
 

SPATIAL APPLICATION OF A COTTON GROWTH MODEL FOR ANALYSIS OF  

 

SITE-SPECIFIC IRRIGATION IN THE TEXAS HIGH PLAINS 

 

 

 

 

A Dissertation 

 

by 

 

RANDY WAYNE CLOUSE 

 

 

 

 

 

 

Submitted to the Office of Graduate Studies of 

 Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

May 2006 

 

 

 

 

 

 

Major Subject:  Biological and Agricultural Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4272786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

SPATIAL APPLICATION OF A COTTON GROWTH MODEL FOR ANALYSIS OF 

SITE-SPECIFIC IRRIGATION IN THE TEXAS HIGH PLAINS 

 

A Dissertation 

by 

RANDY WAYNE CLOUSE 

 

 

 

Submitted to the Office of Graduate Studies of  

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Approved by: 

 

Chair of Committee,  Stephen W. Searcy 

Committee Members,   J. Tom Cothren 

  James R. Gilley 

  Clyde R. Munster 

Head of Department, Gary L. Riskowski 

  

 

May 2006 

 

 

Major Subject:  Biological and Agricultural Engineering 



  iii 

ABSTRACT 

 

 

 

Spatial Application of a Cotton Growth Model for Analysis of Site-Specific 

 Irrigation in the Texas High Plains.  (May 2006) 

Randy Wayne Clouse, B.S., The Pennsylvania State University; 

M.S., Virginia Polytechnic Institute and State University 

Chair of Advisory Committee:  Dr. Stephen Searcy 

 

 

 

 Limited water supplies for agriculture in the Texas High Plains will require new 

irrigation technologies and techniques for agriculture to continue in this area.  The 

potential for using one such technology, site-specific irrigation, was evaluated using the 

Cotton2k crop simulation model.  This model and two other simulation models were 

evaluated for their ability to track water movement and usage over three growing 

seasons.  The models were tested for sites in Lubbock and Hale County, Texas.  

Cotton2k performed well compared to the other two models on tests of cumulative 

evapotranspiration and applied water yield relations and equal to the other models for 

tracking soil water profiles. 

 A global optimization method, simulated annealing, was tested for its ability to 

spatially calibrate soil water parameters of Cotton2k.  The algorithm found multiple 

parameter sets for the same objective function results.  This result runs contrary to 

expectations for the simulated annealing algorithm, but is possibly from the relationship 

between available water capacity and crop yield.  The annealing algorithm was applied 



  iv 

to each sampling point at the Hale County site and improved yield predictions for 32 of 

33 points as compared to simulations made with soil textural information alone. 

 The spatially calibrated model was used with historic weather from five seasons to 

evaluate a site-specific strategy where water was shifted from lower to higher yielding 

areas of fields.  Two irrigation strategies, one with irrigations weekly and one with 

irrigations applied when 30% of available water was depleted, were tested.  With site-

specific management, the weekly interval strategy produced higher yields for two of 

three water levels, as compared to uniform management.  With the soil moisture 

depletion strategy, site-specific management produced lower yields than uniform 

management for all three water levels examined.  Yield improvement and water savings 

were also demonstrated for implementing site-specific irrigation when non-producing 

portions of fields were previously being watered.
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This dissertation follows the style of Transactions of the ASAE.  

1 

CHAPTER I 

INTRODUCTION 

 Water usage is an important issue in Texas as projected water demand will exceed 

projected water supply (TWDB, 2002).  Irrigated agriculture is currently the state’s 

largest water user.  In 2000, irrigation consumed over 9,600,000 acre-feet of water.  

Irrigation usage is predicted to decrease to 8,497,706 acre-feet by the year 2050.  

Projected decreases in irrigation usage come from increasing efficiency in surface water 

conveyance systems and in on-farm irrigation systems, declining groundwater resources 

and the voluntary transfer of historic water rights to other uses.   Even with large 

decreases in irrigation usage by 2050, overall projected water demand for the state will 

exceed projected water supply by 6,000,000 acre-feet of water per year.  The assumption 

of water use efficiency increases for irrigated agriculture in these projections plus the 

potential for large reallocations of water away from agriculture will necessitate the need 

for more irrigation methods that more efficiently use water to create crop yield in 

agricultural production.  

 Precision agriculture has the potential to improve the economic efficiency of crop 

production inputs as compared to uniform applications of inputs (Plant, 2001). 

Agricultural mechanization in the twentieth century led to the adoption of uniform 

management of farm fields.  Observations of factors that influence yield and monitoring 

of yields themselves indicate that large amounts of variability exist within these 

uniformly managed fields.  Only recently with the advent of technologies such as global 

positioning systems (GPS), geographic information systems (GIS), and yield monitors 
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has it become feasible for farmers to easily identify variability in fields.  This increase in 

information about variability has also increased the complexity of decision-making for 

farm managers.  Precision agriculture is one term given to application of information 

technologies in agriculture for the management of crops at scales less than a field-scale.  

Management of agricultural inputs at less than field-scale could potentially alleviate 

areas of over- and under-application of inputs.   

 Irrigation water is one example of a cropping system input whose usage could be 

optimized through precision agriculture technologies (Evans et al., 1996). 

Demonstrations of the ability to vary water applications with moving irrigation systems 

have been made in research settings.  Commercial adoption of site-specific irrigation has 

occurred in Georgia; however, that area is much different in climate and soils than the 

Texas High Plains.  For farm managers in the High Plains region to adopt site-specific 

irrigation, demonstrated improvements in their production potential are needed.  Goals 

for farm managers include maximizing yields, profits, or the efficiency of input usages.  

  An illustration of a typical management scenario will show how uniform water 

applications could fail to meet the manager’s goals.  The field in this illustration is sixty 

percent silt loam, thirty percent clay loam, and ten percent silty clay loam.  In a uniform 

management scenario, applications could justifiably be made based on any of the three 

soil types individually or based on various combinations of the three soil types.  One 

potential scenario would use the predominant soil type as the basis for scheduling.  

While this scenario may optimize growth on the majority of the field, it could create 

runoff of irrigation water and agrichemicals from the relatively impermeable clay soil 
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types.  If the field is managed to avoid runoff from the slow draining clay soil types, 

drainage from the silt loam portion of the field could leave less water available for plant 

uptake, thus reducing potential crop yields.  Scheduling could also be made based on 

combinations of measurements from all the soil types but this scenario would fail to 

optimize yields or prevent runoff from any of the soil types. This example used one of 

thousands of combinations of soil types that could exist in a selected field.  Management 

tools that integrate spatial variability of soils with other interacting factors would allow 

managers to make decisions regarding site-specific irrigation for their individual sites.  

 Crop growth models offer opportunities for evaluating effects of soils, management, 

and weather on plants.  They have been used to test hypotheses about causes of yield 

variability across space.  A drawback to applying crop growth models on a spatial basis 

is obtaining the many inputs for the models.  Techniques for dealing with this drawback 

have included linking crop growth models with remotely sensed imagery and using 

optimization techniques for determining the best combination of parameters. 

 On a theoretical basis, site-specific irrigation (SSI) offers opportunities for increasing 

water use efficiencies in agriculture, which could potentially benefit the state of Texas 

and the productivity of individual farmers. Underlying this idea is the assumption that 

spatially varying water applications leads to spatial variations in crop yields that can be 

managed to benefit individual farmers and society as a whole.  Each farm where SSI 

could be applied will be a unique situation.  Potential outcomes from SSI systems will be 

affected by individual soil types, proportions of these soil types across fields, 

management objectives, and weather patterns which could all be efficiently studied with 
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crop growth models.  Improvements in the applications of crop growth models on a 

spatial basis are needed however.  Cotton was the crop studied in this project due to its 

economic importance in the High Plains of Texas, where potential water shortages exist.   

This study focused on development of techniques for applying crop growth models on a 

spatial basis to assess and improve irrigation management for cotton production in Texas 

through the following objectives: 

1) Assess applicability of three cotton simulation models for prediction of the 

effects of site-specific irrigation in the Texas High Plains. 

2) Evaluate the simulated annealing optimization method for improving 

spatial prediction of cotton yield with a cotton simulation model. 

3) Evaluate net returns for site-specific irrigation with a cotton simulation 

model across multiple years of historic weather data. 
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CHAPTER II 

BACKGROUND 

IRRIGATION 

 Irrigation scheduling is defined as determination of the timing of and quantity of 

water applications (Martin et al., 1990).  Scheduling is affected by complex interactions 

between soils, plants, weather, and management objectives.  Water movement through 

this system is affected by the type of plant, genotype of the plant, growth stage, soil type, 

time of day, temperature, solar radiation, wind, rainfall, and initial water level.  Common 

methods/triggers for scheduling include Management Allowed Depletion (MAD), soil 

water potential, leaf water potential, high frequency irrigation, water stress indices, and 

real time scheduling with crop growth models (Martin et al., 1990).  Despite the 

possibility of crop growth models being used for real-time irrigation scheduling, 

applications of crop growth models for irrigation scheduling have tended to focus on 

determining irrigation strategies based on historic weather data (McClendon et al., 1996, 

Hook, 1994).  Rogers and Elliott (1989) examined net return for three irrigation 

strategies for a cost/loss risk analysis procedure using both probabilistic and 

climatological weather with a sorghum crop model.  While this model made future 

predictions of management effects on yield, the analysis also used historic weather data.  

The McClendon et al. (1996) study demonstrated the use of both sequential control 

search optimization and neural networks for determining irrigation schedules. 

 The scheduling techniques described so far assume that adequate water is always 

available to refill the root zone when an irrigation event occurs.  In some areas, such as 
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those in Texas supplied by water from the Ogallala Aquifer, sufficient water supplies 

may not be available to meet these demands.  Irrigation in which water applications are 

less than the evapotranspiration (ET) rate is known as deficit irrigation.  Deficit 

irrigation can be beneficial if the reduction in crop yield is less than the decrease in 

evapotranspiration rate.  An equation to represent this relation is: 

  







−−=

m

a

y

m ET

ET
k

Y

Y
11                  (2-1)        

from Kirda (2002) where Y and Ym are expected and maximum crop yields, ETa and 

ETm are actual and maximum evapotranspiration and ky is a crop yield response factor.  

Water deficits can occur throughout a growing season or at one or more growth stages.  

Different crops have different sensitivities to stress at different growth stages 

(Doorenbos and Pruitt, 1977).  The order of critical stages for cotton is:  flowering and 

boll formation > early stages of growth > after boll formation. Irrigation scheduling in 

deficit situations can incorporate soils information such as water content and potential 

indicators of crop stress such as crop water potential and canopy temperature (English et 

al., 1990).  Scheduling techniques that account for one or more of these information 

sources include Management Allowed Depletion (MAD) (Merriam, 1966) and Stress 

Day Index (SDI) (Hiler and Clark, 1971). 

 Irrigation planning studies using historic weather data in deficit situations have been 

conducted using dynamic programming.  Epperson et al. (1993) combined dynamic 

programming with the CERES-Maize crop growth model to optimize net return over 

twelve years of historic weather.  They examined irrigation quantities for six irrigation 
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triggers at each vegetative growth stage and up to four levels for each trigger.  Dynamic 

programming was used by Rao et al. (1988) to allocate water within crop growth stages 

using a dated water production function.  These dynamic programming applications are 

for long-term decision making and do not demonstrate how the concepts can be used for 

in-season scheduling.  Dynamic programming also suffers from a large state space size, 

thus the number of factors included in applications of it are often smaller than in real-

world situations. An alternative scheduling approach to dynamic programming was 

presented by Gowing and Ejieji. (2001).   This research utilized a crop growth model, a 

soil water deficit based trigger, seven day weather forecasts, and long term historic 

weather to generate yield estimates past the period of observed weather. 

CROP YIELD VARIABILITY 

 Observations of variability of crops across fields have anecdotally been noted over a 

number of time periods and farming systems.  Farmers in Africa often manage small 

areas of fields differently than other portions of fields based on observations of termite 

mounds and old livestock corral locations (Lowenberg-DeBoer and Swinton, 1997).  

Some ranges of observed variability in crop yield from research studies are listed in table 

2-1.  Current methods of identifying field-scale variability in crop yield include yield 

monitoring systems and high-altitude remotely sensed images of reflectance and 

emitance from crop canopies (Plant, 2001).   
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Table 2-1.  Ranges in observed crop yield variability. 

Location Quantity Range Reference 

Washington state Wheat yield 2.0 – 6.0 Mg ha-1 Bhatti et al., 1991 
South Carolina Corn yield 3.5 – 8.5 Mg ha-1 Sadler et al., 1995  
Mississippi Cotton yield 1.01 – 2.13 Mg ha-1 Kepple, 1988  
Minnesota Corn yield 4.09 – 9.59 Mg ha-1 Khakural et al., 1999 
Minnesota Soybean yield 1.40 – 2.70 Mg ha-1 Khakural et al., 1999 
Nebraska Corn yield 8.44 – 13.82 Mg ha-1 Coelho et al., 1999 

  
 
 
 Crop yield variability has often been related to variability in soil properties and 

topography.  Specific soil properties which potentially affect crop yield variability 

include soil water potential, hydraulic conductivity, soil moisture availability, drainage 

status, soil compaction, topsoil depth, and landscape position (Mulla and Schepers, 

1997).  Ranges of variation in soil properties vary based on how much the soil property 

is affected by management.  Properties such as sand, clay, or total phosphorus which are 

not affected by management have coefficient of variations (CV) of 20% or less (Beckett 

and Webster, 1971), while the properties most affected by management, such as 

potassium, phosphorus, magnesium, and calcium have CV of 60%. 

 Data on soil properties are typically collected via discrete point sampling (Plant, 

2001).  When fields are managed on a whole-field basis, results of individual samples 

may be averaged together or the individual samples composited together.  In site-specific 

management, samples are often collected on regularly spaced intervals with interpolation 

methods used to fill in unsampled areas.  Simple grid, stratified grid, or directed 

sampling schemes can be used for identifying where samples will be collected (Plant, 

2001).  Interpolation methods that can be used for estimating property values between 

sampled points include inverse-distance weighting and kriging.  The variogram used in 
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determining the kriging weighting factors can also provide other information about 

variability of a property.  The range of the variogram indicates the distances that 

properties are correlated over (McBratney and Pringle, 1997).  Point sampling is time 

consuming so research on continuous proximate sensing of soil properties is ongoing.   

Soil electrical conductivity, which can be correlated with other properties such as clay 

content, is an example of a variable that is obtained with continuous proximate sensing 

(Sudduth et al., 1995). 

 Soil properties relate to crop yield variability in different degrees depending on the 

specific site and growing year studied.  Since no one factor can be identified as a main 

causation agent for crop variability, techniques for analyzing relations between these 

factors and crop yield for each specific field are needed.  Regression of static 

measurements of soil, management, or plant properties against grid level yields has been 

performed by Cambardella et al. (1996) and Khakural et al. (1999) among others.  Plant 

et al. (1999) determined spatial variability causes for wheat fields using classification 

and regression trees.  Examination of variability along transects across fields with time-

series analysis techniques is called state-space analysis.  This form of analysis was used 

to analyze spatial variability in yield in wheat and corn by Nielsen et al. (1999).  The 

static spatial analysis techniques listed above fail to incorporate potential variations with 

time, however.  Studies have found significant variations in crop yield maps from year to 

year (Sadler et al., 1995).  Temporal yield variability with different climate extremes can 

be up to an order of magnitude (Huggins and Alderfer, 1995).  Crop simulation models 

have been advocated for studies of crop yield variability (Paz et al., 1998) because they: 
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1. can be used to test hypotheses about yield variability 
2. can integrate effects of dynamic and multiple stresses when inputs are properly 

characterized  
3. following validation, can be used to develop management prescriptions 
4. can be used to assess economic and environmental impact of prescriptions  

 

MANAGEMENT OF SPATIAL VARIABILITY 

 Management of agricultural fields to account for observed variability has been 

termed site-specific management (SSM) by Lowenberg-DeBoer and Swinton (1997).  

The working definition that they provide for SSM is “electronic monitoring and control 

applied to data collection, information processing, and decision support for the temporal 

and spatial allocation of inputs for crop production.”  They also note the following terms 

used to refer to these technologies, including:  precision agriculture, site-specific farming, 

prescription farming, and variable rate technology.  For SSM to be adopted the following 

conditions need to be met (Miller, 1999): 

1. significant within field variability exists in factors that influence crop yield 
2. causes of this variability can be identified and measured 
3. information from these measurements can be used to modify crop-management 

practices to increase profit or decrease environmental impact 
 

 The basis of control for application of variable inputs depends on the factor(s) 

identified as causing the variation.  If one primary factor is identified, maps of this factor 

can be created and used for applications of the input.  If multiple factors are identified, 

areas with similar groups of these factors can be created (McCann et al., 1996).  These 

groupings are called management zones.  Criteria for defining management zones 

include:   “yield differences between zones must be substantially greater than those 

within zones” and “the principal set of factors that influence yield within a zone must be 

the same” (Plant et al., 1999).  Maps of single factors or management zones could then 
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be used with a form of variable rate-application technology (VRT) to spatially apply an 

input. 

 Potential methods for assessing the economics of site-specific management were 

described by Lowenberg-DeBoer and Swinton (1997).  They proposed starting with a 

partial budget analysis for a typical year.  Changes in farm revenue and costs from 

implementing SSM could be included in the partial budget.  Further analysis could be 

made by adding in annualized capital costs.  Additional considerations before SSM is 

implemented could include environmental impacts and the feasibility of farm labor and 

management to effectively use the SSM tools.   

 Studies of the economics of SSM have been made using yields determined from crop 

model predictions and field studies.  The potential effect of variations in weather on the 

profitability of site-specific management of fertilizer was examined in a case study by 

Braga et al. (1999).  This study showed little overall difference between net returns for 

site-specific management as compared to uniform management for the proportions of 

soil types used in the study.  They noted that one soil had a larger response to nitrogen 

applications than the other soils.  If a larger area of the field had been the soil with the 

larger response the return for site-specific management could have been higher.  

Comparisons between gross incomes for site-specific and uniform irrigation 

management of potatoes were made by King et al. (2002).  An increase in gross income 

of $165 ha-1 was determined for site-specific irrigation as compared to uniform irrigation.  

Increased gross income is only a portion of the partial budget analysis presented by 

Lowenberg-DeBoer and Swinton (1997).  Comparison of gross income figures to the 
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cost of implementing the site-specific system is needed to better determine if SSM is 

profitable. 

 Agricultural inputs examined for SSM systems include fertilizers (Yang et al., 2001), 

water (King et al., 2002), herbicides (Eberlein et al., 2000) and seeds (Bauer et al., 2000).  

Commercial development of precision agriculture systems has been most common for 

fertilization applications.  Potential contributing factors for this development include the 

relative stability of soil fertility parameters over time, confluence of technologies for 

consistently locating specific points in the field, and ease of implementing spatial 

applications through equipment modifications or through services from a fertilizer dealer.   

 Research on variable rate irrigation has occurred throughout the United States.  A 

summary of key characteristics of site-specific irrigation is shown in tables 2-2 and 2-3.  

Research has centered on development of hardware capabilities allowing for variation in 

water applications across fields.  Sprinklers in the systems are either pulsed on/off or in 

multiple manifold arrangements.  Testing of these systems has centered on their 

capabilities for satisfactorily varying application depths across fields.  Bases for spatially 

varying water for these systems have included pre-season soil sampling, user-defined 

management zones, and soil moisture sensing. Reeder (2002) developed a closed loop 

control system for site-specific irrigation with a Kalman filter to schedule irrigations so 

that soil moisture was maintained at greater than 65% of available soil water in the crop 

root zone.  Soil moisture was measured in each management zone for this test.  Field 

tests from this study indicated that site-specific management produced greater yields 

than uniform management for the same amount of water.  Irrigation thresholds that 
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maximized gross margins for soybeans in different management zones over 25 years of 

historic weather were determined by Nijbroek et al. (2003).  The Nijbroek study showed 

that site-specific irrigation produced the highest average gross margin over the twenty-

five-year period of the study.    These results did not include the cost of implementing 

the site-specific system and could be affected by the irrigation scheme examined, 

individual field characteristics, climate and the crop grown.  Due to the complex nature 

of the interactions among the factors affecting the results of these two studies, further 

tests are needed to confirm that the results hold for different situations. 

CROP MODELS 

 Process-oriented crop growth models are composed of mathematical equations which 

represent processes in crop growth and development.  Fundamental processes simulated 

include the plant carbon balance, soil-plant-water balance, soil-plant-nitrogen balance 

and energy balance (Boote et al., 1998).  Examples of process-oriented crop growth 

models include CERES-Maize (Jones and Kiniry, 1986), CROPGRO-Soybean (Boote et 

al., 1998), and GOSSYM (Baker et al. 1983).  Model uses have been grouped into the 

broad categories of research knowledge synthesis, crop decision management, and 

policy analysis by Boote et al. (1996).  Crop growth models have been used for 

determining optimum management schemes for fertilization and irrigation, and testing 

hypotheses about causes for variability in fields.   

 Recent research for improving model usage has included modifications of models to 

more effectively describe observed plant growth processes, linkages of models with 

geographic information systems, optimization methods for parameter determination, and 
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Table 2-2.  Site-specific irrigation research characteristics – I. 

Location 
Control Element 
Size Nozzle Type Control Type Positioning Citation 

Ft. Collins, CO 22 m x 53 m Pulsed PLC* (Laboratory Tests) Fraisse, et al., 1992 
Aberdeen, ID Tests at 18.3 m to 

38 m x 6 degrees 
Multiple 
manifold 

Single board 
micro-computer 

Absolute position 
encoder 

King et al., 1999 

Florence, SC 9.1 m  Multiple 
manifold (3) 

PLC* Angular positions 
from Valmont CAMS 

Camp and Sadler, 1998 

Proser, WA 6-12 m x 0.5 
degrees 

Pulsed Custom controller Differential GPS; 
Electronic compass 

Evans et al., 1996; Evans 
and Harting, 1999 

Tifton, GA 15 m Pulsed Farmscan Canlink 
3000TM 

Non-differentially 
corrected GPS 

Perry et al., 2002 

Lubbock, TX 174 m x 3 degrees Multiple 
manifold (3) 

PLC* Incremental encoder Bordovsky and Lascano, 
2003 

* PLC = Programmable Logic Controller 
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Table 2-3.  Site-specific irrigation research characteristics –  II. 

Location Variation Basis Research Justification System Tests 

Ft. Collins, CO (Laboratory tests) Water management research Water distribution patterns 
Aberdeen, ID Soil moisture sensor Need to improve efficiency of water 

management 
Coefficient of uniformity (74-
75%) 

Florence, SC Soil water potential 
(Sadler et al. 2002) 

Plant –available soil water is major yield 
variability factor 

Tested distribution uniformity 
along manifold 

Proser, WA Soil type / % sand from 
30 m grid sampling 

Reduce leaching from over-watering in 
sandy soils 

Coefficient of uniformity (72 – 
89%) 

Tifton, GA User “painted” 
management zones 

Eliminate suboptimal application 
efficiencies from variety of factors 

Coefficient of uniformity 

Lubbock, TX Soil texture and slope 
down furrow; soil 
electrical conductivity 

Better utilization of water which is affected 
by non-uniform soils and topography 

Application rate and positioning 
tests 
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combinations of models with remotely sensed imagery.  Shen et al. (1998) added a tile 

drainage component to the CROPGRO-soybean model to adapt the model for use in 

Iowa where subsurface tile drainage is an important management tool.  The simulation 

of root development with the CROPGRO-soybean model was modified to reflect 

impedance to root growth and non-uniform distribution of roots by Calmon et al. (1999).  

Modifications to processes simulated by the model can allow for adaptation of models 

for new situations and also incorporate new understanding of crop growth processes into 

the models.  

 Crop growth models have typically been developed for modeling uniform areas of 

soils and management.  For spatial applications, multiple simulations of the model are 

made at point locations across fields.   To manage the spatial simulations, crop growth 

models have been linked with geographic information systems.  Predictions of spatial 

yields for potatoes and nitrogen leaching were made by linking PC ARC/INFO with the 

SIMPOTATO model by Han et al. (1995).  GOSSYM was linked to the ARCView GIS 

and used for demonstrating potential yield improvements when simulations were made 

with the COMAX expert system by McKinion et al. (2001).  While these two examples 

demonstrate the power of being able to visualize spatial patterns in yield and 

environmental factors, they failed to quantitatively evaluate the spatial performance of 

the models.  Models can also be run multiple times to represent spatial variability with 

no connections to a GIS and the results displayed as an ordered series (Paz et al. 1998) 

or two dimensional map (Basso et al. 2001) using external software.  These applications 
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are generally in research settings and would not be desirable for producer applications of 

the model. 

 One drawback to using crop growth models, especially for spatial applications, is the 

amount of data required for use in the model.  Inputs for crop growth models such as 

GOSSYM (Baker et al., 1983) include initial upper and lower limits of soil water content, 

soil fertility parameters such as nitrate, ammonium and organic matter, and saturated 

hydraulic conductivity.  In the case of GOSSYM, each input can be uniquely specified 

for multiple soil depths at each modeling location.  The inputs listed for GOSSYM could 

be obtained through hand-sampling at each location where the model is to be run.  While 

such hand-sampling is done in research situations, it is doubtful that producers would go 

to the time or expense to obtain these inputs on a spatial basis.  Inputs not measured can 

be adjusted to better match observed plant growth and crop yield through a process 

called calibration.  Calibrating unmeasured input variables for spatial applications 

models can also be tedious, time-consuming, and may not be reproducible unless 

consistent methods are used.   

