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ABSTRACT

Generalized Buffering of Pass Transistor Logic (PTL) Stages Using Boolean Division and

Don’t Cares. (May 2006)

Rajesh Garg, B.Tech., Indian Institute of Technology-Delhi

Chair of Advisory Committee: Dr. Sunil P. Khatri

Pass Transistor Logic (PTL) is a well known approach for implementing digital cir-

cuits. In order to handle larger designs and also to ensure that the total number of series

devices in the resulting circuit is bounded, partitioned Reduced Ordered Binary Decision

Diagrams (ROBDDs) can be used to generate the PTL circuit. The output signals of each

partitioned block typically needs to be buffered. In this thesis, a new methodology is pre-

sented to perform generalized buffering of the outputs of PTL blocks. By performing the

Boolean division of each PTL block using different gates in a library, we select the gate

that results in the largest reduction in the height of the PTL block. In this manner, these

gates serve the function of buffering the outputs of the PTL blocks, while also reducing the

height and delay of the PTL block.

PTL synthesis with generalized buffering was implemented in two different ways. In

the first approach, Boolean division was used to perform generalized buffering. In the sec-

ond approach, compatible observability don’t cares (CODCs) were utilized in tandem with

Boolean division to simplify the ROBDDs and to reduce the logic in PTL structure. Also

CODCs were computed in two different manners: one using f ull simpli f y to compute

complete CODCs and another using, approximate CODCs (ACODCs).

Over a number of examples, on an average, generalized buffering without CODCs

results in a 24% reduction in delay, and a 3% improvement in circuit area, compared to

a traditional buffered PTL implementation. When ACODCs were used, the delay was
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reduced by 29%, and the total area was reduced by 5% compared to traditional buffering.

With complete CODCs, the delay and area reduction compared to traditional buffering

was 28% and 6% respectively. Therefore, results show that generalized buffering provides

better implementation of the circuits than the traditional buffering method.
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CHAPTER I

INTRODUCTION

Static complementary metal oxide semiconductor (CMOS) has long been the circuit de-

sign style of choice for digital Integrated Circuit (IC) designers. Some the reasons for

this are that static CMOS enables the design of reliable, scalable circuits and also due to

the availability of a well-developed synthesis methodology for static CMOS. However, the

switching capacitances in a static CMOS circuit can be fairly large. With the increasing

demand for higher speed and low power, it has become necessary to look for alternative

design styles which can offer better performance and power than static CMOS. The shrink-

ing process feature sizes and increasing transistor counts on a chip further emphasize this

need. Many alternate circuit design styles have been proposed over the years, such as

dynamic CMOS logic [1, 2], pass-transistor logic (PTL) [2], differential cascode voltage

switch logic (DCVSL) [2], programmable logic arrays (PLAs) [2], etc.

Among these alternate circuit design styles, pass transistor logic (PTL) offers great

promise. In contrast to dynamic logic, PTL is less susceptible to cross talk problems, which

is a major issue in deep sub-micron technologies [3]. Several case studies [4, 5] have shown

that PTL can implement most functions with fewer transistors than static CMOS or other

styles. PTL circuits also have a physically dense structure and hence occupy less area. This

reduces the overall capacitance, resulting in faster switching times and lower power.

PTL is a circuit implementation style that has typically been used for many specific

circuit blocks like barrel shifters. Although PTL offers great benefits for such designs,

there has been no widely accepted PTL design methodology that could be used to make

PTL more broadly acceptable. There have however been several efforts at the research

The journal model is IEEE Transactions on Automatic Control.
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level, to explore the promise of PTL.

Synthesis approaches for PTL structures typically leverage the fact that there is a di-

rect mapping between the Reduced Ordered Binary Decision Diagram (ROBDD) [4, 6]

and the PTL implementation of a circuit. In fact, each ROBDD node can be mapped to a

MUX (which can be implemented using NMOS or CMOS devices). Figure 1 illustrates the

mapping between an an ROBDD node and a MUX whereas Figure 2 shows the mapping

of ROBDD into PTL. In Figure 2 the solid line (dashed line) represents the positive (neg-

ative) cofactor of an ROBDD node with respect to the variable of that node. For the PTL

implementation of any function, there is an isomorphism between the connectivity of the

ROBDD nodes of the function and the MUXes in the PTL implementation. This elegant

and easy mapping between ROBDDs and PTL structures is not without attendant problems,

however:

01
v

f

fv fv

f

fv fv

v

Figure 1. ROBDD Node and its MUX based Implementation

• For one, in a bulk MOS implementation of any circuit, it is not practical to connect

more than 4-5 devices in series, due to the phenomenon called body effect, which

effectively increases the threshold voltage VT of most of the series-connected MOS-

FETs. This results in a slower design. Body effect is governed by the equation

VT = V 0
T + γ

√

Vsb (1.1)

Here VT is the threshold voltage of the device, V 0
T is the threshold voltage of the
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Figure 2. ROBDD and its PTL Implementation

device at zero body bias, γ is the body effect coefficient, and Vsb is the source to bulk

voltage of the MOSFET. When several MOSFETs are connected in series in a PTL

circuit, all but one of them is affected by body effect. For this reason, in practice,

VLSI designers do not stack more than 4-5 devices in series.

This results in a problem for the traditional PTL implementations, which attempt to

build monolithic ROBDDs. To solve this problem, we need to build ROBDDs in a

partitioned [7] manner, such that if an intermediate ROBDD has a depth greater than

4 or 5, a new variable is created. In circuit terms, a buffer is implemented at the

output of the new variable, ensuring that the circuit drive capability is regenerated

every few levels in the final PTL design.
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• The second problem is that ROBDDs, if build monolithically, can exhibit unpre-

dictable memory explosion. This precludes the applicability of the PTL methodology

for large designs, as long as the ROBDDs are build monolithically (since it is very

hard to build monolithic ROBDDs of large functions). Again, the use of partitioned

ROBDDs averts this problem.

In summary, partitioned ROBDD construction helps tackle both the above problems

associated with PTL synthesis. In such a partitioned PTL design, the outputs of each PTL

structure is buffered, to regenerate the electrical drive capability after every 4 or 5 levels.

The main goal of this thesis work is to implement a new PTL synthesis approach to

perform efficient partitioned ROBDD based PTL synthesis. In principle, it still employs

partitioned ROBDDs, however, the buffering between PTL stages is done using general-

ized buffers. These could be arbitrary gates in the cell library. This is achieved by casting

the problem of generalized buffering as an instance of Boolean division. In traditional par-

titioned ROBDD based PTL synthesis, buffering is required after 4-5 levels as mentioned

earlier. By using functionally complex library gates for the buffering logic, it is possible to

significantly reduce the logic in the PTL structure which then results in a reduction of total

circuit delay and area. A second goal of this thesis is to utilize Compatible Observabil-

ity Don’t Cares (CODCs) during Boolean Division, to further reduce the logic in the PTL

structures. The PTL synthesis approach with generalized buffering is implemented for both

cases: one using CODCs and the other without CODCs. Also, to augment the applicability

of the approach to industrial designs, approximate CODCs (ACODCs) are used as well.

A. Previous Work

There has been a significant amount of work in the area of pass transistor logic synthesis.

In addition, there have been several reported design variations on the PTL circuit concept.
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A good reference source for published work in this area is [8].The paper gives an overview

of the state of the art in PTL technology. This paper covers PTL based circuit technologies,

design and synthesis methodologies, applications and commercial use, etc. Given the gen-

eral nature of the synthesis methodology which is presented in this thesis, the work of this

thesis is orthogonal to the circuit issues and ideas that are discussed in the papers referred

to in [8].

In [5], Yano et. al. present a scheme which takes a logic function described in hard-

ware description language (HDL) format, and synthesize the corresponding PTL based

circuit using a library of PTL cells, macrocells, etc. The scheme which was named as

Lean Integration with Pass-Transistors (LEAP) uses a synthesis tool called “circuit inven-

tor” which express the required logic function in ROBDD. Then the ROBDD is partitioned

into smaller trees by inserting buffers at the nodes such that the height of the partitioned

tree is less than the maximum height of the pass-transistor cell in the library. The library

cells used [5] have a maximum height of two variables. After inserting the buffers, the

partitioned tree is mapped using the PTL cells from the library. As monolithic ROBDDs

are constructed (these can result in memory explosion), this tool can only be used for small

circuits. This method uses inverters to buffer the signals between PTL cells.

The philosophy behind the work of Macchiarulo et. al. [9] is that while PTL based

synthesis is well researched, layout and back-end tools for PTL are not found as readily.

