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ABSTRACT 

 

Improvements to a Queue and Delay Estimation Algorithm Utilized in Video Imaging 

Vehicle Detection Systems.  (May 2007) 

Marshall Tyler Cheek, B.S., Iowa State University 

Chair of Advisory Committee:  Dr. Gene Hawkins 

 

Video Imaging Vehicle Detection Systems (VIVDS) are steadily becoming the dominant 

method for the detection of vehicles at a signalized traffic approach.  This research is 

intended to investigate the improvement of a queue and delay estimation algorithm 

(QDA), specifically the queue detection of vehicles during the red phase of a signal 

cycle. 

 

A previous version of the QDA used a weighted average technique that weighted 

previous estimates of queue length along with current measurements of queue length to 

produce a current estimate of queue length.  The implementation of this method required 

some effort to calibrate, and produced a bias that inherently estimated queue lengths 

lower than baseline (actual) queue lengths.  It was the researcher’s goal to produce a 

method of queue estimation during the red phase that minimized this bias, that required 

less calibration, yet produced an accurate estimate of queue length.  This estimate of 

queue length was essential as many other calculations used by the QDA were dependent 

upon queue growth and length trends during red. 

 

The results of this research show that a linear regression method using previous queue 

measurements to establish a queue growth rate, plus the application of a Kalman Filter 

for minimizing error and controlling queue growth produced the most accurate queue 

estimates from the new methods attempted.  This method was shown to outperform the 

weighted average technique used by the previous QDA during the calibration tests.   
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During the validation tests, the linear regression technique was again shown to 

outperform the weighted average technique.  This conclusion was supported by a 

statistical analysis of data and utilization of predicted vs. actual queue plots that 

produced desirable results supporting the accuracy of the linear regression method.  A 

predicted vs. actual queue plot indicated that the linear regression method and Kalman 

Filter was capable of describing 85 percent of the variance in observed queue length data. 

 

The researcher would recommend the implementation of the linear regression method 

with a Kalman Filter, because this method requires little calibration, while also 

producing an adaptive queue estimation method that has proven to be accurate. 
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INTRODUCTION 
1 

Video imaging vehicle detection systems (VIVDS) are steadily becoming the preferred 

method for detecting vehicles at signalized intersections.  VIVDS are progressively 

replacing detectors such as inductive loop detectors at signalized intersections due to the 

high cost of maintenance and frequency of repair involved with non-VIVDS detection 

(1).  There is a need for real-time queue and delay estimation of vehicles at signalized 

intersections, as often times, modern traffic signal controllers are able to use these real-

time data in order to optimize intersection performance.  Queue length estimates can 

provide a valuable indication to the traffic engineer as to roadway conditions, and can 

allow the engineer to assess the performance of a roadway. Accordingly, a queue and 

delay estimation algorithm (QDA) has been developed by researchers at the Texas 

Transportation Institute (TTI) in order to procure reasonable estimates of queue length 

and delay, while minimizing noise associated with measured queue length estimates 

collected by VIVDS hardware. 

 

Current mathematical techniques used in the QDA involve a weighted average of 

previous and current estimates of queue length in order to procure output queue length 

estimates. However, the initial algorithm that was designed presents a mathematical bias, 

leading to estimates output from the QDA that are inherently low.  This is due to the 

current logic used by the QDA intended to minimize the effects of errant and dropped 

detections.  Errant data or data containing a high degree of variability offers little 

justification for the use of this video detection technique over other forms of detection.  

Therefore, the improvement of the QDA used with VIVDS is necessary before it can be 

relied upon in order to provide accurate estimates of queue length and delay.  

 

                                                 
This thesis follows the style and format of the Transportation Research Record. 
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It is the researcher’s belief that improvements to the previous QDA using fundamental 

mathematical techniques will yield an improved estimate of queue length.  The 

researcher’s hypothesis is that improvements to the previous version of the QDA and 

newly implemented mathematical techniques will improve queue length estimation.  The 

alternative hypothesis is that there will be no improvement when comparing previous 

versions of the QDA to the one created in this research as well as when compared to raw 

measurements obtained from the VIVDS hardware. 

 

OVERVIEW OF NCHRP 3-79 

The National Cooperative Highway Research Program (NCHRP) is the primary sponsor 

for this research as part of NCHRP 3-79. This project is entitled Measuring and 

Predicting the Performance of Automobile Traffic on Urban Streets. 

 

The research in NCHRP 3-79 has two objectives.  The first objective of this research 

seeks to investigate the feasibility of real-time traffic control detection systems and their 

ability to provide real-time solutions for applications including: adaptive control, traveler 

information, incident management, and system performance (1). Secondly, this research 

is intended to expose weaknesses in current Highway Capacity Manual (HCM) methods 

for estimating travel speeds (2).  It is believed that factors such as arterial traffic volume, 

traffic signal offset, access point density, cross-section design, arterial weaving, and 

platoon dispersion may all be key factors in the determination of travel speed through an 

urban arterial roadway (3). 

 

Within the two main objectives of NCHRP 3-79, a subtask calls for the identification of 

viable applications of real-time travel time and queue length measurement for the 

management of traffic flow (3).  The research and analysis presented in this thesis 

intends to investigate the viability of utilizing VIVDS to measure queue length.  
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PROBLEM STATEMENT 

A subtask for NCHRP 3-79 investigates non-intrusive methods for detecting vehicles 

and estimating performance measurements at signalized intersections using VIVDS (1, 

3).  This subtask specifically investigates the performance of signalized intersections 

using queue length and delay as the primary MOEs. Thus, the QDA was developed in 

response to the objectives proposed in this subtask.  The QDA estimates MOEs in real-

time using current and previous measurements of queue length.  However, this method 

of queue length estimation using the QDA was hindered by a bias in the mathematical 

procedure used to estimate MOEs (1).  Also, researchers believed that there were more 

ways to estimate queue length that could result in more accurate estimates. 

 

Due to the shortcomings of the initial versions of the QDA, it is desired to modify the 

QDA such that the estimation of queue length output from the QDA does not bias queue 

length estimates.  The modification of the QDA must include the implementation of a 

mathematical technique that allows for real-time queue length estimation based on 

previous and current measurements, while maintaining an unbiased output. Eliminating 

this bias is essential for accurately estimating queue length, as well as estimating delay at 

a signalized approach.   Additionally, it is believed that a mathematical technique that 

utilizes elements related to real-time measurement and estimates based on traffic 

queuing theory should provide adequate models for the creation of an improved QDA. 

 

This thesis research intends to investigate mathematical procedures that satisfy the needs 

for real-time estimation and produce more accurate estimates of queue length than 

previous versions of the QDA.  Furthermore, it is desired to develop a new version of the 

QDA that does not underestimate queue length.  

 

OBJECTIVES 

The research goal is to identify the best mathematical technique for minimizing the error 

in queue length estimation output from the QDA using VIVDS.  This goal will result in 
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an improved estimate of delay, which is dependant upon an accurate estimate of queue 

length.  The estimation of delay however, is not the primary focus of this thesis, as logic 

pertaining to the estimation of delay will not be altered from the previous version of the 

QDA.  The specific objectives of this research are as follows: 

 

• Evaluate various methods for minimizing error in queue length data collected 

using VIVDS and analyzed using the QDA.  

• Determine which mathematical technique minimizes error with respect to queue 

length estimation using the QDA.  Inherently, this approach should also 

determine which mathematical technique minimizes noise with respect to delay 

estimation at a subject approach. 

• Implement the best mathematical technique for queue length estimation in the 

QDA. 

 

SCOPE 

This research applies to signalized intersections where VIVDS may be used for the 

detection of vehicles and used for the actuation of traffic signals.  This research will 

focus on the improvement of queue length estimates, and will not focus on estimates of 

delay.  The accurate estimation of queue length, will affect the calculation of delay used 

by the QDA.  Therefore, it can be said that the goal of improving the estimation of queue 

length, will be accompanied by an improved estimate of delay.   

