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ABSTRACT 

 

Real-Time Control Over Networks. 

(May 2006) 

Kun Ji,  

B. S., Tsinghua University, Beijing, China; 

M. S., Tsinghua University, Beijing, China 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

A control system in which sensors, actuators, and controllers are interconnected over a 

communication network is called a networked control system (NCS). Enhanced computational 

capabilities and bandwidths in the networking technology enabled researchers to develop NCSs 

to implement distributed control schemes. This dissertation presents a framework for the 

modeling, design, stability analysis, control, and bandwidth allocation of real-time control over 

networks. This framework covers key research issues regarding control over networks and can 

be the guidelines of NCS design. A single actuator ball magnetic-levitation (maglev) system is 

implemented as a test bed for the real-time control over networks to illustrate and verify the 

theoretical results of this dissertation. Experimentally verifying the feasibility of Internet-based 

real-time control is another main objective of this dissertation. 

First, this dissertation proposes a novel NCS model in which the effects of the network-

induced time delay, data-packet loss, and out-of-order data transmission are all considered. 

Second, two simple algorithms based on model-estimator and predictor- and timeout-scheme are 

proposed to compensate for the network-induced time delay and packet loss simultaneously. 

These algorithms are verified experimentally by the ball maglev test bed. System stability 



 

 

iv

analyses of original and compensated systems are presented. Then, a novel co-design 

consideration related to real-time control and network communication is also proposed. The 

working range of the sampling frequency is determined by the analysis of the system stability 

and network parameters such as time delay, data rate, and data-packet size. The NCS design 

chart developed in this dissertation can be a useful guideline for choosing the network and 

control parameters in the design of an NCS. Using a real-time operating system for real-time 

control over networks is also proposed as one of the main contributions of this dissertation.  

After a real-time NCS is successfully implemented, advanced control theories such as 

robust control, optimal control, and adaptive control are applied and formulated to improve the 

quality of control (QoC) of NCSs. Finally, an optimal dynamic bandwidth management method 

is proposed to solve the optimal network scheduling and bandwidth allocation problem when 

NCSs are connected to the same network and are sharing the network resource. 
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CHAPTER I 

INTRODUCTION * 

1.1 Computer Controlled Systems  

 

With the development of computer technologies, computer controlled systems became 

more and more popular. Computer controlled systems can be roughly classified into three modes: 

1) direct digital control system (DDCS), 2) distributed control system (DCS), and 3) networked 

control system (NCS). There is a significant trend in modern automation industry to perform 

complex remote operations by integrating computing, network communication, and real-time 

control. Real-time control over networks became possible and caught many research attentions.   

 

1.1.1 Direct Digital Control Systems 

The name DDCS emphasizes that the computer controls the process directly. At the 

beginning stage of computer development, the use of digital computers as control system 

components was limited because the computers were too bulky, not highly reliable, and 

consumed too much power. Early computers in control systems were operated only as either 

operator-guide or set-point control. Analog controllers were still needed. This situation changed 

when more small and reliable digital computers became available with the fast development of 

computer technology. 

The block diagram of a DDCS setup is shown in Fig. 1-1. In a DDCS, the analog 

___________ 
This dissertation follows format of IEEE Transactions on Automatic Control.  
* Part of this chapter has been reprinted with permission from “Real-time Control of 
Networked Control System via Ethernet” by Kun Ji and Won-jong Kim, 2005 International 
Journal of Control, Automation, and Systems, vol. 3, no. 4. Copyright 2005. 
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controller is replaced by a digital computer. Sensors and actuators are connected to the digital 

computer with point-to-point connections. Real-time control tasks such as sensing, control signal 

calculation, and actuation are all performed by the digital computer. 

 

 

 

Fig. 1-1. Block diagram of a DDCS  
 
 
 

1.1.2 Distributed Control Systems 

The DCS also arose with the development of computer technology and the increase of the 

scale of the control system. In a DCS shown in Fig. 1-2, distribution of computation power is 

required and several interacting computers are connected to a network and sharing the same 

workload. A DCS generally consists of process stations where the process is controlled and 

operator stations where the process is monitored by the operators. Most of the real-time control 

tasks (sensing, control calculation, and actuation) are carried out within the individual process 

stations themselves, i.e. the control loops are all closed locally. Messages such as monitoring 

information, on/off command signals, alarm information, and so on are transmitted over the 

network.  The applications of a DCS can be found in tele-operation shown in Fig. 1-3 and 
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supervisory control shown in Fig. 1-4. The network is used for sending instantaneous feedback 

for monitoring and user commands for corrective actions in the event of emergency.  

 

Process/Plant

Sensor 1 Sensor n Actuator nActuator 1

Computer 1 
(Controller 1)

...

... Computer n 
(Controller n)

Monitor
(Operator Station)

Communication Network

 

Fig. 1-2. Block diagram of a DCS 

 

 

 

 

 

Fig. 1-3. Block diagram of a tele-operated system 
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Tele-operation is an elementary application of a DCS. In tele-operation, a human 

operator conducts a task using a remote manipulator to perform various tasks in hazardous 

environments like space, underwater, or an atomic power plant. Here are key characteristics of a 

tele-operated system in the context of a general factory operation. First, the time delay, limited 

signal bandwidth, and signal noise, etc. hinder the smooth communication between the operator 

and the process/plant. The performance of the operator is affected significantly by those factors. 

Second, there are uncertainties that the operator has to deal with. For example, if the 

environment is not accurately modeled, there is difference between the actual environment and 

the model, and the user has to use his perception to deal with such differences.  

Tele-operations based on master-slave systems have been in use since 1960’s [1–2]. 

Yokokohji and Yoshikawa studied the design of master-slave systems for superior 

maneuverability of robot manipulator [3]. A one-degree-of-freedom (DOF) system including the 

operator and object dynamics was analyzed, and a control scheme was proposed to provide ideal 

kinesthetic coupling. Tele-operation is also used in the field of surgery. The Black Falcon 

developed by Madhani et al. implemented a tele-operated surgical instrument for minimally 

invasive surgery (MIS) [4]. MIS is a practice of performing surgery through small incisions 

using specialized surgical instruments. To feel the instrument-tissue interactions, the surgeon is 

given a force feedback. Mitsuishi et al. developed a master-slave-type tele-micro-surgical system 

with an intelligent user interface [5]. An anti-shadow technique was used to present three-

dimensional (3D) relative information on a two-dimensional (2D) display. Suturing of a 1-mm-

diameter artificial micro-blood-vessel was demonstrated. 

In tele-operation, the operator must depend on the feedback provided by sensory feedback 

systems such as video cameras to perform subsequent actions. His poor perception of the 

environment could result in a poor performance. For this point, researchers have been focusing 
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their research attention on another mode of DCS named as supervisory control. Supervisory 

control is based on a client-sever architecture shown in Fig. 1-4. In supervisory control, the user 

on a client station can give symbolic or analogical instructions remotely to a server computer 

attached to the manipulator instead of remotely guiding the tele-manipulator as he does in the 

tele-operation. 

 

 

Fig. 1-4. Block diagram of a supervisory control system 
 

 

Park and Sheridan [6] described a system developed for supervisory control of a tele-

manipulator graphically simulated on an IRIS workstation. The system had two modes of 

operation: manual mode and supervisory mode. In the supervisory mode, the operator used a 

command menu and mouse to give symbolic instructions. The operator can specify intermediate 

locations that the manipulator tip is to pass through and select intermediate points that the hand 

tip should go through in the event of collision detection. 
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1.1.3 Networked Control Systems 

With the development of computer and communication technologies in the last decades, 

sensors and actuators can now be equipped with network interfaces, being independent nodes in 

a real-time control system. This gives rise to an NCS with geographically distributed sensors, 

actuators, and controllers that communicate via a network [7–12]. The defining feature of an 

NCS is that information (about reference input, control input, plant output, etc.) is exchanged 

using a network among control system components (sensors, controller, actuators, etc.). Fig. 1-5 

illustrates a typical block diagram of an NCS.  

 

Process/Plant

Sensor 1 Actuator 1 Actuator nSensor 1

Computer 1 
(Controller 1)

...

... Computer n 
(Controller n)

Communication Network

...

 

Fig. 1-5. Block diagram of an NCS 
 

 

An NCS essentially comprises multiple nodes communicating with each other over 

communication networks. The primary advantages of an NCS are reduced wiring, easy of system 

diagnosis and maintenance, increased system agility, etc. An NCS offers the ability to locate the 

controllers for various processes at convenient locations that are easily accessible. For example, 
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in deep-sea exploration or a nuclear plant the controller can be placed in an easy-to-access office 

environment whereas the sensors and actuators can be placed at the required locations. In an 

event of malfunctioning of any control system, this control architecture also allows the operator 

to take corrective measures almost instantaneously. However, the insertion of a communication 

network in the feedback control loop makes the analysis and design of an NCS complicated. The 

success of this control scheme depends on the ability of the communication network in 

transferring data with stringent timing constraint and reliability requirements. In the development 

of NCSs, dealing network-induced time delays and data-packet losses in the communication 

networks has always been a key issue. An NCS with only one controller and one plant is denoted 

as a networked feedback control system as shown in Fig. 1-6 [8]. Networked feedback control 

systems via a wireless network were proposed in [9–10], there was no other network traffic in 

the dedicated wireless networks. The automation industry will soon reap the benefits of high-

performance closed-loop control on distributed networks along with the development of reliable 

high-bandwidth networks and new protocols, such as Internet II and Rether (real-time Ethernet) 

[11–12]. Although this field is relatively new and still in its infancy, it has captured significant 

interests of many researchers worldwide [7]. 

 

Controller Plant

Communication Network

SensorActuator

 

Fig. 1-6. Block diagram of a networked feedback control system 
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1.2 Internet-Based Control  

 

The Internet as a communication medium provides cost-effective, flexible, and easy-to-

access means for distributed control systems. If we can use the present form of the Internet as a 

communication medium for distributed real-time control, we can greatly enhance the advantages 

of this control architecture. Integration of the Internet will reduce the cost and the time involved 

in setting up the distributed real-time control system. Software applications can be used 

extensively to remotely monitor and control of the processes via the Internet. The incorporation 

of the Internet in the process control industry will also give engineers the freedom to distribute 

control tasks, sensors, and actuators to optimal locations. Thus, engineers will be able to monitor 

applications running in harsh environments that offer limited accessibility. Internet-based tele-

operation and supervisory control have already been used in tele-robotics, remote manufacturing, 

tele-surgery, and distant education.  

 

1.2.1 Internet-Based Tele-operation 

Safaric et al. [13] developed a tele-operation-based method of education and training 

that involved the use of Virtual Environments for task planning. Instead of allowing the trainees 

to interact with the resources directly, this method requires them to configure the experiments 

using the simulated representation of a real-world apparatus. This configuration data can then be 

downloaded to the real work-cells. Hu et al. [14] discussed the use of cooperative Internet robots 

with interactive human-machine interface. Sato et al. [15] developed a master-slave-type-micro-

teleoperation with intelligent user interface. Cybercut, developed at University of California at 

Berkeley provided a mechanical design and manufacturing service on the Internet [16]. Ho and 
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Zhang [17] argued the use of Java as an ideal implementation vehicle for internet-based tele-

manipulation. A tele-operation system was built to control a three-fingered hand. The use of Java 

made the system-platform implementation independent and object-oriented. 

 

1.2.2 Internet-Based Supervisory Control 

Recently researchers started using the Internet to establish supervisory control for their 

tele-robots and test beds [18–20]. Mercury project [18] developed by Goldberg et al. was the 

first successful use of the Internet for supervisory control of an Internet-based robot. Their 

experiment allowed the general public to excavate objects in a sandbox using a telerobot. Luo et 

al. [19] used a supervisory control technique to develop a desktop rapid-prototyping system. 

Garcia et al. [20] developed a tele-robotic system using supervisory control based on a hybrid 

control approach. Srivastava [21] discussed the supervisory control via the Internet of a ball 

maglev system. In Internet-based supervisory control, the sensors, controllers, and actuators are 

located at the plant side as shown in Fig. 1-7. Like a tele-operation system, the control loop in 

supervisory control is also closed locally. 

 

 

Fig. 1-7. Block diagram of a supervisory control via the Internet 
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1.2.3 Feedback Control over the Internet 

A real-time feedback control system over the Internet consists of various sensors, 

actuators and controllers connected with each other via the Internet. Fig. 1-8 illustrates a block 

diagram of a feedback control over the Internet. The user side of the network runs the control 

algorithm. The controller receives data from various sensors and sends the data to the actuators 

via the Internet. With the Internet it is possible to set up all the sensors and actuators on the same 

communication network. This will eliminate the need to set up a dedicated communication 

network for different closed-loop control processes in the industry. 

 

 

Fig. 1-8. Block diagram of a feedback control over the Internet 
 

 

In feedback control over the network, the control loop is closed over the network. One 

application of feedback control over the network is a feedback control system with multiple 

clients as shown in Fig. 1-9. A sever controller and multiple clients share the network as a 

communication medium. This network-based control architecture provides good features such as 

easy installation, reconfiguration and can reduce the set-up and maintenance costs. However, 

how to do the network scheduling and bandwidth allocation for these clients to achieve optimal 
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quality of performance (QoP) is an open research issue and will be further investigated in this 

dissertation. 

 

 

Fig. 1-9. Feedback control over network with multiple clients 
 

 

1.3 Research Issues in Real-Time Control over Networks 

 

The two control schemes via the Internet, namely supervisory control and real-time 

feedback control offer the ability to process data from various sensors and actuators in real time. 

Some of the key issues that need to be addressed for the satisfactory performance of a digital 

control system implemented via the Internet as a communication medium include: 

1. The effect of the inevitable time delay associated with the Internet on the stability of the 

system. Network-induced time delays originate from the time sharing of communication 

media as well as additional functionality required for physical signal coding and processing. 
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Because of the nondeterministic factors during transmission process, Uniform sampling 

cannot be guaranteed. This results in a time-varying model, which makes system modeling 

and stability analyses difficult. 

2. The unpredictability of the time delay associated with the Internet under different network 

protocols like transmission control protocol (TCP) and user datagram protocol (UDP). TCP 

is the most widely used transport protocol over the Internet. It is the protocol used for 

applications that require reliable communication. TCP is a confirmation-based protocol and 

introduces more time delay in data transmission. On the other hand, UDP is not a 

confirmation-based protocol. Thus, it reduces the overhead of retransmission time. Since 

UDP is not confirmation based, data might get lost during the transmission. The inevitable 

time delays and packet losses are detrimental to the real-time control system’s performance. 

3. Identification of fault when there is data loss in the system. During data transmission through 

the Internet, it is possible for the data to be lost. This data loss might be caused by defective 

sensor or the time delay that is far more than the sampling period of the system. When there 

is congestion in the communication network, some packets are dropped to either reduce the 

queue size or to inform the senders to reduce their transmission rates. Thus, it will be 

difficult to identify the exact reason for the data loss. 

4. The functionality of real-time control over networks can be described as the sequence of four 

main operations (sampling, computation, data transmission, and actuation) that should be 

repeatedly executed, keeping strict timing, in order to deliver the expected performance. Not 

only the network could induce delays, but also the devices connected to the network could 

introduce latencies if they are not in a real-time operating environment. Therefore, to achieve 

the timing constraints and guarantee the control QoP, real-time control system design for the 

devices connected to the network must be developed. 
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5. In networked feedback control or NCSs, there are two classes of time delays and packet 

losses in both the sensor feedback and control feedforward paths. There is also the 

possibility of out-of-order data transmissions due to the nondeterministic factors during 

transmission process. How to develop compensation algorithms to deal with these problems 

and achieve control QoP is a very important issue. 

6. Network scheduling and bandwidth allocation is an important issue in NCS design when a 

set of plants or processes are connected to the same network and share the limited bandwidth 

resource.  

To address these important technical issues, two Internet-based control architectures, supervisory 

control and networked feedback control are developed and experimentally verified in this 

dissertation based on the works originally done by Srivastava [21] and Ambike [22]. 

 

1.3.1 Internet-Based Real-Time Control  

For Internet-based tele-operation and supervisory control, dedicated interface software 

was used in earlier works [13–20]. To demonstrate the feasibility of Internet-based real-time 

control, a supervisory control via the Internet is implemented and verified in this dissertation 

based on the work of [21]. Srivastava [21] originally implemented a supervisory control of the 

ball maglev setup via the Internet by using a common gateway interface/hypertext markup 

language (CGI/HTML) interface. With this interface a client can connect to the server PC 

remotely via the Internet. The client can give the position commands, tune the controller running 

on the server PC, and receive the effect of the changes instantaneously.  

For real-time control over the Internet, the control decisions and control functions 

usually have certain deadlines. If some of these deadlines are missed, the stability and 

performance of the real-time NCS could be negatively affected. Thus there is a need of real-time 
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operating systems (OS) for the control devices to reduce the time delay caused by device 

processing and to ensure these time-constrained events do not miss their deadlines. 

Commercially available OSs such as Windows, various versions of UNIX, and Linux are not 

real-time OSs. Ambike [22] originally implemented a real-time control system for the ball 

maglev setup. In this dissertation, to demonstrate the feasibility of Internet-based real-time 

control, a real-time solution of NCS design by using Linux with real-time application interface 

(RTAI) is implemented based on the work of [22]. Based on the real-time control system 

developed in [22], a simple Internet-based supervisory control of the ball maglev test bed by 

using a free secure shell client is also proposed in this dissertation. 

 

1.3.2 Modeling and Stability Analysis of Networked Feedback Control 

Conventional analyses of computer-controlled systems assume uniform sampling of the 

plant outputs, which means the samples are taken periodically with a constant time period. This 

assumption greatly simplifies the stability and performance analysis [23–24]. However, this 

assumption is not valid for the NCS analysis. Unlike conventional control systems, an NCS 

essentially comprises multiple nodes communicating with each other over communication 

networks. The network-induced time delays, data-packet losses, and out-of-order transmission 

have to be accounted for in modeling and analyzing an NCS. The issue of modeling, analysis, 

and design of an NCS with randomly varying delays is complicated and still an open research 

topic [7].  

Åström and Wittenmark [24] provided a fundamental analysis of systems with delays in 

the feedback control loop. Both systems with delay less than one sampling period and systems 

with longer delays were considered. Only the case of constant delays was considered in their 

analysis. 
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Halevi and Ray [25] studied the integrated communication and control system (ICCS) 

with network-induced time-varying delay. They considered a continuous-time plant and discrete-

time controller and analyzed the problem using the discrete-time approach and proposed a 

methodology named as the augmented deterministic discrete-time model methodology. The 

augmented system state vector consists of past values of the plant input and output, in addition to 

the current state vectors of the plant and controller. 

Nilsson [26] addressed the problem of analysis and design of control systems when the 

communication delays vary in a random fashion. The two delay models for the communication 

network were developed. The first model consisted of random delays that were independent from 

transfer to transfer. In the second model an underlying Markov chain was used to generate the 

probability distributions of the time delays. In [26], the LQG-problem was solved by splitting it 

into a state feedback problem and an optimal state estimation problem. 

In [27] the control of a continuous-time linear plant where the state sensor was 

connected to a linear controller/actuator via a network was addressed, and necessary and 

sufficient conditions for stability were derived for the presented setup in terms of the update time 

h and the parameters of the plant. However, only the delays in the feedback path between the 

sensor and the controller were considered. 

Stability regions and the stability analysis of an NCS were proposed using a hybrid 

systems technique in [28–29]. Modeling of an NCS with multiple delays was considered in [30]. 

In this dissertation, the focus is on the modeling and analysis of NCSs where the effects 

of the network-induced time delay, data-packet loss, and out-of-order data transmission are all 

included. Deriving new delay-depended stability condition is also performed based on the new 

NCSs model.  
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1.3.3 Network-induced Time-Delay and Packet-Loss Compensation 

Input delay is the most common form of network-induced time delays or latencies in an 

NCS. It is well known that the existence of time delays degrades the control performance and 

makes closed-loop stabilization more difficult because of the network-induced time delays 

within related sampling and actuation instants [28–29]. Studies have been done to ensure the 

stability of the system in the presence of time-varying delay in the communication network.  

A technique to stabilize delay systems was proposed by Artstein [31] by transforming 

the delay system into a linear finite-dimensional system using an appropriate infinite-

dimensional controller.   

Liou et al. [32] proposed a time-driven sensor, a time-driven controller, and an event-

driven actuator. The controller and the sensor had a time skew in their operation and the control 

value was calculated without the knowledge of new sensor signal. Due to an event-driven 

actuator the control signal was applied to the digital to analog (D/A) channel as soon as it arrived 

at the actuator node. These delayed signals were introduced in the discrete time augmented plant 

model.  An augmented plant model was used to solve for linear quadratic (LQ) optimal controller. 

They also discussed the construction of state estimator for the case when all the states were not 

measured. 

Ray et al. [33] extended the concept of a time-driven actuator and stochastic state 

estimator. The estimator was used to estimate the states that were unobservable. The state 

estimator is designed to minimize the variance of the state prediction error. The combination of a 

LQ controller and a minimum variance estimator was introduced as a delay compensated linear 

quadratic gaussian (DCLQG) controller. 

Luck et al. [34] suggested a methodology to convert a time-varying system into a time-

invariant system with the use of buffers. These buffers were introduced at the controller and 
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actuator nodes. The nodes and the buffers were all time-driven and synchronized in time. The 

buffers were used to store the data packets traveling through the communication channel. The 

buffers were made longer than the worst-case time delay present in the communication network. 

This allowed the data packets to be available at the controller and the actuator after fixed 

amounts of time making the system time invariant even in the presence of time-varying delay. 

Chan and Ozguner [35] studied the Ford SCP Multiplex Network hardware. A queue was 

placed at the sensor node, and registers were appended at the controller node. The data packets 

sent from the sensor were appended with a time stamp and the queue size at that instant. With 

this method the controller node could reduce the uncertainty about the order of the sensor signal 

that was being used to generate the control input.  

Nilsson [26] proposed an optimal control methodology. This optimal stochastic control 

methodology treated the effect of random network delays in an NCS as an LQG problem and 

assumed that time delay τ was less than the sampling interval h.  

In [36], a robust state-predictive control strategy was proposed for discrete-time multi-

input-multi-output (MIMO) systems with non-equal delays on signal buses. The input and output 

delays were taken into account in the control-law synthesis and the steady-state Kalman 

predictor design.  

Zhang et al. [28] assumed that the full states were transmitted through the network and 

that they might be lost because of the dropped packets in the network. On the other hand, the 

control command was sent directly to the plant. With these assumptions, the authors used the 

stability analysis for asynchronous dynamical systems to find the maximum packet-dropping rate 

under which the overall system is stable.  

In [37] the stability of a linear NCS in the presence of dropped packets was studied. 

Similar to [28], the controller was directly connected to the plant, so there was a direct link 
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between the controller and the plant. The stability analysis in [37] was based on the stability of 

Markov-jump linear systems.  

Almost all the above research focused on dealing with either one-way time delays and 

data-packet losses or two-way time delays alone or data-packet losses alone. Network-induced 

time delays and packet losses may occur simultaneously in both the feedback path and the 

feedforward path, thus a more comprehensive compensation algorithm is needed that can deal 

with the time delays and data-packet losses in a unified way. The study in this dissertation is 

based on the work in [26] and [27]. The model in [27] is extended to deal with a framework of 

NCSs allowing independent round-trip communication delays and data-packet losses. The 

stochastic optimal estimator in [26] is extended to be a multi-step-ahead state estimator to 

compensate for the time delay longer than one sampling period and successive data-packet losses 

in both the control forward and the sensor feedback paths simultaneously. 

 

1.3.4 Advanced Control Design of Feedback Control over Networks 

Because the key for NCSs is that almost no local control action can be taken in isolation 

from the rest of the system and that design parameters of feedback control and real-time 

communication systems are interdependent, the successful design and implementation of an NCS 

requires an appropriate integration of control systems, real-time systems, and network 

communication systems through co-design. As the sampling period approaches zero, the 

performance of the digital system approaches that of a continuous-time system. To improve the 

QoC of NCSs, advanced control designs are presented in this dissertation with an emphasis on 

optimal co-design and robust control design for NCSs.  

For an NCS, performance is a function of not only the sampling period, but also the 

traffic load on the network [38]. A system design chart was proposed in [38] as a guideline for 
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NCS design. Based on the design chart modified after [38], a quantitative method about how to 

determine the location of the performance degradation points in the NCS performance design 

chart is presented in this dissertation. The optimal working range of the sampling frequency can 

be determined based on the locations of these points.  

For the H∞ control of the input delayed system, a functional analytic technique was used 

by Foias et al. [39]. The standard H∞ control problem for linear systems with delay was solved 

based on two Riccati equations by Keulen [40]. Kojima et al. [41] developed a robust controller 

with respect to uncertain input delay based on a Riccati-equation approach. Boyd et al. [42] 

emphasized that many problems arising in system theory could be cast into the form of linear 

matrix inequalities (LMIs). Niculescu [43] introduced an approach based on LMIs to derive 

sufficient conditions for the stabilization of systems with uncertain input delay. This dissertation 

focuses on robust control of NCSs with parameter uncertainty. Robust H∞ control problems for 

NCSs with network-induced time delays and subject to norm-bounded parameter uncertainties 

are addressed in this dissertation.  

 

1.3.5 Network Scheduling and Adaptive Control Co-Design 

Network scheduling is also an issue in NCS design when many plants are connected to 

the same network as shown in Fig. 1-9. The key advantage of this NCS is that it provides the 

flexibility to quickly reconfigure its system architecture and to easily share information with 

other subsystems.  Network traffic introduces inevitable delays. An effective way to reduce the 

negative effect of delays on the performance of NCSs is to reduce network traffic. Using 

deadbands to reduce communication in NCSs was proposed as a solution for network traffic 

reduction in [44]. Yook et al. [45] formulated a method that offers network traffic reduction in 

exchange for added computational cost of using estimators to predict the states of other systems 
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on the network. In [46], a traffic-smoothing method was proposed to reduce the packet-collision 

ratio. At each node, a traffic-smoother is installed between the transport layer and the Ethernet 

medium-access-control (MAC) layer and regulates its packet stream using a certain traffic-

generation rate.   

Traditionally, research on bandwidth allocation and scheduling techniques for NCSs 

focused on static strategies that ensure average control performance at the expense of 

permanently occupying the available bandwidth. Hong [47] and Hong and Kim [48] developed a 

scheduling algorithm to determine the sampling periods of multiple control loops with cyclic 

service discipline so that the performance requirement of each control loop was satisfied and the 

utilization of network resources is increased. Although very simple and effective, the scheduling 

method in [48] is not always economical and optimal because the exponential scalar 

configuration of the sampling period uses up much of the bandwidth resource. The work of 

extending the concept of the maximum allowable bound in [47] to the multidimensional cases 

was proposed in [49]. Branicky et al. [50] formulated a static optimal scheduling problem under 

both rate-monotonic-schedulability constrains and NCS-stability constraints. From the control 

perspective, the static bandwidth allocation method is an “open-loop” solution because once 

established at system set-up, the static scheduling will not be adjusted at run-time. Given 

sufficient bandwidth, the static bandwidth allocation can successfully guarantee real-time 

communication and meet the control requirements. However, due to network bandwidth 

limitation in some cases, not all control loops can simultaneously gain enough bandwidth 

allocation to provide the best possible control performance. Thus scheduling the network with an 

“open-loop” algorithm may cause critical messages to fail in timely transmission, degrading 

control performance or even leading to instability of certain control loops. Moreover, static 

techniques may not be efficient when changing conditions occur at the control-application or 
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network levels, because pre-assigned bandwidth resources could be underutilized and these 

underutilized resources could be made available to other applications. 

