
ULTRASOUND-MODULATED OPTICAL TOMOGRAPHY

IN SOFT BIOLOGICAL TISSUES

A Dissertation

by

SAVA SAKADŽIĆ
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ABSTRACT

Ultrasound-modulated Optical Tomography in Soft Biological Tissues. (May 2006)

Sava Sakadžić, B.S., University of Belgrade, Serbia and Montenegro;

M.S., University of Belgrade, Serbia and Montenegro

Chair of Advisory Committee: Dr. Lihong V. Wang

Optical imaging of soft biological tissues is highly desirable since it is nonionizing

and provides sensitive contrast information which enables detection of physiological

functions and abnormalities, including potentially early cancer detection. However,

due to the diffusion of light, it is difficult to achieve simultaneously both good spatial

resolution and good imaging depth with the pure optical imaging modalities.

This work focuses on the ultrasound-modulated optical tomography — a hybrid

technique which combines advantages of ultrasonic resolution and optical contrast.

In this technique, focused ultrasound and optical radiation of high temporal co-

herence are simultaneously applied to soft biological tissue, and the intensity of the

ultrasound-modulated light is measured. This provides information about the optical

properties of the tissue, spatially localized at the interaction region of the ultrasonic

and electromagnetic waves.

In experimental part of this work we present a novel implementation of high-

resolution ultrasound-modulated optical tomography that, based on optical contrast,

can image several millimeters deep into soft biological tissues. A long-cavity confocal

Fabry-Perot interferometer was used to detect the ultrasound-modulated coherent

light that traversed the scattering biological tissue. Using 15-MHz ultrasound, we

imaged with high contrast light absorbing structures placed 3 mm below the surface

of chicken breast tissue. The resolution along the axial and the lateral directions
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with respect to the ultrasound propagation direction was better than 70 and 120

µm, respectively. This technology is complementary to other imaging technologies,

such as confocal microscopy and optical-coherence tomography, and has potential for

broad biomedical applications.

In the theoretical part we present various methods to model interaction be-

tween the ultrasonic and electromagnetic waves in optically scattering media. We

first extend the existing theoretical model based on the diffusing-wave spectroscopy

approach to account for anisotropic optical scattering, Brownian motion, pulsed ul-

trasound, and strong correlations between the ultrasound-induced optical phase in-

crements. Based on the Bethe-Salpeter equation, we further develop a more general

correlation transfer equation, and subsequently a correlation diffusion equation, for

ultrasound-modulated multiply scattered light. We expect these equations to be

applicable to a wide spectrum of conditions in the ultrasound-modulated optical

tomography of soft biological tissues.
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Edward Fry for taking the time serving on my committee, and for always being

supportive and making time for me. I would like to specifically acknowledge Dr.

Vikram Kinra for generously providing the laboratory space and equipment for this

project. A special thanks to Dr. George Stoica for medical expertise and good times

at conferences.

I am grateful to my present and former colleagues in the laboratory, Dr. Kon-

stantin Maslov, Dr. Geng Ku, Dr. Jun Li, Dr. Shuliang Jiao, Dr. Roger Zemp,

Dr. Minghua Xu, and Dr. Yuan Xu for interest in my research, many scientific dis-

cussions, technical assistance, support and friendship. Appreciation is also extended

to Sri-Rajasekhar Kothapalli, Xiao Xu, Chul-Hong Kim, Huiliang Zhang, Xueding

Wang, Hao Zhang, and other members of the Optical Imaging Laboratory.

Many thanks to the faculty and staff of Biomedical and Industrial Engineering

Departments, Dr. Jay Humphrey, Dr. Fidel Fernandez, Katherine Jakubik, Barry

Jackson, and Dennis Allen for great teaching, and for administrative and technical

help. I gratefully acknowledge Steve Smith for all the good time I had talking with

him during the long hours in the machine-shop.

I thank my loving family in Belgrade for their love and support, and for teaching



vii

me everything that I am today. They deserve far more credit than I can ever give

them.

Finally, warmest thanks goes to my one true love — Slavica Djonović. Her
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CHAPTER I

INTRODUCTION

Optical imaging of soft biological tissue is highly desirable since it is nonionizing,

and it provides sensitive contrast information which enables potential early cancer

detection.1 Current techniques for cancer detection (ultrasound, x-ray computerized

tomography, and magnetic resonance imaging) are not very efficient in detecting the

lesions smaller than ∼ 1 cm. As a result, most of the cancers detected by these

methods are in advanced stages, and development of new techniques for early cancer

detection is an imperative.

The optical properties of soft biological tissues in the visible and near-infrared

regions are related to the molecular structure, offering potential for the detection of

tissue functions and abnormalities. Cancer-related tissue abnormalities, such as for

example angiogenesis, hyper-metabolism, and invasion into adjacent normal tissue,

posses optical signatures (both scattering and absorption), that offer the potential

for early cancer detection. The optical scattering properties of tissue are strongly

related to the tissue structure (cell nuclei size and density for example). On the

other hand, optical absorption properties can reveal metabolic processes (hemoglobin

concentration and oxygen saturation) and angiogenesis. However, due to the strong

scattering of light in biological tissue, optical imaging at imaging depths greater than

one optical transport mean free path (∼ 1 mm in soft biological tissues at visible

and near-infrared wavelengths) presents a challenge.

Ultrasound-modulated optical tomography (UOT)2,3 is a hybrid technique, pro-

This thesis follows the style of Journal of Biomedical Optics.
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posed to provide better resolution for the optical imaging of soft biological tissue

by combining ultrasonic resolution and optical contrast. It combines the strengths

of both methods – high contrast inherent in optical properties, and high ultrasound

resolution. Because of the strong scattering, in order to have a good resolution pure

optical imaging is limited to a small imaging depth. On the other hand, scattering of

ultrasound waves in soft biological tissues is several orders of magnitude lower than

scattering of light, which enables very good focusing of ultrasound and consequently

excellent resolution in pure ultrasound imaging. However, ultrasound imaging pro-

vides weak contrast for early stage tumors because their mechanical properties are

not very different from the normal tissue. In addition, pure ultrasound imaging

cannot image oxygen saturation or concentration of hemoglobin.

In UOT, an ultrasonic wave is focused into biological tissue which is irradiated

by the laser light of a high temporal coherence. Collective motions of the optical

scatterers and periodic changes in the optical index of refraction are generated by

ultrasound to produce fluctuations in the intensity of the speckles that are formed

by the multiple-scattered light. The ultrasound-modulated component of light car-

ries information about the optical properties of tissue from the region of interaction

between the optical and ultrasonic waves. Any light that is modulated by the ultra-

sound, including both singly and multiply scattered partial waves, contributes to the

imaging signal. Lateral resolution is typically obtained by focusing the ultrasonic

wave. To obtain axial resolution different techniques are applied, including ultra-

sound frequency sweep, computer tomography, and tracking of ultrasound pulses or

short bursts. Therefore, resolution in UOT is generally determined by ultrasound

properties, and it is not limited by optical diffusion or multiple scattering of light.

At the same time, contrast in UOT is based on optical tissue properties. Finally,

the imaging resolution, as well as the maximum imaging depth, is scalable with the
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ultrasonic frequency.

The first investigation of possibility to use UOT was done by Marks et al.2

Subsequently, Wang et al.3 developed UOT and obtained images in tissue phan-

toms using a single square-law detector. The ultrasound modulation of light in

highly scattering medium was analyzed first by Leutz and Maret4 both theoretically

based on the diffusing-wave spectroscopy approach5,6 and experimentally by using

the plane-parallel Fabry-Perot interferometer. Kemple et al.7 investigated the scale

dependence of the ultrasound modulated optical signal on the optical thickness of the

scattering medium, and discussed the imaging possibilities based on the signal-to-

noise (SNR) analysis. Leveque et al.8 developed a parallel speckle detection scheme

that uses a CCD camera as a detector array, which was subsequently extended by

Li et al.9,10 with additional methods of analysis. It is found that by averaging the

signal from all the CCD pixels, SNR can be greatly improved compared with the

single square-law detector. In these experiments, one-dimensional (1D) and two-

dimensional (2D) images of optically absorptive objects buried in a chicken breast

tissue samples are obtained. In order to obtain resolution along the ultrasound axis,

several different approaches are applied. Wang and Ku11 developed a technique called

frequency-swept UOT to achieve controllable spatial resolution along the ultrasonic

axis, where axial positions are encoded by linearly swept ultrasound frequency. The

technique is further combined by Yao et al.12 with the parallel speckle detection

scheme, and 2D images of biological tissue with buried objects were obtained. The

reflection configuration for UOT is developed by Lev et al.,13 and computed tomog-

raphy is applied by Li and Wang14 to reconstruct the image of the blood vessel buried

in the chicken breast tissue sample. Recently, photorefractive crystals have been used

in UOT experiment by Murray et al.15 to detect the ultrasound-modulated optical

intensity produced by ultrasound pulses traversing tissue phantoms.
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The current optical technologies for in vivo high resolution imaging of biologi-

cal tissue include primarily confocal microscopy and optical–coherence tomography

(OCT). Confocal microscopy can achieve ∼ 1 µm resolution but can image up to

only 0.5 mm into biological tissue. OCT can achieve ∼ 10 µm resolution but can

image only ∼ 1 mm into scattering biological tissue. Although both technologies are

useful in their areas of strength, many superficial lesions of interest are deep beyond

reach. Both of the technologies depend primarily on singly backscattered photons

for spatial resolution. Because biological tissues, with exception of the ocular tissue,

are highly scattering for light transport, singly backscattered light attenuates rapidly

with imaging depth. Therefore, both of the technologies have fundamentally limited

maximum imaging depths that restrict their applications.

Since UOT does not depend on singly backscattered light but rather on dif-

fuse light, it overcomes the limitation of confocal microscopy and OCT on maximum

imaging depth. The lateral resolution can be achieved by focusing the high frequency

ultrasound. At the same time, axial resolution may be obtained by any of previously

mentioned techniques, but it is preferred to use pulsed ultrasound due to the simplic-

ity and compatibility with pure ultrasound imaging. Image resolution and maximum

imaging depth in UOT is scalable with ultrasonic frequency. Functional imaging of

oxygen saturation of hemoglobin may be achieved by using dual wavelengths. The

proposed technology is complementary to confocal microscopy and OCT and has the

potential for broad application in biomedicine.

In Chapter II, we present an novel apparatus for high-resolution UOT imaging of

soft biological tissue. As stated before, efficient detection of the UOT signal presents

a challenge. After diffusing through soft biological tissue, light forms a well developed

speckle pattern on the surface of the detection system. The phases of individual

speckles are randomly distributed and uncorrelated, and modulation depth is usually
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very small (∼ 1%, or less). Therefore, it is shown that SNR provided by the single

square-law detectors is mostly not satisfactory, since they are limited by antenna

theorem and detection of the diffused light in that case is not efficient. A CCD

camera or a photorefractive crystal provide parallel speckle detection. Therefore,

they are usually much better choice in terms of SNR. However, the speed of CCD

detectors at present does not allow a real time tracking of ultrasound pulses. For our

high-resolution UOT, we choose a long-cavity confocal FabryPerot interferometer

(CFPI) to be the central part of the detection system. Our CFPI has a greater

etendue – defined as the product of the acceptance solid angle and the area – than

most CCD cameras and provides parallel speckle processing. In addition, a CFPI can

detect the propagation of high-frequency ultrasound pulses in real time and tolerate

speckle decorrelation. A CFPI is especially efficient at high ultrasound frequencies,

where the background signal that is due to the unmodulated light can be filtered

out effectively while the ultrasound-modulated component is transmitted. With

our setup, using 15-MHz ultrasound, we imaged with high contrast light absorbing

structures placed 3 mm below the surface of chicken breast tissue. The resolution

along the axial and the lateral directions with respect to the ultrasound propagation

direction was better than 70 µm and 120 µm, respectively.

In spite of a variety of different experimental configurations that have been in-

vented to efficiently measure the ultrasonically modulated component of the light

emerging from biological tissue, the exact nature of the ultrasound modulation of

light in an optically scattering medium is still not well understood due to the com-

plicated light-ultrasound interaction that occurs in the presence of optical scatterers.

Approximate theories in the optical diffusion regime under a weak scattering ap-

proximation have been developed that include one or both of the main mechanisms

of modulation. Mechanism 1 is the optical phase variations that are due to the ul-
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trasonically induced movement of the optical scatterers,4,7 whereas mechanism 2 is

the optical phase variations that are due to ultrasonically induced changes in the

optical index of refraction. Mechanism 1 was first modeled by Leutz and Maret4

in a case of isotropic optical scattering, where an homogeneous infinite scattering

medium is traversed by a plane ultrasound wave. It was also modeled by Kempe

et al.,7 and together with Brownian motion by Lev et al.16 Mechanism 2 was first

modeled by Mahan et al.,17 and it was subsequently combined together with the

mechanism 1 by Wang.18 In all cases, a weak scattering approximation is assumed

and a method of diffusing-wave spectroscopy5,6 is applied. All authors considered

isotropic optical scattering and the case when the ultrasound wavelength is smaller

or comparable than the optical mean free path, which simplifies the treatment of

distant correlations. It was shown by Wang18 that mechanism 2 is more important

than mechanism 1 for generation of modulated signals at high ultrasound frequencies.

Due to the limited number of physical configurations where the probability density

function of the optical path length is analytically known and since the theoretical

model requires plane (infinite) ultrasound waves, only transmission18 and reflection16

geometries have been analytically studied so far, under assumption that the scatter-

ing medium (slab) is completely occupied with ultrasound. Wang19 also developed

a Monte Carlo algorithm which is more flexible and it could be modified to account

for a wide spectrum of geometries.

In Chapter III, we present extension of the existing theoretical model18 for ul-

trasound modulation of multiply scattered light to include scattering anisotropy. We

develop the analytical expression for the temporal autocorrelation function of the

electrical field component of multiply scattered coherent light transmitted through

an anisotropically scattering media irradiated with a plane ultrasonic wave. The

accuracy of the analytical solution is verified with an independent Monte Carlo sim-
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ulation for different values of the ultrasonic and optical parameters. The analytical

model shows that an approximate similarity relation exists; if the reduced scattering

coefficient is unchanged regardless of the mean cosine of the scattering angle, the

autocorrelation function remains approximately the same.

In Chapter IV, we further extend the existing model to account for the inter-

action of multiply scattered light with pulsed ultrasound, and to account for strong

correlations between ultrasound induced optical phase increments. We present an

analytical solution for the ultrasound-modulation of multiply scattered light in a

medium irradiated with a train of ultrasound pulses. Previous theory is extended to

cases where the ultrasound-induced optical phase increments between the different

scattering events are strongly correlated, and it is shown that the approximate sim-

ilarity relation still holds. The relation between the ultrasound induced motions of

the background fluid and the optical scatterers is generalized, and it is shown that

correlation exists between the optical phase increments that are due to the scatterer

movement and the optical phase increments that are due to the modulation of the

optical index of refraction. Finally, it is shown that compared with the spectrum

of ultrasound pulses, the power spectral density of ultrasound-modulated light is

strongly attenuated at the higher ultrasound frequencies.

In Chapter V, we develop a general temporal correlation transfer equation for

ultrasound-modulated multiply scattered light. The equation can be used to obtain

the mutual coherence function of light produced by a nonuniform ultrasound field

in optically scattering media that have a heterogeneous distribution of optical pa-

rameters. We also develop a Monte Carlo algorithm that can provide the spatial

distribution of the optical power spectrum in optically scattering media with fo-

cused ultrasound fields, and heterogeneous distributions of optically scattering and

absorbing objects. Derivation of the correlation transfer equation is based on the
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ladder diagram approximation of the general Bethe-Salpeter equation that assumes

moderate ultrasound pressures. We expect this equation to be applicable to a wide

spectrum of conditions in the ultrasound-modulated optical tomography of soft bio-

logical tissues.

In Chapter VI, we formally develop a temporal correlation transfer equation

and a temporal correlation diffusion equation for ultrasound-modulated multiply

scattered light, which can be used to calculate the ultrasound-modulated optical in-

tensity in an optically scattering medium with a nonuniform ultrasound field and

a heterogeneous distribution of optical parameters. We present an analytical solu-

tion based on correlation diffusion equation and Monte Carlo simulation results for

scattering of the temporal autocorrelation function from a cylinder of ultrasound in

an optically scattering slab. We further validate with experimental measurements

the numerical calculations for an actual ultrasound field based on a finite-difference

model of the correlation diffusion equation. The correlation transfer equation and

correlation diffusion equation in this model are valid for moderate ultrasound pres-

sures on a scale comparable with the optical transport mean free path, which must

be greater than the ultrasound wavelength and smaller than or comparable to the

sizes of both ultrasonic and optical inhomogeneities. These equations should also

be applicable to a wide spectrum of conditions for ultrasound-modulated optical

tomography of soft biological tissues.

Finally, in Chapter VII, a summary of the work is presented.
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CHAPTER II

HIGH-RESOLUTION ULTRASOUND-MODULATED

OPTICAL TOMOGRAPHY∗

1. Introduction

Great effort has been made in the recent past to develop new imaging modalities

based on the optical properties of soft biological tissues in the visible and near-

infrared regions. At these wavelengths, radiation is nonionizing and the optical

properties of biological tissues are related to the molecular structure, offering poten-

tial for the detection of functions and abnormalities.

Ultrasound-modulated optical tomography2,3 is a hybrid technique that was

proposed to provide better resolution for the optical imaging of soft biological tissue

by combining ultrasonic resolution and optical contrast. Collective motions of the

optical scatterers and periodic changes in the optical index of refraction are gen-

erated by ultrasound to produce fluctuations in the intensity of the speckles that

are formed by the multiple-scattered light.4,18,20 The ultrasound-modulated com-

ponent of light carries information about the optical properties of tissue from the

region of interaction between the optical and ultrasonic waves. However, it is a

challenge to detect this modulated component efficiently because of diffused light

propagation and uncorrelated phases among individual speckles. Several schemes for

detection3,4, 7, 8, 10–13,21–23 have been explored. A CCD camera that provides parallel

∗Reprinted with permission from S. Sakadžić and L. V. Wang, ”High-resolution
Ultrasound-modulated Optical Tomography in Biological Tissues,” Opt. Lett. 29,
2770− 2772 (2004). Copyright 2002 Optical Society of America.
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speckle detection8,12,23 was used to produce a better signal-to-noise ratio than a sin-

gle square-law detector. To obtain resolution along the ultrasonic axis, several groups

of scientists explored various techniques, including an ultrasound frequency sweep,11

computer tomography,14 and tracking of ultrasound pulses21 or short bursts.22 The

pulsed ultrasound approaches provide direct resolution along the ultrasonic axis and

are more compatible with conventional ultrasound imaging. Pulsed ultrasound can

have a much higher instantaneous power than continuous-wave (CW) ultrasound,

reducing the undesired effect of the increased noise owing to its wide bandwidth.

In this work, for the first time to our knowledge, we report high-resolution

ultrasound-modulated optical imaging with a long-cavity confocal FabryPerot inter-

ferometer (CFPI).24 Our CFPI has a greater etendue — defined as the product of

the acceptance solid angle and the area — than most CCD cameras and provides

parallel speckle processing. In addition, a CFPI can detect the propagation of high-

frequency ultrasound pulses in real time and tolerate speckle decorrelation. A CFPI

is especially efficient at high ultrasound frequencies, where the background light can

be filtered out effectively while the ultrasound-modulated component is transmitted.

With our setup, optical features of ∼ 100 µm in size embedded more than 3 mm

below the surface of chicken breast tissue were resolved with high contrast in both

the axial and the lateral directions.

2. Experimental Setup

The experimental setup is shown in Fig. 2.1. Samples were gently pressed through

a slit along the Z axis to create a semi-cylindrical bump. The orthogonal ultrasonic

and optical beams [Fig. 2.1(b)] were focused to the same spot below the sample
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Fig. 2.1. Experimental setup. (a) Schematic of the experimental setup: L, laser;

TG, trigger generator; PR, pulserreceiver; UT, ultrasonic transducer; FO, focus-

ing optics; CF, collecting fiber; S, sample; CO, coupling optics; PZT, piezoelectric

transducer; BS, beam splitter; SH, shutter; PD, photodetector. (b) Top view of the

sample (S): UB, ultrasound beam; LB, incident light beam; CL, collected light; R,

radius of curvature. Other abbreviations defined in text.
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surface. Diffusely transmitted light was collected by an optical fiber with a 600 µm

core diameter. This configuration minimized the contribution of unmodulated light

from the shallow regions to the background and in addition enhanced the interac-

tion between the ultrasound and some quasi-ballistic light that still existed at small

imaging depths (up to one optical transport mean free path).

A focused ultrasound transducer (Ultran; 15-MHz central frequency, 4.7-mm

lens diameter, 4.7-mm focal length, 15-MHz estimated bandwidth) was driven by a

pulser (GE Panametrics, 5072PR). The ultrasound focal peak pressure was 3.9 MPa,

within the ultrasound safety limit at this frequency for tissues without well-defined

gas bodies.25 The laser light (Coherent, Verdi; 532-nm wavelength) was focused onto

a spot of ∼ 100-µm diameter below the surface of an otherwise scatter-free sample.

The optical power delivered to the sample was 100 mW. Although the CW power in

this proof-of-principle experiment exceeded the safety limit for average power, the

duration of the samples exposure to light can be reduced to only a few microseconds

for each ultrasound pulse propagation through the region of interest, and therefore

the safety limit will not be exceeded in practice even if the focus is maintained

in a scattering medium. The sample was mounted on a three-axis (X1, Y 1, and

Z1) translational stage. The ultrasound transducer and the sample were immersed

in water for acoustic coupling. The light-focusing optics and the collecting fiber

were immersed in the same water tank. The collected light was coupled into the

CFPI, which was operated in a transmission mode (50-cm cavity length, 0.1-mm2 sr

etendue, ∼ 20 finesse). The light sampled by the beam splitter was used in a cavity

tuning procedure. First we swept the cavity through one free spectral range to find

the position of the central frequency of the unmodulated light. Then one CFPI

mirror was displaced by a calibrated amount such that the cavity was tuned to the

frequency of one sideband of the ultrasound-modulated light (15 MHz greater than
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the laser light frequency). An avalanche photodiode (APD; Advanced Photonix)

acquired the light filtered by the interferometer, and the signal was sampled at 100

Msamples/s with a data acquisition board (Gage, CS14100). A computer program

written with LabView software controlled the movement of the CFPI mirror and the

other sequences of the control signals.