 

This technique will be designed in a manner such that the functions utilized by the 

VIVDS hardware for queue length estimation can be implemented using any VIVDS 

processors or cameras that are deployed at an intersection.  Lastly, this research does not 

intend to investigate aspects of real-time traffic control that may be possible using output 

from the QDA.  However, it is the goal of this research to investigate the accuracy, and 

subsequent potential use of QDA estimates for future implementation for real-time 

traffic control application. 
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LITERATURE REVIEW 

 

This section is intended to give an overview of the fundamental concepts and principles 

involved in the determination of a new queue and delay estimation algorithm.  This 

section will be composed of the following sections: 

 

• Queuing Theory 

• Video Imaging Vehicle Detection Systems (VIVDS) 

• Previous Research 

• Previous QDA Description 

• The Kalman Filter 

• Summary 

 

QUEUING THEORY 

Often in transportation engineering, the number of vehicles demanding to use a facility 

is greater than can be serviced during a given interval of time.  As a result, vehicles are 

stored or queued along a roadway until a time when they can be serviced, thus delaying 

their departure (4).  Queuing theory for purposes of traffic and transportation 

engineering is generally classified as stochastic or deterministic.  Stochastic queuing is 

associated with arrival and service rates that are probabilistic.  That is, the rates of arrival 

and service are unknown for a given scenario.  When the rates of arrival and service 

(departure) are known, this is deterministic.  This scenario is typical of signalized 

intersections, and forms the basis for the analysis conducted in this thesis (4). 

 

A signalized intersection is often characterized by queuing that when observed at the 

macroscopic level, vehicles that compose the queue arrive and are serviced at a 

continuous rate.  This type of queuing is consistent with deterministic queuing.  In its 

simplest form, deterministic queuing at signalized intersections occurs during 
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undersaturated conditions. This means that during a given cycle, all vehicles that are 

requesting service are serviced.  Therefore, there is no overflow condition from one 

cycle to the next (4).   

 

Figure 1 illustrates deterministic queuing in its simplest form.  The triangles that appear 

under the arrival line in Figure 1 represent one cycle length and each triangle can be 

analyzed to provide an array of performance measures for a signalized approach.  

Specifically, the time duration of queue, length of queue, individual delay and total delay 

may be analyzed by examining the triangles beneath the arrival curve (4).   

 

 

 
Figure 1 Deterministic Queuing Model for Signalized Intersections (4) 

 

 

In Figure 1, the horizontal projection of the queuing triangle represents the time duration 

of queue.  This period begins at the start of the red period and continues until the queue 
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is dissipated.  This measure of performance is essential for the understanding of storage 

associated with a queue, and provides a basis for estimates of delay.   

 

The queue length is represented by the vertical component of the queuing triangle.  At 

the beginning of the red period, the queue length is zero.  However, as the red period 

elapses, the queue begins to grow, as does the vertical component of the queuing 

triangle.  Note in Figure 1 that the maximum length of the vertical component occurs at 

the end of the red period.  Once the red period ends, the vertical component decreases. 

Eventually the queuing triangle is complete and the queue has dissipated. 

 

Individual delay is represented by a horizontal distance slice across the queuing triangle.  

Notice that when using this model that the first vehicle to arrive during the red interval 

experiences the largest individual delay, and that vehicles that arrive there after 

experience a decreasing amount of delay until the queue has dissipated.  Using this 

model, vehicles that arrive during the green interval experience relatively no delay, thus 

the departure rate (service rate) is equivalent to the arrival rate due to the fact that no 

queue is present. 

 

Total delay is the aggregate of the individual delay experienced by all vehicles during a 

given traffic signal cycle.  Therefore, total delay is the area of the queuing triangle.  The 

determination of total delay is not only dependent upon the time component associated 

with queuing but is concerned with the actual length of queue during a cycle.  The model 

presented as the deterministic queuing model in Figure 1 serves as the basis for queue 

length estimation and serve as the foundation for estimating measures of performance 

output from the QDA. 

 

VIDEO IMAGING VEHICLE DETECTION SYSTEMS 

Early development of video imaging vehicle detection systems (VIVDS) began in the 

1970s in the United States and throughout the world (5).  Today, VIVDS are becoming 
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an increasingly popular method for detecting vehicles at signalized intersections.  

VIVDS are primarily used for presence detection near the stop line of a signalized 

approach.  VIVDS cameras are typically placed on mast arms or on mast arm poles. 

VIVDS technology utilizes a series of virtual video detection zones placed on the 

roadway through the use of specialized hardware typically consisting of cameras and 

controller cards.   

 

The primary benefits of these systems reside in their cost efficiency and adaptability 

compared to alternative detection methods such as inductive loop detectors (6).  Cost 

efficiency stems from the fact that VIVDS are designed to be non-intrusive.  VIVDS can 

be implemented without physically disturbing the roadway.  During VIVDS 

implementation, roadway surfaces are unaltered and do not require the physical 

construction of mediums for detectors to be deployed or embedded in.  VIVDS have also 

shown to be cost effective where alteration of the roadway is imminent or where 

frequent reconstruction or maintenance of the roadway is necessary (6).  VIVDS may 

require recalibration in these circumstances. This is in sharp contrast to inductive loop 

systems that may require the complete removal and reinstallation of hardware 

components. Additionally, the non-intrusive nature of VIVDS does not require the 

disruption of traffic in order for these systems to be implemented, therefore minimizing 

the delay to motorists and increasing the safety of detector installation at a signalized 

approach (6). 

 

VIVDS typically consists of one or more camera units placed above the roadway that 

feed information to a unit consisting of a microprocessor. This hardware deciphers 

vehicle presence or passage and outputs traffic parameters, preferably in real-time (7).  

An illustration of a basic VIVDS hardware setup can be seen in Figure 2. 

 

Figure 2 illustrates the process whereby the image from the camera is transferred to the 

VIVDS processing unit.  Once image data are received by the processing unit, data are 
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digitized and formatted in a manner such that each point in the image is given a 

coordinate (X, Y).  These coordinates describe the energy, intensity and reflectivity of a 

scene at a given time, t, and the digitized image can be described by the aggregate 

function I(X, Y, t).   The aggregate image function, composed of thousands of points, is 

stored.  Aggregate image functions when stored may be stored for each frame or maybe 

every nth frame.  No matter the time step selected, the next frame analyzed, I(X, Y, t+1) 

and subsequent frames, are compared to a threshold value based on statistically 

calculated differences (related to energy, intensity and reflectivity), in the cumulative 

data set from previously stored images (7).  Comparisons to the threshold value are made 

on a pixel by pixel basis.  If the threshold is exceeded, the logic in the VIVDS 

processing unit interprets this as a detected vehicle.  

  

 

 
Figure 2 Typical VIVDS Components (1, 7) 

 

 

In order for the VIVDS processing unit to narrow its selection criteria with respect to 

which fluctuations exceed threshold values, the processing unit must truncate the data set 

VIVDS Processor 

* Optional Control Center Connection 

Controller 



  10 

such that background features are eliminated from analysis. VIVDS processors often 

have algorithms that distinguish background features from other features within the field 

of view.  Background characteristics that are often targeted by these algorithms include 

transitions in the roadway surface between different pavement materials, snow packed 

and bare pavement, and roadway surfaces covered by shadows (7).  Algorithms for 

distinguishing background features are often classified in terms of static or dynamic 

(transitional) phases.  Algorithms that compensate for static features located in the 

background establish a reference signature at the initiation of the algorithm and thus 

distinguish changes in feature images as areas of detection, while the background should 

remain constant.   

 

While static background imaging logic references a signature from the beginning of a 

time period, there also exist durations where background features tend to change or 

transition with respect to their properties.  In instance of background feature 

transitioning may occur near dusk or dawn where the background lighting may change 

dramatically over a short period of time.  The periods during which there is a transition 

in background features represent situations where dynamic background imaging logic is 

used by a VIVDS processing unit.  These algorithms monitor background features by 

continuously updating the reference background signature image each polling interval 

against the vehicles that must be detected.  This transitional period then leads to the 

static forms of imagery described previously.  During this transition process, the feature 

detection criteria are automatically adapted to compensate for increases or decreases in 

feature properties.  Lastly, these differences are analyzed, and the dynamic background 

imaging logic terminates and the static form of background logic once again initiates.  

