Reid-Soukup and Ulery, 2002).  Fine clay models have lower RMSD values 

than total clay models but the RPD values are similar to the total clay models (Table 

2.6).  The similar RPD values indicate that the smaller RMSD values for fine clay 

models was due to smaller standard deviations (smaller range); so the total clay and fine 

clay models performed similarly. 

Whole-field holdouts showed that field 1 and 3 impacted the clay content field-

moist in situ RMSD of the validation samples the most (Table 2.7). Results of field 1 

and 3 whole-field holdouts showed the greatest decrease in prediction accuracies.  The 

highest RMSD was accompanied by a bias of -128.1 g kg-1 (Table 2.7).  The RMSD 

whole-field holdouts were increased for each field but only two were of any great 

significance, field 1 and 3.  Both of these field’s samples were at the extremes for clay 

content.  Field 1 consisted of high clay soils that were dark in color through the entire 

length of the soil core, which was not represented in the calibration model.  Field 3 was 

also not represented by other fields in the calibration model since this field contained the 

soil cores low in clay content.  We conclude from these results that the calibration model 

should have samples that resemble the soils to be scanned with VNIR-DRS.   

The lack of correlation of VNIR spectra to water potential was not expected 

(Table 2.5). Even though these results are negative, two other studies (Slaughter et al., 

2001; Islam et al., 2003) have shown good correlations between gravimetric water and 

VNIR reflectance. Water potential is composed of three separate potentials:  
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Table 2.7.  Prediction accuracies of clay content using whole-field holdouts.  Models 
were created using PLS with five fields and then validated using the sixth field.  Six 
separate models were calibrated and validated. 
 

Validation field RMSD  Bias 
 ---------------------g kg-1---------------------- 
1 143 -128.1 
2 64      4.6 
3 97      9.2 
4 89    44.0 
5 72    31.7 
6 68    30.0 

 



 33

gravitational, matric, and osmotic.  Each potential contributes to the total water potential 

of the soil with matric having the greatest influence.  Matric potential varies with water 

content and soil texture; so VNIR spectroscopy might not be able to correlate these 

properties together to give reliable water potential measurements.  

Significant Wavelengths 

Assigning peaks to chemical bonds or certain minerals in the VNIR spectroscopy 

can be done when working with pure minerals or pure mixtures, but when working with 

a natural soil mixture, it is difficult.  This difficulty arises from overlapping of peaks and 

shifts that can occur by multiple interactions of bonds within the soil.  Some significant 

wavelengths in the clay prediction models built with the in situ and ground soil scans 

corresponded to wavelengths which have been associated with absorption bands of pure 

clay minerals (Table 2.8).  In particular, most significant wavelengths were found in the 

NIR range of the spectrum with the most significant being at 1400 nm, 2200 nm, and 

2300 nm.  Wavelengths in the visible region corresponded to iron oxides near 500 nm, 

650 nm, and 810 nm.  The NIR range had the greatest effect on the prediction accuracy 

for clay content. 

The significant wavelengths in each model were plotted to help determine what 

portions of the spectra were important for clay content predictions.  Figure 2.4 shows the 

significant wavelengths for the field-moist in situ, air-dried in situ, and air-dried ground 

models.  Each model had a slightly different number of significant wavelengths.  The 

air-dried in situ model had 78 significant wavelengths and the field-moist in situ and air-

dried ground models had 102 and 83 significant wavelengths, respectively.  Most  
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Table 2.8.  Clay minerals with their corresponding absorptions. 

Minerals Wavelength  References 
 ---------------nm------------  

Smectite 1400 1900 2200 Hunt and Salisbury, 1970; Goetz et al., 2001 
Mica 1400 2200-2600  Hunt and Salisbury, 1970;  Clark et al., 1990 
Kaolinite 1400 2200  Hunt and Salisbury, 1970 
Hematite 450 630 860 Gaffey et al., 1993 
Goethite 493 660 940 Scheinost and Schwertmann, 1997 
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Fig. 2.4.  The wavelengths that contributed to significant regression coefficients in the 
prediction of clay content are shown for field-moist and air-dry in situ and air-dry 
ground models.  The relative magnitude of each regression coefficient indicates the 
strength of the correlation. The top plot shows the mean of the regression coefficients 
common in all three models.  All plots are on the same x-axis.  Values of the y-axis are 
not shown, but all y-axes are on the same scale.  
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importantly, Fig. 2.4 shows the 32 significant wavelengths that were common in all three 

models.  Scans between the field-moist in situ, unsmeared and smeared, cores did have 

some differences in significant wavelengths (Fig. 2.5).  The smeared core model had 70 

significant wavelengths and the unsmeared core model had 102, with 50 of these 

wavelengths being common in both models.  The smeared core model had fewer 

significant wavelengths in the visible range of the spectrum, which may have lead to an 

increase in the RMSD. 

Conclusions  

In this study of 72 soil cores from Central Texas, there was a strong relationship 

between VNIR reflectance and clay content for the air-dried in situ (RMSD= 41 g kg-1), 

field-moist in situ (RMSD= 61 g kg-1), and air-dried ground (RMSD= 62 g kg-1) scans.  

Visible near-infrared DRS was capable of predicting soil clay content in-situ at varying 

water contents. There was a slight decrease in predictive power for the smeared field-

moist in situ (RMSD= 74 g kg-1) scans.  Soil aggregates did not appear to change the 

prediction accuracies of VNIR reflectance when compared to air-dried ground samples.  