A trigger generator (Stanford Research, DG535) triggered both ultrasound-pulse

generation and data acquisition from the APD. As the resonant frequency of the

CFPI cavity coincided with one sideband of the ultrasound-modulated light, the

signal acquired by the APD during the ultrasound propagation through the sample

represented the distribution of the ultrasound-modulated optical intensity along the

ultrasonic axis and, therefore, yielded a one-dimensional (1D) image. In each op-

erational cycle, first the resonant frequency of the CFPI was tuned and then data

from 4000 ultrasound pulses were acquired in 1 s. Averaging over ten cycles was

usually necessary to produce a satisfactory signal-to-noise ratio for each 1D image.

We obtained two-dimensional images by scanning the sample along the Z direction

and acquiring each corresponding 1D image.

3. Results and Discussion

Figure 2.2 presents a typical profile of the temporal dependence of the ultrasound-

modulated light intensity during ultrasound-pulse propagation through the sample.

The time of propagation was multiplied by 1500 ms−1, the approximate speed of

sound in the sample, to be converted into distance along the X axis, where the origin

corresponded to the trigger for the signal acquisition from the APD. The sample,

made from chicken breast tissue, was pressed through the 4-mm-wide slit. A long rod
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Fig. 2.2. Temporal dependence of the ultrasound-modulated light intensity during

the propagation of an ultrasound pulse through the sample.

of 60-mm diameter, made from black latex, which was transparent for ultrasound

but absorptive for light, was placed below the sample surface along the Z axis of

the cylindrical tissue bump of a 2-mm radius. Because the profiles of the optical

radiance and the ultrasound intensity within the sample determined the distribution

of the ultrasound-modulated optical intensity, the maximum corresponded to the

crossing point between the optical and the ultrasonic axes, as indicated in Fig. 2.2.

The differences between the optical properties of the object and the tissue created

a deep dip in the ultrasound-modulated light intensity when the ultrasound pulse

passed through the object.

To investigate the axial and lateral resolutions, we imaged two chicken breast

tissue samples (Fig. 2.3). The samples were prepared with 3.2- and 3-mm radii of

curvature, respectively, in the cylindrical bumps. Two objects, shown in Figs. 2.3(b)

and 2.3(d), were made from 100-mm-thick black latex and placed in the centers of

curvature of the prepared samples, i.e., 3.2 and 3 mm below their respective surfaces.

Their wide sides were parallel to the ultrasound beam and perpendicular to the light

beam. We took the difference between the profiles of the modulated intensity along

the X axis and the typical profile without objects present and, subsequently, divided
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the difference by the latter profile point by point to obtain the relative profiles,

which are shown as gray-scale images with five equally spaced gray levels from 0

to 1 [Figs. 2.3(a) and 2.3(c)]. Figure 2.3(e) presents the 1D axial intensity profiles

along the X axis taken from the image in Fig. 2.3(a) at positions Z = 15.11 mm

and Z = 14.86 mm, with an arbitrary origin. At position Z = 15.11 mm, the gap

had an actual width of only 70 mm along the X axis and was resolved with 55%

contrast. When the gap size was reduced to 50 mm at Z = 14.86 mm, the contrast

decreased to 40%. Similarly, Fig. 2.3(f) presents the 1D lateral intensity profile along

the Z axis taken from the image in Fig. 2.3(c) at X = 3.17 mm. The gap had an

actual width of 120 µm along the Z axis and was resolved with a 50% contrast. If we

use the minimal sizes of the resolvable gaps at 50% contrast as the resolutions, the

estimated axial and lateral resolutions are 70 and 120 µm, respectively. However,

the ultimate resolvable gap sizes at minimal contrast should be much smaller.

4. Conclusion

In summary, this study has demonstrated the feasibility of high-resolution ultra-

sound-modulated optical tomography in biological tissue with an imaging depth of

several millimeters. A CFPI was shown to be able to isolate ultrasonically mod-

ulated light from the background efficiently in real time. The resolution can be

further improved by use of higher ultrasound frequencies. This technology can eas-

ily be integrated with conventional ultrasound imaging to provide complementary

information.
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Fig. 2.3. Measurement of the axial and lateral resolutions. (a) Measurement and

(b) image of an object, showing the axial resolution. (c) Measurement and (d) image

of an object, showing the lateral resolution. (e) 1D axial profiles of intensity from

the data in (a). (f) 1D lateral profile of intensity from the data in (c).
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CHAPTER III

ULTRASONIC MODULATION OF MULTIPLY SCATTERED LIGHT:

AN ANALYTICAL MODEL FOR ANISOTROPICALLY

SCATTERING MEDIA∗

1. Introduction

In spite of a variety of different experimental configurations that have been invented

to efficiently measure the ultrasonically modulated component of the light emerg-

ing from biological tissue, the exact nature of the acousto-optical effect in a highly

optically scattering medium is still not well understood due to the complicated light-

ultrasound interaction that occurs in the presence of optical scatterers. Approximate

theories in the optical diffusion regime under a weak scattering approximation have

been developed that include one or both of the main mechanisms of modulation.

Mechanism 1 is the optical phase variations that are due to the ultrasonically in-

duced movement of the optical scatterers,4,7 whereas mechanism 2 is the optical

phase variations that are due to ultrasonically induced changes in the optical index

of refraction. Mechanism 1 was first modeled by Leutz and Maret4 in a case of

isotropic optical scattering, where an homogeneous infinite scattering medium is tra-

versed by a plane ultrasound wave. It was also modeled by Kempe et al.7 Mechanism

2 was first modeled by Mahan et al.,17 and it was subsequently combined together

with the mechanism 1 by Wang.18 In all cases, a weak scattering approximation

∗Reprinted with permission from S. Sakadžić and L. V. Wang, ”Ultrasonic Modula-
tion of Multiply Scattered Coherent Light: An Analytical Model for Anisotropically
Scattering Media”, Phys. Rev. E 66, 026603 (2002). Copyright 2002 by the Ameri-
can Physical Society.
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is assumed and a method of diffusing-wave spectroscopy5,6 is applied. In addition,

the current models are based on nonabsorbing and isotropic scattering media rather

than the more realistic absorbing and anisotropic scattering media.

In this paper we extend the solution for the temporal autocorrelation function

of the electrical field component obtained in Ref.,18 incorporating into the model

a general scattering phase function. The organization of the paper is as follows.

Section 2 describes the derivation of the autocorrelation function of the ultrasound-

modulated electric field along paths of length s while the detailed derivations are

deferred to the Appendix A. In Sec. 3 we incorporate the expressions obtained in

Sec. 2 into the solution for the total electric field autocorrelation function transmitted

through a scattering slab in the case of a plane source of coherent light and a point

detector. We examine the accuracy of our analytical solution with an independent

Monte Carlo simulation in Sec. 4. In Sec. 5 we use both the Monte Carlo simulation as

well as the analytical solution for the autocorrelation function to explore the validity

of the similarity relation. In Sec. 6, we present the dependence of the total electric

field autocorrelation function on the ultrasonic and optical parameters including

the ultrasonic frequency and amplitude as well as the scattering and absorption

coefficient. Finally, a brief summary of our conclusions is presented.

2. Autocorrelation of a Single Pathlength

Consider the propagation of coherent light through a homogeneous scattering me-

dium irradiated by a plane ultrasonic wave. If we neglect all the polarization effects,

the temporal autocorrelation function of the electric field component of the scattered
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light at the point detector position can be written as follows:

G1(τ) = 〈E(t)E∗(t + τ)〉 . (3.1)

We assume that the photon mean free path is much longer than the optical

wavelength (weak scattering) and the acoustic amplitude is much less than the optical

wavelength. In this weak scattering approximation, the correlation between different

random paths vanishes and only the photons traveling along the same path of length

s produce a nonzero effect. Consequently, the autocorrelation function becomes4,18

G1(τ) =

∫ +∞

0

p(s) 〈Es(t)E
∗
s (t + τ)〉U 〈Es(t)E

∗
s (t + τ)〉B ds, (3.2)

where p(s) is the probability density function of path length s. In Eq. (3.2) we

assume that the contributions from Brownian motion (B) and ultrasound (U ) are

independent and that we can separate them.

The remaining task in this section is to consider the ultrasound component of

Eq. (3.2) when photon scattering is anisotropic. Following the derivations in Refs.,4,18

the autocorrelation for paths of length s can be written as

〈Es(t)E
∗
s (t + τ)〉U =

〈
exp

{
−i

[
N∑

j=1

∆φn,j(t, τ) +
N−1∑
j=1

∆φd,j(t, τ)

]}〉
. (3.3)

In Eq. (3.3), ∆φn,j(t, τ) = φn,j(t + τ) − φn,j(t), where φn,j(t) is the phase vari-

ation induced by the modulated index of refraction along the jth free path and

∆φd,j(t, τ) = φd,j(t + τ)− φd,j(t), where φd,j(t) is the phase variation induced by the

modulated displacement of the jth scatterer following the jth free path. Summation

is going over all N free paths and N − 1 scattering events along the photon path.

Averaging is over time and over all the photon paths of length s. When the phase



20

variation is small (much less than unity), we can approximate Eq. (3.3) with

〈
Es(t)E

∗
s
(t + τ)

〉
U

= exp [−F (τ)/2] , (3.4)

where the function F (τ) is

F (τ) =

〈[
N∑

j=1

∆φn,j(t, τ) +
N−1∑
j=1

∆φd,j(t, τ)

]2〉
. (3.5)

Let us assume that the plane ultrasound waves propagate along the Z direction

with wave vector ka = kaêa, where ˆ indicates a unity vector, and ka = 2π/λa,

where λa is the ultrasonic wavelength. Along the photon path with N free paths,

the positions of the N − 1 scatterers are r1, r2, ..., rN−1. We will associate each

free path between two consecutive scattering events with a vector lj = rj − rj−1,

(lj = lj êj). The expressions for ∆φn,j(t, τ) and ∆φd,j(t, τ) in terms of the ultrasound

amplitude A, background index of refraction n0, and the amplitude of the optical

wave vector k0 are18

∆φn,j(t, τ) = (4n0k0Aη) sin

(
1

2
ωaτ

)
sin

(
1

2
kalj cos θj

)
1

cos θj

(3.6a)

× cos

[
ωa

(
t +

τ

2

)
− ka · rj−1 + rj

2

]
,

∆φd,j(t, τ) = (2n0k0A) sin

(
1

2
ωaτ

)
[(êj+1 − êj) · êa] cos

[
ka · rj − ωa

(
t +

τ

2

)]
,(3.6b)

where coefficient η depends on the acoustic velocity of the material va, the density of

the medium ρ, and the adiabatic piezo-optical coefficient ∂n/∂p : η = (∂n/∂p)ρv2
a.

In Eqs. (3.6), θj is the angle between the propagation directions of the light and

ultrasound (cos θj = êa · êj), and ωa = 2πfa, where fa is the ultrasonic frequency. As

in Ref.,18 we assume that optical scatterers are oscillating due to the ultrasound with

the same amplitude as the surrounding fluid, and that the phase of their oscillation

is following the ultrasound pressure changes.
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Now we can express the function F (τ) from Eq. (3.5) as

F (τ) =

〈
N∑

j=1

∆φ2
n,j(t, τ)

〉

t, Π(s)

+

〈
2

N∑
j=2

j−1∑

k=1

∆φn,j(t, τ)∆φn,k(t, τ)

〉

t, Π(s)

+

〈
N−1∑
j=1

∆φ2
d,j(t, τ)

〉

t, Π(s)

+

〈
2

N−1∑
j=2

j−1∑

k=1

∆φd,j(t, τ)∆φd,k(t, τ)

〉

t, Π(s)

+

〈
2

N∑
j=1

N−1∑

k=1

∆φn,j(t, τ)∆φd,k(t, τ)

〉

t, Π(s)

. (3.7)

The averaging over time t of each term on the right side of Eq. (3.7) is an

easy task, while the averaging over all the allowed paths Π(s) of length s with N

free paths is more difficult. In order to simplify the probability density function

of a particular photon path p(l1, ..., lN), we will first make some assumptions. The

number of steps N in each photon path in the diffusion regime is much larger than

unity. Consequently, even if the total path length s is fixed, the correlation between

the lengths of free paths lj is still weak. As a result, we have

p(l1, ..., lN) = p(l1)p(l2)...p(lN)g(ê1, ..., êN) , (3.8)

where p(lj) = l−1 exp(−lj/l) is the probability density for a photon to travel a dis-

tance lj between two scattering events, and g(ê1, ..., êN) is the probability density

for the photon to travel along the directions ê1, ..., êN . Because the probability of

scattering a photon traveling in direction êj into direction êj+1 is described with

phase function f(êj · êj+1), we can write Eq. (3.8) as

p(l1, ..., lN) = ps(ê1)
N∏

j=1

p(lj)
N−1∏
j=1

f(êj · êj+1) , (3.9)

where ps(ê1) is the probability density function of the starting photon direction ê1 in

the scattering medium. Note that we assumed the phase function does not depend
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on the azimuth angle or the incident direction.

Using Eq. (3.9) as the probability density function and going through some

algebra (see the Appendix), Eq. (3.7) becomes

F (τ) ' s

l
(2n0k0A)2 sin2

(
1

2
ωaτ

){
η2 (kal)

2 Re
[
Ĵ(Î−Ĵ)−1

]
0,0

+
1

3
(1−g1)

}
, (3.10)

where Re
[
Ĵ(Î − Ĵ)−1

]
0, 0

represents the real part of the (0, 0) element of the matrix

Ĵ(Î − Ĵ)−1 and the elements of the matrix Ĵ are defined as

Jm, n = g1/2
m g1/2

n

√
2m + 1

2

√
2n + 1

2

∫ 1

−1

T (x)Pm(x)Pn(x)dx, (3.11)

T (x) =
1

1− ikalx
,

where Pj(x) is a Legendre polynomial of order j, and gj is the jth Legendre polyno-

mial expansion coefficient of the scattering phase function [Eq. (A.2)]. Thus, g1 is

equal to the scattering anisotropy factor g, i.e., the average cosine of the scattering

angle. The value Re
[
Ĵ(Î − Ĵ)−1

]
0, 0

is the limit of the Re
[
ĴQ(ÎQ − ĴQ)−1

]
0, 0

when

Q approaches infinity, where ĴQ is the Q×Q matrix whose elements are defined by

Eq. (3.11).

We will rearrange the expression for F (τ) to

F (τ) = s(2n0k0A)2 sin2 (ωaτ/2) (δn + δd) , (3.12)

where

δn = η2k2
al Re

[
Ĵ(Î − Ĵ)−1

]
0, 0

, δd =
1− g

3l
.
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3. Autocorrelation for a Slab: Analytical Solution

In this section, we will test the accuracy of our analytical expression for F (τ) from

the preceding section with an independent Monte Carlo simulation in the case of

an infinitely wide scattering slab. Slab geometry has been considered previously for

various particular problems.4–6,18,19,26,27 We will solve Eq. (3.2) for anisotropically

scattering and absorbing media based on the expression for function F (τ) obtained

in the preceding section.

The Z axis of the coordinate system is perpendicular to the infinitely wide

slab of thickness L. The index of refraction of both the surrounding and scattering

media is n0. A plane ultrasonic wave propagates along the slab (in the X − Y

plane) and is assumed to fill the whole slab. At the same time, one side of the slab

is irradiated by a plane electromagnetic wave, and a point detector measures the

temporal autocorrelation function of the electric field component on the other side

of the slab. By solving the diffusion equation for such geometry, it is possible to find

a reasonably good expression18,26,27 for the photon path length probability density

function p(s). We follow the derivation of p(s) from Refs.18,26 by applying an infinite

number of image sources and introducing extrapolated-boundary conditions26,27 to

obtain the following expression:

p(s) = K(s)
∞∑
i=0

{
[(2i + 1) L0 − z0] exp

(
− [(2i + 1) L0 − z0]

2

4Ds

)

− [(2i + 1) L0 + z0] exp

(
− [(2i + 1) L0 + z0]

2

4Ds

)}
, (3.13)

K(s) =
1

2
√

πD

sinh
(
L0

√
µaD−1

)

sinh
(
z0

√
µaD−1

) s−3/2 exp (−µas) ,

where D = l∗/3 is the diffusion constant; L0 is the distance between the two ex-
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trapolated boundaries of the slab; z0 is the location of the converted isotropic source

from the extrapolated incident boundary of the slab; and l∗ is the isotropic scattering

mean free path defined as l∗ = l/(1 − g). The distance between the extrapolated

boundary and the corresponding real boundary of the slab is l∗γ (γ = 0.7104). The

converted isotropic source is one isotropic scattering mean free path into the slab.

Therefore, L0 = L + 2l∗γ, and z0 = l∗(1 + γ).

Incorporating the influence of Brownian motion of scatterers4–6 and the expres-

sion for F (τ), we can solve the integration in Eq. (3.2) over s for the temporal

autocorrelation function:

G1(τ) = C
sinh

(
z0

√
(SU + SB + µa)D−1

)

sinh
(
L0

√
(SU + SB + µa)D−1

) , (3.14)

C = sinh
(
L0

√
µaD−1

)
/ sinh

(
z0

√
µaD−1

)
,

where SB = 2τ/(τ0l
∗) is the term due to Brownian motion (τ0 is the single-particle

relaxation time), and SU is the term due to the ultrasonic influence:

SU =
1

2
(2n0k0A)2 sin2 (ωaτ/2) (δn + δd) . (3.15)

4. Monte Carlo Simulation

To provide an independent numerical approach, we modified the existing public-

domain Monte Carlo package28 for the transport of light in scattering media to

sample the autocorrelation function according to Eqs. (3.2) and (3.3). Because it

would be very time-consuming to physically simulate a point detector using the

Monte Carlo code, we applied the principle of reciprocity in our simulation: the

slab is illuminated by a point source and the transmitted light is collected by a
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plane detector. The scattering angle of a photon in our Monte Carlo simulation is

determined by the Henyey-Greenstein phase function,29 but it would be trivial to

extend it to any analytically or numerically defined phase function. For details of

the Monte Carlo implementation, refer to Ref.19

As a first comparison between our analytical solution and the Monte Carlo

simulation, we neglect both the optical absorption by setting µa to zero and the

Brownian motion effect by setting τ0 →∞. In Eqs. (3.14) and (3.15) we see that the

value of G1(τ) oscillates between 1 at τ = 0 and the minimum value at τ = π/ωa.

The maximum variation of G1(τ) is compared for different values of kal while ka

and the ratio L/l (the number of mean free paths in a slab of thickness L) are kept

constant. We repeat the test for several different values of the scattering anisotropy

factor g and the acoustic amplitude A.

The results are shown in Fig. 3.1. The analytical predictions (solid lines in

Fig. 3.1) fit the Monte Carlo calculations (empty scatterers) very well. In general,

increasing the value of g leads to a decreased maximum variation of G1(τ) due to a

decreased number of equivalent isotropic scattering events inside the slab. Further,

a larger ultrasonic amplitude increases the maximum variation of the temporal au-

tocorrelation function due to the larger movement of scattering centers and greater

modulation of the index of refraction. Finally, the maximum variation grows in a

slab geometry with kal due to the larger value of the product lδn, while the product

lδd remains unchanged. From Fig. 3.1 we see that our analytical model works well

for a wide range of kal even when the anisotropy factor is non-zero. However, for

kal < 1 the results should be taken with a caution, since our analytical model is valid

for higher values of the kal product (see the Appendix).
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Fig. 3.1. The kal dependence of the maximum variation of the temporal autocor-

relation function. Different lines are for different values of the scattering anisotropy

factor g and the acoustic amplitude A. Empty symbols indicate the Monte Carlo

results: ¤ (g = 0.9, A = 0.1
◦
A), 4 (g = 0, A = 0.1

◦
A ), © (g = 0.9, A = 3.5

◦
A), 5

(g = 0, A = 3.5
◦
A). Solid lines indicate the analytical results. Filed symbols indi-

cate the analytical results as well but by using the similarity relation. The following

parameters are used in the calculations: L/l = 127.35, the wavelength of light in

vacuo is λ0 = 500 nm, n0 = 1.33, fa = 1 MHz, va = 1480 m/s, and η = 0.3211.
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5. Similarity Relation

In this section, we will explore a similarity relation using the verified analytical

solution, rather than the numerical solution shown previously.19 In intensity-based

photon transport theory, there is a similarity relation:30 if the transport scattering

coefficient µ∗s[= µs(1 − g)] remains constant when the scattering coefficient µs and

the scattering anisotropy factor g vary, the spatial distribution of light intensity

will be approximately the same. The similarity relation [µ∗s = µs(1 − g)] can be

rewritten as l∗ = l/(1 − g), where l∗ is the isotropic scattering mean free path.

Here, we will examine the counterpart of this conventional similarity relation in the

ultrasonic modulation of coherent light. In other words, we will compare two cases:

(1) the scattering coefficient is µs and the scattering anisotropy factor is g and (2)

the scattering coefficient is µ∗s[= µs(1 − g)] and the scattering anisotropy factor is

zero. In the following text, the symbols with ∗ indicate case (2).

In Eq. (3.12) we see that the values of δd for both the cases are exactly the same

(δd = δ∗d). On the other hand, the matrix Ĵ for the isotropic case (2) reduces to only

one number: χ = arctan(kal
∗)/(kal

∗) and we have δ∗n = η2k2
al
∗χ/(1− χ).18 However,

the matrix Ĵ for the general case (1) is quite complicated, and a direct analytical

comparison with case (2) is difficult. Instead, we will plot the relative error between

the two cases.

From Fig. 3.2(a), we see that the discrepancy between δ∗n and δn is not very

large (less than 13 percent), even when the scattering anisotropy factor g is 0.9. The

error grows with g and has a maximum around kal
∗ = 2. Because the δd part of the

sum δ = δn +δd is unchanged by the similarity transformation, the relative difference

between δ∗ and δ is even smaller. From Fig. 3.2(b) we see that the relative error of
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respectively (0.1, 0.3, 0.5, 0.7, 0.9) values of the scattering anisotropy factor g.
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δ∗ is less than 8% M/u. The validity of the similarity relation can also been seen in

Fig. 3.1 (Sec. 4).