 Optimization methods which select a combination of inputs to best satisfy an 

objective function have been used with crop simulation models.  Optimization methods 

for input selection avoid time consuming sampling.  These methods are split into two 

groups:  local search methods and global search methods (Royce et al. 2001).  While 

local search methods are efficient, if multiple local optima exist they fail to converge to 

the global optimum solution (Royce et al., 2001).  Examples of local search methods 

include the Nelder-Mead simplex algorithm and Powell’s conjugate directions, while 
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global search algorithms include genetic algorithms and simulated annealing (Royce et 

al., 2001).  The Nelder-Mead simplex algorithm was used by Paz et al. (1998) for 

optimizing saturated hydraulic conductivity, soil drainage rate coefficient, and maximum 

rooting depth for spatial predictions of soybean yield.  Simulated annealing was used for 

selecting split applications of nitrogen which produced the highest net return for four soil 

types over 35 years of historic weather data by Braga et al. (1999).  A modification of 

simulated annealing termed adaptive simulated annealing was used for selecting values 

for soil impedance factor, root hospitality factor, and rooting weighing factor to match 

observed and predicted volumetric soil water content by Calmon et al. (1999).  While 

able to find global optimum values, simulated annealing can be time consuming with 

reports of multi-year spatial simulations taking three weeks of computation time to reach 

a solution (Paz et al. 1998).  The approach for spatial model simulation used in the Paz et 

al. (1998) study potentially causes the model to be rerun for the same combination of 

parameters multiple times.  Irmak et al. (2001) proposed a method for spatial adjustment 

of parameters in which a database of yield predictions for all combinations of variable 

soil inputs are generated and then searched based on rules that utilize information on soil 

texture.  These examples have demonstrated a number of different numerical techniques 

for parameter selection in crop growth models.   

 In the parameter selection studies described above, techniques used for comparing 

model results with observed values included coefficients of determination (R2), percent 

differences between measured and predicted yield values, and qualitative comparison 

between trends in measured and predicted yields along transects (Paz et al., 1998 and 
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Paz et al., 1999).  The coefficients of determination of greater than 0.57 in both of these 

studies indicate that adjusting parameters related to water stress and plant populations 

can account for large amounts of observed variability in crop yield.  Field level estimates 

of yield were within 14% of observed corn yields in the Paz et al. (1999) study, while 

grid level estimates of soybean yield were within 20% of observed yield 92% of the time 

in the Paz et al. (1998) study. Other evidence of the ability of these crop growth models 

and techniques to account for spatial variability included the mirroring of trends between 

measured and predicted yields along transects over multiple years.  The examples from 

Paz et al. (1998) and Paz et al. (1999) indicate that crop growth models applied on point 

bases can describe portions of the spatial variability observed in field-scale crop yields. 

 While crop growth models can account for many dynamic interactions in plant 

growth, applying them on point bases may not provide enough spatial resolution for all 

situations.  Research on remedying this problem has been made by combining crop 

growth models with remotely sensed (RS) imagery.  Moulin et al. (1998) noted four 

ways that remote sensing and crop models can interact, which are: 

1. Obtaining a model input from RS data 
2. Adjusting a state variable using RS data 
3. Adjusting initial model conditions with RS data 
4. Calibrating model inputs so that RS estimates and model predictions match better 
 

For the first category to work RS data would need to be available on a time step 

matching that of the crop simulation model.  Crop simulation models often operate at 

daily time steps or less, which is more frequent than RS data can realistically be obtained.  

Barnes et al. (1997) exemplified the second type of interaction, by adjusting model 

predicted leaf area index (LAI) to match a RS estimate of LAI in the CERES-Wheat 
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model.  Limitations on the procedure presented by Barnes et al. (1997) include the need 

for LAI modifications to occur within ten days of anthesis and the inability to adjust 

model predictions if the model was under-predicting LAI.  Adjustment types three and 

four are combined and applied to the adjustment of water content and field capacity for 

matching RS-estimated and model-predicted ET by Moran et al. (1995).   

 In order for site-specific management to be adopted, the ability to make 

management decisions that optimize each farm manager’s objectives based on observed 

spatial variability are needed.  Results of site-specific management for individual farms 

will be affected by a number of factors including: climate, individual soils, crop grown, 

and management strategy used.  Crop simulation models offer an attractive solution to 

answering question about effects of management strategies in a timely, cost-effective, 

manner.  Tests of crop models for soybeans and corn have been made that have shown 

the potential of these models for site-specific applications.  The techniques used in these 

tests have not been used with cotton simulation models.  Numerous research sites with 

the capability for applying site-specific irrigation were noted in the literature.  Limited 

studies have been made on the effects of site-specific irrigation on achieving 

management objectives, however.  Studies were noted on the effect of site-specific 

irrigation on profitability of soybeans and potatoes, but not for cotton.  Further research 

is needed to test site-specific techniques with the use of a cotton simulation model and 

then to use the model to explore the effects of site-specific irrigation on management 

objectives.  
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CHAPTER III 

 

MODEL ASSESSMENT 

 

INTRODUCTION 

 

 Agricultural water usage from the Ogallala Aquifer is a pressing concern for the state 

of Texas as water levels in the aquifer continue to decline.  Agriculture uses 95% of the 

water from the aquifer in this area (Martin et al., 2005).  Large amounts of variability 

have been observed in farm fields.  Evidence of this variability includes observations of 

past farming practices affecting present crop growth patterns and the large ranges of 

yields from yield monitors.  Evidence of variability in plant water needs across fields 

comes from variation in soil properties that affect water holding capacity and studies 

showing variations in crop temperature across fields indicating crop water stress.  

Despite the evidence of this variability, farm fields have had inputs such as water and 

fertilizer applied uniformly for many years resulting in areas of over and under 

application of each input. The ability to manage this within-field variability has only 

arisen with the convergence of global positioning systems, geographic information 

systems, and control technologies in recent years.  Site-specific agriculture involves 

adjusting inputs at specific locations in fields rather than applying inputs uniformly 

across fields.  Site-specific farming could potentially reduce inefficiencies in the usage 

of farm inputs and improve farm profitability.  Implementing irrigation site-specifically 

could allow Southern High Plains farmers to more efficiently use their irrigation water 

and/or improve farm profit. 
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 Implementing site-specific agriculture increases the number of management 

decisions that producers will have to make.  Each management zone in a field could 

potentially receive different quantities and timings of inputs.  In the case of irrigation, 

which requires management decisions throughout the growing season, the task of 

decision making could become quite daunting.  One possible method of determining the 

effects of each strategy used in a field would be to conduct in-field tests from year to 

year.  This method of decision making is slow and affected by yearly weather patterns, 

however. 

 Use of crop models for producer decision making could be faster than field 

experiments and allow producers to deal with the larger number of decisions that will 

need to be made in a site-specific production environment.  Process-based crop 

simulation models try to include processes at one level above the process of interest, ie., 

if the response of the entire plant is desired, processes at the plant organ level are 

included in the model.  Despite the best efforts of model developers, models still 

represent some degree of empiricism in the equations included.  Model relations are 

developed from data sets that represent specific locations, management conditions, and 

plant genotypes.  Only after being tested in other settings and scenarios can models be 

deemed suitable for these new settings and scenarios. 

 Typically for usage at a site, crop models will need inputs specific to the site and will 

have the inputs or internal parameters calibrated for that site to be used for prediction of 

further scenarios.  Acquiring initial inputs and then calibrating a model for specific field 
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locations will require large amounts of information gathering and techniques for using 

common data sources for the calibration process. 

 Cotton growth simulation models developed in past years include GOSSYM, 

COTONS, and Cotton2k.  GOSSYM was the first developed of the three models.  The 

other two models used the framework developed in GOSSYM but used different 

equations within this framework.  Development of another model, CPM, was started but 

validation of it has not been completed.  The first three models were selected for study 

because: 1) they represent the cotton growth models with the most recent development 

2) they have the most complete representation of cotton growth processes available 3) 

they have readily available software and 4) validation studies exist for them. 

 The overall goal for this project is to develop a set of tools so that individual 

producers could examine the potential for the use of site-specific irrigation on their 

farms.  The objective for this part of the project was to select the best cotton simulation 

model from GOSSYM, COTONS, and Cotton2k for the examination of site-specific 

irrigation in the Texas High Plains.  To meet this objective, the models will need to 

accurately predict the movement of water in the soil, through evapotranspiration, and the 

use of water by plants for producing lint yield. 

 

BACKGROUND 

 

 Crop growth models have been developed in many settings and for many 

applications.  While the goal is a universally applicable model that will allow producers 

to make decisions for their sites, current models need to be tested when applied to new 
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situations.  Model evaluation has often been based on visual evaluation of agronomic 

information such as plant height, leaf area index, and fruiting development.   

 For modeling cotton growth, the most widely used model in the United States is 

GOSSYM (Baker et al., 1983).   More recent model development has occurred in the 

COTONS (Jallas et al., 1999) and the Cotton2k models (Marani, 2004).  Both of these 

models were derived from GOSSYM, but each has different modifications. All three 

models are dynamic, process-oriented simulation models of crop development and yield.  

GOSSYM and COTONS primarily use a daily time step for calculations, while Cotton2k 

computes and uses weather information on an hourly basis. Weather inputs used in the 

models are daily maximum and minimum temperature, rainfall, solar radiation, and wind 

speed.   Other inputs in the models include management practices such as irrigation, 

fertilizer, and chemical applications, and a soil profile description.  New concepts in 

COTONS include simulation of plant populations and competition among plants rather 

than single plant simulations.  Cotton2k is based on the CALGOS model which has been 

developed and tested in California growing conditions (Marani et al., 1992a, Marani et 

al., 1992b, Marani et al., 1992c).  Equations modified from GOSSYM to Cotton2k 

include leaf growth, boll growth, evapotranspiration, and water stress effects on growth 

processes. 

Water Balance Methods 

 Movement of water through the soil-plant-air system will be important for analyzing 

variable rate irrigation.  The effect of having less than a full soil moisture profile on 

plant growth will also be important.  The amount of soil moisture in a soil profile can be 
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modeled by the soil water balance.  A general equation for describing the overall soil 

profile water balance (Martin et al., 1991) is: 

 De = Db+Re+In+Uf-ET-Pd (3-1) 

where 

De  = depth of soil water at the end of the period 

Db  = depth of soil water at the beginning of the period 

Re  = rainfall during the period 

In  = net irrigation during the period 

Uf  = amount of upward flow of water from lower depths 

ET  = combined evaporation from the soil and transpiration from plants  

Pd  = deep percolation or drainage 

 

 GOSSYM, COTONS, and Cotton2k model the soil profile by dividing it into 

multiple cells both horizontally and vertically.  In GOSSYM and COTONS, the array of 

soil cells represents a cross section from plant row to plant row, with plants on the outer 

edges.  In Cotton2k, the soil cell array models row middle to row middle, with the plant 

in the center of the array.  Initial water movement following a rainfall or irrigation event 

is by gravity flow from layer to layer.  In the following days, movement is based on 

differences in soil water pressure potentials between cells.  

  The relation between water content and soil pressure potential in GOSSYM and 

COTONS is modeled by the Marani soil-moisture-release equation.  This equation is 

defined as: 

  TEMP
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θAD  = air-dry water content (cm
3
 soil cm

-3
 H20) 

θi  = current water content (cm
3
 soil cm

-3
 H20)   (θAD ≤θi ≤θFC) 

hi  = current soil water potential (bar) 

hFC  = soil water potential at field capacity (bar) 

Ln = natural log 

 

 In Cotton2k, the soil moisture release curve is modeled with the Van Genuchten 

equation: 
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where 

θ  = water content at soil water potential ψ      (θr ≤θi≤θs)  

θr  = residual water content (cm
3
 soil cm

-3
 H20) 

θs  = saturated water content (cm
3
 soil cm

-3
 H20) 

α, m , and n are empirical constants that can be varied with specific soil properties 

m = 1-1/n 

 

 When irrigating in a semi-arid climate, it is assumed that evapotranspiration is much 

larger than other components in the equation; therefore, components such as upward 

flow is often negligible while deep percolation might not occur.  Thus, from a 

management stand point, the comparison between the water inputs of irrigation and 

rainfall and the water leaving the system in the form of evapotranspiration is important.  

The amount of evapotranspiration is also important because it is highly correlated with 

the overall yield. 

 The GOSSYM and COTONS models use equations from Ritchie (1972) for 

prediction of potential evapotranspiration.  The Ritchie model partitions total 

evapotranspiration into two parts – a below canopy portion and an above canopy portion.  

The above canopy evaporation is calculated with,  
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where  

Eo  = potential evaporation – canopy 

∆  = slope of the saturation vapor pressure curve at mean air temperature 

γ  = constant of the wet and dry bulb psychrometric equation 

Rno = net solar radiation above the canopy, mm day
-1

 

u  = wind speed at height of 2 m 

eo  = saturation vapor pressure at mean air temperature, millibars 

ea = mean vapor pressure of the atmosphere calculated from wet bulb and dewpoint 

temperatures as measured during a day, millibars 

 

In these two models, the mean vapor pressure is calculated at the minimum daily 

temperature rather than the wet bulb or dewpoint temperatures.  This difference can 

reduce the potential evapotranspiration rate predicted by the model as compared to the 

original Ritchie equation.   

 For constant rate soil evaporation, GOSSYM and COTONS use the following 

equation: 
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where 

 Eso   = potential evaporation rate below the plant canopy at the soil surface,  

                  mm day
-1

 

∆   = slope of the saturation vapor pressure curve at mean air temperature 

γ   = constant of the wet and dry bulb psychrometric equation 

 INT  = fraction of light intercepted by plant leaves 

λs   = soil albedo; the fraction of incident radiation reflected by the soil 

RS   = solar radiation 

 

 The above equation for constant rate soil evaporation differs from the original 

equation used by Ritchie (1972):  

  ai
L

e
no

R
so

E
398.0−










+∆

∆
=

γ
 (3-6) 

where 

  Eso   = potential evaporation rate below the plant canopy at the soil surface,  

                  mm day
-1
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∆   = slope of the saturation vapor pressure curve at mean air temperature 

γ   = constant of the wet and dry bulb psychrometric equation 

Rno   = net solar radiation above the canopy, mm day
-1

 

Lai  = leaf area index 

 

The equation for constant rate soil evaporation used by these two models uses fraction of 

light interception rather than LAI along with a different form of the equation.  

 For the falling rate portion of soil evaporation, GOSSYM and COTONS, used the 

following equation from Ritchie (1972):  

  ( ) )1(*
2/12/1

2∑ −−= ttEs α  (3-7) 

where 

 Es2   = evaporation rate from the soil surface during stage 2 evaporation on a day    

             when precipitation < ∑ Es2, mm day
-1

 

α      = the slope of the curve plotting cumulative soil evaporation against the square          

            root of time 

t       = time, days 

 

 Cotton2k uses a version of the Penman equation for plant evapotranspiration that is 

modified for hourly calculations (Snyder and Pruitt, 1985, Dong et al., 1992):  
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where  

Eo  = potential evaporation – canopy 

∆  = slope of the saturation vapor pressure curve at hourly air temperature 

γ  = constant of the wet and dry bulb psychometric equation 

T  = hourly average air temperature in degrees celsius 

Rnet = net radiation in w m
-2

 

es  = saturation vapor pressure at the hourly average air temperature 

e  = vapor pressure in kilopascals 

FU2  = wind speed function 

FU2  = 0.125+0.0439(U2)   for net radiation <0  

FU2 = 0.030+0.0576(U2)  for net radiation >0 

U2  = wind speed at height of 2 m 
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Soil evaporation in Cotton2k is calculated with the following relationship: 

 ES = ES1HOUR[IHR] * RRACOL[K] + ES2HOUR[IHR]  (3-9)              

where  

ES          = potential evaporation from soil surface of a column, mm per hour. 

ES1HOUR[24] = part of hourly Penman evapotranspiration affected by net radiation, 

in mm per hour. 

ES2HOUR[24] = part of hourly Penman evapotranspiration affected by wind and 

vapor pressure deficit, in mm per hour 

RRACOL[K]    = relative radiation reaching a given column 

 

 Since all three models use a form of a combination evapotranspiration equation, the 

results of the calculations should be similar.  The total potential evapotranspiration is 

removed from the soil cells with roots capable of moisture uptake.  As soil water in each 

cell is reduced, the soil water potential in the cell is adjusted based on the new soil 

moisture. 

 The soil water balance method changes from GOSSYM to Cotton2k give Cotton2k 

potential advantages in prediction for the High Plains environment.  The temperature 

inputs to the evapotranspiration equations in GOSSYM and COTONS use the daily 

minimum temperature rather than dewpoint temperature, which will cause under-

prediction of evapotranspiration. Cotton2k accounts for dewpoint temperature by 

predicting it from other inputs on an hourly basis.   Daily minimum temperature is often 

much higher than dewpoint temperature.  The higher temperature is also related to a 

higher air vapor pressure which would allow less potential water uptake in the air.  The 

change in plant location from the center to the edge of the soil column in Cotton2k is 

better for the High Plains because it removes the assumption that same amount of water 

is applied on both sides of a row.  The ability to use asymmetrical water patterns in 
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Cotton2k allows for modeling of skip-row irrigation patterns that are used in the High 

Plains region. 

Plant Development Processes 

 
 In GOSSYM and COTONS, the plant emergence is modeled as a deterministic 

process with the time of emergence input by the user.  In Cotton2k this process has been 

changed to the following relationship: 
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where 

 T = time of development, days since sowing 

x  = random variable 

a = 
2

0000125.00054272.0 °+ T  

b = 
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°
T  = average temperature since planting date, degrees celsius 

 

 The light interception model in GOSSYM is: 

  ILp = 1.0756*Z*PLTSP (3-11) 

where  

ILp  = light intercepted by a plant 

Z  = plant height 

PLTSP = plant spacing in the row 

 

 

 In COTONS, the light interception model has changed to: 
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where 

ILp     = light intercepted by a plant 
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H     = plant height 

 ROWSP  = row spacing 

 PWIDTH = maximum branch length 

      K             = light extinction coefficient 

 L’             = effective leaf area index (LAI/(1-light transmitted to ground without 

traversing canopy) 

PLTSP     = plant spacing in the row 

PWIDTH = water stress reduction factor 

 

 In Cotton2k the light interception varies based on the magnitude of the leaf area 

index.  The two potential equations for describing light interception are: 

ZINT = 1.0756 * PLANTHEIGHT/ ROWSPACE (3-13) 

or  

LFINT = 0.80 * LEAFAREAINDEX  for LAI<0.5 

LFINT = 1 - exp(0.07 - 1.16 * LEAFAREAINDEX) for LAI>0.5 

 

where  

 LFINT = light interception computed from leaf area index. 

 ZINT  = light interception computed from plant height 

 

LFINT and ZINT are compared and if LFINT is greater than ZINT, the light intercepted 

is the average of the two values.  In the case that ZINT is greater than LFINT, the light 

intercepted will be LFINT if LAI is increasing or ZINT if LAI is decreasing. 

 All three models use their form of light interception in the following equation which 

relates potential photosynthesis to gross photosynthesis accounting for the amount of 

light actually intercepted and reductions due to water stress 

 Pg = PSTAND*(ILp)*PTSRED*PNETCOR*0.001 (3-14) 

where 

Pg  = gross photosynthesis 

PSTAND = potential gross photosynthesis per unit area of canopy intercepting 

light 

ILp   = light intercepted by a plant  

PLTSP   = plant spacing in the row 

PTSRED  = water stress reduction factor 

PNETCOR  = [CO2] correction factor 
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0.001   = grams conversion 

 

The water stress reduction factors in the gross photosynthesis equations are also 

calculated differently between GOSSYM and COTONS and Cotton2k. In GOSSYM and 

COTONS, PTSRED is calculated with the following series of equations: 

Ψl       = -12.63 + 0.01799 * Rinc - 26.1097 * ψsoil  –  0.00001553 * 

                     Rinc * Rinc -18.289* ψsoil * ψsoil +0.025497*Rinc * ψsoil (3-15) 

Ψlin     = -3.82193 – 0.00333224* Rinc (3-16) 

Pindex   = -0.101235 + Rinc *(0.0234135 – Rinc *0.000017396) (3-17) 

Pmois         = 0.24*( Ψlin - Ψl)  (3-18) 

PTSRED  = (Pindex -Pmois) / Pindex  (3-19) 

 
where 

Ψl = minimum leaf water potential for the day 

ψsoil   = the soil water potential affecting photosynthesis 

Rinc  = incident radiation in watt m
-2

 

Ψlin  = minimum leaf water potential for the day in well watered soil 

Pindex = index photosynthesis under well watered conditions 

Pmois  = change in photosynthesis due to moisture stress   

 

 In Cotton2k the water stress reduction factor is:  

 PTSRED = -3.0 + AVERAGELWPMIN * (3.229 + 1.907 *  

                          AVERAGELWPMIN)  (3-20) 

where 

AVERAGELWPMIN = running average of minimum (at noon) leaf water potential 

for the last 3 days 

 

 Equations for the calculated leaf growth and boll growth in Cotton2k are among 

those modified from GOSSYM and COTONS.  The leaf growth equation for GOSSYM 

is:  

 PFDWLD(J) = PFAL(J)*RADAY*DAYTYM*WSTRSD*WTF (3-21) 

where 

PFDALD(J)  = the potential change in area  

PFAL(J)   = the current area of the leaf at prefruiting node J 

RADAY  = rate of area growth during day time 
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DAYTYM  = fraction of day with daylight 

WSTRSD  = water stress day.  Fraction of day time period during which leaf is 

turgid enough (above -7 bars) for growth 

WTF   = temperature dependent factor for converting from leaf area to weight 

 

In the above equation, if the day time temperature is greater than 24 degrees Celsius 

RADAY is calculated as follows: 

 RADAY = -1.14277 + TDAY*(0.0910026 – TDAY*0.00152344) (3-22) 

 

If the daytime temperature is less than 24 degrees Celsius, RADAY is calculated as: 

 RADAY = -0.317136 + TDAY*(0.0300712 – TDAY*0.000416356) (3-23) 

 

where 

TDAY = average day time temperature 

 

The leaf growth equation for Cotton2k is: 

 

 R = SMAX * C * P * exp(-C * T
P
 * T 

(P-1)
) (3-24) 

 

where 

R  = the daily leaf growth rate 

SMAX  = the potential cultivar maximum growth rate 

C  = 0.00137566 + 0.025 * JP1 * (JP1 – 0.00005) 

P  = 1.6 

T  = time (leaf age) 

JP1 = node counter 

 

The selection of the monomolecular equation form of leaf growth for Cotton2k (Marani 

et al., 1992c) was made based on data from Constable and Rawson (1980).  This 

equation was selected because another candidate equation (Richards, 1979) did not have 

a point of inflection appropriate for cotton leaf growth data. 

 The boll growth equation in GOSSYM is as follows: 

  PDWBOD = BOLWGT * DUMY (3-25) 

where 

PDWBOD = potential change in weight of boll during the day 
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BOLWGT = current weight of boll 

DUMY  = intermediate variable 

DUMY  = (0.0160791*TDAY-0.2120865)*DAYTYM*WSTRSD, if <7 days after 

beginning of boll development 

DUMY  = (0.0312*TDAY-0.0508125)*DAYTYM*WSTRSD, if >7 days after 

beginning of boll development and temperature < 28.5 Degrees Celsius  

DUMY  = (2.73285-0.082857*TDAY)*DAYTYM*WSTRSD, if >7 days after 

beginning of boll development and temperature > 28.5 Degrees Celsius  

where 

  TDAY  = average daytime temperature 

  DAYTYM  = fraction of day with daylight 

  WSTRSD  = water stress day.  Fraction of day time period during which leaf is 

turgid enough (above -7 bars) for growth 

 

 The boll growth equations for Cotton2k are:  

 

 RATEBOL = 4 * RBMAX * PEX / (1 + PEX)
2
 (3-26) 

where 

RBMAX  = the potential maximum rate of boll growth (g seeds plus lint dry weight 

per physiological day) at this age. 

PEX  = auxiliary variable 

PEX  = exp(-4 * RBMAX* (T - AGEMAX) / WBMAX) 

T  = the physiological age of the boll after bloom  

AGEMAX = the age of the boll (in physiological days after bloom) at the time when 

the boll growth rate is maximal. 

WBMAX  = maximum possible boll weight 

 

 The leaf and boll growth equations for the three models are affected by water stress 

also.  In GOSSYM this stress is calculated as: 

WSTRSD = (-2.5/(PSIAVG - 1.6)) + (0.0005*PSIAVG*TDAY) - (0.001*RN) (3-27) 

 

where 

WSTRSD = water stress day.  Fraction of day time period during which leaf is turgid 

enough (above -7 bars) for growth 

PSIAVG   = average water potential of the root zone, in bars 

TDAY       = average daytime temperature 

RN            = net radiation in watts m
-2

 

 
 

In Cotton2k, this leaf water stress is calculated as: 

  

     WSTRLF =  WATERSTRESS * (1 + 3.0 * (2 - WATERSTRESS)) – 3.0 (3-28) 
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where 

WSTRLF  = water stress reduction factor for leaf growth rate 

WATERSTRESS  = -0.10 - AVERAGELWP * (1.230 + 0.340 * AVERAGELWP) 

AVERAGELWP  = running average of minimum and maximum leaf water 

potentials for the last 3 days. 

 

The potential leaf growth is multiplied by the water stress factor above.  Boll growth is 

not a factor of water stress in Cotton2k, but burr growth is reduced by a multiplicative 

factor of stress. 

 The models all calculate the potential amount of water used by plants from weather 

inputs.  This potential amount is affected by: the location and quantity of water in the 

root zone, the location and age of roots to uptake water and the crop canopy available for 

transpiration and shading the soil thus preventing evaporation.  In turn, the growth rates 

of plant components such as leaves, stems, and fruit are affected by water stress through 

differences between soil and leaf water potentials at field capacity and less than field 

capacity.  The interrelationship of the water and growth factors in each of the models 

makes determining a singular relationship between any two individual factors difficult. 

 Modifications to light interception for COTONS and water stress effects on crop 

growth for Cotton2k should make these two models predict better than the original 

GOSSYM model.  Modifications to COTONS include sensitivity to row spacing and 

modification of light interception to account for young age effects in cotton (response to 

higher gross photosynthesis, higher light penetration, and heliotropism during the 

earliest days of growth).  Modifications to water stress effects on photosynthesis and 

growth equations in Cotton2k compared to the other two models were intended to 
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improve model predictions for plants that are stressed over extended periods of time, 

which are conditions that would be expected for plants grown in the High Plains. 