Variable water contents did reduce prediction accuracy evidenced by comparing air-

dried in situ and field-moist in situ models, but the field-moist in situ prediction 

accuracies were the same as the air-dried ground predictions.  Total clay models and fine 

clay models performed similarly even though the RMSD values were lower for the fine 

clay models.  Water potential was found to have a poor relationship with VNIR 

reflectance in this study. Soil water should be analyzed as gravimetric or volumetric 

water content rather than water potential. 
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Fig. 2.5. The wavelengths that contributed to significant regression coefficients in the 
prediction of clay content are shown for field-moist, smeared and unsmeared, models.  
The relative magnitude of each regression coefficient indicates the strength of the 
correlation. The top plot shows the, mean of the regression coefficients common in both 
models..  All plots are on the same x-axis.  Values of the y-axis are not shown, but all y-
axes are on the same scale. 
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 These results indicate that VNIR-DRS may be useful as a proximal soil sensor in 

field conditions.  Visible near-infrared DRS can be beneficial by giving the soil scientist 

the ability to map soils across the landscape at higher resolutions, and by providing a 

quick method for quantifying soil properties such as clay content.  Additionally, VNIR-

DRS provides the ability to show how soils slowly change across a landscape or 

continuously within a profile (3-cm).  Continued research to study in situ scans of larger 

geographical ranges and other soil properties is needed.  Also, data analysis methods that 

help the user interpret reflectance information are needed. 
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CHAPTER III 
 

IN SITU CHARACTERIZATION OF SOIL ORGANIC AND INORGANIC  
 

CARBON  
 
Synopsis 

 Diffuse reflectance spectroscopy (DRS) is a rapid proximal sensing method that 

is being developed in laboratory settings to measure soil properties.  Diffuse reflectance 

spectroscopy research has been completed in laboratories with promising results, but 

very little has been reported on how DRS will work in a field setting.  Seventy-two soil 

cores, representing 21 soil series and four parent materials, were excavated from six 

fields in Central Texas.  Each soil core was scanned with a visible near-infrared (VNIR) 

spectrometer with a spectral range of 350-2500 nm in four combinations of moisture 

content and pre-treatment, including field-moist in situ, air-dried in situ, field-moist 

smeared in situ, and air-dried ground.  Visible near-infrared spectra were then used to 

predict soil organic and inorganic C using partial least squares (PLS) regression. The 

PLS model was validated with 30% of the original soil cores that were randomly 

selected and withheld from the calibration model.  The organic C validation data set had 

a root mean squared deviation (RMSD) of 5.8 g kg-1 and 4.6 g kg-1 for the field-moist 

and air-dried in situ cores, respectively.  The RMSD values for inorganic C were 10.1 g 

kg-1 and 8.3 g kg-1 for the field-moist and air-dried in situ scans, respectively.  Smearing 

the samples had minimal affects on prediction accuracies for organic and inorganic C.  

Soil moisture did reduce prediction accuracies.  These results show that DRS could be an 
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acceptable technique to measure organic and inorganic C in situ at varying water 

contents and among different parent materials. 

Introduction 

Quantifying organic C and inorganic C content in the soil is of great interest 

because of carbon sequestration studies.  A method to rapidly quantify soil samples for 

organic C is needed because many carbon sequestration studies need to quantify soil 

organic C over large areas and through time as management changes (Bronson et at., 

2004; Russell et al., 2005; Wright and Hons, 2005).  Visible near-infrared diffuse 

reflectance spectroscopy (VNIR-DRS) might be a possible tool to use in such studies 

because the scanning is rapid, costs are fixed, and it has proven useful in plant analysis 

(Batten, 1998).  Calcite abundance in soil is important because of its effects on plant 

growth and land management decisions.  Soils with carbonates have alkaline pH values 

and may inhibit plant growth if high carbonate amounts are at the surface.  Calcite has 

the ability to reduce availability of phosphorus; therefore, in areas with manure 

applications, the potential exists for some phosphorus to bond with the calcite reducing 

phosphorus loss to surface water (Doner and Grossl, 2002).  Development of a rapid and 

reliable tool for quantifying organic C and inorganic C in the field could be very useful 

to precision agriculture, carbon sequestration studies, precision management, and other 

applications requiring spatially- or temporally-intensive data collection. 

Soil Properties in VNIR Spectrum 

Organic C amounts are very low in most mineral soils.  However, the amount of 

organic C in a soil is important because organic C has a strong influence on soil 
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chemical and physical properties.  Increases of organic C in the soil can increase water 

movement, increase water holding capacity, increase cation exchange capacity, and 

reduce bulk density.  The active bonds in organic matter in the visible near-infrared 

(VNIR) region are O-H, C-N, N-H, and C=O groups (Malley et al., 2002).  Henderson et 

al. (1992) reported wavelengths important to organic C predictions in three categories, 

wavelengths related to organic C content, wavelengths related to other soil properties 

and organic C content, and wavelengths related to other soil properties that mask organic 

C content.  Models created from VNIR-DRS spectra have predicted organic C from air-

dried, ground soil samples with r2-values ranging from 0.49 to 0.96 and RMSD’s 

ranging from 1.1 g kg-1 to 12.7 g kg-1 (Den-Dor and Banin, 1995; Janik et al., 1998; 

Reeves III et al., 1999; Confalonieri et al., 2001; Reeves III and McCarty, 2001; Chang 

and Laird, 2002; Dunn et al., 2002; McCarty et al., 2002; Shepherd and Walsh, 2002; 

Islam et al., 2003; Lee et al., 2003; Brown et al., 2005b; Chang et al., 2005).  Sudduth 

and Hummel’s (1993) research predicted organic C of the soil surface in-situ with r2-

values of 0.85 and 0.89 on four test sites in Illinois. 