In conclusion, with a relatively small error, we can apply the similarity relation

in the calculation of the temporal autocorrelation function under the conditions we

considered during the derivation of F (τ) and G1(τ).

6. Dependence on Ultrasonic and Optical Parameters

In this section we will explore the dependence of the autocorrelation function on

the ultrasonic and optical parameters in a slab geometry [Figure 3.3]. Since it has

been shown that the similarity relation can be applied successfully when scattering

is anisotropic, we consider only isotropic scattering. In all of the cases we neglect

Brownian motion and calculate the value of 1 − G1(τ) at one half of an ultrasonic

period (solid lines in Fig. 3.3) according to the analytical solution [Eq. (3.14)]. The

symbols represent the Monte Carlo results.

Figure 3.3(a) shows that the maximum variation decays when the absorption co-

efficient increases. This is because a higher absorption coefficient reduces the fraction

of photons of long path length reaching the detector. Because these long-path-length

photons contribute most to modulation, the maximum variation decreases.

Figure 3.3(b) shows that the maximum variation increases with acoustic fre-

quency, when the amplitude of oscillation A is kept constant. If the ultrasonic power

is constant, values on Fig. 3.3(b) should be divided by f 2
a , and the maximum varia-

tion will decay with acoustic frequency. This is because a higher acoustic frequency

leads to a higher ratio between the scattering mean free path and the ultrasonic

wavelength, which decreases the contribution from the index of refraction (δn) but
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Fig. 3.3. Dependence of the maximum variation of the temporal autocorrelation

function on different ultrasonic and scattering parameters. Solid lines represent the

analytical predictions and symbols represent the Monte Carlo results. (a) Depen-

dence on the absorption coefficient at different values of ultrasonic frequency and

amplitude. (b) Dependence on the ultrasonic frequency at different values of ultra-

sonic amplitude. (c) Dependence on the ultrasonic amplitude at different values of

ultrasonic frequency. (d) Dependence on the scattering coefficient at different values

of ultrasonic frequency and amplitude. The following parameters are used in the

calculation: va = 1480 m/s, η = 0.3211, n0 = 1.33, L = 2 cm, µs = 20 cm−1 [except

in (d)], µa = 0 [except in (a)], and g = 0 .
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has no effect on the contribution from displacement (δd) at the high values of the

product kal.

Figure 3.3(c) shows that the maximum variation increases with the acoustic

amplitude. A greater ultrasonic amplitude increases the maximum variation by in-

creasing both the scatterer displacement (δd) and the index of refraction change (δn).

Figure 3.3(d) shows that the maximum variation increases with the scattering

coefficient. This is because an increase in the scattering coefficient µs leads to a

smaller value of the photon mean free path and a higher number of photon scatterings

along the paths. A higher number of photon scatterings along the paths produces a

higher maximum variation in the autocorrelation function.

In all the cases, we tried to present situations with a small maximum variation

(choosing small amplitude and frequency of ultrasound) as well as situations when

the maximum variation is near unity (usually when the ultrasound amplitude or

frequency is high). In all of these cases, the analytical predictions fit the Monte

Carlo results well. However, the error of the analytical prediction grows when the

maximum variation is large and when the average number of photon steps along the

paths is small. The data is in agreement with our assumptions made during the

derivation of F (τ), i.e., the accumulated phase change along the photon paths is

small enough to apply the approximation between Eqs. (3.2) and (3.4), and that we

are in the diffusion regime, which was necessary for the derivation of F (τ) in the

Appendix, as well as for the derivation of the photon path-length probability density

[Eq. (3.13)].
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7. Conclusion

In conclusion, we have presented an analytical solution for the autocorrelation func-

tion of an ultrasound-modulated electric field along a path with N scatterers when

scattering is anisotropic. A further analytical solution was found for the light trans-

mitted through a scattering slab using a plane source and a point detector. Using

a Monte Carlo simulation, we verified the accuracy of the analytical solution. We

also tested the similarity relation and showed that it can be used as a good approx-

imation in the calculation of the autocorrelation function. Finally, we presented the

dependence of the maximum variation of the autocorrelation function on different

ultrasonic and optical parameters. In general, increasing ultrasonic amplitude and

increasing the scattering coefficient leads us to a larger maximum variation while

increasing the absorption coefficient or ultrasonic frequency leads us to a smaller

maximum variation. Our analytical solution is valid under the following conditions:

diffusion regime transport, a small ultrasonic modulation, and when the value of kal

is not too small.
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CHAPTER IV

MODULATION OF MULTIPLY SCATTERED LIGHT BY

ULTRASONIC PULSES: AN ANALYTICAL MODEL∗

1. Introduction

The existing theoretical model18,20 was developed for the interaction of a plane,

monochromatic (CW) ultrasound wave with diffused light in an infinite scattering

medium, neglecting the polarization effects. It is assumed that the ratio of the optical

transport mean free path ltr to the ultrasonic wavelength λa is large enough that

the ultrasound induced optical phase increments associated with different scattering

events are weakly correlated.7,20 However, this assumption may not be valid in cases

where broadband pulsed ultrasound is applied, which is a promising option for the

development of soft tissue imaging technology based on the ultrasound modulation

of light.22,31,32

In this work, we extend present theory to cases where broadband ultrasound

pulses interact with diffused light. In Sec. 2, we generalize the relation between the

ultrasound induced optical scatterer movement and the fluid displacement in accor-

dance with the analytical solution for a small rigid sphere oscillation in a viscous

fluid. In Sec. 3, we develop an expression for the time averaged temporal autocor-

relation function of the electrical field component associated with the optical paths

of length s in turbid media, when an infinite train of ultrasonic pulses traverse the

∗Reprinted with permission from S. Sakadžić and L. V. Wang, ”Modulation of Mul-
tiply Scattered Coherent Light by Ultrasonic Pulses: An Analytical Model”, Phys.
Rev. E 72, 036620 (2005). Copyright 2005 by the American Physical Society.
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media. The approximate similarity relation is valid for a broad range of ltr/λa values.

We show that, in general, a correlation exists between the phase increments due to

scatterer displacement and phase increments due to index of refraction changes even

when the value of ltr/λa is large. In Sec. 4, we explore the influence of ultrasound

frequencies on the behavior of ultrasound-modulated optical intensity. We also com-

pare a simple heuristic Raman-Nath solution for the acousto-optical effect in a clear

medium with our solution for the behavior of the modulated intensity. In Sec. 5, we

present a complete solution for ultrasound modulation for a few distinct profiles of

ultrasound pulses in slab transmission and reflection geometry. Finally, a summary

of the results is presented.

2. Ultrasound Induced Movement of the Optical Scatterers

In general, the equations governing the ultrasound induced motion of a particle

in a fluid are complex. In this work, we consider the oscillations of a small rigid

spherical particle in a viscous flow, with no-slip conditions applied on the surface of

the particle. It is assumed that the Reynolds number is much smaller than unity, and

that the particle radius a0 is smaller than the smallest scale in the flow. The Reynolds

number is given by a0W/ηk, where ηk is the kinematic viscosity of the fluid, and W

represents the amplitude of the relative sphere velocity in respect to the velocity of

the surrounding fluid. These conditions are likely to be satisfied by optical scatterers

in biological soft tissues, if we assume the ultrasound fields commonly generated in

practice.

The equations derived for the general case of nonuniform flow33,34 can be sim-

plified significantly if we consider the plane ultrasonic wave and neglect the effect
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of gravity. In the latter case, the relation between the Fourier transform of fluid

velocity ũ(f) and the Fourier transform of particle velocity ṽ(f) is given by35,36

ṽ(f) = ũ(f)Y (fr, γ), (4.1)

where

Y (fr, γ) =
1− ifr − (i− 1)(3fr/2)1/2

1− i(2γ + 1)fr/3− (i− 1)(3fr/2)1/2
. (4.2)

In Eq. (4.2), the relative ultrasonic frequency, fr = f/ν0, is calculated in respect to

ν0 = 3ηk/(2πa2
0); i =

√−1 is the imaginary unit; and γ = ρ̂/ρ is the relative sphere

density where ρ̂ and ρ are densities of the sphere and the fluid, respectively. The

Fourier transform of the function c(t) is given by

c̃(f) =

∫ +∞

−∞
c(t) exp(i2πft)dt. (4.3)

As shown in Ref.,36 when the relative density of a particle such as an exogenous

microbubble ultrasound contrast agent is low (γ < 1), the amplitude of the particle

oscillation is greater than the amplitude of the fluid oscillation, and the phase of

the particle oscillation precedes the phase of the fluid oscillation. However, in soft

biological tissue, an endogenous optical scatterer has a density just slightly greater

than the density of the surrounding medium. Also, the kinematic viscosity should be

greater than, or equal to, the kinematic viscosity of water, which is approximately

10−6m2s−1 at room temperature. In that case, the amplitude of the scatterer os-

cillation is slightly smaller than the amplitude of the medium oscillation, and the

phase of the scatterer movement is slightly retarded in respect to the fluid move-

ment. Therefore, the movement of the optical scatterer is expected to follow closely

the movement of the surrounding fluid, although this model might be too simple to

fully account for the complexities of real biological tissue.
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3. Temporal Autocorrelation Function for the Train of

Ultrasound Pulses

In this model, we consider the independent multiple scattering of temporarily coher-

ent diffused light in a scattering medium homogeneously filled with discrete optical

scatterers in a general case of anisotropic optical scattering. We neglect the polar-

ization effects and assume that the optical wavelength λ0 is much smaller than the

scattering mean free path l. We also assume that an ultrasonic plane wave is prop-

agating unperturbed along the x axis without attenuation. The acoustical pressure

in the medium is given by P (r, t) = P0f(x, t), where P0 is the pressure amplitude,

and the pressure propagation is represented by the function f(x, t). Analogous to

previous work37,38 where the acousto-optical effect caused by pulsed ultrasound is

analyzed in a clear medium, we assume that the pressure propagation function f(x, t)

represents an infinite train of ultrasound pulses

f(x, t) =
+∞∑

n=−∞
f0(x− vat− nvaT ), (4.4)

where va is the ultrasonic speed, and T is the time period between ultrasound pulses.

The shape of the single ultrasonic pulse is given by function f0(x− vat).

The power spectral density (PSD) of the scattered light at the position of a

point detector can be represented as

P(ν) =

∫ +∞

−∞
Γ(τ)ei2πντdτ, (4.5)

where Γ(τ) is the time averaged autocorrelation function of the electrical field.39

We assume in this simple model that due to the weak scattering approximation

(l/λ0 À 1), the fields belonging to different random paths add incoherently to the
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average and that only photons traveling along the same path of length s contribute

to the autocorrelation function.4,5, 40–42 Consequently, the time averaged autocorre-

lation function of the electrical field can be written as

Γ(τ) =

∫ ∞

0

p(s)Γs(τ)ds, (4.6)

where p(s) is the probability density function that the optical paths have length

s, and Γs(τ) is the time averaged autocorrelation function of the electrical field

associated with the paths of length s. We further assume the independence of the

optical phase increments induced by the Brownian motion of the scatterers and those

induced by ultrasound through mechanisms 1 and 2. Then, Γs(τ) can be represented

as Γs,U(τ)Γs,B(τ), where the indices B and U are associated with the Brownian

motion and the ultrasonic effects, respectively. The influence of Brownian motion

has been considered previously in the literature,5,20,40,43 and it can be expressed as

Γs,B(τ) = exp[−2sτ/(ltrτ0)], where ltr is the optical transport mean free path, and

τ0 is the single particle relaxation time.

To obtain the value of Γs,U(τ), we first consider phase ϕs of the electrical field

component accumulated along the optical path of length s in optically diffusive me-

dia. The value of the electrical field component in the analytic signal representation

is then proportional to exp[−i(ω0t − ϕs)], where ω0 = 2πf0, and f0 is the optical

frequency of the incident monochromatic light.

We assume that the perturbation of the dielectric permittivity of the medium due

to the ultrasound is small and proportional to the ultrasound pressure. Consequently,

perturbation of the optical index of refraction n(x, t) due to ultrasound is also small

and we have

n(x, t) ≈ n0

[
1 +

1

2
Mf(x, t)

]
. (4.7)
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In Eq. (4.7), modulation coefficient M is equal to 2ηP0/ρv2
a, and η = ρ∂n/∂ρ is the

elasto-optic coefficient (we assume for water η ≈ 0.32). For soft biological tissues and

for commonly applied ultrasonic pressures, the value of the modulation coefficient M

is always much less than unity, which is in good agreement with the approximation

we arrived at in Eq. (4.7).

For an optical path of length s, which begins at r0 and ends at rN+1 and has N

scatterers at positions r1,...,rN , the value of the accumulated optical phase calculated

by integrating the index of refraction along the path is approximately equal to18,20

ϕs,N ≈ k0n0

N∑
i=0

|ri+1 − ri|+ k0n0

N∑
i=1

(χi − χi+1)ei(t)

+k0n0

N∑
i=0

1

2
M

∫ ri+1

ri

f(x, t)dr. (4.8)

In Eq. (4.8), integrations in the last term are performed along the straight lines

which connect consecutive scatterers; k0 = 2π/λ0 is the magnitude of the optical

wave vector; χi+1 = cos(θi+1), where θi+1 is the angle between ultrasound wave-

vector ka and the vector li+1 = ri+1 − ri which connects two consecutive scatterers;

and ej(t) is the projection of the ultrasound induced displacement of the jth particle

ej(t) at time t in the ultrasound propagation direction. Comparing Eq. (4.8) with

the previous derivations,20 one more scatterer is included along the optical path for

the convenience of the later averaging.

Several additional assumptions are included in Eq. (4.8). The ultrasound in-

duced displacements of the scatterers are neglected in the limits of the integrals in

the last term on the right-hand side of Eq. (4.8), which is a reasonable approximation

when k0n0M |ej(t)| ¿ 2 and at the same time |ej(t)| ¿ l. In that way, the phase

error due to the approximation is much smaller than one radian for each integral

between two scatterers, and the total value of the error in each integration is much
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smaller than the integral itself, except in some cases where the value of the integral

approaches zero due to increased phase cancelation when integrating occurs along

the direction close to the ultrasound propagation direction. However, these cases

contribute little to the total phase value. We also assume that the distance between

consecutive scatterers can be approximated with li+1 + χi+1[ei+1(t) − ei(t)], which

is the case when k0n0e
2
i (t) ¿ 2l, and |ei(t)| ¿ l. Finally, the accumulated phase

ϕs,N is calculated by integrating the optical phase increments along the straight lines

which connect the scatterers along the optical path. Therefore, it is assumed that

the distortion of the optical waves along the path between two consecutive scatter-

ers due to ultrasound induced change in the optical index of refraction is negligible.

Analogous to the Raman-Nath case of acousto-optical diffraction in clear media,44

we write this condition as QνRN ¿ 1, where Q = lk2
a/k0 and νRN = k0ln0M/2 are

the Klein-Cook parameter and the Raman-Nath parameter, respectively. For the

optical wavelengths in the visible and near-infrared regions in soft biological tissues

and for common ultrasound pressures, the applied approximations limit the range

of the ultrasound frequency values between ≈ 1 kHz and several tens of MHz. This

can also be considered as a lower limit for the kal product between 10−2 and 10−3,

and an upper limit for the kal product around 100, depending on the precise values

of the parameters.

We also assume in Eq. (4.8) that e0(t) = eN+1(t) = 0, i.e., the displacements

of the first and last scatterer (source and detector) are zero. It will be shown that

this assumption is valid when the number of the scattering events along the path is

very large, regardless of the value of the kal product. However, when the kal product

is small, and N is as small as 10, ultrasound induced movement of the source and

detector leads to a significant difference in effect due to mechanism 1.

Since the time invariant part associated with |ri+1 − ri| in Eq. (4.8) has no
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influence on the spectral properties of light, we consider only the other two terms,

and write the ultrasound induced optical phase increment along the path as

ϕs(H, t) = k0n0

N∑
i=1

(χi − χi+1)ei(t) +
1

2
k0n0M

N∑
i=0

∫ ri+1

ri

f(r, t) dr, (4.9)

In Eq. (4.9), term H represents the set of random variables {r0, χ1, l1, ..., χN+1, lN+1}
associated with the paths of length s with N scatterers. The probability density

functions (PDF) of the first scatterer position and the cosines of the starting angle

χ1 are uniform. Also the PDF of the optical pathlength between two scattering

events is given by p(lj) = l−1 exp(−lj/l), where l is the mean optical free path.

Finally, the probability density of scattering a photon traveling in direction ei = li/li

into direction ei+1 = li+1/li+1 is described with the phase function g(ej · ej+1) which

does not depend on the azimuth angle or the incident direction. The development of

the phase function g(ej · ej+1) over the Legendre polynomials Pm(ej · ej+1) is given

by

g(ej · ej+1) =
∞∑

m=0

2m + 1

2
gmPm(ej · ej+1), (4.10)

where g0 = 1, and g1 is the scattering anisotropy factor.

Now, we calculate the power spectral density of the optical intensity as a Fourier

transform of the time averaged autocorrelation function.39 It is interesting to note

at this point that the random process associated with the sample functions ϕs(H, t)

is not wide sense stationary unless the diameter of the whole scattering volume is

much larger than the ultrasound wavelength. In that case, averaging over r0 cancels

the time dependence of the autocorrelation function.

We adopt the notation ∆ϕs = ϕs(H, t+τ)−ϕs(H, t), such that the time averaged

autocorrelation function Γs,U(τ) is expressed as

Γs,U(τ) = exp(−iω0τ) 〈exp(i∆ϕs)〉t,H . (4.11)
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In Eq. (4.11), 〈 〉t,H represents averaging over time, and averaging over all of the

random variables in H.

We proceed by representing the ∆ϕs with the help of Eq. (4.9), as

∆ϕs = ∆ϕs,n + ∆ϕs,d. (4.12)

In Eq. (4.12), ∆ϕs,n is associated with index of refraction changes along the

optical path

∆ϕs,n =
1

2
k0n0M

N∑
i=0

∫ ri+1

ri

∆f(r, t, τ)dr, (4.13)

where ∆f(r, t, τ) = f(r, t+ τ)− f(r, t). Similarly, term ∆ϕs,d on the right-hand side

of Eq. (4.12) is associated with the ultrasound induced movement of the scatterers

∆ϕs,d = k0n0

N∑
j=1

(χj − χj+1)∆ej(t, τ), (4.14)

where ∆ej(t, τ) = ej(t + τ)− ej(t).

Function f(r, t) represents the acoustical pressure propagation [Eq. (4.4)]. Its

representation using the Fourier spectral components is given by

f(x, t) =
1

vaT

+∞∑
n=−∞

f̃0

(
n

vaT

)
exp[−in(kax− ωat)], (4.15)

where ka = 2π/(vaT ) and ωa = 2π/T are, respectively, the ultrasonic wave vector

magnitude and the angular frequency associated with the period between ultrasonic

pulses T . In Eq. (4.15), the Fourier transform f̃0(ν) of the ultrasonic pulse shape

function f0(x− vat) is

f̃0(ν) =

∫ +∞

−∞
f0(u) exp(i2πνu)du. (4.16)

To obtain the expression for the displacement of the scatterers, we assume that

at each ultrasonic frequency f in a spectrum of the infinite train of ultrasonic pulses,
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the relation given by Eq. (4.1) is satisfied. For simplicity, we represent the variable

Y (fr, γ) as a product Y (fr, γ) = S(fr) exp[iφ(fr)], where S(fr) is the amplitude and

φ(fr) is the phase of the scatterer velocity deviation from the fluid velocity. Then,

the relation between the Fourier transforms of the scatterer velocity and the fluid

velocity becomes

ṽ(f) = ũ(f)S(fr) exp[iφ(fr)]. (4.17)

In further derivations, we will denote with Sn and φn the values of S(fr) and φ(fr)

at ultrasound frequencies equal to fn = n/T .

Using Eqs. (4.17) and (4.16), and assuming that the velocity of the fluid is given

by P (x, t)/(ρva), we express the displacement of the jth scatterer as

ej(t) = − iP0

2πρv2
a

+∞∑
n=−∞

n 6=0

f̃0

(
n

vaT

)
Sn exp(−iφn)

n
exp[−in(kaxj − ωat)]. (4.18)

In Eq. (4.18), we assumed that no streaming is present in the fluid, so the

spectral component associated with n = 0 (dc component) is excluded from the

spectrum. Since the dc component is not playing any role in mechanism 2, it is also

excluded from the solution for the phase term ∆ϕs,n.

By combining Equations (4.13), (4.14), (4.15), and (4.18), we obtain expressions
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for the values of the phase terms ∆ϕs,n and ∆ϕs,d for the train of ultrasound pulses

∆ϕs,n = i
Λ

4π

+∞∑
n=−∞

n 6=0

η

n
f̃0

(
n

vaT

)
exp(inωat)[exp(inωaτ)− 1]

×
N∑

j=0

1

χj+1

[exp(−inkaxj+1)− exp(−inkaxj)], (4.19a)

∆ϕs,d = −i
Λ

4π

+∞∑
n=−∞

n6=0

Sn exp(−iφn)

n
f̃0

(
n

vaT

)
exp(inωat)[exp(inωaτ)− 1]

×
N∑

j=1

(χj − χj+1) exp(−inkaxj), (4.19b)

where Λ = 2n0k0P0/(ρv2
a).

Since the phase increments associated with the different components of the op-

tical path are correlated in general, it is not appropriate to use the approach of a

Gaussian random variable for calculation of 〈exp(i∆ϕs)〉t,H . To simplify the task

of averaging the autocorrelation function, we assume, like in the previous work,18

that the total phase perturbation ∆ϕs due to the ultrasound is much less than one

radian. In that case, it is sufficient to consider only the first two terms in the devel-

opment of the exponential function from Eq. (4.11). The linear term 〈∆ϕs〉t,H in the

development is zero for any pulse shape function f0(u), so, finally, we have

〈exp(i∆ϕs)〉t,H ≈ 1− 1

2

〈
∆ϕ2

s

〉
t,H

. (4.20)

Note that in the approximation of the small values of ∆ϕs, we can approxi-

mate 〈exp(i∆ϕs)〉t,H with exp(−〈∆ϕ2
s〉t,H /2), but this expression cannot be used

for estimation of the higher harmonics unless the phase increments are uncorrelated.

This task could be accomplished, for example, by taking into account more terms in

Eq. (4.20).