During transitional stages, algorithm precision is critical, as the static form of the 

background logic depends upon this precision in order to establish its reference signature 

to compare imaging functions (5, 7).   

 



  11 

PREVIOUS RESEARCH INVOLVING VIVDS  

Video imaging vehicle detection systems began to evolve in the 1970s as the United 

States, Europe, Japan and Australia sought ways to detect vehicles at low costs while 

maintaining at least the accuracy provided by inductive loop detectors (7).  Early 

development of VIVDS was undertaken by the Jet Propulsions Laboratory (JPL) and 

was originally intended for tracking vehicles individually.  While this aspect of the 

project proved to be challenging, researchers at the JPL were successful in developing 

algorithms for the detection of vehicles and measuring vehicle speed. The JPL named 

their system the Wide Area Detection System (WADS). Unfortunately, technological 

limitations involving video imaging and computer processing in the 1970s hindered the 

development of WADS and delayed substantial development of this technology until the 

1990s (6, 7). 

 

VIVDS Application Research and Development 

Video imaging vehicle detection systems utilize technology that has existed since the 

1950s.   While limited in scope with respect to the applicability of these systems, most 

early VIVDS systems were developed to provide presence detection on signalized 

intersection approaches.  In the 1990s, research was conducted that investigated the 

feasibility of using VIVDS for purposes other than presence detection.  

 

Research conducted by Michalopoulos et al. investigated the possibility of using VIVDS 

for more advanced traffic data measurements (5, 7).  This research measured speed, and 

travel time associated with vehicles traveling along a corridor.  The results of this 

research showed that given the advances in VIVDS technology at the time, VIVDS 

measurements could be relied upon to make accurate measurements of speed and travel 

time.  Results of this study showed that advanced VIVDS technology used in the study 

proved to be 95-97 percent accurate for measuring the speed of vehicles through a 

corridor.  Furthermore, the results of this study showed that for simple presence 

detection, VIVDS performed just as well as loops during experimentation.  Research 
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performed by Michalopoulos et al. also mentions the early realization and possible 

development of VIVDS technology for the purposes of producing quantitative queue 

estimates, as well as estimating measures of effectiveness such as delay, number of 

stops, and energy consumption (5).  However, no documents could be found that 

presents results as to the findings of this type of research. 

 

Most recently, VIVDS research has diverted from development of new algorithms for 

improving measurements and increasing the scope of VIVDS measurement capabilities.  

Instead, research has focused more on VIVDS camera positioning and calibration 

techniques.  This type of research aims to improve the performance of VIVDS 

operations by minimizing the chance of error that may occur due to issues such as 

vehicle occlusion or maintenance functions that might be necessary as a result of poor 

camera positioning.  Furthermore, calibration protocols that have been developed aim at 

allowing VIVDS cameras to perform at optimal levels, as well as allow for the 

possibility of automatically adapting camera positioning or field of view to account for 

prevailing weather and roadway conditions (6).   

 

VIVDS Queue Research and Development 

Most research involving VIVDS and queue length detection, involves the simple process 

of identifying when queues are present on a subject approach (8). These detection 

systems offer only a mechanism by which to qualitatively indicate whether a queue has 

formed. Research conducted by Rourke and Bell investigated the use of fast fourier 

transforms (FFT) in order to detect the formation of queues.  This method was able to 

detect queue presence by defining an analysis window, then utilizing the frequency and 

power of the spectrum associated with images produced within this analysis window (8, 

9).  Furthermore, methods developed by Hoose utilized a full frame approach for queue 

detection (9).   The full frame method is able to obtain an image no matter the position of 

the object on the screen.  Hence, the full frame is utilized in the analysis, as opposed to 

the previous method that only analyzes objects within a specified analysis window.  The 
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full frame method is then able to track the obtained image, in this case a vehicle, and is 

able to track the object through a succession of frames.  Both of these methods have 

been used to establish queue presence detection algorithms. The queue presence 

information can then be passed to either a traffic signal controller, and an adaptive 

control feature can be initiated.  Additionally, this information can provide a monitoring 

system for alerting traffic management personnel of roadway conditions (8 ,9).   

 

Limited research pertaining to the quantitative measurement of queue length using 

VIVDS could be found.  The researcher was able to identify only one application of 

VIVDS technology where researchers claim to have successfully implemented VIVDS 

to estimate the length of a traffic queue.  In 1995, the Institution of Electrical 

Engineering in Great Britain published a paper entitled Real-time Image Processing 

Approach to Measure Traffic Queue Parameters (10).  The objectives of this research 

were intended to quantitatively establish measurements in real-time pertaining to traffic 

queue length. 

 

The algorithm utilized by the authors of this paper consisted of two components, motion 

detection and vehicle detection.   The motion detection algorithm described in this paper 

is essentially the same process by which standard VIVDS detectors operate.  This 

process involves the comparison of consecutive frames.  While applying noise and 

background filters, the algorithm is capable of distinguishing differences in vehicle 

location between the two frames.  Thus, if imaging properties associated with vehicles 

surpasses a specified threshold, a detection event is recorded.  The second algorithm, 

vehicle detection, incorporates edge detection.  Edge detection utilizes a technique that 

analyzes the boundaries of objects that appear in each frame of an image.  These areas 

represent areas of substantial structural properties when viewing the full frame image 

produced by VIVDS.  Edges are also known to be less sensitive to variations in ambient 

lighting.  Thus edge detectors were believed by these researchers to be an optimal 
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method for detecting precisely where vehicles are located on a roadway by placing edge 

detectors where vehicle outlines are likely to exist (10). 

 

The combination of motion and vehicle detection algorithms ultimately produces the 

estimate of queue length.  The motion detection algorithm is used to distinguish areas of 

relatively little motion, to areas where substantial motion is present.  Then, the vehicle 

detection algorithm serves as a refinement tool, whereby the areas of relatively little 

motion are analyzed by edge detectors to determine if vehicles are present within this 

region.  If a queue is detected, a queue length is reported based on the calibration input 

by the engineers (10).   

 

The findings of this research state that the queue length estimation technique 

implemented in this study result in an algorithm that is 95 percent accurate.  This 

researcher questions these results, as the results presented show queue estimates rounded 

to the nearest 20 meter increment.  Furthermore, baseline queue measurements show 

observations rounded to the nearest meter.  From this researcher’s experience, it would 

be very difficult to obtain 95 percent accuracy with respect to estimated queue length 

under these conditions, as rounding to the nearest 20 meter increment would introduce 

considerable error.  Limited documentation of the actual experimental procedure could 

be located, nor could other documents that reference this technique.  This method 

implements advanced imaging hardware that is not typical of a standard VIVDS setup.  

This distinguishes this research from that proposed in this thesis and those objectives 

prescribed in NCHRP 3-79, whereby a queue and delay estimation algorithm must be 

implemented in a generic way so that varieties of VIVDS hardware can use the QDA. 

 

PREVIOUS QDA DEVELOPMENT 

The queue growth period analyzed by the QDA includes the time period starting at the 

beginning of a red indication, and continues into the first few seconds of a green 

indication (1).  The queue growth period during the green indication includes the time 
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period when vehicles continue to arrive, but the queue is dissipating at the front of the 

formation.  During the initial formation of the queue, vehicles begin to accumulate and 

form a queue growing back from the stop-line.  The QDA currently estimates the queue 

length at the end of every 10 second interval during the queue growth period.  The queue 

length is reported based on the furthest activated detector that is occupied by vehicles in 

a traffic queue.  However, due to sensitivity issues involving VIVDS hardware and 

erroneous detections that occasionally occur, the furthest reporting detector does not 

always provide the most reliable estimate of queue length as the detector that should be 

reporting the queue length may be malfunctioning.  Therefore, current queue length 

logic used for queue estimation utilizes a weighted average based on previous and 

current estimates of queue length to ultimately produce a QDA estimated queue length.  

The following equation illustrates the weighting procedure currently utilized by the 

QDA. 