Soil inorganic C consists of small fractions of C in numerous minerals, but the 

two most significant minerals are calcite (CaCO3) and dolomite [CaMg(CO3)2].  The 

observed absorption bands for calcite are due to the planar CO3
-2 ion.  The strongest 

absorption bands occur in the mid-infrared region at 1063 cm-1 (9.407 µm), 879 cm-1 

(11.4 µm), 1415 cm-1 (7.067 µm), and 680 cm-1 (14.7 µm), but there are several overtone 

and combination bands in the near-infrared (NIR) region (Clark et al., 1990).  The bands 

at 2500 to 2550 nm and 2300 to 2350 nm are the two strongest with weaker bands near 
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2120 to 2160 nm, 1970 to 2000 nm, and 1850 to 1870 nm (Clark et al., 1990; Hunt and 

Salisbury, 1971).  Inorganic C has been measured in the laboratory on air-dried, ground 

soil samples with r2-values ranging from 0.69 to 0.96 and RMSD’s ranging from 1.4 g 

kg-1 to 7.1 g kg-1 (Ben-Dor and Banin, 1995; Chang and Laird, 2002; McCarty et al., 

2002, Brown et al., 2005b; Chang et al., 2005).  Gaffey (1986) looked at different 

particle sizes of carbonates and did find a difference in reflectance but the number of 

bands, band positions and widths, and relative band intensities were unchanged. 

Most spectroscopy work has focused on air-dried, ground soil samples (Slaughter 

et al., 2001; Brown et al., 2005b, Sorensen and Dalsgaard, 2005), but Sudduth and 

Hummel (1993) tested a portable NIR spectrometer to measure soil properties in-situ.  

Air-drying the sample reduces the intensity of bands that are related to water; therefore, 

the signals associated with other soil properties are not masked or hidden.  Additionally, 

the particle size affects accuracy of the spectral scan.  Smaller particles increase 

reflectance scatter which reduces the absorption peak height (Workman and Shenk, 

2004).  The most popular sample preparation has been grinding the soil into a fine 

powder (< 0.6 mm) for VNIR scanning (Ben-Dor and Banin 1995; Reeves III et al., 

1999; Confalonieri et al., 2001; Reeves III and McCarty, 2001; Dunn et al., 2002; Lee et 

al., 2003).   

In the field, diffuse reflectance spectroscopy (DRS) measurements may be more 

problematic as wide ranges in water contents, particle size and aggregation, smearing of 

soil, local and field heterogeneity, and regionality of the calibration model exist.  To 

date, studies that address these possible limitations are rare.  Chang et al. (2005) showed 
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that small increases in moisture content can considerably change the reflectance baseline 

and increase the peak intensities at 1400 nm and 1900 nm.  Chang et al. (2005) and 

Slaughter et al. (2001) achieved good predictions of water content in similar soils over a 

large range in water contents.  Few studies have been conducted on unground or 

minimally ground soil samples.  Slaughter et al. (2001) showed that unground samples 

increased the overall absorbance of the soil.  Sudduth and Hummel (1993) used DRS to 

measure organic C of the soil surface in the field.  They had problems with local buried 

residue and soil surface roughness in wetter soils reducing prediction accuracies.   

If the spectrometer’s optical sensor were lowered down a hole in the soil created 

by a probe, the soil on the sides may be smeared.  Smearing causes the reflectance 

properties to change which may alter prediction accuracies.  Sudduth and Hummel 

(1993) suggested that their organic C predictions were less then optimal because of 

changes in soil roughness.  

Researchers have worked to determine how the regionality of soils affects 

prediction accuracies.  Ben-Dor and Banin (1995) used soil reflectance to predict organic 

matter with a range of 0.09% to 13.23% which resulted in poor predictions when 

compared to Dalal and Henry (1986).  Dalal and Henry used three similar soils with a 

small range of organic C.  Ben-Dor and Banin speculated that similar organic matter 

decomposition stages led to the high r2-values for Dalal and Henry.  Sudduth and 

Hummel (1996) concluded that the geographic range, especially more than one 

temperature/moisture regime, of the soil samples affects the prediction accuracies of 

NIR.  Those conclusions indicate that organic matter decomposition along with 
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regionality affect prediction accuracy when using VNIR-DRS.  Brown et al. (2005a) 

concluded that regional models could predict organic C. 

Research Objectives 

The overall goal of this research is to evaluate the feasibility of VNIR-DRS for in 

situ characterization of soil profiles.  Specifically this research addresses the following 

objectives:  1) Evaluate the precision of 350 to 2500 nm (VNIR region) soil reflectance 

measurements in quantifying soil organic and inorganic C of in situ soils at field-moist 

and air-dry water content, 2) Quantify any change in measurement error or prediction 

accuracy for in situ, field-moist soil with a smeared surface, and 3) Quantify how the 

heterogeneity within the soil and between fields changes predictions.  The results of this 

research will quantify errors associated with using VNIR-DRS to predict soil properties 

in situ and determine the feasibility of mounting a fiber-optic cable attached to a VNIR 

spectrometer into a soil probe.   