44

To obtain the expression for 〈∆ϕ2
s〉t,H , we first split the whole term into three

parts associated with the ultrasound induced optical index of refraction changes,

with the displacements of the scatterers, and with the correlations between these

two mechanisms:

〈
∆ϕ2

s

〉
t,H

=
〈
∆ϕ2

s,n

〉
t,H

+
〈
∆ϕ2

s,d

〉
t,H

+ 〈2∆ϕs,n∆ϕs,d〉t,H . (4.21)

Among the terms ∆ϕ2
s,d, ∆ϕ2

s,n, and 2∆ϕs,d∆ϕs,n, after averaging over time,

only those which contain products f̃0[n/(vaT )]f̃0[m/(vaT )] where n+m = 0 survive.

As a result, we have

〈∆ϕ2
s,n〉t =

(
Λ

2π

)2 +∞∑
n=−∞

n 6=0

sin2

(
1

2
nωaτ

)
η2

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

×
N∑

j=0

N∑

k=0

exp(inkaxk+1)− exp(inkaxk)

χj+1χk+1

×[exp(−inkaxj+1)− exp(−inkaxj)], (4.22a)

〈∆ϕ2
s,d〉t =

(
Λ

2π

)2 +∞∑
n=−∞

n 6=0

sin2

(
1

2
nωaτ

)
S2

n

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

×
N∑

j=1

N∑

k=1

(χj−χj+1)(χk−χk+1) exp[inka(xk − xj)], (4.22b)

〈2∆ϕs,d∆ϕN,n〉t = −
(

Λ

2π

)2 +∞∑
n=−∞

n 6=0

sin2

(
1

2
nωaτ

)
ηSn exp(iφn)

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

×
N∑

j=0

N∑

k=1

χk − χk+1

χj+1

exp(inkaxk)

×[exp(−inkaxj+1)− exp(−inkaxj)]. (4.22c)

For each frequency n/T , averaging over all free path lengths lj between consec-
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utive scatterers and averaging over all scattering angles χj can be done in the same

way as in Ref.,20 to obtain

〈∆ϕ2
s,n〉t,H =

Λ2

π2

+∞∑
n=1

sin2

(
1

2
nωaτ

)
η2

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

(4.23a)

×(kanl)2Re
[
(N+1)Ĵn(Î−Ĵn)−1−(Ĵ2

n−ĴN+3
n )(Î−Ĵn)−2

]
0,0

,

〈∆ϕ2
s,d〉t,H =

Λ2

π2

+∞∑
n=1

sin2

(
1

2
nωaτ

)
S2

n

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

×
[
N

1− g1

3
− (1− g1)

2

(kanl)2
[1− Re(ĴN−1

n )0,0]

]
, (4.23b)

〈2∆ϕs,d∆ϕN,n〉t,H =
Λ2

π2

+∞∑
n=1

sin2

(
1

2
nωaτ

)
2ηSn cos(φn)

n2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

×(1− g1)
{
−N + Re[Ĵn(Î − ĴN

n )(Î − Ĵn)−1]0,0

}
. (4.23c)

In Eq. (4.23), Î is the identity matrix; the (i, j) element of the matrix Ĵn is defined

as

[Ĵn](i, j) = g
1/2
i g

1/2
j

√
2i + 1

2

√
2j + 1

2

∫ 1

−1

Tn(x)Pi(x)Pj(x)dx, (4.24)

where Tn(x) = (1− ikanlx)−1; Pj(x) is the jth Legendre polynomial; Re[ ]0, 0 repre-

sents the real part of the (0, 0) element of the matrix; and the gm’s are the coefficients

in the phase function development from Eq. (4.10).

For a large number of scattering events N along the path of length s in diffusion

regime, we can approximate Eq. (4.23) by replacing the N with its average value s/l.
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We finally have

〈
∆ϕ2

s,n

〉
t,H

=
+∞∑
n=1

sin2
(nπτ

T

)
Cn(n), (4.25a)

〈
∆ϕ2

s,d

〉
t,H

=
+∞∑
n=1

sin2
(nπτ

T

)
Cd(n), (4.25b)

〈2∆ϕs,n∆ϕs,d〉t,H =
+∞∑
n=1

sin2
(nπτ

T

)
Cn,d(n), (4.25c)

where the C terms, [Cn(n), Cd(n), and Cn,d(n)], represent the amplitudes of the

average of the squares of the phase terms at each ultrasound frequency,

Cn(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

η2

n2
(kanl)2 (4.26a)

×Re
[(s

l
+ 1

)
Ĵn(Î − Ĵn)−1 − Ĵn

2
(Î − Ĵn

s/l+1
)(Î − Ĵn)−2

]
0,0

,

Cd(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2
S2

n

n2

(
s

l

1− g1

3
− (1− g1)

2

(kanl)2
Re(Î − Ĵn

s/l−1
)0,0

)
,(4.26b)

Cn,d(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

2ηSn cos(φn)

n2

×(1− g1)
(
−s

l
+ Re[Ĵn(Î − Ĵn

s/l
)(Î − Ĵn)−1]0,0

)
. (4.26c)

It can be shown by numerical calculation that for a given path length s, the value

of each C term in Eq. (4.26) is approximately independent from particular values of

the optical mean free path l and anisotropy factor g1, as long as the transport mean

free path l/(1−g1) remains constant. This extends the conclusion about the similarity

relation made in the case of large kal values20 to the case of small kal values, too.

For simplicity, in future analysis we will consider only isotropic scattering, noting

that the anisotropic case can be approximately reduced to isotropic by replacing

the l in the isotropic equations with the value of ltr = l/(1 − g1). Also, we will

frequently refer to the transport mean free path when making observations about

the kal dependence of the C terms, although the mean free path will be used in
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isotropic equations for simplicity. In the isotropic case, matrix Ĵn reduces to its

(0, 0) element, Gn = (nkal)
−1 arctan(nkal), and the values of the C terms become

Cn(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

η2

n2
(kanl)2

[(s

l
+ 1

) Gn

1−Gn

− G2
n(1−G

s/l+1
n )

(1−Gn)2

]
,(4.27a)

Cd(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2
S2

n

n2

(
s

3l
− 1−G

s/l−1
n

(kanl)2

)
, (4.27b)

Cn,d(n) =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2

2ηSn cos(φn)

n2

(
−s

l
+

Gn(1−G
s/l
n )

(1−Gn)

)
. (4.27c)

4. Autocorrelation Function Dependence on Ultrasound Frequency

A broadband ultrasound pulse has energy spread over a wide range of ultrasonic

frequencies. In this section, we present a more detailed analysis of the ultrasound

frequency dependence of the ultrasound-modulated optical intensity in optically dif-

fusive media.

We focus here on the single frequency component in a general solution obtained

in Sec. 3. For conciseness, we look at the special case of the train of ultrasonic pulses

when it represents an actual monochromatic plane ultrasound wave (CW). The CW

case solution can be obtained from Eq. (4.27) if we first select the pulse shape function

f0(u) to be equal to zero everywhere except in the interval (−π/k̂a, π/k̂a), where it

is equal to one sinusoidal cycle

f0(u) =





sin(k̂au), u ∈ (−π/k̂a, π/k̂a)

0, elsewhere.
(4.28)

Then, we take the limit k̂a → ka, where ka is the magnitude of the ultrasonic wave

vector associated with the period between ultrasonic pulses. In the limiting case,
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the pressure propagation function, f(x, t) defined in Eq. (4.4), is reduced to a pure

sinusoidal function. The Fourier transform of f0(u) for discreet frequencies ν =

n/(vaT ) and in a limiting case k̂a → ka, is zero for all n except when n = 1. For

n = 1, we have f̃0[1/(vaT )] = ivaT/2, and the set of Eqs. (4.27) simplifies to the

solution for the CW case

〈
∆ϕ2

s,n

〉
t,H

= sin2

(
1

2
ωaτ

)
Cn, (4.29a)

〈
∆ϕ2

s,d

〉
t,H

= sin2

(
1

2
ωaτ

)
Cd, (4.29b)

〈2∆ϕs,n∆ϕs,d〉t,H = sin2

(
1

2
ωaτ

)
Cn,d, (4.29c)

where

Cn = Λ2 η2

k2
a

(kal)
2

[(s

l
+ 1

) G

1−G
− G2(1−Gs/l+1)

(1−G)2

]
, (4.30a)

Cd = Λ2S2

k2
a

(
s

3l
− 1−Gs/l−1

(kal)2

)
, (4.30b)

Cn,d = Λ2 2ηS cos(φ)

k2
a

(
−s

l
+

G(1−Gs/l)

1−G

)
. (4.30c)

In Eq. (4.30), the subscript n is removed from Gn, Sn, and φn, since all of them are

calculated at the same ultrasound frequency, i.e., when n = 1. These expressions

are generalizations of the previously derived theory18,20 to cases where the optical

transport mean free path is smaller than the ultrasonic wavelength. Therefore, in

Eq. (4.30), not only the parts that are linear with s/l are presented, but, also, the

terms that are a result of strong correlation among the optical phase increments due

to the different scattering events and among the optical phase increments due to

the different optical free paths between consecutive scatterers. Another important

difference is that we have significant correlation between the phase increments due

to mechanism 1 and mechanism 2, unless the cosines of the phase lag between the
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ultrasound induced movement of the scatterers and the fluid is exactly zero. This

correlation is represented in the mixed term given by Eq. (4.29c), and it is not

zero even for large values of the kal product when the correlations vanish between

phase increments due to only mechanism 1 or only mechanism 2. This result can be

explained in the following way: at each scatterer position, the phase increment that

is due to displacement can be approximated as a sum of the two terms associated

with the incoming and outgoing scattering directions. Each free path between two

consecutive scatterers is associated with two such displacement terms. The phase

of the sum of these two displacement terms differs from the phase of the index of

refraction term associated with the corresponding free path by exactly π + φ, where

φ is the phase lag between the fluid and the scatterer movement. Therefore, the

product of these terms is negative, and its average is not zero unless cos(φ) = 0.

The strength of the correlation is proportional to the cos(φ), as can be seen from

Eq. (4.30c). For smaller kal values, when the length of the ultrasound wave increases

in respect to the optical transport mean free path, correlations also appear between

the optical phase increments associated with several consecutive displacement and

index of refraction terms.

Figure 4.1 presents the ultrasound frequency dependence of C terms in Eq. (4.30)

for several values of the average number of scattering events s/l along the optical

path. The values of the C terms at s/l = 10 are presented for completeness, although

the applied approximations may not be valid for such a small average number of

scattering events along the optical path. The parameters used in the calculation

are optical mean free path l = 1 mm; elasto-optic coefficient of water at room

temperature η = 0.32; Λ = 1 m−1; and it is assumed that the scatterers are exactly

following the fluid displacement (S = 1, φ = 0). The term Cn,d is multiplied by −1

to be presented on the same graph with the other two terms, although its value is
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Fig. 4.1. Dependence of the C terms on the ultrasound frequency. Index of refrac-

tion term Cn, displacement of the scatterers term Cd, and mixed term Cn,d multiplied

by −1, are presented for three different s/l values. The values of the parameters used

are l = 1 mm, Λ = 1 m−1, η = 0.32, S = 1, and φ = 0.

negative and it actually cancels out, to some extent, the phase accumulations due to

the individual contributions of the two mechanisms of modulation. It is important

to notice that each C term in Eq. (4.30) is not an explicit function of only the kal

product, regardless of the specific values of ka and l. However, the ratio between

each two C terms in Eq. (4.30) for a given s/l ratio depends only on the kal product,

up to a multiplication constant which depends on η, S, and cos(φ).

The index of refraction term Cn, and the displacement term Cd have quite dif-

ferent behaviors at the opposite ends of the kal range, as can be seen from Fig. 4.1.

When the ultrasound pressure amplitude is constant, except for some intermediate

interval of the kal values, Cd is proportional to the square of the scatterer displace-

ment amplitude (i.e. inversely proportional to the square of the ultrasound fre-

quency). When the kal product is small, scatterers along the optical path occupy a

space volume where the ultrasound phase is nearly the same, unless the value of s/l
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Fig. 4.2. Dependence of the components of the Cn term on the ultrasound frequency,

for s/l = 103. The values of the parameters used are: l = 1 mm, Λ = 1 m−1, η = 0.32,

S = 1, and φ = 0.

is very large. The Cd term in that region depends very little on l and s. When the

scatterers are within the same ultrasound phase, we have a cancelation of the optical

phase increments due to mechanism 1 which share the same free path between con-

secutive scatterers. Then, only increments from the first incoming direction χ1, and

the last outgoing direction χN+1 contribute to Cd, and it behaves as if it was caused

by only one scatterer. In contrary, if we choose the source and detector positions to

move with the ultrasound, then, we essentially have cancelation between all of the

displacement contributions in the limit of low kal values. On the other side of the

kal range, when the optical transport mean free path is greater than the ultrasound

wavelength, the phase increments between different scattering events are uncorre-

lated. In that region, the Cd term is equal to the sum of the individual scattering

contributions, which are all proportional to k−2
a .

The behavior of the Cn term is particularly interesting since the correlations

between the phase increments from different free paths are present for much higher
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ultrasound frequencies than in the case of the Cd term. Figure 4.2 presents the Cn

dependence on the ultrasound frequency for (s/l) = 103. We present the Cn as a

sum of three terms, Cn1 + Cn2 + Cn3, which are given by

Cn1 = Λ2 η2

k2
a

(kal)
2
[(s

l
+ 1

)
G

]
, (4.31a)

Cn2 = Λ2 η2

k2
a

(kal)
2

[(s

l
+ 1

) G2

1−G

]
, (4.31b)

Cn3 = Λ2 η2

k2
a

(kal)
2

[
−G2(1−Gs/l+1)

(1−G)2

]
. (4.31c)

The first two terms Cn1 and Cn2 were derived previously18,20 for the case where

the kal values were large enough that we could neglect the terms which were not

linearly proportional to s/l. The term Cn1 (dotted line in Fig. 4.2) is the result of

averaging the individual squares of the phase accumulations along the free paths. It

is proportional to the average number of free paths s/l + 1, and it has a transition

from a weak dependence on kal (in a low kal region) to (kal)
−1 dependence for large

kal. The term Cn2 (dashed line in Fig. 4.2) is proportional to s/l +1, and it is a part

of the result of averaging the products between the phase accumulations along the

different free paths. This term has approximately (kal)
−2 dependence. Finally, term

Cn3 is nonlinear with the s/l part of the result of averaging the products between the

phase accumulations along the different free paths. It is a result of strong correlation

between the phase accumulations along the different free paths for low kal values. It

has a negative value, so the dashed-dotted line in Fig. 4.2 presents the kal dependence

of −Cn3. The term Cn1 eventually dominates all of the other contributions to Cn

when kal is sufficiently large, suggesting that the optical phase increments from the

different free paths that are due to mechanism 2 are completely uncorrelated. For

the lower kal values, the correlations between the phase accumulations along the

different free paths begin to dominate in the Cn term – first through term Cn2 which
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is proportional to s/l , and then combined with the Cn3. When kal is low enough

that all of the scatterers occupy space with the similar ultrasound phase, then the

increments from the different free paths add constructively. The Cn term in that

limit becomes less dependent on ka and l and more dependent on the square of the

total path length s2.

Finally, in a case of Cn,d, when kal is sufficiently large, we also have an absence

of correlation between the phase increments due to mechanisms 1 and 2 for the

components of the optical path that do not share the same free path. However, as

described earlier, the correlation between the phase increments due to mechanisms

1 and 2 for the same free path between two consecutive scatterers is always present,

unless the cosines of the phase lag between the ultrasound induced movement of the

scatterers and the fluid is exactly zero.

It is interesting to compare the intensities of the first sidebands of the acousto-

optically modulated light when it propagates the same length L in optically clear and

optically turbid media. In particular, with the optically clear media, we assume that

the light and the ultrasound are traveling along the x and z directions, respectively,

and that conditions for the Raman-Nath diffraction are satisfied. In a formal Raman-

Nath approach,44 the phase of the electrical field accumulated along the interaction

length L is equal to

ϕ(t) = k0n0L

[
1 +

1

2
M cos(ωat− kaz)

]
. (4.32)

In Eq. (4.32), ωa = 2πfa, where fa is the ultrasound frequency, and M = 2ηP0/(ρv2
a)

is, like in Eq. (4.7), related to the optical index of refraction change that is due to

the ultrasound. We proceed with developing the electrical field in analytic signal

representation, using Bessel functions and calculating the autocorrelation function

< E(t + τ)E∗(t) >t. It is assumed that the amplitude of the electrical field is unity
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Fig. 4.3. Ultrasound frequency dependence of the sum of the C terms, for two

different values of the mass density ratio γ. Values of the parameters are: scatterer

radius a0 = 1 µm, optical mean free path l = 1 mm, kinematic viscosity of water

ηk = 10−6 m2s−1, elasto-optic coefficient of water η = 0.32, and Λ = 1 m−1.

and that the phase disturbance is small enough that the Bessel functions can be

approximated with the linear and quadratic terms. If we limit the solution to only

the first harmonics, the expression for the power spectral density P(ν) is

P(f) =

(
1− CRN

4

)
δ(f − f0) +

CRN

8
δ(f − f0 + fa) +

CRN

8
δ(f − f0 − fa). (4.33)

In Eq. (4.33), f0 is the frequency of unmodulated light; δ( ) is the Dirac delta function;

and the parameter CRN is equal to Λ2L2η2/2.

In the optically multiple scattering regime described in Eq. (4.29), based on

Eqs. (4.11) and (4.20), the power spectral density for the path of length L is given

by the same type of equation as Eq. (4.33), where parameter CRN is replaced with the

sum C = Cn +Cd +Cn,d and pathlength L is substituted for s. For low kal values, Cd

is the dominant term in the sum. In that range of kal values, G ≈ 1− (kal)
2/3, and,

consequently, Cd ≈ Λ2S2/(3k2
a). This result implies that the Cd term behaves like a
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displacement contribution from a single scatterer. It is, therefore, dependent on k−2
a ,

and only slightly dependent on path length L. In the same regime of low kal values,

Cn ≈ CRN. This is in agreement with the fact that in the limit of low kal values, all of

the scatterers are within a space with almost the same phase of the ultrasound field,

and the contributions from mechanism 2 add constructively, regardless of different

scattering directions. On the contrary, when kal is large, the values of the C terms are

significantly lower than CRN due to the increased cancelation of the phase increments.

In that regime, G ≈ π/(2kal) and all of the C terms are well described with their

parts linearly proportional to s/l. The Cn term is then proportional to k−1
a , and it is

lower than CRN by a ratio of s/λa, where λa is the ultrasound wavelength. Compared

to the Cn term, the Cd and Cn,d terms are lower by another l/λa ratio, discarding the

parameters η, S, and cos(φ) involved in their expressions. Both parameters depend

on k−2
a , and their contribution to the sum C is not important compared to Cn.

Finally, we plot in Fig. 4.3 the ultrasonic frequency dependence of the sum C

of the optical phase accumulation terms, Cn, Cd, and Cn,d, for two different relative

mass densities of the optical scatterers (γ = 1 and γ = 3) and three different values

of s/l. We choose the mean optical scattering free path to be l = 1 mm and the

radius of the optical scatterers as a0 = 1 µm. For this set of chosen parameters, in

the range of the small kal values, the particles are following the fluid displacement

in amplitude and phase (S ≈ 1 and φ ≈ 0), and there is no noticeable difference

between the values of the C term for the different γ values. With a large kal, the C

term follows the behavior of the index of refraction term Cn, and the influence of the

Cd term is small. Therefore, only in the range of intermediate kal values, where both

a phase and an amplitude difference between the scatterers and fluid motion exist

(for γ = 3), and where the Cd term contributes significantly to the value of C, does

a discrepancy appear between the values of the C term for different γ values. We
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expect that γ is just slightly different from unity in most situations in real biological

soft tissues, in which case the observed discrepancy is not significant.

We mentioned earlier that when kal is large, the C term is dominated by the

value of the index of refraction term Cn, and it is dependent on the k−1
a . Interestingly,

when kal is small, the value of the elasto-optic coefficient η in water is such that a

large cancelation occurs when summing the C terms, due to the negative value of

Cn,d. As a result, in a low kal limit, the C term behaves like the Cd term at low

values of s/l, i.e., as if it is caused by the displacement contribution of only one

scatterer.

Note that the value of the Λ parameter is proportional to the acoustic pressure

amplitude P0, and, consequently, the modulated intensity has a P 2
0 dependence.

From Fig. 4.3, in the CW regime, when kal is small, pressure amplitude values as

low as P0 = 1 kPa are sufficient to produce values of the C term that are close to

unity, which is at the edge of acceptance for our theory based on the small phase

approximation. When propagating ultrasound pulses, we can apply significantly

higher peak ultrasound pressures without violating the assumption of small phase

increments.

5. Transmission and Reflection of the Ultrasound-modulated

Light Intensity in a Slab Geometry

In this section, we present the analytical expression for an acousto-optical signal

produced by a train of ultrasound pulses in the case of an infinitely wide optically

scattering slab. Since it is possible to find a reasonably good analytical expression for

the pathlength probability density function for both transmission and reflection slab
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geometry, a slab has been considered previously for various problems.4–6,18,19,26,27

We choose the Z axis of the coordinate system to be perpendicular to the infinitely

wide slab of thickness d. The indices of refraction of both the surrounding and

scattering media are n0. A plane ultrasonic wave propagates within the slab (in

the X − Y plane) and is assumed to fill the whole slab. We consider two cases. In

the first case, which we will refer to as the transmission case, one side of the slab

is irradiated by a plane electromagnetic wave, and a point detector measures the

optical intensity on the side of the slab opposite to the light source. By solving the

diffusion equation for this geometry, it is possible to find an expression18,26,27 for

the photon pathlength probability density function p(s). For the transmission case,

we follow the derivation of p(s) from18,26 by applying an infinite number of image

sources and introducing extrapolated-boundary conditions.26,27 We assume isotropic

scattering, in which case, µ
′
s = µs. By virtue of the similarity relation described in

Sec. 3, we can extend the conclusions obtained from the isotropic case to anisotropic

scattering also. The final expression for the probability density function pT (s) for

the path of length s in the transmission geometry is

pT (s) = KT (s)
+∞∑
n=1

[
[(2n− 1)d0 − z0] exp

(
− [(2n− 1)d0 − z0]

2

4Ds

)

−[(2n− 1)d0 + z0] exp

(
− [(2n− 1)d0 + z0]

2

4Ds

)]
, (4.34)

where

KT (s) =
sinh(d0

√
µa/D)

sinh(z0

√
µa/D)

s−3/2 exp(−µas)(4πD)−1/2. (4.35)

In Eq. (4.34), the diffusion constant is given by D = [3(µa +µs)]
−1; d0 is the distance

between the two extrapolated boundaries of the slab; and z0 is the location of the

converted isotropic source from the extrapolated incident boundary of the slab. The

distance between the extrapolated boundary and the corresponding real boundary of
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the slab is lγ∗, where γ∗ = 0.7104 and l is the scattering mean free path (l = 1/µs).