Model Validation 

 
 The GOSSYM model was originally developed in a humid Mississippi climate.  

Overall model performance was confirmed by qualitatively comparing time series of 

plant height, number of squares, and number of bolls with measured data.  Tests of the 

agronomic components of the model have been made for the semi-arid Arizona climate 

(Fye et al., 1984).   For the model to work in this region, coefficients in the model for a 

number of equations were adjusted.  The model was then run for Mississippi conditions 

and one by one the adjustments removed.  After these adjustments, the following 

differences still existed in the model equations between the two sites:  the effect of water 

stress on canopy photosynthesis, potential root growth rate, growth rate of plant height, 

and growth rate of the leaves. 

 Other tests of this model for semi-arid regions including the Texas High Plains have 

been made with differing results.  Wanjura and McMichael (1989) used the model for a 

nitrogen level study in this region.  Relationships adjusted in this calibration were:  

“temperature-node equations that determine the time interval for initiating main stem 

nodes, squares, and bolls”, minimum leaf water potential, average night time 

temperature, and lint yield composition.  Staggenborg et al. (1996) found that the model 

under-predicted evaporation in this region and recommended that it be modified to 

utilize weather information on humidity.   
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 Tests of CALGOS, an earlier version of Cotton2k, were made with field data from 

the San Joaquin Valley of California (Marani et al., 1992a, 1992b, 1992c).  Qualitative 

assessment was made of the following model components:  distribution of water in the 

root zone, midday leaf water potential, LAI, and green boll weight.  These tests indicate 

improvement in model performance over the previous equations, but potential need for 

work on water stress effects on boll shedding.   

 Evaluation of the model components modified from GOSSYM to COTONS was 

made by Jallas (1998).  The modified light interception component was compared to the 

original GOSSYM light interception equation on a relative basis for data sets in 

Mississippi.  Qualitative evaluation of the results showed that light interception 

calculated with the two equations was similar.  Evaluation of other model changes were 

made by examining the variability in yield, number of nodes, and number of bolls with 

each modified component (emergence, node appearance, and abscission) turned on 

separately and seeing if it seemed reasonable. 

 Only one of the three candidate models for this study, GOSSYM, has been used in 

studies in the High Plains region.  Both COTONS and Cotton2k have modifications 

from GOSSYM in their water balance and plant growth that will make them behave 

differently than GOSSYM.   The Texas High Plains region is an important cotton 

growing region and the ability to use the best cotton growth model possible would 

greatly aid producers in making management decisions. 
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METHODOLOGY 

 

Site Description and Field Experiments 

 
 Data available for model evaluation were from sites at the Texas Agricultural 

Experiment Station at Halfway, Texas and a USDA experimental site in Lubbock 

County, Texas.  The experiment on Helms Farm at the Halfway site was conducted on a 

4.86 ha section of a field in a corn-cotton rotation.  The soil survey map unit for this site 

was a Pullman sandy clay loam.  Soil textures for individual points for the field were 

obtained by Robert Lascano (2004, personal communication) and provided for use in 

this study.  Graphs showing the variation in percent clay and percent sand at 20-cm 

depth increments across the field appear in figures 3-1 and appendix A-1 to A-3. 

Helms Farm 

 The Helms data set was from a field-scale variable rate irrigation study with the goal 

to “level lint yields by reducing irrigation in areas of high SWHC (soil water holding 

capacity) and adding water to areas of low SWHC (soil water holding capacity)” 

(Bordovsky and Lascano, 2003).  Fields were irrigated with a LEPA center pivot system 

with its center point at 34° 9’6”N 101°56’52”W.  The experimental area covered three 

pivot spans, each with three manifolds capable of being controlled separately.  In the 

2001 growing season, manifolds were used with variable rate and uniform rate water 

application strategies.  For this season, three management zones for the variable rate  

applications were determined from soil texture and slope (Bordovsky and Lascano, 

2003).  Water application rates of 75%, 100%, and 125% of the uniform rate (UR) were 

applied to the management zones with applications occurring on average every four days
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(a) percent clay 

 

 

 

 
(b) percent sand 

Figure 3-1. Soil composition at 0-20 cm depth: a) percent clay and b) percent sand 

in Helms Farm field 5D.  Numbers from 6201 through 8213 indicate sampling 

locations. 
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from the middle June through the end of August.  Irrigation timing was based on the 

time required for the pivot to travel around the field with adjustments in pivot movement 

following rainfall events.  The water application rate for the UR areas was 80% of 

evapotranspiration calculated from a modified Penman-Monteith equation.   Figure 3-2 

shows the areas where each water rate was applied.  This map shows that strips of 

variable rate and uniform rate irrigations were alternated across the center pivot 

manifolds at the site.  Further description of the experiments at the site in 2001 can be 

found in Bordovsky and Lascano (2003).  Management information for the site is 

summarized in table 3-1.  Weather data for the simulations were obtained from a weather 

station at the Halfway Experiment Station (South Plains Evapotranspiration Network, 

2004) and are summarized in table 3-2.  This weather station was located 3.22 km from 

the research field; therefore, there is the potential for discrepancies between the quantity 

of rain in the weather data and the quantity that actually fell at the site.  Both plant and 

soil data were obtained as a part of this experiment by Robert Lascano (personal 

communication, 2004).  Measured data on soil water content by depth was obtained from 

bi-weekly sampling with neutron probes.  Plant parameters collected as a part of this 

experiment included plant height, leaf area index, and square and boll mapping. 

Lubbock County 

 The data from Lubbock County was part of a multiple level water and fertilization 

study in the 1997-2000 growing seasons. Data from the 1999 and 2000 growing seasons 

were included in initial examinations of data but later excluded due to the effects of 

insect and hail damage on crop yields. This site is located 5 km east of the Texas 
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Figure 3-2. Soil sampling points and control management zones in 2001 for field 5D 

at Helms Farm site. 

 

 

 

Table 3-1. Experimental management parameters for Helms Farm study. 

 2001 

Plant date May 15 

Harvest date Oct. 18 

Row spacing 76.2 cm 

Plants per meter 10.8 

Irrigation date range May 26 – Aug. 30 

Fertilizer quantity 143.4 kg N ha
-1

 

 

 

 

Table 3-2. Average weather conditions during simulation periods. 

Year 

Average 

Daily 

Maximum 

Temperature 

Average 

Daily 

Minimum 

Temperature 

Total 

Rainfall 

 (°C) (°C) (cm) 

Lubbock County study    

1997 29.0 15.4 26.3 

1998 34.0 21.5 21.5 

Helms Farm study    

2001 31.5 16.7 18.3 

Historic average over approximate simulation periods 

 (May 1 – October 15) 30.4 16.3 31.4 
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Agricultural Experiment Station at Lubbock at 33°41’7”N 101°41’10”W.  An Olton clay 

loam soil (fine mixed thermic Aridic Paleustoll) was located at this site.  Treatments in 

this experiment were divided into 12.2 m x 12.2 m plots. Crops were planted on May 16 

in 1997 and May 14 in 1998.  A Paymaster HS26 variety was planted in 1997 and 

Paymaster 2326 in 1998.  Other management information for the site during 1997 and 

1998 is summarized in table 3-3. The irrigation levels specified as WL2, WL3, and WL4 

in this table correspond to irrigation applications of 1/3, 2/3 and 1.0 times PET.  A 

subsurface drip irrigation system was used for these experiments.  Irrigation treatments 

included dryland and 1.0 times PET irrigation levels each year.  Weather data for 

simulations at this site were obtained from Wanjura (2004, personal communication) and 

are also shown in table 3-2.  The weather station for these experiments was located next 

to the plots.  Crop data obtained from this experiment included plant height, plant 

mapping, and crop yield.  This data set did not include any soil sampling.  The field 

experiments have been described previously in Wanjura et al. (2002).   

 

 

Table 3-3. Experimental management parameters for Lubbock County study. 

 1997 1998 

Plant date May 14 May 14 

Harvest date October 30 October 26 

Row spacing 1.02 m 1.02 m 

Plant population   

Dryland (pl/m) 11.29 13.4 

W2 (pl/m) 12.24  

W3 (pl/m) 12.7  

W4 (pl/m)  12.14 10.8 

Irrigation date range July 1 – Sept. 15 May 27 – Sept. 18 

Fertilizer quantity 89.6 kg N ha
-1

 168 kg N ha
-1
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Input File Creation 

 
 Each crop simulation model tested consisted of an executable program that read in 

text files for input then executed to simulate output on crop growth and yield parameters.  

Inputs are organized into files for soils, management, weather, and initial conditions.  

Soil inputs for all three models were organized by soil layers.  The soil hydrology inputs 

for the three models are shown in table 3-4.  Inputs that were the same for all three 

models were percent sand, percent clay, saturated water content, and residual water 

content. The differences in required soil inputs were due to different soil moisture 

retention curve equations used by the three models.  

 

 

Table 3-4.  Cotton model soil input variables. 

GOSSYM and COTONS Cotton2k 

Percent sand Percent sand 

Percent clay Percent clay 

Bulk density Bulk density 

Hydraulic conductance Hydraulic conductivity at saturation 

 Hydraulic conductivity at field 

capacity    

Diffusivity at -15,000 cm potential  

Saturated volumetric water content Saturated volumetric water content 

Volumetric water content at field 

capacity 

 

Volumetric water content at -15,000 

cm potential 

 

Residual volumetric water content  

Volumetric water content at air dry  Volumetric water content at air dry 

  Alpha coefficient for the Van 

Genuchten equation 

 Beta coefficient for the Van 

Genuchten equation 
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 Management parameters for all three models include timing and quantity of fertilizer 

applications, and timing and depth of irrigations.  The GOSSYM and COTONS inputs 

differed from Cotton2k inputs because GOSSYM fertilizer quantities were entered as 

total quantity of fertilizer applied, while Cotton2k used entries for the quantity of each 

specific form of nitrogen applied. 

 Weather inputs for the three models included daily solar radiation, daily maximum 

and minimum temperature, daily precipitation, and daily wind run.  In Cotton2k, the 

daily weather inputs are converted to hourly values for its hourly calculations based on 

work by Ephrath et al. (1996).   A fifth text file, the profile file,  which contains the 

names of each of the other input files required for a simulation, that was used by each 

model.  Simulation start and stop dates were also contained in the profile file. 

 GOSSYM and COTONS contained information for the HS26 variety and its 

derivatives used in the field experiments for these tests.  Cotton2k did not have any data 

for this variety, however.  The equations in Cotton2k that use variety dependent 

parameters are different than in GOSSYM; therefore, using the same variety inputs in 

both models is not possible. Cotton2k simulations made with different variety inputs 

were compared to field measurements of LAI, plant height, number of main stem nodes, 

and number of green bolls.  The measured data was from a field experiment conducted 

in Lubbock Texas during the 2002 growing season that used the HS26 variety.  This test 

was part of a time-temperature threshold irrigation test.  It was conducted on an Amarillo 

loamy fine sand soil at the USDA Cropping Systems Research Laboratory in Lubbock.  

Varieties with information in Cotton2k were Germaine 510, Delta Pine 61, and Delta 
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Pine 77.  Predicted and measured data were compared qualitatively (figures 3-3 through 

3-6) and quantitatively (table 3-5).  The Germaine 510 variety performed best for the 

plant height and LAI parameters, but was the worst of the three varieties for predicting 

number of main stem nodes and number of bolls.  The Delta Pine 61 variety performed 

best for predicting main stem nodes, but had large under-predictions for plant height.  

The Cotton2k predictions with the Delta Pine 77 variety were best for prediction of 

number of bolls and second best for all the other parameters.  Based on having the most 

consistent predictions across all four parameters, the Delta Pine 77 variety was selected 

for use in further tests. 

 Points were selected for analysis at the Helms Farm site so that all three irrigation 

treatments were analyzed in an effort to account for as much of the variability in sand 

and clay contents (figure 3-1) as possible.  Points 7202 and 8202 were from the east side 

of the field and points 7210 and 8210 from the west portion of the field. 

 Soils files were created based on soil texture information that was sampled to 80-cm 

depths in 20-cm increments (Robert Lascano 2004, personal communication).  From 80 

to 201 cm, the soil texture used was from the Pullman sandy clay loam based on the soil 

survey map unit (USDA-SCS, 1974).  A summary of the soil textures from the points 

used for evaluating the three models appears in table 3-6.  The sampled soil textures 

were used with tabular lookups and calculations based on the soil water retention 

relationships in the model to create the remaining soil inputs.  The source of each soil 

input for the GOSSYM and COTONS models is shown in table 3-7 and for Cotton2k in 

table 3-8.   Soil inputs varied for the three models due to different equations and soil 
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Figure 3-3. Measured and Cotton2k predicted LAI for 2002 Lubbock County 

experiment. 
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Figure 3-4. Measured and Cotton2k predicted plant height for 2002 Lubbock 

County experiment. 

 



   47 

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

Days after Emergence

M
S

N

GC510

DP 61

DP 77

Measured

  
Figure 3-5. Measured and Cotton2k predicted main stem nodes (MSN)  for 2002 

Lubbock County experiment. 
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Figure 3-6. Measured and Cotton2k predicted number of bolls (# Bolls) for 2002 

Lubbock County experiment. 
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Table 3-5. RMSE between measured and Cotton2k predicted physiology 

parameters with different variety inputs for 2002 Lubbock County experiment. 

  Variety  

Parameter: GC510 DP 61 DP 77 

Main Stem Nodes 5.35 1.98 2.20 

Bolls 4.31 2.97 1.79 

Plant Height 6.08 43.90 11.00 

LAI 1.03 1.43 1.21 

 

 

 

Table 3-6. Helms Farm experiment soil textures. 

LOCATION 

Depth 

(cm) % Sand % Clay Texture 

7202 20 51 34 Sandy Clay Loam 

7202 40 36 36 Clay Loam 

7202 60 46 36 Sandy Clay 

7202 80 48 36 Sandy Clay 

7202 201 33 33 Clay Loam 

7210 20 37 41 Clay 

7210 40 40 39 Clay Loam 

7210 60 54 35 Sandy Clay Loam 

7210 80 62 29 Sandy Clay Loam 

7210 201 33 33 Clay Loam 

8202 20 55 31 Sandy Clay Loam 

8202 40 31 45 Clay 

8202 60 33 47 Clay 

8202 80 35 42 Clay 

8202 201 33 33 Clay Loam 

8210 20 27 47 Clay 

8210 40 27 49 Clay 

8210 60 30 50 Clay 

8210 80 36 44 Clay 

8210 201 33 33 Clay Loam 
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Table 3-7.  GOSSYM model soil input sources for Helms Farm simulations. 

Input Source 

Percent sand Soil sampling 

Percent clay Soil sampling 

Bulk density Soil Water Characteristic program, Saxton 

et al. (1986) 

Diffusivity at -15,000 cm potential Calculated from Gardner-Mayhugh 

equations using soil water retention curve 

points generated with Saxton calculator 

Volumetric water content at -15,000 cm 

potential 

Calculated from Van Genuchten equation 

at -15000 cm 

Hydraulic conductance Calculated from Gardner-Mayhugh 

equations using soil water retention curve 

points generated with Saxton calculator 

Saturated volumetric water content Table 3 in van Genuchten et al. (1991) by 

soil texture 

Volumetric water content at field capacity Calculated from Van Genuchten equation 

Residual volumetric water content Table 3 in van Genuchten et al. (1991) by 

soil texture 

Volumetric water content at air dry Calculated from Van Genuchten equation 

 

 

 

Table 3-8.  Cotton2k model soil input sources for Helms Farm simulations. 

Input Source 

Percent sand Soil sampling 

Percent clay Soil sampling 

Bulk density Soil Water Characteristic program, Saxton et al. (1986) 

Volumetric water content at 

air dry 

Calculated from Van Genuchten equation 

Saturated volumetric water 

content 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Alpha coefficient for the 

Van Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Beta coefficient for the Van 

Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

saturation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

field capacity    

Soil Water Characteristic program, Saxton et al. (1986) 
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water potentials used to describe the soil moisture release curve. Values for van 

Genuchten equation parameters for the Cotton2k soil inputs were obtained for each 

sampling point based on tables from van Genuchten et al. (1991).  The remaining 

Cotton2k inputs of saturated water content, hydraulic conductivity, and bulk density 

were obtained from the Soil Water Characteristic program that was based on Saxton et 

al. (1986).  Soil moisture retention curve parameters for GOSSYM and COTONS were 

calculated from the van Genuchten equation at the soil water potentials used in 

GOSSYM and COTONS for field capacity and wilting point.  The soil water potential 

used for wilting point was -15,000 cm. and for field capacity it was – 300 cm. 

 Initial model soil moisture conditions were manually selected based on average 

water content profiles from the Helms Farm site.  The initial soil water content is entered 

as a percent of field capacity for all three models.  Soil water content data for the first 

sampling date from ten points in both 2001 and 2003 were averaged together (figure 3-

7).  Percent field capacity in the initial condition files was selected to match average 

water contents from a combination of the soil water content profiles in the two years. 

Other initial soil inputs for residual nitrate, ammonia and organic matter (table 3-9) were 

kept as in the generic initial file that came with GOSSYM.  
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Figure 3-7.  Volumetric water content (VWC) for Helms Farm site on July 7, 2001 

and June 18, 2003 – averaged across ten sampling points with +/- one standard 

deviation error bars. 

 

 

 

Table 3-9. Initial cotton model soil fertility and water content inputs by depth. 

Bottom Layer 

Depth 

NH4  

(kg ha
-1

) 

NO3 

 (kg ha
-1

) 

Organic Matter, 

 % by weight 

Water Content,  

% of  field capacity 

15 2.69 26.904 0.74 60 

30 1.23 13.23 0.72 80 

45 1.00 10.09 0.67 85 

60 0.79 7.40 0.43 85 

75 0.79 7.40 0.37 85 

90 0.79 7.40 0.30 85 

105 4.93 4.93 0.00 85 

120 4.93 4.93 0.00 85 

135 4.93 4.93 0.00 85 

150 4.93 4.93 0.00 85 

165 4.93 4.93 0.00 85 

180 4.93 4.93 0.00 85 
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 Soil sampling information was not available for the Lubbock County experiment.  A 

previously sampled profile for the soil survey mapping unit located at the site that was 

included with the GOSSYM model was used as input for GOSSYM and COTONS.  

Cotton2k soil inputs were created from this profile based on tabularized data by soil 

texture and from software based on Saxton et al. (1986).  The exact source of each 

Cotton2k soil input is identified in table 3-10. 

 

 

Table 3-10.  Cotton2k model soil input sources for Lubbock County Farm 

simulations. 

Input Source 

Percent sand GOSSYM input file 

Percent clay GOSSYM input file 

Bulk density GOSSYM input file 

Volumetric water content at 

air dry 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Saturated volumetric water 

content 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Alpha coefficient for the 

Van Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Beta coefficient for the Van 

Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

saturation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

field capacity    

GOSSYM input file 
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Evaluation Tests 

 
 The models were compared for their ability to track water movement and use in the 

soil-plant-atmosphere continuum on a point by point basis.  Data for this examination 

came from both the Helms Farm and Lubbock County sites.  Data for soil moisture and 

yield evaluations were available at the Helms Farm site and for yield evaluations at the 

Lubbock County site.  Model predictions were compared against measured values of 

cumulative evapotranspiration (ET), soil water content by depth in the soil profile, and 

yield by applied water quantity.  Model predictions were made for individual sampling 

points within the field.  Seasonal cumulative ET allowed for assessment of the model’s 

tracking of long term plant water use.  Data from the Helms Farm site was used with this 

assessment.  ET from the field experiments was not measured directly but was 

determined from a soil water balance using the neutron probe data.  In the determination 

of the soil water balance, it was assumed that no soil water drained through the bottom 

of the soil profile or that any surface runoff occurred.  The soil water balance tracking 

was begun on the first day of soil moisture measurement.  The soil moisture values to 

start the soil water balance were from averages of predicted soil water contents from the 

three models on this date.  Soil water content by depth provided more detail about the 

location of water in the soil than the total quantity of water leaving through 

evapotranspiration.  Model predictions of soil water content at the measured depths were 

determined from soil water profile map model output. 

 Applied water – yield relations are valuable to assess model performance because 

yield is an aggregation of all the processes in the model, not just soil moisture 
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movement.  Thus, if yield predictions are accurate over a range of conditions the entire 

model, including the soil moisture components, should be working correctly.   

 Model evaluations were made both qualitatively and quantitatively with graphs and 

summary statistics.  Root Mean Square Error (RMSE) was used for the quantitative 

evaluation of the soil water parameters examined.  RMSE is defined as: 

  RMSE = ( )
2/1

1

2ˆ
1












−∑

=i

ii yy
n

 (3-29) 

where  

yi = measured values,  

ŷi = predicted values 

n = the number of values compared. 

 

RESULTS AND ANALYSIS 

 

Helms Farm Tests 

 Points 7202, 7210, 8202, and 8210 were used for testing the three cotton models.  

Point 7202 was under the 75% UR management, point 7210 under 125% of UR 

management, and the remaining two points were under 100% of UR management. 

 Measured and predicted cumulative evapotranspiration for four points from the 2001 

growing season are shown in Figures 3-8 through 3-11.  RMSE between measured and 

predicted cumulative ET for these four points are located in table 3-11.  Trends in the 

ordering of the model predictions are consistent on all four graphs.  GOSSYM predicted 

the lowest cumulative ET, COTONS the middle cumulative ET, and Cotton2k the 

highest cumulative ET.  Comparisons of the predicted ET curves to measured values 

vary between the four points.  For points 7202, 8202, and 8210, the Cotton2k predicted 

curves matched the measured ET curves best.  For point 7210, the predicted curve from  
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Figure 3-8.  Measured and predicted cumulative ET in 2001 growing season at 

point 7202.  Point 7202 was in a 100% ET management zone. 
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Figure 3-9.  Measured and predicted cumulative ET in 2001 growing season at 

point 7210.  Point 7210 was in a 60% ET management zone. 
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Figure 3-10.  Measured and predicted cumulative ET in 2001 growing season at 

point 8202.  Point 8202 was in an 80% ET management zone. 
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Figure 3-11.  Measured and predicted cumulative ET in 2001 growing season at 

point 8210.  Point 8210 was in an 80% ET management zone. 
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Table 3-11.  RMSE between measured and predicted cumulative ET in 2001 season. 

Point GOSSYM COTONS Cotton2k 

7202 41.05 32.22 22.86 

7210 17.74 13.36 47.96 

8202 62.03 46.67 8.03 

8210 89.13 73.05 38.61 

 

 

 

COTONS matched the measured data best based on the graphical and RMSE criteria.  

For point 7210 the measured ET was 63 mm less than for any other point, however.  

This observation suggests that the soils are allowing drainage or different initial soil 

water conditions are needed for this point.   

 The evapotranspiration equations used between GOSSYM and COTONS are 

identical.  The modified light interception component in COTONS would cause the 

differences in ET between GOSSYM and COTONS by increasing the COTONS 

prediction of light interception.  Cotton2k on the other hand used similar equations as 

GOSSYM for the prediction of light interception, but predicted higher cumulative ET 

than GOSSYM.  Cotton2k utilized an hourly form of the Penman equation rather than 

the Ritchie form, which is possibly the cause of Cotton2k’s higher, and generally more 

accurate, cumulative ET predictions. 

 Soil water contents by layer for point 7202 are shown in figures 3-12 and 3-13.  

RMSE between measured and predicted values of soil water content appear in table 3-

12.  The increase in water contents between 80 and 100 days after planting for the 30-60 

cm depths (figure 3-12b) indicates that plants at this point were not using all the water 

that had been applied and thus were not being stressed in this treatment.   Differences in 

initial water contents between the three models occurred due to differences in 



   58 

breakpoints between categories in the soil water outputs for the three models.  Model 

predictions were within +/-0.025 cm
3
 cm

-3
 of water for the majority of the soil depths 

and measurement days.  This margin of error is acceptable because observed initial 

water contents varied by a similar amount even though an average value was used as a 

model input. 

 GOSSYM and COTONS did not follow measured data trends for several layers.  For 

the 0-30 cm depth at point 7202, GOSSYM spiked up above the other models after day 

80.  COTONS also showed a spike above the predictions of the other two models for the 

90-120 cm depth for this same sampling point.  Cotton2k followed decreasing trends in 

soil water content for this point for depths below 60 cm.  Cotton2k had better RMSE’s 

between measured and predicted values for three of the four points examined. 

 Figure 3-14 shows yield response to the three levels of water applied in the 2001 

Helms Farm experiments.  Measured yields on this graph are averages of point yields for 

each water level.  Predicted values are based on predictions made with soil survey map 

unit input files.  GOSSYM predictions of yield are a fraction of the measured values, 

while COTONS predictions are approximately half the measured values.  Cotton2k 

predictions were closer to the measured yields for all three points, though the prediction 

of yield for the lowest value was only about 60% of the measured value.  The RMSE’s 

between predicted and measured yields in table 3-13 showed that Cotton2k had the 

closest predictions to measured yields followed by COTONS then GOSSYM. 