Materials and Methods 

Soil Coring 

Seventy-two soil cores were collected from six fields in Erath County (fields 1, 2, 3, and 

6) and Comanche County (fields 4 and 5), Texas in May 2004 to represent soil textures 

from clay to sand.  Each soil core was collected to a maximum depth of 105 cm or until 

a shallower restrictive horizon was reached, using a Giddings hydraulic soil sampler 

(Windsor, CO) attached to a truck.  The soil cores were contained in a 6.0 cm diameter 

plastic sleeve that was capped on both ends.  Soil cores were collected to represent the 

large variability in soil properties over these two counties.  For example, 21 soil series 
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were mapped by the Natural Resources Conversation Service in these fields (Table 3.1), 

and the parent material of these soils included loamy alluvium, sandstone, shale, and 

limestone.  The management practices between and within fields were variable.  All 

fields had dairy waste applied as fertilizer, compost or irrigation water.  Fields consisted 

of improved pasture used for grazing or hay production, or the fields were tilled and 

planted in hay grazer or wheat. 

VNIR-DRS Scanning 

 An ASD “FieldSpec® Pro FR” VNIR spectroradiometer (Analytical Spectral 

Devices, Boulder, CO), with a spectral range of 350-2500 nm, 2 nm sampling resolution 

and spectral resolution of 3 nm  at 700 nm and 10 nm at 1400 and 2100 nm was used.  

The in situ soil cores were scanned using a contact probe with a 3.14-cm2 diameter 

viewing area and its own light source.  A Spectralon® panel with 99% reflectance was 

used to optimize the spectrometer each day; the same panel was used as a white 

reference between scanning each core.  The 72 cores were cut using a utility knife to 

slice the plastic sleeve surrounding each core; then piano wire was used to half the soil 

core vertically, surface to subsoil.  The exposed face of one of the split core halves was 

smeared using a stainless steel spatula to resemble smearing by a soil probe and the other 

half was left unsmeared.  A wire grid was used to identify two columns and 3-cm thick 

rows within each core half (Fig. 3.1).  Each row within each column was scanned twice 

with the FieldSpec® Pro FR with a 90º rotation of the contact probe between scans.  

Both halves of each core, smeared and unsmeared, were scanned at field-moist water 

content.  The water potential was measured on each soil horizon from each core, with a  
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Table 3.1.  Series descriptions mapped by the Natural Resources Conservation Service 
within the fields which were used for VNIR-DRS organic and inorganic C predictions 
(USDA, 1973; USDA, 1977; USDA, 2005). 
 
Soil series Taxonomic name Field 

number 
Abilene Fine, mixed, superactive, thermic Pachic Argiustolls 4 
Altoga Fine-silty, carbonatic, thermic Udic Haplustepts  6 
Blanket Fine, mixed, superactive, thermic Pachic Argiustolls 6 
Bolar Fine-loamy, carbonatic, thermic Udic Calciustolls  1,5,6 
Bosque Fine-loamy, mixed, superactive, thermic Cumulic 

Haplustolls  
5 

Brackett Loamy, carbonatic, thermic, shallow Typic Haplustepts  5 
Bunyan Fine-loamy, mixed, active, nonacid, thermic Typic 

Ustifluvents  
2 

Chaney Fine, mixed, active, thermic Oxyaquic Paleustalfs  4 
Cisco Fine-loamy, siliceous, superactive, thermic Typic 

Haplustalfs  
4 

Denton Fine-silty, carbonatic, thermic Udic Calciustolls  1,6 
Frio Fine, smectitic, thermic Cumulic Haplustolls  1,4,5 
Houston Black Fine, smectitic, thermic Udic Haplusterts  1 
Karnes Coarse-loamy, carbonatic, thermic Typic Calciustepts  5 
Lewisville Fine-silty, mixed, thermic Udic Calciustolls 5,6 
Maloterre Loamy, carbonatic, thermic Lithic Ustorthents  1 
Nimrod Loamy, siliceous, active, thermic Aquic Arenic Paleustalfs  3,4 
Pedernales Fine, mixed, superactive, thermic Typic Paleustalfs  4 
Purves Clayey, smectitic, thermic Lithic Calciustolls  1,5,6 
Selden Fine-loamy, siliceous, active, thermic Aquic Paleustalfs  3 
Venus Fine-loamy, mixed, thermic Udic Calciustolls  5 
Windthorst Fine, mixed, active, thermic Udic Paleustalfs  2,3,6 
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Fig. 3.1.  Schematic of a vertically sliced soil core used for organic and inorganic C.  
Columns and rows indicate locations scanned using the contact probe. 
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maximum of six samples per core, using a SC-10 thermocouple psychrometer (Decagon, 

Pullman, WA) (Rawlins and Campbell, 1986).  The cores were then placed in a drier at 

44C for two days.  Before rescanning, the cores were removed from the drier and left on 

the countertop in the laboratory to equilibrate to room temperature.  The core half that 

was scanned in unsmeared condition was then rescanned in situ at air-dry moisture 

content. 

 Each row of the unsmeared soil core was ground and passed through a 2-mm 

sieve, and rescanned as air-dry, ground.  The air-dried, ground soils were scanned with a 

mug lamp connected to the FieldSpec® Pro FR.  The same Spectralon® 99% reflectance 

panel was used to calibrate the spectrometer each day, as well as being used as the white 

reference to set reflectance to 100%.  Approximately 28 g of ground soil was placed into 

a borosilicate glass “puck”.  Each sample was scanned twice with a 90º rotation between 

scans. 