The converted isotropic source is one isotropic scattering mean free path into the

slab. Therefore, d0 = d + 2lγ∗, and z0 = l(1 + γ∗).

In the second (reflection) case, the point detector and the point source of light

are positioned on the same side of the slab, and separated from each other by a

distance ρ in the X −Y plane. We also assume in this case that the slab is infinitely

thick. Similarly to the transmission case, we obtain the solution for the pathlength

probability density function pR(s) in the reflection geometry,

pR(s) =
2π−1/2 [(z2

0 + ρ2)/(4D)]
3/2

[
1 + 2

√
µa(z2

0 + ρ2)/(4D)
] exp

(
2

√
µa(z2

0 + ρ2)

4D

)

×s−5/2 exp(−µas) exp

(
−ρ2 + z2

0

4Ds

)
. (4.36)

The following expressions are needed in order to perform averaging of the terms

in Eq. (4.26) over the pathlength probabilities:

Ts =

∫ +∞

0

pT (s) s ds,

Rs =

∫ +∞

0

pR(s) s ds, (4.37)

Texp,n =

∫ +∞

0

pT (s) exp(−Qns)ds,

Rexp,n =

∫ +∞

0

pR(s) exp(−Qns)ds,
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where Qn = − ln(Gn)/l. After calculating the integrals in Eq. (4.37), we have

Ts =
d0 coth(d0

√
µa/D)− z0 coth(z0

√
µa/D)

2
√

µaD
,

Rs =
ρ2 + z2

0

2D[1 +
√

µa(ρ2 + z2
0)/D]

, (4.38)

Texp,n =
sinh(d0

√
µa/D)

sinh(z0

√
µa/D)

× sinh[z0

√
(µa + Qn)/D]

sinh[d0

√
(µa + Qn)/D]

,

Rexp,n =
1 +

√
(µa + Qn)(ρ2 + z2

0)/D

1 +
√

µa(ρ2 + z2
0)/D

× exp[−
√

(µa + Qn)(ρ2 + z2
0)/D]

exp[−
√

µa(ρ2 + z2
0)/D]

.

If we denote with 〈Cn(n)〉s,T , 〈Cd(n)〉s,T , and 〈Cn,d(n)〉s,T the averages of the

appropriate C terms in Eq. (4.26) over all of the pathlengths in the transmission

geometry, we have, with the help of Eq. (4.38),

〈Cn(n)〉s,T =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2
(kanlη)2

n2

[
Gn(1 + Ts/l)

1−Gn

− G2
n(1−GnTexp,n)

(1−Gn)2

]
, (4.39a)

〈Cd(n)〉s,T =
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∣∣∣∣f̃0
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vaT
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n2

(
Ts

3l
− 1−G−1

n Texp,n

(kanl)2

)
, (4.39b)

〈Cn,d(n)〉s,T =
Λ2

π2

∣∣∣∣f̃0

(
n

vaT

)∣∣∣∣
2
2ηSn cos(φn)

n2

(
−Ts

l
+

Gn(1− Texp,n)

1−Gn

)
. (4.39c)

The expressions for the terms 〈Cn(n)〉s,R, 〈Cd(n)〉s,R, and 〈Cn,d(n)〉s,R averaged

in the reflection configuration are identical with the expressions in Eq. (4.39), with

Ts and Texp,n replaced with Rs and Rexp,n, respectively.

6. Various Pulse Shapes

We present the effects of acousto-optical modulation for two distinct types of the

ultrasound pulse shapes. The Gaussian pulse shape (pulse 1) is used as a represen-

tative of a pulse with the spectrum centered at the zero frequency. Although just an

idealization of the ultrasonic pulse generated in realistic conditions, this is a useful
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example of acousto-optically modulated light dependence on ultrasound frequency.

The second pulse shape function (pulse 2) is produced by modulating the Pulse 1

profile with the cosines function, and it is a more realistic example of commonly

generated ultrasound pulses. Figure 4.4(a) presents the time profiles of the pulse

shape functions, whose expressions are

f0,P1(u) = exp

(
− u2

2(σvaT )2

)
, (4.40a)

f0,P2(u) = exp

(
− u2

2(σvaT )2

)
cos(kuu). (4.40b)

In Eqs. (4.40), va = 1480 ms−1 is the ultrasound velocity in water; T = 20 µs is the

time period between pulses; and σ = 2.5×10−3 is the constant which controls the rel-

ative width of each pulse compared to the distance between consecutive pulses, such

that both pulses have similar bandwidths ≈ 5.3 MHz. In Pulse 2, ku is the magnitude

of the ultrasound wave vector associated with the 8 MHz central frequency.

Figures 4.4(c) and 4.4(d) present the squares of the Fourier transforms of the

ultrasound pulse profiles f0,P1(u) and f0,P2(u), for different ultrasound frequencies

n/T , respectively,

f̃0,P1

(
n

vaT

)
= σvaT

√
2π exp[−2n2(σπ)2], (4.41a)

f̃0,P2

(
n

vaT

)
= σvaT

√
2π exp[−2n2(σπ)2]

× exp

[
−2

(
σπ

T

Tu

)2
]

cosh

(
4n(σπ)2 T

Tu

)
. (4.41b)

In calculating the acousto-optical effect, we use the optical wavelength λ0 =

0.5 µm, the optical index of refraction n0 = 1.33, and the elasto-optic coefficient

in water η = 0.32. We also use the scattering mean free path l = 1 mm, and the

optical absorption coefficient µa = 1 cm−1, which are in agreement with the typical
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Fig. 4.4. Power spectrum of the light modulated by the ultrasound pulses 1 and 2.

(a) Pulse time dependence; (b) ultrasound frequency dependence of the scaling terms;

(c) power spectrum of the pulse 1 before and after multiplication with the scaling

term; (d) power spectrum of the pulse 1 before and after multiplication with the scal-

ing term; parameters used in calculation are index of refraction in water n0 = 1.33;

optical wavelength λ0 = 0.5 µm; ultrasonic pressure amplitude P0 = 105 Pa; speed of

sound in water va = 1480 ms−1; scattering mean free path l = 1 mm; elasto-optic co-

efficient η = 0.32; relative scatterer density γ = 1; period between consecutive pulses

T = 20 µs; pulse 2 central ultrasound frequency T−1
u = 8 MHz; σ = 2.5× 10−3.
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optical transport mean free path and absorption coefficient in soft tissue. Since it is

expected that in reality scatterers closely follow the ultrasound induced fluid motion,

we use a relative scatterer density γ equal to one. For equal values of the scattering

slab thickness in transmission geometry d = 4 cm, and the distance between the

source and the detector in reflection geometry ρ = 4 cm, and for the particular

values of the other parameters used, the probability of the path length is almost

equal for both the transmission and reflection configurations. Therefore, we present

only the transmission case results. We use an ultrasonic pressure amplitude P0 equal

to 105 Pa, which is much higher than the allowed CW ultrasound pressure amplitude

used in the approximation of small ultrasound modulation. The parameters are also

chosen such that the larger ultrasound wavelength in a spectrum is comparable with

the slab thickness (or the source-detector distance), and the approximations involved

in Eq. (4.8) are satisfied.

We define in transmission geometry the scaling coefficient Csc(n), and the total

scaling coefficient 〈Csc(n)〉s,T , at each ultrasound frequency n/T as

Csc(n)

∣∣∣∣f̃
(

n

vaT

)∣∣∣∣
2

= Cn(n) + Cd(n) + Cn,d(n), (4.42a)

〈Csc(n)〉s,T
∣∣∣∣f̃

(
n

vaT

)∣∣∣∣
2

= 〈Cn(n)〉s,T + 〈Cd(n)〉s,T + 〈Cn,d(n)〉s,T . (4.42b)

Based on Eq. (4.27), the scaling coefficient Csc(n) scales the power spectral den-

sity of the ultrasound pulse train for each particular value of the optical pathlength

s. The black squares on Fig. 4.4(b) present the value of Csc(n) for the different

ultrasound frequencies and for three different values of s. The scaling coefficient

Csc(n) behaves similarly to the sum of the C terms in the CW case (Sec. 4). The

open squares in Fig. 4.4(b) present the frequency dependence of the total scaling

coefficient 〈Csc(n)〉s,T , which is the result of path length averaging of the scaling co-
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efficient Csc(n). At each ultrasound frequency, the power spectrum of the ultrasound-

modulated intensity is obtained by scaling the power spectrum of the train of pulses

with this coefficient. The 〈Csc(n)〉s,T behaves similarly to some Csc(n) term at the

average value of the pathlength s. In a high frequency range, it is inversely propor-

tional to the ultrasonic frequency, and in a low frequency range, depending on the

average pathlength value, it might become inversely proportional to the ultrasound

frequency squared.

The open squares in Figs. 4.4(c) and 4.4(d) present the ultrasound frequency

dependence of the power spectrum of the modulated light, given by |f̃ [n/(vaT )]|2

×〈Csc(n)〉s,T , in transmission geometry for the pulse 1 and pulse 2 cases, respectively.

Compared with the power spectra of the pulse shape functions (black circles), both

pulses are more attenuated at the higher ultrasound frequencies due to the decay

of the total scaling coefficient 〈Csc(n)〉s,T . Pulse 1 is attenuated strongly at higher

frequencies, and it suffers a large reduction in bandwidth. The present theoretical

model is not valid for very low values of the kal product, and the concept of infinite

train of pulses allows us to avoid this part of the spectrum even in a case where the

single pulse shape function has very low frequency components, as in the pulse 1

case. Consequently, based on this model, it is difficult to predict the spectrum of the

optical intensity after interaction with only one pulse with a similar shape. However,

based on the presented theoretical derivations, it looks reasonable to us to expect a

large bandwidth reduction for a pulse with a spectrum centered at zero frequency. In

the case of pulse 2, due to the frequency dependence of the total scaling coefficient,

the frequency spectrum of the ultrasound-modulated light is slightly broadened for

≈ 0.3 MHz, and the central frequency is left-shifted by 0.7 MHz. Note, also, that

the value of the total scaling coefficient 〈Csc(n)〉s,T at the central frequency of pulse

2 is several times smaller than its value at the lowest frequency in the spectrum.
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7. Conclusion

In conclusion, we have presented an extension of the theory of ultrasound modulation

of multiply scattered diffused light toward the small kal values, where a strong cor-

relation exists between the ultrasound induced optical phase increments associated

with different components of the optical path. It is shown that an approximate sim-

ilarity relation is valid for this extended range of kal values. For large kal values, an

inverse linear dependence of the modulated signal on the ultrasound frequency is a

consequence of the dominating effect of mechanism 2, while in the low kal range, de-

pending on the particular values of the average number of scattering events along the

pathlength, the signal has a tendency to be even inversely proportional to the square

of the ultrasound frequency. The theory is also extended to account for complex

scatterer movement in respect to surrounding fluid displacement. It is expected that

in cases involving the commonly used ultrasound pressures in medicine, the move-

ment of the optical scatterers in soft biological tissues should not differ significantly

from the movement of the surrounding tissue. In this situation, even for large values

of the kal product, a significant correlation between the contributions of mechanism

1 and 2 exists. Finally, we derived an analytical solution for ultrasound modulation

of light when the train of the ultrasound pulses traverses the scattering media. Ex-

amples of two characteristic pulse shapes with zero and nonzero central frequencies

are presented in the transmission and reflection geometries. It is shown that the

ultrasound frequency dependence of the optical phase variations due to mechanisms

1 and 2 produces a nonuniform deviation of the pulse spectra, as well as decay of the

modulated light power in the higher ultrasound frequency ranges.



65

CHAPTER V

CORRELATION TRANSFER EQUATION FOR

ULTRASOUND-MODULATED MULTIPLY SCATTERED LIGHT

1. Introduction

Since the existing theoretical model18,20,45 is based on the diffusing-wave spectroscopy

(DWS) approach,5,6 applications are limited to simple geometries where it is possible

to approximate the ultrasound field with a plane ultrasound wave and where the prob-

ability density function of the optical path length between the source and detector

is analytically known. As a result, only transmission through,18,20,45 and reflection

from,43,45 an infinite scattering slab filled with ultrasound, have been analytically

studied. In most experiments, however, the optical parameters are heterogeneously

distributed and a focused ultrasound beam is used. Therefore, a more general the-

oretical model, which can locally treat interactions between ultrasound and light in

an optically scattering medium, is needed.

In this chapter, based on the ladder diagram approximation of the Bethe-

Salpeter equation,46 we have derived a temporal correlation transfer equation (CTE)

for ultrasound-modulated multiply scattered light. The work of the many authors

who established the link between multiple scattering theory and the radiative transfer

equation in the last sixty years is reviewed in several excellent articles.27,47–51 Also,

several authors have considered the development of the CTE for scatterers moving

with a given velocity distribution or undergoing Brownian motion.52–55 In our case,

both the ultrasound-induced movement of the scatterers and the ultrasound-induced

change in the optical index of refraction have led to a new form of CTE.
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The derivation of the CTE was performed in several steps. In Section 2, we

first develop an expression for the electric field Green’s function in the presence

of an ultrasound field in a medium free of optical scatterers. Next, we solve the

Dyson equation46 and obtain the value of a mean Green’s function in the presence

of optical scatterers, which can be used to obtain the ensemble averaged field for a

given distribution of optical sources. Finally, in Sec. 3, based on the Bethe-Salpeter

equation, we write the expression for a mutual coherence function of the electric

field and transform it into an integral form of the CTE. Consequently, we derive a

differential form of the CTE. In Section 4, based on the CTE, we develop a Monte

Carlo algorithm. We further calculate the three dimensional distribution of the power

spectrum of the ultrasound-modulated light, produced by 1-MHz focused ultrasound

in an optically scattering slab with optical parameters representative of those in soft

biological tissues at visible and near infrared wavelengths.

2. Development of the Mean Green’s Function

We start by presenting an approximate expression for the Green’s function of the

electric field component in a medium free from optical scatterers in the presence of

an ultrasound field. We assume that the dielectric constant of the medium (ε) experi-

ences small perturbations due to the ultrasound field and that it is well approximated

with ε = ε0[1+2ηP (r, t)/(ρv2
a)], where ε0 is the dielectric constant of the unperturbed

medium; P (r, t) is the ultrasound pressure; ρ is the mass density of the medium; va

is the ultrasound speed; and η is the elasto-optical coefficient (in water at standard

conditions va ≈ 1480 ms−1; and η ≈ 0.32). Consequently, we locally approximate

the optical index of refraction with n(r, t) = n0[1 + ηP (r, t)/(ρv2
a)], where n0 =

√
ε0.
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Let F (r) be the spatial distribution of a monochromatic light source having angular

frequency ω0 and wave-vector magnitude k0 = ω0/c0, where c0 is the speed of light

in vacuum. To simplify the derivations, we neglect the optical polarization effects

and consider only one component Ẽ(r, t) of the electric field. The time retardation is

also neglected, since the time during which the light propagates through the sample

is a small fraction of the ultrasound period. Due to the large ratio between the opti-

cal and ultrasound temporal frequencies, we approximate the quasi-monochromatic

electric field in the medium as Ẽ(r, t) = E(r, t) exp(−iω0t), where E(r, t) is a slowly

changing function of time that satisfies the following equation

[
∇2+ k2

0n
2
0

(
1 + 2

ηP (r, t)

ρv2
a

)]
E(r, t)=F (r), (5.1)

where 2ηP (r, t)/(ρv2
a) ¿ 1.

For a point source at position r0, F (r) = δ(r− r0), where δ( ) is the Dirac delta

function, and the solution of Eq. (5.1) is the Green’s function Ga(r, r0, t). We present

Ga(r, r0, t) as

Ga(r, r0, t) =
exp(ik0n0|r− r0|[1 + ξ(r, r0, t)])

−4π|r− r0| , (5.2)

where the small fractional phase perturbation ξ(r, r0, t) is the slowly varying function

of P (r, t) and where k0n0|r−r0|ξ(r, r0, t) vanishes whenever r → r0 or 2ηP (r, t)/(ρv2
a)

→ 0. We consider moderate ultrasound pressures and distances r not far from the

source position r0 such that k0n0|r−r0|ξ(r, r0, t) ¿ 1, and we approximate ξ(r, r0, t)

with an integral over the optical path increments along the line between r0 and r as

ξ(r, r0, t) =
η

ρv2
a|r− r0|

∫ r

r0

P (r′, t)dr′. (5.3)

By performing the integration in Eq. (5.3) along the straight line which connects

r0 and r, we assume that the ultrasound-induced refraction of the optical waves is
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negligible for the interaction length |r− r0|.
We then consider a medium with discrete and uncorrelated optical scatterers.

We assume independent optical scattering and an optical wavelength λ0 that is much

smaller than ls (weak scattering approximation). We also assume that a monochro-

matic ultrasound field, in an optically scattering medium representative of soft bi-

ological tissue, is uniform on scales that are comparable with ltr, and we locally

approximate the ultrasound pressure with P (r, t) = P0 cos(ωat − ka · r + φ), where

ka = kaΩ̂a is the ultrasound wave vector and P0, ωa, φ, and Ω̂a are the pressure

amplitude, angular frequency, local initial phase, and propagation direction unit

vector of the ultrasound, respectively (|Ω̂a| = 1). This allows us to write an explicit

expression for the fractional phase perturbation ξ(r, r0, t) as

ξ(r, r0, t) =
1

2
M cos

(
ωat− ka · r + r0

2
+ φ

)
sinc

(
ka · r− r0

2

)
, (5.4)

where sinc(x) = sin(x)/x, and M = 2ηP0/(ρv2
a).

The accuracy of Eq. (5.2) with ξ(r, r0, t) given by Eq. (5.4) is worse for large

values of |r− r0|. For further derivations, Eq. (5.2) is required to be approximately

valid for |r−r0| on the order of a few ltr. This requirement is satisfied in soft biological

tissues at visible and near-infrared optical wavelengths (ltr ≈ 1 mm), for moderate

ultrasound pressures (P0 ≤ 105 Pa) and in the medical ultrasound frequency range.45

The scattering cross section σs is related to the optical scattering amplitude

f(Ω̂sc, Ω̂inc) as σs =
∫

4π
|f(Ω̂sc, Ω̂inc)|2dΩsc, where Ω̂inc and Ω̂sc are the direc-

tions of the incident and scattered waves, respectively, and we assume that the

scattering potential is spherically symmetric such that f(Ω̂sc, Ω̂inc) is a function of

Ω̂sc ·Ω̂inc only. The scattering phase function p(Ω̂sc, Ω̂inc) is defined as p(Ω̂sc, Ω̂inc) =

σ−1
s |f(Ω̂sc, Ω̂inc)|2, and it satisfies

∫
4π

p(Ω̂sc, Ω̂inc)dΩsc = 1. In addition, from the op-

tical theorem, we have σs + σa = 4πIm[f(Ω̂inc, Ω̂inc)]/(k0n0), where σa is the optical
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absorption cross section, and Im[ ] is an imaginary part. If ρs is the density of opti-

cal scatterers, then the optical extinction, scattering and absorption coefficients are

defined as µt = µs + µa, µs = σsρs, and µa = σaρs, respectively.

We assume sufficiently small optical scatterers and consider only the far field

approximations of the scattered fields. The far filed approximation of field Es(r, t)

produced by the scattering of the plane wave exp(ik0n0Ω̂inc ·r) from the single optical

scatterer at rs is given by

Es(r, t) = −4πGa(r, rs, t)f(Ω̂sc, Ω̂inc) (5.5)

× exp[ik0n0es(t) · (Ω̂inc − Ω̂sc)] exp(ik0n0Ω̂inc ·rs),

where Ω̂sc = (r − rs)/|r − rs| and the refraction of the optical waves due to the

ultrasound field is neglected. The first exponential term on the right hand side of

Eq. (5.5) accounts for the Doppler shift caused by the ultrasound-induced movement

of the scatterer. The position of the scatterer at moment t is rs + es(t), where rs is

the resting position and es(t) is the small ultrasound-induced displacement given by

es(t) = Ω̂aP0Sa(kaρv2
a)
−1 sin(ωat− ka · rs − φa + φ). In general, Sa and φa represent

the deviations of the amplitude and the phase of the scatterer displacement from

the movement of the surrounding fluid.45,56 However, we expect that an endoge-

nous optical scatterer in soft biological tissue closely follows the ultrasound-induced

”background” tissue vibrations, i.e., Sa ≈ 1 and φa ≈ 0.

When multiple scattering is considered, the mean Green’s function Gs(rb, ra, t)

provides the ensemble averaged value of the electric field (referred to also as a mean

or coherent field) at rb emitted from a point source at ra. We obtain Gs(rb, ra, t) by

solving the Dyson equation,46,52,53 whose far-field expression in the Bourret approx-
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imation is given by

Gs(rb, ra, t) = Ga(rb, ra, t)− 4πρs

∫
Ga(rb, rs, t)f(Ω̂sb, Ω̂as) (5.6)

× exp[ik0n0es(t) · (Ω̂as − Ω̂sb)] Gs(rs, ra, t) drs.

In Eq. (5.6), Ω̂as and Ω̂sb are unity vectors in directions rs−ra and rb−rs, respectively,

and the refraction of the mean optical field that is due to the ultrasound is neglected.