They describe a layout generator to help develop more complete tools for library free PTL

design. The approach of Radhakrishnan et. al. [10] is motivated by the need to develop

high density, low power, high performance circuits using PTL. The authors presents two

synthesis approaches – a modified Karnaugh map [11] approach for small circuits, and

a Quine-McCluskey [12, 13] based approach for larger designs. In [14], Cheung et. al.

study regenerative pass transistor logic (RPL), a dual rail PTL family. Their interest stems

from the compact area of these circuits. They implement an algorithm which tries to use
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2-input RPL XOR logic gates and 2-input multiplexers as much as possible, to minimize

the total number of transistors in the circuit. The algorithm also tries to minimize the serial

connection of the pass-transistors to reduce body effect.

In [15], Hsiao et. al. present a layout and logic synthesis approach, with the input

being a logic function, while the output is a PTL net-list, containing MUXes and inverters.

After synthesizing the logic, the methodology adds inverters or buffers, in order to ensure

that the longest series path of MUXes has a bounded depth. The work of Buch et.al. [3]

builds ROBDDs [4, 6] in a partitioned manner [7], thereby avoiding the memory blow-

up that often occurs while using ROBDDs. The resulting (small) ROBDDs are directly

mapped to PTL structures, resulting in an efficient synthesis methodology. The downside

of this approach is the absence of generalized buffering. The authors allude to performing

PTL synthesis in a manner that maps some nodes to CMOS gates while others are mapped

into PTL blocks. However, this leaves the designer little control of the depth of these

sections. In contrast, the generalized buffering approach presented in this thesis guarantees

a fixed bound on the depth of each PTL block, and also ensures just one level of generalized

buffers between PTL blocks.

In [16], an approach using multilevel gates along with PTL and transmission gates is

reported by Neves et. al., producing a regular and dense layout. The algorithm implemented

by them first minimizes the logic function using a multi-level logic minimizer. Then the

multi-level format is translated into a Directed Acyclic Graph (DAG). The DAG is then

mapped into network of gates using the multi-level gates implemented in their library. Their

approach also permits buffer inclusion. It can be viewed as an approach that combines

synthesis and layout in the PTL design flow, and is orthogonal to the work presented in

this thesis. The work of Pedron et. al. in the paper [17] reports synthesis algorithms for

PTL. Minimization of circuit area is performed by using incomplete transmission gates.

The results of synthesis using their tool PAVOS demonstrate good quality results when
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compared with manually tuned PTL circuits.

In [18], Markovic et. al. present a PTL synthesis approach for Complementary Pass

Transistor Logic (CPL), Dual Pass Transistor Logic (DPL) and Dual Voltage Logic (DVL).

The approach for the logic synthesis is based on Karnaugh map coverage and circuit trans-

formations. Finally, the work of Shelar et. al. [19] reports on a novel method to minimize

power in a PTL structure. The authors transform the power minimization problem into a

ROBDD decomposition problem and solve the latter using a max-flow min-cut approach.

The results of the proposed algorithm in their paper achieves good power reduction as

compared to previous low power PTL synthesis algorithms.

In [20], a mixed PTL-CMOS approach was presented by Lai et. al. The decomposi-

tion process simply extracted unate variables from a sum-of-products (SOP) representation

of a function and recursively cofactored these variables (creating MUXes in the process)

until unate leaves were reached. Unate leaves were realized using library gates alone. The

weakness of this approach is that it starts with a SOP representation, limiting its effective-

ness for large designs. Further, if a function is unate, then the entire circuit realization is

purely standard-cell based. The work presented in this thesis works equally effectively for

unate designs because it utilizes the partitioned ROBDD construction as the first step.

Another mixed PTL-CMOS approach was presented in [21]. The approach adopted by

the authors is to construct the ROBDD of a logic function and then replace part of it with

CMOS gates. The ROBDD nodes with one input connected to 0 or 1 terminal node are

favored for replacement with CMOS gates. A cost function is used to finally decide upon

the node replacement. The authors also control the ratio of the pass-transistors and CMOS

gates by modifying a parameter of the cost function, and hence are able to do area-oriented,

delay-oriented and power-oriented PTL-CMOS synthesis. However, the algorithm does not

provide the user any control over the number of pass-transistors between two CMOS gates.

Also, monolithic BDDs are used as a starting point for the approach, hence the algorithm
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can only be applied to the smaller designs.

Most of the previous PTL logic synthesis approaches utilize monolithic ROBDDs

which makes them inapplicable for larger designs. Although some of them have used par-

titioned ROBDDs, they only use inverters for buffering signals between partitioned blocks.

However these approaches employ ad-hoc heuristics, yielding PTL structures which do not

have control over the number of pass-transistors between two CMOS gates [21]. Other

approaches [20], do not allow any control over the ratio of PTL blocks to standard cells.

Our Boolean division based approach explores all possible ways to use arbitrary library

cells. It also guarantees that static CMOS gates are used only in the interface between PTL

blocks, and that PTL blocks have bounded depth. Neither [21] nor [20] satisfy any of these

properties. Also the methodology [20, 21] can only be applied to smaller designs because

of their use of monolithic ROBDDs. Due to these problems associated with the previously

proposed methods, there lies a significant scope for work in PTL based logic synthesis

using CMOS gates. This thesis explores these opportunities.

B. Motivation

The shrinking feature size in recent VLSI designs and increasing demand for high speed

and lower power makes it necessary to look for the circuit design styles other than Static

CMOS, which have been predominantly used to implement VLSI circuits. Several differ-

ent circuit design styles have been proposed such as dynamic CMOS logic, pass-transistor

logic (PTL), differential cascode voltage switch logic (DCVSL), programmable logic ar-

rays (PLAs), etc. Among these alternate circuit design styles, PTL circuit style possesses

great potential. PTL can implement the logic function with fewer transistors than Static

CMOS circuits. This reduction in transistors results in lower overall capacitance which

increases design speed and decreases power consumption.
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PTL approaches have been extensively researched earlier. However, there has been

no widely accepted PTL design methodology. This has resulted in the application of PTL

to specific circuit implementations. Many authors have tried to use PTL for general VLSI

logic circuits but their approaches suffer from the problems as mentioned in the previous

section. The key contribution of this thesis is to develop and implement a new PTL syn-

thesis approach to perform efficient partitioned ROBDD based PTL synthesis. In principle,

it still employs partitioned ROBDDs, however, the buffering between PTL stages is done

using generalized buffers. These could be arbitrary gates in a cell library. In traditional par-

titioned ROBDD based PTL synthesis, buffering is required after 4-5 levels as mentioned

earlier. By using functionally complex library gates for the buffering logic, it is possible

to significantly reduce the logic in the PTL structure, which then results in a reduction of

total circuit delay and area. The generalized buffering problem is solved using Boolean

division. A second goal of this thesis is to utilize Compatible Observability Don’t Cares

(CODCs) during Boolean division, to further reduce the logic in the PTL structures. The

PTL synthesis approach with generalized buffering is implemented for both cases: one

using CODCs and the other without CODCs. Finally, this thesis also uses approximate

CODCs (ACODCs) during Boolean division, in order to extend the applicability of gener-

alized buffering to indvidual designs.

The new PTL synthesis algorithm implemented in this thesis can synthesize combi-

national logic circuits of arbitrary size. The approach of performing partitioned ROBDD

construction using generalized buffers (library gates) to regenerate signal strengths across

PTL structures is a novel contribution in the PTL synthesis world. The approach used for

generalized buffering (using Boolean division), and the extension of this approach using

CODCs and ACODCs is another novel contribution of this thesis.



10

C. Thesis Organization

The rest of this thesis is organized as follows: Chapter II provide some background in-

formation which will be helpful in understanding the PTL based logic synthesis approach

presented in this thesis. In Chapter III partitioned ROBDD construction is described. Chap-

ter IV describes the new PTL synthesis algorithms proposed in this thesis. In Chapter V,

experimental results are provided, comparing the new PTL synthesis approach (using gen-

eralized buffering) with traditional partitioned ROBDD-based PTL design. Conclusions

and future work are discussed in Chapter VI.
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CHAPTER II

BACKGROUND

PTL possesses many advantages over static CMOS and other circuit styles. Among these

properties of pass-transistors, the fact that there is direct mapping between an ROBDD

and the PTL implementation of the corresponding function are mainly responsible for the

potential that PTL possesses. To explain this further, it is useful to briefly describe pass

transistors, ROBBDs, and compatible observability don’t cares (CODCs).