Sampling for Laboratory Analysis 

 Two small 2-cm diameter by 1.5-cm deep soil samples were removed from each 

row from the non-smeared core half and placed in an envelope for laboratory analysis 

before the whole row was sampled for air-dried ground scans.  Each sample was taken 

from the exact spot that the contact probe scanned the soil.  Total C was measured using 

the dry combustion method (Soil Survey Staff, 1996; Nelson and Sommers, 1982) and 

inorganic C was measured using the modified pressure calcimeter method (Sherrod et 

al., 2002).  Sherrod et al. (2002) reported the pressure calcimeter method detection limit 

was 0.42 g kg-1.  Organic C was calculated by subtracting the inorganic C from the total 
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C.  Total C standard deviation of 0.31 was achieved using 191 observations of a calcium 

carbonate standard (Soil Survey Staff, 1996).  Laboratory organic C errors would be a 

combination of inorganic C and total C errors. 

Pretreatment of Data 

 Pretreatment of the spectral data included, splicing, averaging, and taking the 1st 

and 2nd derivative.  The spectral data were spliced where the three detectors overlapped.  

The two scans, 0º and 90º, were averaged.  The average and 1st and 2nd derivatives were 

taken on 10-nm intervals from 360-2490 nm after a cubic smoothing spline, 

implemented in the R “smooth spline” function (R Development Core Team, 2004), was 

fit to each raw spectral curve. 

Model Building and Validation 

 Four different models were built to help determine how in situ scans and water 

content affect prediction accuracies.  Air-dried ground, air-dried in situ, field-moist in 

situ, and smeared field-moist in situ were the four models that were created for organic 

and inorganic C.  The models for organic and inorganic C were produced using 70% 

randomly chosen cores, as the calibration samples.  Whole cores were used to maintain 

independence between the calibration and validation data (Brown et al., 2005a).  The 

prediction models were built using 1/25th cross validation PLS method in Unscrambler 

9.0 (CAMO Tech, Woodbridge, NJ).  The remaining 30% of the cores were used to 

validate the model.  Negative organic and inorganic C predictions were manually 

changed to zero before comparison of measured to predicted values were made.  

Measured versus predicted values of the validation samples were compared using simple 
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regression.  The coefficient of determination (r2), root mean squared deviation (RMSD), 

ratio of standard deviation (SD) to RMSD (RPD) and bias were calculated to compare 

the accuracy of different PLS models.  Statistical formulas to calculate RMSD, RPD, 

and bias following Gauch et al. (2003), Brown et al. (2005b) and Chang et al. (2005), 

( )∑ −=
n

2
measpred N/YYRMSD ,       (3.1) 

RMSD/SDRPD = , and        (3.2) 

(∑ −=
n

measpred ;N/YYBias )         (3.3) 

where Ypred are predicted values of the validation set using the PLS model, and Ymeas are 

the laboratory measurements of the validation set, and N is the total number of samples 

in the validation data.  Models for organic and inorganic C were considered satisfactory 

with r2 >0.70 and RMSD >5.0 g kg-1. 

 Model calibration and validation sets were also completed on whole-field 

holdouts to determine how field to field heterogeneity affected prediction accuracies 

(Brown el al., 2005a).  Whole-field holdouts were achieved by calibrating a model using 

PLS with five of the six fields.  The sixth field was held out as the validation samples.  

Six models were created so all six fields could be represented as a validation set.  To 

determine how core heterogeneity affected prediction accuracies, column one scans were 

used to calibrate an organic and inorganic C model.  The models were then cross-

validated with column one and column two and RMSD’s compared. 

Significant wavelengths in each model were plotted to help determine what 

portions of the wavelength were important for organic and inorganic C predictions.  
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Significant wavelengths were chosen by Unscrambler 9.0 with an uncertainty limits of 

two standard deviations in an ideal case.  Regression coefficients for each wavelength 

were calculated with a t-test and uncertainty limits that did not cross the zero line were 

significant. 

Results and Discussion 

Sample Descriptions 

 From the 72 soil cores, 540 soil samples were analyzed for organic and inorganic 

C.  Of these samples, 376 were used in the calibration model.  The remaining 164 

samples were used to validate the PLS model.  The organic C range of all the data was 0 

g kg-1 to 74.4 g kg-1 for surface and subsurface horizons.  The mean for organic C was 

7.3 g kg-1 and 8.4 g kg-1 for the calibration and validation samples, respectively, 

indicating that the majority of the samples are lower in organic C.  The means of 

calibration and validation data sets were statistically similar.  The means were tested 

using the nonparametric Mann-Whitney test, SPSS (Chicago, IL), p>0.1 (Table 3.2). 

Inorganic C samples covered a wide range as well, 0 g kg-1 to 111.4 g kg-1.  Though 

selected randomly from all six fields, the means of the inorganic C calibration and 

validation data sets were significantly different as tested by the Mann-Whitney test. 

Because both data sets were randomly selected and independent, no assumptions for PLS 

were broken, but significantly different means will affect the accuracy of the calibration 

model in predicting the validation data values  Inorganic C had low means for the 

calibration and validation samples, 4.9 g kg-1 and 2.0 g kg-1, respectively, indicating the 

majority of samples were well below the median.  Organic and inorganic C samples  
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Table 3.2.  Organic and inorganic C statistics for calibration and validation samples 
along with core water potential results. 
 
 N min. max. mean SD median 
calibration samples 
organic C (g kg-1) 376 0 74.4 11.0 11.7 7.3 
inorganic C (g kg-1) 376 0 111.4 18.7 23.2 4.9 
water potential (MPa) 188 -5.80 0 -0.49 0.60 -0.35 

 
validation samples 
organic C (g kg-1) 164 0 40.0 9.7 8.0 8.4 
Inorganic C (g kg-1) 164 0 82.3 10.8 17.5 2.0 
water potential (MPa) 82 -2.15 0 -0.48 0.47 -0.38 
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were not normally distributed and no transformation was successful at reaching a normal 

transformation.  Water potential of the field-moist scans ranged from saturated (0 MPa) 

to -5.8 MPa.  The extremely low water potential sample came from a tilled surface (0-3 

cm) of a loamy textured field.  The maximum water potentials occurred in samples 

deeper in the profile from several irrigated fields. 