To address these problems, this dissertation follows a “closed-loop” solution and focuses 

on developing a dynamic optimal-network-bandwidth-allocation (ONBA) algorithm that makes 

scheduling decisions based on the performance information feedback of each control loop. 

Following the methodology of feedback scheduling [51], the control requirements are integrated 

into the scheduling of the shared network.  

Dynamic strategies for network scheduling in NCSs can be found in the literature. A 

control loop scheduling technique called large error first (LEF) was presented in [52]. The LEF 

algorithm uses feedback information from the application to assign communication bandwidth to 

each individual component. However, the relative importance of different control loops that may 

contribute to the whole system at different levels is not considered, and the implementation 

issues of LEF remain to be addressed. In [53] a dynamic arbitration technique called maximum-

error-first with try-once-discard (MEF-TOD) was presented to grant network access to the 

control loop with highest error. However, the feedback methodology is not explicitly employed 

in [53]. Furthermore, both LEF and MEF-TOD techniques are referred to communication 

protocols and applying them in existing applications may be very expensive due to the 

requirements of excessive time and cost for system update. A method for optimal off-line 

scheduling of a limited communication resource used for control purpose was presented in [54].  

Park et al [49] presented a scheduling method for NCSs to adjust the sampling period as 

small as possible, allocate the network bandwidth for three types of data, and exchange the 

transmission orders of data for sensors and actuators. The sampling adjustment was considered 

for the control analysis but was not performed according to the system dynamics and 

performances. In [55], bandwidth management of each control loop was done locally at run-time 
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according to the states of each controlled process, and control laws were designed to account for 

the variations on the assigned bandwidth. However, within this approach, the sampling periods 

are time varying, the quickly varying states may introduce abrupt and too frequent changes 

between sampling periods, which would imply excessive switching between different closed-

loop modes (chattering). Further work [56] extended this dynamic bandwidth management to an 

optimal bandwidth allocation policy whose complexity may increase the requirement of 

computational power. The approach given in this dissertation is similar but significantly reduces 

the computational requirement. 

The change of the system configuration might also change the time-delay signature of a 

networked device, thus change the network quality of service (QoS). Optimized QoC can be 

achieved if the networked controller can adaptively modify its control algorithm according to the 

QoS changes. This can be formulated as an adaptive control problem which can adjust its 

parameters on-line according to the changing network QoS. Bandwidth allocation problem and 

adaptive control problem are two different problems but follow similar design mechanisms. 

Bandwidth allocation problem searches optimal sampling period for control design based on 

control system QoP, while adaptive control problem searches optimal control parameters for 

control design based on network QoS. Thus they can be formulated as a co-design issue that is 

proposed in this dissertation. The objective of co-design is to design a networked controller that 

can adaptively modify the control algorithm according to the control QoP and network QoS. 

 

1.4 Control Network Analysis  

 

The successful design and implementation of an NCS requires an appropriate integration 

of co-design of the real-time control system and the network communication system. Choosing 
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appropriate control network is essential to the NCS design. It is necessary to understand the 

protocol message prioritization as well as the delay characteristics of the control networks in 

designing an NCS. The timing parameters, which will ultimately influence control applications, 

are affected by the network data rate, data or message size, and communication protocol. 

Generally, the key requirement for a control network is that a message should be transmitted 

successfully within a bounded time delay [57]. Compared with data networks, control networks 

have some distinguishing characteristics: 

1. Most of the communications between controllers and sensors/actuators has a fixed sampling 

period and data are transmitted continuously, and thus the transmission rate is high. 

2. Data size of each message is relatively small. 

3. Since time delay has a serious effect on system performance, the real-time requirement of 

control networks is much more critical than that of data networks. 

Control networks for feedback control purpose are based on the following protocols: 

Ethernet (IEEE 802.3), Token Bus (IEEE 802.4), Token Ring (IEEE 802.5), CAN (ISO 11898), 

and Wireless (IEEE 802.11). The characteristics of these prominent control network types are 

summarized in this section to explain how they influence the NCS performance. A more detailed 

comparison among Ethernet, Token-based, and CAN protocols can be found in [57]. 

 

1.4.1 DeviceNet (CANbus-Based) 

In the CAN protocol, data are transmitted with message frames shown in Fig. 1-10 [58], 

and a message may be transmitted periodically, sporadically, or on demand [58]. Each message is 

given a priority that determines network access, and collisions do not destroy messages since the 

message with higher priority is delivered. Each message used in the CAN has a unique identifier 

defining the type of data and the identifier also automatically implies the message priority for 
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bus access [58]. However, the identifier does not indicate the destination or source address 

information in a message. If a node wants to transmit a message, it waits until the bus is free and 

then broadcasts the identifier of its message. Each node has an acceptance filter to decide 

whether to receive that message or not. A message is accepted only if an identifier of the 

message object is matched with the incoming message identifier [58]. Thus, a bound on the time 

delay for higher priority messages can be defined and used in analysis. CAN is not suitable for 

transmitting messages of large size although large messages can be transmitted using 

fragmentation [57]. DeviceNet is based on the CANbus protocol but does not use the same 

physical-layer interface as ISO 11898. It is developed originally for the automotive industry, and 

each message has a unique identifier defining the type of data such as engine speed, temperature, 

pressure or any other data. DeviceNet has a slow data rate of only 500 kbps with up to 64 

devices on the bus [57]. 

 

 
 

Fig. 1-10. Message frame of CAN [58] 
 
 

1.4.2 ControlNet (Token-Passing-Bus-Based) 

ControlNet is a deterministic network protocol used for time/mission critical 

applications. The message frame of ControlNet is shown in Fig. 1-11 [57]. In ControlNet, all 

nodes are arranged on a ring. A token is passed around the ring, and the node that holds the token 

is allowed to transmit data. This transmission continues until it is finished or a time limit is 
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reached, then the token is regenerated and passed on to the next node. Thus the maximum 

waiting time in a node before sending a message is the token rotation time. Message collisions 

never occur since only one node can transmit message at one time. In general, ControlNet is very 

efficient at high network loads and its deterministic nature defines a maximum bound on 

network-induced delays which makes time delay analysis easier. However at low network loads, 

a significant amount of time is spent passing the token around the logical ring [57]. In the case of 

an emergency, a node cannot gain access to transmit message until the token finishes its rotation 

around the logical ring. Under light to moderate network loads, ControlNet provides good and 

fair performance during increased loads. A refined token-based algorithm assures fair access 

with deterministic waiting time delays was proposed in [59]. 

 

Preamble Start of
Delimiter

Source
MAC ID LPackets CRC End

Delimiter

Bytes 2 1 1 0--510 2 1

Overhead (4Bytes) OH
(3Bytes)

LPacket LPacket ...... LPacket

Size Control Tag Data
 

Fig. 1-11. Message frame of ControlNet [57] 
 

 

1.4.3 Ethernet (CSMA/CD) 

Ethernet does not support message prioritization and is not a deterministic protocol. 

Ethernet uses the carrier-sense multiple access with collision detection (CSMA/CD) mechanism 

to resolve the problem of contention in case of simultaneous data transmission [57]. If two nodes 

transmit data packets simultaneously, the packets collide. If a collision is detected, the two 

transmitting nodes wait a random length of time to retry transmission. The random length of time 
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is determined by the standard binary-exponential-backoff (BEB) algorithm. If 16 collisions are 

detected, the node stops transmitting, and then data-packet losses occur [60]. Thus in modeling, 

both time delays and packet loss need to be considered. Since Ethernet has low medium 

overhead and uses a simple algorithm for network operation, delays are small at low network 

loads [57]. Unlike ControlNet or DeviceNet, communication bandwidth is not wasted in message 

arbitration and message collisions lead to message loss in Ethernet [57]. The large frame size 

also makes Ethernet better suited to transmit large-size data with low frequency. The message 

frame of Ethernet is shown in Fig. 1-12. The speed standards of Ethernet include 10Mb/s, 

100Mb/s, and 1Gb/s [60]. 

 

Preamble Start of
Delimiter

Destination
Address

Source
Adrress

Data
Length Data Pad Checksum

Bytes 7 1 6 2 0--1500 0--46 46

Overhead (22 Bytes) 46--1500
Bytes

OH
(4Bytes)  

Fig. 1-12. Message frame of Ethernet [60] 
 

 
Ethernet’s contention-based mechanism makes it impossible to predict the network-

induced delay. Switched Ethernet can provide deterministic delays by eliminating message 

collisions, but its high price has restricted its implementation in industry [61]. Several software 

changes have been suggested so that the network-induced delay could be bounded. Kweon et al. 

[61] developed a traffic-smoothing method to decrease the packet-collision ratio on the network 

which requires minimal changes in the OS kernel. The traffic smoother regulates the node’s 

packet stream using a certain traffic-generation rate to eliminate collisions effectively. 

Venkatramani [12] proposed the approach of a timed-token bus to provide bandwidth guarantees. 

They proposed a software-based protocol called RETHER (Real-time Ethernet). 
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1.4.4 Wireless Network 

Wireless networks have also been investigated as control networks. The performance 

analysis of the wireless-medium-access-control (WMAC) protocol and the remote-frame-

medium-access-control (RFMAC) protocol for a wireless controller area network (WCAN) was 

presented in [62]. In [63], the wireless Ethernet (802.11) standard was modified and used to 

prioritize the carrier sense multi-access with collision avoidance (CSMA/CA), and thus message 

collisions were reduced. Later work [64] applied the wireless 802.11 control and scheduling 

algorithm to the control of a physical plant. Ploplys et al. [10] developed a distributed-control 

system for a Furuta pendulum over a wireless communication network based on 802.11b. 

Wireless network used in networked feedback control is a dedicated network, and there 

is no other traffic and functionalities sharing the network resource. Thus the network-induced 

delay problem is not as severe as those in networked feedback control systems using other 

networks as communication media. 

 

1.4.5 Summary of Static Parameters of Control Networks 

Typical static parameters of the three control networks discussed above are summarized 

in Table 1-1[57]. Ethernet is potentially the most practical control network solution because of its 

low cost, availability, and higher communication rates, although it is not designed to transmit 

short messages with real-time requirements. In terms of implementation, Ethernet is not yet 

ready for manufacturing automation because its hardware was not designed to withstand stress, 

vibrations, or noise [65] and it has unpredictable delay and packet loss characteristics. However, 

under low traffic loads, Ethernet delivers fast data transmissions with almost no latency [57]. As 

a result, an Ethernet network structure may be suitable for control when the network is relatively 
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uncrowded. An example using Ethernet in networked control is given in [66], where UDP over a 

switched Ethernet was shown to exhibit good performance characteristics that were sufficient for 

substation automation. Based on the networked-feedback-control framework shown in Fig. 1-6, a 

real-time closed-loop control system via the Ethernet is designed and implemented and 

experimental results are presented in the following chapter. 

 

Table 1-1[57] Typical parameters of control networks  

Parameters ControlNet DeviceNet Ethernet 
Data Rate (Mbps) 5 0.5 10 

Maximum length (m) 1000 100 2500 
Maximum Data Size (byte) 504 8 1500 
Minimum Data Size (byte) 7 47/8 73 

 

 

1.5 Dissertation Contributions 

 

One of the main objectives of this dissertation is to present a framework for the 

modeling, design, stability analysis, control, and bandwidth allocation of real-time control over 

networks. Two co-design algorithms for real-time NCSs are proposed. Co-design means that 

NCS design should consider the control network’s characteristics and real-time control 

specifications at the same time. The optimal co-design algorithm utilizes both network and 

control parameters to reveal the existence and location of the performance degradation points 

which limit the operating range of the sampling frequencies. The network scheduling and 

adaptive control co-design algorithm is proposed to design a networked controller that can 

adaptively modify the control algorithm according to the control QoP and network QoS. In 

addition, a ball maglev system [67] is used as an NCS test bed for the experimental verification. 
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1.5.1 Experimental Verification of Internet-Based Real-Time Control  

Two Internet-based control architectures, supervisory control and networked feedback 

control are developed and experimentally verified in this dissertation based on the works 

originally done by Srivastava [21] and Ambike [22]. A new Internet-based supervisory control 

based on the real-time system developed in [22] and a secure shell client is proposed and 

implemented. Thus one of the main contributions of this dissertation is the experimental 

verification of the feasibility of Internet-based real-time control. 

 

1.5.2 New System Model and Stability Analysis for Networked Feedback Control  

The study on the modeling and analysis of NCSs in this dissertation is based on the 

consideration of the nondeterministic factors during data transmission. How to build a general 

form of the NCS model where the effects of the network-induced time delay, data-packet loss, 

and out-of-order data transmission are all included is presented in this dissertation. A new delay 

dependent stability criterion and the upper bound of time delay are derived through a Lyapunov 

functional approach. The appropriate co-design integration of control systems, real-time systems, 

and network communication systems proposed in this dissertation is based on this model. 

 

1.5.3 Compensation Algorithms for Time Delay and Packet Loss  

The study of delay/data-loss compensation in this dissertation is based on the work in 

[26] and [27]. The model in [27] is extended to deal with a framework of NCSs allowing 

independent round-trip communication delays and data-packet losses. The stochastic optimal 

estimator in [26] is extended to be a multi-step-ahead state estimator to compensate for the time 

delay longer than one sampling period and successive data-packet losses. Two compensation 
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algorithms for the time-delay and packet-loss in both the control feedforward and the sensor 

feedback paths simultaneously are proposed and verified in this dissertation.   

 

1.5.4 Robust Control Design and Optimal Co-Design for NCSs  

Robust H∞ control problems for NCSs with network-induced time delays and subject to 

norm-bounded parameter uncertainties are addressed in this dissertation. There are not many 

research results on NCSs considering parameter uncertainty and time delay simultaneously. 

Similar approaches were presented by Lee and Lee [68] and Li et al. [69]. However, they 

focused on continuous-time models and constant time delays, which is not the case in NCSs.  

Based on the design chart modified after [38], this dissertation presents a quantitative 

method about how to determine the location of the performance degradation points in the NCS 

performance design chart. The optimal working range of the sampling frequency can be 

determined based on the locations of these points. The optimal working range of the sampling 

frequency proposed in this dissertation can be used as a guideline for NCS design, which is 

verified by the design of the ball maglev NCS test bed. How optimal controllers can be designed 

for QoC optimization is also described in this dissertation. 

The robust control design and optimal co-design methodologies proposed in this 

dissertation are experimentally verified with the real-time NCS test bed implemented in [22]. 

 

1.5.5 Optimal Network Bandwidth Allocation Algorithm for NCSs 

This dissertation presents a dynamic ONBA algorithm for NCS design that optimizes 

overall control performance and reduces network-bandwidth usage. Network-bandwidth is 

dynamically assigned to each control loop according to the control performance information of 
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each control loop. The first advantage of this algorithm is that the computational power 

requirement is low and the allocation of bandwidth to control loops can be done locally at run 

time according to how far the control loops are from their equilibrium. Thus it can be used to 

enable existing NCSs to provide satisfactory QoP under resource constraints. The second 

advantage is that this algorithm does not cause excessive switching between different closed-

loop modes (chattering) which may lead to instability. Simulation results are presented to show 

that this algorithm improves control performance and uses less bandwidth with respect to the 

static strategy. 

 

1.6 Dissertation Overview and Related Publications 

 

This dissertation contains seven chapters. Chapter I describes the various modes of 

computer controlled systems and presents an introduction of a relatively new area of real-time 

control via the Internet. The research issues about real-time control over networks are discussed 

and the contributions of this dissertation are presented.  

Chapter II presents the implementation and experimental verification of Internet-based 

real-time control of a ball maglev test bed. Two control architectures are experimentally verified. 

The hardware setup and software structure of an Internet-based supervisory control based on the 

work of [21] are explained. This chapter also introduces the development of a novel real-time 

operating environment enabling closed-loop real-time control over the Ethernet based on the 

work of [22]. An Internet-based supervisory control of a maglev test bed based on the real-time 

system and a secure shell client is presented.  

Chapter III presents the dynamic modeling of real-time control over networks. In this 

model, the effects of the network-induced time delay, data-packet loss, and out-of-order data 
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transmission are dealt with simultaneously. A new sufficient stability condition based on a 

Lyapunov method is also derived in this chapter.  

Chapter IV presents two delay/data-loss compensation approaches to overcome the 

adverse influences of stochastic time delays and packet losses encountered in real-time control 

over networks. The first approach is based on model-estimation. The second approach is based 

on predictors and timeout scheme.  

Chapter V discusses advanced control designs for NCSs. Advanced control theories such 

as robust control and optimal control are investigated and applied to improve the QoC of the 

NCSs. A modified system design chart of NCSs based on the work in [38] is proposed in this 

chapter and can be a useful guideline for choosing the optimal network and control parameters in 

designing an NCS.  

Chapter VI formulates an optimal network scheduling and adaptive control co-design 

problem for NCS design. An ONBA algorithm is presented to optimize overall control 

performance and reduce network bandwidth usage.  

Chapter VII concludes this dissertation summarizing its achievements and provides 

suggestions for possible future work. 

Much of the research in this dissertation has previously been published in the papers and 

presentations listed here in chronological order: 

• K. Ji, W.-J. Kim, and A. Ambike, “Control strategies for distributed real-time control with 

time delays and packets losses,” in Proc. of ASME International Mechanical Engineering 

Congress and Exposition, Paper No. 61733, November 2004 (appears in Chapter IV). 

• W.-J. Kim, K. Ji, and A. Ambike, “Networked real-time control strategies dealing with 

stochastic time delays and packet losses,” in Proc. of 2005 American Control Conference, pp. 

621–626, June 2005 (appears in Chapter IV). 
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• A. Ambike, W. -J. Kim, and K. Ji, “Real-time operating environment for networked control 

systems,” in Proc. of 2005 American Control Conference, pp. 2353–2358, June 2005 (appears 

in Chapter II). 

• K. Ji and W.-J. Kim, “Robust control for networked control systems with admissible 

parameter uncertainties,” in Proc. of ASME International Mechanical Engineering Congress 

and Exposition, Paper No. 81551. Nov. 2005 (appears in Chapter V). 

• K. Ji and W.-J. Kim, “Real-time control of networked control systems via Ethernet,” 

International Journal of Control, Automation, and Systems, vol. 3, no. 4, pp. 591–600, Dec. 

2005 (appears in Chapters I and II). 
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CHAPTER II 

INTERNET-BASED REAL-TIME CONTROL* 

 

This chapter describes the implementation of Internet-based real-time control of a ball 

maglev test bed. The implementations of two control architectures are based on the works in [22] 

and [21]. Two control architectures as supervisory control and networked feedback control are 

implemented and experiment results are presented to verify the feasibility of Internet-based real-

time control. 

 

2.1 Introduction  

 

Supervisory control is a technique of remotely monitoring and enabling a computer to 

connect to an experiment and controlling it from a distance. The supervisory control via a 

communication network is based on the client/server architecture. It can be classified as a DCS. 

In this mode of control only the user-defined commands are sent via the communication network. 

Supervisory control has been widely applied in the areas of tele-robotics, under-sea 

environments hazardous environments and space programs. In these situations the controller is 

located along with the process to be controlled and the feedback loop is closed locally. Engineers 

can monitor these processes remotely and get feedback from the process in real time via the 

communication network. In an event of emergency where the controller is not performing 

efficiently or satisfactorily the operators can take corrective measures. These corrective 

commands are transmitted via the communication network to the controller and are implemented 

___________ 
 * Part of this chapter has been reprinted with permission from “Real-time Control of 
Networked Control System via Ethernet” by Kun Ji and Won-jong Kim, 2005 International 
Journal of Control, Automation, and Systems, vol. 3, no. 4. Copyright 2005. 
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in the next sampling cycle of the controller. The response of the system due to these changes is 

sent through the communication channel from the process to the operator in the same sampling 

cycle. The hardware setup and software structure of the supervisory control proposed in [21] are 

presented in this chapter to verify the feasibility of Internet-based supervisory control. 

In networked feedback control, decision and control functions can be distributed on the 

network. That is, the control loop is closed over the network. Thus, a new constraint must be 

accommodated in the design of a real-time control over networks—the limited bandwidth of the 

communication network. Time delays caused by network data transmission and device 

processing are inevitable. To reduce the time delay caused by device processing, these control 

functions should have certain deadlines. If some of these deadlines are missed, the stability and 

performance of the control system could be negatively affected. Thus there is a need of real-time 

operating systems for the devices to ensure these time-constrained events do not miss their 

deadlines.  

A real-time system can be defined as a system that responds to externally generated 

stimuli within finite and specified period of time [70]. An efficient real-time system produces 

correct results at proper time. The real-time systems can be classified into hard real-time systems 

and soft real-time systems. The system in which meeting all the time requirements is mandatory 

is known as a hard real-time system. In a soft real-time system, it is required that almost all the 

time requirements be met. But, the soft real-time system functions properly if a few deadlines are 

occasionally missed. 

The Internet-based real-time networked feedback control architecture implemented and 

verified in this chapter is based on the real-time control environment proposed in [22]. A new 

simple Internet-based supervisory control based on this real-time environment is also presented 

in this chapter. 
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2.2 Supervisory Control via the Internet 

 

With the widespread popularity of the Internet and its ease of communication real-time 

supervisory control of the processes can be implemented via the Internet. The supervisory 

control of a ball maglev test bed via the Internet proposed in [21] is introduced in this section.  

 

2.2.1 Ball Magnetic-Levitation Test Bed  

Stephen C. Paschall, II developed a ball maglev system shown in Fig. 2-1 as his senior 

honors thesis under the supervision of Won-jong Kim [67]. The objective of this maglev system 

is to levitate a steel ball at a predetermined steady-state equilibrium position with an 

electromagnet. 

 

 
 
 

Fig. 2-1. Single-actuator magnetic ball levitation setup [67] 
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The framework of the supervisory control via the Internet proposed in [21] is shown in 

Fig. 2-2. The ball maglev setup is connected to the host Pentium IV personal computer (PC) that 

runs the Internet Information Services (IIS) 5.0 Web server on the Windows 2000 Professional 

OS. The maglev setup is controlled using a CGI/HTML interface with which a client can give 

the position commands remotely to move the steel ball within its travel range. The control 

parameters, such as the gain and the locations of poles and zeros can also be tuned on-line in real 

time. The client immediately receives the results from the changes in the control parameters or 

commands he/she has made. 

 

Internet

Client PC

Host PC
Pentium IV
Windows 2000

IIS 5.0
dSPACE
DS1104

       

            
Maglev 
Setup

Command Feedback

Web Page

Command Feedback

Sensor

Actuator

 

Fig. 2-2. Framework of the supervisory control of the test bed via the Internet [21] 

 

2.2.2 Software Architecture 

A real-time control algorithm was implemented in software on a dSPACE DS 1104 DSP 

controller board so that it can easily communicate with the CGI environment and obtain the 
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corresponding system responses in real time from the ball maglev test bed [71]. The client can 

access this Web page of the maglev system by typing the domain name of the host PC in the Web 

browser. An HTML page served by the host PC gets downloaded on the client PC so that the 

client can input his/her control parameters. Both the transactions of control parameters from the 

Internet and to the control algorithm are done simultaneously to save computation time. The 

software architecture for the supervisory control of the Maglev system via the Internet is 

depicted in the Fig. 2-3.  

 

 

Fig. 2-3.  Software architecture for the supervisory control via the Internet [21] 

 
 

In supervisory control of the maglev system, stability of the system is not affected by the 

Internet. This is due to fact that no sensor data or control data traveled through a communication 

network and real time control is achieved by the local system with dSPACE controller board. 

HTML 
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2.3 Real-Time Operating System for Networked Feedback Control   

 

This section presents the development of a real-time networked feedback control system 

based on the work in [22]. The need of real-time operating environments and a discussion on 

various factors affecting the selection of real-time operating environments are elaborated. A real-

time control system over the Ethernet based on client-server architecture and RTAI 24.1.12 with 

Redhat Linux 7.3 is implemented and experimentally verified. 

 

2.3.1 Need and Selection of Real-Time OS  

From the discussion of the previous chapter, we concluded that Ethernet is potentially 

the most practical network solution for an NCS design. Various communication protocols such as 

TCP/IP are used in Ethernet. However, the use of an Ethernet local area network (LAN) in NCSs 

poses several technical challenges including dealing with network latencies. Fig. 2-4 shows the 

time-delay components of the network latency in a periodic client-server communication process. 

Table 2-1 gives the nomenclature of the time delay components shown in Fig. 2-4. We assume 

that there is no data collision on the network. 

Table 2-1. Nomenclature of time-delay components [22] 

Symbol Description 
TCprep Time taken by the client to prepare the request message 
TCwait Time spent by the client waiting for network access 
TCtransmit Transmission time from the client to the server 
TSprocess Time taken by the server to process the request 
TSprep Time taken by the server to prepare the reply message 
TSwait Time spent by the server waiting for network access 
TStransmit Transmission time from the server to the client 
TCprocess Time taken by the client to process the reply 
T Total period of the process on the client side 
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Fig. 2-4. Time-delay components of the network latency in a periodic client-server 
communication process [22] 

 

As shown in Fig. 2-4, a typical client-server communication process in an NCS is 

periodic with a sampling period T. The total communication process is required to be completed 

in one period. The total communication time or the latency Ttotal is given by [22] 

 
.processtransmitwaitprepprocesstransmitwaitpreptotal TCTSTSTSTSTCTC TC T +++++++=     (2.1) 

 

In the current research, the ball maglev system shown in Fig. 2-1 is used again as the test 

bed to verify the feasibility of real-time control over the Ethernet. We can apply the client-server 
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architecture to a closed-loop NCS as shown in Fig. 2-5. The client side of the architecture 

includes the test bed. The server side implements the controller. The request message sent by the 

client to the server can carry the sensor data and the response message sent by the server to the 

host can carry the control data. The processing of the message on the server side is the 

calculation of control data using the sensor data. For this kind of closed-loop networked control 

system to remain stable, the events have certain deadlines. If these deadlines are missed, the 

stability of the control system is affected. In the current research, the ball maglev system is open-

loop unstable. It has strict time requirements. It was found that for 333.333 Hz, the feedback 

loop should be completed in 1.42 ms [21]. If this deadline is missed, the system becomes 

unstable. Thus, the sampling should be done at a certain fixed frequency, e.g., 333.333 Hz. After 

every 3 ms, a fresh sample of the sensor data is taken. This sensor data is then transferred to the 

server to calculate the control in the form of a message. The creation of a message to be sent to 

the server is dependant on the sensor sampling. So, this process of sampling the sensor data is a 

real-time process. It is the responsibility of the OS environment to ensure that a sample is taken 

every 3 ms. In order to ensure that the time constrained events happen at correct times, a real-

time operating environment is needed [22]. 