 Water levels in the soil profile are related to the soil water potential of the soil.  Soil 

water potentials are related to leaf water potentials in the model, which are used to  
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(a) 0-30 cm 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140

Days after Planting

V
o

lu
m

e
tr

ic
 S

o
il 

W
a

te
r 

C
o

n
te

n
t,

 

c
m

3
/c

m
-3

0

50

100

150

200

250

 

W
a

te
r 

D
e

p
th

 (
m

m
)

Water Applications

Gossym

Cotons

Cotton2k

Measured

 
(b) 30-60 cm 

Figure 3-12.  Measured and predicted volumetric water content by depth for point 

7202 in 2001 season.  Layers shown are (a) 0-30 cm and (b) 30-60 cm. 
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(a) 60-90 cm 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140

Days after Planting

V
o
lu

m
e

tr
ic

 S
o

il 
W

a
te

r 
C

o
n

te
n

t,
 

c
m

3
 c

m
-3

0

50

100

150

200

250

W
a
te

r 
D

e
p
th

 (
m

m
)

Water Applications

Gossym

Cotons

Cotton2k

Measured

 
(b) 90-120 cm 

Figure 3-13.  Measured and predicted volumetric water content by depth for point 

7202 in 2001 season.  Layers shown are (a) 60-90 cm and (b) 90-120 cm. 
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Table 3-12.  RMSE between measured and predicted volumetric soil water content 

by layer in 2001 season. 

Point GOSSYM COTONS Cotton2k 

7202 0.0473 0.0452 0.0257 

7210 0.0587 0.0622 0.0589 

8202 0.0589 0.0650 0.0314 

8210 0.0704 0.0654 0.0393 

 

 

 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

Irrigation + Rainfall (cm)

Y
ie

ld
 (

k
g

 h
a

-1
)

Gossym

Cotons

Cotton2k

Measured

 
Figure 3-14.  Measured and predicted applied water – yield relations for Helms 

Farm variable rate irrigation experiments in 2001 growing season. 60, 80, and 

100% ET Treatments were 32, 35, and 39 cm, respectively. 

 

 
 

Table 3-13.  RMSE between measured and predicted yield for Helms Farm variable 

rate irrigation experiments. 

Model RMSE 

GOSSYM 1064.4 

COTONS 536.9 

Cotton2k 202.4 
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indicate stress affecting plant growth.  Actual plant growth is determined by multiplying 

stress factors for water and carbohydrate stresses by growth rates for different 

components of plant organ development.  The stress factors vary from zero to one for 

each day with zero being a stressed plant and one being a non-stressed plant.    

 Water stress indices calculated by the three models were very closely related to the 

predicted yields for the Helms Farm field tests.  The accumulated seasonal water stress 

index for the three models is shown in figure 3-15.  This figure shows the accumulation 

of 1- the water stress index used in the models, so that higher values indicate greater 

stresses.  The stress index in this figure is the summation of daily stress indices 

throughout the model simulation period.  The R
2
 values between this index and predicted 

yields were 0.89, 0.96, and 0.99, for GOSSYM, COTONS and Cotton2k, respectively. 

Lubbock County Tests 

 The Lubbock County tests covered a wider range of applied water levels than the 

Helms Farm tests.  The ability to predict yields over this range of water levels is 

important to allow producers to explore all possible watering options when using 

models.  Measured and predicted applied water yield relations are shown in figure 3-16.  

GOSSYM under-predicted the measured yields for all water levels.  GOSSYM did not 

have non-zero model predictions until greater than 40 cm of water was applied.  The 

COTONS model showed markedly different trends depending on the level of applied 

water.  Below 51.5 cm of applied water, the COTONS yield predictions were all less 

than 200 kg ha
-1

, despite measured yields ranging up to 1200 kg ha
-1

.  Above 51.5 cm of 

applied water, the model predictions were within 25% of measured yield, though all  
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Figure 3-15.  Cumulative water stress across water levels in Helms Farm 

experiment. Total water includes irrigations and rainfall events. 
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Figure 3-16.  Measured and predicted applied water-yield relations for Lubbock 

county drip irrigation experiments in 1997 and 1998 growing seasons.  Total water 

includes irrigations and rainfall events. 
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Table 3-14.  RMSE between measured and predicted yield for Lubbock County 

applied water-yield relations. 

Model RMSE 

GOSSYM 829.0 

COTONS 393.1 

Cotton2k 96.6 

 

 

 
values were still under-predicted.  Cotton2k predictions were close to measured yield for 

all six of the data points.  Table 3-14 shows that Cotton 2k also had the lowest RMSE 

values, thus indicating better model prediction performance for yield, than the other two 

models. 

 Cotton2k produced much better yield predictions than the other two models.  A 

portion of the differences in model predictions was from differences in 

evapotranspiration equations between the three models.  GOSSYM predicted cumulative 

ET an average of 19.4% less than measured cumulative ET for the points examined.  The 

lower ET predictions of GOSSYM and COTONS are likely from the use of daily 

minimum temperature in the Ritchie ET equation rather than dewpoint temperature.  

COTONS ET predictions were closer to measured values than GOSSYM predictions 

showing that the modified light interception component in it did improve model 

predictions.  The improvements in ET predictions with the COTONS light interception 

equations were not as great as the improvements in Cotton2k with the use of dewpoint 

temperatures in the evapotranspiration equations and the use of the hourly 

evapotranspiration equation. The large difference in yield predictions at different water 

application levels between COTONS and GOSSYM and Cotton2k indicates that the 
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modifications to water stress effects in Cotton2k makes it better for yield predictions in a 

semi-arid environment. 

 

CONCLUSIONS 

 
 GOSSYM, COTONS, and Cotton2k were tested for their ability to track water as it 

moved through the soil and predict yield.  Tests were conducted on data from two sites 

in areas with three different soil textures, at multiple water levels and across three years 

of weather information from the High Plains region.  From these tests, Cotton2k is the 

most suitable choice for simulating the effects of site-specific irrigation on cotton for the 

Texas High Plains.  These results illustrate the need for evapotranspiration prediction in 

semi-arid regions to use dewpoint temperature rather than some other temperature, such 

as daily minimum temperature.  The ability of Cotton2k to match yield predictions at 

different levels of water application as compared to the other two models indicates the 

need for accurate description of stress factors in the development of simulation models 
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CHAPTER IV 

 

USE OF SIMULATED ANNEALING FOR SELECTION OF  

 

SOIL INPUTS FOR A COTTON MODEL 

 

INTRODUCTION 

 

 Crop models were created with a number of purposes and application methods in 

mind.  They typically are intended to be applied with a single set of soil properties and 

management practices.  The convergence of technologies that has enabled site-specific 

management has also provided the ability to apply crop models to areas with varying 

input conditions.  Application of crop models in a site-specific manner can potentially 

showcase their decision making capabilities to situations where field experiments and 

user judgment do not work well.  Applying crop models in a site-specific fashion 

requires a range of input values that describe the varying field conditions rather than a 

single value that represents an entire field.  Techniques for acquiring large amounts of 

spatial data on farm fields include yield mapping, detailed sampling, and remote sensing.   

 Combining a crop model’s ability to account for temporal interactions with a spatial 

data set can create an efficient site-specific decision tool.  For crop models to be used as 

a site-specific management tool for individual farms, sampling of model inputs for 

specific sites or calibration of inputs for these sites is necessary.  If the model inputs 

being calibrated do not directly relate to the output used for calibration, the process is 

known as inverse modeling.  The adjustment of model inputs is made with a global 

optimization method. One type of global optimization that has been used with crop 

models is simulated annealing.  The annealing name of this technique draws from 
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analogies relating the solution of combinatorial optimization problems to annealing in 

metallurgy.  Annealing in optimization deals with large numbers of combinations of 

variables, while in metallurgy it deal with large numbers of particles.  In simulated 

annealing, the test solutions that fail to optimize an objective function are accepted with 

a certain probability allowing the technique to escape local solution minima.  Similarly 

in metallurgy, materials will adjust to suboptimal energy levels in the process of moving 

to the overall lowest energy level. 

  An example of the need for input optimization is the soil properties used in crop 

models.  While a soil series may be known for a given area, the variability of textures, 

horizon depth, and other factors can contribute to inaccuracy in yield estimations.  The 

use of yield monitor data can provide a data source for an inverse modeling process that 

optimizes soil inputs spatially. 

 The objective for this study is to evaluate one type of global optimization method, 

simulated annealing, for its ability to improve spatial prediction of yield from a cotton 

simulation model.  For this test it is assumed that spatially variable water stress is a key 

part of spatial yield variability, therefore parameters that affect the ability of the soil to 

hold and move water will be adjusted. 

 

BACKGROUND 

 

Optimization Techniques for Inverse Modeling 

 

 One method for obtaining site-specific inputs for crop simulation models is inverse 

modeling (Braga and Jones, 2004). This technique used an optimization method to 
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minimize differences between model predictions and observed values by iteratively 

changing model inputs.   

 Optimization techniques are categorized as local and global techniques.  Local 

techniques such as the Nelder-Mead simplex algorithm and Powell’s conjugate 

directions (Royce et al., 2001) are quick but stop searching when a local maxima/minima 

is located.  Global optimization methods can escape local optima, but require more runs 

and time than local techniques.  In the past, global techniques such as genetic algorithms 

(Mayer et al., 1996) and simulated annealing (Paz et al., 1998) have been applied in 

determining solutions for agricultural production and crop simulation models.  One 

advantage with the version of simulated annealing described by Goffe et al. (1994) is 

that it can be implemented with readily available code.   

Examples of Crop Model Parameter Selection with Inverse Modeling 

 Applications of inverse modeling to crop simulation models have involved different 

crops, models, optimization algorithms, model inputs adjusted, and objective functions.  

Paz et al. (1998) used a down-hill simplex method to optimize rooting depth, saturated 

hydraulic conductivity in the bottom soil layer, and soil drainage rate coefficient.  This 

study was made using the Cropgro-Soybean model.  The goal of this study was to test 

the hypothesis that spatially variable water stress caused yield variability.  To test this 

hypothesis, the inputs being adjusted were tested in one and two parameter combinations 

to see which had the most effect on crop yield.  This study found that optimizing 

drainage rate and rooting depth explained 69% of yield variability.   
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 Paz et al. (1999) tested whether the combination of soil water related stress and plant 

population influenced crop yield variability.  This test used the simulated annealing 

optimization algorithm with the CERES-Maize model to optimize inputs based on three 

years of yield data.  Inputs optimized in this study were saturated hydraulic conductivity, 

effective tile drain spacing, and plant population.  Once inputs were optimized for this 

field, the model was rerun using 22 years of historic weather data and different levels of 

nitrogen to determine the profit maximizing nitrogen rate for this field.  A rate of 202 kg 

ha
-1

 was determined as the optimum rate. 

 A study by Calmon et al. (1999) used a third type of optimization algorithm and 

tested soil water content in the objective function rather than yield.  This study used 

adaptive simulated annealing in an effort to see if the search space could be sampled 

more efficiently than with the Goffe et al. (1994) version of simulated annealing, thus 

speeding up the process.  This test of inverse modeling was for a single point in space as 

compared to the spatial calibrations in the previous two examples.  Two versions of the 

Cropgro-Soybean model were used in this test.  In one version, soil impedance and root 

hospitality factors were optimized, while in the other version a root weighting factor was 

optimized.  In this work, 100,000 cycles of the optimization algorithm were used to 

obtain each solution.  Use of the optimization algorithm allowed the model to fit the time 

series of water content. 

 Braga and Jones (2004) examined optimization using spatial water content and yield 

objective functions.  This study used the CERES-Maize crop model with a simulated 

annealing optimization algorithm.  Model inputs optimized in this work were lower 
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limit, drained upper limit, saturation, and root growth factor for each soil layer to 

effective soil depth and the hydraulic conductivity in the deepest soil layer.  Objective 

functions in this test used only one year of each type of data.  The procedure was used 

for two separate years of data and then the results validated with comparisons to the 

second year of data.  This study found that when grain yield was used as an objective 

function yield predictions were acceptable, while soil water content predictions were not 

accurate.  Since soil water contents predicted with adjustment of site-specific soil 

parameters were adequate, research on different ways to use yield-based estimation 

procedures was recommended. 

 Previous studies of inverse modeling with crop models have found success in 

calibrating models across multiple years of yield data and against soil water content data.    

Inverse modeling tests have been conducted with corn and soybean crops in humid 

regions of the United States.  Tests have not been made of inverse modeling for cotton 

crops or in semi-arid climates. 

 

 METHODOLOGY 

Simulated Annealing Algorithm 

 In metallurgy, annealing is a process by which metals are heated then cooled slowly 

to create a stable form.  Simulated annealing (SA) is an optimization algorithm for 

combinatorial optimization problems (Kirkpatrick et al. 1983).  It draws parallels to 

metallurgical annealing in that both deal with large numbers of possible combinations of 

parameters and both allow selection of suboptimal states in order to obtain an overall 
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optimal state.  In the case of metallurgy, the escape from suboptimal states allows the 

system to continue cooling to a lower overall energy state.  In the optimization 

algorithm, the equation for determining the acceptance of non-optimal parameter sets is 

known as the “Metropolis Criterion.”  This criterion is shown in equation 4-1: 

  Tffep /)'( −=  (4-1) 

where  

p = probability 

f  = the previous parameter set function value 

f’  = the test parameter set function value 

T  = simulated annealing temperature parameter 

 

 If the value for p obtained from this equation is less than a uniformly distributed random 

number selected from between 0 and 1, the set of parameters is accepted.  The number of 

non-optimal parameter sets accepted is reduced as the optimization temperature 

parameter is reduced during the annealing runs.   

 A flow diagram for the SA algorithm from Corana et al. (1987) appears in figure 4-1.  

The algorithm operates by selecting a point from the step length of each input parameter, 

determining the resulting objective function based on the selected input parameter set, 

and then keeping or rejecting the selected input parameter set if the objective function 

was improved or if the Metropolis criterion was met.  The input process is repeated for a 

set number of cycles until the step length for each input parameter is adjusted so that 

only half of the possible inputs are kept. Following a set number of step length 

adjustments, the Metropolis criterion temperature is reduced by the temperature 

reduction factor.  A run of the algorithm is terminated when the number of cycles 

exceeds a set number, or the best function value at the end of four consecutive 
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temperature levels is within the given error tolerance of the overall optimum function 

value. 

 No exact method of determining the temperature parameter has been established.  

Recommendations for its determination include performing a trial run with the 

temperature reduction factor equal to 1.5 and the temperature parameter equal to 1.0 then 

adjusting the temperature parameter to produce a large step length vector (Goffe et al. 

1994) or selecting the temperature parameter so that it is the same order of magnitude as 

the standard deviation of the objective function (Corana et al. 1987). 

Crop Model 

 The crop simulation model used in these tests was the process-oriented cotton 

growth model Cotton2k (Marani, 2004).  The model uses inputs of weather, soils, and 

management practices to simulate fruiting development of the cotton plant.  Cotton2k 

was derived from the GOSSYM model (Baker et al., 1983) with modifications to allow 

it to work better in arid environments such as California and Israel (Marani et al., 1993a, 

1993b, 1993c).   

 Model inputs are stored in text files separate from model executable code.  There are 

input files for soil hydrology, management practices, weather, and initial soil conditions 

plus a profile input file that organizes run information and links to the other files. The 

weather inputs to the model are daily solar radiation, maximum temperature, minimum 

temperature, precipitation, and wind run.  Management practices input into the model 

include the timing and quantity of irrigations and fertilization, variety, and plant 

population.   Inputs for describing soil water movement and the soil water characteristic
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Figure 4-1.  Simulated annealing algorithm (from Corana et al. 1987). 
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curve in Cotton2k are listed in table 4-1.  The description of the soil water characteristic 

curve in Cotton2k is based on van Genuchten (1980), and therefore includes model 

inputs for residual and saturated water content and the soil texture-based empirical 

coefficients alpha and beta. The equation as defined by van Genuchten is: 

  
( )[ ]mn

rs

r

αψθθ

θθ

+

=
−

−

1

1
 (4-2) 

where  

θ = water content at soil water potential ψ 

θr = residual water content 

θs = saturated water content 

ψ = soil water potential 

α, m, and n = fitting parameters 

m = 1-1/n 

 

The use of beta in Cotton2k corresponds to the definition of n in the van Genuchten 

(1980) version of the equation. 

    

 

Table 4-1. Cotton2k soil input variables. 

Soil Input Variables 

Percent sand 

Percent clay 

Bulk density 

Hydraulic conductivity at saturation 

Hydraulic conductivity at field capacity    

Saturated volumetric water content 

Volumetric water content at air dry 

Alpha coefficient for the Van Genuchten equation 

Beta coefficient (n) for the Van Genuchten equation 
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 Cotton2k was selected for this application based on tests of its ability to predict soil 

moisture movement, evapotranspiration, and yield for data sets from the Texas High 

Plains region.  Models tested in the selection process were GOSSYM, COTONS (Jallas 

et al., 1999) , along with Cotton2k.  Data from Helms Farm field at the Halfway Texas 

Agricultural Experiment Station and a site in Lubbock County were used in the selection 

tests.  For three of four test points at the Helms Farm site, Cotton2k predicted cumulative 

ET closer to measured cumulative ET than the other two models.  All three models 

predicted similar values of soil water content by layer for the Helms Farm site, though 

Cotton2k followed trends over time better at lower depths than the other two models.  In 

tests of yield prediction, Cotton2k was very close to measured yields, while the other 

two models under-predicted yields, especially for lower water levels. 

Crop Simulation Model – Simulated Annealing Linkage 

 The computer code for implementing the version of the simulated annealing 

algorithm used in these tests was created by Goffe et al., (1994).  A list of parameters 

that are set in the annealing algorithm with definitions for them (Goffe et al., 1994) is 

shown in Appendix B.  The algorithm is implemented in the FORTRAN programming 

language.  It was modified for use with the CERES-MAIZE crop model by Joel Paz 

(personal communication, 2005). 

  In the implementation of the algorithm for this project, the objective function from 

the Goffe et al. (1994) version was replaced by a subroutine that called Cotton2k.  This 

subroutine transferred model parameters being optimized in the SA routine to the soil 

hydrology input file for Cotton2k.  After Cotton2k executed, this routine would access 
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the yield generated from the Cotton2k output file and transfer it to the SA routine.  The 

core code of the Cotton2k model was executed with its command line interface.  The 

Cotton2k code was recompiled to work with the SA algorithm to eliminate windows that 

appear during the execution of the model. The code was compiled in static form so that 

dynamic link libraries were not required.   

Field Experiments 

 Tests of objective functions with the simulated annealing algorithm were made with 

single and multiple year combinations of data sets from the Helms Farm site.  The data 

sets used were from the 2001 and 2003 growing seasons.  Helms Farm is located 3.22 

km from the Halfway Texas Agricultural Experiment Station with the center point of the 

center pivot irrigation system located at 34° 9’6”N 101°56’52”W.  The data sets for this 

analysis were from experiments on field-scale variable rate irrigation. The soil survey 

map unit for this site was a Pullman sandy clay loam.  Percent sand and percent clay 

were sampled at 33 points across the field by Robert Lascano (personal communication, 

2004).  Percent sand variation from this sampling ranged from 15 to 25 percent while 

percent clay varied from 20 to 30 percent.  Soil water content information in 30-cm 

depth increment was obtained for each sampling point in the 2001 growing season with a 

neutron probe by Robert Lascano (personal communication 2004).  Yield was collected 

at each sampling location by hand for each growing season. 
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 Weather information for the experiments was obtained from a weather station 

located at the Halfway experiment station.  Weather conditions in the 2001 and 2003 

growing seasons are summarized in table 4-2.  Planting dates for the two seasons were 

May 16 in 2001 and May 14 in 2003.  Management operations that occurred during this 

growing season are listed in table 4-3.  The irrigation system at the site was a Low 

Energy Precision Agriculture (LEPA) system with modifications that allowed site-

specific control of the water applications (Bordovsky and Lascano, 2003).  In 2001 and 

2003, three irrigation levels, 60%  evapotranspiration (ET), 80% ET, and 100% ET were 

used at the site.  ET for this experiment was calculated with a modified Penman-

Monteith equation (J. Booker, personal communication, 15 February 2005). Zones for 

the three irrigation levels were determined based on a combination of soil texture and 

slope down the furrow.  The quantity of irrigation for each management zone is shown 

in table 4-4.  The irrigation control management zones for section 5D in 2001 are shown 

in figure 4-2 and in 2003 in figure 4-3.   

Model Inputs – Non-Optimized 

 Weather data and management information were entered in Cotton2k to match data 

from the field experiments at Helms Farm.  The source of each soil input for these tests 

is shown in table 4-5.  Soil inputs used for these tests were based on a combination of 

point-specific sand and clay percentages sampled by Robert Lascano (personal 

communication 2004) and pedotransfer functions.  The sampled sand and clay 

percentages were used in conjunction with tabular information from Van Genuchten et 

al. (1991) and the Soil Water Characteristic program developed by Saxton et al. (1986).   
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Table 4-2. Weather conditions used for simulations compared to southern High 

Plains historic weather conditions. 

Year 

Average Daily 

Maximum 

Temperature 

Average Daily 

Minimum 

Temperature 

Total 

Rainfall 

 (°C) (°C) (cm) 

2001 31.5 16.7 18.3 

2003 30.1 14.4 15.3 

Historic Average 

 (May 1 – October 15) 30.4 16.3 31.4 

 

 

 

Table 4-3. Experimental management parameters – Helms Farm study. 

 2001 2003 

Plant date May 15 May 5 

Harvest date Oct. 18 Nov. 3 

Row spacing 76.2 cm 76.2 cm 

Plants per meter 10.8 10.3 

Irrigation date range May 26 – Aug. 30 May 7 – Aug. 29 

Fertilizer quantity 143.4 kg N ha
-1

 109.4 kg N ha
-1

 

 

 

 

Table 4-4.  Irrigation quantities for control management zones during 2001 and 

2003 growing seasons.   

Year Treatment Irrigation 

Total Applied Water 

(Irrigation + Rain) 

    (cm)  (cm) 

2001 60 % ET 24.1 42.4 

 80 % ET 27.3 45.6 

 100 % ET 30.6 48.9 

2003 Base Rate – 20 % 22.5 37.8 

 Base Rate 27.4 42.7 
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Figure 4-2. Soil sampling points and control management zones in 2001 for field 5D 

at Helms Farm site. 

 

 

 

 
Figure 4-3. Soil sampling points and control management zones in 2003 for field 5D 

at Helms Farm site. 
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Table 4-5.  Cotton2k model soil input sources for simulated annealing tests.  

Input Source 

Percent sand Soil sampling 

Percent clay Soil sampling 

Bulk density Soil Water Characteristic program, Saxton et al. (1986) 

Volumetric water content at 

air dry 

*Calculated from Van Genuchten equation 

Saturated volumetric water 

content 

*From table 3 in van Genuchten et al. (1991) by soil 

texture 

Alpha coefficient for the 

Van Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Beta coefficient for the Van 

Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

saturation 

*From table 3 in van Genuchten et al. (1991) by soil 

texture 

Hydraulic conductivity at 

field capacity    

Soil Water Characteristic program, Saxton et al. (1986) 

 

* Initial source of data.  These values were optimized in the study. 

 

 

 

The Soil Water Characteristic program uses a series of equations developed based on the 

data set analyzed by Rawls et al. (1982) to relate soil water content, hydraulic 

conductivity, and soil water potential to percent sand and percent clay.  The relations for 

soil water content and soil water potential between 1500 and 10 kPa are: 

  Ψ = A Θ
B
 (4-3) 

  A = exp[a + b(%C) + c(%S)² + d(%S)²(%C)] 100.0 (4-4) 

  B = e + f(%C)² + g(%S)²(%C) (4-5) 

where 

Ψ  = water potential, kPa 

Θ = water content m
3
 m

-3
 

A, B  = soil water characteristic equation coefficients 

a, b, c, d, e, f, g  = empirical coefficients 

% C  = percent clay 

% S  = percent sand 
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The equation relating hydraulic conductivity, percent sand, percent clay, and water 

content is  

K = 2.778×10
-6

 {exp [12.012 - 0.0755 (% S) + [-3.8950 + 0.03671 (% S)  

- 0.1103 (% C) + 8.7546×10
-4

 (% C)²] (1/Θ)]} (4-6) 

 

where 

K = unsaturated hydraulic conductivity m s
-1

  

Θ = water content m
3
 m

-3
 

% C  = percent clay 

% S  = percent sand 

 

Using equations such as 4-3 through 4-6 for hydraulic conductivity and soil water 

potential is not a perfect way of determining soil inputs for a crop model.  Producers 

using crop models will likely not have as much sampled information as in this study.  

Potential alternatives to determining model inputs for producers could include the use of 

data bases based on soil map unit, such as SSURGO (USDA-NRCS, 1995).  These 

databases present only ranges for potential inputs such as saturated hydraulic 

conductivity and available water capacity.  Selection of inputs from ranges will also lead 

to errors between values used in crop models and actual values in fields . Use of 

database information with other site-specific information in an inverse modeling 

procedure could be better than use of either technique alone. 

 Soil moisture was initialized for all test points based on the average of soil water 

contents for ten sampling points on the first sampling date in the 2001 and 2003 growing 

seasons.  Initial values of ammonium, nitrate, and organic matter in sample files with 

Cotton2k were used with these tests.  The input values are listed in table 4-6. 
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Table 4-6.  Initial Cotton2k model soil fertility and water content inputs by depth 

for simulated annealing tests. 

Bottom Layer 

Depth 

NH4  

(kg ha
-1

) 

NO3 

 (kg ha
-1

) 

Organic Matter,  

% by weight 

Water Content, 

 % of field capacity 

15 2.69 26.904 0.74 60 

30 1.23 13.23 0.72 80 

45 1.00 10.09 0.67 85 

60 0.79 7.40 0.43 85 

75 0.79 7.40 0.37 85 

90 0.79 7.40 0.30 85 

105 4.93 4.93 0.00 85 

120 4.93 4.93 0.00 85 

135 4.93 4.93 0.00 85 

150 4.93 4.93 0.00 85 

165 4.93 4.93 0.00 85 

180 4.93 4.93 0.00 85 

 

 

 

SA Control Parameter Tests 

 Three possible values of four SA control parameters were tested to evaluate their 

effect on optimized model inputs and outputs.  The four control parameters tested were 

the number of cycles (NS), initial search length (ISTP), error tolerance for termination 

(EPS), and maximum number of function evaluations (MaxEval).  Table 4-7 shows the 

three values tested for each control parameter.   The control parameters were tested with 

two types of initial values, one based on sampled soil sand and clay measurements and 

one based on the midpoint of the search range being used in SA.  The two cases 

represent different levels of information to start SA with in order to see if more or less 

information affects the outcome of the SA process.  Beginning the SA algorithm with 

different initial parameter sets also tests whether it is an effective global optimization 

technique based on whether both start points reach the same input parameter set. 
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Table 4-7. Simulated annealing control parameters tested 

with Helms Farm point 7202 single year yield data. 