A. Pass Transistors Logic (PTL)

Pass transistor logic is a popular and widely used alternative to Static CMOS because of

the advantages it possesses in terms of area and power as compared to CMOS, and other

circuit styles [10, 3]. The pass transistor is simply an NMOS or PMOS device with inputs

driving the gate as well as the source-drain terminals of the MOSFETS. This is in contrast

with other circuit styles, which only allow inputs to drive the gate terminal. As an NMOS

device is faster than PMOS transistor of the same size therefore, mostly NMOS transistors

are used commonly to implement pass transistors in the PTL.

The main advantage of PTL is that it requires fewer transistors to implement a given

logic function. Figure 3 shows the PTL and static CMOS implementation of a 2-input AND

function. It can be seen that PTL based implementation requires 3 NMOS and 1 PMOS

transistors (including the inverter required to invert B) to implement the AND gate whereas

the corresponding implementation in static CMOS would require 6 transistors. The re-

duction in the number of devices further decreases the overall capacitances and thereby

increases the switching rate with a decrease in power.

The NMOS (PMOS) pass transistor is effective at passing a GND(V DD), but it is

poor at passing a VDD(GND). Therefore, the output of a NMOS or PMOS pass-transistor
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Figure 3. Static and PTL based implementation of AND Gate

is not at the supply voltage. Also in a bulk MOS implementation of a circuit, the bulk

terminal of all NMOS (PMOS) transistors are connected to GND (VDD). Due to this,

when the transistors are connected in series, all but one of them experience an increase in

its threshold voltage due to body effect. The increase in threshold voltage is determined by

the equation 1.1. The increase in threshold voltage increases the delay of the pass transistor

(slows down the switching speed of the device). The NMOS transistor which is closer to

GND in the series connected stack experiences a smaller increase in threshold voltage as

compared to the transistor further away from GND. Therefore, in practice it is not advisable

to connect more than 4-5 transistors in series.

As mentioned in the last chapter, that there is a direct mapping between ROBDDs

and PTL structures. Therefore, buffers have to be used after every 4-5 ROBDD nodes in

series. In other words, partitioned ROBDDs with a depth less than 5 have to be built and
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then mapped to PTL structures. ROBDDs are briefly discussed in next section whereas the

implementation of the partitioned ROBDDs are described in detail in the next chapter.

B. Reduced Ordered Binary Decision Diagrams (ROBDD)

An ROBDD is a graphical way of representing a Boolean function. It can represent many

logic functions compactly as compared with sum-of product (SOP). Moreover, many logic

operations like tautology and complementation can be performed on ROBDDs in constant

time. For a particular variable ordering , an ROBDD is a canonical form of representing a

Boolean function. As the name suggests ROBDDs are a reduced form of binary decision

diagram (BDDs) with a particular variable ordering. The reduction rules used are described

in the sequel.

A BDD represents a Boolean function as a directed acyclic graph (DAG), with each

nonterminal node labeled by a variable of the function. It is also referred to as a Shannon

co-factoring tree, where each node performs the Shannon co-factoring of the Boolean func-

tion represented by that node, with respect to the variable assigned to it. Figure 4 illustrates

the BDD for the function (x1 + x2) · x3. Each node has two outgoing edges, corresponding

to the positive cofactor of the node function with respect to the node variable (shown as a

solid line) or the negative cofactor of the node function with respect to the node variable

(shown as a dashed line). The terminal nodes (shown as boxes) are labeled with 0 or 1, cor-

responding to the possible function values. For any assignment to the function variables,

the function value is determined by tracing a path from the root of the BDD to a terminal

node following the appropriate positive or negative branch from each node. The number

of vertices from the root to the leaves in the BDD is exponential in terms of number of

variables in the logic function. Therefore, for functions with a large number of variables,

BDDs might not be a good choice for representing the function. In general, the variable
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ordering along different paths in the BDD can be different.

1 0

x3

x1

x2

0 00

x3

1 1 0

x2 x2

x3

Figure 4. Shannon Cofactoring tree of logic function (x1 + x2) · x3

The graph in Figure 4 is transformed into an ordered BDDs (OBDDs) if we use a fixed

variable ordering. Consider the variable to be order x1 < x2 < x3. That is, every path from

the root to a leaf encounters variables in the order x1 < x2 < x3. The resulting OBDD is

shown in Figure 5. If we further apply a set of reduction rules on the OBDD, we obtain an

ROBDD for the function. The set of reduction rules are:

• Any node with two identical children is removed.

• Two nodes with isomorphic BDDs are merged.

ROBDDs are a canonical form of representing a logic function for a particular vari-

able ordering. Figure 6 shows the resulting ROBDD when the above mentioned reduction

rules are applied to the graph shown in Figure 5. In this case as well, the number of nodes

can be exponential in terms of the number of variables. However, the size of ROBDDs

(i.e. number of nodes) depends upon the variable ordering. Therefore, variables must

be ordered in a manner that minimizes the size of the ROBDD. The problem of comput-

ing an optimum variable ordering is a NP-Complete problem. However there are efficient
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Figure 5. OBDD of logic function (x1 + x2) · x3

heuristics available that can choose an appropriate ordering of variables which results in

the ROBDD of reasonable size. At the same time, there are functions that have polyno-

mial sized multi-level representations while their ROBDDs are exponential for all input

orderings. A multiplexer is an example of such a function.

The following ROBDD operations are used in the work presented in the thesis:

• bdd and : This function returns the ROBDD which is the logical AND of the two

ROBDDs passed to the function.

• bdd or : This function returns the ROBDD which is the logical OR of the two ROB-

DDs passed to the function.

• bdd xnor : This function returns the ROBDD which is the logical XNOR of the two

ROBDDs passed to the function as a parameter.

• bdd compose: This function returns a ROBDD F ′ with a variable v replaced by a

ROBDD g in the original ROBDD F .

• bdd smooth : Returns the BDD formula of f existentially quantified with respect to
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Figure 6. ROBDD for logic function (x1 + x2) · x3

the variables in the array “smoothing vars”. “smoothing vars” is an array of ROB-

DDs, which are the single variable BDD formulas to be quantified.

Existential quantification of f with respect to a variable x is expressed as ∃x f =

fx + fx. Here fx represents the function f co-factored with respect to variable x.

Smoothing a set of variables is achieved by performing existential quantification,

one variable at a time.

• bdd between : Returns a heuristically minimized BDD containing fmin, and con-

tained in fmax.

• bdd depth : Returns the depth of ROBDD i.e. the maximum number of nodes from

the root vertex to any leaf.
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C. Compatible Observability Don’t Cares (CODCs)

Technology independent logic optimization of a multi-level network is an important part of

logic synthesis. During such optimization, one of the operations involves the computation

of multi-level don’t cares of the circuit. These don’t cares can take the form of Satisfiability

Don’t Cares (SDCs), Observability Don’t Cares (ODCs) or External Don’t Cares (XDCs).

Of the different kinds of don’t cares, XDCs are specified with the network whereas

SDCs and ODCs are computed. Consider a multi-level boolean network (η) in which every

node has a Boolean function fi associated with it. Also, fi has a corresponding Boolean

variable yi associated with it, such that yi ≡ fi. Suppose that the Boolean network η has n

primary inputs and m nodes. Then the SDCs are defined by the equation 2.1. SDCs simply

convey that for each node in the network, the value of the node output (y j) cannot differ

from the value obtained after evaluating its boolean function ( f j).

SDC = Σm
j=1(y j f j + y j f j) (2.1)

The Observability Don’t Care (ODC) of node yj (in a multi-level Boolean network)

with respect to output zk is

ODC jk = {x ∈ Bn s.t. zk(x)|y j=0 = zk(x)|y j=1} (2.2)

In other words ODC jk is the set of minterms on the primary inputs for which the value

of yj is not observable at zk [22]. This can also be denoted as

ODC jk = (
∂zk
∂y j

)

where

∂zk
∂y j

= zk(x)|y j=0 ⊕ zk(x)|y j=1 (2.3)
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∂zk
∂y j

is also known as the Boolean Difference of zk with respect to y j.

Once a node function is changed by minimizing it against its ODCs (using Espresso [23]),

the ODCs of the other nodes must be recomputed. To avoid re-computation of ODCs during

optimization, Compatible Observability Don’t Cares (CODCs) [22] were developed. The

CODC of a node is a subset of the ODC for that node. Unlike ODCs, CODCs have a prop-

erty that one can simultaneously change the function of all nodes in the network as long as

each of the modified functions are contained in their respective CODCs. Compatibility is

achieved by ordering the don’t care computation in a manner that if node mi precedes node

m j in the order, then node mi gets the most don’t cares. Also, while computing the don’t

cares of m j, compatibility is maintained with the don’t cares already assigned to node mi.