 

 

Fig. 2-5. Block diagram of a real-time NCS test bed based on a client-server architecture [72] 
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After the natures of available networks were studied, it was concluded that an 

appropriate real-time OS is required to reduce the time delay caused by device processing and to 

successfully implement a distributed architecture. Commercially available OSs such as Windows 

2000, various versions of Unix and Linux are not real-time OSs. The Linux real-time application 

interface (RTAI) [73] was developed as a real-time operating environment solution at 

Dipartimento di Ingeneria Aerospaziale Politecnico di Milano (DIAPM). RTAI modifies the 

Linux kernel to make it a real-time operating environment. RTAI offers the same services as the 

Linux kernel core, adding the features of a real-time OS. Compared to the commercially 

available real-time OSs, RTAI’s performance is very competitive [73]. Table 2-2 summarizes the 

typical performance of RTAI.  

 

Table 2-2. RTAI’s typical performance [73] 

Context switch time 4 μs 
Interrupt response 20 μs 
Maximum periodic task rate 100 kHz 
One-shot task rate 30 kHz 

 

 

Ambike [22] proposed a real-time control system for the ball maglev setup by using 

Linux 7.3 with RTAI 24.1.12. Two timing tests were performed to observe the difference of the 

performances between RTAI and non-real-time OSs [74]. The following two paragraphs present 

the results of these two tests. 

The smallest amount of time that can be precisely measured on an OS is known as its 

clock resolution. The time required to read a clock is typically much less than its resolution, and 

many consecutive clock access functions can be executed before the value returned by the clock 

changes. This principle was used in the first test. The number of times the clock was accessed 
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before the change in value returned by the clock access function was recorded and then plotted. 

Fig. 2-6 represents the results of the first test on Windows 2000, Redhat Linux 7.3, and Redhat 

Linux 7.3 with RTAI 24.1.12. Significant variations in Fig. 2-6(a) and (b) indicate some other 

OS activities that are not deterministic. In Fig. 2-6 (c), the straight line denotes that there was no 

significant non-deterministic OS activity in Linux with RTAI. 
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Fig. 2-6. Plots of the number of clock reads per iteration for the first timing test on (a) Windows 
2000, (b) Redhat Linux 7.3, and (c) Redhat Linux 7.3 with RTAI 24.1.12 
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Fig. 2-7. Plots of the clock resolutions obtained for the second timing test on (a) Windows 2000, 
(b) Redhat Linux 7.3., and (c) Redhat Linux 7.3 with RTAI 24.1.12 
 
 

 
In the second test, the clock resolution was calculated and plotted over several iterations. 

Fig. 2-7 presents the results of the second test on Windows 2000, Redhat Linux 7.3, and Redhat 

Linux 7.3 with RTAI 24.1.12, respectively. From Fig. 2-7, we can see that the clock resolution of 

RTAI is much better than that of Windows and Linux alone. Although the spikes in Fig 2-7 (c) 
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denote the variation in the clock resolution from 1 μs to 4.1 μs, the clock resolution reported is 

consistently less than 5 μs. These two simple tests demonstrated the non-real-time characteristics 

of the two popular OSs: Windows 2000 and Linux. 

 

2.3.2 Design and Implementation of a Real-Time Networked Feedback Control    

Linux control and measurement device interface (comedi) [75] is a free software project 

for tools, libraries, and drivers for various forms of data acquisition, and provides a collection of 

drivers for a variety of common data acquisition plug-in boards. It is used to provide the 

hardware-software interface [22].  It works with the standard Linux kernel as well as the real-

time extensions such as RTLinux and RTAI. National Instruments’ PCI-6025E is the data-

acquisition board for the experiments [22]. 

Selection of network protocol for communication is an important part of NCS design. 

The two dominant choices are TCP and UDP. TCP was specifically designed to provide a reliable 

end-to-end byte streams over any unreliable network [60]. TCP provides various services like 

stream data transfer, reliability, efficient flow control, full duplex operation, multiplexing, etc. 

Handshaking signals are used for making and breaking the connection. Parameters such as 

sequence numbers are initialized to help ensure ordered delivery and robustness. If time delay is 

encountered, the data is retransmitted from the sender. Timers and acknowledgment messages 

are used to detect this time delay or data loss. Check sums are used to detect data corruptions 

that might occur during the data transfer. Although TCP is a very reliable protocol, it has some 

disadvantages. Due to various services such as error checking and ordered and reliable data 

delivery, it has large overheads leading to time delay in the communication. In the event of 

congestion, the data are lost more frequently, so more retransmissions are done by TCP, 

increasing the overheads. For closed-loop control over the network the added reliability provided 
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by TCP may not be worth the cost of the network delays it introduces. 

UDP is an alternative provided by the TCP/IP protocol suite. Data transfer with UDP is 

not connection oriented. UDP does not provide additional services such as ensuring ordered data 

delivery and robustness as provided by TCP. It is therefore known as a best-effort network 

protocol. Although UDP is less reliable, it has fewer overheads and introduces less network 

delays. Ploplys et al. [10] concluded that the UDP, an unreliable but faster protocol, was better 

suited for real-time control over a dedicated wireless computer network. The general properties 

of TCP and UDP are compared in table 2-3. 

 

Table 2-3. General properties of TCP and UDP 

Properties TCP UDP 
Data Flow Control Yes No 
Message Boundaries No Yes 
Connection Oriented Yes No 
Positive Acknowledgement Yes No 
Data Checksum Yes Optional
Duplicate Detection Yes No 
Timeout and Retransmission Yes No 

 
 

2.3.3 Experimental Verification    

The mathematical model between the PWM output (V) and the position sensor output (Y) 

is described by a second-order transfer function [67]. 
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Using this ball Maglev test bed and the Ethernet LAN in our lab, a real-time NCS shown 
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in Fig. 2-8 is constructed. The system configuration is the same as shown in Fig. 2-5. The plant 

PC with NI PCI-6025E as the data-acquisition card enables the ball maglev test bed to send out 

sensor data and receive control data through the LAN. The controller PC receives the sensor data, 

computes the control data, and then sends out the control data through the same LAN. Linux 

with RTAI is implemented on both PCs to ensure the time-constrained events like sampling and 

actuating do not miss their deadlines [22].  
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Fig. 2-8. Real-time NCS over an Etherent LAN 

 
 

A digital lead-led controller designed in [22] to stabilize this set up is given as 
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The performance of our real-time operating environment was tested herein. First, the 

single-actuator ball maglev system was controlled using a PC with a 1.7-GHz Pentium IV 

processor and a data acquisition board PCI-6025E from National Instruments. Windows 2000 
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was used as the OS to interact with this hardware. Fig. 2-9 shows the system response of 

tracking a sinusoidal position command. The maximum command frequency that this control 

system could follow was 0.7 Hz as shown in Fig. 2-9. 
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Fig. 2-9.  Response of tracking a sinusoidal command of 0.7 Hz with a non-real-time operating 
system 

 
 

Then we replaced the control system with Linux RTAI with Comedi. The conditions of 

the hardware setup were exactly the same as those in the first experiment. The data-acquisition 

board was again PCI-6025E. The PC used in this experiment contained the same processor (1.7-

GHz Pentium IV) as the one used in the first experiment. Fig. 2-10 shows the system response of 

tracking a sinusoidal position command. The maximum command frequency that this NCS could 

follow was 2.8 Hz as shown in Fig.2-10. This factor-of-4 improvement in command frequency 

by comparing Figs. 2-9 and 2-10 resulted from the efficiency and the deterministic nature of our 

real-time operating environment.  
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Fig. 2-10.  Response of tracking a sinusoidal command with frequency of 2.8 Hz with the real-
time operating environment 

 
 

Several other experiments were performed to verify this real-time control over the 

Ethernet. Fig. 2-11 shows the system responses of tracking various ramp inputs and step inputs. 

Fig. 2-12 shows the system responses of tracking a sinusoidal command with different 

frequencies.  
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Fig. 2-11.  Real-time system response of (a) tracking a decreasing ramp input, (b) tracking an 
increasing ramp input, (c) step input, and (d) multiple steps input  
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Fig. 2-12.  System response of tracking a sinusoidal command with frequency of (a) 0.04 Hz, (b) 
0.08 Hz, (c) 0.17 Hz, and (d) 0.33 Hz  
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2.4 Supervisory Control Based on the RTAI and PuTTY  

 

Base on the real-time control environment proposed and implemented by Ambike [22] 

and a free secure shell client PuTTY, a simple Internet-based supervisory control of the ball 

maglev setup is implemented as shown in Fig. 2-13. Compared with the supervisory control 

introduced in Section 2.2, this approach is much simpler without any CGI programming.  

 

Internet

Client PC

Server PC
Pentium IV
Linux with RTAI

SSH
PCI-

6025E

       

            
Maglev 
Setup

Command Feedback

Putty

Command Feedback

Sensor

Actuator

 

Fig. 2-13. Framework of the supervisory control of the test bed via the Internet based on RTAI 
and PuTTY 
 

 

Multi-user operating systems, such as Unix and VMS, usually present a command-line 

interface to the user, much like the ‘Command Prompt’ or ‘MS-DOS Prompt’ in Windows. Using 

this type of interface, there is no need for user to be sitting at the same machine he is typing 

commands to. The commands, and responses, can be sent over a network, so the user can sit at 

one computer and give commands to another one, or even to more than one. SSH, Telnet and 
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Rlogin are network protocols that allow you to log in to a multi-user computer from another 

computer, over a network. On the computer the user sits at, he runs a client, which makes a 

network connection to the other computer (the server). The network connection carries the user’s 

keystrokes and commands from the client to the server, and carries the server's responses back to 

the client. PuTTY is a free client of Telnet and SSH for Windows and Unix platforms [76]. 

When PuTTY is started, it shows a dialog box for configuration as shown in Fig. 2-14. 

In the ‘Host Name’ box is for the Internet host name or IP address of the server PC which 

controls the ball maglev setup. In the current research, the server PC installed with Linux and 

RTAI real-time system is named “maglev2”. 

 

 

Fig. 2-14. Configuration window of PuTTY  
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Once the ‘Host Name’, ‘Protocol’, and possibly ‘Port’ settings are filled in and the 

‘Open’ button is pressed, PuTTY will begin trying to connect to the server. If the connection is 

successful, a Command Prompt shows up, the server PC can be logged in with any client PC in 

the Internet with correct username and password. The control programs in the server PC can be 

run from the client PC and the control results can be seen from the client PC. 

To verify the Internet-based supervisory control system implemented above, an 

experiment was performed. The plot of 300 μm step response obtained from the data in client PC 

side is shown in Fig. 2-15.  
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Fig. 2-15. Maglev system response to a step input of 300 μm provided via the Internet 
 

 

2.5 Summary  

 

In this chapter, the open-loop unstable ball maglev test bed was used to experimentally 

verify the feasibility of Internet-based real-time control. A real-time control over the Ethernet 
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was developed based on the real-time solution of RTAI with Linux proposed in [22]. UDP was 

used as the transport protocol due to its better real-time performance.  The real-time operating 

environment improved the command-following capability by a factor of 4 in terms of command 

frequency. Thus feedback control over the Ethernet based on Linux with RTAI is demonstrated 

as one of the real-time solutions of real-time control over networks. 

A new client/server-architecture-based supervisory control using the free SSH client 

PuTTY and the real-time operating environment is also proposed in this chapter. Experiment 

results based on real-time networked feedback control system and supervisory control system 

verified the feasibility of Internet-based real-time control. For supervisory control, system 

stability is not affected by the Internet since the control loop is closed locally. For real-time 

networked feedback control system implemented in this chapter, the system stability and 

performance are easily achieved since there are no significant time delays and data-packet losses 

in the LAN used in current research. However, for practical application, network-induced time-

delay and packet-loss could be randomly time-varying. How to modeling system with time-delay 

and pack-loss and develop appropriate compensation algorithms to deal with them is further 

investigated in the following chapters. 
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CHAPTER III 

MODELING AND STABILITY ANALYSIS OF                                             

NETWORKED FEEDBACK CONTROL 

  

In this chapter, a new dynamic model of networked feedback control with the 

consideration of network-induced time delay, data-packet loss, and out-of-order data-packet 

transmission is provided.  

 

3.1 Introduction 

 

The recent migration of communication architectures from point-to-point to common-

bus ones introduces different types of time delay uncertainty among sensors, actuators, and 

controllers. These time delays originate from the time-sharing nature of the communication 

medium as well as the computation time required for physical signal coding and communication 

processing. The characteristics of time delays could be constant, bounded, or even random, 

depending on the network protocols adopted and the chosen hardware. Input delay is the most 

common form of network-induced time delays or latencies in NCSs. It is well-known in control 

systems that time delays can degrade a system’s performance and even cause system instability 

[78]. Considering the nondeterministic factors during data transmission, other network-

communication induced phenomenon such as data-packet loss and out-of-order data transmission 

must also be addressed in deriving the continuous-time or discrete-time system model of a 

networked feedback control system. 
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3.2 Modeling of Feedback Control over Networks 

 

Since NCSs are digital control systems with network communication, they usually 

contain continuous-time plants and discrete-time controllers with possibly different sampling 

frequencies. We consider a networked feedback control framework as shown in Fig. 3-1. 

Because of the limited network bandwidth, two classes of communication delays are included in 

this framework: (1) sensor-to-controller delay τsc and (2) controller-to-actuator delay τca.  

 

 

Fig. 3-1.  Block diagram of a networked feedback control. The independent network delays from 
the controller to the actuator and from the sensor to the controller are denoted as caτ  and scτ , 
respectively. 

 
 

With the consideration of time delay and data-packet loss in data transmission, the 

system shown in Fig. 3-1 is described by the following dynamic model.  

 

[ ) ,,),()(

),()()()(

),()()()(

11 ++ ++∈=

++=

++=

kkkkk τhτhtht

ttDtCt

ttBtAt

uu

wuxy

vuxx&

                                   (3.1) 

 

where nRt ∈)(x  is the state, mRt ∈)(u is the control input, qRt ∈)(y is the output, A, B, C, and D  

Plant Sensor  Actuator

Controller

τca τsc 
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are known real constant matrices of appropriate dimensions. With the sensor sampling period h, 

hk denotes a certain sampling instant with ...,2,1,0, == khih kk , where k is the index of the 

sensor sampling instants, and { }...,3,2,1,0∈ki  is the index of the arrived packets at the 

actuator node. It is not required that 1+< kk ii , which is discussed in Remarks 3-1 and 3-4 below, 

thus ik can be different from k. The parameter τk denotes the time delay from the instant k when 

the sensor samples data to the instant when the actuator actuates the control input. We have τk = 

τsc + τca for a fixed control law [10]. Let t0 denote the instant when the control system is activated 

for the first time, then [ ) [ ) 0,,, 0011
1

≥∞=++ ++

∞

=
ttτhτh kkkk

k
U . We define the following initial 

condition function 

 

[ )00 ,),()( tτtttt −∈= θx .                                           (3.2) 

   

 In this chapter, the following assumptions are made: 

3-1.  The sensor node is time-driven and the actuator and controller nodes are event-driven. 

3-2.  The network-induced time delay is time varying with an unknown probability distribution 

function but bounded. 

3-3.  The plant noise v(t) and the sensor noise w(t) are zero-mean white Gaussian noises (WGNs)  

with { } { } 1),( and ,0,0  where),,()()( and ),()()( 2111 =≥≥== jiRRjiδRjiEjiδRjiE TT δwwvv  

when ,ji =  0),( =jiδ when .ji ≠ These noises are independent of previous states, control 

inputs, and network-induced time delays and packet losses. 

3-4.  There is no control input before the first control signal from the controller reaches the plant, 

i.e. u(t) = 0 for t < t0. 
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Remark 3-1: { }...,3,2,1,0∈ki , i.e. { }...,,, 3210 iiii  is a subset of { }...,3,2,1,0 . From 

Assumption 3-2 the time delay is bounded. Then there exist constants 0and0 >> pτ  such 

that ,11 phτhτhτ kkkk =≤−+< ++ ...,2,1=k . There are several special cases in model (3.1–3.2): 

1. If ,11 +=+ kk ii  then τk < h + τk+1. It includes two further special cases: (1) τk = τ0, (the time 

delay is a constant); and (2) τk < h, (the time delay is less than one sampling period). 

2. If { } { },...,,2,1,0...,,,, 210 kiiii k = there is no data-packet loss in data transmission. 

Otherwise, missing integers indicate the lost data packets. 

3. It is not required that 1+< kk ii . If 1+> kk ii , there is out-of-order data transmission between the 

ik-th data packet and the ik+1-th data packet. 

Therefore, the system (3.1–3.2) represents a general form of the NCS model where the 

effects of the network-induced time delay, data-packet loss, and out-of-order data transmission 

are dealt with simultaneously. 

 

Remark 3-2: The control input u(t) to the plant is piecewise constant during a sampling interval 

[ )1, +kk hh . From Assumptions 3-1 and 3-2 the actuator is event-driven, and from Remark 3-1, 

...,2,1, =< kphτk . Thus there can be at most p + 1 control inputs in one sampling interval. A 

timing diagram of the data packets transmitted in the control loop is illustrated in Fig. 3-2. The 

solid arrows denote the control input delayed less than one sampling period. The dotted arrows 

denote that there are p + 1 delayed control inputs actuated at the actuator node in the sampling 

interval [ )1, +kk hh . The dashed arrows denote that there are 3 control inputs actuated at the 

actuator node in the sampling interval [ )43 , ++ kk hh . In the sampling interval [ )1, +kk hh , the 

control inputs arrive at the actuator node at the random instants ,j
kk th +  where pjht j

k ≤≤≤ ,0 . 
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Fig.  3-2. Timing diagram of data packets transmitting in the control loop 

 
 

In order to analyze the closed-loop system in the discrete-time domain, we use the 

following state-space solution of a set of first-order matrix differential equations to discretize the 

continuous-time plant dynamic model (3.1). 
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Substituting (3.3) to (3.1) with t = hk+1 and t0 = hk yields 
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v(ik) and w(ik) are still zero-mean WGNs. 
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3.2.1 Full-State-Feedback Case 

Full-state-feedback controller: 

 

[ )11,),()( ++ ++∈= kkkkk τhτhthKt xu                            (3.5) 

where nmRK ×∈ is a constant matrix. 

 

3.2.2 Estimated-State-Feedback Case 

Estimated-state-feedback controller: 

 

[ ]

[ ) ,,),(ˆ)(
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−+−=

kkkkk τhτhthKt

t
t

LLDBtLCAt

xu

y
u

xx&
                             (3.6) 

where nmRK ×∈  and qmRL ×∈ are constant matrices.  

  

3.3 Sufficient Stability Condition 

 

A controller design method for the system (3.1–3.2) with a full-state-feedback controller 

(3.5) is presented and a sufficient stability condition is derived based on a Lyapunov functional 

method in this section. 

 

Lemma 3-1: For any vectors nR∈vu, and any real symmetric positive-definite matrix nnRP ×∈ , 

the following inequality holds. 
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vvuuvu PP TTT +≤− −12 .                                              (3.7) 

 

Proof: Introduce the matrix vuN 2
1

2
1

PP += − , and then we have 

.02)()( 12
1

2
1

2
1

2
1

≥++=++= −−− vuvvuuvuvuNN TTTTT PPPPPP  

 

Theorem 3-1: Given scalars 0>τ and )4,3,2( 0 => iλi , the system (3.1–3.2) is closed-loop 

stable with a control input of TYXK −= if there exist real symmetric positive-definite matrices P 

and Q, a nonsingular matrix X, and matrices Y and Zj (j = 1, 2, 3, 4) of appropriate dimensions 

such that the following LMI holds 

0
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           (3.8) 

where 

  TTT XAAXZZZXM −−+= 11111 ),(                                                (3.9) 

BYXAZZZZYXM TT −−−= 21222112 ),,,,( λλ                            (3.10) 

PXXAZZPXM TTT ++−= 333313 ),,,( λλ                                      (3.11) 

TT XAλXZXZM 44414 ),( −−=                                                   (3.12) 

1115 ),( τZτZM =                                                                                 (3.13) 

)(),,( 2222222
TTT BYBYZZZYM +−−−= λλ                                 (3.14) 

TTTT BYXZZYXM 32332323 ),,,,( λλλλ −+−=                                (3.15) 
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TTT BYλXλZλXZM 4242424 ),,( −−−=                                         (3.16) 

2225 ),( τZτZM =                                                                               (3.17)  

QXXQXM T τλτλ ++= )(),,,( 3333                                                  (3.18) 

TXλλλλXM )(),,( 344334 −=                                                              (3.19) 

3335 ),( τZτZM =                                                                                 (3.20) 

TXλλXM 4444 2),( −=                                                                        (3.21) 

4445 ),( τZτZM =                                                                                 (3.22) 

τQτQM −=),(55 .                                                                               (3.23) 

 

Proof:  Consider the following Lyapunov function   
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where P̂ and Q̂ are real symmetric positive definite matrices. With the following formulas 
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and taking the time derivative of (3.24) for [ )11, ++ ++∈ kkkk τhτht  yields 
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Applying (3.27) to above equation again, we obtain  
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From (3.1), (3.5), and (3.25), (3.29) can be rewritten as 
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where Mi and Ni (i = 1, 2, 3, 4) are arbitrary symmetric matrices of appropriate dimensions.  

From Remark 3-1, we can assume that ,11 τhτhτ kkkk ≤−+< ++  then when 

[ ),, 11 ++ ++∈ kkkk hht ττ we obtain thτt k <≤− . Thus 
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From Lemma 3-1, we obtain 
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Combining (3.30–3.32), we obtain 
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Applying Schur complements [77], the condition 0<Λ is equivalent to the following LMI.  
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Define TT
ii

T XPXPXXMZKXYNXNλNNλNNλNNN ˆ,,,,,,, 1
4433221 ======== − , 

and TXQXQ ˆ= , then pre- and post-multiplying both sides of (3.34) with diag(X X X X X) and its 

transpose, respectively, we can show that (3.34) is equivalent to (3.8) and complete the proof.  
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Remark 3-3: The above Lyapunov method was applied in the continuous-time domain, so the 

inter-sample behavior was taken into account. Moreover, the network-induced delay considered 

here includes τsc and τca and could be time-varying. 

 

Remark 3-4: From Remark 3-1, if 1+> kk hh , there is out-of-order data transmission between the 

ik-th and ik+1-th data packets. That is, the new data packet containing )( khx  reaches the plant 

before the old one containing ).( 1+khx  Appropriately discarding the outdated data packet can save 

network bandwidth and thus reduce the networked-induced time delay, which in turn makes the 

system be able to tolerate a larger amount of data-packet loss. Therefore, it is necessary to time-

stamp the data and establish an appropriate network scheduling method at the sensor node that 

can discard the outdated untransmitted messages when the new packet is transmitted. The 

controller may also discard the outdated sensor data to reduce the network traffic between the 

controller node and the actuator node. 

To verify the sufficient stability condition derived above, consider the following system: 
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                                        (3.35) 

 

This example is the same as Example 1 in [28] except that we introduced noises v(t) and w(t). 

From [28], the maximum allowable time delay that does not affect the stability of the system is 

0.0538 s. By using Theorem 3-1 and solving the LMI (3.8), the upper bound of time delay τ for 

(3.35) is found to be 0.964 s and the feedback gain [ ]5.1175.3 −−=K . A step response of the 

system with time delays bounded by 0.964 s and R1 = 0, R2 = 0.001 is shown in Fig. 3-3.  Thus, 

the sufficient stability condition in Theorem 3-1 is less conservative than the one given in [28]. 
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Fig. 3-3.  Step response with time delays bounded by 0.964 s 

 

 

 

3.4 Summary 

 

A new dynamic model for NCSs with the consideration of network-induced time delay, 

data-packet loss, and out-of-order data-packet transmission was provided in this chapter. Based 

on this model, the methods of stability and controller design were proposed. A new delay-

dependent stability criterion and the upper bound of the time delays that the system can 

accommodate were derived through a Lyapunov functional approach by solving a LMI. 

Furthermore, the relation between the sampling period and the network-induced time delay can 

also be determined based on this approach, which will be discussed in Chapter V. The 

appropriate co-design integration of control systems, real-time systems, and network 

communication systems proposed in this dissertation is based on this model and will be 

presented in the following chapters. 
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CHAPTER IV 

TIME-DELAY AND PACKET-LOSS COMPENSATION 

 

In Chapter II we discussed the design and implementation of a real-time control of the 

ball maglev system via an Ethernet LAN. This chapter describes time-delay and packet-loss 

compensation algorithms to ensure the system stability of the ball maglev test bed in the 

presence of sporadic delays and successive data-packet losses. Two approaches based on two 

different combinations of timing schemes are proposed in detail. 

 

4.1 Introduction  

 

Randomly-varying time delays and data-packet losses induced by the network are well 

known to degrade the system stability and performance [7] [28–29]. To successfully implement 

the real-time networked control of the ball maglev system developed in Chapter II, we need to 

collect the delay information of the Ethernet LAN used as the communication medium. We 

implement the real-time control of this ball maglev test bed through Ethernet LANs. 

With a server PC and a client PC connected to the LAN in our lab, the round-trip time 

delay was measured with the c programming code provided by Ambike. The time delay profile is 

plotted and shown in Fig. 4-1. We repeated this delay measurement many times and the average 

round trip time delay between the client PC and the server PC was found to be about 230 µs and 

with standard deviation of about 200 µs. But there are some sporadic delays as long as 3.5 ms 

which is on the order of the system sampling period of 3 ms as shown in Fig. 4-1. 
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Fig. 4-1. Profile for round-trip time delays between two PCs connected to a LAN 
 
 

 

With a server PC and a client PC connected to two separate LANs on the Texas A&M 

University campus, experimental delay data are collected and shown in Fig. 4-2. As in a typical 

network, sporadic surges in time delays were observed in our LANs shown in a delay profile in 

Fig. 4-2. 
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Fig. 4-2.  Profile for round-trip time delays between two PCs connected to two separate LANs 
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There are two timing schemes: clock driven and event driven. The various timing 

methods used for sensor sensing, controller calculating, and actuator actuating have different 

implications for node synchronization. A summary of the different timing scheme combinations 

used is presented in Table 4-1 [10]. 

 

Table 4-1. Types of timing schemes of control nodes [10] 

Sensor Controller Actuator Clock synchronization 
Clock Clock Clock  Yes 
Clock Clock Event Yes 
Clock Event Event No 
Clock Event   Clock No 

 

 

In the past, synchronization of clocks was tried to coordinate the events in the networked 

control loop [79]. It is a complicated process generating additional network traffic to deliver the 

synchronized clock signals, and also requires continuous adjustment to retain this 

synchronization once generated. Two time-delay/data-loss compensation approaches based on 

the two timing schemes in which no time synchronization is required are proposed in this chapter. 