 

 fqfQQ iii +−= − )1(1  (Equation 1) 

 

where 

          Qi = best-estimate of queue length during current period “i”, ft, 

        Qi-1 = best estimate of queue length from previous period, ft, 

          qi  = detected queue length estimate from queue detectors during current period 

“i”, ft, and 

        f = weight given to the current queue length estimate, ( 10 << f ), (Empirically     

    calibrated) 

 

The use of the weighted average technique essentially introduces three estimates of 

queue length.  A previous estimate of queue length is established from the previous 

QDA output estimate stored within the QDA output file. This estimate represents the 

best estimate of queue length from the previous period, Qi-1.  Next, the current estimate 

from the queue detectors, qi, represents the value obtained from the furthest actuated 
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detector from the VIVDS system. Lastly, these two values are weighted, and the current 

QDA output estimate, Qi, is produced.  The weighting factor, f, is empirically 

determined under laboratory conditions, and provides an important step towards properly 

calibrating this model. This result produces an intermediate estimate (i.e., an estimate 

that is not a multiple of 50) of queue length. This type of estimate is believed to provide 

a more realistic, and potentially more accurate estimate of queue length than if qi were 

used alone, which only exists in multiples of 50. 

 

In addition to the estimation of queue length, the QDA makes an estimate of delay.  

Control delay is not estimated by the current version of the QDA, nor is the intent of any 

future versions of the algorithm to estimate this measure of effectiveness.  Control delay 

cannot be effectively measured due to the fact that knowledge of the percentage of 

stopped vehicles would have to be measured.  Due to the fact that this factor is difficult 

to measure using VIVDS, estimates of control delay are not produced.   

 

Rather than an estimate of control delay, the QDA aims at making accurate estimates of 

stopped delay at the end of each signal cycle.  As time during a signal cycle progresses, 

total delay is reported during each reporting period (i.e., each 10 second interval).  This 

process begins during the start of the yellow phase, and terminates at the end of the 

green phase providing total delay estimates for each interval during this time.  The total 

delay is then summed for the entire interval, then divided by the number of intervals 

during the cycle (1).  The following equations illustrate the technique for estimating 

stopped delay (1): 
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where 

            d = Average delay from previous cycle, sec/veh, 

          Nv = Count of vehicles discharging during the green interval, veh/cycle, 

          Di = Total delay from period i, veh-sec, and 

            n = Number of reporting periods in the previous cycle. 

 

The method used to compute Nv results from the detector placed closest to the stop line 

operating as a counter.  The counting procedure is embedded within the QDA.  The 

method for estimating delay utilizes estimates of queue length established during each 

interval.  There are two components included in the estimation of total delay.  Delay that 

is incurred during the red and yellow interval is the first component, and delay that is 

incurred during the queue clearance period during the initial moments of the green 

interval.  Total delay during the red and yellow interval is computed as follows (1): 

 

 
qv

rpt
ii L

t
QD =   (Equation 3) 

 

where 

          Qi = Best estimate of queue length during current period i, ft, 

         trpt = Queue reporting period (in these tests this value was 10 sec), sec, 

         Lqv = Distance headway between two vehicles in a stopped queue, ft.  (Assumed to     

    be 25 ft). 

 

During the initial seconds of the green interval, the front begins to discharge.  Due to this 

circumstance, the queue length is actually smaller than the distance from the stop line  to 

the back of the queue.  Therefore, the estimate of queue length is not effectively 

estimated by the ratio of the best queue estimate to distance headway between vehicles 

(i.e., the ratio Qi/Lqv).  Equation 3 must then be modified to reflect these phenomena.  

This scenario is corrected in Equation 4 and Equation 5. 
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where 

         Qi
* = Adjusted best estimate queue length, adjusted to reflect departing  vehicles at  

the front of the queue, ft, 

            ti = Time of current reporting period i, (in these tests this value was 10 sec), sec, 

         tpr1 =Perception-reaction time of first queue driver, (Assumed to be 3.0 sec), sec, 

          tpr =Perception-reaction time of remaining queued drivers (Assumed to be 1.0 

sec), sec. 

 

As previously mentioned, this form of queue length estimation utilized by the QDA 

introduces a bias to the output queue length.  By using the term bias, the researcher is 

indicating that the error that is produced is typically due to estimates being lower than 

baseline measurements. The QDA output queue lengths are biased low due to the fact 

that the previous QDA output queue lengths are often smaller than currently detected 

queue lengths.  Moreover, a “dropped” detection will often result in the QDA using the 

next smallest activated detector.  This again results in an estimated queue length that is 

less than ideal, and would not provide a reliable estimate due to the tendency of queues 

to grow when comparing previous estimates to current detections obtained from VIVDS. 

 

The researcher believes it is important to stress the fact that accurate estimates of queue 

length during the red phase are critical due to their use for estimating the dissipation of a 

traffic queue.  The queue length estimates on red are also used to calculate delay, as 

illustrated by the mathematical procedures in this section.  Ultimately, these estimates of 
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queue length on red and subordinate calculations could be used for real-time adaptive 

control of traffic signals.  Therefore, methods for producing accurate queue length 

estimates during the red phase are intended to allow for the eventual optimization of 

traffic signal operations, and maximize the service of traffic on a subject approach. 

 

KALMAN FILTERS 

In 1960, the creation of a mathematical filtering procedure for the optimization of 

discrete-data linear filtering problems was published by Rudolph Kalman.  The filter was 

designed to provide recursive solutions to multiple-input, multiple-output systems 

intended to find optimal solutions based on noisy outputs (11).  The Kalman Filter 

minimizes the mean-squared error.  In other words, it minimizes the squared difference 

between an estimator and the value in which the estimator is approximating.  The appeal 

of the Kalman Filter involves this technique’s ability to minimize error in real-time 

associated with a system’s theoretical performance based on measured performance of 

the system collected at regular intervals. Furthermore, drastic improvements in computer 

technology around 1960 aided the widespread acceptance of the Kalman Filter for a 

multitude of applications and made this technique ideally suited for real-time estimation 

procedures (12). 

 

The Kalman filter is designed to minimize the variance of the estimation error 

experienced during the output of a linear system.  Accordingly, in order for a Kalman 

Filter to be implemented, the process must be described in linear terms (13).  A linear 

system is simply the process that can be described by the following two equations 

involving the state equation (Equation 6), and the observed measurement equation 

(Equation 7) (12, 14): 

 

 111 −−− ++= kkkk wBuAxx  (Equation 6) 
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 kkk vHxz +=  (Equation 7) 

 

where 

           xk = process state vector at time tk, 

  A = matrix relating xk-1 to xk, 

  B = matrix relating optional control input, uk-1, to the state, xk, 

           uk = optional control input,   

          wk = assumed to be a white noise sequence with known covariance, Qk,. 

   zk = vector measurement at time tk, 

  H = matrix giving the ideal noiseless connection between the measurement and 

the state vector at time tk, and 

 vk = measurement error, assumed to be a white noise sequence with known 

covariance, Rk. 

 

It is important to note that in the previously described mathematical procedure, that the 

white noise sequences for the state equation and the measurement equation are assumed 

to be normally distributed with means of zero. 

 

It is easier to think of the Kalman Filter as a predictor-corrector algorithm.  In this two-

step algorithm, the predictor portion consists of a “time update” function that projects 

the current state estimate ahead in time.  Next, the measurement update (corrector 

portion), adjusts the predictor estimate by an actual measurement at that time (see Figure 

3).  
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Figure 3 Kalman Filter Cycle (14) 

 

 

To start the iterative process illustrated Figure 3, there must be some must be a set of 

initial conditions from which to begin.  The terms Qk and Rk, representing process noise 

covariance and measurement noise covariance respectively, are usually measured during 

offline calibration before the implementation of the Kalman Filter. The process and 

measurement covariance error terms can be determined by knowing the error terms wk  

and vk  (12). 
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where 

           Qk = Covariance matrix associated with wk, and 

           Rk = Covariance matrix associated with vk. 

Time Update (State Estimate) 

“Predictor” 

Measurement Update 

“Corrector” 



  22 

 

While the measurement noise covariance, Rk, is generally easy to determine, the process 

noise covariance term, Qk, can often prove difficult to obtain.  This is due to the fact that 

it is often impossible to directly observe the process we are estimating. Therefore, Qk  

must often times be estimated at the discretion of the researcher. The proper calibration 

of Qk and Rk can lead to superior Kalman Filter performance.  As such, care should be 

applied in determining these values (12). 