The computation of CODCs [22] in SIS [24] is performed in two phases.

• The first phase computes the CODC of a node using node operations. The resulting

CODC is a function of arbitrary nodes in the network. However, we desire the sup-

port of the CODC to be the support of the node itself. For this reason, we need a

second phase in the computation to achieve this.

• In the second phase, image computation is performed to map the CODC points to the

local fanin space of each node. This image computation uses BDDs.

In the first phase, the CODC computation for the network η starts from the primary

outputs and proceeds towards primary inputs in a reverse topological order. The CODC at

each primary output is initialized to the external don’t care (XDC) at that node.

The CODC at node yi (denoted as CODCη
i ) is found by using the CODC for each

fanout edge eik of yi. This compatible don’t care of edge eik is denoted by CODCη
ik. The

CODC for yi is obtained by intersecting the CODCs computed for its fanout edges.

Suppose, as shown in Figure 7, that we have a node with function yk = fk, and ordered

fanins y1 < y2 < · · · < yi. Given CODCη
k , we can compute the CODCs of the fanin edges
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Figure 7. Node yk and its fanins

of yk as follows.

CODCη
ik ≡ (

∂ fk
∂y1

+Cy1)...(
∂ fk

∂yi−1
+Cyi−1)

∂ fk
∂yi

+CODCη
k (2.4)

Note that in the above computation, we assume that CODCη
k have already been com-

puted. Also, Cy j is the consensus1 operator. For the first input in the ordered list of fanins,

we have CODCη
1k = ( ∂ fk

∂y1
)+CODCη

k , indicating that this node obtains maximum flexibility.

The intuition behind the correctness of the computation of Equation 2.4 in general is that

the new edge eik should have its don’t care condition as the conjunction of ∂ fk
∂yi

with the

condition that other inputs j < i are not insensitive to the input y j (∂ fk
∂y j

), or are independent

of y j (Cy j ) indicating that the node i is free to use such terms independently of how y j was

simplified. Finally, the CODCs of the fanout node yk are also CODCs of the edge eik. As

a result, the computation of CODCη
ik using the formula above, performed in the specified

order, results in the Compatible set of ODCs of the edges eik. From CODCη
ik, we compute

the CODC for node i (CODCη
i ) as follows:

1Consensus operation on f with respect to a variable y is expressed as Cy f = fy fy. Here fy
represents the function f co-factored with respect to variable y.
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CODCη
i ≡ ∏

k∈FOi

CODCη
ik (2.5)

The intuition of the above method of computing the CODC of yi (CODCη
i ) based on

its edge CODCs (CODCη
ik) is that CODCη

i must not be greater than any CODCη
ik. Note also

that all terms in CODCη
ik from Equation 2.4 except CODCη

k have a support which is the

support of yk. However, CODCη
i has a support which includes its fanout’s fanins, and in

general, we have to do an image computation to convert this CODC to a function which is

on the support of yi.

In the second phase, we perform this image computation. Using the ordering heuris-

tics of [25], global BDDs at each node of the Boolean network are computed in terms of

the primary inputs. BDDs are also built for each primary output in the external don’t care

network using this same ordering. We next compute the CODC at yi in terms of primary

inputs, using a BDD based computation. This is done by substituting each literal of the

CODC of yi by its global BDD function (which was computed earlier). From this we find

all the points that are reachable in the local space of yi by a BDD based image computa-

tion. The functions used for image computation are the global functions at the fanins of

yi. In most cases the number of primary outputs is much less than the number of primary

inputs; therefore the recursive image computation method [26] is used to do the compu-

tation. However, this computation is highly memory intensive, since it is typically done

using ROBDDs. As it is already mentioned earlier, ROBDDs can exhibit highly irregu-

lar memory requirements, with unexpected blowup. As a result, the CODC computation,

though very elegant in its conception, is typically not feasible for large circuits. In gen-

eral, the computation is not robust for medium-sized circuits either. The work presented in

this thesis is applicable for large circuits also therefore, an alternative way of computing
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CODCs has to be employed.

In [27], the authors have presented a way of computing approximate compatible don’t

cares (ACODCs). These don’t cares are approximation of CODCs. The ACODCs can be

computed for larger designs and the time required and memory utilization for the ACODC

computation is much less (both typically 30X lower) than the corresponding values for full

CODC computation. At the same time, the literal count reduction obtained by ACODCs

is typically about 80% of that obtained by full CODCs. To compute ACODCs for any

node n, a smaller sub-network is extracted from the original network. The smaller network

is a network rooted at the node of interest, up to a certain topological depth in the origi-

nal network. Then the CODCs are computed for the smaller network. This can be done

quite efficiently. The authors show that the don’t cares computed in this manner yields a

literal count reduction which is about 80% of that obtained by complete CODCs. Hence,

ACODCs will be used in this thesis work.

D. Conclusion

This chapter briefly dicuss the background information which will be required to under-

stand this thesis. The next chapter will descibe the algorithm for create of partitioned

ROBDDs.
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CHAPTER III

PARTITIONED ROBDDS

A. Introduction

Though PTL circuits possess many advantages over other circuit styles there are a couple

of issues that need to be addressed. Firstly, due to body effect in a practical PTL approach

it is not advisable to connect more than 4-5 pass transistors in series. Secondly, since the

PTL synthesis method uses ROBDDs, memory explosion can occur if ROBDDs are built

monolithically. The first problem can be solved by inserting buffers after every 4-5 ROBDD

nodes (pass-transistors). However, if monolithic ROBDD are used as the starting point for

PTL synthesis (monolithic ROBDDs can have a size which is exponential in number of the

inputs) then the advantage of PTL over other circuit styles will be lost in terms of area,

power and delay. Therefore to avoid memory explosion, partitioned ROBDDs should be

employed to construct the ROBDDs of the design. The use of partitioned ROBDDs also

tackle the first problem, by buffering the output of every PTL structure.

Partitioned ROBDDs avoid the memory explosion which is possible when using mono-

lithic ROBDD. The intuition behind this savings in ROBDD size is as follows: in gen-

eral, when constructing the ROBDD of function F = G1 < op > G2, the size of F is |F|,

F = O(|G1||G2|) [4], where |G1| and |G2| are the sizes of the ROBDDs of G1 and G2 re-

spectively. If the partitioned ROBDDs are built for F , then the aggregate size of ROBDDs

will be O(|G1|+ |G2|) [3]. Thus partitioned ROBDDs certainly reduce the aggregate size of

the ROBDDs of the circuit. For this reason, partitioned ROBDDs allow us to construct the

ROBDDs of large circuits when monolithic ROBDDs fail. The price to pay is that unlike

monolithic ROBDD, partitioned ROBDDs are not canonical for a given variable ordering.

However, this does not pose a problem in this thesis work, since this thesis deals with gen-
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erating PTL circuits and not in manipulating ROBDD as a data structure. The algorithm

for constructing partitioned ROBDDs is briefly discussed in the next section.

B. Algorithm

Consider a Boolean network η. First the network η is optimized and decomposed using

2-input gates and inverters only. Let the modified network be represented by η∗. Now η∗ is

sorted in a depth-first manner. The resulting array of nodes is sorted in levelization1 order,

and placed into an array L. Thus the nodes of η∗ are stored in A in topological order from

the inputs to the outputs.

Now a node n is fetched from array A in index order. The ROBDD f of n is built

using the ntbdd node to bdd function. Let m be the level of node n. Then the depth of

the resulting node ROBDD f is compared with the maximum allowable depth of 5 (which

maximum number of ROBDD nodes between the root and leaves). If the depth of f is less

than 5 then we continue to create the ROBDD of other nodes in array A. However, if the

depth of f is equal to 5 then the node n is made a new variable. If the depth is greater than 5

then one of the fanins of n is made a new variable. The fanin which is made a new variable

is one whose topological level is one less than that of n. Recall that any node can have at

most two fanins. If both fanins have the same topological level, then the fanin node with

maximum ROBDD depth is made as a new variable.

In this way, we can guarantee that no PTL structure will have a depth more than the

maximum allowable depth of 5. Algorithm 1 summarizes the methodology of partitioned

ROBDD construction. Figure 8 shows the resulting partitioned PTL implementation of a

circuit with one primary output and 10 primary inputs. The triangles in the figure represent

the partitioned ROBDDs whereas the top vertex of each triangle is a variable created during

1Primary inputs are assigned a level 0, and other nodes are assigned a level which is one
larger than the maximum level among all their fanins
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partitioned ROBDD construction. The top vertex of each triangle is also buffered as shown

by the buffers (two back to back inverters) connected to each triangle’s vertex.