For the networked feedback control system shown in Fig. 3-1, the system stability could 

be lost because of the presence of bounded sporadic surges in communication time delays in the 

LANs in our labs shown in Fig. 4-2. The two classes of time delays and packet losses all need to 

be dealt with. The delay τsc can be determined by the controller node if the sensor clock and the 

controller clock are synchronized and all the sensor data packets are time-stamped. The delay τca 

is different in nature because the controller node does not know how long it will take for its 

control signal to reach the actuator node and no correction can be made at the controller node 

during the control calculation [28]. Thus we need to deal with these two classes of time delays 

separately and the packet losses as well. 
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4.2 Model Estimation-Based Approach 

 

The first approach is based on a combination of time-driven sensor and event-driven 

controller and actuator, and a multi-step-ahead model estimation. Since the network-induced 

delays and packet losses are random with unknown distribution and the upper bound of time 

delay is less than p sampling intervals from Assumption 3-1, the discrete-time model of the NCS 

(3.4) is varying with the length of the delay and the rate of the packet losses. Denote l sampling 

intervals as the bound of the varying length of the time delay at a given instant of time and l = 1, 

2, 3, ···, or p.  The discrete-time model of the system with the sampling period h and round-trip 

delay τk can be rewritten as 
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ττ and τk < lh. The time-driven 

index ik is the index of sampling-time instant as defined with ...,2,1,0, == khih kk   in Section 

3.2. The parameter K denotes the event number. The index iK is the index of the time instant 

when the sensor data arrive at the controller node and the updated control signal is available, so 

it is dependent on the time delay τsc and the rate of packet losses between the sensor node and the 

controller node. The relation between )( KiU and )( kiu will be established in the following 

section.  



72 

 

4.2.1 Compensation Algorithm for Time Delay and Packet Loss  

We know that the worst case is that the control signal does not arrive at the actuator 

node in p sampling intervals. This could be due to the time delay that is up to p sampling-period 

long or p – 1 consecutive packet losses between the controller node and the actuator node. Thus 

we design an estimator at the controller node to estimate the plant states of the successive 

samples p steps in advance. With these estimated states the controller calculates the control 

signals for each of the following p sampling intervals then sends them as a package to the 

actuator node. The actuator node then adopts the corresponding control signal from the package 

in the current sampling interval.  

The p-step-ahead state estimation is done as follows  

 

 

.)()(ˆ)(ˆ
...

)()(ˆ)(ˆ
)()()(ˆ

11

112

1

−+−++

+++

+

Γ+Φ=

Γ+Φ=
Γ+Φ=

pkpkpk

kkk

kkk

iii

iii
iii

uxx

uxx
uxx

                                     (4.2) 

 

The control signal package is generated as 
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where L denotes the control law without assuming delay. Thus each control signal package 

transmitted to the actuator node includes )(,...),(),( 11 −++ pkkk iii uuu . 
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The actuator node chooses the control signal from the package as below for the next p 

sampling intervals until the new control signal package arrives 
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where )( KiU denotes the actual control signal adopted by the actuator, ,...),(),( 1+kk ii uu   

)( 1−+ pkiu denote the components of the incoming control signal package at the corresponding 

sampling time interval ik, and t denotes the continuous time. Once the new control signal 

package arrives, (4.4) is revised with the new control signal components, and )( 1+KiU is then 

available. An actual real-time C implementation to select proper control signal from the control 

signal package at the actuator node is  
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where
⎩
⎨
⎧

<−
≥

=
01
01

)(sign
x
x

x . Expanding (4.4), we have the following expression that relates the 

actual control signal )( KiU adopted by the actuator node and the individual control signal 

components )( kiu in the control signal package. 
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The denotation U(iK) is unchanged but its value is varying during the time delay and then 

updated to be U(iK+1) when a new control signal package is available. If the time delay is less 

than h, there is an updated control signal available during two successive sampling intervals. If 

time delay is less than 2 h, there is an updated control signal available during three successive 

sampling intervals, and so on. In case the new control signal package does not arrive, the 

actuator node can use formerly calculated and stored control signals for up to the next p – 1 

sampling intervals from the control signal package that arrived most recently. The compensation 

for time delays and packet losses simultaneously with the algorithm developed above is 

elaborated in the following. 

For example, with p = 4, how the control signals are adopted by the actuator 

corresponding to the sampling intervals are illustrated in Fig. 4-3 when different time delays or 

packet losses occur. Note again that iK is the event index while ik is the discrete-time index.  
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(a) τk ≤ h or no packet loss 

 

 

 

(b) h ≤ τk <2 h or 1 packet loss 

 

 

 

(c) 2 h ≤ τk < 3 h or 2 consecutive packet losses 

 

 

 

(d) 3 h ≤ τk < 4 h or 3 consecutive packets losses 

Fig. 4-3. Actual control signal U(iK) adopted by the actuator node and components of the control 
signal packet u(ik) with respect to time when different time delays or packet losses occur. In this 
figure p is assumed to be 4, and parts (a), (b), (c) and (d) cover all the possible cases of the time 
delay up to 4 h or the number of consecutive packet losses up to 3. Short vertical lines indicate 
sampling instants. Solid arrows indicate that new control signal package arrive in the 
corresponding sampling interval. Dotted arrows indicate that the incoming control signal 
package is delayed or lost. 

 

If there is no new control signal package available in any given sampling interval 

denoted as a dotted arrow in Fig. 4-3, the formerly estimated control signal by (4.5) and stored in 

the last available control signal package is used. If a new control signal package arrives in any 

given sampling interval denoted as a solid arrow in Fig. 4-3, it revises all the components of the 
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last available control signal package. Then U(iK+1) is now available. Comparing U(iK+1), U(iK+2), 

U(iK+3), and U(iK+4) with the definition in (4-5), the actuator receives the proper control signal  in 

each sampling interval regardless of time delays or packet losses. In case of an out-of-order 

transmission and arrival of packages, the outdated packages are simply discarded. Fig. 4-4 shows 

an example communication process that includes all the situations of time delays, data-packet 

losses, and out-of-order data transmissions. Our algorithm works well when these situations 

occur simultaneously. The labels in bold face such as u2e, u3e, and so on denote the estimated 

control signals. The labels in unbold face such as u1, u5, and u7 denote the real control signals. In 

Fig. 4-4, the numerical indices of the control signals the plant receives is exactly the same as 

those of the sampling intervals, thus in every sampling interval, the plant receives a proper 

control signal that is either real or most recently estimated in the previous sampling intervals. 

Thus this algorithm compensates for time delays, packet losses, and out-of-order packet 

transmissions in a unified way. 

 

 

 
Fig. 4-4. Example communication process with time delays, packet losses, and out-of-order 
packet arrivals altogether 
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4.2.2 Sufficient Stability Conditions for Compensated Systems 

With the model-estimation-based compensation algorithm developed above, the plant 

receives the control input at each time instant k. Thus we can develop augmented system 

equations to facilitate the stability conditions. We consider the full-state-feedback case shown in 

Fig. 4-5 and the output-feedback case shown in Fig. 4-6. 

 

 

Fig. 4-5. Block diagram of a full-state-feedback NCS with a model estimator 

 

 

 

 

 

Fig. 4-6. Block diagram of an output-feedback NCS with a model estimator 
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If all the states are measurable, the sensor mode can send the full states through the 

network to update the model estimator as shown in Fig. 4-5. Assume that the sampling period is 

h. Then we have following difference equations:  

Discrete-time plant model: 

 

)()()()(
)()()()( 1

kkkk

kkkk

iiDiCi
iiii

wuxy
vuxx

++=
+Γ+Φ=+                                           (4.6) 

 

Model estimator:  
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Full-state-feedback controller:  

 

)(ˆ)( kk iLi xu =                                                      (4.8) 

State-estimation error:  

 

)(ˆ)()( kkk iii xxe −= , [ )1, +∈ KKk iii .                                     (4.9) 

 

We define a positive integer variable KK iiKN −= +1)( , where ik is the index of sampling 

instants defined in Chapter III, and Ki  is the index of event-arrival instants. Thus,  

 

0)(ˆ)()( =−= KKK iii xxe .                                           (4.10) 
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In other words, the state error in the model estimator is reset to 0 at the Ki -th instant when the 

actual sensor data are available.  

When it is impossible to directly measure all the plant states, a state observer may be 

implemented as shown in Fig. 4-6. This observer sends the observed states to the model 

estimator. Similarly, with the same dynamic equations (4.6–4.8) for the observer,  
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where )(~
kix is the observer state vector, and Lo is the observer gain. Define  
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Remark 4-1: The NCS model in [27] is extended to be the NCS framework shown in Fig. 3-2. 

This can deal with the case where there are time delays and data-packet losses in both the 

feedback path and the forward path whereas only the time delay in the feedback path was 

considered in [27]. The algorithm developed in the previous section can compensate for these 

two classes of time delays and data-packet losses simultaneously. 

 

1. For the full-state-feedback NCS shown in Fig. 4-5, the augmented system equation is 
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)()( 1111 kk ii zz Λ=+ ,    [ )1, +∈ KKk iii .                                          (4.14) 

 

The system described by (4.14) with the initial conditions [ ]Ti 0)( 00 xz = has the following 

solution [27]. 
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2. For the output-feedback NCS shown in Fig. 4-6, the augmented system equation is  
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The system described by (4.17) with the initial condition [ ]Tii 0)(~)( 000 xxz = has the 

following solution [27]. 
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The sufficient conditions for the stability of full-state-feedback and output-feedback 

NCSs are given as following two theorems. 
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Proof:  Taking the norm of (4.15) we have 
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For the first term on the right-hand side, let )( 1Λσ denotes the largest singular value 

of 1Λ . If )( 1Λσ > 1, we have 

 

( ) ( ) ( ) 11
)(

111 )()()( KmaxKkKk NKNiiii =Λ≤Λ≤Λ≤Λ −− σσσ .                      (4.20) 

If 1)( 1 ≤Λσ , we have ( ) 1)( 11 ≤Λ≤Λ −− KkKk iiii σ .  

For the second term on the right-hand side of (4.19), we have  
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with K2 >0 and a >0. 

Since there are time delays or packet losses, the event index K and the sampling time 

index ik satisfy the following inequality.   
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Thus (4.21) can be rewritten as 
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with 0/
23 >= maxNaeKK and 0/ >= maxNab . 

Thus from (4.19), (4.20) and (4.23) we can conclude 
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which implies the system (4.14) is globally exponentially stable around [ ]T001 =z  as ∞→ki . 
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Proof:  Taking the norm of (4.18) we have 
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For the first term on the right-hand side, let )( 2Λσ denotes the largest singular value 

of 2Λ . If )( 2Λσ > 1, we have  

 

( ) ( ) 4222 )()( KmaxKkKk Niiii =Λ≤Λ≤Λ −− σσ .                               (4.25) 

If 1)( 2 ≤Λσ , we have ( ) 1)( 22 ≤Λ≤Λ −−
Kk

Kiki iiσ . 

For the second term on the right-hand side of (4.24), 
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with K5 >0 and a1 >0. From (4-22) and (4-26), we have  
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with 0/
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1 >= maxNaeKK , and 0/1 >= maxNac . 

Thus from (4.24), (4.25) and (4.27) we can conclude 
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which implies system (4.17) is globally exponentially stable around [ ]T0002 =z  as ∞→ki . 

 

Remark 4-2: In this section, the results given in [27] were extended to cover two-way-delay 

cases, and the upper bound of time delay was used instead of the delay itself to give the 

sufficient conditions of stability. These conditions can be verified more easily and practically, 

since the upper bound is a fixed value whereas the delay is usually randomly varying. 

 

4.2.3 Experimental Verification  

To verify the effectiveness of the algorithm developed in the previous section, several 

experiments by using the ball maglev test bed were conducted. The sporadic surges in time 

delays in the LANs between our labs were found to be bounded by 15 ms (see Fig. 4-2) which is 

5 times as long as the sampling period, thus a 4-step-ahead estimator is designed, and the 

composition of a 56-byte-long IP packet transmitted from the server controller to the client 

actuator is shown in Fig. 4-7. It consists of a 20-byte-long IP header, an 8-byte-long UDP header, 

an 8-byte-long time stamp, one 4-byte-long current control signal, and four 4-byte-long 

estimated control signals.  

 

IP
 Header

UDP
Header

Time
Stamp U0 u2e u3e u4e

Bytes 20 8 8 4 4 4 44

Estmated Data

Current Data

u1e

 

Fig. 4-7.   Composition of a control-data packet from the controller to the actuator 
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In the first experiment, no compensation algorithm was used. At t = 10 s, we forced a 

data packet to be lost while transmitted from the server controller to the client actuator. With the 

introduction of this data-packet loss, no control signal will output to the actuator, it was expected 

that the system would become unstable. In the response of the system shown in Fig. 4-8, the 0 

value after t = 10 s represents that the system indeed lost its stability.  The ball could not 

maintain its equilibrium position and fell down. 
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Fig. 4-8. Ball position with a packets loss occurring at t = 10 s without the compensation 
algorithm 

 

 

In the second experiment, the estimator-based compensation algorithm was implemented, 

and one packet loss was introduced after every 4 successful data transmissions (i.e, at s 20% 

packet-loss rate) from t = 10 s onwards. As evident from the response shown in Fig. 4-9, the 

system remained stable with degraded performance and the ball did not fall down from its 

equilibrium position. 
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Fig. 4-9. Ball position with 20% packet losses occurring from t = 10 s onwards with the 
compensation algorithm 

 

 

In Fig. 4-9, some hidden oscillations can be observed. In practical NCS applications, 

asynchronous and aperiodic sampling often occurs since the computer is time-shared or a part of 

a computer network, or there are technical imperfections in the instrumentation. However, 

asynchronous and aperiodic sampling is sometimes preferred over synchronous sampling when 

the former is applied intentionally to eliminate hidden oscillations. 

In the third experiment, the estimator-based compensation algorithm was implemented 

and 4 consecutive packet losses were introduced once every 6 s from t = 10 s onwards. The 

response of the system is shown in Fig. 4-10. As evidenced for Fig. 4-10, the system maintained 

its stability successfully even in the event of 4 successive packet losses and the ball did not fall 

down from its equilibrium position. However, the periodic 1.1-mm peak-to-peak spikes in the 

ball position indicate the degraded system performance due to the packet losses and imperfect 

state estimation. 
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Fig. 4-10. Ball position with 4 successive packet losses occurring once every 6 s from t = 10 s 
onwards with the compensation algorithm 

 

 

The above experimental results demonstrated that the system stability in the presence of 

time delays or packet losses could be maintained using the estimator-based compensation 

algorithm developed in the previous section. 

 

4.3 Predictor- and Timeout-Scheme-Based Approach  

 

This approach is based on a combination of a clock-driven sensor and actuator and 

event-driven controller. This is also a simple approach in which clock synchronization is not 

required. A multi-step-ahead control prediction algorithm based on an autoregressive (AR) 

model and timeout-scheme [21] is proposed to compensate for the time delays and packet losses 

in both the feedback path and the control-input path simultaneously. 



89 

 

4.3.1 Sensor Data Prediction   

The plant and controller dynamics are modeled as 

 

                           
)()()()(
)()()()( 1

kkkk

kkkk

iiDiCi
iiii

wuxy
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++=
+Γ+Φ=+                                       (4.28) 

 

where nR∈x  is the state, mR∈y is the output, and vR∈u  is the control input. A, B, C, and D 

are constant matrices of compatible dimensions.  

To compensate for the delay τsc, a prediction algorithm is proposed for sensor data 

prediction in [22]. To predict the data, a procedure called system identification is used. There are 

two types of identification procedures. In off-line identification, a batch of data is collected from 

the system and this data is used to construct a model. Off-line identification is used for systems 

which have minimum changes in their behavior during operation.  

For some other systems, it is necessary to design a model in order to support the 

decisions that have to be taken during their operation. Behaviors of these systems change 

considerably during operation. For these systems, data are updated continuously and it is 

necessary to infer the model at the same time as the data is collected. This identification 

procedure is known as recursive system identification [80]. Among various methods, an AR 

model and an autoregressive moving average (ARMA) model were used to predict the sensor 

data ŷ because of their simplicity [80]. Many experiments were conducted to select the best 

model to be used to predict the sensor data prediction. An AR model was finally chosen because 

the percentage error variation for this model is less than the percentage error variation for the 

ARMA model [21]. The AR model is defined as [22] 

 

                                )1(ˆ)()( 1 +=− kkqA yy ,                                                      (4.29) 
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where q–1 is the backward shift (or delay), y(k) corresponds to the k-th output, and A(q–1) is 

defined as 

 

                    n
n qaqaqA −−− ++= ...)( 1

1
1 .                                             (4.30) 

 

Based on the recursive least-square methodology, an off-line identification of the parameters of 

the fifth-order AR model was performed using MATLAB [22].  

It was also necessary to choose an appropriate order for the predictor. The accuracy of 

prediction and the number of computations required for prediction are the two important factors 

to consider in the decision of the order of predictors. It was observed that a tradeoff exists 

between the accuracy of a predictor and the number of computations done by the predictor for 

each prediction. Generally higher-order predictors have better accuracy of prediction than the 

lower-order ones of the same type. On the other hand, higher-order predictors take more number 

of computations for a prediction than the lower-order predictors of the same type. A good 

predictor should give a reasonably accurate prediction with the minimum usage of computational 

resources. 

Adequate amount of off-line output data of the stable system was required for 

development of predictors. To collect on-line sensor data of the stable system, the test bed was 

operated with the feedback loop closed locally. The sensor data of the system for 17162 samples 

were collected. MATLAB used half of these data to develop predictors and the rest half for their 

validation. The percentage of the sensor variations reproduced by the predictors is known as fit 

[80]. Mathematically, a fit can be stated as 
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where Y is the measured output and Ŷ is the predicted model output.  A higher best fit implies 

better prediction. Table 4-2 represents the best-fit values for auto-regressive (AR) models for 

various step-ahead predictors [22]. 

 

Table 4-2.  Best fits for AR models [22] 

Order 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 
8 74.43 67.02 65.40 65.60 64.78 63.98 64.86 64.39 
7 72.63 64.79 63.76 63.98 62.99 60.96 60.36 60.04 
6 72.05 62.68 61.35 62.16 61.27 59.67 57.34 55.92 
5 71.95 62.86 61.74 62.05 60.43 59.61 57.64 56.97 

 

Based on the above discussion and simulation results, an 8th-order 4-step-ahead 

predictor was designed after numerous design iterations. The 4-step-ahead prediction for the 

control signal was calculated using the predicted sensor data. The parameter vectors for various 

predictors, calculated using MATLAB were used to develop the following prediction equations 

for our maglev test bed [22]. 
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4.3.2 Timeout Scheme 

To compensate for the time-delay τca, a time-out scheme was developed. In this timeout 

scheme, the event-driven controller computes the control input and predicts the 4-step-ahead 
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control data as soon as the new sensor data are available at the controller node. The controller 

sends the current control data together with the predicted control data as a package to the 

actuator node. At the actuator node, if no new control package is available within the t0 timeout 

threshold, the actuator calls a timeout and the predicted control data stored in the previous 

control package is used as control input. For the open-loop unstable ball maglev test bed, it was 

calculated that if the sampling period is 3 ms, the actuation has to occur within 1.42 ms after 

sampling for the system stability [21]. Thus we choose 1.42 ms as the timeout threshold. 

Figs. 4-11 and 4-12 show two examples of implementing the time-out scheme to 

compensate for two-way time delays and data-packet losses. In these two figures, the label y 

denotes the sensor data transmitted from the client sensor to the server controller, the label u 

denotes the control signal data transmitted from the server controller to the client actuator, and 

the label t0 denotes the timeout threshold.  

 

 
 

Fig. 4-11. Communication process with two-way time delays 
 

( y-4, …, y4)

( y-7, …, y1) 

   (u3, u4p, u5p, u6p, u7p) 

(y-6, …, y2) 

u4 

u3p 

u2p 

u1 

   (u4, u5p, u6p, u7p, u8p) 

  (u1, u2p, u3p, u4p, u5p) 

Server PC 
Controller 

(Event driven)

     Client PC 
Actuator & Sensor

(Time driven)

Plant 
(Test Bed) 

T1 

T2 

T3 

T4 

Packet Predicted control used 

t0 

( y-5, …, y3)
  (u2, u3p, u4p, u5p, u6p)  

Packet discarded

t0

t0

t0



93 

 

 

Fig. 4-12. Communication process with two-way packet losses 
 

 

In Figs. 4-11 and 4-12, all data-packets are time stamped, the subscripts of the labels 

denote the sampling-period indices and indicate whether the data are predicted (p). For example, 

y2 is the sensor data of the second sampling period, u3 is the control data for the third sampling 

period, and u4p is the predicted control data for the fourth sampling period. The solid arrows 

originating from the client side towards the server side denote the transmission of the sensor-data 

packets that reach the server side. The solid arrows starting from the server side towards the 

client side denote the control-data packet inputs. The round-tip arrows indicate lost data 

communication in a given sampling period, and the dotted arrows, delayed communication. The 

dashed arrows indicate that the formerly predicted control input is applied when the actual 

current control-data packet does not reach the client side before the timeout is called. The 

square-tip arrows indicate the delayed control-data packet of the previous sampling period is 

discarded if there is a new control-data packet available before the timeout is called. Thus most 

recent control data such as u4 shown in Fig. 4-11 are used.  
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Thus the proposed compensation algorithm can dealt with time delays and packet losses 

in both the feedback path and control forward path simultaneously. In case of out-of-order 

transmission of packets, the outdated packets are simply discarded as in the estimator-based 

algorithm proposed in Section 4.2. For instance, if the (n + 1)-th control-data packet arrives 

earlier than the n-th packet at the actuator node from the controller node, the actuator node 

neglects the n-th packet and uses the most recent (n + 1)-th control-data packet. By this, this 

algorithm can deal with out-of-order packet transmission as well. Thus a control input to the 

plant is always generated in each sampling period with either actual or predicted control data 

depending on the actual data’s availability. 

  

4.3.3 UDP Packet Composition 

The composition of a typical 68-byte-long sensor-data packet transmitted from the client 

to the server is shown in Fig. 4-13. A time stamp is taken on the client side at sampling and is 

sent to the server. The server does not modify the time stamp but sends it back to the client along 

with the calculated control data. This time stamp is then used by the client to identify whether 

the arrived data packet is the expected packet or a delayed packet. Out-of-order data-packet is 

simply discarded in this compensation scheme. 

 

IP
 Header

UDP
Header

Time
Stamp y0 y-2 y-3 y-4

Bytes 20 8 8 4 4 4 44

Sensor Data

y-1 y-5 y-6 y-7

4 4 4

 

Fig. 4-13. Composition of a sensor-data-packet transmitted from the sensor to the controller 
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The composition of a typical 56-byte-long control-data packet transmitted from the 

server to the client is shown in Fig. 4-14. It consists of a 20-byte-long IP header, an 8-byte-long 

UDP header, an 8-byte-long time stamp, one 4-byte-long current control-data value, and four 4-

byte-long predicted control-data values. 

 

IP
 Header

UDP
Header

Time
Stamp u0 u2p u3p u4p

Bytes 20 8 8 4 4 4 44

Predicted
Control DataCurrent Data

u1p

 

Fig. 4-14. Composition of a control-data-packet transmitted from the server controller to the 
client actuator 

 
 
 

4.3.4 Experimental Verification 

Three experiments similar to those in Section 4.2.2 were conducted. The experiment 

setup and condition are exact the same as those in Section 4.2.2. The first experiment is exact the 

same with the first experiment in Section 4.2.2, no compensation algorithm was used. At t = 12 s, 

we forced the sensor-data packet to be lost while transferred from the client to the server, then a 

zero control input was applied to the actuator. With the introduction of this packet loss, it was 

expected that the system would become unstable as in the first experiment in Section 4.2.2. The 

response of the system is shown in Fig. 4-15 which is very similar to the Fig. 4-8 as expected. In 

Fig. 4-15, the 0 value of the vertical axis indicates that the ball could not maintain its equilibrium 

position and fell down. This happened because of the introduced packet loss. The system could 

not remain stable in the absence of the compensation.  
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Fig. 4-15. Ball position profile with packet loss occurring at t = 12 s without compensation 
 

 

In the second experiment, the predictor-based compensation algorithm was implemented. 

From t = 12 s onwards, artificial packet loss was introduced at every fifth sample (i.e. 20% 

packet loss rate). The response of the system is shown in Fig. 4-16. As evidenced from Fig. 4-16, 

the system remained stable throughout the experiment and the ball did not fall down from its 

equilibrium position. However, the increased movement of the ball about the equilibrium point 

indicates the performance degrade due to the packet losses and the multi-step-ahead sensor- and 

control-data prediction that would inevitably introduce prediction error. 

In the third experiment, the predictor-based compensation algorithm was used and 4 

successive sensor-data-packet losses occurred once every 12 s from t = 2 s onwards.  The 

response of the system is shown in Fig. 4-17. The system remained stable throughout the 

experiment even in the event of 4 successive packet losses, and the ball did not fall down from 

its equilibrium position. This experimental result demonstrates that this algorithm is effective to 
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maintain the system stability with up to 4 successive packet losses or time delays as long as 4 

sampling periods. 
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Fig. 4-16. Ball position profile with average 20% packet loss occurring after t = 12 s 
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Fig. 4-17. Ball position profile with 4 successive packet losses occurring every 12 s after t = 2 s 
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The above experimental results verify that the prediction- and timeout-scheme-based 

compensation methodology developed in Section 4.3.2 is also effective to maintain the stability 

of network-based real-time control systems in the event of data-packet losses.  

By comparing Fig. 4-9 with Fig. 4-16, and Fig. 4-10 with Fig. 4-17, it is concluded that 

the performance of these two compensation algorithms proposed in this chapter is very close in 

terms of maintaining system stability. To further investigate their performances, additional 

experiments were conducted in the following section. 

 

4.4 Experiments for System QoC Verification  

 

With the ball maglev system as a real-time NCS test bed and the time-delay/packet-loss 

compensation algorithms proposed in previous sections, we successfully implemented a real-

time control over the Ethernet. Several additional experiments were conducted to determine the 

performance of these two algorithms and the degradation of system performance due to time 

delays or packet losses in step response and dynamic tracking. Two compensation algorithms 

were both verified. The first set of experiments was step response. Fig. 4-18 (a) shows a closed-

loop step (started at t = 7 s) response of the test setup without packet loss. Fig. 4-18 (b) shows 

the step (started at t = 7 s) response of the system implemented with model-estimation-based 

algorithm for packet loss compensation. Fig. 4-18 (c) shows the step (started at t = 7 s) response 

of the system implemented with sensor-data-prediction and timeout-scheme-based algorithm for 

packet-loss compensation. The average packet-loss rate is 20%. The closed-loop systems with 

packet losses were stable with a worse stability margin due to packet losses and imperfect state 

and control estimation or prediction. 
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Fig. 4-18. Step responses of the ball maglev system (a) without packet loss, (b) with the model-
estimation-based algorithm and 20% packet losses, and (c) with the prediction- and timeout-
scheme-based algorithm and 20% packet losses  
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The second set of experiments was to make the ball track commanded trajectories. Fig. 