SA Parameter Values Tested 

NS 20, 42, 84 

ISTP 0.005, 0.02, 0.04 

EPS 3, 6, 10 

MaxEval 3050, 6050, 8050 

 

 

 

Input Parameter Tests 

 Crop water stress and soil properties related to soil water holding capacity have been 

shown to vary spatially; therefore, the input parameters that were modified were related 

to soil water holding and transport capacity.   Three combinations of inputs with from 

three to six input parameters adjusted were tested for their effects on the optimization 

routine.  The combinations of input parameters tested for use with the SA algorithm are 

shown in table 4-8 along with the range of values searched over for each parameter.   

Ranges were based on ranges in each parameter across all soil textures from Rawls et al. 

(1982) and van Genuchten et al. (1991).  Tests with the different input parameter 

combinations were conducted on point 7202 from the Helms Farm site.  One point was 

selected due to the time required to conduct the test.   This point was located in the 100% 

PET management zone, which the model should perform best in thus minimizing the 

effects of model errors on the SA test.   

 The six parameter test set looked at adjusting saturated and residual water content for 

three 20-cm layers from 0-60 cm deep in the soil profile.  While saturated water content 

and residual water content do not directly describe available water capacity, they are 

related to available water capacity through the van Genuchten soil water characteristic  
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Table 4-8.  Cotton2k inputs varied with simulated annealing algorithm. 

Variable Definition 

Parameter Search 

Ranges 

6 Parameter Test Set  

Variable 1 Saturated water content – layer 1 0.22 – 0.50 cm
3
 cm

-3
 

Variable 2 Saturated water content – layer 2 0.22 – 0.50 cm
3
 cm

-3 

Variable 3 Saturated water content – layer 3 0.22 – 0.50 cm
3
 cm

-3 

Variable 4 Residual water content – layer 1 0.02 - 0.18 cm
3
 cm

-3
 

Variable 5 Residual water content – layer 2 0.02 - 0.18 cm
3
 cm

-3
 

Variable 6 Residual water content – layer 3 0.02 - 0.18 cm
3
 cm

-3
 

5 Parameter Test Set  

Variable 1 Saturated hydraulic conductivity – layer 1 1-500 cm day
-1

 

Variable 2 Saturated hydraulic conductivity – layer 2 1-500 cm day
-1

 

Variable 3 Residual water content – layer 3 0.02-0.18 cm
3
 cm

-3
 

Variable 4 Saturated water content – layer 3 0.22-0.50 cm
3
 cm

-3
 

Variable 5 Depth to caliche layer – layer 5 81 – 151 cm 

3 Parameter Test Set  

Variable 1 Saturated water content – layer 1 0.22 – 0.50 cm
3
 cm

-3 

Variable 2 Saturated water content – layer 2 0.22 – 0.50 cm
3
 cm

-3 

Variable 3 Saturated water content – layer 3 0.22 – 0.50 cm
3
 cm

-3 

 

 

 

equation.  The alpha and beta coefficients of the van Genuchten equation vary with soil 

texture, but not continuously, and therefore would not be suitable for use with the SA 

algorithm.  The three parameter test set was selected to examine the effectiveness of 

adjusting only one rather than both limits related to available water capacity.  The five 

parameter set tested a hypothesis that the combined effect of variation in soil moisture in 

deep soil layer and a caliche layer could affect crop yield.  Caliche is a hard calcium 

carbonate layer that occurs in semi arid areas such as the High Plains. The first two 

variables in this test set, saturated water conductivity for the top two layers in the 

Cotton2k soil profile, affect how fast water moves through the profile.  The third and 

fourth parameters are the saturated and residual water contents for the third soil layer.   
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The fifth parameter is the depth of the caliche layer, which would affect the depth at 

which water could build up in the soil profile since it could constrict water flow. 

Objective Function Tests 

 Six combinations of input parameters and output parameter objective functions were 

evaluated, with two annealing starting points, for their ability to optimize crop model 

inputs.  The model outputs used in the SA objective functions are shown in table 4-9.  

Both yield and water content based objective functions were examined. Yield data was 

tested as an objective function because of the increasing availability of yield monitor 

data in farming operations. Measured yield used in this test was based on hand-sampled 

measurements.  Yields for the Helms Farm were available for each point in 2001 and for 

each treatment in 2003.  Soil moisture measurements, however, are more closely related 

to the input parameters being adjusted than yield and thus should produce more accurate 

parameter estimates.  Measured soil water contents were from neutron probe 

measurements from the 2001 Helms farm experiments.  Predicted soil water contents for 

comparison to the measured values were from the Cotton2k soil water data output file.  

As with the SA control parameter tests, one sampling location was used with this test, 

due to time required to run the SA algorithm.  Sampling location 7202 was also used 

with this test. 

 

 

Table 4-9.   Objective functions used with simulated annealing algorithm. 

Number Description 

1 Single year yield using 2001 season 

2 Two year yield using 2001 and 2003 seasons 

3 Water content throughout 2001 season 
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Whole Field Optimization 

 Spatial application of crop models will require the determination of inputs for many 

model runs.  Utilizing an optimization method with an available spatial data set for an 

output could aid in optimizing these inputs.  This method of obtaining model inputs on a 

spatial basis was tested with the 33 sampled data points from the Helms Farm field 

experiments.  The points used for the test are shown in figure 4-2.  The points are located 

in areas managed with three levels of water applications, 60% ET, 80% ET, and 100% 

ET from the 2001 growing season. 

 One of the objective function / input parameter combinations was selected for 

application to points across the entire field.  The selection was made based on: 1) the 

quality of the predictions made, 2) the time required for the optimization algorithm to 

run, 3) the reasonableness of the crop model inputs obtained from the optimization 

algorithm, and 4) the ease with which the parameter data could be obtained.  The single 

year yield objective function was selected for application to the optimization of soil 

properties for the entire field.  This objective function produced the best yield 

predictions, used the type of data that would be most readily available to producers 

today, and the 2001 yield data that was available was collected for each point rather than 

management zone.   
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RESULTS AND ANALYSIS 

 

Crop Simulation Model – Simulated Annealing Linkage 

 Use of the SA algorithm involved selection of values for model input parameters, 

testing of algorithm control parameters, selection of which model inputs to use for 

optimization and selection of appropriate objective functions.  Learning to link Cotton2k 

with the SA algorithm was a trial and error process with many decisions made along the 

way.  It was originally envisioned that optimum values for several simulation locations 

could be optimized on one computer each day.  The combination of SA with maximum 

number of evaluations of 6050 with Cotton2k took approximately 20 hours to run for 

one point on a 2.2 GHz desktop computer.  Eventually multiple computers were used to 

complete the simulations.   

SA Control Parameter Tests 

 Annealing algorithm control parameter test results are shown in table 4-10 and 4-11.  

Table 4-10 contains SA tests that began searching at residual and saturated water content 

values based on soil texture information, while the SA search used for the data in table 

4-11 began at the midpoint of the specified search range.   The initial parameter sets for 

both types of start points are similar to each other for this point.  In 15 of the 18 runs in 

these two tables, the SA algorithm found parameter sets that allowed model predicted 

yields to match measured yields exactly.  Yield predictions for all 18 runs were within 

one standard deviation of the measured yields in this management zone (101 kg ha
-1

). 

This indicates that the SA algorithm was capable of finding optimum parameter sets 

when used with the crop simulation model.  Input parameter sets obtained with the SA 
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Table 4-10.  Soil parameter sets for point 7202 obtained with simulated annealing algorithm for objective function with 

single year of yields.   Starting points were based on soil textures.  SA control parameters used for the base simulation 

were:  NS = 42, ISTP = 0.04, EPS = 10, MaxEval = 6050, Initial Temperature = 75, Temperature Reduction Multiplier = 

0.85. 

Annealing 

Parameter Modified 

 Variable 

1 * 

Variable 

2 * 

Variable 

3 * 

Variable 

4 ** 

Variable 

5 ** 

Variable 

6 ** 

AWC 

(cm)† 

Predicted 

Yield  

(kg ha
-1

)†† 

Stop 

Criteria*** Trials 

Initial Values 0.330 0.390 0.321 0.068 0.075 0.109 19.08    

Base 0.321 0.349 0.381 0.064 0.166 0.037 19.12 1258.2 Term Crit. 4536 

NS = 20  0.300 0.438 0.252 0.069 0.040 0.0526 19.38 1252.8 MaxEval 6050 

NS = 84  0.311 0.368 0.452 0.065 0.159 0.118 19.10 1258.2 MaxEval 6050 

ISTP =0.02  0.317 0.386 0.336 0.088 0.035 0.109 19.24 1258.2 Term Crit. 4536 

ISTP = 0.005  0.314 0.400 0.374 0.081 0.064 0.101 19.44 1258.2 MaxEval 6050 

EPS = 6  0.321 0.349 0.381 0.064 0.166 0.037 19.12 1258.2 MaxEval 6050 

EPS = 3  0.3208 0.349 0.381 0.064 0.166 0.037 19.12 1258.2 MaxEval 6050 

MaxEval = 3050  0.3208 0.349 0.381 0.064 0.166 0.037 19.12 1258.2 MaxEval 3050 

MaxEval = 8050  0.3208 0.349 0.381 0.064 0.166 0.037 19.12 1258.2 Term Crit. 4536 

∗ Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3, respectively 

**Variables  4, 5, 6 = Residual water content – layers 1, 2, 3, respctively 

***  Term. Crit. = the SA search ended because the termination criteria in the algorithm was reached 

***  MaxEval.   = the SA search evaluated the crop model the maximum number of times specified without reaching the termination criteria. 

† AWC = Available Water Capacity 

†† Measured Yield = 1258.2 kg ha
-1
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Table 4-11.  Soil parameter sets for point 7202 obtained with simulated annealing algorithm for objective function with 

single year of yields.   Starting points were based on middle of search range. SA control parameters used for the base 

simulation were:  NS = 42, ISTP = 0.04, EPS = 10, MaxEval = 6050, Initial Temperature = 75, Temperature Reduction 

Multiplier = 0.85. 

Annealing 

Parameter 

Modified 

 Variable 

1 * 

Variable 

2 * 

Variable 

3 * 

Variable 

4 ** 

Variable 

5 ** 

Variable 

6 ** 
AWC 

(cm)† 

Predicted 

Yield 

 (kg ha
-1

)†† 

Stop 

Criteria*** Trials 

Initial Values 0.360 0.360 0.360 0.100 0.100 0.100 19.06    

Base  0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2 MaxEval 6050 

NS = 20  0.440 0.314 0.341 0.089 0.164 0.050 19.16 1258.0 Term Crit. 2160 

NS = 84  0.471 0.387 0.308 0.149 0.171 0.031 19.30 1258.2 MaxEval 6050 

ISTP =0.02  0.317 0.391 0.320 0.088 0.036 0.102 19.25 1258.2 MaxEval 6050 

ISTP = 0.005  0.347 0.334 0.403 0.091 0.081 0.103 19.20 1169.1 MaxEval 6050 

EPS = 6  0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2 MaxEval 6050 

EPS = 3  0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2 MaxEval 6050 

MaxEval = 3050  0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2 MaxEval 3050 

MaxEval = 8050  0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2 Term Crit. 7560 

∗ Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3, respectively 

** Variables  4, 5, 6 = Residual water content – layers 1, 2, 3, respectively 

***  Term. Crit. = the SA search ended because the termination criteria in the algorithm was reached 

***  MaxEval.   = the SA search evaluated the crop model the maximum number of times specified without reaching the termination criteria. 

† AWC = Available Water Capacity 

†† Measured Yield = 1258.2 kg ha
-1
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algorithm did not match one another between the different SA algorithm control 

parameters tested or between the two different starting points tested.  Not finding 

matching parameter sets between optimum yield runs with different algorithm starting 

points contrasts with previous tests of global optimization methods with crop simulation 

models (Braga and Jones, 2004). In the previous global optimization tests, a systematic 

search method found the same parameter set as the global optimization method.  The 

different parameter sets for residual and saturated water content produced similar 

available water contents however.  The water contents for all the tests in tables 4-10 and 

4-11 had a range of 0.37 cm3 cm-3 for the same predicted yield.  Several unique 

combinations of soil water parameters producing the same output is similar to an 

analysis of the relationship between wheat yield and available water capacity done by 

Wassenaar et al. (1999), however.  While a single logarithmic relation between these 

two variables was developed in the Wasenaar et al. (1999) study, the raw data showed 

that the same yield values could be derived from different available water capacities. 

 Of the control parameters tested, the number of cycles had the most effect on the 

input parameters with Cotton2k soil parameters varying up to 0.012 cm
3
 cm

-3
 between 

the three values for the number of cycles.  The number of cycles had a strong influence 

on the optimization results because it controlled how each region is searched and it 

affects how fast the different temperature levels are moved through.  The initial step had 

a smaller effect on the results because it only directly affects the initial searches.   The 

initial step having an effect on the parameters selected was an indication that the 

optimum parameter set was located early in the search process for this combination of 
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parameters and objective function.  Adjusting termination error tolerance and maximum 

number of function evaluations had no effect on the Cotton2k soil parameters selected.  

The result with the error tolerance was not surprising because the selected error tolerance 

values were more stringent than the error tolerance for the base parameter set in Tables 

4-10 and 4-11. The results in table 4-11 showed similar trends to those in table 4-10.   

Table 4-12 lists the cycle number at which an optimal solution was obtained for each 

trial in tables 4-10 and 4-11.  Numbers in this table indicate that the optimal solution was 

found before cycle 2500 for the majority, but not all the tests.  These results indicate that 

large amounts of computer time was wasted after an optimal parameter set was obtained. 

 

 

Table 4-12.  Cycle number that optimal objective function was obtained on in SA 

control parameter tests. 

 

Texture Start 

Point 

Middle of Search 

Range Start Point 

Base 615 899 

NS = 20  6037 220 

NS = 84  755 349 

ISTP =0.02  842 2437 

ISTP = 0.005  1642 5998 

EPS = 6  615 899 

EPS = 3  615 899 

ME = 3050  615 899 

ME = 8050  615 899 

 

 

 

Input Parameter and Objective Function Tests 

 Objective function test results for point 7202 are shown in tables 4-13 for a soil 

texture-based algorithm starting point and in table 4-14 for an algorithm beginning at the 

middle of the search range.  As with the SA algorithm control parameter tests, there were  
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Table 4-13.  Soil parameter sets for point 7202 obtained with simulated annealing algorithm for objective function tests.  

Starting points were based on soil textures.   Annealing parameters used in the tests were:  NS = 42, Initial Temp. = 75, 

Temp. Reduction Multiplier = 0.85, EPS = 10, and MaxEval = 6050. 

Input Parameter Set 

and Objective 

Function Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 

AWC 

(cm)† 

Predicted 

Yield – 2001 

(kg ha
-1

)†† 

Predicted 

Yield – 

2003 (kg 

ha
-1

) ††† 

RMSE

, Water 

Conten

t 

6 Parameter 1 Year 

Yield * 0.321 0.349 0.381 0.064 0.166 0.038 19.08 1258.2 

   

6 Parameter 2 Year 

Yield * 0.452 0.405 0.342 0.025 0.046 0.104 20.7 1219.0 1561.0 

 

6 Parameter 1 Year 

Water Content* 0.225 0.286 0.333 0.022 0.024 0.053 18.82 967.9  

0.0084

6 

5 Parameter  1 Year 

Yield ** 347.3 2.7 0.047 0.498 102.8  -- 20.68 1248.2   

5 Parameter  2 Year 

Yield ** 1.301 9.2 0.053 0.388 136.8 -- 19.93 1192.2 1700.9  

5 Parameter  1 Year 

Water Content ** 234.3 1.40 0.020 0.359 149.8 -- 19.95 1185.5  0.0431 

3 Parameter 1 Year 

Yield *** 0.301 0.402 0.369 -- -- -- 19.32 1258.2   

3 Parameter 2 Year 

Yield *** 0.492 0.494 0.406 -- -- -- 21.48 1180.6 1586.0  

3 Parameter  1 Year 

Water Content *** 0.237 0.231 0.301 -- -- -- 17.31 1053.7  0.0157 

∗    Row 1-3 Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3 

       Row 1-3 Variables  4, 5, 6 = Residual water content – layers 1, 2, 3 

**   Row 4-6 Variables 1, 2, = Saturated hydraulic conductivity – layers 1, 2 

       Row 4-6 Variable  4 = Residual water content – layer 3 

       Row 4-6 Variable 5 = Saturated water content – layer 3 

       Row 4-6 Variable  6 = Depth of caliche layer, cm 

*** Row 7-9 Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3 

† AWC = Available Water Capacity 

†† Measured Yield  for point  in 2001= 1258.2 kg ha
-1

 

†††Measured Yield for management zone in 2003 = 1012.67 kg ha
-1
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Table 4-14.  Soil parameter sets for point 7202 obtained with simulated annealing algorithm for objective function tests.  

Starting points were based on middle of search range.  Annealing parameters used in the tests were:  NS = 42, Initial 

Temp. = 75, Temp. Reduction Multiplier = 0.85, EPS = 10, and MaxEval = 6050. 

Input Parameter Set and 

 Objective Function  Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 

AWC 

(cm)† 

Predicted 

Yield – 

2001 (kg 

ha
-1

)†† 

Predicted 

Yield – 2003 

(kg ha
-1

) ††† 

RMSE, 

Water 

Content 

6 Parameter 1 Year 

Yield * 0.488 0.376 0.400 0.100 0.157 0.167 19.49 1258.2  

 

6 Parameter 2 Year 

Yield * 0.494 0.360 0.488 0.041 0.021 0.156 21.38 1185.4 1549.2 

 

6 Parameter 1 Year 

Water Content * 0.221 0.291 0.354 0.022 0.028 0.028 19.08 1218.1  0.00832 

5 Parameter  1 Year 

Yield ** 2.0 9.4 0.021 0.259 81.5 -- 19.29 1239.5   

5 Parameter  2 Year 

Yield ** 103.0 123.1 0.027 0.391 132.8 -- 20.82 1192.8 1698.9  

5 Parameter  1 Year 

Water Content ** 461.4 379.8 0.105 0.321 148.8 -- 19.15 1130.2  0.0362 

3 Parameter 1 Year 

Yield *** 0.418 0.348 0.430 -- -- -- 20.16 1217.4   

3 Parameter 2 Year 

Yield *** 0.343 0.473 0.372 -- -- -- 20.09 1213.3 1533.4  

3 Parameter  1 Year 

Water Content *** 0.225 0.223 0.296 -- -- -- 17.13 921.1  0.0159 

∗    Row 1-3 Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3 

       Row 1-3 Variables  4, 5, 6 = Residual water content – layers 1, 2, 3 

**   Row 4-6 Variables 1, 2, = Saturated hydraulic conductivity – layers 1, 2 

       Row 4-6 Variable  4 = Residual water content – layer 3 

       Row 4-6 Variable 5 = Saturated water content – layer 3 

       Row 4-6 Variable  6 = Depth of caliche layer, cm 

*** Row 7-9 Variables 1, 2, 3 = Saturated water content – layers 1, 2, 3 

† AWC = Available Water Capacity 

†† Measured Yield for point in 2001= 1258.2 kg ha
-1

 

†††Measured Yield for management zone in 2003 = 1012.67 kg ha
-1
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no matches in the input parameter sets selected between tests.  One year yield objective 

function tests matched the measured yield of 1258.2 kg ha
-1

.   All four of the predicted  

yields from yield based objective functions were within one standard deviation of the 

field measured yield.  With the two year yield objective function the yield was generally 

over-predicted for the 2003 growing season.  The errors in this test may be due to the use 

of average measured yields across areas rather than point-specific measured yields.  

Comparisons among the three types of objective functions for the six combinations of 

number of parameters and starting points showed that the water content objective 

functions produced the yield predictions the furthest away from the measured yields for 

five out of the six combinations.  The difference between measured and model predicted  

soil water content for 30-cm depth increments are shown in figures 4-4 and 4-5.   The 

optimization algorithm affected model predictions most in the top 60 cm, lowering the 

model soil water content predictions by nearly 0.05 cm
3
 cm

-3
.  Available water capacity 

in tables 4-13 and 4-14 was calculated from the van Genuchten soil water characteristic 

equation using the residual and saturated water contents obtained with the optimization 

algorithm.  The available water capacity from the water content objective functions was 

the lowest of the three objective functions for five of the six combinations of objective 

function and the input parameter combinations.   

Whole Field Optimization 

 Input parameters obtained using SA for the calibration of soil water parameters for 

each point across Helms Farm field 5D are shown in table 4-15.  Predicted yields were 

within 5 kg/ha of measured yields for 20 out of 33 points.  Three points had differences  
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(b) 30-60 cm 

Figure 4-4.  Measured and predicted volumetric water content by depth for point 

7202 in 2001 season before and after optimization.  Layers shown are (a) 0-30 cm 

and (b) 30-60 cm. 
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(d) 90-120 cm 

Figure 4-5.  Measured and predicted volumetric water content by depth for point 

7202 in 2001 season before and after optimization.  Layers shown are (a) 60-90 cm 

and (b) 90-120 cm. 
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Table 4-15.  Soil parameter sets for field optimization obtained with simulated 

annealing algorithm using a single year yield objective function. Annealing 

parameters used in the tests were:  NS = 42, Initial Temp. = 75, Temp. Reduction 

Multiplier = 0.85, EPS = 10, and MaxEval = 6050. 

Point Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6 

Pred. 

Yield 

(kg ha
-1

) 

Meas. – 

Pred. 

Yield  

(kg ha
-1

) 

6201 0.338 0.324 0.424 0.022 0.102 0.175 1148.0 18.1 

6202 0.345 0.348 0.500 0.069 0.030 0.179 1151.0 54.4 

6203 0.438 0.265 0.454 0.140 0.150 0.023 1156.2 -0.2 

6204 0.381 0.457 0.287 0.051 0.085 0.063 1109.9 0.0 

6205 0.344 0.455 0.319 0.124 0.121 0.147 1164.4 34.6 

6206 0.253 0.396 0.260 0.135 0.113 0.069 1146.2 0.0 

6207 0.325 0.495 0.309 0.137 0.079 0.046 1140.0 6.2 

6208 0.326 0.449 0.492 0.142 0.059 0.027 1137.1 -0.2 

6209 0.288 0.396 0.279 0.172 0.029 0.086 1189.6 0.03 

7201 0.439 0.350 0.453 0.099 0.024 0.040 1129.0 0.0 

7202 0.321 0.349 0.381 0.064 0.166 0.037 1258.2 0.0 

7203 0.321 0.310 0.374 0.054 0.102 0.051 1203.6 0.0 

7204 0.406 0.404 0.350 0.100 0.035 0.108 1148.9 150.4 

7205 0.406 0.440 0.375 0.071 0.120 0.092 1144.4 0.0 

7206 0.285 0.347 0.394 0.098 0.180 0.158 1017.5 0.0 

7207 0.412 0.404 0.446 0.048 0.093 0.046 1116.4 0.0 

7208 0.390 0.285 0.313 0.109 0.082 0.102 931.4 0.0 

7209 0.364 0.424 0.326 0.023 0.065 0.074 789.4 196.9 

7210 0.452 0.419 0.481 0.042 0.043 0.103 844.9 183.4 

7211 0.349 0.457 0.442 0.158 0.081 0.129 697.9 428.5 

8201 0.326 0.347 0.484 0.050 0.095 0.116 1025.6 -26.0 

8202 0.336 0.327 0.488 0.058 0.089 0.074 1025.7 -47.4 

8203 0.291 0.382 0.247 0.120 0.055 0.116 1063.9 0.0 

8204 0.363 0.312 0.384 0.053 0.127 0.087 1082.2 0.0 

8205 0.280 0.369 0.313 0.114 0.068 0.169 1181.8 0.0 

8206 0.282 0.466 0.413 0.131 0.168 0.062 1113.6 0.0 

8207 0.428 0.379 0.412 0.116 0.104 0.050 993.0 110.5 

8208 0.339 0.439 0.371 0.170 0.062 0.023 1155.6 5.0 

8209 0.336 0.428 0.314 0.154 0.033 0.026 1143.3 0.0 

8210 0.335 0.412 0.477 0.163 0.059 0.021 1161.5 12.0 

8211 0.355 0.431 0.491 0.139 0.125 0.020 1054.7 161.7 

8212 0.329 0.413 0.347 0.062 0.162 0.100 1111.5 0.0 

8213 0.378 0.389 0.400 0.046 0.094 0.047 1113.5 12.7 

 



   

 

98 

between predicted and measured yields of greater than 180 kg ha
-1

.  These points were 

located on the west side of the field and were all under the 60% PET management.  The 

large under predictions for these points could indicate that some factor other than soil 

water is having more influence on yield or that estimates of initial conditions for these 

points were in error.  Measured versus optimized and deterministic predicted yields are 

shown in figure 4-6.  Optimization improved the yield predictions for 32 of the 33 

points, with the remaining yield prediction not changing.  Table 4-16 shows the variation 

in available water capacity across the Helms Farm field before and after simulated 

annealing was used to optimize inputs for the model.  The range of AWC across the field 

more than doubled going from 1.97 cm to 4.3 cm with the use of the annealing 

optimization routine. 

 Variables that affected how much storage space was available for soil water and how 

fast soil water moved through a soil profile were adjusted with the annealing algorithm.  