 

The beginning sequences of the Kalman Filter requires that the process state equation, 

kx̂  be structured based on knowledge of an a priori state estimate, −
kx̂ , where the “hat” 

denotes an estimate, and the super-minus represents the fact that a term is an a priori 

estimate.  Additionally, the a priori error covariance associated with the a priori 

estimate is given by the term, −
kP .  These terms are determined by evaluating the 

following equations (7, 11, 14): 

 

 11ˆˆ −−
− += kkk BuxAx  (Equation 10) 

 

 k
T

kk QAAPP += −
−

1  (Equation 11) 

 

where 

           −
kx̂  =A priori estimate of the process state vector,     

          −
kP  = A priori error covariance matrix associated with −

kx̂ , and 

          kQ  = Process noise covariance.   

 

Now that the time update equations have been established in Equations 10 and 11, the 

measurement update equations must be established.  The first step of this process 

requires the calculation of the Kalman gain, Kk, also known as the “Blending Factor” 

(see Equation 12).  The next step is to actually measure the process so that zk can be 
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obtained, and a posteriori state estimate can be calculated (see Equation 13).  The final 

step in the measurement update process is to make a posteriori error covariance estimate 

by evaluating Equation 14 (12, 14). 

 

 ( ) 1−−− += k
T

k
T

kk RHHPHPK  (Equation 12) 

 

 ( )−− −+= kkkkk xHzKxx ˆˆˆ  (Equation 13) 

 

 ( ) −−= kkk PHKIP  (Equation 14) 

 

where 

           Kk = Kalman gain, “Blending Factor”,  

           kx̂  = Posteriori of the process state vector, and 

           kP  = Posteriori estimate of the error covariance associate with the process state 

vector. 

 

Once each phase has been completed (time update and measurement update), the 

posteriori state estimate is recycled to create a new a priori estimate of the process state 

vector.  A graphical illustration of the Kalman Filter process can be seen in Figure 4. 
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Figure 4 Kalman Filter Illustration (14) 
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SUMMARY 

Recent research has not been directed towards improving VIVDS utilization for 

estimating MOEs.  Instead, recent research has been directed more towards optimizing 

methods of placing VIVDS cameras so that data that are collected using these systems 

are able to better estimate MOEs. The previous QDA utilized a weighted average of 

queue estimation based on past and current estimates of queue length during the red 

phase of a traffic signal cycle.  This method had the tendency to estimate queue length 

lower than what actually existed.  However, methods proposed in this thesis intend to 

correct this low estimate by using advanced mathematical techniques including a 

Kalman Filter to intelligently combine estimates of queue length with current 

measurements of queue length, intending to produce an overall estimate of queue length 

that accurately reflects the current queue length condition at an approach of a signalized 

intersection. 
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METHODOLOGY 

 

This section is divided into three parts.  It is intended to give a detailed description of the 

procedures for conducting these experiments.  This section describes the setup of field 

and laboratory experimentation and provides a basic understanding of the methodology 

for conducting experiments and the procedures used to analyze data.  Analysis of the 

data obtained using these procedures is discussed in the subsequent section.   

 

DATA COLLECTION PROCEDURE 

Sites for QDA testing procedures were selected based on a number of criteria.  First, the 

site must have VIVDS currently operating, and the operating agency must have the 

ability to allow researchers to use the VIVDS video output in order to record video data.  

Next, the site must also experience queues that occasionally extend beyond 400 ft 

upstream from the stop line.  Lastly, the site must have adequate open space adjacent to 

the roadway such that video cameras could be placed along the roadway in order to 

record baseline “ground truth” queue length measurements. 

 

The intersection of George Bush Drive and Wellborn Road in College Station, Texas 

met these criteria.  This site offered ample space for setting up video cameras adjacent to 

the roadway.  During this study, three types of data were recorded.  First video data were 

recorded from the VIVDS camera.  Second, the phase status of traffic signals was 

recorded using an industrial computer.  Lastly, video data were recorded for the purposes 

of establishing baseline measurements involving queue length and vehicle counts on the 

subject approach.  The studied site and experimental setup can be seen in Figure 5. The 

subject approach can be seen in Figure 6. 



  27 

  
Figure 5 Test Site and George Bush Drive and Wellborn Road (1) 

 

 

 
Figure 6 Approach on George Bush Drive and Wellborn Road 
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VIVDS Data Collection Procedure 

The City of College Station allowed a research team to use the VIVDS video feed from 

the intersection of George Bush Drive and Wellborn Road to record video data.  These 

data would then be reduced and used in the laboratory for the design, calibration and 

validation of the QDA.  Notice in Figure 5 that the VIVDS camera is shown.  This 

camera is mounted on a 5 ft riser arm and is located at an approximate height of 24 ft 

above the roadway.  Video data were recorded for one approach at this intersection.  

Video data from the VIVDS camera was transformed from an analog signal output from 

the VIVDS camera and converted to a digital signal where it was then stored to an 

industrial computer.  Later, this digital video data were transferred to DVD, where the 

data were replayed, data extracted and archived for future analysis. 

 

Phase Status Data 

The phase status of the indication displayed by the traffic signal was relayed from the 

traffic signal controller to the industrial computer.  The thru indication reported to the 

industrial computer relates to the signal indication color displayed to those vehicles on 

the subject approach.  This phase status was then combined with data associated with 

those data collected from the virtual detectors obtained by the VIVDS camera to 

estimate queue length at a given interval in the QDA.  The data related to the phase 

status was recorded during experimentation and combined with VIVDS data during 

laboratory experimentation.  Ultimately, it would be necessary for the phase status to be 

used by the traffic signal controller internally, combined with a software embedded 

version of the QDA such that queue length estimates could be made automatically by the 

traffic signal controller. 

 

Baseline Data Collection Procedure 

Video cameras placed adjacent to the roadway were able to capture queue formation as 

far as 400 ft upstream from the stop line on the subject approach.  Video cameras were 
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placed adjacent to the roadway at an approximate distance of 280 ft from the roadway.  

An illustration of this can be seen in Figure 7.  Video cameras recorded video data 

concurrently with video footage obtained from the VIVDS camera as well the traffic 

signal phase status data.  This was necessary so that researchers could compare VIVDS 

(QDA predicted) estimates to those baseline estimates determined by the cameras 

adjacent to the roadway.   

 

 

 
Figure 7 Baseline Data Collection Setup (1) 

 

 

Once data collection concluded, data from the video cameras were then extracted 

manually.  Data pertaining to queue length and vehicle counts were recorded every 10 

seconds during video playback.  These data then allowed the researcher to obtain 

baseline measures of effectiveness, including not only queue length, but baseline delay 

figures. 
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LABORATORY PROCEDURE 

Once data were collected using the data collection procedure describing how data 

pertaining to VIVDS cameras, phase status and baseline measurements data were 

analyzed under laboratory conditions.  VIVDS camera data were output utilizing the 

recorded DVD video footage of the subject approach and were fed to an Autoscope 

“Rackvision” VIVDS processing unit.  It is believed that this procedure involving the 

use of recorded DVD video footage offers many advantages over conducting these 

experiments under field conditions.  For instance, using recorded footage allows the 

researcher to notice the affects of small refinements in queue logic, detector design, or 

other experimental modifications.  Accordingly, this procedure does not experience the 

type of random traffic fluctuations as would be experienced under field conditions, and 

offers consistent traffic patterns from which to compare one trial to the next. During the 

laboratory procedure, four hours of video footage was used to test different queue 

estimation techniques.  Video footage will be used to validate the algorithm determined 

to produce the best results using the calibration test procedure.  

 

The VIVDS processing unit contains an imaging file that was merged with the output 

VIVDS camera footage.  The imaging file containing sensors designed by the researcher, 

created virtual detection zones on the VIVDS camera footage.  Using these sensors, the 

QDA was able to procure estimates based on specified assumptions, design guidelines, 

and traffic engineering principles specified by the researcher.  