4-19 (a) shows the system responses of tracking a sinusoidal position command at the average 

packet-loss rate of 20% from t = 50 s onwards in the system with model-estimation-based 

compensation algorithm. Fig. 4-19 (b) shows the system response of tracking a sinusoidal 

position command without packet loss in the system with prediction and timeout scheme-based 

compensation algorithm. Fig. 4-19 (c) shows the system response of tracking a sinusoidal 

position command at the loss average packet-loss rate of 20% in the system with prediction and 

timeout scheme-based compensation algorithm. 
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Fig. 4-19.  The ball maglev system responses of tracking a sinusoidal command (a) with 20% 
packet losses beginning at t = 50 s with model-estimation-based algorithm, (b) without packet 
loss, and (c) with 20% packet losses with the prediction- and timeout-scheme-based algorithm 
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Fig. 4-20 shows the ball maglev system responses of tracking a saw-tooth position 

command at different packet-loss rates from t = 34 s onwards with the model-estimation-based 

algorithm. From 4-20, it can be shown that the fluctuation in the ball position increases with the 

increase of the packet-loss rate. 
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Fig. 4-20. The ball maglev system response of tracking a saw-tooth position command with (a) 
10% packet losses (b) 20% packet losses 
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4.5 Summary 

 

This chapter presents solutions to time-delay and packet-loss problems encountered in 

real-time operation of an open-loop unstable ball maglev test bed via an Ethernet LAN. A novel 

model-estimation based algorithm and a sensor-data prediction with timeout-scheme based 

algorithm were developed to compensate for the two classes of time delays and packet losses 

simultaneously. Experiment results verified the feasibility and effectiveness of these two 

algorithms.   

For model-estimation based algorithm, the parameter p depends on the characteristics of 

the NCS and the accuracy of the plant model for state estimation. Assuming a larger p can 

maintain system stability in the present of longer time delays. However it will lead to excessive 

computation time and the size of control signal package will increase. This will use up more of 

the communication bandwidth and cause longer time delay. Thus there is an engineering trade-

off between the value of p and the overall NCS performance. Augmented system model with the 

model-estimation based algorithm was analyzed and the system stability of the compensated 

system was presented. 

For sensor-data prediction based algorithm, there also exists a trade-off between the 

accuracy of a predictor and the number of computations done by the predictor for each 

prediction. Generally higher-order predictors have better accuracy of prediction than the lower-

order ones of the same type. On the other hand, higher-order predictors take more number of 

computations for a prediction than the lower-order predictors of the same type. A good predictor 

should give a reasonably accurate prediction with the minimum usage of computational 

resources. 
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CHAPTER V 

ADVANCED CONTROL DESIGN FOR NCS 

 

After successfully implemented a real-time control of a ball maglev test bed via the 

Ethernet in the previous chapter, we propose advanced control design methodologies in this 

chapter to further improve the QoC of NCSs. 

 

5.1 Introduction 

 

Unlike conventional control systems, an NCS essentially comprises multiple nodes 

communicating with each other over communication networks. The successful design and 

implementation of an NCS requires an appropriate integration of control systems, real-time 

systems, and network communication systems through co-design. For advanced control design, 

modern control theories like robust control and optimal control have been applied to NCSs to 

further improve the control performance. 

 

5.2 Robust Control of NCSs with Uncertainties 

 

In this section, robust H∞-control problems for NCSs with network-induced time delays 

and subject to norm-bounded parameter uncertainties are presented and solved. Based on a new 

discrete-time model, two approaches of robust controller design are proposed—design of a 

memoryless state-feedback controller and design of a dynamic state-feedback controller. The 
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proposed memoryless state-feedback controller design method is given in terms of LMIs [41], 

and the delay bound can be computed by using the standard LMI techniques. A numerical 

example is given to illustrate the feasibility and effectiveness of this methodology. The proposed 

dynamic state-feedback controller design method is based on a discrete-time Artstein transform 

[31]. With the sufficient conditions for robust stability and H∞ control developed in this 

dissertation, the upper bound of the network-induced time delays that can be used as a guideline 

in choosing proper networks as communication media for the NCS design are also derived.  

Since typical NCSs are discrete-time systems, it is more natural to analyse NCSs with 

discrete-time models. In this paper, we consider an NCS framework as shown in Fig. 5-1. We 

assume that the time for AD conversion at the sensor node and DA conversion at the actuator 

node is negligible compared to the communication delays.   

 

 

Fig. 5-1.  Networked control system with network-induced time delays 

 

Consider the NCS shown in Fig. 5-1 with parameter uncertainties and time delays 

described by the following discrete-time state equations. 
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where nRk ∈)(x  is the state, mRk ∈)(u is the control input, pRk ∈)(w is the disturbance input, 

kh is an integer that denotes the number of the sampling periods as the length of time delay at 

time instant k. )(⋅θ is the initial condition, )(kz is the controlled output, A, B, Bw,  and E are 

known real constant matrices of appropriate dimensions that describe the nominal system, and Au 

and Bu are real matrix functions representing time-varying parameter uncertainties. The network 

sampling period is h. 

In this chapter, we make the following assumptions: 

5-1.  The admissible uncertainties are assumed to be of the form 

     

 ,)( AAAu EkFLA =   .)( BBBu EkFLB =                                     (5.2) 

       

We define AAA EkFLAkA )()( += and ,)()( BBB EkFLBkB += where FA (k) and FB (k) are   

unknown real time-varying matrices with Lebesgue measurable elements satisfying 

 

     kkFkF BA ∀≤≤ ,1)(;1)( ,                                        (5.3) 

      

and LA, LB, EA, and EB are known real constant matrices that characterize how the uncertain  

parameters in FA (k) and FB (k) enter the nominal matrices A and B. 

5-2.  The upper bound of the network-induced time delays is H sampling periods. 

5-3.  The sampling frequency is high enough, and there exists a real scalar S > 0 such that for any 

real symmetric positive-definite matrix P, the following inequality holds. 

 

[ ] [ ] 0)1()()1()()()( >+−+−−+ kkPkkkPkS TT xxxxxx                      (5.4) 
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The following robust control problems are addressed in this chapter. 

1. Robust Stabilization: Given H > 0, find a linear state-feedback control law for the system 

(5.1–5.3) such that the resulting closed-loop system is robustly stable for any time delay 

length parameter hk satisfying Hhk ≤ for all k. 

2. Robust H∞ Control: Given scalars γ > 0 and H > 0, find a linear state-feedback control law 

for the system (5.1–5.3) such that the resulting closed-loop system is robustly stable with 

disturbance attenuation γ for any time delay length parameter hk satisfying Hhk ≤ for all k. 

That is, the closed-loop system satisfies the following inequality 

 

     γ≤
∞zwT  ,                                                          (5.5) 

         

     where 
∞zwT  is the H∞ norm of the transfer function Tzw  from the disturbance input w(k)    

to the controlled output z(k). 

3. Robust Parameter Optimization: Based on the results of the above robust-control problems 1 

and 2, there are two robust parameter-optimization problems: (a) given γ, find the largest H, 

i.e. determine an upper bound for the time delay such that the uncertain system (5.1–5.3) is 

robustly stabilizable with a prescribed level of disturbance attenuation for any time delay no 

longer than this bound and for admissible uncertainties, and (b) given H, find the smallest γ, 

i.e. determine the lower bound of disturbance attenuation for the uncertain system (5.1–5.3). 

The objective is to develop an admissible controller for robust-control problems 1, 2, 

and 3. Suitable state-feedback controllers are developed through two different approaches, i.e. 

memoryless and dynamic state-feedback control.  

The following Lemma is used in this chapter. 
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Lemma 5-1: Let A, L, E, and F be real matrices of appropriate dimensions with 1≤F . Then the 

following inequalities hold. 

(1) For any real symmetric positive-definite matrix P and scalar s > 0 such that 0>− TEPEsI , 

 

.)()()( 1 TTTTTT sLLEPAEPEsIAPEAPALFEAPLFEA +−+≤++ −  

 

(2) For any real symmetric positive-definite matrix P and scalar s > 0 such that 0>− TsLLP , 

 

.)()()( 111 EEsAsLLPALFEAPLFEA TTTT −−− +−≤++  

 

(3) For any scalar s > 0, 

 

EsELLsLFELFE TTTTT +≤+ −1  

 

Proof:  To prove Part (1) introduce the matrix 

 

TTTTT LFEPEIsEPAEPEIsN 2
1

2
1

)()( 11 −−−= −−− . 

 

The expansion of 0≥NN T leads to  

 

.)( 111 TTTTTTTTTTTT LLFFsEPAEPEIsAPELFLFEPELFEPALFAPE −−− +−≤++  

 

By considering the fact that IFF T ≤  and using the matrix inversion lemma, the desired 

result in Part (1) follows immediately. Part (2) can be easily proved by the similar argument as in 

the proof of Part (1). Part (3) is a well known fact [81].  

For controller design, first we propose a memoryless controller to solve robust-control 

problems 1, 2, and 3 for system (5.1–5.3),  
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 )()( kKk xu = ,                                                      (5.6) 

where nmRK ×∈ is a constant matrix. 

 

5.2.1 Robust Stabilization 

Assuming ,0)( =kw  we present a sufficient condition as following two theorems for the 

existence of memoryless state-feedback controllers for the uncertain system (5.1–5.3). 

 

Theorem 5-1: Given H > 0, the system (5.1–5.3) is robustly closed-loop stable with a control 

input of (5.6) for any time delay length parameter hk satisfying Hhk ≤ if there exist real 

symmetric positive-definite matrices P, P1, P2, and Q, a matrix K, and scalars ri > 0, i = 1, … , 5, 

such that following inequalities hold 

0),,,,,,( 21 <irHKQPPPR                                                  (5.7) 

0,0,0 52413 >−>−>− T
BB

T
AA

T
BB LLrPLLrPQEEIr                       (5.8) 

0,0 1
21

1 ≥−≥−− −− TKKPQPPP ,                                  (5.9) 

 

where 
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Proof:  From (5.1–5.2) and (5.6), we obtain and ),()()())(()()1( khkKkBkIkAkk −+−=−+ xxxx   
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kk hi
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hi
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Then, 

 

[ ] .)()()())(()()())()(()()1(
1

∑
−

−=

+−+++−+−−+=−+
khi

k ihkKikBikIikAKkBkIKkBkAkk xxxxx   

(5.11) 

 

Define a discrete-time Lypunov function as 

 

),(),()()(),( kSkWkPkkV T xxxxx ++= ,                               (5.12) 

 

where P is a real symmetric positive-definite matrix, and  

 

[ ] [ ]

[ ] ,)()()()(

)()()()(),(

1 1
1

2

1 1
1

1

∑ ∑

∑∑
−

−=

−

−=

−

−

−=

−

=

−

+++++++

+−+−++≡

k k

k

hj hji
kk

TTT

hj ji

TT

ikKhikBPhikBKik

ikIikAPIikAikkW

xx

xxx

                    (5.13) 

[ ] [ ] ,)1()()1()()()()0,(),(
11

∑∑
−

−=

−

−=

++−+++−+−+++≡
ki

T

ki

T ikikPikikikPikSkS xxxxxxxx  (5.14) 

 

where P1 and P2 are real symmetric positive-definite matrices to be chosen. Based on 

Assumption 5-3, we have W(x, k) > 0 and S(x, k) > 0. From (5.12), we obtain 

 

,),()1,(),( SWXkVkVkV Δ+Δ+Δ=−+=Δ xxx                              (5.15) 
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where 
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),,()1,(
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−+=Δ

−++=Δ
                                   (5.16) 

 

For ,XΔ we have 
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where [ ] [ ])()1()()1(1 kkPkkX T xxxx −+−+=Δ . Substituting (5.11) into (5.17), and applying 

Lemmas 3-1 and 5-1, we obtain 
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(5.18) 
 

where 0, 21
11 ≥−−≥ −− PPPKKPQ T , and 
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For ,WΔ  from (5.13) we obtain 
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Applying Lemma 5-1(2) and Assumption 5-2, we obtain 
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For ,SΔ from (5.14) we obtain 
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Substituting (5.18–5.22) into (5.16), we obtain 

 

).(),,,,,,,()(),( 321 krHKQPPPPRkSWXkV i
T xxx ≤Δ+Δ+Δ=Δ                     (5.23) 

 

Thus from (5.7–5.9) and (5.23), we have 

 

0)(),,,,,,,()(),( 321 <≤Δ krHKQPPPPRkkV i
T xxx .                          (5.24) 

 

The above sufficient condition for the existence of guaranteed controllers is equivalent to the 

solvability of a system with the following LMIs. 

 

Theorem 5-2: Given an H > 0, the system (5.1–5.3) is robustly closed-loop stable through a 

control input of (5.6) for any time delay length parameter hk satisfying Hhk ≤ if there exist real 

symmetric positive-definite matrices Y, P1, P2, and Q, a matrix Z, and scalars ri > 0, i = 1, … , 5, 

such that the following LMIs hold: 
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021 ≥−− PPY ,                                                              (5.27) 
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B

TT
A EZYEKPM =),(12                                                                                         (5.29) 

T
BHBQEM =13                                                                                                            (5.30) 

[ ]T
B

TTTT
A

T EZBZYEIAYHHZYM )(),,(14 −=                                               (5.31) 

{ }IrIrM 2122 ,diag−=                                                                                                   (5.32) 

)( 333
T

BBQEEIrHM −−=                                                                                           (5.33) 

{ }IrLLrPIrLLrPHM T
BB

T
AA 55244144 ,,,diag −−−= ,                                                   (5.34) 

and a stabilizing controller is given by )()( 1 kZYk xu −= . 

 

Proof:  Define the new variables Y and Z in (5.25–5.27) as 

 

.,1 KYZPY == −                                                           (5.35) 

 

Multiplying the both sides of the inequality (5.25) by Y, and then by Schur complements, we 

obtain that the conditions in (5.7–5.9) are equivalent to the LMIs (5.25–5.27). 

 

5.2.2 Robust H∞ Control 

Assuming 0)( ≠kw , we also present a sufficient condition as the following theorem for 

memoryless state-feedback controllers for the uncertain system (5.1–5.3) to be robustly stable 

with a prescribed level of disturbance attenuation. 

 

Theorem 5-3: Given an H > 0 and γ > 0, the system (5.1–5.3) is robustly closed-loop stable with 

a disturbance attenuation γ with a control input of (5.6) for any time delay length parameter hk, 
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satisfying Hhk ≤ if there exist real symmetric positive-definite matrices Y, P1, P2, P3, and Q, a 

matrix Z, and scalars ri > 0, i = 1, … , 5, such that the following LMIs hold: 
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0321 ≥−−− PPPY ,                                                      (5.38) 

where M11, M12, M13, M14, M22, M33, and M44 are as defined in (5.28–5.34), and  

 [ ]015 w
T BYEM =                                                       (5.39) 
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and a guaranteed controller is given by )()( 1 kZYk xu −= . 

 

Proof: Apply the control input (5.6) to the system (5.1–5.3), the closed-loop transfer function Tzw 

from the disturbance input w(k) to the controlled output z(k) is given by 

 

w
h

zw BKzBAzIET k 1)( −−−−= ,                                      (5.41) 

 

From (5.5) and (5.41), and by the result of Theorem 5-1, Lemma 5-1, and Schur complements, 

we obtain Theorem 5-3.  
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5.2.3 Robust Parameter Optimization 

The problem of control-parameter optimization, like finding the largest H for a given γ 

or the smallest γ for a given H, can be easily solved using standard LMI approaches by Theorem 

5-3. For instance, the largest H obtainable from Theorem 5-3 which ensures that the system (5.1–

5.3) is robustly stabilizable with the disturbance attenuation γ can be determined by solving the 

following quasi-convex optimization problem: 

LMIs:    (5.36–5.38) 

Objective:    Maximize H subject to 

.5...,,1,0,0,0,0,0,0,0,0 321 =>>>>>>>> irZQPPPYH i  

On the other hand, the smallest γ obtainable from Theorem 5-3 which ensures that the 

system (5.1–5.3) with a given H is robustly stabilizable can be determined by solving the 

following quasi-convex optimization problem: 

LMIs:   (5.36–5.38) 

Objective:    Minimize γ2 subject to 

5...,,1,0,0,0,0,0,0,0 321 =>>>>>>> irZQPPPY i . 

 

5.2.4 Dynamic Controller Design 

In this approach, we design a dynamic controller to solve the robust stabilization 

problem. For the NCS shown in Fig. 5-1, since the controller should have network connection 

capability, it usually has some memory to store the previous control data. Here we give a 

sufficient condition for the robust stability of NCSs. 

Assuming w(k) = 0, the discrete-time analogue of Artstein transform [31] for the system 

(5.1–5.3) is given by 
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The derivation of this discrete-time Artstein transform is given in the Appendix A. 

 

Lemma 5-2: Let (x(k), u(k)) be a solution (admissible pair) for (5.1–5.3), defined by initial 

condition (x(0), u0(.)). Then ))(),(~( kk ux  with )(~ kx defined by (5.42) is a solution (admissible 

pair) for the system 

)()()()(~)()1(~ kkBkAkkAk kh uxx −+=+                                     (5.43) 

with the initial condition (.)).),0(~( 0ux  Conversely, let ))(),(~( kk ux  be a solution of (5.43) 

defined by some initial condition (.))),0(~( 0ux . Then given some u0(.) defined on [ )00h−  and 

taking  

∑
−
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1
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ih iBA uxx ,                                         (5.44) 

the solution for (5.1) by the initial condition (5.44) is given by  
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The proof of this result is straightforward.  

 

Lemma 5-3: Let )(~)( kFk xu = be a feedback controller stabilizing the system (5.43). Then the 

controller  
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is stabilizing the system (5.1–5.3). 

 

The proof is straightforward and relies entirely on Lemma 5-2. Since the admissible 

uncertainties are unknown, the dynamic controller is given as  
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This compensator can be constructed by steps.  

The corresponding nominal state equations of the transformed system is 
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Thus the augmented system equation is  
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Theorem 5-4: Given an H > 0, the system (5.1–5.3) is robustly closed-loop stable through a 

dynamic control input of form (5.47) for any time delay length parameter hk satisfying Hhk ≤ if 

the largest singular value of ⎥
⎦

⎤
⎢
⎣

⎡

+ −

−

BFAA
FBkAkA

H

H

0
)()( is less than 1. 

The proof is straightforward. 



118 

 

5.2.5 Simulation and Experimental Verification  

To verify the feasibility of the theorems developed in this section, we use the NCS test 

bed constructed in Chapter II again. The discrete-time model of the ball maglev system is  
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where (5.50) is the discrete-time state-space model of (2.2) with the sampling period h as 3 ms. 

Assume there is no disturbance input and the model uncertainties are set to be 
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First, based on the model (5.50–5.51), the upper bound of time delay that the maglev 

system can accommodate need to be found. Applying the robust control result of Theorem 5-2 to 

the above system (5.50–5.51) and solving LMIs (5.25–5.27), the upper bound of H was found to 

be 1.62. In other words, for any time-delay τk satisfying 86.4362.1 =×≤kτ ms, the system (5.50) 

is robustly closed-loop stabilizable. A simulation of this ball maglev system using Matlab 

Simulink is implemented to verify this upper bound of time delay. The block diagram of this 

simulation is presented in Appendix B.1. Fig. 5-2 shows the simulation result of system 1-mm 

step responses (starting from 0.25 s) with different time-delay upper bounds. In Fig. 5-2 (a), no 

time delay was introduced, in Fig. 5-2 (b), uniform time delays with upper bound of 4.86 ms 

were introduced, and in Fig. 5-3(c), time delays as long as 6.5 ms were introduced. 
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Fig. 5-2. Simulation result of system step responses with (a) no time delay, (b) uniform time 
delays with upper bound of 4.86 ms, and (c) time delays as long as 6.5 ms 

 

 

As evidenced from Fig. 5-2 (b), the ball maglev system went to stable after several 

oscillations, thus it can accommodate time delays less than 4.86 ms. It worths mention that the 

system could be stable when time delay is longer than 4.86 ms, however, the oscillations in Fig. 

5-2 (b) indicates that the system performance degrades and the system would become unstable 

when time delays longer than 4.86 ms are introduced. The time delay kept increasing during the 
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simulation, when time delay longer than 6 ms occurred, the system could not maintain its 

stability as shown in Fig. 5-2(c). Thus, the simulation results verify that the theorem 5-2 can be 

used to determine the upper bound of the time delay even though it might be a little conservative. 

Then we measured the real round-trip time delay induced by the Ethernet in our lab. 

Refer to Fig. 4-1, the average round-trip time delay is about 230 µs, its standard deviation is 

about 200 µs, and the maximum time delay is about 3.4 ms that is less than 4.86 ms. Thus the 

maglev system is supposed to be stabilizable with a control loop closed over the Ethernet. The 

response of the ball position with control loop closed over the Ethernet LAN in our lab is shown 

in Fig. 5-3. The ball maintained its equilibrium position and did not fall down. The NCS test bed 

is stabilized even with the present of the network-induced time delays shown in Fig. 4-1. Refer 

to Figs. 2-11 and 2-12 for the other system performances with control loop closed over the 

Ethernet LAN.   
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Fig. 5-3. System response with control loop closed over the Ethernet 
 

 

To verify the upper bound of time delay, more experiments were conducted. As proposed 

in Chapter IV, the time-delay problem and packet-loss problem encountered in real-time 
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controlling the ball maglev system can be dealt with uniformly. In Chapter II, it was mentioned 

that the actuator needs control data within 1.42 ms after the sensor sampling.  To introduce 

longer time delays, we introduced packet losses. One sensor data packet loss was introduced 

once every 1.8 s at the controller node, which is equivalent to introducing time delays as long as 

4.42 ms. The previous control data was still used when packet loss occurred. Since the upper 

bound of the time delay that the ball maglev system can accommodate is found to be 4.86 ms. 

The system is expected to be stable. The system response of ball position is shown in Fig. 5-4. 

The NCS test setup maintained its stability successfully with periodic 0.4 mm peak-to-peak 

spikes in the ball position when packet losses occurred. 
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Fig. 5-4. System response with one packet loss (4.42 ms-long time delay) occurring every 1.8 s 

 
 

To introduce time delay longer than 6 ms, we introduced 2 consecutive packet losses 

after 9 s, which is equivalent to introducing time delays as long as 7.42 ms. The system response 

is shown in Fig. 5-5. In this figure, the zero value of the vertical axis denotes that the system lost 

its stability and that the ball could not maintain its equilibrium position and fell down.  
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Fig. 5-5. System response with 2 successive packet losses (7.42 ms-long time delay) occurring 
after 9 s 

 
 

Thus from Figs. 5-4 and 5-5, it can be concluded that the upper bound of time delay this 

ball maglev system can accommodate is about 4.42 ms , which is very close to the theoretic 

result 4.86 ms calculated from Theorem 5-2. 

Another numerical example is presented to demonstrate and verify the robust control 

methodology proposed in this section. Consider NCS shown in Fig. 5-1 with parameter 

uncertainties and time delay described by the following discrete-time state equations 
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where sampling period h is  0.01 s and 
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The robust control designs for (5.52) can be performed as following. 
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1.  For the robust stabilization problem, applying the robust control result of Theorem 5-2 to the 

above system (5.52) and solving LMIs (5.25–5.27), it was found that the upper bound of H is 

8.46. In the other words, for any time-delay τk satisfying ,s 0846.001.046.8 =×≤kτ the system 

(5.52) is robustly closed-loop stabilizable.  

2.  For the robust H∞ control problem, given the time-delay parameter hk satisfying 46.8≤kh and 

disturbance attenuation γ = 3. Applying Theorem 5-3 to the above system (5.52) and solving 

LMIs (5.36–5.38), it was found that the memoryless state-feedback control gain 

is [ ]4.101.10 −−=K .  

3.  For the problem of robust-parameter optimization, there are two optimization problems: 

  (1) Finding the maximum H: Given  γ = 3, applying the H∞ control result of Theorem 5-3 to the 

system (5.52) and solving LMIs (5.36–5.38), it was found that the maximum H is 8.4. If 

given γ = 0.5, then the maximum allowed time-delay upper bound parameter H decreases to 

2.6. 

  (2) Finding the minimum γ: Given H = 1, applying the H∞ control result of Theorem 5-3 to the 

system (5.52) and solving LMIs (5.36–5.38), it was found that for time-delay parameter hk 

satisfying 1≤kh , the smallest value of γ is 0.2. If given H = 8, the smallest value of γ 

increases to 1.7.  

The relation between the maximum H and the minimum γ is shown in Fig. 5-6 with a 

series of marked simulation results. As expected, the maximum H monotonically increases as the 

disturbance attenuation γ gets greater. However, the disturbance attenuation performance beyond 

a certain threshold (γ ≈ 2.3) makes little difference, and H approaches 8.46, which is the 

maximum H without disturbance in the robust stabilization problem. The block diagram of this 

simulation is presented in Appendix B.3. 
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Fig. 5-6.  Relation between the maximum H and the minimum γ 

 

5.3 Optimal Co-Design Control of NCSs 

 

In this section, an optimal co-design problem for NCSs is addressed and formulated. An 

important point to consider in the design of an NCS as shown in Fig. 3-1 is that the dynamic 

behavior of the distributed architecture largely depends on the characteristics and performance 

parameters of the underlying network, such as medium-access protocol, data-transmission rate, 

and available communication bandwidth. It is impossible to design an NCS without considering 

both views because the control performance of feedback control loops also depends on a new 

constraint—the limited bandwidth of the communication network. For example, the reduction of 

the sampling interval improves the control loop’s performance [78]. However, a shorter sampling 

interval requires more network bandwidth to transmit more sensor data or control data, which 

increases the network traffic load. Thus, NCS design is a multidisciplinary field that includes the 
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optimal co-design of control systems and network communication systems. The network QoS 

should be analyzed together with specifying the control QoP before implementing the real-time 

control over networks. 

 

5.3.1 Network Quality of Service 

As discussed in Section 1.4, the main evaluation measures of the network QoS are time 

delay and packet loss statistics, network efficiency, and network utilization. These measures can 

be used to determine the capability of the network medium and to provide information to specify 

control parameters such as the sampling frequency. 

The network efficiency is the ratio of the total transmitting time to the time used to send 

messages, including queuing time, block time, and so on [57]. If network efficiency approaches 

one, it means that all time delay is due to the transmission delay. If network efficiency 

approaches zero, it means that the most of the time delay is due to message contention or 

collision. 

The network utilization is defined as the ratio of the total time used to transmit data and 

the total running time, which is the sum of the ration of message transmission times and message 

periods of all devices [57]. If the network utilization approaches zero, there is network 

bandwidth available for other functionalities or control purposes. If the network utilization 

approaches one, the network becomes saturated, and it is difficult to increase the sampling rates 

of control devices or add more devices. Then either network bandwidth reallocation to reassign 

the traffic load or network redesign is needed. Thus when designing a real-time control over 

networks, the network QoS based on the above-mentioned measures needs to be evaluated. Refer 

to Section 1.4 and [57] for the detailed discussion and case studies of different network protocols. 

Refer to Chapter VI for a novel optimal network-bandwidth-allocation algorithm to dynamically 



126 

 

reallocate the bandwidth to optimize the QoC of the NCS. 

 

5.3.2 Control Quality of Performance 

There are several control specifications can be used to evaluate the control QoP such as 

phase margin, rising time, steady-state error, integral of the absolute value of the error (IAE), 

integral of the time multiplied by the absolute value of the error (ITAE), and so on.  

The phase margin is the amount by which the phase of a loop transfer function exceeds  

–180o when its magnitude equals one in the system Bode plot. From digital control theory, the 

phase lags due to discretization, sΦΔ , and time delay, dΦΔ  are presented as [78] [38] 
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where h is the sampling period and τ is the time delay. 