By applying the method of stationary phase to Eq. (5.6), we obtain the following

solution (see Appendix)

Gs(rb, ra, t)=
exp (iK(rb, ra, t)|rb−ra|)

−4π|rb−ra| , (5.7)

where K(rb, ra, t) = k0n0[1 + ξ(rb, ra, t)] + 2πρsf(Ω̂, Ω̂)/(k0n0). The difference be-

tween the mean Green’s function Gs(rb, ra, t) given by Eq. (5.7) and the free-space

Green’s function G(rb, ra, t) = exp(ik0n0|rb−ra|)/(−4π|rb−ra|) is in the form of the

propagation constant K(rb, ra, t). The term ξ(rb, ra, t) is related to the accumulated

optical phase from ra to rb, due to ultrasound-induced changes in the optical index of

refraction. The term 2πρsf(Ω̂, Ω̂)/(k0n0) accounts for the multiple wave scattering

from ra to rb, and its real and imaginary parts are related to the reduction of the

propagation speed and the attenuation of the mean field, respectively. Also, in the

absence of optical scatterers, the term 2πρsf(Ω̂, Ω̂)/(k0n0) vanishes, and Gs(rb, ra, t)

reduces to Ga(rb, ra, t).
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3. Development of the CTE

The mutual coherence function of the electrical field component is given by the

following expression

Γ(ra, rb, t, τ) = 〈E(ra, t)E
∗(rb, t + τ)〉, (5.8)

where ra and rb are two closely spaced points relative to the mean free path lt, and

〈 〉 represents ensemble averaging. We assume a quasi-uniform Γ(ra, rb, t, τ), which

varies more slowly in respect to the center of gravity coordinate rc = (ra + rb)/2

than in respect to the difference coordinate rd = ra − rb (|∂rcΓ| ¿ |∂rd
Γ|). Under

the weak-scattering approximation, Γ(ra, rb, t, τ) satisfies the ladder approximation

of the Bethe-Salpeter equation46,52,53,55 for moving scatterers

Γ(ra, rb, t, τ) = Γ0(ra, rb, t, τ) (5.9)

+

∫ ∫
va

s′(t)v
b
s′′
∗
(t + τ)Γ(rs′ , rs′′ , t, τ)ρ(rs′ , t; rs′′ , t + τ)drs′drs′′ ,

where Γ0(ra, rb, t, τ) = 〈E(ra, t)〉〈E∗(rb, t+τ)〉 is the mutual coherence function of the

coherent (unscattered) field, and rs′ and rs′′ are the positions of the same scatterer

at time moments t and t + τ , respectively. The function ρ(rs′ , t; rs′′ , t + τ) is the

probability density of finding the same scatterer s at position rs′ and time t, and at

position rs′′ and time t+τ . By assuming the far field approximation of the operators

va
s′(t) and vb

s′′
∗
(t+τ), the term va

s′(t)v
b
s′′
∗
(t+τ)Γ(rs′ , rs′′ , t, τ) in Eq. (5.9) can be written

as an integral over all the spectral components of Γ(rs′ , rs′′ , t, τ). The spectral density

Γ̃(rcs,q
′, t, τ) of Γ(rs′ , rs′′ , t, τ) is defined as the spatial Fourier transform in respect

to the difference variable rds = rs′ − rs′′

Γ̃(rcs,q
′, t, τ) = (2π)−3

∫
Γ(rcs, rds, t, τ) exp(−iq′ · rds)drds, (5.10)
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where rcs = (rs′+rs′′)/2. The formal expressions of the operators va
s′(t) and vb

s′′
∗
(t+τ)

in the far-field approximation are given by V a
s′ (t, Ω̂

′
) = −4πGs(ra, rs′ , t)f(Ω̂s′a, Ω̂

′
)

and V b
s′′
∗
(t + τ, Ω̂

′
) = −4πG∗

s(rb, rs′′ , t + τ)f ∗(Ω̂s′′b, Ω̂
′
), respectively, where Ω̂

′
=

q′/|q′|. Finally, the term va
s′(t)v

b
s′′
∗
(t + τ)Γ(rs′ , rs′′ , t, τ) in the integral in Eq. (5.9)

can be written as

va
s′(t)v

b
s′′
∗
(t + τ)Γ(rs′ , rs′′ , t, τ) ≡

∫
V a

s′ (t, Ω̂
′
)V b

s′′
∗
(t + τ, Ω̂

′
)Γ̃(rcs,q

′, t, τ)

× exp(iq′ · rds)dq
′, (5.11)

where

V a
s′ (t, Ω̂

′
)V b

s′′
∗
(t + τ, Ω̂

′
) =

f(Ω̂s′a, Ω̂
′
)f ∗(Ω̂s′′b, Ω̂

′
)

|ra − rs′||rb − rs′′ | exp (iK(ra, rs′ , t)|ra − rs′|)

× exp (−iK∗(rb, rs′′ , t + τ)|rb − rs′′|) . (5.12)

To simplify the expression on the right-hand side of Eq. (5.12), we use previously

defined vectors in the center-of-gravity coordinate systems rc = (ra + rb)/2, rd =

ra−rb, rcs = (rs′ +rs′′)/2, rds = rs′−rs′′ , and we also define Ω̂ = (rc−rcs)/|rc−rcs|.
Since |rd| ¿ |rc − rcs| and |rds| ¿ |rc − rcs|, we assume f(Ω̂s′a, Ω̂

′
) ≈ f(Ω̂, Ω̂

′
),

f(Ω̂s′′b, Ω̂
′
) ≈ f(Ω̂, Ω̂

′
), and

|ra − rs′| ≈ |rc − rcs|+ (rd − rds) · Ω̂/2,

|rb − rs′′ | ≈ |rc − rcs| − (rd − rds) · Ω̂/2,

(|ra − rs′||rb − rs′′ |)−1 ≈ |rc − rcs|−2. (5.13)

Eq. (5.12) can be now presented as

V a
s′ (t, Ω̂

′
)V b

s′′
∗
(t + τ, Ω̂

′
) = σsp(Ω̂, Ω̂

′
)|rc − rcs|−2 exp

(
iKr(rd − rds)·Ω̂− µt|rc−rcs|

)

×exp[iΨn(ra, rb, rs′ , rs′′ , t, τ)], (5.14)
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where Kr = n0k0+4πRe[f(Ω̂, Ω̂)]ρs/(2k0n0), and Re[ ] is the real part. The difference

between the ultrasound-induced phase increments Ψn(ra, rb, rs′ , rs′′ , t, τ) is given by

Ψn(ra, rb, rs′ , rs′′ , t, τ) = k0n0|ra − rs′ |ξ(ra, rs′ , t) (5.15)

−k0n0|rb − rs′′ |ξ(rb, rs′′ , t + τ).

By using the relations in Eq. (5.13), the expression in Eq. (5.15) is approximated as

Ψn(ra, rb, rs′ , rs′′ , t, τ) ≈ Ψn(rc, rcs, Ω̂, t, τ) where

Ψn(rc, rcs, Ω̂, t, τ) =
2Λnka

ka ·Ω̂
sin

(
ωa

τ

2

)
(5.16)

× sin

[
ωa

(
t+

τ

2

)
−ka· rc+rcs

2
+φ

]
sin

(
ka·rc − rcs

2

)
.

In Eq. (5.16), Λn = 2k0n0ηP0/(kaρsv
2
a).

We express the positions rs′ and rs′′ of the scatterer at the time moments t and

t+ τ as rs′ = rs +es(t) and rs′′ = rs +es(t+ τ), respectively. The probability density

function ρ(rs′ , t; rs′′ , t + τ) in Eq. (5.9) is given by

ρ(rs′ , t; rs′′ , t + τ) = ρsδ(rds −∆e(rs, t, τ)), (5.17)

where ∆e(rs, t, τ) = es(t)− es(t + τ). By replacing the integration over positions rs′

and rs′′ with an integration over rds and rcs, Eq. (5.9) becomes

Γ(rc, rd, t, τ) = Γ0(rc, rd, t, τ) (5.18)

+

∫
µsp(Ω̂, Ω̂

′
) exp[iKr(rd − rds) · Ω̂] exp[iΨn(rc, rcs, t, τ)]

× exp(−µt|rc − rcs|)Γ̃(rcs,q
′, t, τ) exp(iq′ · rds)

×δ(rds −∆e(rs, t, τ))drdsd|rc − rcs|dΩdq′,

where we used drcs = |rc − rcs|2d|rc − rcs|dΩ. After performing an additional inte-
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gration over rds, we have

Γ(rc, rd, t, τ) = Γ0(rc, rd, t, τ) (5.19)

+

∫
µsp(Ω̂, Ω̂

′
) exp(iKrrd · Ω̂) exp(−µt|rc − rcs|)

× exp[i(q′ −KrΩ̂) ·∆e(rs, t, τ)] exp[iΨn(rc, rcs, t, τ)]

×Γ̃(rcs,q
′, t, τ)d|rc − rcs|dΩdq′,

where exp(−µt|rc−rcs|) accounts for the attenuation of the field, and the exponential

terms that contain ∆e( ) and Ψn( ) are due to the ultrasound-induced optical phase

increments.

Eq. (5.19) can be further simplified27,47,49,50,55,57,58 by realizing that for quasi-

monochromatic light, the spectral density Γ̃(rcs,q
′, t, τ) of the quasi-uniform mutual

coherence function is approximately concentrated on a spherical shell with radius

|q′| = Kr.
47,49,50,57,58 We relate then the time-varying specific intensity I(rcs, Ω̂

′, t, τ)

to the spectral density Γ̃(rcs,q
′, t, τ) by the following approximation:

Γ̃(rcs,q
′, t, τ) ≈ δ(|q′| −Kr)I(rcs, Ω̂

′, t, τ)/K2
r . (5.20)

For Γ(rc, rd, t, τ) and Γ0(rc, rd, t, τ), we write the expressions similar to Eqs.

(5.10) and (5.20) and combine them to obtain the following relations:

Γ(rc, rd, t, τ) =

∫
I(rc, Ω̂, t, τ) exp(iKrΩ̂ · rd)dΩ, (5.21a)

Γ0(rc, rd, t, τ) =

∫
I0(rc, Ω̂, t, τ) exp(iKrΩ̂ · rd)dΩ, (5.21b)

where the time-varying specific intensity is presented as an angular spectrum of the

mutual coherence function. From Eq. (5.21a), we note that the temporal field correla-

tion function Γ(rc, 0, t, τ) is given by
∫

I(rc, Ω̂, t, τ)dΩ. Therefore, the optical power

spectrum density of the ultrasound modulated light received in some solid angle Ω0
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can be obtained by the temporal Fourier transform of IΩ0(rc, τ) =
∫
Ω0

I(rc, Ω̂, τ)dΩ,

where I(rc, Ω̂, τ) is obtained by averaging the time-varying specific intensity over an

ultrasound period as39

I(rc, Ω̂, τ) =
ωa

2π

∫ 2π/ωa

0

I(rc, Ω̂, t, τ)dt. (5.22)

Finally, the integral form of the CTE is obtained by substituting Eqs. (5.21a),

(5.21b), and (5.20) into Eq. (5.19), performing the integration over |q′|, and by

subsequently removing the integrals over Ω̂, together with exponents exp(iKrΩ̂ · rd)

which are common for all terms. We write the final result as

I(r, Ω̂, t, τ)=I0(r, Ω̂, t, τ)+

∫
µsp(Ω̂, Ω̂

′
) exp(−µt|r− rs|)I(rs, Ω̂

′
, t, τ)

×Φ(r, rs, Ω̂, Ω̂
′
, t, τ)d|r− rs|dΩ

′
, (5.23)

where it is assumed that rcs ≈ rs, and we also removed now redundant subscript c

from the center-of-gravity coordinate rc. In Eq. (5.23), the term Φ(r, rs, Ω̂, Ω̂
′
, t, τ) =

exp[iΨd(rs, Ω̂, Ω̂
′
, t, τ)] exp[iΨn(r, rs, Ω̂, t, τ)] accounts for the ultrasound-induced op-

tical phase increments due to both mechanisms of modulation. The displacement

term Ψd(rs, Ω̂, Ω̂
′
, t, τ) = −Kr(Ω̂− Ω̂

′
) ·∆e(rs, t, τ) is given by

Ψd(rs, Ω̂, Ω̂
′
, t, τ) = Λd[(Ω̂− Ω̂

′
) · Ω̂a] sin

(
ωa

τ

2

)
(5.24)

× cos
[
ωa

(
t+

τ

2

)
−ka ·rs−φa+φ

]
,

where Λd = 2KrSaP0/(kaρsv
2
a).

The differential form of the CTE is obtained by taking the gradient of the

integral form of the CTE [Eq. (5.23)] in the Ω̂ direction.27 By applying Ω̂ · ∂/∂r to
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Eq. (5.23), we have

Ω̂·∂I(r, Ω̂, t, τ)

∂r
= Ω̂·∂I0(r, Ω̂, t, τ)

∂r
(5.25)

+

∫

4π

µsp(Ω̂, Ω̂
′
)

{
Ω̂ · ∂

∂r

∫ r

r0

Φ(r, rs, Ω̂, Ω̂
′
, t, τ) exp(−µt|r− rs|)I(rs, Ω̂

′
,t, τ)d|r−rs|

}
dΩ

′
.

We denote with D{} the derivative in the wavy brackets on the right hand side of

Eq. (5.25) and express its value as

D{} = Φ(r, r, Ω̂, Ω̂
′
, t, τ)I(r, Ω̂

′
, t, τ)

−
∫ r

r0

µtΦ(r, rs, Ω̂, Ω̂
′
, t, τ) exp(−µt|r− rs|)I(rs, Ω̂

′
, t, τ)d|r− rs|

+

∫ r

r0

Ω̂·∂Φ(r, rs, Ω̂, Ω̂
′
, t, τ)

∂r
exp(−µt|r− rs|)I(rs, Ω̂

′
, t, τ)d|r−rs|. (5.26)

Next, we substitute the expressions from Eqs. (5.26) and (5.23) into Eq. (5.25)

to obtain

{
Ω̂· ∂

∂r
+ µt

}
I(r, Ω̂, t, τ) =

{
Ω̂· ∂

∂r
+ µt

}
I0(r, Ω̂, t, τ) (5.27)

+µs

∫

4π

p(Ω̂, Ω̂
′
) exp[iΨd(r, Ω̂, Ω̂

′
, t, τ)]I(r, Ω̂

′
, t, τ)dΩ

′

+Λ̃n(r, t, τ)µs

∫

4π

p(Ω̂, Ω̂
′
)

∫ r

r0

Φ(r, rs, Ω̂, Ω̂
′
, t, τ)

× exp(−µt|r− rs|)I(rs, Ω̂
′
, t, τ)d|r− rs|dΩ

′
,

where Ω̂ · ∂Φ(r, rs, Ω̂, Ω̂
′
, t, τ)/∂r is represented as Λ̃n(r, t, τ)Φ(r, rs, Ω̂, Ω̂

′
, t, τ), and

Λ̃n(r, t, τ) = ikaΛn sin
(
ωa

τ

2

)
sin

[
ωa

(
t +

τ

2

)
−ka · r + φ

]
. (5.28)

After substitution of Eq. (5.23) into Eq. (5.27), we obtain the final expression
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for the differential form of the CTE

{
Ω̂ · ∂

∂r
+ µt − Λ̃n(r, t, τ)

}
I(r, Ω̂, t, τ) = (5.29)

µs

∫

4π

p(Ω̂, Ω̂
′
) exp[iΨd(r, Ω̂, Ω̂

′
, t, τ)]I(r, Ω̂

′
, t, τ)dΩ

′
,

where {Ω̂ · ∂/∂r + µt − Λ̃n(r, t, τ)} I0(r, Ω̂, t, τ) ≈ 0 in the region where the Green’s

function given by Eq. (5.2) is valid. Also, after several extinction lengths from the

source, the coherent time-varying specific intensity becomes negligible in respect to

I(r, Ω̂, t, τ).

Compared to the CTE where the optical scatterers are undergoing Brownian

motion,27,55 in Eq. (5.29) we have a similar term Ψd( ) that is due to the ultrasound-

induced movement of the optical scatterers, and a new term Λ̃n( ).

The time-varying specific intensity I(r, Ω̂, t, τ) in the case of ultrasound mod-

ulation depends on both time t and time increment τ . Of most practical interest

is to find the power spectral density of the ultrasound-modulated light, which im-

plies the availability of an analytical solution for I(r, Ω̂, τ). Unfortunately, due to

correlations among the ultrasound-induced optical phase increments, it is difficult to

create a simple equation for I(r, Ω̂, τ) based on Eqs. (5.29) and (5.22). However, it

should be possible to adapt the numerical codes developed for the Boltzmann equa-

tion to calculate the power spectral density of the ultrasound-modulated light based

on Eq. (5.29). Also, in the diffusion regime, and for ultrasound wavelengths which

satisfy kaltr À 1, it is possible to significantly simplify the expression for I(r, Ω̂, τ)

by pre-averaging55 the ultrasound-induced optical phase increments in Eq. (5.23).

A formal derivation of the temporal correlation diffusion equation for ultrasound-

modulated light will be presented elsewhere.59
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4. Monte Carlo Simulation

We developed a Monte Carlo (MC) algorithm which can, based on Eq. (5.23), calcu-

late the power spectrum of ultrasound-modulated light when a focused ultrasound

field is present in an optically scattering medium with a heterogeneous distribu-

tion of optical parameters. The optically scattering medium is divided along the

Cartesian axes into cells, which are enumerated by vectors n with integer coordi-

nates {nx, ny, nz} assigned to each cell. We also assign an individual value of the

optical absorption and the scattering coefficient to each cell, as well as the scat-

tering anisotropy factor (average cosine of the scattering angle), where a Henyey-

Greenstein scattering phase function is assumed.29 We further assign to each cell an

average ultrasound propagation direction Ω̂a,n, pressure amplitude P0,n, and phase

φn, assuming that the dimensions of the cell are much smaller than the ultrasound

wavelength so that within each cell, the ultrasound field can be well approximated

with Pn(t) = P0,n cos(ωat + φn). The procedure for propagation of the photon pack-

ets in the MC is analogous to the previously described algorithms,19,28 with the

only difference being that at each crossing of the cell boundaries, the remaining

length of the photon free path is adjusted in accordance with the extinction coeffi-

cient within the cell that the photon packet is entering. This simulation approach

should be sufficiently accurate for calculation of the power spectral density in thick

scattering samples, when the light is completely diffused. In other cases, more rig-

orous approach could be used, which takes into account contributions from all the

scattering orders.60,61 The trajectory of each photon consists of many small steps,

which are determined by all of the scattering events and cell boundaries along the

way. For each small photon step of length li within cell m, the optical phase incre-
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ment that is due to ultrasound-induced index of refraction changes is calculated as

∆ϕn,i = k0n0liPm(t)η/(ρv2
a), and we express it as

∆ϕn,i = Pn,cos,i cos(ωat) + Pn,sin,i sin(ωat). (5.30)

The terms Pn,cos,i and Pn,sin,i in Eq. (5.30) are calculated as

Pn,cos,i = k0n0liη(ρv2
a)
−1P0,m cos(φm) (5.31a)

Pn,sin,i = −k0n0liη(ρv2
a)
−1P0,m sin(φm). (5.31b)

Similarly, for each scattering event j within cell n, the optical phase incre-

ment due to ultrasound-induced scatterer displacement is calculated as ∆ϕd,j =

k0n0(kaρv2
a)
−1Ω̂a,n · (Ω̂inc − Ω̂sc)P0,n sin(ωat + φn), and we express it as

∆ϕd,j = Pd,cos,j cos(ωat) + Pd,sin,j sin(ωat). (5.32)

In Eq. (5.32), we use Pd,cos,j = k0n0(kaρv2
a)
−1Ω̂a,n · (Ω̂inc− Ω̂sc)P0,n sin(φn), Pd,sin,j =

k0n0(kaρv2
a)
−1Ω̂a,n · (Ω̂inc−Ω̂sc)P0,n cos(φn). Ω̂inc and Ω̂sc are incident and scattered

photon directions, respectively, and we assume for simplicity that the optical scat-

terers are following the ultrasound-induced movement of the surrounding medium in

both amplitude and phase.

At each scattering event, the total ultrasound-induced phase of the photon

packet accumulated up to this point is ∆ϕ = A cos(ωat + φ), where A cos(φ) =
∑

i Pn,cos,i +
∑

j Pd,cos,j, A sin(φ) = −∑
i Pn,sin,i −

∑
j Pd,sin,j, and i and j count all

of the previous steps and scattering events of the photon. The expression for the

temporal autocorrelation of the photon packet is given by

G(t, τ)=exp{iA[cos(ωat+φ)−cos(ωa(t+τ)+φ)]}. (5.33)
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We use exp[iA cos(φ)] =
∑+∞

m=−∞ imJm(A) exp[imφ] to further develop Eq. (5.33),

where Jm(A) is the Bessel function of the first kind of order m. We arrive then at

the expression

ωa

2π

∫ 2π/ωa

0

G(t, τ)dt=J2
0 (A) +

+∞∑
m=1

2J2
m(A) cos(mωaτ). (5.34)

In the simulation, quantity A is calculated at each scattering event, and the

values of ∆M0(n) = J2
0 (A)∆W and ∆M1(n) = 2J2

1 (A)∆W are obtained, where

∆W = Wµa/µt, and W is the current weight of a photon at the scattering event

which happened in cell n. At the end of the simulation of all of the photon packets,

sums M0(n) =
∑

∆M0(n) and M1(n) =
∑

∆M1(n) of the increments for all of the

scattering events that happened in cell n are proportional to the amplitudes of the

zero and the first harmonics, respectively, of the power spectrum of the ultrasound-

modulated light.

The sample in our simulation is an optically scattering slab infinitely wide in

the Y and Z directions, with a thickness of L = 20 mm along the X axis. We use

µa = 0.1 cm−1 and µs = 10 cm−1 in the entire slab, which are representative of

soft biological tissue for visible and near-infrared light, and, for simplicity, assume

isotropic scattering. A focused ultrasound beam with a monochromatic frequency

of 1 MHz, focal length of 40 mm, and aperture diameter of 25.4 mm is positioned

parallel to the Z axis within the slab and spaced at equal distances from the slab

surfaces. The focal spot of the transducer is at {x, y, z} = {10 mm, 0 mm, 0 mm},
and the pressure amplitude at the focus is P0 = 105 Pa. A pencil light source with

a wavelength of 532 nm irradiates the scattering slab from the x < 0 half space, at

position {x, y, z} = {0 mm, 10 mm, 0 mm}. We assume the same optical index of

refraction n0 = 1.33 in whole space, a mass density of the medium ρ = 103 kgm−3, an

ultrasound velocity va = 1480 ms−1, and an elasto-optical coefficient of water at room
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Fig. 5.1. Monte Carlo simulation of light modulated by a focused ultrasound beam.