Model Validation 

 Reeves III et al. (1999) stated that the 1st derivative of the VNIR spectra 

generally created the best prediction model.  The field-moist in situ model for organic C 

performed the best when the 1st derivative of the reflectance was used (Table 3.3).  

Inorganic C models performed well using the reflectance or the 1st derivative for all soil 

conditions, but the 2nd derivative of reflectance did a poor job (Table 3.3). Because 1st 

derivative organic C PLS models performed the best for field-moist in situ and the 1st 

derivative worked the best in other VNIR work (Reeves et al., 1999; Reeves and  

McCarty, 2001; Brown et al., 2005b), all the remaining organic C model reported in this 

paper use the 1st derivative of the VNIR spectra between 350 and 2500 nm.  Inorganic C 

models had better prediction accuracies using the reflectance versus the 1st derivative 

(Table 3.3).  The inorganic C PLS models performed the best using the reflectance data 

for the field-moist in situ scans; therefore, all PLS models for inorganic C were created 

with the reflectance.  The 1st derivative prediction accuracies were satisfactory; so 1st 

derivatives of the reflectance could be used to predict inorganic C.  The 2nd derivative 

results were unsatisfactory and does not show promise as possible transformations for 

organic and inorganic C predictions (Table 3.3).   
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Table 3.3.  Results for organic and inorganic C models on field-moist in situ scans using 
different reflectance transformations. 
 
 r2 RMSD Bias 
organic C  -----------------------g kg-1--------------------- 
Reflectance 0.58 5.8 1.4 
1st derivative 0.62 5.8 1.2 
2nd derivative 0.43 6.6 1.1 
    
Inorganic C 
Reflectance 0.74 9.4 2.5 
1st derivative 0.73 10.1 3.3 
2nd derivative 0.34 14.9 4.2 
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Air-dried ground and air-dried in situ models for organic C were satisfactory, 

while field-moist in situ models, smeared and unsmeared, were less accurate.  Table 3.4 

summarizes the prediction accuracies between the four calibration models.  The air-dried 

ground model was expected to produce the best model since the sample was reduced to a 

uniform size, moisture was reduced, and any natural heterogeneity of the soil was 

homogenized.  Air-dried ground scans for organic C gave the best fit line (Fig. 3.2)  

because the prediction accuracies of the air-dried in situ model was similar to the air-

dried ground model, we conclude that soil heterogeneity did not greatly affect VNIR 

effectiveness for predicting organic C.  Air-dry in situ cores had better prediction 

accuracies than field-moist in situ, meaning water content reduced prediction accuracy.   

The field-moist in situ smeared core scans produced the poorest fit for organic C (Fig. 

3.2).  Undecomposed organic matter, loose soil structure, and roots at the soil surface 

apparently increased the prediction error for organic C. Eleven samples in the validation 

data set had organic C values predicted greater than 10 g kg-1 from the laboratory 

measured organic C and nine of those samples were from the top 6 cm of the soil   

Variable soil parent materials also contribute to worse prediction accuracies (Henderson 

et al., 1992). 

Inorganic C results were similar to the organic C with the air-dried ground model 

performing the best followed by air-dried in situ, and field-moist in situ, smeared and 

unsmeared, having the lowest r2 values (Fig. 3.3).  No inorganic C model performed 

satisfactory but the results indicated that some correlation between VNIR and soil 

inorganic C did exists.  Table 3.4 summarizes the inorganic C results using the  
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Table 3.4.  Prediction accuracies of organic and inorganic C content models using the 
reflectance or 1st derivative of VNIR-DRS scans. 
 
 r2 RMSD RPD Bias 
  g kg-1  g kg-1

organic C (1st derivative) 
Air-dried ground 0.73 4.5 1.78 0.9 
Air-dried in situ 0.72 4.6 1.74 1.3 
Field-moist in situ 0.62 5.8 1.38 1.2 
Field-moist smeared 0.47 5.7 1.40 1.6 
     
inorganic C (Reflectance) 
Air-dried ground 0.88 6.6 2.30 0.85 
Air-dried in situ 0.83 7.9 2.22 0.89 
Field-moist in situ 0.74 9.4 1.86 2.50 
Field-moist smeared 0.70 9.0 1.94 2.90 
     
inorganic C (1st derivative) 
Air-dried ground 0.87 7.0 2.24 2.4 
Air-dried in situ 0.82 8.3 2.11 3.8 
Field-moist in situ 0.73 10.1 1.73 3.3 
Field-moist smeared 0.64 9.9 1.77 3.4 
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Fig. 3.2.  Predicted vs. measured organic C of the validation data set for (a) air-dried 
ground (b) air-dried in situ (c) field-moist in situ (d) field-moist in situ smeared.  
Organic C content predictions were executed from models built with PLS using the 1st 
derivative of VNIR reflectance spectra. 
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Fig. 3.3.  Predicted vs. measured inorganic C of the validation data set for (a) air-dried 
ground (b) air-dried in situ (c) field-moist in situ (d) field-moist in situ smeared.  
Inorganic C content predictions were executed from models built with PLS using the 
VNIR spectral reflectance. 
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reflectance and 1st derivative with respect to the reflectance.  Prediction accuracies of the 

inorganic C models were affected by not grinding and not air-drying the samples.  Air-

dried ground inorganic C models had the best prediction accuracy, which was expected, 

because of air-drying and sample homogenization.  The effect of homogenizing the 

sample for inorganic C was more significant than with organic C because the in situ 

scans dealt with secondary CaCO3 concentrations.  Since air-dried in situ and field-moist 

in situ inorganic C models increased RMSD, water content and soil heterogeneity both 

affected the prediction of inorganic C.   