Tests of the SA control algorithm parameters, which input parameters to adjust, and use 

of yield or water content based objective function were made.  The number of cycles 

control parameter had the largest effect on algorithm results since model inputs selected 

with this control parameter showed the most variation.  SA control parameters used in 

the input parameter and objective function tests and the whole field optimization were 

number of cycles = 42, initial step = 0.02, error tolerance for termination = 10, and 

maximum number of function evaluations = 6050.  These parameters could be used to 

apply the SA algorithm and Cotton2k to the calibration of soil water parameters for other 

fields.  Using the SA algorithm with other crop models, input parameters, and objective  
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Figure 4-6.  Predicted versus measured cotton yield for Helms Farm with soil 

texture class and simulated annealing optimized soil moisture release curve 

parameters. 

 

 

 

Table 4-16.  Available water capacity variation across Helms Farm between soil 

textural class and simulated annealing optimized soil inputs in top 200 cm of soil. 

 Available Water Capacities  

Model input basis 

Average 

(cm) 

Maximum 

(cm) 

Minimum 

(cm) 

Standard 

deviation (cm) 

Soil textural class 19.55 20.24 18.27 0.38 

Simulated annealing 

optimized 19.64 21.86 17.52 1.00 
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functions would require further testing of control parameters, however. 

  Comparisons of combinations of input parameters and objective functions showed 

that the algorithm could adjust predicted yields very close to measured yields with one 

year of yield data.  Yield predictions with the two year yield objective functions were 

not as good as for the single yield objective function, possibly due to the quality of the 

yield data used for the second year of optimization.  Differences occurred in yield 

predictions between the yield and water content-based objective functions.  The single 

year yield objective function with six input parameters adjusted was selected for use in 

optimizing all points in the Helms Farm field based on its performance in the tests and  

the quality of data available for further testing.  Good results were obtained when 

applying the algorithm across the field with the exception of three locations which 

indicates that the SA optimization algorithm has proved to be a useful tool. 

 

CONCLUSIONS 

 

 The combination of simulated annealing with the Cotton2k crop simulation model 

showed potential for spatial calibration of model input parameters based on its ability to 

improve yield predictions when used with a single year of yield data.  Limitations to the 

use of the algorithm such as the amount of time to run the algorithm were evidenced, 

however.  The computing time problem could be alleviated over time as computing 

speeds increase or through the use of an alternative optimization algorithm.  The tests 

indicate that multiple unique input data sets can be obtained with the algorithm for a 

single year of data.  This result is more likely from the relationships in the cropping 
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system being modeled than failure of the optimization algorithm.  Differences in input 

parameter sets and yield predictions between the yield and water content based objective 

functions indicate the need for different ways of using data sets for setting up simulated 

annealing runs and determining the objective functions in the runs. 
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CHAPTER V 
 

SITE-SPECIFIC IRRIGATION ANALYSIS 
 
INTRODUCTION 
 
 Water levels in the Ogallala aquifer continue decreasing each year.  Irrigated 

agriculture uses a large portion of this water.  For agriculture to continue in the areas 

above the aquifer, techniques for reducing water use are needed. Site-specific irrigation 

represents a technique to potentially reduce inefficiencies in water use in irrigation 

applications.  Improved irrigation water use efficiencies could result in lower quantities 

of water needed to grow crops or improved profit from crop production.  For site-

specific irrigation to be implemented, producers will want to know if it is a profitable 

practice for their situation and how different portions of their fields should be managed.   

 A potential method to help producers answer these questions is to simulate the effect 

of potential management scenarios on yields and thus profit for their farms.  Crop 

simulation models would be more timely and cost effective for this purpose than 

conducting on-farm tests of the producer’s desired management strategies.  Additionally, 

the producer could test the effects of various weather scenarios on their potential 

management strategies. 

 Previous studies of variable rate management had looked at better matching of 

optimum application rates to specific points in the fields.  These studies assumed that a 

point maximizing yield on an irrigation response curve could be reached.  In water 

limited areas of the world, such as the High Plains of Texas, reaching an optimal point 



  103 

on an irrigation response curve is often not possible; therefore, deficit irrigation practices 

should be considered.   

 The objective of this study was to evaluate the economic and water use effects of a 

site-specific irrigation scenario in the Texas High Plains growing environment.  This 

analysis was made using a cotton simulation model across multiple years of historic 

weather data.  

 

BACKGROUND 
 
Site-specific irrigation 

 Most research on site-specific irrigation has been focused on designing and 

implementing irrigation systems capable of this type of irrigation application.  Systems 

have been developed at sites at Colorado (Fraisse, et al., 1992), Washington State (Evans 

et al., 1996), Idaho (King et al., 1999), South Carolina (Camp and Sadler, 1998), 

Georgia (Perry et al., 2002) and Texas (Bordovsky and Lascano, 2003).  These systems 

have fallen into categories of multiple manifolds (Idaho, South Carolina, and Texas) or 

on/off cycling of sprinkler heads (Idaho, Georgia, Washington).  One company is 

offering a site-specific retrofit for center pivots based on the design used in Georgia.  

While hardware for site-specific systems has been developed, control strategies and 

studies of economic feasibility are needed.  

  In tests of site-specific management at the existing sites, management zones were 

created from user knowledge, soil properties, topography, and soil moisture sensing.  

Reeder (2002) controlled a site-specific system with in-season soil moisture sensing that 
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through a feedback loop allowed soil moisture levels to be controlled within specified 

limits.  Determination of irrigation strategies for use with site-specific irrigation was 

made based on maximized long term gross margins in a crop modeling study by 

Nijbroek et al. (2003).  This study found that for a soybean crop in Georgia, site-specific 

irrigation was more profitable than other scheduling options, but the difference between 

site-specific irrigation and other options was very small.  Feinerman and Voet (2000) 

examined the effects of management unit size on the water usage for site-specific 

irrigation and found that decreasing management unit size did not decrease the amount 

of water usage. 

Deficit Irrigation 

 Irrigation scheduling under limited water availability is more complex than keeping 

the soil profile filled with water.  Different water application levels will affect crop 

development differently depending on the crop growth stage (Doorenbos and Pruitt, 

1977).  The order for cotton stages most affected by water deficits are:   flowering and 

boll formation > early stages of growth > after boll formation.  Scheduling of irrigations 

under deficit conditions has been simulated using dynamic programming techniques 

(Epperson et al., 1993, Rao et al., 1988) and with a crop growth model with long term 

historic weather (Gowing and Ejieji 2001).  Crop growth models can be important tools 

in deficit irrigation studies due to their ability to integrate the stress effects of varying 

timings and quantities of irrigations on final yield predictions.  In addition to considering 

when and what quantity of water should be applied, producers may consider leaving 
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portions of fields fallow or planting fields in skip-row patterns to take better advantage 

of available soil moisture (Heneggeler, 1998). 

Crop Models 

 Benefits of implementing site-specific management will vary on a field by field basis 

(Lowenber-Deboer and Swinton, 1997).  Use of a crop model to analyze the effects of 

site-specific management would be more timely and efficient than conducting field 

experiments of different management options.  Crop models have been used in a number 

of ways in relation to analyzing irrigation scheduling and site-specific management.  

Studies have been made with a number of different crops, uses of weather information, 

and management objectives.  Net profit, water use, and yield were analyzed with long 

term weather records and for in-season decisions with the SOYGRO crop model by 

Swaney et al. (1983).  The SORGF sorghum simulation model was tested with a cost 

risk analysis procedure for determining best irrigation strategy by Rogers and Elliott 

(1989). The effect of site-specific irrigation management on yield, drainage, and profit 

was tested with the CROPGRO-Soybean for a field in the Georgia Coastal Plain by 

Nijbroek et al. (2003).  Strategies were tested across 25 years of historic weather.  The 

strategies tested included ones that produced the highest yield for the entire field, for 

field areas that showed stress first, and for the largest field area possible.   

 Crop models have also been used for determining management strategies for inputs 

other than water.  Braga and Jones (1999) used the CERES-Maize model, 35 years of 

historic weather and a simulated annealing optimization algorithm to select the optimal 

nitrogen rate for a Michigan corn crop.  This same model was also tested with site-
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specific management of nitrogen for fields in Iowa by Paz et al. (1999).  In this test the 

simulated annealing algorithm was used to calibrate soil parameters at individual points 

in a field.  The calibrated model at each point was then run with 22 years of historic 

weather data to generate nitrogen rate-net return curves to use for determining the best 

nitrogen rate for each point. 

 Management of site-specific irrigation in a water-limited area will require the ability 

to understand the effect of different levels and timing of water stress on crop yield.  

Techniques noted earlier for delineating management zones, such as soil properties and 

real-time monitoring fail to examine the interactions between water stress and end-of-

season yield. Using crop simulation models for examining irrigation scheduling would 

allow producers to examine the effect of different water stresses on crop yield.  The 

resulting differences in crop yield between different management strategies could be 

used in an economic analysis to determine the profitability of each strategy. 

 

METHODOLOGY 

Crop Model  

 The crop simulation model used in this study was the process-oriented Cotton2k 

model (Marani, 2004).  Cotton2k was selected over GOSSYM (Baker et al., 1983) and 

COTONS (Jallas et al., 1999) based on tests with data from the High Plains region in the 

2001 growing season.  Prediction of cumulative ET and soil water content profiles were 

examined for four points at the Texas A&M Halfway Agricultural Experiment Station.  

The points tested represented different areas of field 5D at the Helms Farm site and three 
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separate water application levels.  For three of the four points tested, Cotton2k had the 

best predictions of cumulative ET.  For soil water profile predictions at 30-cm. depth 

increments, Cotton2k followed soil water profile trends more consistently than the other 

two models.  Predictions of yield for different water application levels were examined 

for the 2001 Halfway experiments and for experiments in 1997 and 1998 in Lubbock 

county.  In these tests, GOSSYM vastly under-predicted yield at all water levels, 

COTONS under-predicted yields at lower water levels, and Cotton2k predicted yields 

consistently close to measured yields.  

 This model was created with modifications to the GOSSYM crop model for the 

semi-arid climate of California (Marani et al., 1993a, 1993b, 1993c).  The model 

determines plant water usage for a non-water stressed plant using hourly 

evapotranspiration equations.  Actual water use is determined as a percentage of the 

potential water use based on the leaf water pressure potential.  The leaf water pressure 

potential is related to the soil water pressure potential.  The soil profile is split into a 40 

cell deep by 20 cell wide grid.  Water movement is by mass balance immediately 

following rain and irrigation events and by the difference in soil water potential 

gradients between cells afterwards.  In addition to reductions in the actual growth rate 

from water stress, deficiencies in nitrogen can reduce plant growth. 

Crop Model Inputs – Weather and Management 

  The site used as the example for this analysis was the Helms Farm site at the 

Halfway Texas Agricultural Experiment Station.  The Helms Farm site is a 53.85 ha area 

under a LEPA center pivot system.  The analysis focused on a 1/6 portion of the field 
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that was designated as section 5D. The center of the irrigation system is located at 34° 

9’6”N, 101°56’52”W.  The layout of the field along with sampling sites is shown in 

figure 5-1.  Management parameters for this analysis were typical for the High Plains 

environment and were based on averages of actual management practices used in the 

2001, 2002, and 2003 growing seasons at Helms Farm.  Under this management the crop 

was planted on May 16 on a 76.2 cm spacing and received 126 kg of nitrogen during the 

growing season.  A summary of these parameters is shown in table 5-1.  Weather data 

for the 1997-2000 and 2002 growing seasons were obtained from a Lubbock area 

weather station (South Plains Evapotranspiration Network, 2004).  Weather data from 

the 2001 growing season was not used for variable rate irrigation tests because it was 

used for selection of site-specific soil parameters.  A summary of the average 

temperatures and rainfall from each year is shown in table 5-2.  On average the weather 

was 1.2° Celsius above normal for maximum daily temperature and 8.3 cm below 

average in rainfall over these years.  Much of the above average temperature was driven 

by temperatures in one year where the temperature was over 3° Celsius above average.  

The below average rainfall for the entire simulation period was more consistent with 

four of the five years being 7 cm or more below average. 

 
 

Table 5-1. Model management input parameters for all years for 

site-specific irrigation study for Helms Farm field 5D. 

Simulation start date May 9 
Emergence date May 16 
Simulation end date Oct. 6 
Row spacing 76.2 cm 
Plants per meter 10.5 
Fertilizer quantity 126.6 kg N ha-1 
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Table 5-2. Average weather conditions during simulation periods – Halfway 

Experiment Station 1997- 2000 and 2002. 

Year 

Average 
Daily 

Maximum 
Temperature 

Temperature – 
Departure 

from Average 
Total 

Rainfall 

Rainfall – 
Departure 

from 
Average 

 (°C) (°C) (cm) (cm) 

1997 30.0 -0.4 24.0 -7.4 
1998 33.6 3.2 14.1 -17.3 
1999 30.8 0.4 37.7 6.3 
2000 32.3 1.9 21.0 -10.4 
2002 31.1 0.7 18.8 -12.6 

Historic 
average * 30.4  31.4 

 

∗ Historic average taken from May 1 – October 15 

 
 
 
Crop Model Inputs – Soils 

 

 The soil survey map unit for this site is a Pullman sandy clay loam (USDA-SCS, 

1974).   Percent sand and percent clay was obtained through sampling for 33 points in 

the Helms Farm field 5-D (Robert Lascano, personal communication).  The points where 

the sampling occurred are shown in figure 5-1.  The soil inputs for the simulations were 

based on a combination of sampling for percent sand and percent clay, soil parameters 

obtained with the Soil Water Characteristic calculator (Saxton et al., 1986), and site-

specifically optimized soil residual and saturated water content as shown in table 5-3.   

The sand and clay percentages for the top 20-cm of the soil profile are in table 5-4.  The 

soil profile for the model input consisted of four 20 cm layers plus a fifth 120-cm layer.  

The four 20-cm layers were chosen to reflect the depths at which soil texture information 

was obtained.  The remainder of the soil profile was completed with information from 

the soil survey for this mapping unit.  
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Figure 5-1.  Sampling locations in field 5D at Helms Farm. 

 

 

 

Table 5-3. Cotton2k model soil input sources for site-specific irrigation simulations. 

Input Source 

Percent sand Soil sampling 
Percent clay Soil sampling 
Bulk density Soil Water Characteristic program, Saxton et al. (1986) 
Volumetric water content at 
air dry 

Calculated from Van Genuchten equation 

Saturated volumetric water 
content 

From table 3 in van Genuchten et al. (1991) by soil 
texture 

Alpha coefficient for the 
Van Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 
texture 

Beta coefficient for the Van 
Genuchten equation 

From table 3 in van Genuchten et al. (1991) by soil 
texture 

Hydraulic conductivity at 
saturation 

From table 3 in van Genuchten et al. (1991) by soil 
texture 

Hydraulic conductivity at 
field capacity    

Soil Water Characteristic program, Saxton et al. (1986) 
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Table 5-4. Soil properties for Helms Farm sampling points – percent sand and 

percent clay in top 20 cm. and available water capacity in top 200 cm. 

Location Soil Texture % Sand % Clay 

Available 
Water 

Capacity 

6201 Sandy Clay Loam 50 34 19.69 
6202 Sandy Clay Loam 49 36 20.37 
6203 Sandy Clay Loam 49 34 20.04 
6204 Sandy Clay Loam 49 34 20.09 
6205 Clay Loam 41 38 18.89 
6206 Clay Loam 37 38 17.52 
6207 Clay 35 41 19.14 
6208 Clay 34 43 20.60 
6209 Clay 32 43 18.39 
7201 Sandy Clay 48 36 21.37 
7202 Sandy Clay Loam 51 34 19.08 
7203 Sandy Clay 47 36 19.42 
7204 Clay 41 40 19.64 
7205 Clay 42 40 20.55 
7206 Clay Loam 43 36 18.03 
7207 Clay Loam 44 37 21.01 
7208 Sandy Clay 47 35 18.89 
7209 Sandy Clay Loam 51 34 20.73 
7210 Clay 37 41 21.86 
7211 Clay 39 41 19.79 
8201 Sandy Clay Loam 49 31 19.95 
8202 Sandy Clay Loam 55 31 20.16 
8203 Sandy Clay Loam 51 33 18.69 
8204 Sandy Clay Loam 48 31 19.08 
8205 Sandy Clay 45 35 18.30 
8206 Clay Loam 36 37 19.22 
8207 Clay Loam 35 39 18.54 
8208 Clay 34 41 19.73 
8209 Clay 28 41 19.54 
8210 Clay 27 47 20.25 
8211 Clay 28 45 20.32 
8212 Clay Loam 37 39 18.66 
8213 Clay Loam 40 36 20.72 
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 Residual and saturated water content inputs for each point were obtained by 

optimizing model yield against measured yield for the 2001 growing season.  

Optimization was made using a simulated annealing algorithm.  The optimization was 

performed for both parameters in the top three layers of the model input soil profile. 

Available water capacities determined from the optimized residual and saturated water 

contents ranged from 17.52 to 21.86 cm (tables 5-4 and 5-5).  The available water 

capacity for an average Pullman soil based on soil survey information is 17.85 cm. 

 Initial moisture conditions are entered as a percent of field capacity in Cotton2k. The 

initial soil moisture conditions (table 5-6) used in this study were based on averages of 

the first neutron probe soil moisture sampling in the 2001 and 2003 growing seasons. 

Basing initial soil moisture values on measured data from a field scale was to ensure that 

these values reflect what a typical producer would experience in the High Plains region.  

Values used for initial conditions for these simulations were 60 percent of field capacity 

for the top 15 cm, 85 percent for the next 15 cm, and 80 percent for the remaining 

depths.  This set of initial conditions represented 60 percent of the available water 

capacity for a Pullman clay loam soil.  Initial values used for ammonium, nitrate and 

organic matter (table 5-6) represented typical starting conditions based on sample model 

files and were not adjusted for High Plains soils. 
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Table 5-5.  Available water content at Helms Farm between simulated annealing 

optimized soil inputs and Pullman soil. 

Model input basis 
Average 

(cm) 
Maximum 

(cm) 
Minimum 

(cm) 

Standard 
deviation 

(cm) 

Pullman soil 17.85    
Simulated annealing 

optimized 19.64 21.86 17.52 1.00 

 
 
 
Table 5-6. Initial Cotton2k soil inputs for site-specific irrigation simulations. 

Bottom Layer 
Depth 

NH4  

(kg ha-1) 
NO3 

 (kg ha-1) 
Organic Matter, 

 % by weight 
Water Content, 

 %  of  field capacity 

15 2.69 26.904 0.74 60 
30 1.23 13.23 0.72 80 
45 1.00 10.09 0.67 85 
60 0.79 7.40 0.43 85 
75 0.79 7.40 0.37 85 
90 0.79 7.40 0.30 85 

105 4.93 4.93 0.00 85 
120 4.93 4.93 0.00 85 
135 4.93 4.93 0.00 85 
150 4.93 4.93 0.00 85 
165 4.93 4.93 0.00 85 
180 4.93 4.93 0.00 85 

 
 
 
Irrigation Strategies 

 Two irrigation strategies were examined for each growing season.  The first strategy 

was a weekly interval strategy with one irrigation a week after planting and then 

irrigations beginning in the last week of June and ending in the last week of August for a 

total of 11 irrigation events.  Water levels were varied from 6.35 mm to 31.75 mm, in 

6.35-mm increments, with all irrigations occurring on the same dates.  This strategy was 

chosen because in a semi-arid area such as the High Plains producers will turn on their 

pivots and, if water is available, allow the pivots to cycle across the field, passing the 
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same point on a consistent basis.  Irrigations in this strategy were not altered by rainfall 

events. 

 The second irrigation strategy used a soil moisture depletion threshold to determine 

the timing of each irrigation event using a soil water balance.  Timings were based on 

30% soil moisture depletion with 25.4 mm of replenishment for each irrigation event.  

Rainfall affected irrigation timing in this strategy by increasing the amount of water in 

the soil profile, thus potentially delaying irrigation events depending on the rainfall 

quantity.  Application rates were examined in 6.35-mm increments from 6.35 to 31.75 

mm with irrigation events occurring on the same day as the 25.4 mm irrigation schedule.  

This strategy is typical of soil moisture-based irrigation scheduling to minimize stress 

effects on yield.  Crop evapotranspiration quantities for each year were determined from 

reference evapotranspiration quantities calculated from the Van Bavel (1966) 

evapotranspiration equation for reference evapotranspiration and cotton crop coefficients 

based on Allen et al. (1998). The reference evapotranspiration is available at the South 

Plains Evapotranspiration Network (2004).  Irrigation timings were determined using the 

25.4 mm irrigation quantity.  This irrigation strategy was affected by climatic conditions 

in each year, therefore different numbers of irrigation events occurred in each year with 

different intervals between each event.  The number of irrigation events varied from 14 

in 1999 and 2000 to 20 in 1998 (table 5-7).  
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Table 5-7. Number of irrigation events for weekly and soil moisture depletion 

irrigation strategies. 

Year Weekly Interval Soil Moisture Depletion 

1997 11 16 
1998 11 20 
1999 11 14 
2000 11 14 
2002 11 19 

 
 
 
 The results from the two irrigation strategies will be different due to differences in 

the number of irrigations and the timing of each individual irrigation event.  Because the 

soil moisture depletion strategy applied more water more frequently, it therefore should 

up to a point produce higher yields than the weekly irrigation strategy.  More water 

allows for production of more plant mass, while increased frequency decreases periods 

of stress that can reduce yield potential. 

Uniform and Site-Specific Scheduling 

 The two irrigation schedules, average management parameters, and site-specific soil 

information were used as inputs to the Cotton2k crop model.  Yields were simulated for 

combinations of each point, five water levels in 6.35 mm increments, and five years of 

historic weather information.  Estimates of field level yield responses were obtained by 

averaging yield responses for individual points in the field together.  In the analysis, 

uniform management was when each point in the field had the same quantity of water 

applied to it.  

 Site-specific irrigation management was modeled two ways.  The first type of site-

specific management was for the case where the entire field was in production and the 

irrigations could be adjusted so that higher yielding portions of the field received more 
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water.  In this hypothetical case, the split between higher and lower yielding portions of 

the field was made at half the field.  The procedure for determining the field-level 

response to this site-specific strategy for each water application level was:   

1) Generate yield for each point and water application level with Cotton2k  

2) Compute the difference in yield between one irrigation level above and one 

irrigation level below the water level being examined 

3) Rank the yield differences from highest to lowest.  

4) Compute the average field yield with the points with the highest yield differences 

receiving the higher water level and the points with the lowest yield differences 

receiving the lower water level.    

Analysis of site-specific irrigation was performed for water application levels of 12.7, 

19.05, and 25.4 mm since yield responses at water levels higher and lower than each of 

these levels had been created in the uniform irrigation simulations. 

 The second form of site-specific management was for the case where a portion of the 

field was a non-yielding playa lake.  In this case, 10% of the field was considered to be 

in non-yielding areas.  Field averages of yield for this scenario did not include yield 

responses for these areas.  In this scenario, it was assumed that no water applications 

occurred in the playa lake areas, allowing for water savings or yield gains if the water 

was redistributed.  In the water redistribution case, the 10% of the points which had the 

highest potential yield increase with a 6.35 mm addition of water would receive the 

additional water applications.  The 6.35 mm water depth in this analysis was chosen to 

match irrigation depth increments used in earlier model simulations. 
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Economic Analysis  

 Simulation results were analyzed with model output of crop yield, water usage, and 

potential net return on a field basis.  Net return was calculated with the following 

equation (adapted from Braga et al., 1999):   

  NR = Y*Cp – Y*Hc- Vc-Fc-SSC  (5-1) 

where 
NR = net return ($ ha-1) 
Y  = crop yield in (kg ha-1) 
 Cp = cotton price in ($ kg-1) 
 Hc   = the harvest cost ($ kg-1) 
 Vc   = other variable costs ($ ha-1)  
 Fc  = the fixed cost ($ ha-1) and  
SSC  = additional cost for site-specific management ($ ha-1). 
 

 Values used for this equation were:   Cp = 1.10 ($ kg-1), Hc = $0.10 ($ kg-1) (Cotton 

Economics Research Institute, 2005), Fc = 416.07 ($ ha-1) (Texas Cooperative Extension 

2000), Vc = 504 ($ ha-1) (Texas Cooperative Extension 2000), and SSC = 37.05 ($ ha-1).  

Included in the variable costs are fuel costs for irrigation system operation.  The site 

specific cost was based on $20,000 for a site-specific system over the cost of the base 

center pivot system.  It was assumed that the cost would be spread over the entire 53.85 

ha area of the field and over a ten year planning period.  Interest was not factored into 

this analysis. 

 
RESULTS AND ANALYSIS 
 
 Yield response curves across the five growing seasons are shown in figures 5-2 and 

5-3.  Yields vary from 600 kg ha-1 to about 1700 kg ha-1 for the 30 percent moisture 

depletion schedule and from 300 to 1600 kg ha-1 for the weekly interval schedule.   The  
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Figure 5-2. Irrigation – average yield response curves for all data points in 1997, 

1998, 1999, 2000, and 2002 growing seasons.  A soil moisture depletion irrigation 

schedule was used to generate the curves. 
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Figure 5-3. Irrigation –  average yield response curves for all data points in 1997, 

1998, 1999, 2000, and 2002 growing seasons.  An irrigation schedule with weekly 

irrigation applications were used to generate the curves. 
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difference in peak yield between the two strategies can be attributed to the larger 

quantity of water applied in the soil moisture depletion strategy.  The soil moisture 

depletion strategy tended to have high yields for the initial point on the response curve 

and flatter response curves than the constant interval strategy.  The differences between 

the curves for the two strategies indicate the effect that irrigation timing will have on 

yield responses.  For seasonal irrigation levels less than 20 cm, the soil moisture 

depletion strategy consistently produced higher yields than the weekly irrigation interval 

strategy.  Since the soil moisture depletion strategy had more frequent irrigations than 

the weekly strategy, the results indicate that especially when water is limited more 

frequent irrigations can provide higher yields.   