The results are presented for an optically scattering slab in a plane defined by

y = 0 mm, which contains the axis of the ultrasound beam. (a) Distribution of

the ultrasound pressure in 105 Pa. (b) Distribution of the amplitude of the zero

harmonic [M0(n)] of the power spectrum of ultrasound-modulated light in arbitrary

units. (c) Distribution of the amplitude of the first harmonic [M1(n)] of the power

spectrum of ultrasound-modulated light in arbitrary units. (d) Distribution of the

modulation depth calculated as M1(n)/M0(n).
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temperature η = 0.32. The distributions of the ultrasound pressure and phase are

calculated with publicly available software Field II,62 and the ultrasound propagation

directions are subsequently obtained by taking the gradient of the ultrasound phase.

The cell grid is centered around the focal spot of the transducer, and it is 10 cm wide

in both the Y and Z directions in order to minimize the error of the simulation within

the central region. The dimensions of the cells are ∆x = 0.5 mm, ∆y = 0.5 mm, and

∆z = 0.1 mm, such that the change in the ultrasound phase within the cell is small.

Figure 5.1(a) presents the ultrasound pressure distribution within the slab in

plane y = 0 mm, which contains the axis of the ultrasound beam. In Figs. 5.1(b) and

5.1(c), we plot the amplitudes of the zero [M0(n)] and the first [M1(n)] harmonics of

the power spectrum of the ultrasound-modulated light in the same plane (y = 0 mm).

Since the light source is at y = 10 mm, the maximum of the distribution M0(n) in

plane y = 0 mm is not at the point of light incidence (x = 0 mm). Figure 5.1(c) shows

that the distribution M1(n) follows the profile of the ultrasound focal zone, which

confirms the assumption that we used to explain UOT experimental results. Finally,

in Fig. 5.1(d) we plot the modulation depth in the y = 0 mm plane, calculated as

M1(n)/M0(n). The modulation depth peaks at 8 % at the ultrasound focus. The

value of the modulation depth is significantly lower at places closer to the point of

light incidence, due to the very high intensity of the unmodulated light. On both sides

of the slab, the modulation depth in the y = 0 mm plane increases at points more

distant from the light source, due to the increased probability of the light interacting

with the ultrasound along the way. However, the total amount of available light at

these points is low. In finding the optimal position for the highest signal-to-noise

ratio of the measurement, we should consider both the modulation depth and the

total available optical intensity.
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5. Conclusion

In conclusion, based on the ladder approximation of the Bethe-Salpeter equation, we

have developed integral and differential forms of the CTE for ultrasound-modulated

light in optically turbid media. We have also developed a Monte Carlo algorithm

which can be used to calculate the power spectrum of the ultrasound-modulated light

in optically turbid media, with heterogeneous distributions of optical parameters

and focused ultrasound fields. The derivations are valid within the weak-scattering

approximation, the medical ultrasound frequency range and moderate ultrasound

pressures. We expect that the CTE will help to better model UOT experiments for

estimations of sensitivity, resolution, and signal-to-noise ratios. Further development

of the theory is necessary to address tightly focused ultrasound fields with very high

ultrasound pressures.
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CHAPTER VI

CORRELATION TRANSFER AND DIFFUSION OF

ULTRASOUND-MODULATED MULTIPLY SCATTERED LIGHT

1. Introduction

In this chapter, we formally derive a temporal correlation transfer equation (CTE)

and a temporal correlation diffusion equation (CDE) for the ultrasound-modulated

multiply scattered light for isotropic optical scattering and kaltr À 1, where ka =

2π/λa. These equations can be used to obtain both analytical and numerical solu-

tions for the distribution of the modulated light intensity in scattering samples with

heterogeneous optical parameters and a nonuniform ultrasound field. In addition,

simple forms of CTE and CDE benefit from all of the mathematical tools available

for the radiative transfer and diffusion equations. A derivation of a more complex

CTE based on the ladder approximation of the Bethe-Salpeter equation is already

presented in the preceding chapter.

We first confirm the agreement between the analytical solution for the scattering

slab filled with ultrasound based on the previous DWS approach and the simple

solution of CDE. We further provide both analytical and Monte Carlo solutions for

the more practical configuration where a cylinder of ultrasound insonifies a scattering

slab. Finally, the experimental results for a similar configuration are compared with

the calculation based on the finite difference model of CDE.
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2. Derivation of Correlation Diffusion Equation

We consider the interaction of ultrasound with monochromatic light that diffuses

through the medium with discrete, uncorrelated optical scatterers. We further as-

sume independent scattering and neglect the polarization for simplicity. Under the

weak scattering approximation that the optical mean free path is much greater than

the optical wavelength, transfer of light can be described by ladder diagrams.46 In

our case, this also involves calculation of the optical phase increments due to both

mechanisms of ultrasound modulation along the optical paths. The phase increments

are generally correlated if they originate at positions separated by less than ltr or

λa,
45 which creates difficulties in the derivation of a simple transfer-like equation for

the temporal correlation of ultrasound-modulated light.63

However, a simple form of CTE can be obtained when kaltr À 1. At scales

larger than ltr, the effect of ultrasound modulation can be calculated by assuming

isotropic scattering, where ltr is used instead of the mean-free path.19,20,45 The con-

dition kaltr À 1 then ensures that the ultrasound-induced optical phase increments

associated with the different scattering events are independent. The only correlation

between phase increments which then exists is between (1) the phase increment due

to index of refraction changes along the free path and (2) the phase increments due to

displacements of these two scatterers along the free path.45 This allows for a simple

form of the CTE that is valid on the scale comparable with ltr. In soft biological

tissues, ltr ≈ 1 mm for visible and near infrared light, and kaltr > 10 for ultrasound

frequencies greater than 2.4 MHz.

Consider optical scatterers at resting positions ra and rb, and assume that the

ultrasound field in volumes of ∼ ltr can be locally approximated as a plane wave
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P (r, t) = P0 cos(ωat − ka · r + φ), where ka = kaΩ̂a, and P0, ωa, Ω̂a, and φ are

the pressure amplitude, angular frequency, propagation direction of the ultrasound

(|Ω̂a| = 1), and local initial phase, respectively. For moderate ultrasound pressures,

the optical index of refraction experiences a small perturbation approximated with

n(r, t) = n0[1 + ηP (r, t)/(ρv2
a)], where ρ is the fluid density, va is the ultrasound

speed, and η is the elasto-optical coefficient. We obtain the increment δ = k0n0|rb−
ra|+ϕa,b(t) of the optical phase along the free path between ra and rb by integrating

the k0n(r, t) along the path, where

ϕa,b(t) = k0n0

[
Ω̂·[eb(t)− ea(t)] +

η

ρv2
a

∫ rb

ra

P (r, t)dr

]
, (6.1)

and k0 is the optical wave number in vacuum. In Eq. (6.1), we approximate the dis-

tance between scatterers with |rb−ra|+ Ω̂ · [eb(t)−ea(t)], where Ω̂|rb−ra| = rb−ra,

es(t) = Ω̂aP0Sa/(kaρv2
a) sin(ωat − ka · rs + φ − φa) is the ultrasound-induced dis-

placement of the optical scatterer at rs (s = a, b), and Sa and φa are, respectively,

deviations of the amplitude and phase of the scatterer from the motion of the sur-

rounding fluid.45 The second term in Eq. (6.1) is the phase increment due to the

ultrasound-induced index of refraction changes. The scatterer displacement in the

integration limits is neglected since |es(t)| ¿ ltr at the relatively high ultrasound fre-

quencies and moderate pressures which are assumed in this calculation. However, at

ultrasound frequencies greater than several tens of MHz when P0 > 105 Pa, integra-

tion along straight lines might be inappropriate due to optical wavefront distortion.45

We assume that the electrical field mutual coherence function Γ(rb′ , t; rb′′ , t+τ) =

〈E(rb′ , t)E
∗(rb′′ , t+τ)〉 for two closely spaced points rb′ and rb′′ is quasi-uniform, and

we relate it to the time-varying specific intensity I(rb, Ω̂, t, τ) by a spatial Fourier

transform over the difference variable rb′ − rb′′ in the center-of-gravity coordinate

system,27,47,55 where rb = (rb
′ + rb

′′ )/2, and 〈 〉 denotes the ensemble averaging. Let
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E(ra, t) be the partial wave scattered at ra toward rb. For isotropic scattering and

kaltr À 1, there is no correlation between ϕa,b(t) and the other ultrasound-induced

optical phase increments accumulated in E(ra, t), and I(rb, Ω̂, t, τ) is independent of

time t. The phase term ∆ϕ = ϕa,b(t + τ)− ϕa,b(t) is given by

∆ϕ = 2Λ sin

(
1

2
ωaτ

)
sin

(
ka · rb − ra

2

)
(6.2)

×
[
SaΩ̂ · Ω̂a sin

(
ωat +

1

2
ωaτ − ka · ra + rb

2
+ φ− φa

)

− η

Ω̂ · Ω̂a

sin

(
ωat +

1

2
ωaτ − ka · ra + rb

2
+ φ

)]
,

where Λ = 2k0n0P0/(kaρv2
a). For ltr ≈ 1 mm and P0 < 105 Pa, the phase term ∆ϕ

satisfies ∆ϕ ¿ 1, and we approximate exp(i∆ϕ) with 1 − |rb − ra|l−1
tr 〈∆ϕ2〉ltr/2.

For isotropic scattering, l−1
tr = µt and µt = µs + µa, where µt, µs, and µa are the

optical extinction, scattering, and absorption coefficients, respectively. 〈∆ϕ2〉ltr is

the average value of ∆ϕ2 in volume V0 ∼ l3tr per mean optical free path. The average

of ∆ϕ2 over the center-of-gravity coordinate (ra + rb)/2 in volume V0 is given by

〈∆ϕ2〉V0 = 2Λ2 sin2

(
1

2
ωaτ

)
sin2

(
ka · rb − ra

2

)
(6.3)

×


S2

a

(
Ω̂ · Ω̂a

)2

+
η2

(
Ω̂ · Ω̂a

)2 − 2Saη cos(φa)


 ,

and from the probability density of the free path l, which is l−1
tr exp[−l/ltr], we obtain

〈∆ϕ2〉ltr = Λ2 sin2

(
1

2
ωaτ

)
(ltrka · Ω̂)2

1+(ltrka · Ω̂)2
(6.4)

×
[
S2

a(Ω̂·Ω̂a)
2+

η2

(Ω̂·Ω̂a)2
− 2ηSa cos(φa)

]
.

where Λ = 2k0n0P0/(kaρv2
a). The three terms in square brackets in Eq. (6.4)

are related to the two mechanisms of modulation and the correlation between the
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phase increments produced by these mechanisms along the same free path, respec-

tively.45 The increment of the intensity I(rb, Ω̂, τ) that is due to the contribu-

tion of I(ra, Ω̂
′
, τ), which is scattered at ra into direction Ω̂, is equal to ∆I =

I(ra, Ω̂
′
, τ) exp(−µt|rb − ra|)[1 − |rb − ra|µt〈∆ϕ2〉ltr/2]. By accumulating all of the

increments along the Ω̂ direction starting from some distant r0, we have

I(rb,Ω̂,τ)=I0(rb,Ω̂,τ)+

rb∫

r0

∫

4π

µsp(Ω̂,Ω̂
′
)∆Id|rb−ra|dΩ̂′

, (6.5)

where I0(rb, Ω̂, τ) is due to the unscattered field.27 After applying Ω̂ ·∇ to Eq. (6.5),

we obtain the CTE as

Ω̂·∇I(r, Ω̂, τ) = −(µa + µs)I(r, Ω̂, τ) +S(r, Ω̂) (6.6)

+µs

∫

4π

p(Ω̂, Ω̂
′
)[1− 1

2
〈∆ϕ2〉ltr ]I(r, Ω̂

′
, τ)dΩ

′
.

In Eq. (6.6), p(Ω̂, Ω̂
′
) = 1/(4π) is the isotropic scattering phase function, and S(r, Ω̂)

is the monochromatic source term. Like in the case of Brownian motion,55 this

equation can be obtained by pre-averaging the phase increments in a more rigorously

derived CTE.63

To obtain the CDE, we apply the standard approximation I(r, Ω̂, τ) ≈ [Φ(r, τ)+

3Ω̂ · J(r, τ)]/(4π) in Eq. (6.6). Φ(r, τ) is actually the temporal field autocorrelation

function related to the optical intensity spectrum by the temporal Fourier transform.

The CDE is

∇ · [D∇Φ(r, τ)]− [µa + µsϕ̂(τ)]Φ(r, τ) + S0(r) = 0. (6.7)

In Eq. (6.7), D = (3µs)
−1, and ϕ̂(τ) is given by

ϕ̂(τ) =
1

2
Λ2 sin2

(
1

2
ωaτ

)[
η2(kaltr) tan−1(kaltr) +

1

3
S2

a − 2ηSa cos(φa)

]
. (6.8)
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Brownian motion could also be considered by including 2DBk2
0µsτ in addition to

µsϕ̂(τ) in Eq. (6.7), where DB is an appropriate diffusion constant.64

3. Results

In infinite media, the solution of Eq. (6.7) for monochromatic point source S0 at the

origin is

Φ(r, τ)= S0(4πD)−1 exp(−r
√

[µa + µsϕ̂(τ)]/D)/r, (6.9)

and it can be used to analytically study various configurations of ultrasound within

the scattering media. In finite media the boundary conditions are identical to those

in the diffusion equation used in radiative transfer.65 For matched optical properties,

continuity requires that Φ(r, τ) and D∂Φ(r, τ)/∂n are constant across the boundary,

where n̂ is a unit vector perpendicular to the boundary. For a scattering half space

(z > 0) filled with ultrasound and irradiated by a pencil source from the free space,

the boundary condition is Φ(r, τ) = 2D∂Φ(r, τ)/∂z, which leads to the extrapolated

zero boundary position at z = −2D.

Eq. (6.7) can be solved analogously to the diffusion equation of fluence rate26 for

Φ(τ), which is Φ(r, τ) integrated over the whole transmission surface of the scattering

slab of thickness L filled with ultrasound and irradiated with the pencil monochro-

matic source S0

Φ(τ) =
3S0

4π

sinh[(z0 + 2D)
√

(µa + µsϕ̂(τ))/D]

sinh[(L + 4D)
√

(µa + µsϕ̂(τ))/D]
. (6.10)

In Eq. (6.10), z0 = 1/µs is the depth of the converted isotropic source and the solution

is, up to the normalization constant, identical to the one obtained earlier.18,20,45

Next, we consider an infinitely wide scattering slab, with surface planes at x = 0
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Fig. 6.1. Modulation depth (MD) of the ultrasound-modulated light for an ultra-

sound cylinder in a scattering slab. (a) and (b) MD obtained analytically and with

MCS, respectively, at z = 0 mm. The white circles mark the ultrasound cross sec-

tion. (c) MD obtained analytically and with MCS for z = 0 mm at the transmission

(x = 20 mm) and reflection (x = 0 mm) planes. (d) MD measured experimentally

and calculated using the ADI for z = 0 mm at the transmission plane.
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mm and x = 20 mm. We assume va = 1480 m/s, ρ = 103 kg/m3, η = 0.32,

µa = 0.1 cm−1, isotropic scattering with µs = 10 cm−1, n0 = 1.33 in whole space,

Sa = 1, and φa = 0, as typical values for soft biological tissues and visible and

near-infrared light.45 A cylinder of radius a = 3.175 mm, infinitely long in the Z

direction, with an axis at (x, y) = (10 mm, 0 mm) is filled with a 5 MHz ultrasound

of pressure amplitude P0 = 105 Pa traveling in the Z direction. A pencil light

source S0 of wavelength λ0 = 532 nm irradiates the slab along the X direction at

(x, y, z) = (0 mm, 10 mm, 0 mm). Eq. (6.7) has solutions Φinc(rd, τ), Φsc(rd, τ),

and Φin(rd, τ), which are for the autocorrelation functions incident from the source,

scattered from the cylinder, and inside the cylinder, respectively.66 If the cylinder

axis is at the origin, then

Φ{..}(rd, τ) =
+∞∑
n=0

cos(nφd)

∫ +∞

0

cos(pzd)Ψ{..}(p)dp, (6.11)

where Ψinc(p) = Hn(x>)In(x<), Ψsc(p) = Bn(p)Kn(x), and Ψin(p) = Cn(p)In(y);

rs = (ρs, φs, zs) and rd = (ρd, φd, zd) are positions of the point source and the detector

in the cylindrical coordinates, and In and Kn are modified Bessel functions of the

first and second kind, respectively; x≶ = ρ≶
√

p2 − k2
out; ρ≶ = min(max)[ρs, ρd];

x = ρd

√
p2 − k2

out; y = ρd

√
p2 − k2

in; k2
in = −[µa + µsϕ̂(τ)]/D; k2

out = −µa/D; Bn

and Cn are given by

Bn(p) = −Hn(zb)
xbI

′
n(xb)In(yb)− ybI

′
n(yb)In(xb)

xbK
′
n(xb)In(yb)− ybI

′
n(yb)Kn(xb)

, (6.12a)

Cn(p) = −Hn(zb)
xbI

′
n(xb)Kn(xb)− xbK

′
n(xb)In(xb)

xbK
′
n(xb)In(yb)− ybI

′
n(yb)Kn(xb)

, (6.12b)

where Hn(zb) = [(sgn(n)+1)S0Kn(zb)]/(2π
2D), xb = a

√
p2 − k2

out, yb = a
√

p2 − k2
in,

zb = ρs

√
p2 − k2

out, and sgn(n) is the sign function. We use Eq. (6.11) to obtain

values for the modulation depth (MD), defined as the amplitude ratio of the first to
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the zeroth harmonics of the modulated light [Fig. 6.1(a)]. Three pairs of independent

cylinder images26 are used to satisfy the boundary conditions. The analytical solution

agrees with the Monte Carlo solution (MCS),19,20 modified for the cylindrical object

[Fig. 6.1(b)]. In Fig. 6.1(c), the two solutions are compared along the Y direction

on the slab surfaces. The MD is higher away from the source, in the shadow of the

cylinder, due to the counteracting contributions of the modulated and unmodulated

light.

In the experiment, we immersed in water a wide, 20 mm thick slab, with µa = 0.1

cm−1 and reduced scattering coefficient µs = 10 cm−1, made of agar, Lyposine 20%,

and Trypan Blue dye. A flat ultrasound transducer with a 5-MHz frequency and

a 3.175-mm radius was positioned, as in the theoretical model, with a surface at

z = −50 mm. A 105 Pa pressure amplitude was measured at z = 0 mm with a

needle hydrophone on the acoustic axis. We used a previously described setup31 to

measure the modulation depth at the transmission plane of the slab. The measured

data [Fig. 6.1(d)] were in agreement with the numerical calculation, which used an

Alternating Direction Implicit algorithm (ADI) adapted for Eq. (6.7). For the ADI,

the nonuniform ultrasound field was calculated using the program FieldII,62 where

transducer apodization and amplitude were adjusted to match the parameters of the

real transducer measured by the hydrophone. The cell size was set to 1/3 mm in

order to appropriately model the boundary conditions.

4. Conclusion

In conclusion, we derived the CTE and the CDE for ultrasound-modulated light

which is valid for optical and ultrasound spatial inhomogeneities on the order of
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ltr, for moderate ultrasound pressures and frequencies satisfying kaltr À 1. CDE

could be of use for the estimation of sensitivity and signal-to-noise ratios in UOT,

where both heterogeneous ultrasound fields and optical parameters are encountered.

It can be solved analytically or numerically by the many methods developed for the

diffusion equation. This permitted us to obtain agreement, for the first time, between

the theoretical model and the experimental measurement of the modulation depth

of ultrasound-modulated light in strongly scattering media. More challenging setups

with highly focused ultrasound and with very high ultrasound pressure should be

the subject of further theoretical development.
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CHAPTER VII

CONCLUSION

In this dissertation, ultrasound-modulated optical tomography was studied both ex-

perimentally and theoretically.

The experimental study has demonstrated the feasibility of high-resolution ultra-

sound-modulated optical tomography in biological tissue with an imaging depth of

several millimeters. A CFPI was shown to be able to isolate ultrasonically mod-

ulated light from the background efficiently in real time. The resolution can be

further improved by use of higher ultrasound frequencies. This technology can eas-

ily be integrated with conventional ultrasound imaging to provide complementary

information.

In theoretical part we have extended the existing analytical model based on

the diffusing-wave spectroscopy (DWS), and we have also developed the correlation

transfer equation (CTE) and the correlation diffusion equation (CDE) for ultrasound-

modulated multiply scattered light.

We have presented an extension of the DWS-based theory of ultrasound mod-

ulation of multiply scattered diffused light for anisotropic optical scattering. We

have first developed an analytical solution for the autocorrelation function of an

ultrasound-modulated electric field along a path with N scatterers when scatter-

ing is anisotropic. A further analytical solution was found for the light transmitted

through a scattering slab using a plane source and a point detector. Using a Monte

Carlo simulation, we verified the accuracy of the analytical solution. We also tested

the similarity relation and showed that it can be used as a good approximation in the

calculation of the autocorrelation function. Finally, we presented the dependence of
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the maximum variation of the autocorrelation function on different ultrasonic and

optical parameters. In general, increasing ultrasonic amplitude and increasing the

scattering coefficient leads us to a larger maximum variation while increasing the

absorption coefficient or ultrasonic frequency leads us to a smaller maximum varia-

tion. Our analytical solution is valid under the following conditions: diffusion regime

transport, a small ultrasonic modulation, and when the value of kal is not too small.

We have also presented an extension of the DWS-based theory of ultrasound

modulation of multiply scattered diffused light toward the small kal values, where

a strong correlation exists between the ultrasound induced optical phase increments

associated with different components of the optical path. It is shown that an approx-

imate similarity relation is valid for this extended range of kal values. For large kal

values, an inverse linear dependence of the modulated signal on the ultrasound fre-

quency is a consequence of the dominating effect of the ultrasound-induced changes of

the optical index of refraction, while in the low kal range, depending on the particular

values of the average number of scattering events along the pathlength, the signal

has a tendency to be even inversely proportional to the square of the ultrasound

frequency. The theory is also extended to account for complex scatterer movement

in respect to surrounding fluid displacement. It is expected that in cases involving

the commonly used ultrasound pressures in medicine, the movement of the optical

scatterers in soft biological tissues should not differ significantly from the movement

of the surrounding tissue. In this situation, even for large values of the kal prod-

uct, a significant correlation between the contributions of mechanism 1 and 2 exists.