To guarantee acceptable control performance such as response rapidness and smoothness, 

the “rule of thumb” for selecting the sampling frequency in digital control is that it should be 

20~40 times as high as the closed-loop bandwidth bwω [78] [38], that is 

 

40/20 ≤≤ bws ωω ,                                               (5.54) 

 

where hs /2πω = is the sampling frequency, and bwω is the control-system closed-loop 

bandwidth defined as the frequency of the input at which the output is attenuated by 3 dB 

compare with the DC output [78]. Alternatively, the sampling periods are 4~10 per rise time tr 
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[78], that is 

 

10/4 ≤≤ htr ,                                                  (5.55) 

 

IAE and ITAE are two criteria generally used to evaluate control system performance. 

They are formulated in continuous-time as [78] and [38] 
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In discrete-time as 
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where t0 (or k0) and tf (or kf) are the initial and final times of the evaluation period and e is the 

system error defined as the error between the actual and reference trajectories. 

 

5.3.3 NCS Design Chart 

As proposed in [38], the system performance of an NCS is affected by network 

characteristics, such as data-transmission rate, time delays, data-packet losses, network 
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efficiency, and network utilization. Thus in an NCS design, there exists a system performance 

chart as shown in Fig. 5-7, which is a modification of Fig. 1 in [38]. As the sampling frequency 

gets higher, the traffic load becomes heavier in a bandwidth-limited network. Then the 

possibility of longer time delay or more data-packet loss increases. Thus there exist the optimal 

performance point γ and the minimum acceptable performance points α and β as denoted in Fig. 

5-7.  
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Fig. 5-7. System performance vs. sampling frequency. Modified after [38] 

 

As proposed in [38], the worst, acceptable, and best regions of performance can be 

defined based on control-system specifications such as robust stability, system overshoot, steady-

state error, and phase margin. The performance axis in Fig. 5-7 could be chosen to reflect a 
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subset of these metrics. Thus the points α, β, and γ can be determined by further investigating the 

control-system specifications and the characteristics and statistics of network-induced time 

delays and device processing time. Based on the work in [38], we define the acceptable 

performance as stability, i.e. the interval (fα ,  fβ) in Fig. 5-7 is the working range of the sampling 

frequency with which the system can be stabilized. In the following section, we propose 

estimation method to determine this working range of the sampling frequency as a guideline of 

an NCS design. 

 

5.3.4 Sampling Frequency Selection 

1.  The lowest allowable sampling frequency fα 

By Theorem 3-1 proposed in Chapter III, the upper bound of the time delay τ that the 

system can accommodate can be determined by using the standard LMI solver. Furthermore, if 

we know the network characteristics and statistics, such as the lower bound of the data 

transmission rate and the device processing time, then the lowest allowable sampling frequency 

at Point α in Fig. 5-7 can be estimated by  

 

( )dTτf −≈ /1α ,                                                        (5.58) 

 

where ptd TTT +=  is the network-induced time delay that includes the data-transmission time Tt 

and the device processing time Tp. Tt can be estimated as Tt = L/R where R is the data rate in 

bytes per second for the current control application, and L is the average data-packet size in 

bytes. The device processing time Tp includes the time delays at the source and destination nodes. 

The processing time at the source node includes the preparing time Tpre (such as the time for AD 

or DA conversion) and the waiting time Twait, and the processing time at the destination node 
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(such as the time for AD or DA conversion) is the post-processing time Tpost.  Thus the total 

device processing time Tp is given by  

 

.postwaitprep TTTT ++=                                                   (5.59) 

 

To verify the sufficient stability condition derived in Chapter III, we used a numerical 

example (3.35) in Section 3.3. Let us consider this example again, and suppose the Ethernet is 

used as the communication medium to close the control loop. With the upper bound of time 

delay τ = 0.964 s, assuming Tp of 10 ms, the minimum data packet size L of 76 bytes, and the 

lower bound of data rate R of 100 kbps, the lowest allowable sampling frequency is obtained by 

(5.58) as  fα ≈ 1 / (τ – L/R –Tp) = 1 / (0.964 – (76 * 8) / (100 * 1024) – 0.01) ≈ 1.05 Hz. 

 

2. Network bandwidth and optimal sampling frequency fγ 

Since the network is shared as a communication medium in an NCS, the network 

bandwidth may be limited for the control application. Point γ in Fig. 5-7 is the turn-around point 

of system performance vs. sampling frequency at which the network traffic begins to be 

saturated, that is, the network utilization approaches one. Therefore, fγ can be estimated by 

considering the device processing time and the total-transmission-time Tttt of all cyclic messages 

in the network applications. A good estimation suggested by the sufficient schedulability 

condition in [82] can be used for the estimation of the optimal sampling frequency at Point γ [38]. 

 

)/(69.0 pttt TTf +≈γ ,                                                      (5.60) 

 

where 0.69 is the maximum ratio of utilization to meet the sufficient schedulability condition for 

infinite messages, and 
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where n is the number of devices, i
tranT  is the transmission time of each data packet, and li is the 

data bit length of each packet. 

 

Remark 5-1: In [38], this estimation was used to determine the maximum sampling frequency, 

since at Point γ, the network already begins to be saturated, it can be considered as the optimal 

sampling frequency point.  

 

3. The highest allowable sampling frequency fβ 

When the sampling frequency gets higher with a limited network bandwidth for the 

control application, the network traffic will be fully saturated and data-packet losses and longer 

time delays will occur more frequently. If the longest time delay is longer than τ, the system 

stability may be lost, i.e. pβ TτRLf −=/)( τ . Thus the highest allowable sampling frequency at 

Point β can be estimated by  

 

)/()( LRTτf pβ τ−≈ .                                                      (5.62) 

 

For instance, let us consider the numerical example (3.35) again with the same 

parameters. Assuming Tp of 10 ms, the average data packet size L of 76 bytes, and the lower 

bound of the data rate for the current control application of 100 kbps, the highest allowable 

sampling frequency is obtained as fβ ≈ 100 * 1024 (0.964 – 0.01) / (0.964 * 76 * 8) ≈ 166.67 Hz 
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by (5.62). Thus considering the stability, the working range of the sampling frequency of the 

system (3.35) with the control loop closed over the network is (1.05 Hz, 166.67 Hz). 

 

5.3.5 Optimal Controller Design 

NCS performance improvement can be achieved in two ways. One is the minimization 

of device processing times and the improvement of network protocols to further guarantee the 

determinism of the data-transmission time as well as to reduce the end-to-end delays [38]. Refer 

to Chapters I and II for control network protocols selection and real-time operation system 

design for an NCS design.  The designer should then pick a sampling frequency between points 

α and β (best at γ) in Fig. 5-7 with the performance criteria based on given design constraints.  

The other way for performance improvement is through advanced optimal controller 

design that can overcome the uncertainty in an NCS and achieve the best QoC. Based on the 

discrete-time model (3.4) proposed in Chapter III, an optimal controller design with the 

consideration of both control and network parameters is formulated to improve the overall NCS 

performance with the following two cases. 

 

1.  Full-state-feedback case 

Denote h* as the optimal sampling period found in Section 5.3.4. We introduce a new 

augmented state variable [ ] ,)(...)()()( 1
pmnT

pk
T

k
T

k
T

k Riiii +
−− ∈= uuxz then the augmented 

system can be expressed as follows  
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where  
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In this section, we consider the problem of minimizing the following cost function. 
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where QN and Q0 are symmetric positive-semi-definite, and R0 is symmetric positive-definite. 

Lemma 5-4: Let { }yE ⋅ denote the conditional expectation given y. Assume that the function 

{ }yx, y, ulEuyxf  )(),,( = has a unique minimum with respect to Uu∈ for all Xx∈ and Yy∈ . 

Let u0(x, y) denote the value of u for which the minimum is achieved. Then we have  
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Proof: See [83]. 

 

Theorem 5-5: When the system has full state information, the control law that minimizes cost 
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function (5.65) is given by 
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Proof: By repeatedly applying Lemma 5-4 to the cost function (5.65), we obtain the following 

Bellman equation: 
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We will prove that the solution to (5.69) is in the form of 

 

{ } ),()()()()( iαiiSiEiJ T += zz                                                 (5.70) 

 

where S(i) is a symmetric matrix and denotes the cost to go at time i, and α(i) is the part of the 

cost function that is not affected by the control. The initial value at i = iN is 

 

{ } { })()()()()(min)( NNN
T

NNNN
T

uN iQiEiiQiEiJ zzzzz ==                      (5.71) 

 

with S(iN) = QN. Thus (5.69) is the solution when i = iN. If the solution holds when i = ik + 1 and 

we can prove that it still holds when i = ik, we can prove that (5.69) is the solution to (5.69) by 
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mathematical induction.  
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(5.72) 
 

Minimizing (5.72) with respect to u(ik) gives the control law (5.67), and  
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where  
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Since Q0 and R0 are symmetric, S(ik) is symmetric, thus the solution to the Bellman equation 

(5.69) is (5.70), which completes the proof. 

 

2. Estimated-state-feedback control 

When full state information is unavailable for the controller, a conventional way is to 

estimate unknown states with Kalman filters. Then the method developed above can also be 



136 

 

applied in this case. A key issue with respect to this method is to verify whether the separation 

principle holds. Refer to [84] for a design idea of estimated-state feedback and output feedback. 

 

5.3.6 Case Study  

In this section, we provide a case study of the ball maglev NCS test bed and illustrate the 

co-design of network and control system parameters. The system model of ball maglev system is 

presented as transfer function in (2.2). The state-space model is given as  
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First we collected the network traffic information of the Ethernet LAN and the device 

processing time for data processing. A 76-byte-long data packet was sent from the plant PC to 

the controller PC and then came back from the controller PC to the plant PC. The mean value of 

the round-trip time delay was 230 µs (refer to Fig. 4-1), and we estimated that the data-

transmission rate available for the test bed was about 2 Mbps. Based on the real-time operating 

environment (Linux RTAI) implemented on both the controller PC and the plant PC, the device 

processing time for A/D and D/A conversions and control calculation could also be measured. 

For our NCS test bed, the device processing time Tp was estimated to be 800 µs based on the 

above measurement. 

Applying Theorem 3-1 to the system model (5.75) and solving the LMI (3.8), we found 

that the upper bound of the time delay for (5.75) with a full-state feedback controller would be 

0.051 s. By the discussion in Section 5.3.4, the working range of the sampling frequency can be 
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estimated. From (5.58), we can estimate the minimum sampling frequency at Point α for the ball 

maglev set up as  fmin ≈ 1/( τ – Tt –Tp ) = 1/(0.051 – 0.00023 – 0.0008) ≈ 20 Hz. Ethernet packets 

with the minimum size (76 bytes) were used to carry the sensor data and the control data. Then 

from (5.62), we can estimate the maximum sampling frequency at Point β as 

)/()(max LRTτf p τ−≈ = (0.051 – 0.0008) * 2 * 1048576 / (0.051 * 76 * 8) ≈ 3.4 kHz. Thus, 

based on the control and network co-design consideration, the allowable working range of the 

sampling frequency for this NCS test bed is from (20 Hz, 3.4 kHz).  

Since the ball maglev system has only one position sensor, full-state feedback is not 

available. Several output feedback controllers were designed to obtain the best control QoP. 

However, in simulation, full-state feedback controller can be designed to control the ball maglev 

simulation model. Several simulations of the ball maglev system (5.75) with different sampling 

frequencies were performed using Matlab Simulink to verify the maximum constant time delay 

that the system can accommodate. The simulation block diagram is presented in Appendix B.2. A 

plot of the maximum allowable constant time delay with respect to various sampling frequencies 

is shown in Fig. 5-8. Fig. 5-8 shows a general trend that the maximum time delay that can be 

accommodated at a higher sampling frequency is less than that at a lower sampling frequency. As 

the sampling frequency decreases, more time is available in the real-time control routine without 

frame overruns. Thus, the maximum allowable time delay keeps increasing with lowering of the 

sampling frequency. However, at a very low sampling frequency again the maximum allowable 

time delay decreases. This trend can be accounted for the poorer stability of the system at a low 

sampling frequency.  Thus, there is an optimal sampling frequency for which the system can 

accommodate the maximum allowable constant time delay without affecting the system stability. 

It is worthy mentioning that the Fig. 5-8 is a form of system design chart which indeed follows 

the shape of the plot given in Fig. 5-7. 
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Fig. 5-8. Maximum allowable constant time delay vs. sampling frequencies 

 

From the simulation results in Fig. 5-8, the best sampling frequency was found to be 

about 333.3 Hz. Fig. 5-8 verifies the choice of choosing 3 ms as sampling period in the first 

beginning. The discrete-time state space model of the ball maglev system with the 3-ms 

sampling period is presented in (5.50). A practical output feedback controller in discrete-time for 

the ball maglev system was designed as [22]: 

 

24.0)(06.15)(19.33)(92.18)(13.0)(78.0)( 2121 +−+−+= −−−− kkkkkk iyiyiyiuiuiu .     (5.76) 

 

With the ball maglev test bed and the 100-Mbps Ethernet LAN in our lab, a real-time NCS 

shown in Fig. 2-8 is successfully constructed in Chapter II. 

 

5.4 Summary 

 

Advanced NCS control design problems were investigated in this chapter. First we 
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formulated robust control problems for an NCS with norm-bounded parameter uncertainties. 

Robust stabilization, robust H∞ control, and control-parameter optimization problems for NCSs 

were addressed. Delay-dependent methods of designing linear memoryless state-feedback 

controllers and dynamic state-feedback controllers to solve robust control problems were 

presented. Numerical examples were worked out to illustrate the presented robust control 

methodologies. Simulation and experiment results of the ball maglev test bed also verified the 

feasibility of these robust control methodologies. A similar LMI-based robust stabilization 

problem of the NCS with time-delay uncertainties only was proposed in [85] and the network 

induced time-varying delays were described by a Markov chain. Parameter uncertainties and H∞ 

control problem were not considered in [85]. 

Second, we addressed optimal co-design issues for NCSs. Co-design considerations 

including network parameters, control parameters, and NCS performances were presented as the 

design guideline for NCSs. Based on a design chart modified after [38] and a new NCS model 

proposed in Chapter III, a quantitative method about how to determine the location of the 

performance degradation points in the NCS performance design chart was presented. The 

optimal working range of the sampling frequency was also determined based on the locations of 

these points. To improve the overall QoC of NCSs, we also described how optimal controllers 

can be designed for QoC optimization.  

With the case study of the ball maglev NCS test bed, the feasibility of the optimal co-

design methodology proposed in this chapter was verified. 
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CHAPTER VI 

NETWORK SCHEDULING AND ADAPTIVE CONTROL CO-DESIGN 

 

In this chapter, a co-design methodology including network bandwidth scheduling and 

adaptive control design for NCSs that optimizes overall control performance and reduces 

network-bandwidth usage is presented. 

 

6.1 Introduction 

 

The key advantage of an NCS is that it provides the flexibility to quickly reconfigure its 

system architecture and to easily share information with other subsystems. The change of the 

system configuration might also change the time-delay signature of a networked device, thus 

change the network QoS. To design an NCS, both its control and communication aspects should 

be considered because the control performance of the NCS’s feedback-control loops is limited by 

the bandwidth of the communication network. For example, the reduction of the sampling 

interval improves the control loop’s performance [78]. However, a shorter sampling interval 

requires more network bandwidth to transmit more sensor or control data, which increases the 

network traffic load. This may affect the system stability and performance of the control loop if 

the maximum available network bandwidth is exceeded. Therefore, a co-design of control and 

communication system must be applied in designing an NCS. To explicit this co-design issue, a 

dynamic optimal network-bandwidth-allocation (ONBA) algorithm based on control system’s 

QoP and an adaptive controller design based on communication system’s QoS are proposed in 
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this chapter. The objective of co-design is to design a networked controller that can adaptively 

modify the control algorithm according to the control QoP and network QoS.  

Traditionally, research on bandwidth allocation and scheduling techniques focused on 

static strategies that would guarantee average control performance at the expense of permanently 

occupying the available bandwidth. From the control perspective, the static bandwidth allocation 

method is an “open-loop” solution because once established at system set-up, the static 

scheduling will not be adjusted at run time. However, due to network bandwidth limitation in 

some cases, not all control loops can simultaneously gain enough bandwidth allocation to 

provide the best possible control performance. Static techniques may not be efficient when 

changing conditions occurs at the control-application or network levels, because pre-assigned 

bandwidth resources could be underutilized. Ideally, these underutilized resources could be made 

available to other applications to provide new functionality.  

We followed a “closed-loop” technique and developed a dynamic ONBA algorithm that 

makes scheduling decisions based on the performance information of each control loop as shown 

in Fig. 6-1. Bandwidth allocation (BA) is implemented in each control loop, and network 

bandwidth is dynamically assigned to each control loop according to the control performance 

(denoted as Ei in Fig. 6-1).  

 

Plant 1 Plant NPlant i

Sensor1 Sensor iActuator1 Actuator N

Controller 1 Controller i Controller N

Actuator i Sensor N

BA1 BAi BAN
h1 hi hn

E1 Ei Enb1 bi bN

 

Fig. 6-1. NCSs with ONBA 
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For each control loop, improved QoC can be achieved if the networked controller can 

adaptively modify its control algorithm according to the QoS changes like varying time delays 

and packet losses. This can be formulated as an adaptive control problem which can adjust its 

parameters on-line according to the changing network QoS parameters. The resulting control 

algorithm would explicitly depend on the current measurements of network QoS parameters. The 

two main network-induced effects, time delays and data-packet losses, are summarized by QoS 

in this chapter. Other QoS-criteria are not considered in this control perspective. 

 

6.2 Dynamic Optimal Bandwidth Allocation  

6.2.1 Problem Statement 

 

We consider the NCSs shown in Fig. 6-1 with N control loops, each one controlling a 

plant. With the consideration of time-varying sampling frequencies, each plant in closed loop can 

be described by the following system model  

 

Nikhkhk ikiikii ...,,1)()()()()1( ,, =Γ+Φ=+ uxx         (6.1) 

 

where n
i Rk ∈)(x  is the state of Plant i, m

i Rk ∈)(u is the control input for Control Loop i, hi,k 

denotes the sampling period of Control Loop i at the time instant k, and )( ,kihΦ and )( ,kihΓ are 

real matrix functions of hi,k of appropriate dimensions.  

The sampling period hi,k can be obtained from the bandwidth utilization bi,k to be 

assigned to Control Loop i at time instant k according to the following equation [49]. 
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where the operation time τi denotes the time required to finish a control operation for Control 

Loop i in the best case, which only includes the time for data processing such as sensor sampling, 

controller calculating, and actuator actuating, and the time for transmitting the data packets from 

the sensor node to the controller node and from the controller node to the actuator node. The 

bandwidth utilization bi,k is the parameter that indicates the portion of the network bandwidth 

assigned to Control Loop i at time instant k. The network utilization is defined as the ratio of the 

total time used to transmit data and the total running time, which the sum of the ration of 

message transmission times and message periods of all devices. If the network utilization 

approaches zero, there is network bandwidth available for other functionalities or control 

purposes. If the network utilization approaches one, the network becomes saturated, and it is 

difficult to increase the sampling rates of control devices or add more devices. Then network 

bandwidth reallocation to reassign the traffic load or network redesign is needed.  

We assume that the periodic sensor data from the sensor node and the control data from 

the controller node are packetized to an identical bit length Li. If the data rate of the network 

medium is R, the best-case one-way data transmission time is 

 

R
L

T i
ti =, .     (6.3) 

 

Let Ti,p be the time needed for data processing such as sensor sampling (A/D conversion), 

actuator actuating (D/A conversion), and controller calculating the control data for Control Loop 

i in the best case. The operation time τi can be expressed as 
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pitii TT ,,2 +=τ .                                                         (6.4) 

 

For each known Control Loop i, Ti,p and Ti,t in the best case can be measured and computed. 

Thus from (6.4) we can assume that τi is a constant, then smaller hi,k indicates bigger bi,k from 

(6.2). The rationale behind (6.2) is that a higher sampling frequency requires more bandwidth 

allocation to transmit more data. Related to (6.2), there are several special cases. 

1. When 1 i.e., , ,, == kiiki bh τ , the 100% of the network bandwidth is used by Control Loop i, 

and no other control loops are allowed to share the network medium. This is the case of 

NCSs with only one control loop.  

2. When ,, iki Dh = where Di is the maximum allowable loop delay (MALD) for Control Loop i, 

the minimum network bandwidth utilization of Control Loop i is 

 

iiki Db /)( min, τ= .                                                      (6.5) 

 

3. When there are N control loops, the most available bandwidth could be assigned to Control 

Loop i is (6.6) while all the other control loops are assumed to use their minimum bandwidth, 

i.e.  

 

∑
≠

−=
N

ij
kjki bb min,max, )(1)( .                                             (6.6) 

 

In some cases, due to network bandwidth limitation, not all systems can simultaneously 

obtain enough bandwidth allocation to transfer data and execute at their highest sampling 

frequency. Investigating how to perform the optimal bandwidth allocation to obtain the optimal 
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control performance for each closed-loop system thus to optimize the overall system QoC is the 

main objective of this chapter. The following rationale is considered: when a controlled plant is 

in equilibrium, the assigned execution rate (or sampling period) may not be required. That is, the 

assigned bandwidth may be wasted, and it can be reduced for the sake of saving bandwidth 

usage and enhancing the bandwidth utilization of other control loops. On the other hand, when a 

controlled plant is affected by a perturbation, increasing its assigned bandwidth by adding the 

underutilized bandwidths of other control loops in equilibrium may hasten system recovery from 

the perturbation and improve its system performance. This network-bandwidth reallocation is 

particularly useful when the overall network bandwidth resource is limited. 

Ray and Halevi [25] showed that the feedback-control performance directly depends on 

the loop delay, which is defined as the interval between the instant when the sensor node samples 

data and the instant when the actuator actuates the control command. The MALD of Control 

Loop i can be obtained from a conventional stability criterion and performance analysis. In order 

to guarantee system stability and control performance, two control measures can be used to 

determine the maximum allowable loop delay [78]: phase margin φ and the closed-loop 

bandwidth bwω . To guarantee acceptable control performance such as response rapidness and 

smoothness, the “rule of thumb” for selecting the sampling frequencies mentioned in Section 

5.3.2 can be used to estimate the MALD Di for Control Loop i. From (5.53–5.54), Di can be 

estimated by 

 

20/,bwii TD ≤ ,                                                            (6.7) 

 

where bwibwiT ,, /2 ωπ= and bwi,ω is the closed-loop bandwidth of Control Loop i.  

Alternatively, from (5.55) the MALD Di could also be estimated by (6.8) 
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,4/,rii tD ≤                                                              (6.8) 

 

where rit , is the rise time of closed-loop system i. 

Let kie , denote the error of Control Loop i, the distance of the state from its equilibrium 

point at time instant k. It can be expressed in regulation problems [55–56] as following  

 

)(, ke iki x= .                                                           (6.9) 

 

For Control Loop i, we can define a performance criterion that relates control 

performance (such as the error) with bandwidth utilization as 

 

                           )( ,, kiki bEe = .                                                       (6.10) 

 

In general, the less the bandwidth allocation is, the worse the control performance (i.e., the larger 

the error). Thus (6.10) can be approximated by a linear relation as [49]: 

 

                           
ki

i
kiki b

bEe
,

,, )(
β

≈= ,                                                (6.11) 

 

where the parameter iβ is specific to each control loop and can be determined prior to the 

implementation of the NCSs by evaluating the control performance of each control loop for a 

broad range of sampling rates or bandwidth allocations. Such linearization method was 

mentioned in [56]. 
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6.2.2 Dynamic ONBA Algorithm 

The dynamic ONBA problem is how to dynamically assign a bandwidth utilization bi to 

each control loop according to the control performance and network bandwidth availability such 

that the overall QoP of the NCSs is optimized. The development of this dynamic ONBA 

algorithm is presented in this section. 

The constraint of bandwidth allocation is 1
1

, ≤∑
=

N

i
kib , i.e., the total bandwidth utilization 

must not exceed the whole network capacity. Then the current additionally available bandwidth 

utilization is 

 

                                                              ∑
=
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i
kia bb

1
,1 .                                                     (6.12) 

 

If 1)(
1

min, ≥∑
=

N

i
kib , then the NCSs are not schedulable with the current choice of network medium. 

Choosing another network or reducing the number of the control loops is needed. 

If each control loop is allocated with a fixed bandwidth, there may be a waste of the 

network bandwidth since each control loop has its own control and traffic requirement and some 

control loops may not necessarily need a fixed bandwidth when they are in equilibrium. In order 

to provide services to the maximal number of control loops with their QoC requirements and to 

achieve high utilization of the bandwidth resources, the bandwidth allocated to each control loop 

needs to be minimized. 

Thus we formulate the following cost function to be minimized 

2
,2,

2
,1,, kiikiiki baeaJ += ,                                                  (6.13) 
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where ai,1 and ai,2 are the weighting coefficients for Control Loop i. The optimization object of 

bandwidth allocation is to find a suitable bandwidth utilization kib , that can minimize the network 

bandwidth usage and maximize the system performance (i.e. minimize the error) as well.  

Considering all the control loops, the optimization function J for the whole system 

becomes the following: 
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kiikii
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1

2
,2,

2
,1,

1
, )( .                                      (6.14) 

 

Since all the N control loops are assumed to be independent, if each Ji,k of the ith control loop is 

minimal, then Jk is also the minimal. Hence, the optimal bandwidth allocation for each control 

loop can achieve the QoP optimization of the overall system with the cost function defined in 

(6.14). 

There can be three notable special cases: 

1. When Control Loop i is in equilibrium, i.e. kie , = 0, from (6.5) and (6.13) we have the 

optimal bandwidth allocation for Control Loop i as 

 

      iikiki Dbb /)()( min,opt, τ== ,                                           (6.15) 

 

      where opt, )( kib is the optimal bandwidth utilization for Control Loop i at time instant k. 

Substituting (6.7) or (6.8) into (6.15) obtain following (6.16) or (6.17). 

 

bwiiki Tb ,opt, / 20)( τ= ,                                               (6.16) 

riiki tb ,opt, / 4)( τ= .                                                   (6.17) 
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     With (6.2), the corresponding optimal sampling period is obtained as 

 

                                                       ,20/)( ,opt, bwiki Th =                                                  (6.18) 
       or  

,4/)( ,opt, riki th =                                                     (6.19) 
 

2. When Control Loop i experiences perturbation, .0, ≠kie Substituting (6.11) into (6.13) and 

differentiating kiJ , with respect to kib , , the optimal value opt, )( kib can be obtained as 
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      With (6.2), the corresponding optimal sampling period is  
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3. For Control Loop i with the highest processing demands, i.e., ,,,...,1,,, ijNjhh kjki ≠=≤ all 

the additional available bandwidth allocation can be assigned to further improve its control 

performance, i.e. a
i

ii
ki b

a
a

b += 4

2,

3
1,

opt, )( 
β

, where ba is the current additionally available 

bandwidth utilization defined in (6.12). Thus  
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     and the optimal sampling period is  
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Based on the analysis above, the ONBA algorithm can be summarized in Fig. 6-2.  