Primary Output

Primary Inputs

Figure 8. Partitioned ROBDD of a Circuit (traditional buffering)

C. Conclusion

Partitioned ROBDDs are very effective in the ROBDD construction of large circuits as

compared with monolithic ROBDDs. They also help in PTL synthesis by allowing the

resultant PTL implementation to have a bounded depth (thereby avoiding a delay increase

due to body effect). The use of partitioned ROBDDs in PTL synthesis also avoids the

memory explosions that is possible if monolithic ROBDDs are used. This avoids an area

increase that would result if monolithic ROBDDs are used.
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Algorithm 1 Partitioned ROBDD Construction
η = optimize network(η)

η∗ = decompose network(η, 2)

A = dfs and levelize nodes(η∗)

i = 1

while i ≤ size(A) do

n = array fetch(A,i)

f = ntbdd node to bdd(node)

if bdd depth( f ) > 5 then

f anin = node fanin(n,level(n-1))

bdd create variable( f anin)

else

if bdd depth( f ) == 5 then

bdd create variable( f )

else

continue

end if

end if

end while
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CHAPTER IV

PTL WITH GENERALIZED BUFFERING

A. Introduction

Partitioned ROBBD (described in the last chapter) enable us to implement a PTL based

circuit efficiently. However, this approached uses only inverters for buffering the signals

between the partitioned PTL blocks and hence does not explore the advantage which gen-

eralized buffering can offer. This thesis formulates a novel approach to do generalized

buffering, by casting the problem as an instance of Boolean division. The Boolean division

of a partitioned PTL block with complex library gates can significantly simplify the logic

function of that PTL block. This results in the reduction of total circuit delay and area.

This chapter presents the key contribution of this thesis i.e. a new PTL synthesis

methodology which uses generalized buffering between partitioned PTL blocks. The new

PTL synthesis method is discussed for two cases: one with CODCs and the other with-

out CODCs. In order to extend the applicability of the technique, the experiments were

conducted using ACODCs as well. The next section introduces Boolean division. The fol-

lowing two sections will present a PTL synthesis methodology for generalized buffering

without using CODCs, and with CODCs.

B. Boolean Division

Boolean Division is extensively used in many logic optimization procedures like factoring,

resubstitution, extraction, etc. Consider a completely specified Boolean function f which

we want to divide by another completely specified Boolean function g. Boolean division

can be defined as:

Definition 1 g is a Boolean divisor of f if h and r exist such that f = gh+ r ,gh 6= /0.
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g is said to be a Boolean factor of f if, g is a Boolean divisor of f, and, in addition

r = /0, i.e., f = gh.

In this case, h is called the quotient and r is called the remainder. Note that h and r

are not unique.

Theorem B.1 If f g 6= /0, then g is a Boolean divisor of f .

Proof: If f g 6= /0, we can write

f = f g+ f g

f = g( f + x)+ f g where x ⊆ g

which is of the form f = gh+ r, where h = f + x and r = f g.

C. Generalized Buffering without CODCs

The new PTL synthesis method described in this section does not use CODCs. Lets define

the depth of an ROBDD g as the maximum number of nodes in any traversal of g to its

terminal nodes. Our method creates partitioned PTL structures with a maximum depth of 5

(this number can be arbitrary, though). This ensures that there are no more than 5 transistors

in series, in any PTL block.

In order to implement generalized buffering, Boolean division will be used. Algorithm

2 describes the new PTL synthesis methodology which uses generalized buffers. Consider

a boolean network η. First the network η is optimized and decomposed using 2-input gates

and inverters only. Let the new network be referred to as η∗. Now η∗ is sorted in depth-first

manner. The resulting array of nodes is sorted in levelization order, and placed into an array

L.

In this approach, we first build ROBDDs of the nodes of η, topologically from the

inputs to the outputs by fetching the nodes from the array A in index order. Suppose we

encounter a new node n for which we want to construct a ROBDD f . The ROBDD of each
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of its fanins must have a depth of at most 4 ROBDD variables (assuming that the fanins are

not partitioned ROBDD variables). When constructing the ROBDD f of n, it can initially

have at most 8 ROBDD variables (since any node in the original network can have at most

2 fanins). If the depth of f is less than 5 then we continue with creating the ROBDD of

the other nodes in array A. However, if the depth of f is greater than or equal to 5 then

we attempt to divide f with the gates in a library by calling the test division function.

If the division is successful, then the depth of the ROBDD f will reduce . The detailed

description of the test division function is provided after the synthesis flow.

When we perform ROBDD construction, the maximum depth of the ROBDD of a

node n before division can be 8, as discussed earlier. The division routines systematically

reduce this depth to below 5, by using one or more generalized buffers. If an ROBDD

cannot be divided (and the resulting depth after division is greater than 5), then we back-

track, and make one of the fanins of n a new variable. The fanin which is made a new

variable is the one whose topological level is one less than that of n. The reason for this is

illustrated in Figure 9.

d e

c

ba

Figure 9. Back-tracking during Division

Consider node a, at topological level n. Suppose it has two fanins c and d, with levels

n−1 and n−2 respectively. Since partitioned ROBDD construction occurs in topological
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Algorithm 2 Pseudo Code for PTL synthesis using generalized buffers and without CODCs
η = optimize network(η)

η∗ = decompose network(η, p)

A = dfs and levelize nodes(η∗)

i = 1

while i ≤ size(A) do

n = array fetch(A,i)

f = ntbdd node to bdd(n)

if bdd depth( f ) ≥ 5 then

for g ≡ G ∈ Gate Library do

f = test division(f,g,G)

end for

if bdd depth( f ) > 5 then

back-track

else

bdd create variable(n)

continue

end if

else

continue

end if

end while
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order from inputs to outputs, it is possible that node b (at level n) has already been processed

and divided. Its ROBDD therefore has a depth of less than 5 nodes. Now suppose the

ROBDD depths of d and c are 4 each, and the ROBDD of a has depth 8. Suppose all

divisions for node a fail. In that case, we need to back-track and make either c or d a new

variable. This would guarantee that a has a new depth 5. We select c (with level n− 1)

as the new variable since it is more likely that d (which is at a lower topological level)

has more fanouts of level n or n− 1. When c is made a new variable, all its fanouts are

checked. If any of them has already been processed (such fanouts must have level n), then

their ROBDDs are re-computed, and division is re-done. In this way, the PTL network is

kept as small as possible. If this re-computation was not performed, then the logic of the

node c would be implemented twice as a PTL structure (once for the node b and then again

for the variable corresponding to node c itself).

If after a back-track the depth of the node n is less than 5 then we continue to grow the

corresponding ROBDD further up to a depth 8.

After attempting division (regardless of whether the division succeeded or failed),

the depth of n is guaranteed to be less than or equal to 5, allowing for an elegant exit

in the case division fails. In general, however, this division strategy yields a number of

good generalized buffers, so this occurrence is rare. The test division routine is based

on Boolean division. The next section describes the test division algorithm, for the cases

where CDOCs are not used.

1. ROBDD Division without CODCs

The key idea behind ROBDD division is that we take the ROBDD of a node n and attempt

to divide it with the gates in a library. If such a Boolean division is possible and it is

strictly ROBDD depth-reducing, we select it. The test for whether a library gate g, with an

associated variable G, divides the ROBDD f of n is described next. A pictorial view of the
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process is shown in Figure 10.

b) After dividing AND gate
(note height reduced
otherwise the gate is rejected

a) Before dividing AND gate

Figure 10. Dividing a Generalized Buffer into a PTL Structure

The Boolean division based test for whether a library gate g divides a ROBDD f

can be represented by following logic equations. Here, f is considered to be Completely

Specified Function (CSF).

f = G( f + x)+( f )g, where g ≡ G and x ⊆ g.

Therefore, the upper and lower bounds (U and L) for f are:

U = G( f +g)+( f )g

and

L = ( f G+ f g)

In this case, with quotient h = f + x and remainder r = f g, we can represent f as

f = Gh+ r

Algorithm 3 describes the test division procedure without CODCs. This algorithm

represents the test performed during division of ROBDD f by a gate g (having a variable

G). 2.