Finally, we derived an analytical solution for ultrasound modulation of light when

the train of the ultrasound pulses traverses the scattering media. Examples of two

characteristic pulse shapes with zero and nonzero central frequencies are presented in

the transmission and reflection geometries. It is shown that the ultrasound frequency
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dependence of the optical phase variations due to mechanisms 1 and 2 produces a

nonuniform deviation of the pulse spectra, as well as decay of the modulated light

power in the higher ultrasound frequency ranges.

Based on the ladder approximation of the Bethe-Salpeter equation, we have de-

veloped integral and differential forms of the CTE for ultrasound-modulated light in

optically turbid medium. We have also developed a Monte Carlo algorithm which can

be used to calculate the power spectrum of the ultrasound-modulated optical inten-

sity in optically turbid media, with heterogeneous distributions of optical parameters

and focused ultrasound fields. The derivations are valid within the weak scattering

approximation, the medical ultrasound frequency range and moderate ultrasound

pressures. We expect that the CTE will help to better model UOT experiments for

estimations of sensitivity, resolution, and signal-to-noise ratios. Further development

of the theory is necessary to address tightly focused ultrasound fields with very high

ultrasound pressures.

We have also formally derived the CTE and the CDE for ultrasound-modulated

light which is valid for optical and ultrasound spatial inhomogeneities on the order of

ltr, for moderate ultrasound pressures and frequencies satisfying kaltr À 1. The CDE

could be of use for the estimation of sensitivity and signal-to-noise ratios in UOT,

where both heterogeneous ultrasound fields and optical parameters are encountered.

It can be solved analytically or numerically by the many methods developed for the

diffusion equation. This permitted us to obtain agreement, for the first time, between

the theoretical model and the experimental measurement of the modulation depth

of ultrasound-modulated light in strongly scattering media.
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APPENDIX A

DERIVATION OF THE AUTOCORRELATION FUNCTION FOR

ANISOTROPICALLY SCATTERING MEDIA

The averaging over time of each term on the right side of Eq. (3.7) and over the

lengths lj of all free paths produce:

〈
N∑

j=1

∆φ2
n,j(t, τ)

〉

t, lj

=
(kal)

2

8
(4n0k0Aη)2sin2

(
1

2
ωaτ

) N∑
j=1

[T (xj)+T ∗(xj)],(A.1a)

〈
2

N∑
j=2

j−1∑

k=1

∆φn,j∆φn,k

〉

t, lj

=
1

8
(kal)

2(4n0k0Aη)2 sin2

(
1

2
ωaτ

)
(A.1b)

×
N∑

j=2

j−1∑

k=1

(
j∏

m=k

T (xm) +

j∏

m=k

T ∗(xm)

)
,

〈
N−1∑
j=1

∆φ2
d,j(t, τ)

〉

t, lj

=
1

2
(2n0k0A)2 sin2

(
1

2
ωaτ

) N−1∑
j=1

(xj+1 − xj)
2, (A.1c)

〈
2

N−1∑
j=2

j−1∑

k=1

∆φd,j∆φd,k

〉

t, lj

=
1

2
(2n0k0A)2sin2

(
1

2
ωaτ

)N−1∑
j=2

j−1∑

k=1

{
[(êj+1− êj) · êa](A.1d)

× [(êk+1 − êk) · êa]

(
j∏

m=k+1

T (xm) +

j∏

m=k+1

T ∗(xm)

)}
,

〈
2

N∑
j=1

N−1∑

k=1

∆φn,j∆φd,k

〉

t, lj

=
1

2
kal(2n0k0A)2η sin2

(
1

2
ωaτ

)
(A.1e)

×
[

N−1∑
j=1

N−1∑

k=j

(xk+1 − xk)

(
k∏

m=j

T (xm) +
k∏

m=j

T ∗(xm)

)

+
N∑

j=2

j−1∑

k=1

(xk+1 − xk)

(
j∏

m=k+1

T (xm) +

j∏

m=k+1

T ∗(xm)

)]
,

where T (xm) = 1/(1 − ikalxm), T ∗(xm) is its complex conjugate, i is an imaginary

unit, and we use a variable xm to represent cos θm.
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In order to provide averaging over all scattering directions, as a first step we

expand the phase function for the polar angle f(cos θ) over Legendre polynomials,

f(cos θ) =
∞∑

m=0

2m + 1

2
gmPm(cos θ) , gm =

∫ π

0

f(cos θ)Pm(cos θ) sin θdθ , (A.2)

where cos θ represents the cosine of the deflection angle.

Notice that in Eq. (A.2) g0 = 1, and g1 is equal to the scattering anisotropy

factor g. In the case of Henyey-Greenstein phase function for the polar angle,29

the value of each coefficient gm is the mth power of the scattering anisotropy factor

(gm = gm). Because the azimuth angles are uniformly distributed, the phase function

for both the azimuth and polar angles are simply the polar phase function multiplied

by a constant factor (2π)−1.

In our case the argument of the phase function is the cosine of the angle between

the incoming and outgoing photon direction (êj · êj+1). The unity vector êj in a

spherical coordinate system has a form êj = cos θj êa +sin θj cos ϕj êx +sin θj sin ϕj êy,

and the argument of the phase function in this representation becomes

cos θ = cos θj cos θj+1 + sin θj sin θj+1 cos(ϕj − ϕj+1) . (A.3)

Using the identity from Ref.,67

Pn

(
xy −

√
1− x2

√
1− y2 cos (α)

)
= Pn (x) Pn (y) (A.4)

+2
n∑

k=1

(−1)k cos(kα)(n− k)!

(k + n)!
P k

n (x)P k
n (y) ,

and representing x, y, and α with cos θj, cos θj+1, and π +ϕj−ϕj+1, we first provide

integration over all uniformly distributed azimuth angles in Eqs. (A.1). Because in

Eqs. (A.1) nothing depends on the azimuth angle, all terms with associate Legendre

polynomials P k
n ( ) in Eq. (A.4) vanish during the integration. Thus, for the further
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integration over the polar angles, the probability density function of the photon to

travel along the directions ê1,...,êN reduces to the function f (N)(cos θ1, ..., cos θN),

which depends only on the polar angles along the photon path:

f (N)(cos θ1, ..., cos θN) = p̃s(cos θ1)
N−1∏
j=1

f (2)(cos θj, cos θj+1) , (A.5a)

f (2)(cos θj, cos θj+1) =
∞∑

m=0

2m + 1

2
gmPm(cos θj)Pm(cos θj+1) , (A.5b)

where p̃s(cos θ1) is the probability density function of the starting polar angle. For

simplicity, we assume p̃s(cos θ1) = 1/2 (uniform distribution) instead of the actual

anisotropic phase function, which was shown not to affect the final result in the

diffusion regime.

Using the orthogonality of Legendre polynomials, now it is straightforward to

obtain the following equations:

Hj(xj−1, xj+1) =

∫ 1

−1

f (2)(xj−1, xj)T (xj)f
(2)(xj, xj+1)dxj (A.6a)

=
∞∑

m=0

∞∑
n=0

g1/2
m

g1/2
n

√
2m + 1

2

√
2n + 1

2
Jm,nPm(xj−1)Pn(xj+1) ,

〈T (xj)〉xi
=

∫ 1

−1

...

∫ 1

−1

T (xj)f
(N)(x1, ..., xN)dx1...dxN (A.6b)

=
(
Ĵ
)

0,0
,

〈
j∏

m=k

T (xm)

〉

xi

=

∫ 1

−1

...

∫ 1

−1

(
j∏

m=k

T (xm)

)
fN(x1, ..., xN)dx1...dxN (A.6c)

=
∞∑

i(1)=0

...

∞∑

i(j−k)=0

J0, i(1)Ji(1), i(2)...Ji(j−k), 0

=
(
Ĵ j−k+1

)
0,0

,
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where Ĵ is the matrix defined by

Jm,n = g1/2
m

g1/2
n

√
2m + 1

2

√
2n + 1

2

∫ 1

−1

T (x)Pm(x)Pn(x)dx , (A.7)

and the (Ĵ)0,0 represents the (0, 0) element of the matrix Ĵ .

Thus, the average of the right side of Eq. (A.1a) over all the polar angles becomes

〈
N∑

j=1

∆φ2
n,j(t, τ)

〉

t, lj , xi

= N
(kal)

2

8
(4n0k0Aη)2 sin2

(
1

2
ωaτ

)[
(Ĵ)0,0 + (Ĵ∗)0,0

]
. (A.8)

On the other hand, the average of the right side of Eq. (A.1b) has a more

complicated form:

〈
2

N∑
j=2

j−1∑

k=1

∆φn,j∆φn,k

〉

t, lj , xi

=
1

8
(kal)

2(4n0k0Aη)2 sin2

(
1

2
ωaτ

)
(A.9)

×
N∑

j=2

j−1∑

k=1

[
(Ĵ j−k+1)0,0 + (Ĵ∗j−k+1)0,0

]
.

If we replace the sums on the right-hand side of Eq. (A.9) with

N∑
j=2

j−1∑

k=1

(Ĵ j−k+1)0,0 =
{

Ĵ2(Î−Ĵ)−1
[
(N − 1)Î − Ĵ(Î − ĴN−1)(Î − Ĵ)−1

]}
0,0

, (A.10)

and further keep only the terms that are proportional to a large number N in the

above equation, we have

〈
2

N∑
j=2

j−1∑

k=1

∆φn,j∆φn,k

〉

t, lj , xi

' N
1

8
(kal)

2(4n0k0Aη)2 sin2

(
1

2
ωaτ

)
(A.11)

×
[
Ĵ2(Î − Ĵ)−1 + Ĵ∗2(Î − Ĵ∗)−1

]
0,0

.
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Joining Eqs. (A.8) and (A.11), we finally have

〈
N∑

j=1

∆φ2
n,j(t, τ) + 2

N∑
j=2

j−1∑

k=1

∆φn,j∆φn,k

〉

t, lj , xi

' N
1

4
(kal)

2(4n0k0Aη)2 sin2

(
1

2
ωaτ

)

×Re
[
Ĵ(Î − Ĵ)−1

]
0, 0

, (A.12)

where Re is for the real value.

The remaining task is to provide the average of the right-hand side of Eqs. (A.1c),

(A.1d), and (A.1e), over all polar angles. As a first step, we define the coefficient

Φm,n for any function Φ(x), and for each pair of nonnegative integer numbers (m,n):

Φm,n =

∫ 1

−1

√
2m + 1

2

√
2n + 1

2
g1/2

m g1/2
n Φ(x)Pm(x)Pn(x)dx . (A.13)

Then, according to the definition in Eq. (A.13), it is easy to show that for the

functions x, x2, T (x), and xT (x) we have

(x)0,j = δ1,jg
1/2
1 /3 , (A.14)

(
x2

)
0,0

= 1/3 ,

[xT (x)]0,j = (ikal)
−1 (T0,j − δ0,j) ,

Tj, 1 = (ikal)
−1

√
3g1 (T0, j − δ0, j) ,

where δa,b represents the delta function.

Using the results in Eq. (A.14), the average over all the polar angles of the

right-hand side of Eq. (A.1c) is

〈
N−1∑
j=1

∆φ2
d,j(t, τ)

〉

t, lj , xi

= (2n0k0A)2 sin2

(
1

2
ωaτ

)
(N − 1)

1

3
(1− g1) . (A.15)
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On the other hand, the average of the right-hand side of Eq. (A.1d) is

〈
2

N−1∑
j=2

j−1∑

k=1

∆φd,j∆φd,k

〉

t, lj , xi

= (2n0k0A)2 sin2

(
1

2
ωaτ

)
(1− g)2

(kal)2
Re[M̂ ]0,0, (A.16)

where M̂ = ĴN−2 − Î. Since the right-hand side of Eq. (A.16) is not proportional to

N , we consider it much smaller than the right-hand side of Eq. (A.15), and we have

〈
N−1∑
j=1

∆φ2
d,j(t, τ) + 2

N−1∑
j=2

j−1∑

k=1

∆φd,j∆φd,k

〉

t, lj , xi

' N(2n0k0A)2 sin2

(
1

2
ωaτ

)
1− g1

3
.

(A.17)

In general, the errors of approximation we made in Eqs. (A.12) and (A.17) are

small when both kal and the average N are large. Conversely, the error can be large:

for example, if N = 10, and kal = 1, the error is about 50% for isotropic scattering.

Finally, the average over all the polar angles of the right-hand side of Eq. (A.1e)

is

〈
2

N∑
j=1

N−1∑

k=1

∆φn,j∆φd,k

〉

t, lj , xi

= i(N − 1)
1− g1

kal

[
(Ĵ2)0,0 − (Ĵ∗2)0,0

]
, (A.18)

and it is equal to zero because the elements of the symmetric matrix Ĵ are either

real or imaginary numbers.

The expression for the function F (τ) [Eq. (3.4)] becomes

F (τ) '
〈

N
1

4
(kal)

2(4n0k0Aη)2 sin2

(
1

2
ωaτ

)
Re

[
Ĵ(Î − Ĵ)−1

]
0,0

(A.19)

+N
1

2
(2n0k0A)2 sin2

(
1

2
ωaτ

)
2

3
(1− g1)

〉

N

,

where the last average is over all realizations of the number of free paths N in a

photon path of length s. Since the average value of N is s/l, we have

F (τ) ' s

l
(2n0k0A)2 sin2

(
1

2
ωaτ

){
η2 (kal)

2 Re
[
Ĵ(Î − Ĵ)−1

]
0,0

+
1− g1

3

}
. (A.20)
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APPENDIX B

DERIVATION OF THE MEAN GREEN’S FUNCTION

To solve the Dyson Equation [Eq. (5.6)], we first assume that the mean Green’s

function Gs(rb, ra, t) from ra to rb can be represented as

Gs(rb, ra, t) = Ga(rb, ra, t)χ(rb, ra, t). (B.1)

By substituting Eq. (B.1) into Eq. (5.6), we obtain

Ga(rb, ra, t)χ(rb, ra, t) = Ga(rb, ra, t) (B.2)

−
∫

f(Ω̂sb, Ω̂as)χ(rb, rs, t)

4π|rb − rs||rs − ra| exp[ik0n0F (rs)]ρsdrs,

where

F (rs) = |ra − rs|[1 + ξ(rs, ra, t)]+|rs − rb|[1 + ξ(rb, rs, t)] + es(t)·(Ω̂as − Ω̂sb).(B.3)

Without loss of generality, we assume that the ultrasound propagates along

the Z axis. In order to simplify the appearance of further expressions, the fol-

lowing notation will be used: the distance between two points at ra with coordi-

nates {xa, ya, za} and rb with coordinates {xb, yb, zb} will be written as rab, where

rab ≡ |ra − rb|; we will denote with {xab, yab, zab} coordinates of the vector differ-

ence ra − rb; the terms ξ(ra, rb, t) and χ(rb, ra, t) will be written as ξab and χba

respectively; partial derivatives will be written using the appropriate subscripts (for

example Fx(rs) ≡ ∂F (rs)/∂xs, Fxy(rs) ≡ ∂2F (rs)/∂xs∂ys).

We first resolve the following integral

Ixy = −
∫∫

f(Ω̂sb,Ω̂as)χbs

4πrasrsb

exp[ik0n0F (rs)]ρsdxsdys (B.4)
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in the X − Y plane from Eq. (B.2). The term k0n0F (rs) in Eq. (B.4) changes

much faster than the slow varying part ρsf(Ω̂sb, Ω̂as)χbs/(4πrasrsb), so we obtain the

approximate value of Ixy by using the method of stationary phase. The integral in

n-dimensional space (x ∈ Rn) of the form

I(λ) =

∫

D

g(x) exp[iλf(x)]dx, (B.5)

where the phase λf(x) oscillates much faster than function g(x) can be approximated

as

I(λ) ≈ g(x0)√
|D(A)| exp

(
iλf(x0) + iπ

σ

4

) (
2π

λ

)n/2

. (B.6)

In Eq. (B.6), x0 is the single minimum of f(x); A is the Hessian of f(x) given by

A = [∂2f(x)/∂xi∂xj|x=x0 ]; σ is the signature of A calculated as the difference between

the number of positive and negative eigenvalues of A; and condition D(A) 6= 0 is

satisfied where D(A) is the determinant of A. If there is more than one minimum of

f(x), then summation over all minima should be performed.

The functions ξas and ξsb, as well as the term es(t) ·(Ω̂as−Ω̂sb), are independent

from xs and ys, and the partial derivatives of F (rs) can be calculated as

Fx(rs) = xsa(1 + ξas)/ras + xsb(1 + ξsb)/rsb, (B.7)

Fy(rs) = ysa(1 + ξas)/ras + ysb(1 + ξsb)/rsb.

The extrema of F (rs) are given by Fx(rs) = 0 and Fy(rs) = 0, so we obtain the

following relations

xsa/xsb = −ras(1 + ξsb)/[rsb(1 + ξas)], (B.8)

ysa/ysb = −ras(1 + ξsb)/[rsb(1 + ξas)].

Since we consider only small ultrasound-induced optical phase perturbations (|ξsb| <
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1, |ξas| < 1), from Eq. (B.8) we have xsa/xsb ≤ 0 and ysa/ysb ≤ 0.

The second partial derivatives of F (rs) are

Fxx(rs) =
(y2

as+z2
as)(1+ξas)

r3
as

+
(y2

sb+z2
sb)(1+ξsb)

r3
sb

,

Fyy(rs) =
(x2

as+z2
as)(1+ξas)

r3
as

+
(x2

sb+z2
sb)(1+ξsb)

r3
sb

,

Fxy(rs) = −xsaysa(1 + ξas)

r3
as

− xsbysb(1 + ξsb)

r3
sb

, (B.9)

and we can calculate D(A) with the help of Eq. (B.8) as

D(A) = z2
as(1 + ξas)

2/r4
as + z2

sb(1 + ξsb)
2/r4

sb (B.10)

+(1 + ξas)(1 + ξsb)(z
2
sbr

2
as + z2

asr
2
sb)/(rasrsb)

3.

Based on Eqs. (B.9) and (B.10), A is positive definite (D(A) > 0 and also

Fxx(rs) + Fyy(rs) > 0) and σ = 2. For any given zs, we denote with {xs, ys, zs} the

coordinates of a single minimum point rs of F (r). We now apply the approximation

from Eq. (B.6) to the integral in Eq. (B.4) and obtain

Ixy = − iρs

2k0n0

f(Ω̂as, Ω̂sb)χbs

rasrsb

√
D(A)

exp[es(t) · (Ω̂as − Ω̂sb)]

× exp{ik0n0[ras(1 + ξas) + rsb(1 + ξsb)]}, (B.11)

where xs and ys are obtained by solving the Eq. (B.8). We consider ξsb and ξas to be

small perturbations of F (rs), and we assume that we make only a small error by using

the solution of unperturbed F (rs) for xs and ys. From Eq. (B.8) when ξsb = 0 and

ξas = 0, we have xsa/xsb = −ras/rsb, ysa/ysb = −ras/rsb, and zsa/zsb = −γras/rsb,

where γ = 1 if zs belongs to the interval bounded by za and zb, and γ = −1 for all
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other values of zs. We further obtain the relations

xs =
xazsb − xbγzsa

zsb − γzsa

, ys =
yazsb − ybγzsa

zsb − γzsa

,

xsa =
γxabzsa

zsb − γzsa

, ysa =
γyabzsa

zsb − γzsa

, (B.12)

xsb =
xabzsb

zsb − γzsa

, ysb =
yabzsb

zsb − γzsa

,

ras =
|zsa|
zasb

rabs, rsb =
|zsb|
zasb

rabs,

where zasb = |zas|+ |zsb|, and rasb =
√

x2
ab + y2

ab + z2
asb.

By using the expressions from Eq. (B.12), we further obtain rasrsb

√
D(A) ≈ zasb,

and also

exp{ik0n0[ras(1 + ξas) + rsb(1 + ξsb)]} ≈ (B.13)

exp{ik0n0rabs[1 + (|zsa|ξas + |zsb|ξsb)/zasb]}.

When zs is inside the interval bounded by za and zb, then zasb = |zab| and the

expression in Eq. (B.13) is further simplified as

exp{ik0n0[ras(1 + ξas) + rsb(1 + ξsb)]} ≈ exp[ik0n0rab(1 + ξab)]. (B.14)

After the substitution of Eq. (B.11) with obtained approximations into Eq. (B.2)

and subsequent division by Ga(rb, ra, t), we have

χba = 1 +
i2πρs

k0n0

∫
f(Ω̂sb, Ω̂as)χbs

(zasb/rab)
exp{ik0n0[V (zs) + es(t)·(Ω̂as − Ω̂sb)]}dzs,(B.15)

where

V (zs)=rabs

(
1+

|zas|
zasb

ξas+
|zsb|
zasb

ξsb

)
−rab(1+ξab). (B.16)

Without loss of generality, we assume at this point that zb > za. Since the rapidly
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oscillating term in the exponent on the right-hand side of Eq. (B.15) is exactly zero

only when zs ∈ (za, zb), we assume that the value of the integral for zs /∈ (za, zb) is

negligible. When xs and ys satisfy the relations in Eqs. (B.12), and zs ∈ (za, zb),

the vectors rb − rs and rs − ra are collinear. Consequently, f(Ω̂sb, Ω̂as) = f(Ω̂, Ω̂),

Ω̂as − Ω̂sb = 0, and Eq. (B.15) is

χba = 1+
i2πρsf(Ω̂, Ω̂)

k0n0(Ω̂ab · Ω̂a)

∫ zb

za

χbsdzs, (B.17)

with solution

χba = exp

(
i2πρs

f(Ω̂, Ω̂)rab

k0n0

)
. (B.18)

By substituting Eq. (B.18) into Eq. (B.1), the mean Green’s function is

Gs(rb, ra, t)=
exp[iK(rb, ra, t)|rb−ra|]

−4π|rb−ra| , (B.19)

where K(rb, ra, t) is equal to k0n0[1 + ξ(rb, ra, t)] + 2πρsf(Ω̂, Ω̂)/(k0n0).
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