Smearing the field-moist cores did not change prediction accuracies but did 

reduce the r2 value (Table 3.4).  The decrease in the r2 values of the smeared cores was 

probably due to the change in reflectance properties of the soil.  Smearing causes the soil 

surface to become shiny, which changes the reflectance from diffuse to diffuse specular 

reflectance.  Diffuse specular reflectance has a specular component which carries less  

information than diffuse reflectance (Coates, 1998).  The decline in prediction accuracies 

could also be linked to the fact that cores with high clay content smeared better than 

other cores, leading to greater variability.  A similar phenomenon may have been 

experienced by Sudduth and Hummel (1996) when they reported prediction errors 

because some soil was rough and other soil were smooth. 

When looking at the fields individually, conclusions can be drawn from which 

fields negatively affected prediction accuracy for inorganic C.  Heterogeneity within a 

single scan worsened prediction accuracies for fields 1 and 5, because numerous CaCO3 

concentrations were present.  The majority of the secondary CaCO3 concentrations in 
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field 1 was present as small, hard nodules. In field 5, the secondary CaCO3 

concentrations were large, soft masses. In fields 4 and 6, CaCO3 was diffused throughout 

the soil profile, and fields 2 and 3 were free of almost all CaCO3 except for some from 

lime applications. 

To determine how within-core heterogeneity affected prediction accuracy, one 

column was used to calibrate the model and the second column was used in validation.  

Within-core heterogeneity showed that heterogeneity within a scanning area, 2 cm in 

diameter, slightly affected the prediction.  Column one RMSD cross-validation of 

organic and inorganic C was 5.4 g kg-1 and 9.9 g kg-1, respectively.  When column two 

scans were used to validate column one for organic C and inorganic C the RMSD values 

were 6.0 g kg-1 and 9.8 g kg-1, respectively.  These results indicate that when working in 

soils with CaCO3 concentrations that are throughout a soil horizon, in situ scans should 

still be effective.  Soil samples used in this comparison had a large range of CaCO3 

concentrations which also varied from hard to soft.  Concentrations also varied in size 

from very small (threads and filaments) to large concentrations, encompassing the whole 

scanning area (2-cm diameter).  

Holding out whole fields reduced prediction accuracies in cases where the soils 

of the field held out were not represented by another field (Table 3.5). Validation with 

field 1 had the highest increase in RMSD for organic and inorganic C compared to the 

30 % random validation (Table 3.5).  Field 1 had Vertisols, which were dark in color, 

high in smectitic clays, and contained hard CaCO3 nodules rather than soft 

concentrations.  Holding out the other fields from the calibration resulted in little  
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Table 3.5.  Comparison between validation with individual-core holdouts versus 
validation with whole-field holdouts.  The change in RMSD for organic and inorganic C 
are reported between the two validation sets, which was done by subtracted RMSD from 
the validation of whole-field holdouts from the validation of individual-core holdouts. 
 
 RMSD 
 organic C inorganic C 
 --------------------------------g kg-1------------------------------ 
Field 1  4.5 15.1 
Field 2  0.9 -2.3 
Field 3  0.0  0.5 
Field 4  0.1 -0.2 
Field 5 -0.4  2.6 
Field 6  2.7  2.3 
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significant change in RMSD for those fields. Field 6 had an increase in the RMSD of 

organic C but all other predictions changed by less than 1.0 g kg-1 (Table 3.5).   

Significant Wavelengths 

Visible near-infrared models for organic C performed similar for air-dried 

ground and air-dried in situ scans, but the number of significant wavelengths in each 

model was different (Fig. 3.4).  The dried ground model had more significant 

wavelengths (114) than the dried in situ (69), but the ratio of wavelengths in the NIR 

region to the visible region is about the same (Fig. 3.4).  The two air dried models had 56 

wavelengths in common.  Field-moist in situ significant wavelengths numbered 110 with 

43 of those wavelengths common with either the air-dried ground or air-dried in situ 

models (Fig. 3.4).  The field-moist in situ model had a greater portion of significant 

wavelengths in the visible region.  This may indicate that these parts of the visible region 

are not contributing to a more accurate prediction.  The wavelengths in the visible range  

might be linked to the soil changing color at varying water contents, which is noted in 

soil surveys as a moist and dry color.  

The inorganic C models built using the reflectance or 1st derivative of reflectance 

performed similarly and numbers of significant wavelengths in the field-moist models 

were similar, 94 and 89, respectively.  The air-dried ground reflectance model had 51 

significant wavelengths and the field-moist in situ and air-dried in situ reflectance 

models had 94 and 54 significant wavelengths, respectively (Fig. 3.5).  Only, nine 

significant wavelengths were common in all three models (Fig. 3.5).   
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Fig. 3.4.  The wavelengths that significantly contributed to the prediction of organic C 
are shown for field-moist and air-dry in situ and air-dry ground models.  The third plot 
from the bottom shows the average of regression coefficients common in air-dried 
models.  All plots are on the same x-axis and y-axis scale is the same.  Values of the y-
axis are not shown because the existence of the significant wavelength and relative 
values to other wavelengths within one model is what is being shown.  The greater 
amplitude, negative or positive, means the wavelength held more significance to the 
model. 
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Fig. 3.5.  The wavelengths that significantly contributed to the prediction of inorganic C 
are shown for field-moist and air-dry in situ and air-dry ground models.  The top plot 
shows the average of regression coefficients common in all three models.  All plots are 
on the same x-axis and y-axis scale is the same.  Values of the y-axis are not shown 
because the existence of the significant wavelength and relative values to other 
wavelengths within one model is what is being shown.  The greater amplitude, negative 
or positive, means the wavelength held more significance to each model. 
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Wavelengths which were significant for inorganic C models may explain the 

decrease in prediction accuracy from air-dried ground, air-dried in situ, to field-moist in 

situ.  The air-dried ground model used several wavelengths at the longer wavelengths of  

the NIR region, and the air-dried in situ model still used numerous wavelengths in the 