In Algorithm 3, the functions L and U are ANDed with (g⊕G) to express the fact
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Algorithm 3 Pseudocode for Division of f by g ≡ G
test division( f ,g,G){

if f g 6= 0 then

L = ( f G+ f g)(g⊕G)

U = ( f G+Gg+ f g)(g⊕G)

Z = bdd between(L,U)

Z∗ = bdd smooth(Z,gvars)

R = bdd compose(Z∗,G,g)

if R = f and bdd depth(Z∗) < bdd depth( f ) then

return(success,Z∗)

end if

else

return fail

end if

}
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that g and G are not independent variables, but rather are related as G ≡ g. We next find a

small ROBDD Z (using the function bdd between, which returns the heuristically smallest

ROBDD Z such that L ⊆ Z ⊆ L +U ). Next, we smooth out1 the variables of g. If the

resulting ROBDD Z∗, with g composed back into G, is identical to f , we return Z∗ as the

quotient.

Figure 11 shows the resulting synthesized PTL circuit obtained after performing PTL

synthesis with generalized buffering as described in Algorithm 2.

Primary Inputs

Primary Output

Figure 11. Partitioned ROBDD with generalized buffering

1Smoothing is also referred to as Existential Quantification. The existential quantification
of f with respect to a variable x is expressed as ∃x f = fx + fx. Smoothing a set of variables
is achieved by performing existential quantification, one variable at a time
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D. Generalized Buffering with CODCs

The PTL synthesis methodology with generalized buffering described in the last section

attempts to divide the ROBDD of a node with the gates in the library. During the division,

the method finds an upper U and a lower bound L on the resulting ROBDD and then select

a heuristically minimum ROBDD between L and U by using the bdd between procedure.

The range of this choice can extended by using CODCs, allowing the final ROBDD size to

be be further reduced. In other words, the CODCs can be used to further simplify the logic

of a PTL structure. The CODCs can be computed in two manners: one using f ull simpli f y

to compute the complete CODCs, and another using approximate CODCs (ACODCs). The

ACODCs are computed in a similar manner as mentioned in [27].

When we want to use CODCs (or alternatively ACODCs) during the division process,

we first build the ROBDDs of the nodes of η topologically from the inputs to the outputs

by fetching the nodes from the array A in increasing order of index. When we encounter

a new node n whose ROBDD f has a depth greater than 5, then we compute its CODCs

by using the compute dc function. After CODC computation we try to divide f with the

gates in the library by calling the test division function. The test division makes use of

the CODCs of that node to simplify the logic, and is described in Algorithm 5. If the

division is successful and if the depth of ROBDD reduces below 5 then we make n a new

ROBDD variable. Otherwise, we backtrack (in the same manner as described in the case

when CODCs were not used) and make one of the fanins of n a new variable. The fanin

which is made a new variable is the one whose topological level is one less than that of

n. Algorithm 4 summaries the synthesis flow for PTL synthesis with generalized buffering

and using CODCs.
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Algorithm 4 Pseudo Code for PTL synthesis using generalized buffers and with CODCs
η = optimize network(η)

η∗ = decompose network(η, p)

A = dfs and levelize nodes(η∗)

i = 1

while i ≤ size(A) do

n = array fetch(A,i)

f = ntbdd node to bdd(n)

if bdd depth( f ) ≥ 5 then

d = compute dc(η∗,n)

for g ≡ G ∈ Gate Library do

f = test division( f ,d,g,G)

end for

if bdd depth( f ) > 5 then

back-track

else

bdd create variable(n)

continue

end if

else

continue

end if

end while
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1. ROBDD Division with CODCs

In principle, we still attempt to divide the ROBDD of n with the gates in a library. However,

CODCs are utilized during division to simplify the logic further. If such a Boolean division

is possible and it is strictly height-reducing, we select it. The test for whether a library gate

g, with an associated variable G, divides the ROBDD f of n is described next.

In this case, the ROBDD f of n is considered to be Incompletely Specified Function

(ISF). Let d represents the CODCs computed for the node n. Then the division of f with

the logic gates G ≡ g in the library can be represented by the following equations:

f = G( f +d + x)+( f +d)g, where g ≡ G and x ⊆ g

Therefore, the upper bound U for f is:

U = G( f +d +g)+( f +d)g

The lower bound L for f is still the same as when CODCs are not used.

L = ( f G+ f g)

The lower bound L can be found by setting x = and d = in the expression for f above.

The test we perform when we try to divide a gate g (having a variable G) into the ROBDD

f of node n with CODC d is shown in Algorithm 5.

In Algorithm 5, the functions L and U are ANDed with (g⊕G) to express the fact that

g and G are not independent variables, but rather are related as G ≡ g. We next find a small

ROBDD Z (using the function bdd between(), which returns the heuristically smallest

ROBDD Z such that L ⊆ Z ⊆ L+U ), which is a Boolean divisor of f . Next, we smooth out

the variables of g. If the resulting ROBDD Z∗, with g composed back into G, lies between

f and f +d, we return Z∗ as the quotient. If we have a valid division then we map the don’t

care d of the node n onto a new set of variables V so that it can be used during the next

iteration. The CODCs are mapped using following equations:

Q = d(g⊕G)
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Algorithm 5 Pseudocode for Division of f by g ≡ G using CODCs
test division( f ,d,g,G){

if f g 6= 0 then

L = ( f G+ f g)(g⊕G)

U = ( f G+dG+Gg+ f g+dg)(g⊕G)

Z = bdd between(L,U)

Z∗ = bdd smooth(Z,gvars)

R = bdd compose(Z∗,G,g)

if f ⊆ R ⊆ f +d and bdd depth(Z∗) < bdd depth( f ) then

Q = d(g⊕G)

d = ∃V Q

return(success,Z∗)

end if

else

return fail

end if

}
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d = ∃V Q

where V is the set of variables which lie in the support of g but are not present in the

support of Z∗. The re-mapped don’t cares of n are used for further Boolean division, to

explore additional generalized buffering opportunities for the node n.

E. Conclusion

This chapter describes the PTL logic synthesis using generalized buffering for both cases

i.e. with and without CODCs. The methods described in this chapter was implemented and

the experimental results are provided in the next chapter.
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CHAPTER V

EXPERIMENTAL RESULTS

A. Implementation Details

The new PTL synthesis algorithms with generalized buffering were implemented in SIS [24].

The code consisted of reading a circuit (which was decomposed before-hand into 2-input

gates and inverters), and then building ROBDDs of its nodes in a topological manner from

the inputs to the outputs. When the depth of ROBDD of any node grew beyond 5, division

was invoked, as described in last chapter. For PTL synthesis with CODCs, CODCs were

computed and used during division. The CODCs computation were done in two manners:

one using f ull simpli f y [24] (which will provide complete CODCs) and another using, ap-

proximate CODCs (ACODCs) were computed as mentioned in [27]. Results are presented

and compared for both styles of CODCs.

The resulting library gates that were utilized for division, and the new ROBDD after

division were stored within each node’s data structure. Since the ROBDDs in question were

small (with a maximum height of 8), division was performed exhaustively. If the resulting

depth after division was greater than 5, then a back-track step was invoked making one of

the node’s fanins a new variable. After this we check the nodes which are in the fanout of

the fanin node corresponding to the newly created variable. If any of these fanout nodes

was already processed, then their ROBDDs were re-computed, and division was re-done.

After attempting division (regardless of whether the division succeeds or fails), the depth

of the final ROBDD is guaranteed to be less than or equal to 5, allowing for an elegant exit

strategy in case division fails.

The next section provides the information about the library used in the PTL synthesis

implementation and the process technology used. Subsequent sections, report the delay
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and area results for various circuits which were synthesized using the new PTL approach.

These sections also compare these results with the corresponding results for a traditional

buffer-based PTL synthesis methodology.

A set of benchmark circuits were synthesized using the new PTL synthesis algorithm

with generalized buffering. Experiments show a clear advantage of new PTL synthesis

algorithms over traditional PTL synthesis. The traditional method used for comparison

was similar to that reported in [3].

B. Gate Library

The gate library used in this implementation consisted of the gates AND2, AND3, AND4,

OR2, OR3 and OR4. Since any divided gate becomes a new variable, it is required in

both its polarities. Therefore, by DeMorgan’s law, we only have non-inverting gates in our

library.

The MUX and all gates in the library were characterized for delay in SPICE [28],

using a 100nm BPTM [29] process technology. Table B shows the delay and active area of

MUX and all gates in the library.

C. Delay

The delay of a synthesized PTL circuit was extracted by finding the longest delay path from

any output to any input. Table C compares the delay of the traditionally buffered partitioned

ROBDD based implementation, with the generalized buffering methodology (both cases:

with and without CODCs). In this table, column 1 lists the example under consideration.