 The response curves for four individual points and the field average yield response 

curve for both irrigation schedules for the 1997 growing season are shown in figures 5-4 

and 5-5.  Individual points have response curves that are nearly parallel to the field 

average response curves.  One exception is point 7210 for the soil moisture depletion 

schedule between the 6.35 mm and 12.70 mm irrigation rates, where the point response 

curve decreases while the field average response curve increases.   One standard 

deviation error bars are also shown on each of these graphs.  For the soil moisture 

depletion schedule the error bars decreased as the amount of irrigation increased.  Error 

bars for the weekly irrigation schedule were similar throughout the range of irrigations.  

The smaller error bar widths at the higher irrigation quantities for the soil moisture 

depletion schedule, could come from the reduction in water stress for more points at this 

water level.  Not all point irrigation response curves fell within the one standard 
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Figure 5-4. Irrigation – yield response curves for points 6206, 7210, 8203, 8210, and 

field average for the 1997 growing season.  A soil moisture depletion irrigation 

schedule was used to generate the curves. 
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Figure 5-5. Irrigation – yield response curves for points 6206, 7210, 8203, 8210, and 

field average for the 1997 growing season.  An irrigation schedule with weekly 

irrigation applications were used to generate the curves. 
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deviation error bars, as evidenced by the response curves for points 6206 and 7210 being 

outside the error bars for the soil moisture depletion graph.  One anomaly in model 

predictions noted on figure 5-5 is that yields decrease when going from the 6.35 mm 

irrigation depth to the 12.70 mm irrigation depth for point 6206.  With the additional 

water, plant height increased nearly 9 cm and LAI increased by over 0.9.  At the higher 

water application depth, the number of open bolls decreased by seven and the amount of 

abscised fruit decreased by 40 kg ha-1.  These observations indicate that stress effects on 

boll growth and abscission likely caused the lower yield for the higher water depth.   

 An illustration of the point ranking and water allocation procedure for the weekly 

irrigation strategy in the 1997 growing season is shown in table 5-8.  Soil differences are 

the cause of the difference in yield response for each point in table 5-8 since soil inputs 

were the only inputs that varied for each point.   

 Another way to perform site-specific scheduling across fields would be to average 

the rankings of yield responses across years.  An example of average rankings obtained 

with this method appears in table 5-9. Allocation of water with rankings based on 

multiple years of response curve data would be made as in the single year example 

shown in table 5-8 with higher ranked points receiving water first.  The soil textures for 

each 20-centimeter depth for each point are given in table 5-10.  Points that had higher 

yield responses at this irrigation level were more likely to have a clay soil texture in the 

20-80 cm depth range.  Points with the lowest yield responses tended to have a sandy 

clay loam texture in the 40-80 cm depths. 
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Table 5-8.  Ranking of yield differences for different application rates in 1997 for 

selection of points to apply higher irrigation quantities – weekly interval irrigation 

strategy. 

Point Number 

6.35 mm 
per 

Irrigation 
Yield 

12.70 
mm per 

Irrigation 
Yield 

19.05 
mm per 

Irrigation 
Yield 

Yield 
Difference 
6.35 mm to 
19.05 mm 

Yield 
Difference 
6.25 mm to 
19.05 mm 

Rank 

 (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1)  

8206 378.7 760 1067.4 688.7 1 

6208 423.1 497.8 1010.4 587.3 2 

8210 409.7 480 980.2 570.5 3 

6203 281.3 419.4 846.2 564.9 4 

8208 399.3 484.4 917.4 518.1 5 

8205 293.3 558.6 810.2 516.9 6 

7206 240.5 448.3 755 514.5 7 

7211 313.2 443 824.3 511.1 8 

6205 267.6 444.4 777.6 510 9 

7202 295.7 420.3 802.1 506.4 10 

6207 350 463.8 850.3 500.3 11 

8209 373.5 462.3 873 499.5 12 

8211 394.7 372.5 852.6 457.9 13 

8203 415.5 659.5 867.1 451.6 14 

7209 550.6 624.4 974.7 424.1 15 

8202 394.3 401.3 785.5 391.2 16 

6202 471.8 419.3 856.4 384.6 17 

8201 389.6 401.5 758.5 368.9 18 

6209 515.8 653.2 863.9 348.1 19 

7203 341 301.3 659.7 318.7 20 

8207 208.4 148.7 520.7 312.3 21 

8212 280 289.6 578.5 298.5 22 

6201 473.3 464.4 753.5 280.2 23 

7207 392.7 334.6 664.7 272 24 

7208 329 250.3 567.2 238.2 25 

8204 374.8 337 607.2 232.4 26 

7205 415.6 323.9 618.7 203.1 27 

7204 370.1 313.1 568.3 198.2 28 

7201 494.2 433.5 677.1 182.9 29 

8213 506.6 365.6 681.3 174.7 30 

6204 542.7 439.7 699.9 157.2 31 

7210 546.8 418.7 685.6 138.8 32 

6206 634.2 636.4 739.3 105.1 33 
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Table 5-9.  Point yield potential rankings averaged across five years for site-specific 

management with 12.70 mm water application level. 

Point 
Number 1997 1998 1999 2000 2002 

Average 
5 Year 

Ranking 

Range in 
Rankings 
Across 
Years 

6201 23 1 17 33 24 23 32 
6202 17 2 12 18 19 11 17 
6203 4 15 4 3 12 2 12 
6204 31 3 18 32 27 26 29 
6205 9 19 20 23 10 18 14 
6206 33 9 32 20 3 22 30 
6207 11 17 15 25 14 20 14 
6208 2 27 2 4 13 4 25 
6209 19 10 23 28 2 20 26 
7201 29 30 16 17 25 29 14 
7202 10 11 21 14 18 16 11 
7203 20 14 13 11 15 14 9 
7204 28 32 29 26 32 32 6 
7205 27 33 31 24 33 33 9 
7206 7 22 27 2 5 7 25 
7207 24 31 25 19 28 30 12 
7208 25 23 22 13 21 24 12 
7209 15 6 8 29 16 16 23 
7210 32 7 33 31 30 31 26 
7211 8 18 14 21 7 11 14 
8201 18 5 11 9 23 9 18 
8202 16 13 10 10 22 12 12 
8203 14 12 26 22 4 17 22 
8204 26 8 24 27 26 26 19 
8205 6 4 30 15 6 6 26 
8206 1 29 1 1 1 1 28 
8207 21 28 27 8 29 27 21 
8208 5 26 6 12 8 5 21 
8209 12 24 9 16 11 13 15 
8210 3 21 3 5 9 3 18 
8211 13 25 5 6 17 9 20 
8212 22 20 19 7 20 21 15 
8213 30 16 7 30 31 28 24 
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Table 5-10.  Soil textures by depth for points ranked by yield differences between 

6.35 mm and 19.05 mm water application rates.  Rankings are based on yield 

responses averaged across five years of yield data. 

Point 
Number 

Yield 
Ranking 

0-20 cm 
depth 

20-40 cm 
depth 

40-60 cm 
depth 

60-80 cm 
depth 

8206 1 CL C C C 

6203 2 SCL SC SCL SCL 

8210 3 C C C C 

6208 4 C C C C 

8208 5 C C C C 

8205 6 SC SCL C C 

7206 7 CL SC C C 

8201 8 SCL C C C 

8211 9 C SCL C C 

6202 10 SCL CL SC SCL 

7211 11 C C SC SCL 

8202 12 SCL C C C 

8209 13 C C C C 

7203 14 SC C CL SCL 

7202 15 SCL CL SC SC 

7209 16 SCL CL SCL SCL 

8203 17 SCL CL C CL 

6205 18 CL C SC SCL 

6207 19 C C C SC 

6209 20 C C C C 

8212 21 CL C C SC 

6206 22 CL C C SC 

6201 23 SCL SCL SCL SCL 

7208 24 SC SC SCL SCL 

6204 25 SCL SC SCL SC 

8204 26 SCL C CL SC 

8207 27 CL C C C 

8213 28 CL CL SC SCL 

7201 29 SC CL CL SC 

7207 30 CL C C C 

7210 31 C CL SCL SCL 

7205 32 C CL SC CL 

7204 33 C CL C SC 

               C = Clay; SCL = Sandy Clay Loam; CL = Clay Loam; SC = Sandy Clay 
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 Differences in yield and profit between uniform and site-specific management with 

water allocations based on the five year rankings in table 5-10 are shown in tables 5-11 

and 5-12.  For the soil moisture depletion strategy, average yield and profit across all 

five years decreased for site-specific management for all three water application levels.  

With the weekly irrigation strategy average yield and profit increased with site-specific 

management for the 12.70- mm and 19.05-mm water application levels.  This result is 

specific to the characteristics found in this field and would potentially vary for other 

fields that are examined.  Greater variability in soil properties could represent greater 

potential for improving yields with site-specific irrigation. 

 The effects of reallocating irrigation water from non-producing areas such as playa 

lakes on yield and profit are shown for the two strategies in tables 5-13 and 5-14.  The 

point rankings for these tables were also based on average yield responses across five 

years of weather data.  For the weekly interval strategy and 10% of the field not in 

production, field average yields would have improved by at least 20 kg ha-1 if a site-

specific irrigation system were used to reallocate water to different portions of the field.  

The yield increases would have increased profit per hectare slightly.   With the soil 

moisture depletion strategy and 10% of the field not in production, reallocating 

irrigations would have increased yield by at least five kg ha-1 across all three water 

application levels examined.  This increase in yields would not have overcome the cost 

of implementing site-specific irrigation, however. 

 The amount of water that would be saved in the field if water from non-producing 

areas of the field was not reallocated is shown in table 5-15.  For 10% of the field not in  
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Table 5-11.  Yearly yield difference between uniform and site-specific irrigation management.  

 12.35 mm per irrigation 19.05 mm per irrigation 25.4 mm per irrigation 
Year Uniform SS Difference Uniform SS Difference Uniform SS Difference 

 (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) 

Soil Moisture Depletion Strategy       
1997 1295 1159 -136 1364 1396 32 1478 1435 -44 
1998 1370 1103 -267 1464 1530 66 1663 1591 -72 
1999 1371 1226 -145 1410 1419 9 1423 1394 -30 
2000 1431 1335 -96 1654 1596 -58 1703 1649 -54 
2002 1288 1172 -116 1385 1340 -44 1382 1397 15 

Average: 1351 1199 -152 1455 1456 1 1530 1493 -37 
Weekly Interval Strategy        

1997 439 633 195 773 902 130 1353 1134 -219 
1998 926 909 -17 1005 1180 175 1418 1299 -118 
1999 318 454 136 548 816 268 1275 993 -282 
2000 611 674 64 925 959 35 1300 1201 -98 
2002 139 368 229 537 665 128 1139 963 -176 

Average: 486 608 121 758 905 147 1297 1118 -179 
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Table 5-12.  Yearly profit difference between uniform and site-specific irrigation management.  

 12.35 mm per irrigation 19.05 mm per irrigation 25.4 mm per irrigation 
Year Uniform SS Difference Uniform SS Difference Uniform SS Difference 

 ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) 

Soil Moisture Depletion Strategy        
1997 375.44 201.84 -173.60 444.25 439.10 -5.14 558.90 478.06 -80.84 
1998 450.56 146.50 -304.06 544.57 573.31 28.74 743.65 634.06 -109.58 
1999 451.78 269.34 -182.43 490.75 462.74 -28.01 503.86 437.12 -66.73 
2000 511.06 378.21 -132.84 734.81 639.28 -95.53 783.76 692.36 -91.40 
2002 368.40 215.10 -153.30 465.04 383.55 -81.49 462.25 439.88 -22.37 

Average: 431.45 242.20 -189.25 535.88 499.60 -36.28 610.48 536.30 -74.18 
Weekly Interval Strategy        

1997 -481.67 -324.06 157.61 -147.43 -54.83 92.60 433.18 177.08 -256.10 
1998 6.19 -48.32 -54.51 85.58 223.64 138.07 497.95 342.66 -155.29 
1999 -602.23 -502.75 99.48 -372.07 -140.93 231.14 355.25 36.51 -318.74 
2000 -309.49 -282.86 26.63 4.64 2.44 -2.20 380.00 244.56 -135.44 
2002 -781.23 -588.96 192.27 -382.79 -291.88 90.91 219.39 6.18 -213.22 

Average: -433.69 -349.39 84.30 -162.41 -52.31 110.10 377.15 161.40 -215.76 
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Table 5-13.  Difference in yields for variable rate irrigation with 10% of field as non-producing area. 

 12.35 mm per irrigation 19.05 mm per irrigation 25.4 mm per irrigation 
Year Uniform SS Difference Uniform SS Difference Uniform SS Difference 

 (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) 

Soil Moisture Depletion Strategy       
1997 1178 1184 5 1239 1255 15 1343 1344 1 
1998 1249 1261 13 1333 1347 14 1512 1521 9 
1999 1253 1258 5 1284 1288 4 1295 1289 -5 
2000 1302 1328 26 1507 1518 11 1547 1541 -6 
2002 1172 1185 12 1261 1262 2 1261 1262 1 

Average: 1231 1243 12 1325 1334 9 1392 1391 0 
Weekly Interval Strategy        

1997 399 437 37 706 769 63 1227 1234 7 
1998 848 856 8 916 957 42 1290 1310 20 
1999 286 319 32 495 575 80 1158 1183 25 
2000 556 591 35 841 879 38 1183 1195 12 
2002 125 179 54 496 563 67 1039 1059 20 

Average: 443 476 33 691 749 58 1179 1196 17 
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Table 5-14.  Difference in profit for variable rate irrigation with 10% of field as non-producing area. 

 12.35 mm per irrigation 19.05 mm per irrigation 25.4 mm per irrigation 
Year Uniform SS Difference Uniform SS Difference Uniform SS Difference 

 ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) ($ ha-1) 

Soil Moisture Depletion Strategy       
1997 259 227 -32 320 298 -22 424 387 -37 
1998 329 305 -24 413 390 -23 593 564 -28 
1999 333 301 -32 364 331 -33 375 333 -42 
2000 382 371 -11 587 561 -26 627 584 -43 
2002 252 228 -25 341 305 -36 341 305 -36 

Average: 311 286 -25 405 377 -28 472 435 -37 
Weekly Interval Strategy        

1997 -521 -521 0 -214 -188 26 307 277 -30 
1998 -72 -101 -29 -4 0 4 370 353 -17 
1999 -634 -639 -5 -425 -382 43 239 226 -12 
2000 -364 -366 -2 -79 -78 1 263 239 -25 
2002 -795 -778 17 -424 -394 30 119 102 -17 

Average: -477 -481 -4 -229 -208 21 260 239 -20 
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Table 5-15.  Water savings if 10% of Helms Farm field 5D was not watered. 

 12.35 mm 
per irrigation 

19.05 mm 
per irrigation 

25.4 mm per 
irrigation 

 (ha-cm) (ha-cm) (ha-cm) 

Weekly Interval Strategy  
All Years 6.80 10.19 13.58 

Soil Moisture Depletion Strategy 
1997 9.88 14.82 19.76 
1998 12.35 18.53 24.70 
1999 8.65 12.97 17.29 
2000 8.65 12.97 17.29 
2002 11.73 17.59 23.47 

Average: 10.25 15.37 20.50 

 

 
 
production this would result in water savings of at least 6.80 hectare-centimeter with the 

weekly interval strategy and on 8.65 hectare-centimeter with the soil moisture depletion 

strategy. 

 The site-specific analysis used here may not exactly resemble the procedure 

producers would use in their fields.  Different levels of water applications could be 

tested along with strategies that adjust irrigation event timing.  Using historic weather as  

a crop model input allows for the analysis of long-term effects of a selected management 

strategy.  Producers could potentially use the results of the long term analysis as a guide 

for in-season management decisions.  Alternatively, they could create new response  

curves by coupling in-season weather with historic weather ranges for the remaining 

portion of the growing season. 
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CONCLUSIONS 
 
 Two situations for using site-specific irrigation were examined through the use of 

point specific irrigation yield response curves generated with a crop simulation model.  

In the first situation the entire field was in production and water was reallocated from 

lower to higher yielding areas of the field.  In the second situation, non-yielding field 

areas were considered and water either reallocated to high yielding field areas or saved.  

 This study illustrates the benefits of using a crop modeling approach for analyzing 

site-specific irrigation.  The model utilized incorporated soils, plant, and weather 

components in the analysis.  Each of these components affects the results of the yield 

responses from the system and therefore is important to include in the analysis.  The 

flexibility of this approach would allow it to be applied at other levels of spatial 

homogeneity or with other water application levels or timing strategies. 

 These tests showed that results from implementing site-specific irrigation varied on a 

year-by-year basis with the practice increasing profit in some years and being 

unprofitable in other years.  Comparison between the two strategies for this field 

indicated that for seasonal water application levels less than 20 cm irrigating more 

frequently than once per week at a lower application rate would be a better management 

practice than adopting point-based site-specific irrigation.  Adding site-specific irrigation 

equipment to center pivot systems does offer the potential for yield gains and/or water 

usage reductions when applied to control of irrigations on non-producing portions of 

fields. 
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CHAPTER VI 
 

CONCLUSIONS 
 
 Three crop simulation models, GOSSYM, COTONS, and Cotton 2k were tested for 

their ability to simulate water movement in the soil-plant-air continuum for the Texas 

High Plains environment.  Cotton2k predictions of ET were closest to measured ET for 

three of four points examined.  Cotton2k’s performance in this test was likely from the 

inclusion of dewpoint temperature in the ET calculations as compared to the use of daily 

minimum temperature by the other two models. Cotton2k performed much better than 

the other two models for predicting applied water-yield relations.  Its predictions were 

nearly identical to measured yields for plot level field experiments and much closer in 

magnitude than the other two models for field-scale experiments.  Cotton2k’s improved 

ability to predict yield was likely due to better description of water stress relations in 

model equations than the other two models.  Overall, Cotton2k was the most suitable 

model of the three for the Texas High Plains environment. 

 The simulated annealing optimization algorithm was tested with the Cotton2k model 

for its ability to calibrate the model for parameters related to available water capacity.  

The algorithm could determine optimum parameter sets for yield-based objective 

functions.  Consistent parameter sets were not obtained with different starting points, 

however.  This result is likely from different water holding capacities leading to the 

same yield.  Optimization results were better for one year rather than two years of yield 

data.  In this case the results may reflect the use of yields from management zones rather 

than from individual points.  Whole-field tests of the annealing optimization procedure 
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improved model predictions of yield for the majority of points evaluated.  When 

simulated annealing is applied with Cotton2k for spatial calibration up to two days was 

required to obtain a solution for a single location.  Increases in computer speed or 

alternative optimization algorithms will be needed to make this form of spatial 

calibration practical for producers. 

 The spatially calibrated model was used to assess the potential profit and water usage 

effects of implementing site-specific irrigation.  Simulations showed that site-specific 

irrigation could increase yields over uniform irrigation but the increases did not make 

site-specific irrigation more profitable than uniform irrigation.  Site-specific irrigations 

with the weekly strategy at irrigation rates of 19.05 mm and below were not profitable 

even though yields were increased.   The highest average profits of 610 $ ha-1 per year 

were obtained with a uniform spatial management strategy and a 25.4 mm irrigation rate.   

Site-specific irrigation was shown to increase yields if used to reallocate water from non-

producing field areas to the most productive points in the field.  The yield increase was 

not enough to make the weekly interval strategy profitable or to be more profitable than 

the uniform spatial management for the soil moisture depletion strategy.  Usage of crop 

model generated response curves for site-specific decision making could be used either 

for pre-season guidance for decision rules for where to apply irrigations or used with 

curves created with in-season weather data.  
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FUTURE RECOMMENDATIONS 

 The variety used for the model assessment tests of the Cotton2k model was selected 

by comparing data from field experiments with current varieties to model simulations 

with older variety information.  Field and laboratory experiments to determine current 

variety information for Cotton2k would be beneficial for making it more usable for 

current producers.  The use of simulated annealing with the Cotton2k model took nearly 

two days to complete optimization runs for a single field location.  This length of 

simulation is impractical for use in a typical producer situation.   Alternative methods of 

optimization that perform searches faster than simulated annealing, such as adaptive 

simulated annealing should be tested for use with optimization of soil parameters for 

Cotton2k.  Alternatively, the stopping criteria in the simulated annealing algorithm could 

be modified to avoid large amounts of computing time after an optimal parameter set is 

obtained. 

 Results of the site-specific irrigation tests are presented for only one portion of one 

field in the Texas High Plains region.  Other fields in the Texas High Plains that have 

wider variety in soil textures could be identified and tested for the outcomes of 

implementing site-specific irrigation on them using the procedure created in this study.  

The irrigation schedules used in the site-specific irrigation tests were developed separate 

from the Cotton2k model.  Application of an optimization technique to the management 

portion of inputs would allow for testing of a wider variety of management strategies 

with the model.  In order for Cotton2k to be more useful for producers for site-specific 

management, the model should be integrated with a geographic information system to 
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better store and manage the increased amounts of data required for site-specific 

management. 



   136 

REFERENCES 

Allen, R. G., L.S. Pereira, D. Raes, and M. Smith.  1998.  Crop evapotranspiration:  

guidelines for computer crop water requirements.  Irrigation and Drainage Paper 56. 

Rome, Italy:  Food and Agriculture Organization of the United Nations. 

 

Baker, D. N., J. R. Lambert, and J. M. McKinion.  1983.  GOSSYM: A simulator of 

cotton crop growth and yield.  South Carolina Agricultural Experiment Station 

Technical Bulletin 1089. Clemson, South Carolina: Clemson University, 

 

Barnes, E.M., P.J. Pinter, Jr., B.A. Kimball, G. W. Wall, R. L. LaMorte, D.J. Hunsaker, 

F. Adamsen, S. Leavitt, T. Thompson, and J. Mathius.  1997.  Modification of 

CERES-Wheat to accept leaf area index as an input variable.  ASAE Paper No. 

973016.  St. Joseph, Michigan:  ASAE. 

 

Basso, B., J.T. Ritchie, F.J. Pierce, R. P. Braga, and J.W. Jones. 2001.  Spatial validation 

of crop models for precision agriculture.  Agricultural Systems 68: 97-112. 

 

Bauer, M. G., J. G. Davis, K. A. Sudduth, and S. T. Drummond.  2000.  Agronomic and 

economic evaluation of variable-rate seeding on Missouri soils.  In Proc. of the Fifth 

International Conference on Precision Agriculture (cd-rom).  Madison, Wisconsin:  

SSA-CSSA-SSA 

 

Beckett, P. H. T. and R. Webster.  1971. Soil variability:  a review.  Soils and Fertilizers  

34(1): 1-15.  

 

Bhatti, A. U., D. J. Mulla, B. E. Frazier. 1991.  Estimation of soil properties and wheat 

yields on complex eroded hills using geostatistics and thematic mapper images.  

Remote Sensing of Environment  37: 181-191. 

 

Boote, K. J., J. W. Jones, and G. Hoogenboom.  1998.  Simulation of crop growth:  

CROPGRO model.  In Agricultural Systems Modeling and Simulation, 651-692.  R. 

M. Peart, and R. B. Curry, eds.  New York, New York: Marcel Dekker, Inc. 

 

Boote, K. J., J. W. Jones, and N. B. Pickering.  1996.  Potential uses and limitations of 

crop models.  Agronomy Journal 88: 704-716. 

 

Bordovosky, J. P. and R. J. Lascano.  2003.  Variable-rate irrigation using low energy 

precision application.  In Proc. of the 2003 Beltwide Cotton Conferences, 563-571  

D. Richter, ed. Memphis, Tennessee: Cotton, Inc. 

 

Braga, R. P. and J. W. Jones.  2004.  Using optimization to estimate soil inputs of crop 

models for use in site-specific management.  Transactions of the ASAE.  47(5):  

      1821-1831. 



   137 

 

 

 

Braga, R. P., J. W. Jones, and B. Basso.  1999.  Weather induced variability in site-

specific management profitability: a case study. In Proc. of the Fourth International 

Conference on Precision Agriculture, 1853-1863. P.C. Robert, R. H. Rust, and W. E. 

Larson, eds.  Madison, Wisconsin:  ASA-CSSA-SSSA. 

 

Calmon, M. A., J. W. Jones, D. Shinde, J. E. Specht.  1999.  Estimating parameters for 

soil water balance using adaptive simulated annealing.  Applied Engineering in 

Agriculture 15(6): 703-713. 

 

Cambardella, C. A., T. S. Colvin, D. L. Karlen, S. D. Logsdon, E. C. Berry, J. K. Radke, 

T. C. Kaspar, T. B. Parkin, and D. B. Jaynes, 1996.  Soil property contributions to 

yield variation pattern.  In Proc. of the Third International Conference on Precision 

Agriculture, 189-195.  P. C. Robert, R. H. Rust, and W. E. Larson, eds.  Madison, 

Wisconsin: ASA-CSSA-SSA. 

 

Camp, C. R. and E. J. Sadler. 1998  Site-specific crop management with a center pivot.  

Journal of Soil and Water Conservation  53(4): 312-314 

 

Coelho, A.M., J. W. Doran, and J. S. Schepers.  1999.  Irrigated corn yield as related to 

spatial variability of selected soil properties. In Proc. of the Fourth International 

Conference on Precision Agriculture, 441-452. P.C. Robert, R. H. Rust, and W. E. 

Larson, eds.  Madison, Wisconsin:  ASA-CSSA-SSSA. 

 

Constable, G. A. and Rawson, H. M. 1980. Carbon production and utilization in cotton: 

inferences from carbon budget.  Australian Journal of Plant Physiology 7: 539-553. 

 

Corana, A., M. Marchesi, C. Martini, and S. Ridella.  1987. Minimizing multimodal 

functions of continuous variables with the “Simulated Annealing” algorithm.  ACM 

Transactions on Mathematical Software 13(3):262-280. 

 

Cotton Economics Research Institute.  2005.  Cotton harvest cost calculator.  Lubbock, 

Tx.:  Cotton Economics Research Institute.  Available at:  http: 

//www.aaec.ttu.edu/CER-Institute.  Accessed 12 August 2005. 