 

As can be seen in Figure 8, video imaging data and phase status data are merged when 

the QDA estimates queue length in 10 second intervals.  The phase status data alerts the 

QDA as to the current phase status, and allows the QDA to initiate or terminate QDA 

subroutines and algorithms for the estimation of MOEs during a particular phase during 

a cycle.  The current version of the QDA takes measurements of queue length in 50 ft 

intervals, and modifies these measurements using the weighted average technique to 

produce an estimate of queue length.  The proposed new QDA again takes  
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Figure 8 Hardware Setup for QDA Experimentation (1) 
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measurements, then procures an estimate of queue length based on deterministic queuing 

theory.  The new version then modifies this estimate by applying the Kalman Filter 

before making a final output of queue length.   

 

A typical VIVDS sensor layout for queue detection can be seen in Figure 9.  Each 

horizontal bar in Figure 9 represents a detector placed at a pre-determined distance from 

the stop line.  This setup consists of eight distinct detection zones associated with 

distances such that queue lengths of 50, 100, 150, 200, 250, 300, 350 and 400 ft from the 

stop line can be reported (1).  

 

Notice in Figure 9 that the two nearest detectors to the stop line (those that report 50 and 

100 ft) incorporate two detectors placed in close proximity to one another.  The 

reasoning behind this detector design is that it is believed that this design adds increased 

reliability due to detector redundancy.  A Boolean logic function “OR” joins the two 

detectors and if either is switched “on,” the associated queue length is reported. 
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Figure 9 Typical VIVDS Setup for Queue Detection (1) 
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When vehicles begin to accumulate at a signalized intersection, the QDA is allowed to 

report queue length once a detector has been switched “on” for a certain period of time.  

Hence, detectors function on a delay and vehicles must be present on a detector for a 

specified duration of time in order to place a call.  Once a detection zone reports that the 

queue length has reached a certain distance from the stop line, these data are sent to a 

laboratory computer, and its value is analyzed by the QDA. 

 

Figure 9 shows sensors placed at gradual intervals from the stop line on the subject 

approach.  Detectors in this figure are placed at intervals of 50 ft.  However, detectors 

are not placed beginning at 50 ft from the stop line as one might assume.  Detectors are 

actually placed beginning at a distance of 25 ft from the stop line and continue at 

intervals of 50 ft upstream (i.e., detectors are placed at 25, 75, 125, 175 ft, etc. from the 

stop line).  Detectors are placed in this manner in order to improve the accuracy of 

measurements reported by the VIVDS hardware.  Detectors are placed at the center of 50 

ft zones.  Through the researcher’s experimentation with VIVDS hardware, this type of 

setup produces more accurate measurements than if detectors were placed at the ends of 

a 50 ft detection zone.  If detectors had not been shifted, vehicles that extend in a queue 

that reaches 99 ft from the stop line would not be detected as 100 ft as intuition might 

suspect.  Instead, a queue of 50 ft would be reported.  However, when considering that 

the average of 50 and 99 ft is approximately 75 ft, it was decided to place detectors at 

this location.  Detectors placed at this 75 ft location would then in fact report 100 ft, 

essentially reducing the magnitude of error in half.  Table 1 shows the actual queue 

length associated with the eight detectors, as well as the reported queue length as used 

by the QDA. 
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Table 1 Detector Zone Queue Length Assignments  

Detector Zone Actual Queue Length, ft Reported Queue Length, ft 
1 25 50 
2 75 100 
3 125 150 
4 175 200 
5 225 250 
6 275 300 
7 325 350 
8 375 400 

 

 

ANALYTICAL PROCEDURE 

Once data have been obtained, baseline measurements obtained from cameras positioned 

adjacent to the roadway and estimates of queue length obtained from the new QDA 

produced in this research were compared.  The new QDA will be produced based on 

experimental results obtained from the analysis of a number of different methods for 

procuring queue length estimates, as well as the implementation of a Kalman Filter.   

 

Estimates produced from the previous version of the QDA, as well as the new version of 

the QDA will be compared.  This process will be referred to as the calibration 

experiments. Comparisons will be made using procedures introduced in the following 

section, Data Analysis.  Estimates of queue length produced by the QDA will be 

compared by determining statistics involving the error of estimates, as well as the 

variability of these error values.  Also, figures will be produced that illustrate variability 

in QDA estimate data.  Lastly, illustrations will be produced that exhibit the accuracy of 

detectors as a function of distance from the stop line.  These experiments will be 

conducted using Microsoft Excel™, and using known measurement output from the 

QDA, a simulation of real-time QDA queue estimation will be conducted using 

Microsoft Visual Basic for Applications™ (VBA) to simulate QDA queue length 

estimation. 
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Once the best technique for the estimation of queue length using a Kalman Filter is 

determined, this technique will be compared against results from queue estimates 

analyzed by the previous QDA using the weighted average technique.  These 

experiments will be referred to as the validation experiments.  The validation 

experiments will consist of five trial runs, whereby the best new estimation technique 

and weighted average method are both allowed to analyze each trial run.  The results of 

this analysis will be aggregated, and results will be compared using similar statistical 

methods as the calibration experiments.  Statistical tests and description of the data sets 

used for validation are included in the next section. 
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DATA ANALYSIS 

 

The analysis used during this thesis uses four different types of data.  The first type 

involves baseline data.  Baseline data or ground-truth data were obtained from video 

cameras placed adjacent to the roadway.  These data represent the true queue length 

during any one time interval.  The next component is measurement data.  These data are 

obtained directly from detectors placed at 50 ft intervals from the stop-line in the VIVDS 

system.  The third component involves estimates that are produced from measurement 

data.  Estimates are procured from a number of modeling techniques aimed at obtaining 

results that attempt provide estimates that are reasonably close to baseline queue lengths.  

The last component involves the utilization of the Kalman Filter to correct estimates and 

minimize error associated with estimated queue lengths.  An illustration of the 

classification of data, and how the Kalman Filter utilizes these data is available in 

Appendix A. 

 

The four types of data previously mentioned are reduced and either used directly to 

procure estimates used for analysis, or are used to compare to true values of queue 

length.  The following subsections are included in this section: 

 

• Queue Length Estimation Techniques 

• The Kalman Filter Applied to Queue Estimates. 

• Example Data 

• Statistics Utilized 

• Validation of the Improved QDA 

 

QUEUE LENGTH ESTIMATION TECHNIQUES 

A series of queue length estimation techniques were investigated by the researcher in 

order to create mathematical logic that produces the most accurate estimate of queue 
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length using measurement data from previous intervals.  Pseudo-code for each of the 

queue estimation techniques are described in Appendix B.  This section outlines the 

calibration portion of the data analysis.  This analysis consists of three techniques for 

producing the slope or rate of growth of a traffic queue.  The three methods are the 

incremental slope technique, moving slope technique and linear regression technique.  

These three methods are designed to produce the rate of growth based on previous 

measurements of queue length.  This rate of growth will then be used to produce a 

current estimate of queue length through the use of a Kalman Filter. 

 

For the determination of slope, the most current interval used for current queue 

estimation is the interval “k-1”.  This is due to the fact that it is not proper to use current 

measurements to produce a current estimate.  This is important when considering that 

these two current values (measurement and estimate at time “k”) will eventually be 

combined into one estimate using the Kalman Filter. 

 

Incremental Slope Technique 

The incremental slope technique utilized data from the previous two time steps relative 

to the current time step.  This technique calculated the slope, or rate of queue growth, 

based on the two previous intervals, then output this value of slope for the eventual use 

in a Kalman Filter.  The procedure presented in Equation 15 demonstrates the data 

requirements to predict the slope at each time step.   
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where 

        Qk-1 = Measured queue length from the previous time step, ft 

        Qk-2 = Measure queue length from two time periods before, ft 

        Tk-1 = Time at the previous time step, and 

        Tk-2 = Time at the time step two periods before. 