Column 2 reports the circuit delay, for the traditional method. Column 3 reports delay for

new PTL synthesis algorithm with generalized buffering without CODCs (as a fraction of

the delay of the traditional method). Column 4 and 5 report delay number for PTL synthesis
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Table I. Delay and active area of gate library

Gate Delay(ps) Area(µ2)

MUX 18 0.08

INV 10.26 0.08

Buffer 20.5 0.16

AND2 30.20 0.28

AND3 37.76 0.44

AND4 47.39 0.64

OR2 38.70 0.36

OR3 46.08 0.68

OR4 68.28 1.12

using ACODCs and CODCs respectively (again as a fraction of the delay of the traditional

method). Some entries in the table marked as “-”. This indicates that f ull simpli f y was

not able to compute the CODCs for that circuit.

We observe that new PTL synthesis approach with generalized buffering results in

a speed-up of about 24% on average, compared to the traditional method (when CODCs

were not used). When ACODCs were utilized for generalized buffering speed-up over the

traditional method improves to about 29%. We also observe that it is better to use ACODCs

than CODCs because of the following reasons:

• f ull simpli f y is not able to compute CODCs for many large circuits whereas ACODCs

can be computed robustly for arbitrary sized circuits [27].

• Second, using CODCs instead of ACODCs does not appreciably improve the delay of

the PTL circuits. On average the additional improvement is less than 1% (calculated
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Table II. Delay Comparison of Generalized and Traditional Buffered PTL

Traditional Buffering Generalized Buffering

Without CODC’s With ACODCs With CODCs

Ckt Delay (ps) Delay Delay Delay

alu2 5125.32 0.53 0.55 0.54

alu4 18849.06 0.45 0.43 -

apex6 1519.02 0.73 0.75 0.75

C432 3505.68 0.86 0.79 0.76

C499 1033.20 1.01 1.01 1.01

C880 2264.40 0.70 0.53 0.54

C1908 4017.96 0.74 0.67 0.68

C3540 21056.04 0.71 0.53 -

C5315 4949.28 1.04 1.03 1.04

x3 1045.98 0.82 0.82 0.82

i8 1732.32 0.69 0.62 0.6

x1 860.94 0.67 0.67 0.67

pair 2197.44 0.75 0.70 0.70

rot 1870.74 0.82 0.80 0.80

C6288 36024.12 0.94 0.86 -

des 2547.54 0.89 0.79 -

too large 3130.56 0.52 0.54 0.54

AVERAGE 0.756 0.710 -
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over the examples for which the CODC method completed).

• The time taken by f ull simpli f y to compute CODCs is much larger than the time

required to compute ACODCs. The run time for each PTL circuit synthesis approach

is mentioned in Table E.

D. Area

The area calculation was performed by determining the active area of the MUXes and

all the library cells. The area numbers for various gates are mentioned in Table B.

The number of MUXes is simply the sum of the sizes of each of the partitioned

ROBDDs in the design.

Table D compares the active area of the traditionally buffered partitioned ROBDD

based implementation, with that of the generalized buffering methodology (with and

without CODCs). In this table, Column 1 lists the example under consideration.

Column 2 reports the circuit active area for the traditional method. Columns 3, 4

and 5 report the area for the new PTL synthesis algorithm with generalized buffering

without CODCs, with ACODCs and with CODCs respectively. The area in Columns

3, 4 and 5 are expressed as a fraction of the area of the traditional method.

The generalized buffers occupy a greater area than the traditional buffers. Due to

this the area improvement of the new PTL synthesis approach is not as high i.e. 3%

on average when CODCs were not used and 5% when an ACODCs were utilized.

On average (computed over the examples for which CODCs could be computed),

the CODCs based method exhibits a 1% area overhead over ACODC based method.

Again we observe that using CODCs does not result in area reduction over the case

where ACODCs are used. This is an additional reason to use ACODCs rather than
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Table III. Area Comparison of Generalized and Traditional Buffered PTL

Traditional Buffering Generalized Buffering

Without CODC’s With ACODCs With CODCs

Ckt Area (µ2) Area Area Area

alu2 164.32 0.87 0.86 0.83

alu4 963.68 1.12 1.12 -

apex6 305.52 0.95 0.93 0.93

C432 87.12 1.02 0.93 1.10

C499 106.24 0.92 0.92 0.92

C880 136.16 0.80 0.79 0.79

C1908 152.24 0.97 0.93 0.93

C3540 532.88 1.01 0.98 -

C5315 540.16 1.12 1.11 1.12

x3 315.76 0.96 0.96 0.96

i8 520.48 0.75 0.72 0.70

x1 120.88 0.96 0.95 0.95

pair 640.32 1.08 1.07 1.06

rot 229.20 0.96 0.96 0.96

C6288 1220.48 1.10 1.06 -

des 1808.88 0.94 0.91 -

too large 125.68 0.98 0.97 0.97

AVERAGE 0.970 0.950 -
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CODCs. In the case of the circuit C432, when CODCs were used the area increases

by 17% compared to the area when ACODCs were used. This increase in area is due

to the use of OR4 and OR3 gates during Boolean division (when CODCs were used).

When ACODCs were used, these gates were not utilized.

E. Runtime

Table E reports the run-time for the different PTL synthesis algorithms with gener-

alized buffering. In this table, Column 1 lists the circuit under consideration while

Column 2 reports the run-time for generalized buffering without CODCs. Columns

3 and 4 report the run-time for generalized buffering using ACODCs and CODCs

respectively.

We observe from the Table E that the run-time taken generalized buffering with

ACODCs is 8x more than the run-time for generalized buffering without CODCs.

The comparison of Columns 3 and 4 also shows that the run-time in the case of the

full CODCs based computation is much larger than the run-time when ACODCs are

used. Averaged over the examples for which the CODCs could be computed, the

runtime for the ACODC based method was 76X better than that of the CODC based

method. It has already been mentioned in the previous section that the advantage of-

fered by using CODCs over ACODCs is minimal. The run-time comparison further

underscore this conclusion.

F. Library Gates Utilized

Tables F reports the number of MUXes and inverters used for PTL synthesis using

traditional and generalized buffering. Column 1 lists the example under considera-
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Table IV. Run-time for PTL synthesis with generalized buffering

Generalized Buffering

Without CODC’s With ACODCs With CODCs

Ckt Time(s) Time(s) Time(s)

alu2 0.380 11.48 435.32

alu4 8.990 54.52 -

apex6 1.490 4.6 117.23

C432 0.460 13.82 236.820

C499 0.360 11.67 86.78

C880 0.240 2.41 70.0

C1908 0.790 8.08 362.12

C3540 5.010 41.56 -

C5315 30.840 29.2 9543.8

x3 1.400 4.12 104.27

i8 1.630 28.73 2651.48

x1 0.240 1.08 16.2

pair 3.720 25.85 7110.52

rot 0.850 4.59 332.39

C6288 10.790 151.49 -

des 14.730 140.71 -

too large 0.310 2.89 78.33

AVERAGE 4.837 33.55 -
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tion. Columns 2 and 3 report the number of MUXes and inverters required for the

traditional method. Columns 4 and 5 reports the number of MUXes and inverters

used by generalized buffering without CODCs (as a fraction of the corresponding

numbers for the traditional method). Columns 6 and 7 reports the number of MUXes

and inverters used for generalized buffering using ACODCs (again as a fraction of the

corresponding numbers for the traditional method). Finally, Columns 8 and 9 report

the number of MUXes and inverters for generalized buffering using CODCs. We ob-

serve that PTL synthesis with generalized buffering and without CODCs utilizes 23%

fewer MUXes and 36% fewer inverters compared to the traditional method. Whereas

in case of generalized buffering using ACODCs the number of MUXes was used re-

duced by 27% and the number of inverters used was reduced by 40% as compared to

traditional buffering.

Tables F, F and F report the number of library gates utilized by the generalized buffer-

ing approaches (without CODCs, with ACODCs and with CODCs). We observe that

in each case healthy number of divisions was performed.

The general trend in these tables shows that more generalized buffers were found by

the CODC method over the ACODC method. Both flavors of CODCs found more

generalized buffers compared to the case when don’t cares were not used.