 

Dong, A., S. R. Grattan, J. J. Carroll, and C. R. K. Prashar.  1992.  Estimation of daytime 

net radiation over well-watered grass.   Journal of Irrigation and Drainage 

Engineering  118(3): 466-479. 

 

Doorenbos, J. and W. H. Pruitt.  1977.  Crop water requirements.  FAO Irrigation and 

Drainage Paper 24.  Rome, Italy: Food and Agriculture Organization of the United 

Nations. 



   138 

Eberlein, C.V., B.A. King, and M.J. Guttieri. 2000. Evaluating an automated irrigation 

control system for site-specific herbigation. Weed Technology 14: 182-187. 

 

English, M. J., J. T. Musick, and V. V. N. Murty.  1990. Deficit Irrigation.  In 

Management of Farm Irrigation Systems, 631-663.  G. J. Hoffman, T. A. Howell, 

and K. H. Solomon, eds.  St. Joseph, Michigan:  ASAE. 

 

Ephrath, J. E. J. Gourdriaan, and A. Marani.  1996.  Modelling diurnal patterns of air 

temperature, radiation, wind speed and relative humidity by equations from daily 

characteristics.  Agricultural Systems 51(4): 377-393. 

 

Epperson, J. E., J. E. Hook, and Y. R. Mustafa.  1993.  Dynamic programming for 

improving irrigation scheduling strategies of maize.  Agricultural Systems  42: 85-

101. 

 

Evans, R. G. and G. B. Harting.  1999. Precision irrigation with center pivot system on 

potatoes.  In Proc. of the International Water Resources Engineering Conference, 

Environmental and Water Resources Institute, R. Walton and R. E. Nece, eds., 11 p. 

Seattle, WA, 8-12 Aug.  (on CDROM: htm\IS\IS04_505.pdf) 

 

Evans, R. G., S. Han, S. M. Schneider, and M. W. Kroeger.  1996.  Precision center 

pivot irrigation for efficient use of water and nitrogen. In Proc. of the Third 

International Conference on Precision Agriculture, 75-84. P. C. Robert, R. H. Rust, 

and W. E. Larson, eds.  Madison, Wisconsin:ASA-CSSA-SSSA. 

 

Feinerman, E. and H. Voet.  2000. Site-specific management of agricultural inputs:  an 

illustration for variable-rate irrigation.  European Review of Agricultural Economics 

27(1): 17-37. 

 

Fraisse, C. W., D. F. Heermann, and H. R. Duke.  1992.  Modified linear move system 

for experimental water application.  In Proc. of Advances in Planning, Design, and 

Management Irrigation Systems as Related to Sustainable Land Use, Vol. 1: 367-

376.  Leuven, Belgium, 14-17 September. 

 

Fye, R. E., V. R. Reddy, and D. N. Baker.  1984.  The validation of GOSSYM:  part 1 – 

Arizona conditions.  Agricultural Systems 14:85-105. 

 

Goffe, W. L., G. D. Ferrier, and J. Rogers.  1994.  Global optimization of statistical 

functions with simulated annealing.  Journal of Econometrics.  60:65-99. 

 

Gowing, J. W. and C. J. Ejieji.  2001.  Real-time scheduling of supplemental irrigation 

for potatoes using a decision model and short-term weather forecasts.  Agricultural 

Water Management 47: 137-153. 

 



   139 

Han, S., R. G. Evans, T. Hodges, and S. L. Rawlins.  1995.  Linking a geographic 

information system with a potato simulation model for site-specific crop 

management.  Journal of Environmental Quality  24: 772-777. 

 

Heneggeler, J. C.  1998.  Managing cotton when water is limited.  In Proc. of the 1998 

Beltwide Cotton Conferences, 641-645  D. Richter, ed. Memphis, Tennessee: Cotton, 

Inc. 

 

Hiler, E. A. and R. N. Clark.  1971.  Stress day index to characterize effects of water 

stress on crop yields.  Transactions of the ASAE 14(4): 757-761. 

 

Hook, J. E. 1994. Using crop models to plan water withdrawals for irrigation in drought 

years.  Agricultural Systems 45: 271-289. 

 

Huggins, D. R. and R. D. Alderfer.  1995.  Yield variability within a long-term corn 

management study:  implications for precision farming.  In Proc. of Site-specific 

Management for Agricultural Systems, 417-426.  P. C. Robert,  R. H. Rust, W. E. 

Larson, eds. Madison, Wisconsin: ASA-CSSA-SSSA.  

 

Irmak, A., J. W. Jones, W. D. Batchelor, and J. O. Paz.  2001.  Estimating variable soil 

properties for application of crop models in precision farming. Transactions of the 

ASAE  44(5): 1343-1353. 

 

Jallas, E. 1998.  Improved model-based decision support by modeling cotton variability 

and using evolutionary algorithms.  Ph.D. Dissertation.  Starkville, Mississippi: 

Mississippi State University. 

 

Jallas, E., R. Sequeira, P. Martin, M. Cretenet, S. Turner, and J. McKinion.  1999.  

Virtural Cotons, the firstborn of the next generation of simulation model.  In 1999 

Proc. Beltwide Cotton Conferences, Volume I, 393-395.P. Dugger and D. Richter, 

eds.  Memphis, Tennessee:  National Cotton Council. 

 

Jones, C. A. and Kiniry, J. R. 1986.  CERES-Maize:  A simulation model of maize 

growth and development.  College Station, Texas: Texas A&M University Press.  

 

Kepple, D. D. 1988.  Unlocking mysteries of cotton yield variation.  Agrichemical Age  

8:24A-24B.  

 

Khakural, B. R., P. C. Robert, and D. R. Huggins.  1999.  Variability of corn/soybean 

yield and soil/landscape properties across a southwestern Minnesota landscape. In 

Proc. of the Fourth International Conference on Precision Agriculture, 573-579. 

P.C. Robert, R. H. Rust, and W. E. Larson, eds.  Madison, Wisconsin:  ASA-CSSA-

SSSA. 

 



   140 

King, B. A., I. R. McCann, C. V. Eberlein, and J.C. Stark.  1999.  Computer control 

system for spatially varied water and chemical applications studies with continuous 

move irrigation systems.  Computers and Electronics in Agriculture  24: 177-194. 

 

King, B. A., R. E. Reeder, R.W. Wall, and J. C. Stark.  2002.  Comparison of site-

specific and conventional uniform irrigation management for potatoes.  ASAE Paper 

No. 022175.  St. Joseph, Michigan: ASAE. 

 

Kirda, C. 2002.  Deficit irrigation scheduling based on plant growth stages showing 

water stress tolerance.  In Deficit Irrigation Practices, 3-10.  Water Reports No. 22.  

Rome, Italy: Food and Agriculture Organization of the United Nations 

 

Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.  1983.  Optimization by simulated 

annealing.  Science.  220:671-680. 

 

Lowenberg-DeBoer, J., and S. M. Swinton. 1997. Economics of site-specific 

management of agronomic crops.  In The State of Site-Specific Management for 

Agriculture. 369-396. F. J. Pierce and E. J. Sadler, eds. Madison, Wisconsin: ASA-

CSSA-SSSA 

 

Marani, A. 2004. Cotton2k Model Version 4.0. The Robert H. Smith Institute of Plant 

Sciences and Genetics in Agriculture, Hebrew University.  Available at:  

http://departments.agri.huji.ac.il/fieldcrops/cotton   Accessed on 9 October, 2004. 

 

Marani, A., G. E. Cardon, and C. J. Phene.  1992a. CALGOS, a version of GOSSYM 

adapted for irrigated cotton.  I. Drip irrigation, soil water transport, and root growth.  

In 1992 Proc. of the Beltwide Cotton Conferences, 1352-1357.  C. P. Dugger and D. 

A. Richter, eds.  Memphis, Tennessee: National Cotton Council of America. 

 

Marani, A., G. E. Cardon, and C. J. Phene.  1992b. CALGOS, a version of GOSSYM 

adapted for irrigated cotton.  III. Leaf and boll growth routines.  In 1992 Proc. of the 

Beltwide Cotton Conferences, 1361 - 1364.  C. P. Dugger and D. A. Richter, eds.  

Memphis, Tennessee: National Cotton Council of America. 

 

Marani, A., C. J. Phene, and G. E. Cardon.  1992c. CALGOS, a version of GOSSYM 

adapted for irrigated cotton.  II. Leaf water potential and the effect of water stress.  In 

1992 Proc. of the Beltwide Cotton Conferences, 1358-1360.  C. P. Dugger and D. A. 

Richter, eds.  Memphis, Tennessee: National Cotton Council of America. 

 

Martin, D. L., E. C. Stegman, and E. Fereres.  1990.  Irrigation scheduling principles.  In 

Management of Farm Irrigation Systems, 155-203.  G. J. Hoffman, T. A. Howell, K. 

H. Solomon, eds.   St. Joseph, Michigan: ASAE. 

 



   141 

Martin, D. L, J. R. Gilley, and R. W. Skaggs.  1991.  Soil water balance and 

management.  In Managing Nitrogen for Groundwater Quality and Farm 

Profitability, 199 – 341.  R. F. Follett, D. R. Keeney, and R. M. Cruse, eds.  

Madison, Wisconsin:  SSSA. 

 

Martin, R, V. Lansford, and E. Segarra.  2005. Economic evaluation of integrated 

cropping systems with cotton.  In 2005 Proc. of the Beltwide Cotton Conferences, 

379 - 382.  C. P. Dugger and D. A. Richter, eds.  Memphis, Tennessee: National 

Cotton Council of America 

 

Mayer, D. G., J. A. Belward, and K. Burrage.  1996.  Use of advanced techniques to 

optimize a multi-dimensional dairy model.  Agricultural Systems.  50:239-253. 

 

McBratney, A. B. and M. J. Pringle.  1997.  Spatial variability in soil – implications for 

precision agriculture.  In Precision Agriculture 1997. Volume I. Spatial variability in 

soil and crop. Papers presented at the First European Conference on Precision 

Agriculture, 3-31.  A. B. McBratney and M. J. Pringle, eds.  Oxford, United 

Kingdom: Bios Scientific Publishers Ltd.   

 

McCann, B. L., D. J. Pennock, C. van Kessel, and F. L. Walley. 1996. The development 

of management units for site-specific farming.   In Proc. of the Third International 

Conference on Precision Agriculture, 295-302.  P. C. Robert, R. H. Rust, and W. E. 

Larson, eds.  Madison, Wisconsin: ASA-CSSA-SSA. 

 

McClendon, R. W., G. Hoogenboom, and I. Seginer.  1996.  Optimal control and neural 

networks applied to peanut irrigation management.  Transactions of the ASAE 39(1): 

275-279.   

 

McKinion, J. M., J. N. Jenkins, D. Akins, S. B. Turner, J. L. Willers, E. Jallas, and F. D. 

Whisler.  2001. Analysis of a precision agriculture approach to cotton production.  

Computers and Electronics in Agriculture 32: 213-228. 

 

Merriam, J. L. 1966. A management control concept for determining the economical 

depth and frequency.  Transactions of the ASAE 9(4): 492-498. 

 

Miller, R. O., S. Pettygrove, R. F. Denison, L. Jackson, M. Cahn, R. Plant, and T. 

Kearny.  1999.  Site-specific relationships among flag leaf nitrogen, SPAD meter 

values and grain protein in irrigated wheat. In Proc. of the Fourth International 

Conference on Precision Agriculture, 113-122. P.C. Robert, R. H. Rust, and W. E. 

Larson, eds.  Madison, Wisconsin:  ASA-CSSA-SSSA 

 

Moran, M. S., S. J. Maas, P. J. Pinter, Jr. 1995.  Combining remote sensing and 

modeling for estimating surface evaporation and biomass production.  Remote 

Sensing Reviews 12: 335-353.   



   142 

 

Moulin, S., A. Dondeau, and R. Delecolle.  1998.  Combining agricultural crop models 

and satellite observations from field to regional scales.  International Journal of 

Remote Sensing  19(6): 1021-1036.  

 

Mulla, D. J. and J. S. Scheppers. 1997.  Key processes and properties for site-specific 

soil and crop management.  In The State of Site-Specific Management for 

Agriculture, 1-18. F. J. Pierce and E. J. Sadler, eds. Madison, Wisconsin: ASA-

CSSA-SSSA. 

 

Nielsen, D. R., O. Wendroth, F. J. Pierce.  1999.  Emerging concepts for solving the 

enigma of precision farming research. In Proc. of the Fourth International 

Conference on Precision Agriculture, 303-318. P.C. Robert, R. H. Rust, and W. E. 

Larson, eds.  Madison, Wisconsin:  ASA-CSSA-SSSA. 

 

Nijbroek, R., G. Hoogenboom, and J. W. Jones.  2003.  Optimizing irrigation 

management for a spatially variable soybean field.  Agricultural Systems.  76:359-

377. 

 

Paz, J.O., W. D. Batchelor, B. A. Babcock, T. S. Colvin, S. E. Logsdon, T. C. Kaspar, 

and D. L. Karlen.  1999. Model-based technique to determine variable rate nitrogen 

for corn.  Agricultural Systems 61: 69-75. 

 

Paz, J. O., W. D. Batchelor, T. S. Colvin, S. D. Logsdon, T. C. Kaspar, and D. L. Karlen.  

1998.  Analysis of water stress effects causing spatial yield variability in soybeans.  

Transactions of the ASAE  41(5): 1527-1534. 

 

Perry, C., S. Pocknee, O. Hansen, C. Kvien, G. Vellidis, and E. Hart.  2002. 

Development and testing of a variable-rate pivot irrigation control system.  ASAE 

Paper No. 022290.  St. Joseph, Michigan: ASAE. 

 

Plant, R. E.  2001.  Site-specific management:  the application of information technology 

to crop production. Computers and Electronics in Agriculture  30: 9-29. 

 

Plant, R. E., A. Mermer, G. S. Pettygrove, M. P. Vayssieries, J. A. Young, R. O. Miller, 

L. F. Jackson, R. F. Denison, and K. Phelps. 1999.  Factors underlying grain yield 

spatial variability in three irrigated wheat fields. Transactions of the ASAE 42(5): 

1187-1202. 

 

Rao, N. H., P. B. S. Sarma, and S. Chander.  1988.  Irrigation scheduling under a limited 

water supply.  Agricultural Water Management 15: 165-175. 

 

Rawls, W. J., D. L. Brakensiek, and K. E. Saxton.  1982.  Estimating soil water 

properties.  Transactions of the ASAE 25(5): 1316-1320 and 1328. 



   143 

 

Reeder, R. 2002.  Artificially intelligent site-specific irrigation for potatoes.  Master’s 

thesis.  Moscow, Idaho: University of Idaho. 

 

Richards, F. J. 1979.  A flexible growth function for empirical use.  Journal of 

Experimental Botany 10: 290-300.   

 

Ritchie, J. T. 1972. Model for predicting evaporation from a row crop with incomplete 

cover.  Water Resources Research  8(5): 1204-1213 

 

Rogers, D. H. and R. L. Elliott.  1989.  Irrigation scheduling using crop growth 

simulation, risk analysis, and weather forecasts.  Transactions of the ASAE. 

32(5):1669-1677. 

 

Royce, F. S., J. W. Jones, and J. W. Hansen.  2001.  Model-based optimization of crop 

management for climate forecast applications.  Transactions of the ASAE  44(5): 

1319-1327. 

 

Sadler, E. J., E. M. Barnes, W. D. Batchelor, J. Paz, and A. Irmak.  2002.  Addressing 

spatial variability in crop model applications.  In Agricultural System Models in 

Field Research and Technology Transfer L. R. Ahuja, L. Ma, and T. A. Howell, eds.  

Boca Raton, Florida: Lewis Publishers. 

 

Sadler, E. J., W. J. Busscher, and D. L. Karlen.  1995.  Site-specific yield histories on a 

SE coastal plain field.  In Site-specific management for agricultural systems.  153-

166.  P. C. Robert,  R. H. Rust, W. E. Larson, eds. Madison, Wisconsin: ASA-

CSSA-SSSA.  

 

Sadler, E. J., C. R. Camp, D. E. Evans, and J. A. Millen.  2002.  Spatial variation of corn 

response to irrigation.  Transactions of the ASAE  45(6): 1869-1881. 

 

Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick. 1986. Estimating 

generalized soil-water characteristics from texture.  Soil Science of America Journal. 

50(4):1031-1036. 

 
Shen, J., W. D. Batchelor, J. W. Jones, J. T. Ritchie, R. S. Kanwar, and C. W. Mize. 

1998.  Incorporation of a subsurface tile drainage component into a soybean growth 

model.  Transactions of the ASAE 41(5): 1305-1313. 

 

Snyder, R. L. and W. O. Pruitt. 1985.  Estimating reference evapotranspiration with 

hourly data.  In Land Air and Water Resource Papers 10013-A, 10013-B, 10013-C.  

Davis, California: University of California. 

 



   144 

South Plains Evapotranspiration Network.  n.d. South Plains Evapotranspiration 

Network climate data. Available at: http://lubbock.tamu.edu/irrigate/et/archive.html. 

Accessed December, 2004. 

 

Staggenborg, S. A., R. J. Lascano and D. R. Krieg.  1996.  Determining cotton water use 

in a semiarid climate with the GOSSYM cotton simulation model.  Agronomy 

Journal.  88:740-745. 

 

Swaney, D. P., J. W. Jones, W. G. Boggess, G. G. Wilkerson, and J. W. Mishoe.  1983.  

Real-time irrigation decision analysis using simulation.  Transactions of the ASAE.  

26(2): 562-568. 

 
Sudduth, K. A., N. R. Kitchen, D. F. Hughes, and S. T Drummond. 1995.  

Electromagnetic induction sensing as an indicator of productivity on clay pan soils.  

In  Proc. of Site-Specific Management for Agricultural Systems.  671-681.  P. C. 

Robert,  R. H. Rust, W. E. Larson, eds. Madison, Wisconsin: ASA-CSSA-SSSA.  

 

Texas Cooperative Extension. 2000. Cotton, sprinkler irrigated (heavy textured soils), 

Texas High Plains, 2000 projected costs and return per acre.  Texas crop and 

livestock budgets.  College Station, Texas.:  Texas Cooperative Extension.  

Available at:  agecoext.tamu.edu.  Accessed 12, August  2005. 

 

TWDB. 2002. Water for Texas – 2002.  Volumes I-III. Document No. GP-7-1.  Austin, 

Texas:  Texas Water Development Board. 

 

USDA-NRCS. 1995. Soil survey geographic (SSURGO) Database: Data Use 

information. Natural Resources Conservation Service Miscellaneous Publication 

1527.   

 

USDA-SCS.  1974.  Soil survey of Hale County, Texas.  Washington, D.C.:USDA-SCS 

and Texas Agricultural Experiment Station. 

 

Van Bavel, C. H. M. 1966. Potential evaporation:  the combination concept and its 

experimental verification.  Water Resources Research 2(3): 455-467. 

 

Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic 

conductivity of unsaturated soils. Soil Science Society of America Journal 44:892–

898. 

 

Van Genuchten, M.Th., F.J. Leij and S.R. Yates. 1991. The RETC code for quantifying 

the hydraulic functions of unsaturated soils. EPA 600/2-91/065. Washington, D.C.: 

United States Environmental Protection Agency. 

 



   145 

Wanjura, D. F. and B. L. McMichael. 1989. Simulation analysis of nitrogen application 

strategies for cotton. Transactions of the ASAE 32(2): 627-632. 

 

Wanjura, D. F., D. R. Upchurch, J. R. Mahan, and J. J. Burke.  2002.  Cotton yield and 

applied water relationships under drip irrigation.  Agricultural Water Management 

55: 217-237. 

 

Wassenaar, T., P. Lagacherie, J. P. Legros, M. D. A. Rounsevell. 1999. Modelling wheat 

yield responses to soil and climate variability at the regional scale.  Climate 

Research. 11: 209-220.  

 

Yang, C., J.H. Everitt, and J.M. Bradford. 2001.  Uniform and variable rate applications 

of nitrogen and fertilizer for grain sorghum.  Transactions of the ASAE 44(2): 201-

209. 



   

 

146 

APPENDIX A 

 

 
(a) percent clay 

 

 

 

 
(b) percent sand 

Figure A-1. Soil composition at 20-40 cm depth: a) percent clay and b) percent sand 

in Helms Farm field 5D.  Numbers from 6201 through 8213 indicate sampling 

locations. 
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(a) percent clay 

 

 

 

 
(b) percent sand 

Figure A-2. Soil composition at 40-60 cm depth: a) percent clay and b) percent sand 

in Helms Farm field 5D.  Numbers from 6201 through 8213 indicate sampling 

locations. 
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(a) percent clay 

 

 

 

 
(b) percent sand 

Figure A-3. Soil composition at 60-80 cm depth:  a) percent clay and b) percent 

sand in Helms Farm field 5D.  Numbers from 6201 through 8213 indicate sampling 

locations. 
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APPENDIX B 

 

SIMULATED ANNEALING VARIABLE DEFINITIONS 

 

Variable definitions in Simulated Annealing algorithm as taken from 

http://temper.stat.cmu.edu/general/simann  (Goffe et al., 1994)) 

 

Input Parameters: 

 

Note: The suggested values generally come from Corana et al. (1987) to drastically 

reduce runtime, see Goffe et al. (1994), pp. 90-1 for suggestions on choosing the 

appropriate RT and NT. 

 

N -  Number of variables in the function to be optimized.  

X -  The starting values for the variables of the function to be optimized.  

MAX -  Denotes whether the function should be maximized or minimized. A true 

value denotes maximization while a false value denotes minimization. 

Intermediate output (see IPRINT) takes this into account.  

RT -  The temperature reduction factor. The value suggested by Corana et 

al.(1987) is .85. See Goffe et al. for more advice.  

EPS -  Error tolerance for termination. If the final function values from the last 

neps temperatures differ from thecorresponding value at the current 

temperature by less than EPS and the final function value at the current 

temperature differs from the current optimal function value by less than 

EPS, execution terminates and IER = 0 is returned.  

NS -  Number of cycles. After NS*N function evaluations, each element of VM 

is adjusted so that approximately half of all function evaluations are 

accepted. The suggested value is 20.  

NT -  Number of iterations before temperature reduction. After NT*NS*N 

function evaluations, temperature (T) is changed by the factor RT. Value 

suggested by Corana et al. is MAX(100, 5*N). See Goffe et al. (1994) for 

further advice.  

NEPS -  Number of final function values used to decide upon termination. See EPS. 

Suggested value is 4.  

MAXEVL - The maximum number of function evaluations. If it is exceeded, IER = 1.  

LB -  The lower bound for the allowable solution variables.  

UB -  The upper bound for the allowable solution variables. If the algorithm 

chooses X(I) .LT. LB(I) or X(I) .GT. UB(I), I = 1, N, a point is from inside 

is randomly selected. This focuses the algorithm on the region inside UB 

and LB.Unless the user wishes to concentrate the search to a particular 

region, UB and LB should be set to very large positive and negative values, 

respectively. Note that the starting vector X should be inside this region. 

Also note that LB and UB are fixed in position, while VM is centered on 

the last accepted trial set of variables that optimizes the function. 
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C -  Vector that controls the step length adjustment. The suggested value for all 

elements is 2.0.  

IPRINT -  controls printing inside SA.  

              Values: 0 - Nothing printed. 

                      1 - Function value for the starting value and summary results before each 

temperature reduction. This includes the optimal function value found 

so far, the total number of moves (broken up into uphill, downhill, 

accepted and rejected), the number of out of bounds trials, the number 

of new optima found at this temperature, the current optimal X and 

the step length VM. Note that there are N*NS*NT function 

evaluations before each temperature reduction. Finally, notice is also 

given upon achieving the termination criteria. 

                      2 - Each new step length (VM), the current optimal X (XOPT) and the 

current trial X (X). This gives the user some idea about how far X 

strays from XOPT as well as how VM is adapting to the function. 

                      3 - Each function evaluation, its acceptance or rejection and new optima. 

For many problems, this option will likely require a small tree if hard 

copy is used. This option is best used to learn about the algorithm. A 

small value for MAXEVL is thus recommended when using IPRINT 

= 3. 

               Suggested value: 1 

               Note: For a given value of IPRINT, the lower valued options (other 

than 0) are utilized. 

ISEED1 -  The first seed for the random number generator RANMAR.0 .LE. ISEED1 

.LE. 31328.  

ISEED2 -  The second seed for the random number generator RANMAR.0 .LE. 

ISEED2 .LE. 30081. Different values for ISEED1 and ISEED2 will lead to 

an entirely different sequence of trial points and decisions on downhill 

moves (when maximizing). See Goffe et al. (1994)on how this can be used 

to test the results of SA.  

 

  Input/Output Parameters: 

 

 T -  On input, the initial temperature. See Goffe et al. (1994) for advice.  On 

output, the final temperature.  

 VM -  The step length vector. On input it should encompass the region of interest 

given the starting value X. For point X(I), the next trial point is selected is 

from X(I) - VM(I) to X(I) + VM(I). Since VM is adjusted so that about half 

of all points are accepted, the input value is not very important (i.e. is the 

value is off, SA adjusts VM to the correct value).  

 

Output Parameters: 

 

XOPT -  The variables that optimize the function.  
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FOPT -  The optimal value of the function.  

NACC -  The number of accepted function evaluations.  

NFCNEV -  The total number of function evaluations. In a minor point, note that the 

first evaluation is not used in the core of the algorithm; it simply initializes 

the algorithm.  

NOBDS -  The total number of trial function evaluations that would have been out of 

bounds of LB and UB. Note that a trial point is randomly selected between 

LB and UB. 

IER -  The error return number.  

           Values:  

      0 -  Normal return; termination criteria achieved. 

                     1 -  Number of function evaluations (NFCNEV) is greater than the 

maximum number (MAXEVL). 

                     2 -  The starting value (X) is not inside the bounds (LB and UB). 

                      3 -  The initial temperature is not positive. 

                      99 - Should not be seen; only used internally. 
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