NIR region, but there were not as many significant wavelengths at the high NIR region 

(Fig. 3.5).  The field-moist in situ model had even fewer wavelengths in the NIR region 

and had more in the visible region (Fig. 3.5).  In situ inorganic C predictions had worse 

RMSD’s than air-dried ground probably due to the lack of significant wavelengths in the 

longer wavelengths of the NIR spectrum since the optimum range for inorganic C 

predictions includes the mid-infrared region. 

Conclusion 

 In this study of 72 soil cores from Central Texas, a strong correlation existed 

between the 1st derivative with respect to the VNIR reflectance and organic C for the air-

dried ground (RMSD= 4.5 g kg-1) and air-dried in situ (RMSD= 4.6 g kg-1) scans.  A 

slight decrease in predictive power was observed for the field-moist unsmeared in situ 

(RMSD= 5.8 g kg-1) and smeared field-moist in situ (RMSD= 5.7 g kg-1) scans.  The 

correlation between inorganic C and VNIR reflectance was weaker, with air-dried 

ground (RMSD= 6.6 g kg-1) and air-dried in situ (RMSD= 7.9 g kg-1) scans.  Field-

moist, smeared and unsmeared, decreased the prediction accuracies with RMSD values 

of 9.4 g kg-1 and 9.0 g kg-1, respectively.  Variable soil water contents did decrease the 

prediction accuracies of organic and inorganic C models.  The soil heterogeneity did not 

affect the prediction accuracy for the organic C models when comparing the air-dried 
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ground and air-dried in situ but did affect the inorganic C models.  When predicting 

organic and inorganic C, the calibration model should have soil cores that represent the 

unknown soil cores otherwise calibration samples should be added.  Predictions will not 

vary greatly when working in soils with heterogeneity within the scanning area, such as 

redox features, secondary accumulations, and mottles. 

 These results indicate that precision agriculture and precision management will 

be able to benefit from proximal sensing using VNIR-DRS.  Visible near-infrared DRS 

can give soil scientists the ability to map soils across the landscape at high spatial 

resolution for precision agriculture and management.  The ability to show how soils 

slowly change across a landscape or within a profile (3-cm) is possible with VNIR-DRS.  

More research should be continued to include larger geographical ranges and other soil 

properties, but the future of VNIR reflectance in field measurements is promising. 
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CHAPTER IV 
 

 SUMMARY AND CONCLUSIONS 
 

 Visible near-infrared diffuse reflectance spectroscopy (VNIR-DRS) was capable 

of predicting clay content, organic C, and inorganic C in situ.  Soil heterogeneity did not 

affect prediction accuracies for clay content or organic C.  Inorganic C air-dried in situ 

models did decrease the prediction accuracy of VNIR-DRS.  Variable moisture content 

of field-moist in situ scans did decrease prediction accuracies for clay content, organic 

C, and inorganic C, but clay content field-moist in situ scans did not hinder predictions 

when compared to the air-dried ground models.  Smearing the field-moist in situ cores 

reduced the prediction accuracy for clay content.  Organic C and inorganic C field-moist 

in situ smeared models did not show a decrease in prediction accuracies but did reduce 

the fit between laboratory analysis and VNIR predictions.  Water potential did not 

produce successful prediction models nor did water potential increase predictions of clay 

content. 

 These results indicate that precision management would benefit from VNIR-

DRS.  Visible near-infrared diffuse reflectance spectroscopy will be beneficial by giving 

soil scientists the ability to rapidly and reliably map soils across the landscape at a 

smaller scale for the use in precision agriculture and management.  The ability to show 

how soils slowly change across a landscape or within a profile (3-cm) is also available 

with VNIR-DRS.  Clay content, organic C, and inorganic C models were not changed 

for air-dried in situ cores which indicates better predictions would be expected during 

drier periods of the year.  Variable water contents negatively affected all models to some 
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degree.  Scanning at drier water contents also decreases the possibility of smearing 

which increased RMSD compared to the air-dried scans.  Visible near-infrared diffuse 

reflectance spectroscopy was capable of predictions across parent materials. 

In situ analysis of soil with VNIR-DRS is in an infancy stage.  More research 

should be continued to include the following: 

1. Samples that represent larger geographical ranges; 

2. Determine what geographical information (longitude, latitude, etc…) can 

improve predictions; 

3. Determine prediction accuracies of cation exchange capacity, base saturation, 

pH, nitrogen, potassium, phosphorus, and other soil properties/nutrients; 

4. Look at new data mining techniques to improve predictions; 

5. Determine prediction accuracy of soil tilth or quality; and  

6. Investigate new statistical approaches to determine significant wavelengths in 

the predictions. 

The full capabilities of VNIR-DRS have not been exploited at this time and those 

capabilities need to be determined. 
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