 

? 1)(
1

min, ≥∑
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i
kib

 

Fig. 6-2.  Dynamic ONBA algorithm 
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The ONBA algorithm presented in Fig. 6-2 can be implemented as a part of the control 

algorithm in each control loop. For each control loop, the controllers with three different 

sampling periods are designed prior to the system implementation. During the system run-time, 

each control loop keeps monitoring the system error to check if it is zero (or within a preset 

threshold), then the decision of which controller should be used is made based on this system 

error information. If system error is zero (or within a preset threshold), then the smallest network 

bandwidth utilization (largest sampling period) is assigned to this control loop. When the system 

error is large (experiencing perturbation), there are two cases. If the current control loop has the 

highest processing demands, then the optimal bandwidth utilization based on (6.22) is assigned. 

i.e., all the currently available bandwidth can be assigned to this control loop to ensure its best 

QoP. Otherwise, the optimal bandwidth utilization based on (6.20) is assigned to optimize the 

overall QoP.   

 

Remark 6-1: This technique requires controllers capable of running with different sampling 

frequencies. For systems given by (6.1), controllers are designed specifying of three sampling 

periods using (6.18) or (6.19), (6.21), and (6.23), for which the closed-loop stability and 

performance requirements are met, adapting the gains accordingly. These three controllers can be 

designed prior to the system run-time. Real-time implementation of this ONBA algorithm is 

feasible because there is no computational complexity. 

 

Remark 6-2: This algorithm can be easily extended to cover the case that there are two or more 

control loops simultaneously experience perturbations by introducing prioritization mechanism. 

Each control loop can be assigned a priority number according to their processing demands and 

QoP specifications. The decision of assigning additional bandwidth can be made based on the 

priorities of these control loops. 
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6.2.3 Simulation Verification  

In order to verify the ONBA algorithm developed above, some simulations developed 

using MATLAB Simulink are presented. The block diagram of this simulation is presented in 

Appendix B.4. 

The illustrative NCS simulation contains 5 independent control loops similar with the 

configuration shown in Fig. 6-1, each consisting of a sensor, a lead controller, an actuator, and a 

DC motor as the controlled plant. The system model of the DC motor is given as [78] 
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The lead controller is given as [78] 
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All controllers and all DC motors have been defined to be the same because it simplifies 

the performance analysis and comparison. We assume the network and control parameters as 

 ,s 3.0 ,s 03.0 == Dτ whereτ is the time required to finish a closed-loop control operation and D 

is the maximum loop delay as defined in (6.5). From (6.5–6.6), we can obtain the working range 

of bandwidth allocation as 
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The corresponding sampling periods are obtained as s  s 3.0,05.0 maxmin == hh from (6.2). 
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For a static strategy, we assume all the plants share the bandwidth equally and there is no 

other traffic load, thus the bandwidth allocation for each control loop by using static strategy is 

bk = 1 / 5 = 0.2, and the sampling period for each DC motor is  s 15.02.0/03.0/ === kk bh τ . 

A static bandwidth allocation strategy and the ONBA strategy were both implemented to 

provide a direct comparison between their performances. In the simulation, 5 periodic step 

disturbances with different phase delays were inputted to these 5 DC motors, respectively.  The 

system responses of these 5 DC motors are identical except the time shift, and the system 

response of one of the DC motors with two strategies are shown in Fig. 6-3. As evidenced from 

Fig. 6-3, the performance of system with ONBA (in solid line) is better than that with static 

strategy (in dotted line). 
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Fig. 6-3.  Comparison of system responses of periodic step disturbances 

 

 

Fig. 6-4 shows the comparison of the cumulative system errors from these two strategies. 

The closed-loop system error is defined as the absolute difference between the desired response 
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(set point) and the actual response (feedback output) of the controlled plant. The cumulative 

system error E is the total cumulative closed-loop system error of all the 5 DC motor control 

loops, i.e. ∫∑
=

=
t

i
i dssetE

0

5

1

)()( . As evidenced from Fig. 6-4, ONBA (in dash line) achieves better 

performance than the static strategy (in dotted line) by reducing about 50% of the cumulative 

system error. 
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Fig. 6-4.  Cumulative system errors comparison  

  
 

Fig. 6-5 shows the comparison of total bandwidth usages between two systems with 

these two strategies. Straight line in Fig. 6-5 (a) shows that in static strategy, network bandwidth 

is totally occupied by the 5 DC motor control loops, no more plants or functionalities could be 

added in this system. In Fig. 6-5 (b), the network bandwidth usage goes up to 100% only when 

there are disturbances in the control loops and most of the time the bandwidth occupancy is 50%. 

Thus some network resource is saved and more control loops or functionalities could be added in 
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this system. From Figs. 6-3–6-5, it can be concluded that the ONBA algorithm achieves better 

control performance while uses less network bandwidth than the static strategy. 
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Fig. 6-5.  Bandwidth usages of (a) a system with a static strategy (b) a system with ONBA 

 

 

6.3 Adaptive Control Design  

6.3.1 Problem Statement  

 

We consider a control loop in an NCS shown in Fig. 6-6. The sensor sampling period is 

h, ik denotes the index of sensor sampling instant, and im denotes the index of controller 

calculation. r(im) denotes the input. The following assumptions are made in this section. 
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6-1. Time delays and packet losses are bounded and only exist between the sensor node and the 

controller node. The delay range is between τmin and τmax. 

6-2. The sensor is clock-driven while the controller and actuator are event-driven. The controller 

only performs a new calculation after a sensor-data-packet has been received. 

6-3. For each sensor-data-packet, the time delay τsc can be measured by assigning each packet a 

timestamp. With this timestamp, each data-packet is also numbered.  
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Fig. 6-6. NCS architecture with one-way time delay 

 
 

To evaluate the QoC, the following measure is defined as [86]: 

 

                ,1
IAE

QoC =                                                      (6.27) 

 

where IAE is the control performance measure defined in (5.56). Equation (6.27) basically 

indicates that lower integrated absolute error means better quality of control. A QoS-adaptive 

controller design method to increase the QoC defined above is proposed in detail in the 

following section. 
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6.3.2 Adaptive Controller Design 

For the plant shown in Fig. 6-6, a continuous-time controller with n control parameters 

can be designed by standard methodologies before introducing network. The discrete-time form 

of the controller can be derived using continuous-time to discrete-time transformation, for 

example with Tustin’s method. The adaptive control design procedure can be summarized as the 

following steps.  

1.   A simulation is conducted to search the n optimal control parameters that maximize the QoC 

to be the original set of control parameters. 

2.   In this step, l values of the time delay τl distributed over the range between τmin and τmax are 

used as constant delay in simulation to search the optimal control parameters according to 

different delays. For each τl, n optimal control parameters that maximize the QoC can be 

found by simulation. Then l sets of control parameters can be found and defined as 

 

... ,3 ,2 ,1  ,),,...,( 11 == − lkkkK lnnlτ .                                          (6.28) 

 

      Each
l

Kτ represents the optimal set of control parameters with n components in terms of QoC 

according to a specific constant delay τl. This l sets of parameters are then stored in a look-up 

table in the controller node. 

3.   In this step, network is introduced between the sensor node and the controller node. At each 

time instant when the sensor-data packet arrives at the controller node, the time delay τsc is 

measured by the controller by checking the time stamp. Based on this real-time measured 

time delay, appropriate set of control parameters are selected from
l

Kτ in (6.28) which were 

stored in a look-up table are used in current control algorithm. Since there are only l sets of 

control parameters obtained from the second step, the set of parameters according to the 
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delay that is closest to the measured delay will be used. If there is no delay, the original set 

of parameters obtained from the first step will be used. 

To deal with the packet losses, varying sampling periods can be used according to the 

data-packet-loss rate. Based on Assumption 3, each data-packet is numbered, let ik be the packet 

number, then the varying sampling period used in control algorithm is given by 

 

,...}3 ,2 ,1{  ),( 1 ∈−= − kkki iiihh
m

,                                        (6.29) 

 

where 
mih is the sampling period used in the im th calculation of the controller, ik and ik-1 are the 

packet numbers of the current and the last received packet, respectively. If there is no packet loss, 

from Remark 3-1, then 11 += −kk ii , thus 
mih is equal to h. 

 

Remark 6-3: The adaptive control method can be extended to cover the situation when time 

delays and packet losses both occur during the data communication process. This can be done by 

introducing one more valuable, sampling period, to the aforementioned look-up table. i.e., the 

optimal set of control parameters
l

Kτ is evaluated not only based on the time delay, but also the 

sampling period. Thus during the run-time, before a new control calculation is performed, the 

optimal set of control parameters
l

Kτ , and the new sampling period 
mih must be chosen. 

 

Remark 6-4: The QoS-adaptive controller design approach developed in this section has the 

similar design mechanism with the ONBA algorithm proposed in previous section. They both 

follow the “real-time feedback” technique to improve the controller design. The ONBA 

algorithm in network scheduling problem searches optimal sampling period for controller design 
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based on control system QoP, while the QoS-adaptive control approach searches optimal control 

parameter for controller design based on communication system QoS. The internal connection 

between these two problems verifies that NCS design is a multidisciplinary field that includes 

the co-design of control systems and communication systems. The network QoS should be 

analyzed together with specifying the control QoP before implementing the real-time control 

over networks. 

 

6.3.3 Simulation Example  

A simulation example is presented in this section to demonstrate how the adaptive 

controller design proposed above can be performed. This example is the DC motor example 

taken out of [7]. The plant is given by 
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The PI controller that has been designed is given by [7]  

 

s
kksksD PIP ))/(()( +

=
β .                                             (6.31) 

 

where kP = 0.1701, kI =0.378, and β is a parameter to adjust controller gains. How to choose β to 

obtain optimal control performance when there is time delay in the control loop is investigated in 

[7]. If there is no time delay, β = 1. Using MATLAB “c2d” command based on Tustin’s method, 

the following discrete-time control algorithm can be obtained. 
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)(]5.0[)(]5.0[)()( 11 hiekhkhiehkkhiuhiu kpIkIpkk −− ⋅−+⋅++= .                  (6.32) 

 

Thus in this example, the number of the control parameters is 2. i.e., n = 2, k1 = βkP, and k2 = βkI. 

The sampling period was set to be 30 ms representing 25% of the rising time of the continuous 

closed loop based on the “rule of thumb” in (6.19). i.e., h = 30 ms.  

Several simulations were conducted to search the optimal sets of control parameters (k1, 

k2) for different time delays. Table 6-1 shows the resulted look-up table that relates the optimal 

sets of control parameters and different time delays.   

 

Table 6-1. Optimal control parameters with different time delays (h = 30 ms) 

Time Delay (ms) k1 k2 β 
0 0.1701 0.3780 1 

15  0.1531 0.3402 0.9 
30 0.1361 0.3024 0.8 
45  0.1106 0.2457 0.65 
60 0.0851 0.1890 0.5 
75 0.0680 0.1512 0.4 
90 0.0501 0.1134 0.3 

 

Then random delays were introduced between the controller node and the sensor node in 

the DC motor system. The time delays were varying between 10 ms and 100 ms. The block 

diagram of this simulation is presented in Appendix B.5. PI controllers with control parameters 

in Table 6-1 were implemented respectively. QoS-adaptive controller proposed in previous 

section was also implemented and it used the look-up table obtained above. Fig. 6-7 shows a 

comparison of system performance between the adaptive controller and a non-adaptive controller. 

A unit pulse with a period of 4 ms is used as the input. The simulation period is 12 s. The solid 

line in Fig. 6-7 denotes the system response with adaptive controller and the dotted line denotes 

the system response with non-adaptive controller with control parameters (k1 = 0.1361, k2 
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=0.3024). As evidenced from Fig. 6-7, the adaptive controller achieves better control 

performance than non-adaptive controller. 
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Fig. 6-7. System responses with adaptive controller and non-adaptive controller (k1 = 0.1361 and 
k2 = 0.3024) 
 

 

The QoC measure defined in (6.27) was used to further verify the effectiveness of the 

proposed adaptive controller. Simulations of the DC motor system with different sets of control 

parameters shown in Table 6-1 were conducted and corresponding QoC values are calculated and 

shown in Table 6-2. The QoC value of system with adaptive controller is also shown in this table 

to have a direct comparison with these non-adaptive controllers. Table 6-2 proves that QoC 

improvement can be achieved by implementing the QoS-adaptive controller proposed in this 

chapter.  
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Table 6-2. QoC values with different control parameters  

Non-adaptive Controller QoC k1 k2 β 
0.352 0.1701 0.3780 1 

0.5263  0.1531 0.3402 0.9 
0.5556 0.1361 0.3024 0.8 
0.5405 0.1106 0.2457 0.65 
0.5882 0.0851 0.1890 0.5 
0.625 0.0680 0.1512 0.4 

0.5714 0.0501 0.1134 0.3 
0.9091 Adaptive Controller 

   

6.4 Summary 

 

In this chapter, the co-design of network bandwidth allocation and adaptive control was 

proposed. As a part of this co-design methodology, a “closed-loop” optimal network bandwidth 

allocation algorithm for NCSs with communication constraints was presented. The proposed 

dynamic strategy integrates feedback control with real-time scheduling. The ONBA algorithm 

makes scheduling decisions based on the dynamic QoP information of each control loop. With 

this algorithm, there is less underutilized bandwidth resource, and the QoP optimization of the 

overall NCSs can be achieved. The simulation results showed that this optimal bandwidth 

allocation approach better utilizes the bandwidth resource under the constraint of the limited 

available bandwidth in comparison with the static bandwidth allocation approach.  

As another part of the co-design methodology, a QoS-adaptive control design approach 

was also presented. The idea is based on calculating new control values with reference to the 

QoS parameter such as time delays and packet losses measured online. With the assumption that 

the time delays and packet losses only exist between the sensor node and the controller node, the 

simulation results showed that control performance can be improved by implementing the QoS-

adaptive controller proposed in this chapter. 
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CHAPTER VII 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

This chapter describes the key achievements in this research and suggestions for future 

work.  

 

7.1 Conclusions 

 

With the advancement in the automation industry, the need to perform complex remote 

operations has grown significantly. Ever-increasing computational capabilities and advancements 

in the networking technology enabled researchers to develop NCSs to implement the control 

scheme of real-time control over networks. However, the introduction of network 

communications in the closed-loop system’s dynamics would inevitably produce additional 

uncertainties of time-delay and data-packet losses. They would come from the nondeterministic 

factors during the physical signal coding and processing and the data transmission process. Time 

sharing of the communication medium in an NCS also introduces a serious network scheduling 

problem since the network bandwidth is usually limited. These uncertainties could degrade the 

system performance and even cause system instability and should be analyzed and dealt with. 

Control design methodologies to further improve the control performance should also be 

investigated. To cover these issues in real-time control over networks, this dissertation presented 

a framework for the modeling, analysis, delay/data-loss compensation, advanced control, optimal 

network scheduling, and experimental verification of NCSs. These results are summarized in the 
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following paragraphs. 

Based on the ground work performed by Srivastava and Ambike [21–22], the feasibility 

of Internet-based real-time control of a ball maglev setup was experimentally verified in this 

dissertation. Internet-based supervisory control and feedback control over the Ethernet were 

presented. The real-time operating environment was proposed as a solution to properly time key 

communication events in an NCS and to have complete control on their execution, reducing the 

device processing time. Feedback control over the Ethernet based on Linux with RTAI was 

demonstrated as one of the solutions of real-time control over networks by the successful 

implementation of the real-time control of the ball maglev setup over an Ethernet.    

This dissertation analyzed networked feedback control architecture and formulated a 

delay-dependent dynamic model in which the effects of time-delay, data-packet-loss, and out-of-

order data transmission were all considered. Based on this model, a new delay-dependent 

stability criterion and the upper bound of the time delays that the system could accommodate 

were derived through a Lyapunov functional approach. The appropriate co-design integration of 

control systems, real-time systems, and network communication systems proposed in this 

dissertation is based on this delay-dependent dynamic model. The detailed explanation of this 

co-design consideration is presented in the following paragraph.  

In order to improve the performance of the real-time control over networks, as shown by 

the solid curve in Fig. 7-1, and to make it close to the performance of the network-free digital 

control system, as shown by the dashed curve in Fig. 7-1, a systematic co-design consideration 

that utilizing both network and control parameters was proposed in this dissertation. This 

systematic consideration includes delay/data-loss compensation, robust control design for 

uncertainties, optimal control design to identify the best working range of sampling frequencies, 

and optimal network bandwidth allocation. All of these issues were addressed in this dissertation 
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to improve the NCS performance, i.e., increase the shadowed area shown in Fig. 7-1.  
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Fig. 7-1. NCS performance chart. Modified after [38] 

 

 

To ensure the system stability of the ball maglev setup in the presence of network-

induced sporadic delays and successive data-packet losses, two new compensation algorithms 

based on model-estimation and sensor-date prediction were proposed. An augmented system 

model with the model-estimation-based algorithm was analyzed, and the stability analysis of the 

compensated system was presented. Experiment results verified the effectiveness of these two 

compensation algorithms. These delay/data-loss compensation algorithms enable the NCS to use 

a higher sampling frequency to achieve better system performance. 

After the successful implementation of real-time control over the Ethernet, advanced 
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control design methodologies were investigated to overcome the uncertainties and further 

improve the system performance. Robust control problems for NCSs with time-delay and 

parameter uncertainties were formulated. Robust stabilization, robust H∞ control, and robust-

control-parameter-optimization problems were addressed. Delay-dependent methods of 

designing linear memoryless state-feedback controllers and dynamic state-feedback controllers 

to solve robust control problems were presented. The MATLAB simulation and the experiment 

setup of the ball maglev system were both used as a verification tool for the robust control 

methodology.  

The NCS performance chart shown in Fig. 7-1 reveals the existence and locations of the 

performance degradation points that determine the best working range of sampling frequencies. 

Based on the aforementioned new NCS model, a quantitative method about how to estimate this 

working range was presented in detail. With this sampling-frequency range, an optimal controller 

design method was also presented as an important part of the optimal co-design methodology for 

NCSs. The optimal co-design procedures based on Fig. 7-1 can be summarized as follows [38]. 

(1) If the actual network is unavailable at the first stage of the design process, we can utilize the 

control performance analysis and the stability criteria developed in Chapter III to investigate the 

feasibility of the chosen system parameters. (2) If a candidate network is available at the next 

design stage, actual information on device processing times and network traffic can be collected. 

During this design stage, an NCS performance design chart as shown in Fig. 7-1 can be drawn, 

and Points α, β and γ can be determined. (3) After the working range of sampling frequencies for 

stability is derived by the method developed in Chapter V, different combinations of network 

parameters can be studied to optimize the control QoP that depends on other design objectives. 

(4) In order to guarantee the best QoC of NCSs, various controller designs with different 

sampling frequencies from this working range can also be tested to verify their stability and 
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performance. A case study of the ball maglev system demonstrated the feasibility of the proposed 

optimal co-design methodology. 

As pointed out in Fig. 7-1, the performance of an NCS is affected by the sampling 

frequency and the network-traffic load, especially when there are many control loops sharing the 

network medium and competing against each other for the limited network bandwidth. 

Increasing the sampling frequency may improve the control loop’s performance. However, a 

higher sampling frequency requires more network bandwidth to transmit more sensor or control 

data, which increases the network-traffic load. This might affect the entire system stability and 

the performances of some other control loops if the maximum available network bandwidth 

should be exceeded. To resolve this problem, a “closed-loop” optimal network-bandwidth-

allocation algorithm for NCSs with communication constraint was presented. The proposed 

dynamic strategy integrates feedback control with real-time network scheduling. The dynamic 

ONBA algorithm makes scheduling decisions based on the real-time performance of each control 

loop. The simulation results showed that the optimal bandwidth allocation approach better 

utilized the bandwidth and could support more control loops under the constraint of the limited 

bandwidth in comparison with the static-bandwidth-allocation approach.  

Followed the design mechanism behind the ONBA algorithm, an adaptive controller 

design approach was presented as a part of the co-deign methodology. The proposed adaptive 

controller modifies its control algorithm based on the changing QoS parameters such as time 

delays and packet losses that are measured online. 

 

7.2 Suggestions for Future Work 

 

This dissertation provides the foundation for future research efforts in real-time NCS 
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design and analysis. In this section, a few possible further research directions are explored in 

detail.  

For network devices, the device processing time is a significant factor that affects the 

total time delay. This dissertation verified using real-time operating environment to improve the 

device processing capability. The device processing capability also relies on the communication 

protocol. Hence, in order to improve the utilization of network bandwidth and enhance the 

networked device processing capability, deterministic protocols specially designed for NCS 

purpose should be further developed. 

To guarantee the stability and performance of the overall NCS, including network 

systems and control systems, a complete analysis and design solution of hierarchical control 

systems that include different types of system models such as continuous plants and discrete-

time controllers and real-time or non-real-time multivariable data transmissions should be further 

investigated.     

Optimal scheduling also deserves more efforts. Different performance measure functions 

should be proposed and analyzed for effectiveness. It would be interesting to explore the 

scheduling problem of NCSs with known approaches proposed in other scheduling problems in 

such as broadcast disk systems [87] and multimedia transmissions [88]. 

The adaptive controller design proposed in Chapter VI deals with only the case of one-

way time delay. More work need to be done to deal with the extension of the approach on the 

general case adding the path from the controller node to the actuator node. The extended case 

should also include the situation of out-of-order data transmission. Strict optimization attempts 

might need to be investigated.  
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APPENDIX A 

DISCRETE-TIME ARTSTEIN TRANSFORM 

 

The continuous-time system equation is given by 
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Then the Artstein transform [31] in this case is  

 

∫
τ−

+τ− ++=
0

)( )()()(~ dsstuBetxtx c
sAc .                                   (A.2) 

 

The discrete-time system is  
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Writing (A.3) at kht = , ihs = and from (A.4) we obtain 
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APPENDIX B 

MATLAB/SIMULINK® CODES  

 

B.1 Block Diagram of the Ball Maglev System Simulation with Random Delays 
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B.2 Block Diagram of the Ball Maglev System Simulation with Constant Delays 
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B.3 Block Diagram of the Simulation of the Numerical System (5.52) 
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B.4 Block Diagram of the Simulation of the NCSs with 5 DC Motors in Chapter VI 
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B.5 Block Diagram of the Simulation of the Adaptive Controller in Chapter VI 
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APPENDIX C 

C CODES FOR CLOSED-LOOP CONTROL OVER THE ETHERNET  

 

C. 1 C Codes for Closed-loop Control without Packet Loss 

 

Client Side:  

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <sys/types.h> 

#include <sys/mman.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <pthread.h> 

#include <signal.h> 

#include <comedilib.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

#include <sys/ioctl.h> 

#include "defines.h" 

#define KEEP_STATIC_INLINE 

#include <rtai_lxrt_user.h> 

#include <rtai_lxrt.h> 

#define PERIOD 1000000 

#define LOOPS 1000 

#define NTASKS 2 

#define taskname(x) (1000 + (x)) 

RTIME time_stamp; 
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double u0; 

double y0; 

double y_1; 

double y_2; 

double u_1; 

double u_2; 

RTIME current_time_stamp; 

pthread_t task[NTASKS]; 

int ntasks = NTASKS; 

RT_TASK *mytask; 

SEM *sem; 

static int cpus_allowed; 

SEM *sock_sem;    //* socket semaphoere, used by all the threads. 

int sockid; 

RTIME start_instant; 

int server_sock_size = 0; 

struct sockaddr_in my_addr, server_addr; 

comedi_t *it; 

int in_subdev = 0; 

int out_subdev = 1; 

int in_chan = 0; 

int out_chan = 0; 

int in_range = 0; 

int out_range = 0; 

int aref = AREF_GROUND; 

int i=0; 

//*comedi declarations 

lsampl_t in_data; 

lsampl_t out_data; 

float volts = 0.0; 

int in_maxdata = 0, out_maxdata = 0; 

comedi_range *in_range_ptr, *out_range_ptr; 
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int endme_int = 0; 

 

void terminate_normally(int signo); 

 

void endme(int sig) 

{ 

printf("You want to kill me?\n"); 

endme_int = 1; 

exit(1); 

} 

 

void *send_thread_fun(void *arg) 

{ 

RTIME start_time, period, end_time, difference; 

RTIME t0; 

SEM *sem; 

RT_TASK *mytask; 

unsigned long mytask_name; 

int mytask_indx; 

double * buffer = NULL; 

int iRet = 0; 

struct recv_data *send_msg = NULL; 

int send_msg_size; 

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

mytask_indx = 0; 

mytask_name = taskname(mytask_indx); 

cpus_allowed = 1 - cpus_allowed;  

if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << cpus_allowed)))  

printf("CANNOT INIT send_thread TASK\n"); 

exit(1); 

} 

printf("send thread pid = %ld\t master pid = %ld\n", getpid(), getppid()); 
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mlockall(MCL_CURRENT | MCL_FUTURE); 

rt_receive(0, (unsigned int*)&sem); 

send_msg_size = sizeof(struct recv_data); 

if(( send_msg = (struct recv_data *)calloc(1, sizeof(struct recv_data))) == NULL) 

{ 

printf("cannot allocate message memory\n"); 

exit(4); 

} 

period = nano2count(PERIOD); 

start_time = rt_get_time() + nano2count(10000000); 

t0 = start_instant; 

printf("send: t0 = %lld\t", t0); 

printf("This period = %lld\t", rt_get_time()); 

printf("actual start = %lld\n", t0 + nano2count(500000000)); 

rt_task_make_periodic(mytask, (t0 + nano2count(500000000)), nano2count(3000000)); 

start_time = rt_get_cpu_time_ns(); 

printf("starting the send_thread while loop\n"); 

for(;;) 

{  

if(endme_int == 1) 

{ 

break; 

} 

comedi_data_read(it, in_subdev, in_chan, in_range, aref, &in_data); 

if(in_data > 4094) 

{ 

in_data = 4094; 

} 

if(in_data < 2049) 

{ 

in_data = 2049; 

} 
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current_time_stamp = rt_get_cpu_time_ns(); 

y0 = comedi_to_phys(in_data, in_range_ptr, in_maxdata); 

send_msg->y0 = y0; 

send_msg->y_1 = y_1; 

send_msg->y_2 = y_2; 

send_msg->u_1 = u_1; 

send_msg->u_2 = u_2; 

send_msg->time_stamp = current_time_stamp; 

  

rt_sem_wait(sock_sem);  

iRet = sendto(sockid, (const void *)send_msg, send_msg_size, 0, (structsockaddr*)&server_addr, 

server_sock_size); 

rt_sem_signal(sock_sem); 

if(iRet <= -1) 

{ 

perror("sendto() failed\n"); 

break; 

}  

y_2 = y_1; 

y_1 = y0; 

printf("volts=%f\t time_stamp=%lld\n", volts, current_time_stamp); 

rt_task_wait_period(); 

} 

end_time = rt_get_cpu_time_ns(); 

endme_int++;  

rt_sem_signal(sem); 

rt_make_soft_real_time(); 

free(send_msg); 

rt_task_delete(mytask); 

printf("send_thread ENDS\n"); 

return 0; 

} 
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void *recv_thread_fun(void *arg) 

{ 

RTIME start_time, period, end_time, difference; 

RTIME t0; 

SEM *sem; 

RT_TASK *mytask; 

unsigned long mytask_name; 

int mytask_indx; 

struct data *buffer = NULL; 

int iRet = 0; 

int recv_msg_size;  

struct send_data *recv_msg = NULL; 

recv_msg_size = sizeof(struct send_data); 

if(( recv_msg = (struct send_data *)calloc(1, sizeof(struct send_data))) == NULL) 

{ 

printf("cannot allocate message memory\n"); 

exit(4); 