 

The inherent flaw with this method is that due to the fact that measurements are made to 

the nearest 50 ft, if a detector were to “drop” a queue detection (e.g., if a queue length 

was measured as 150 ft at time Tk-2, and at time Tk-1 the queue length was measured as 

100 ft), the slope would be negative.  This has the potential of introducing a large 

quantity of error.  However, the researcher believes that this method also holds some 

potential benefits, as this technique is adaptive.  This technique is able to account for 

periods of slow queue growth (where the slope is moderately positive) and where queue 

growth is rapid (where the slope is highly positive).  An illustration of the incremental 

slope technique is shown in Figure 10. 
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Figure 10 Incremental Slope Technique 
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Moving Slope Technique 

The second method involved the calculation of the slope of the rate of growth of a traffic 

queue as measured referenced from the beginning of the red phase.  This simplistic 

method required that two components be known.  The first component is the time 

interval.  It was important to obtain the time since the first polling interval during the red 

phase for a given cycle.  Next, the queue length corresponding to the first interval after 

the beginning of the red phase and the interval prior to the current interval had to be 

determined.  Together, these components could be combined by applying Equation 16.  

Equation 16 calculates the slope respective to the first time interval, t0 and its 

corresponding queue length, assumed to be 0 ft.  Notice in Equation 16 that the most 

recent time interval is shown as interval “k-1”.  This is because these values are for the 

previous interval time step, as it is desired to project estimates based on past 

measurements to the current time step.   
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where 

        Qk-1 = Measured queue length at time interval “k-1”, ft 

         Q0 = Measured queue length during the initial time interval, ft 

        Tk-1 = Time since the initial time interval at time T0, sec, and 

         T0 =Initial time, sec.  

 

An illustration of this technique can be seen in Figure 11.  During each time interval, the 

slope is recomputed with respect to the initial measurements, at time zero at the 

beginning of the red phase.  After the determination of the slope, this value is used 

within the Kalman Filter as a growth factor included in that calculation for the current 

interval “k”.   
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Figure 11 Moving Slope Technique 
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Linear Regression Technique 

The next method for queue estimation attempted by the researcher involved real-time 

linear regression analysis of measured queue lengths.  This method essentially took 

measured queue lengths recorded from previous intervals, and used these measurements 

to establish the rate of growth of the traffic queue.  Queue lengths were recorded every 

10 seconds.  If during the red phase, 60 seconds had elapsed since the beginning of the 

red phase, this would mean that approximately six polling intervals were recorded by the 

QDA.  The QDA would then take these six stored measurements and perform a linear 

regression analysis and would create a “best-fit” trendline corresponding to these points.  

The slope of this trendline would then serve as the growth rate to be implemented in the 

Kalman Filter.  The growth rate is recomputed every interval, hence, another linear 

regression would be carried out at 70 seconds, using 7 measurements of queue length.  

Figure 12 illustrates the linear regression method. 

 

The calculation of the linear regression best-fit line is recomputed during every polling 

interval (i.e., every 10 seconds).  During this time, an equation is generated using the 

linear trend of measured queue data that are stored within the QDA.  This equation is 

generated using simplistic statistical theory involving linear regression.  Least squares 

estimation is designed to minimize the sum of the squares of the deviation from the best-

fit line. Simple linear regression is often described as follows: 

 

 εββ ++= xY 10  (Equation 17) 

 

where 

      0β  = Intercept of the linear regression equation, 

1β  = Slope of the linear regression equation, 

        x = Current time analyzed by the QDA,  

       Y  = Estimated linear regression, queue length, ft, and 

 ε  = Describes the error in the fit of the model. 
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Figure 12 Linear Regression Technique 
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In Equation 17, the intercept, 0β and slope 1β , can be determined as follows in Equation 

18 and 19.   

 

 xy 10 ββ −=  (Equation 18) 
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where 

      ky  = Queue length measurement during timing interval “k”, ft, 

       kx  = Time of measurement during time interval “k”, sec, 

        n = Number of previous measurements prior to current estimate, 

       y  = Mean of previous queue measurements, ft, and 

       x  = Mean of the time of measurement of previous queue lengths. 

 

The construction of the linear regression equation is important for the understanding of 

the trends associated with queue data.  However, it is the slope of Equation 17, 1β , that is 

of particular interest.  The 1β  term provides a rate of growth that can be incorporated in 

the Kalman Filter to project the growth of estimates computed in the iterative 

calculations performed in that analysis.   

 

One problem does exist with this type of calculation.  When the second polling interval 

commences, or approximately 10-20 seconds after the initiation of the red phase, there 

only exists one data point from which to perform the linear regression analysis.  This 

results in a 1β value of zero.  No growth rate is produced during this iteration.  It is the 
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researcher’s experience however, that during the initial stages of the formation of a 

queue, queue lengths tend to relatively small.  When small queue lengths are present, 

detectors indicating 50 ft and 100 ft tend to be more accurate than those placed further 

from the queue.  Therefore, the measurements recorded during the initial intervals are 

the only variable input into the Kalman Filter besides the parameters describing the 

variance of input models.  It is believed that these measurements are accurate enough to 

be relied upon as the only means of determining queue length during the first interval, as 

queues are relatively small, and detectors placed at short distances from the stop line are 

likely reliable. 

 

THE KALMAN FILTER APPLIED TO QUEUE ESTIMATES 

The Kalman Filter process demonstrated in the Literature Review portion of this thesis 

illustrates the Kalman Filter in its purest form.  The filter is applicable to a number of 

applications, including applications where multiple equations are necessary to describe 

the state of a system.  The use of multiple equations is accounted for by the Kalman 

Filter’s matrix operations which ultimately lead to a current state estimate of a system.   

 

The process of estimating queue length described in the proceeding sections is 

accomplished by utilizing a single linear equation, whereby queue estimates are 

procured from previous queue measurements. Accordingly, the matrix operations 

accounted for in the theoretical description of the Kalman Filter drastically reduces.  The 

Kalman Filter described in the Literature Review reduces from a system of linear 

equations, best solved through linear algebra processes, to a system described by scalar 

equations (i.e., a system incorporating 1 x 1 matrices). 

 

The scalar Kalman Filter begins by obtaining values of Qk and Rk, which represent the 

covariance of the estimation error and measurement error respectively.  These values are 

obtained by taking offline measurements and estimates and comparing these values to 

baseline queue measurements.  The measurement and estimation error that are produced 
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are then statistically analyzed, and the standard deviation of each error term obtained.  

The error covariance with respect to the measurement error and estimation error are 

determined as follows (12): 

 

         =kQ ( ErrorEstimationσ )2    (Equation 20) 

 

                                               =kR ( ErrortMeasuremenσ )2    (Equation 21) 

 

where 

ErrorEstimationσ  = Standard deviation of the estimation error, ft, and 

ErrortMeasuremenσ  = Standard deviation of the measurement error, ft. 

 

The measurement error is obtained through offline measurements.  Offline calculations 

of the standard deviation of the measurement error were made for each method 

attempted.  Offline standard deviation calculations were made using measurement error 

readings for an approximate 15 minute period for all red phases within this time.  This 

time period was selected based on the researcher’s experience, as well as the fact that of 

the entire data set, approximately 15-20 minutes was not used for the calibration tests, 

leaving 15 minutes as the time that could be used to determine offline readings.  

Equation 22 illustrates how the error of measurements was calculated compared to 

baseline values and Equation 23 demonstrates how the standard deviation of the error 

terms was determined.   

 

 'kkk qqe −=  (Equation 22) 
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where 

     ke  = Measurement error at time “k”, ft, 

      qk = Baseline queue length at time “k”, ft, 

     qk’ = Measured queue length at time “ k”, ft, 

       e  = Average measurement error, ft, and 

       N = Number of observations.  

 

There are many methods for obtaining the estimation or process error covariance, 

denoted “Qk”.  Of these techniques, there exists an approximation method proposed by 

Welch and Bishop. According to Welch and Bishop, acceptable results can be obtained 

if one “injects” enough uncertainty into the process via the selection of “Qk”(14).  Welch 

and Bishop go onto to state that measurements must be relatively accurate in order for 

this type of approximation to yield desirable results.  Essentially, Welch and Bishop are 

making their assumptions based on previous knowledge of a process, and are relying 

upon measurements of the process to correct the estimation error they have selected. 

 

Due to the fact that in this experimental procedure, measurement data are far from ideal, 

offline estimates during an approximate 15 minute time period will be analyzed in order 

to produce the estimated error term, Qk.  This term was produced through offline 

estimation, assuming that the standard deviation of queue estimates is 50 ft.  As Welch 

and Bishop state in their description of the Kalman Filter, it is often common to begin 

the calibration of the error term Qk by assuming a reasonable value for this input (14).   