G. Conclusion

We observe that the new PTL synthesis approach with generalized buffering results

in a speed-up of about 24% on average, compared to the traditional method when

CODCs were not utilized. With the use of ACODCs, the generalized buffering results

in a speed-up of up to 29%. Also, the new PTL synthesis without CODCs utilizes

about 23% fewer MUXes and 36% less inverters. In case when ACODCs were used,
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Table V. Number of MUXes and INV Utilized during Traditional and Generalized Buffering

Traditional Generalized Buffering

Buffering Without CODC’s ACODCs CODCs

Ckt MUX INV MUX INV MUX INV MUX INV

alu2 718 2054 0.600 0.429 0.577 0.403 0.532 0.36

alu4 4188 12046 0.704 0.498 0.689 0.480 - -

apex6 1337 3819 0.737 0.604 0.719 0.586 0.718 0.586

C432 404 1089 0.995 0.928 0.795 0.691 0.834 0.704

C499 404 1328 0.762 0.699 0.762 0.699 0.762 0.698

C880 594 1702 0.731 0.634 0.702 0.605 0.712 0.613

C1908 660 1903 0.858 0.782 0.806 0.723 0.792 0.704

C3540 2362 6661 0.732 0.573 0.672 0.501 - -

C5315 2366 6752 1.068 1.015 1.037 0.976 1.03 0.972

x3 1393 3947 0.797 0.680 0.789 0.672 0.791 0.673

i8 2418 6506 0.483 0.331 0.449 0.298 0.439 0.275

x1 527 1511 0.666 0.514 0.657 0.506 0.652 0.499

pair 2925 8004 0.790 0.661 0.726 0.592 0.718 0.582

rot 999 2865 0.803 0.688 0.796 0.675 0.79 0.671

C6288 5393 15256 0.917 0.741 0.834 0.646 - -

des 7854 22611 0.796 0.652 0.740 0.596 - -

too large 552 1571 0.654 0.488 0.643 0.474 0.644 0.476

AVERAGE 0.770 0.642 0.729 0.595 - -
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Table VI. Number of Library Gates Utilized during Generalized Buffering without CODCs

Ckt AND2 AND3 AND4 OR2 OR3 OR4

alu2 64 20 6 62 22 4

alu4 353 162 82 374 145 131

apex6 116 6 4 111 31 5

C432 17 0 0 10 0 0

C499 0 16 16 16 0 0

C880 47 9 9 0 0 0

C1908 18 13 1 44 2 0

C3540 157 68 98 155 45 8

C5315 52 13 6 62 12 0

x3 64 12 2 120 26 3

i8 298 117 0 166 29 3

x1 49 8 2 27 15 14

pair 208 28 14 193 72 61

rot 76 19 3 49 16 2

C6288 744 30 12 424 48 23

des 499 181 132 435 71 4

too large 54 3 0 48 18 14
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Table VII. Number of Library Gates Utilized during Generalized Buffering with ACODCs

Ckt AND2 AND3 AND4 OR2 OR3 OR4

alu2 65 22 6 61 23 5

alu4 368 169 84 374 152 133

apex6 133 6 4 93 32 6

C432 30 13 0 19 0 0

C499 0 16 16 16 0 0

C880 49 10 9 2 0 0

C1908 23 18 1 44 2 0

C3540 192 80 97 152 48 17

C5315 64 19 7 70 13 5

x3 66 11 2 119 27 4

i8 342 115 4 120 28 6

x1 51 9 2 26 14 14

pair 229 40 18 197 74 79

rot 79 19 3 49 16 3

C6288 857 50 12 409 69 37

des 561 196 132 429 83 29

too large 55 3 1 50 18 13
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Table VIII. Number of Library Gates Utilized during Generalized Buffering with CODCs

Ckt AND2 AND3 AND4 OR2 OR3 OR4

alu2 68 27 6 55 22 7

apex6 133 6 4 93 32 6

C432 28 15 13 19 2 3

C499 0 16 16 16 0 0

C880 48 10 9 2 0 0

C1908 24 18 1 44 2 1

C5315 66 19 8 73 15 8

x3 65 11 2 119 27 4

i8 344 116 5 137 28 6

x1 51 9 2 27 14 14

pair 235 42 19 191 70 82

rot 79 19 4 48 16 3

C1355 23 0 0 36 4 5

too large 55 3 1 49 18 13
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the number of MUXes utilized were reduced by 27% whereas the number of inverters

were reduced by 40%.

Since the generalized buffers occupy greater area than the traditional buffers, the

overall area improvement of the new PTL synthesis approaches is not as high (3%

on average when CODCs were not used and 5% when ACODCs were used). The

usage of complete CODCs using f ull simpli f y does yield a small improvement in

delay in comparison with ACODCs. However, the run-time for complete CODCs

was on average 76X that the run-time for ACODCs. Also complete CODCs cannot

be computed for larger circuits. However, ACODCs can be computed for arbitrary

sized circuits. Therefore, the use of complete CODCs does not provide any practical

benefits over ACODCs.

The results in this thesis indicate that generalized buffering yields significantly faster

designs, with a modest area benefit as well, compared to traditionally buffered PTL

approaches. The run-time of the partitioning algorithm is slightly less than 15 sec-

onds for the largest example in our benchmark suite when CODCs were not used. In

case of ACODCs, the run time was less than 152 seconds. Also, a healthy number of

library gates are utilized for each example during division, validating the benefits of

the generalized buffering concept.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

Pass transistor logic (PTL) is a viable alternative to Static CMOS because of the ad-

vantages it possesses in terms of area and power as compared to static CMOS as well

as other circuit styles. Although PTL offers great benefits for specialized circuits

such as barrel shifters, there has been no widely accepted PTL design methodology

which is applicable for random logic circuits. Many attempts have been made in

the past to use PTL for general VLSI logic circuits, but the proposed methodolo-

gies suffer from scalability problems. Some PTL approaches used simple buffers to

buffer the outputs of PTL stages. However a scaleable method to perform generalized

buffering of the outputs of PTL stages has not been available to date. Therefore, there

lies a significant scope for work in PTL based logic synthesis using general CMOS

gates to buffer the outputs of PTL stages. This thesis explores these opportunities.

This thesis presents a new PTL circuit synthesis scheme. In order to handle larger

designs, and also to ensure that the total number of series devices in the resulting cir-

cuit is bounded, partitioned Reduced Ordered Binary Decision Diagrams (ROBDDs)

have been used to generate the PTL circuit.

The approach utilizes partitioned ROBDDs to construct the PTL circuit, with the in-

terfaces between these PTL structures being buffered using library gates. The prob-

lem of generalized buffering is cast as an instance of Boolean division of the PTL

block, using different gates in a library as divisions. In this way, we select the gate

that results in the largest reduction in the height of the PTL block. In this manner,
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these gates serve the function of buffering the outputs of PTL blocks, and also per-

form circuit computations at the same time.

PTL synthesis with generalized buffering was implemented in two different ways. In

the first approach, compatible observability don’t cares (CODCs ) were not used. In

the second approach, CODCs were utilized to further simplify the ROBDDs and to

further reduce the logic in PTL structure. CODCs were computed in two different

ways: one using f ull simpli f y to compute the complete CODCs and another using

approximate CODCs.

Over a number of examples, on average, generalized buffering without CODCs re-

sults in a 24% reduction in delay, and a 3% improvement in circuit area, compared to

a traditionally buffered PTL implementation. However, when ACODCs were used,

the delay further reduced by 5% resulting in a total delay reduction of 29%. The total

area reduced by 5% when ACODCs were used, compared to traditional buffering.

The use of complete CODCs provides minimal benefits over ACODCs. At the same

time, the complete CODC computation took longer than the ACODCs on average.

Additionally complete CODCs can only be computed for circuits with up to a few

thousand gates, while ACODCs can be computed for arbitrary sized circuits. There-

fore, it is better to use ACODCs over complete CODCs. Results show that, ACODCs

provide enough don’t cares to yield significantly better PTL structures in terms of

area and delay.

B. Future Work

The effectiveness of our method can be augmented by invoking dynamic variable

re-ordering while performing the ROBDD construction. This will allow a further re-
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duction in circuit size for both the traditional and the generalized buffering method-

ologies.

The algorithm implemented in this thesis can be used for future technologies like

quantum electronics, spintronics, etc. For example, in spintronics, the displacement

of electrons is equivalent to the current (Ids) through the MOSFET. The excitation

provided for electron displacement is equivalent to drain-source voltage (Vds) in

MOSFET. Using these representation, if we plot the displacement versus excitation

then the curve will look same as the Ids vs Vds curve for MOSFET. When the signal

propagates through MOSFETs the signal strength reduces. Similarly, when the elec-

tron will spin around, it will collide with other electrons and this will propagate the

signal. But the strength of this signal will also reduce. Therefore, we can use the

technique proposed in this thesis to restore the signal strength. Similarly, the idea of

thesis work can also be applied to quantum electronics also.
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