} 

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

mytask_indx = 1; 

mytask_name = taskname(mytask_indx); 

cpus_allowed = 1 - cpus_allowed;  

if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << cpus_allowed))) 

{ 

printf("CANNOT INIT recv_thread TASK\n"); 

exit(1); 

} 

mytask_name, mytask); 

printf("recv thread pid = %ld\t master pid = %ld\n", getpid(), getppid()); 

mlockall(MCL_CURRENT | MCL_FUTURE); 

rt_receive(0, (unsigned int*)&sem); 

period = nano2count(PERIOD); 
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start_time = rt_get_time() + nano2count(10000000); 

t0 = start_instant; 

printf("recv: t0 = %lld\t", count2nano(t0)); 

printf("This period = %lld\t", count2nano(rt_get_time())); 

printf("actual start = %lld\n", count2nano(t0 + nano2count(500500000))); 

rt_task_make_periodic(mytask, (t0 + nano2count(500500000)), nano2count(3000000)); 

start_time = rt_get_time(); 

printf("starting the recv_thread while loop\n"); 

for(;;) 

{  

if(endme_int == 1) 

{ 

break; 

} 

rt_sem_wait(sock_sem); 

while(1) 

{  

iRet = recvfrom(sockid, (void *)recv_msg, recv_msg_size, 0,  

(struct sockaddr *)&server_addr, &server_sock_size); 

if(iRet < 1) 

{ 

break; 

} 

} 

rt_sem_signal(sock_sem);  

if(iRet <= -1) 

{ 

endme_int = 1; 

perror("recvfrom() failed\n"); 

break; 

} 

u0 = recv_msg->u0; 
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volts = u0; 

if(volts > 10.0) 

{ 

volts = 9.99999; 

} 

if(volts < 0.0) 

{ 

volts = 0.0; 

} 

out_data = comedi_from_phys(volts, out_range_ptr, out_maxdata); 

comedi_data_write(it, out_subdev, out_chan, out_range, aref, out_data); 

u_2 = u_1; 

u_1 = u0; 

rt_task_wait_period(); 

} 

end_time = rt_get_cpu_time_ns(); 

endme_int++;  

rt_make_soft_real_time(); 

free(recv_msg); 

rt_task_delete(mytask); 

printf("recv_thread ENDS\n"); 

return 0; 

} 

 

int main(void) 

{ 

int i;        

unsigned long mytask_name = nam2num("MASTER"); 

struct sigaction sa; 

char * server_ip = "165.91.214.188"; 

unsigned short my_port, server_port;  

my_port = 4445; 
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server_port = 4444; 

/* -- Create client side socket -- */ 

printf("creating socket\n"); 

if( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0)  

{  

perror("socket() failed "); 

exit(2);  

} 

/* -- Initialize client side socket address -- */ 

memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

my_addr.sin_family = AF_INET;                     /* Internet Address Family */ 

my_addr.sin_addr.s_addr = htonl(INADDR_ANY);  /* I can receive from any host */ 

my_addr.sin_port = htons(my_port); 

if ( (bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ) 

{  

perror("bind() failed "); 

exit(3);  

}    

/* -- Initialize server side socket address -- */ 

server_sock_size = sizeof(server_addr); 

memset((void *) &server_addr, (char) 0, server_sock_size); 

server_addr.sin_family = AF_INET; 

server_addr.sin_addr.s_addr = inet_addr(server_ip); 

server_addr.sin_port = htons(server_port); 

sa.sa_handler = endme; 

sa.sa_flags = 0; 

sigemptyset(&sa.sa_mask); 

if(sigaction(SIGINT, &sa, NULL)) 

{ 

perror("sigaction"); 

} 

if(sigaction(SIGTERM, &sa, NULL)) 
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{ 

perror("sigaction"); 

} 

it = comedi_open("/dev/comedi0"); 

if(it == NULL) 

{ 

printf("Could not open comedi\n"); 

exit(1); 

} 

in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan); 

out_maxdata = comedi_get_maxdata(it, out_subdev, out_chan); 

in_range_ptr = comedi_get_range(it, in_subdev, in_chan, in_range); 

out_range_ptr = comedi_get_range(it, out_subdev, out_chan, out_range); 

if (!(mytask = rt_task_init(mytask_name, 1, 0, 0))) { 

printf("CANNOT INIT main TASK \n"); 

exit(1); 

} 

printf("MASTER INIT: name = %lu, address = %p.\n", mytask_name, mytask); 

sem = rt_sem_init(10000, 0);  

sock_sem = rt_sem_init(nam2num("SOCK"), 1); 

rt_set_periodic_mode(); 

start_rt_timer(nano2count(25000)); 

start_instant = rt_get_time(); 

printf("main: start_instant = %lld\n", start_instant);  

if (pthread_create(&task[0], NULL, send_thread_fun, &start_instant))  

{ 

printf("ERROR IN CREATING send_thread\n"); 

exit(1); 

}       

if (pthread_create(&task[1], NULL, recv_thread_fun, &start_instant))  

{ 

printf("ERROR IN CREATING recv_thread\n"); 
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exit(1); 

}  

for (i = 0; i < ntasks; i++)  

{ 

while (!rt_get_adr(taskname(i)))  

{ 

rt_sleep(nano2count(20000000)); 

} 

} 

for (i = 0; i < ntasks; i++)  

{ 

rt_send(rt_get_adr(taskname(i)), (unsigned int)sem); 

} 

printf("Start waiting for sem\n"); 

while(endme_int == 0) 

{ 

rt_sem_wait_timed(sem, nano2count(5000000000)); 

} 

printf("Stop waiting for sem\n"); 

for (i = 0; i < ntasks; i++)  

{ 

while (rt_get_adr(taskname(i)))  

{ 

rt_sleep(nano2count(20000000)); 

} 

} 

rt_sem_delete(sem); 

rt_sem_delete(sock_sem); 

stop_rt_timer(); 

comedi_close(it); 

rt_task_delete(mytask); 

printf("MASTER %lu %p ENDS\n", mytask_name, mytask); 
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for (i = 0; i < ntasks; i++) { 

pthread_join(task[i], NULL); 

} 

return 0; 

} 

 

Server Side: 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

#include <string.h> 

#include <asm/errno.h> 

#include <sys/types.h> 

#include <sys/user.h> 

#include <sys/mman.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <sched.h> 

#include <comedilib.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

#include <sys/ioctl.h> 

#include <sys/time.h> 

#include <errno.h> 

#include <inttypes.h> 

#include "defines.h"  

#define KEEP_STATIC_INLINE 

#include <rtai_lxrt_user.h> 
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#include <rtai_lxrt.h> 

RTIME time_stamp; 

double u0; 

double y0; 

double y_1; 

double y_2; 

double u_1; 

double u_2; 

double y_hat_desi = 0.0;  //* User input (desired set point) 

double v_hat_err = 0.0; 

double k = 0.098;         //* Gain parameter 

double c = 0.0;         //* Controller constant 

double v = 1.018;  //* For initial offset 

double er0 = 0.0;                       //* Input to controller at time n 

double er1 = 0.0;                        //* Intput to controller at time n-1 

double er2 = 0.0;                        //* Intput to controller at time n-2 

int i=0; 

                                                   //*rtai declarations 

unsigned long mtsk_name; 

RT_TASK *mtsk; 

struct sched_param mysched; 

size_t readn(int fd, void *vptr, size_t n) 

{ 

size_t nleft; 

size_t nread; 

char *ptr; 

ptr = vptr; 

nleft = n; 

while(nleft > 0) 

{ 

if((nread = read(fd, ptr, nleft)) < 0) 

{ 
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return -1; 

} 

else if(nread == 0) 

{ 

break; 

} 

nleft -= nread; 

ptr += nread;   

} 

return (n - nleft); 

} 

size_t writen(int  fd, const void *vptr, size_t n) 

{ 

size_t nleft; 

size_t nwritten; 

const char *ptr; 

ptr = vptr; 

nleft = n; 

while(nleft > 0) 

{ 

if((nwritten  = write(fd, ptr, nleft)) <= 0) 

{ 

return -1; 

} 

nleft -= nwritten; 

ptr += nwritten; 

} 

return n; 

} 

 

void terminate_normally(int signo) 

{ 
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fflush(stdin); 

if(signo==SIGINT || signo==SIGTERM) 

{ 

printf("Terminating the program normally\n"); 

rt_make_soft_real_time(); 

printf("MASTER TASK YIELDS ITSELF\n"); 

rt_task_yield(); 

printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

stop_rt_timer(); 

printf("MASTER TASK DELETES ITSELF\n"); 

rt_task_delete(mtsk); 

printf("END MASTER TASK\n"); 

} 

exit(0); 

} 

 

main(int argc, char *argv[]) 

{ 

int sockid, nread, addrlen; 

struct sockaddr_in my_addr, client_addr; 

int nw, nr; 

int send_buffer_size, recv_buffer_size; 

unsigned short server_port = 0;  

struct send_data *send_buffer = NULL; 

struct recv_data *recv_buffer = NULL; 

RTIME start_time = 0; 

RTIME end_time = 0; 

RTIME actual_period = 0; 

RTIME difference = 0; 

size_t iRet = 0; 

int esti_count = 0; 

double vhaterr_prev[5] = {0.0, 0.0, 0.0, 0.0, 0.0}; 
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int j=0; 

//*signal handling 

struct sigaction sa; 

//*Initialize the signal handling structure 

sa.sa_handler = terminate_normally; 

sa.sa_flags = 0; 

sigemptyset(&sa.sa_mask); 

if(sigaction(SIGINT, &sa, NULL)) 

{ 

perror("sigaction"); 

} 

if(sigaction(SIGTERM, &sa, NULL)) 

{ 

perror("sigaction"); 

} 

fprintf(stderr, "creating socket\n"); 

if ( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0)  

{  

perror("socket() failed "); 

fprintf(stderr, "%s: socket error: %d\n", argv[0], errno);  

exit(2);  

} 

fprintf(stderr, "binding my local socket\n"); 

server_port = 4444; 

memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

my_addr.sin_family = AF_INET; 

my_addr.sin_addr.s_addr = htons(INADDR_ANY); 

my_addr.sin_port = htons(server_port); 

if ( (bind(sockid, (struct sockaddr *) &my_addr,  

sizeof(my_addr)) < 0) ) 

{  

perror("bind() failed "); 
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fprintf(stderr, "bind() errno = %d\n", errno);  

exit(4);  

} 

recv_buffer_size = sizeof(struct recv_data);  

if(( recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data))) ==NULL) 

{ 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

exit(4); 

 } 

send_buffer_size = sizeof(struct send_data);  

if(( send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data))) ==NULL) 

{ 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

exit(4); 

} 

addrlen = sizeof(client_addr); 

fprintf(stderr, "%s: starting blocking message read\n", argv[0]); 

mysched.sched_priority = 99; 

if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 )  

{ 

puts(" ERROR IN SETTING THE SCHEDULER UP"); 

perror( "errno" ); 

exit( 0 ); 

}        

mlockall(MCL_CURRENT | MCL_FUTURE); 

mtsk_name = nam2num("MTSK"); 

if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) { 

printf("CANNOT INIT MASTER TASK\n"); 

exit(1); 

} 

start_time = rt_get_cpu_time_ns(); 

printf("main: start_time = %lld\n", start_time); 
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printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

actual_period = start_rt_timer(nano2count(25000)); 

printf("actual_period = %lld\n", actual_period); 

printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 

rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000000), nano2count(3000000));  

while( 1 ) 

{ 

start_time = rt_get_cpu_time_ns(); 

nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct sockaddr *) &client_addr, 

&addrlen); 

if( nr <= -1 )  

{  

fprintf(stderr, "recvfrom() errno = %d\n", errno); 

exit(10); 

} 

y0 = recv_buffer->y0; 

y_1=recv_buffer->y_1; 

y_2=recv_buffer->y_2; 

u_1 = recv_buffer->u_1; 

u_2 = recv_buffer->u_2; 

er0 = (y_hat_desi - (-0.0004653*y0+0.002525))*k;   //* Error Calculation *// 

er1 = (y_hat_desi - (-0.0004653*y_1+0.002525))*k; 

er2 = (y_hat_desi - (-0.0004653*y_2+0.002525))*k; 

u0 = ((0.782*(u_1-v)) + (0.13*(u_2-v)) - (41500.0*er0) + (41500.0*1.754*er1) - 

(41500.0*0.769*er2)) + v; 

send_buffer->u0 = u0; 

send_buffer->time_stamp = recv_buffer->time_stamp; 

nw = sendto(sockid, (const void *)send_buffer, send_buffer_size, 0, (struct sockaddr *) 

&client_addr, addrlen); 

 if( nw <= -1 ) 

{ 

perror("sendto failed "); 
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fprintf(stderr, "sendto() errno = %d \n", errno);  

exit(12);  

} 

start_time = rt_get_cpu_time_ns(); 

 } 

printf("MASTER TASK YIELDS ITSELF\n"); 

rt_task_yield(); 

printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

stop_rt_timer(); 

printf("MASTER TASK DELETES ITSELF\n"); 

rt_task_delete(mtsk); 

close(sockid); 

free(send_buffer); 

free(recv_buffer); 

} 

 

 

C. 2 C Codes for Closed-loop Control with Packet Losses 

C.2.1 Stabilization with 4 Consecutive Packet Losses 

(1) Model-estimation-based Compensation Algorithm 

 

Client Side: 

 #include <stdio.h> 

…                                       //* “…” means identical codes with the codes in Appendix C.1  

double u1e; 

double u2e; 

double u3e; 

double u4e; 

double U1; 

double U2; 

double U3; 
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double U4; 

… 

long indi = 0; 

… 

 

void *send_thread_fun(void *arg) 

{ 

... 

for(;;) 

{  

… 

send_msg->y0 = y0; 

… 

} 

… 

} 

 

void *recv_thread_fun(void *arg) 

{ 

… 

for(;;) 

{  

indi ++; 

… 

u0 = recv_msg->u0; 

u1e = recv_msg->u1e; 

u2e = recv_msg->u2e; 

u3e = recv_msg->u3e; 

u4e = recv_msg->u4e; 

… 

volts = u0; 

if (indi = 1800)                       //* 4 packet losses occurring once every 6 s 
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{ 

U1 = u1e; 

U2 = u2e; 

U3 = u3e; 

U4 = u4e; 

} 

if (indi = 1801) 

{ 

volts =U1; 

} 

if (indi = 1802) 

{ 

volts =U2; 

} 

if (indi = 1803) 

{ 

volts =U3; 

} 

if (indi = 1804) 

{ 

volts =U4; 

indi = 0; 

} 

} 

… 

} 

 

int main(void) 

{ 

… 

printf(“Ball Position = %f mm\n”, volts); 

} 
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Server Side: 

#include <stdio.h> 

… 

double u1e;         //*estimated control data 

double u2e; 

double u3e; 

double u4e; 

… 

double y_hat_1; 

double y_hat_2; 

double y_hat_3; 

double y_hat_4; 

… 

 

main(int argc, char *argv[]) 

{ 

… 

while( 1 ) 

{ 

… 

y_hat_1 = y0;                                           //* model estimation 

u1e = 0.78*u0 + 0.13*u_1 -18.92*y_hat_1+33.19*y0 -15.06*y_1+0.24; 

send_buffer->u1e = u1e; 

y_hat_2 = y_hat_1; 

u2e = 0.78*u1e + 0.13*u0 -18.92*y_hat_2+33.19*y_hat_1 -15.06*y0+0.24; 

send_buffer->u2e = u2e; 

y_hat_3 = y_hat_2; 

u3e = 0.78*u2e + 0.13*u1e -18.92*y_hat_3+33.19*y_hat_2 -15.06*y_hat_1+0.24; 

send_buffer->u3e = u3e; 

y_hat_4 =y_hat_3; 

u4e = 0.78*u3e + 0.13*u2e -18.92*y_hat_4+33.19*y_hat_3 -15.06*y_hat_2+0.24; 

send_buffer->u4e = u4e;  
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… 

} 

… 

} 

 

 

(2) Predictor-based Compensation Algorithm 

 

Client Side: 

#include <stdio.h> 

… 

double u1p;                //*predicted control data 

double u2p; 

double u3p; 

double u4p; 

double U1; 

double U2; 

double U3; 

double U4; 

… 

double y_1; 

double y_2; 

double y_3; 

double y_4; 

double y_5; 

double y_6; 

double y_7; 

long indi = 0; 

… 

void *send_thread_fun(void *arg) 

{ 

... 
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for(;;) 

{  

… 

send_msg->y0 = y0; 

send_msg->y_1 = y_1; 

send_msg->y_2 = y_2; 

send_msg->y_3 = y_3; 

send_msg->y_4 = y_4; 

send_msg->y_5 = y_5; 

send_msg->y_6 = y_6; 

send_msg->y_7 = y_7; 

… 

y_7 = y_6; 

y_6 = y_5; 

y_5 = y_4; 

y_4 = y_3; 

y_3 = y_2; 

y_2 = y_1; 

y_1 = y0; 

… 

} 

… 

} 

 

void *recv_thread_fun(void *arg) 

{ 

… 

for(;;) 

{  

indi ++; 

… 

u0 = recv_msg->u0; 



208 

 

u1p = recv_msg->u1p; 

u2p = recv_msg->u2p; 

u3p = recv_msg->u3p; 

u4p = recv_msg->u4p; 

… 

volts = u0; 

if (indi = 1800)                       //* 4 packet losses occurring once every 6 s 

{ 

U1 = u1p; 

U2 = u2p; 

U3 = u3p; 

U4 = u4p; 

} 

if (indi = 1801) 

{ 

volts =U1; 

} 

if (indi = 1802) 

{ 

volts =U2; 

} 

if (indi = 1803) 

{ 

volts =U3; 

} 

if (indi = 1804) 

{ 

volts =U4; 

indi =0; 

} 

} 

… 
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} 

 

int main(void) 

{ 

… 

printf(“Ball Position = %f mm\n”, volts); 

… 

} 

 

 

Serve Side: 

#include <stdio.h> 

… 

double u1p;             //*predicted control data 

double u2p; 

double u3p; 

double u4p; 

… 

double y_1; 

double y_2; 

double y_3; 

double y_4; 

double y_5; 

double y_6; 

double y_7; 

… 

double y_hat_1; 

double y_hat_2; 

double y_hat_3; 

double y_hat_4; 

… 
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main(int argc, char *argv[]) 

{ 

… 

while( 1 ) 

{ 

… 

y_1 = recv_buffer->y_1; 

y_2 = recv_buffer->y_2; 

y_3 = recv_buffer->y_3; 

y_4 = recv_buffer->y_4; 

y_5 = recv_buffer->y_5; 

y_6 = recv_buffer->y_6; 

y_7 = recv_buffer->y_7; 

…                                                                    //* sensor data prediction 

y_hat_1 = 0.8122*y0 - 0.3479*y_1 - 0.0294*y_2 + 0.4605*y_3 + 0.0742*y_4 + 0.1042*y_5 + 

0.1117*y_6 - 0.3561*y_7; 

er0 = (y_hat_desi - (-0.0004653*y_hat_1+0.002525))*k;  //* Error Calculation  

er1 = (y_hat_desi - (-0.0004653*y0+0.002525))*k; 

er2 = (y_hat_desi - (-0.0004653*y_1+0.002525))*k; 

u1p = ((0.782*(u0-v)) + (0.13*(u_1-v)) - (41500.0*er0) + (41500.0*1.754*er1) - 

(41500.0*0.769*er2)) + v; 

send_buffer->u1p = u1p; 

y_hat_2 = 0.3117*y0 - 0.3119*y_1 + 0.4366*y_2 + 0.4482*y_3 + 0.1645*y_4 + 0.1964*y_5 - 

0.2653*y_6 - 0.2892*y_7; 

er0 = (y_hat_desi - (-0.0004653*y_hat_2+0.002525))*k;   

er1 = (y_hat_desi - (-0.0004653*y_hat_1+0.002525))*k; 

er2 = (y_hat_desi - (-0.0004653*y0+0.002525))*k; 

u2p = ((0.782*(u1p-v)) + (0.13*(u0-v)) - (41500.0*er0) + (41500.0*1.754*er1) - 

(41500.0*0.769*er2)) + v; 

send_buffer->u2p = u2p; 

y_hat_3 = -0.0587*y0 + 0.3281*y_1 + 0.4390*y_2 + 0.3080*y_3 + 0.2195*y_4 - 0.2329*y_5 - 

0.2544*y_6 - 0.1110*y_7; 
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er0 = (y_hat_desi - (-0.0004653*y_hat_3+0.002525))*k;   

er1 = (y_hat_desi - (-0.0004653*y_hat_2+0.002525))*k; 

er2 = (y_hat_desi - (-0.0004653*y_hat_1+0.002525))*k; 

u3p = ((0.782*(u2p-v)) + (0.13*(u1p-v)) - (41500.0*er0) + (41500.0*1.754*er1) - 

(41500.0*0.769*er2)) + v; 

send_buffer->u3p = u3p; 

y_hat_4 = 0.2804*y0 + 0.4594*y_1 + 0.3097*y_2 + 0.1925*y_3 - 0.2372*y_4 - 0.2605*y_5 - 

0.1176*y_6 + 0.0209*y_7; 

er0 = (y_hat_desi - (-0.0004653*y_hat_4+0.002525))*k;   

er1 = (y_hat_desi - (-0.0004653*y_hat_3+0.002525))*k; 

er2 = (y_hat_desi - (-0.0004653*y_hat_2+0.002525))*k; 

u4p = ((0.782*(u3p-v)) + (0.13*(u2p-v)) - (41500.0*er0) + (41500.0*1.754*er1) - 

(41500.0*0.769*er2)) + v; 

send_buffer->u4p = u4p; 

… 

} 

… 

} 

 

 

C.2.2 Stabilization with 20% Packet Losses  

(1) Model-estimation-based Compensation Algorithm 

 

Client Side: 

 #include <stdio.h> 

… 

double u1e;                       //* estimated control data 

double u2e; 

double u3e; 

double u4e; 

… 
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long indi = 0; 

… 

 

void *send_thread_fun(void *arg) 

{ 

... 

for(;;) 

{  

… 

send_msg->y0 = y0; 

send_msg->y_1 = y_1; 

send_msg->y_2 = y_2; 

… 

} 

… 

} 

 

void *recv_thread_fun(void *arg) 

{ 

… 

for(;;) 

{  

indi ++; 

… 

u0 = recv_msg->u0; 

u1e = recv_msg->u1e; 

u2e = recv_msg->u2e; 

u3e = recv_msg->u3e; 

u4e = recv_msg->u4e; 

… 

volts = u0; 

if (indi = 5)                       //* 20% packet losses 
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{ 

volts =u1e; 

indi = 0; 

} 

} 

… 

} 

 

int main(void) 

{ 

… 

fprintf(fp, “%f\n”, volts);  

printf(“Ball Position = %f mm\n”, volts); 

… 

} 

 

 

(2) Predictor-based Compensation Algorithm 

 

Client Side: 

#include <stdio.h> 

… 

double u1p; 

double u2p; 

double u3p; 

double u4p; 

… 

double y_1; 

double y_2; 

double y_3; 

double y_4; 

double y_5; 
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double y_6; 

double y_7; 

long indi = 0; 

… 

 

void *send_thread_fun(void *arg) 

{ 

... 

for(;;) 

{  

… 

send_msg->y0 = y0; 

send_msg->y_1 = y_1; 

send_msg->y_2 = y_2; 

send_msg->y_3 = y_3; 

send_msg->y_4 = y_4; 

send_msg->y_5 = y_5; 

send_msg->y_6 = y_6; 

send_msg->y_7 = y_7; 

… 

y_7 = y_6; 

y_6 = y_5; 

y_5 = y_4; 

y_4 = y_3; 

y_3 = y_2; 

y_2 = y_1; 

y_1 = y0; 

… 

} 

… 

} 
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void *recv_thread_fun(void *arg) 

{ 

… 

for(;;) 

{  

indi ++; 

… 

u0 = recv_msg->u0; 

u1e = recv_msg->u1p; 

u2e = recv_msg->u2p; 

u3e = recv_msg->u3p; 

u4e = recv_msg->u4p; 

… 

volts = u0; 

if (indi = 5)                       //* 20% packet losses 

{ 

volts =u1p; 

indi = 0; 

} 

} 

… 

} 

 

int main(void) 

{ 

… 

fprintf(fp, “%f\n”, volts);  

printf(“Ball Position = %f mm\n”, volts); 

… 

} 

 

 



216 

 

C. 3 C Codes for Various Command Inputs 

C.3.1 Step Input 

(1) Step Input 

 

#include <stdio.h> 

… 

double y_hat_desi = 0.0004;  //* User input (desired set point) 

double flag_sig = 0; 

… 

 

int main(void) 

{ 

… 

while(1) 

{ 

flag_sig ++; 

… 

if (flag_sig >3000);    //*Step input starts at 10 s 

{ 

y_hat_desi = -0.0006; 

} 

… 

} 

… 

} 

 

 

(2) Multiple Steps Input 

 

#include <stdio.h> 
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… 

double y_hat_desi = 0.0006;  //* User input (desired set point) 

double flag_sig = 0; 

… 

 

int main(void) 

{ 

… 

while(1) 

{ 

flag_sig ++; 

… 

if (flag_sig >3000);     

{ 

y_hat_desi = 0.0003; 

} 

if (flag_sig >6000);    

{ 

y_hat_desi = 0; 

} 

if (flag_sig >9000);     

{ 

y_hat_desi = -0.0003; 

} 

if (flag_sig >3000);     

{ 

y_hat_desi = -0.0006; 

} 

… 

} 

… 

} 
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C.3.2 Sinusoidal Command Tracking 

 

#include <stdio.h> 

… 

long indi = 0; 

long flag_sig = 0; 

double tt = 0; 

double sindata[15709]; 

… 

int main(void) 

{ 

… 

while(indi < 15709)    //* Sinusoidal command generation 

{  

sindata[indi]= -0.0002+0.0012*sin(tt); 

tt = tt +0.0004; 

indi ++; 

} 

while(1) 

{ 

y_hat_desi = sindata[flag_sig]; 

flag_sig ++; 

… 

} 

… 

} 

 

 

C.3.3 Saw-tooth Command Tracking 

 

#include <stdio.h> 

… 
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long flag_sig = 0; 

… 

int main(void) 

{ 

… 

while(1) 

{ 

flag_sig ++; 

… 

if (flag_sig > 4000) 

{ 

y_hat_desi = y_hat_desi - 0.0000008; 

} 

if(flag_sig > 5500) 

{ 

y_hat_desi = y_hat_desi +0.0000016; 

} 

if (flag_sig >7000) 

{ 

y_hat_desi = y_hat_desi -0.0000016; 

} 

if (flag_sig > 8500) 

{  

y_hat_desi = y_hat_desi + 0.0000016; 

} 

if (flag_sig > 10000) 

{  

y_hat_desi = y_hat_desi - 0.0000016; 

} 

if (flag_sig > 11500) 

{  

y_hat_desi = y_hat_desi + 0.0000016; 
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} 

if (flag_sig > 13000) 

{  

y_hat_desi = y_hat_desi - 0.0000016; 

} 

if (flag_sig > 14500) 

{  

y_hat_desi = y_hat_desi + 0.0000016; 

} 

… 

} 

… 

} 
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