The 50 ft value is an assumed value and is believed to be reasonable as it reflects the 

distance between detectors and closely resembles the quantities obtained for the standard 

deviation of the measurement error (see Appendix D).  This offline estimation procedure 

was performed for each of the estimation techniques.  

 



  49 

The assumed value of 50 ft for estimation error was utilized in offline testing for the 

approximate 15 minute duration for each model.  The resulting estimates produced 

during the offline procedure were then compared to baseline queue values corresponding 

to the same time period of offline analysis.  The estimation error was calculated using 

Equation 24, and the corresponding standard deviation of the error was calculated as 

shown in Equation 25.  The standard deviation of the estimation error in Equation 25 

was used in Equation 20 to ultimately produce the estimation error (Qk)  associated with 

each estimation technique that was used in the remaining four hours of data analysis (see 

Appendix D). 

 

 kkk qqe ˆ−=  (Equation 24) 
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where 

      ke  = Estimation error at time “k”, ft, 

      qk = Baseline queue length at time “k”, ft, 

     kq̂  = Estimated queue length at time “k”, ft, 

       e  = Average estimation  error, ft, and 

       N = Number of observations.  

 

When the standard deviation was calculated with respect to estimates for all three linear 

queue models, all produced standard deviations between 40 ft and 70 ft (see Appendix 

D).  These standard deviation calculations result from the error produced when 

comparing estimates using different slope calculations (illustrated in the previous 

subsections) compared to baseline queue values for each time interval.   
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While “Qk” is allowed to be a dynamic value that updates every time interval “k”, the 

researcher has decided that “Qk” be a static value that does not update.  This decision 

was made due to the fact that a simple discrete Kalman Filter was utilized, and tuning 

“Qk” requires very detailed data that is impractical given that the use of eight detectors 

for measurement data already severely limits the accuracy of the Kalman Filter, and a 

high degree of variance is already experienced.    

 

Note that it is not necessary to compute the standard deviation of measurement error for 

each queue modeling method as the same measurement data were used in each trial (See 

Appendix D).  However, because different measurement data were used between 

calibration and validation, another standard deviation value was computed for validation. 

 

Once these values are determined, attention must be turned to the term Hk.  The matrix 

Hk was described in the Literature Review as the connection between the measurement 

and state vector at a specific time, tk.  For the estimation of queue length, the 

measurement of queue length has a direct relationship to that which is output from the 

current state equation.  Accordingly, this direct one-to-one ratio results in the following 

reduction associated with Equation 7 describing the observed measurement (see 

Equations 26 and 27 for reduction). 

 

 1=kH  (Equation26) 

 

 ( ) kkk vxz +×= 1  (Equation 27) 

 

In Figure 4, the Kalman Filter begins with the a priori estimate and the error term.  The 

terms 1ˆ −kx  and 1−kP  are both initially zero (see Equations 28 and 29). This simplifies the 

initial stages of the Kalman Filter process and results in the prediction portion of the 

filter to yield a perfect estimate, that is, the a priori estimate is assumed perfect, with no 

error associated with the measurement.  This seems logical, as during the beginning 
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seconds of the red interval, it is common for no vehicles to be queued.  While this 

assumption is highly dependant upon the definition of a queued vehicle, the researcher 

believes that for the purposes of establishing a reference point, the time at the beginning 

of the red phase where no vehicles are queued serves as a perfect estimate of queue 

length.  During this instance, the time is zero and the queue length is zero.  This 

assumption carries over for every iteration, until there is a non-zero measurement of 

queue length detected. 

 

 0ˆ0 =x  (Equation 28)

  

 00 =P  (Equation 29) 

 

Now that all of the parameters have been obtained, the recursive loop utilized by the 

Kalman Filter can begin.  Figure 4 shows that initially, the Kalman Filter begins by 

inserting the values 0x̂  and 0P . This allows for the evaluation of Equations 30 and 31.  

Recall that in the previous subsections of this section that the slopes of the three different 

models were calculated.  This value is now used.  The slope is inserted for the variable 

uk-1, or for the first iteration this value is u0.  The 1 x 1 matrix, B, is the time step, or in 

this case 10 seconds.  The quantity Buk-1 is an optional term provided in the Kalman 

Filter.  It is an optional control input intended to provide for the adaptation of an 

estimate from one time step to the next.  In this equation there will always be a direct 

relationship between the Kalman Filter estimate of queue length, and the time update 

(predicted estimate).  Therefore, the A term will be one. 

 

 001ˆ BuAxx +=−  (Equation 30) 

 

During the first iteration of the algorithm where there is a non-zero measurement of 

queue length, both the estimate from the previous time step, x0, and the slope, u0, are 

zero.  Furthermore, due to the fact that during the first instance where there is a non-zero 
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measurement of queue length the term P0 from the previous interval is zero, the error 

term, P1, is equal to the error covariance, Q, associated with the estimate error (Equation 

31). 

 

 QQPP =+=−
01  (Equation 31) 

 

During this time step and subsequent time steps, the equation for determining the 

Kalman gain in the corrector portion of the Kalman Filter significantly reduces.  
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 1
111 )( −−− +=� RPPK  (Equation 33) 

 

Similarly, the updated estimated output from the filter, kx̂  also reduces.  In this thesis, 

the variable z is representative of the measured queue length for the current time step. 

The equation for determining the Kalman Estimate of queue length reduces similar to 

that of the Kalman gain, as the H term is equal to one, and can be ignored. 

 

 ( )−− −+= 11111 ˆˆˆ xHzKxx  (Equation 34) 

 

 ( )−− −+=� 11111 ˆˆˆ xzKxx  (Equation 35) 

 

The last step of this initial iteration of the Kalman Filter concludes with the calculation 

of a new error covariance term, P1.  Notice that the “I” term reduces to a 1 x 1 identity 

matrix. This makes this scalar value equal to one. 

 

 ( ) −−= 111 PHKIP  (Equation 36) 
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 ( ) −−=� 111 PKIP  (Equation 37) 

 

This ends the initial iteration of the Kalman Filter.  Calculations can now begin for the 

second iteration, for time t2.  Once the initial iterations are complete, the recursive nature 

of the Kalman Filter becomes apparent.  Those estimates from the previous time step, t1 

are used in the new prediction portion of the Kalman Filter in the current time-step, t2 

(see Equations 38 and 39).  Hence, a new estimate of queue length, given by −
2x̂ , is 

produced based on the Kalman Filter output queue length from the previous time-step. 

 

 112 ˆˆ BuxAx +=−  (Equation 38) 

 

 QPP +=−
12  (Equation 39) 

 

Note that during this iteration, the estimate is not perfect, queue length and the 

corresponding error will not be zero during this or subsequent time-steps during the 

present red phase.   

 

The termination of the Kalman Filter occurs when the end of the red phase is 

acknowledged by the QDA.  The improvements to the QDA proposed in this thesis 

primarily deal with improvements to the estimation of queue length during the red phase, 

as this phase is mostly likely to accrue queued vehicles at a subject approach during any 

given time.  Accordingly, the researcher believes that the termination of the Kalman 

Filter at the end of the red phase is appropriate.  Any remaining queue during the early 

seconds of the green interval is accommodated by existing logic incorporated in the 

QDA, whereby a projection based on queue estimates, and queue growth rates recorded 

during the previous red phase models the arrival and eventual dissipation of vehicles.  

An accurate estimate of queue length during the red interval is necessary in order to 

produce these projections during green.  Furthermore, the calculation of delay discussed 
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in the Literature Review shows the dependence upon queue estimates.  These 

dependencies justify this research, and makes accurate estimate of queue length on red 

of utmost importance.   

 

EXAMPLE DATA 

Data that were analyzed during this thesis involved data collected under laboratory 

conditions.  Data output from the QDA in the laboratory setup resemble data presented 

in Table 2.  Two cycles worth of data are shown in this table.   Note that these data are 

merely sample data that illustrate output from the QDA.   The columns for Hours, 

Minutes, Seconds and Measured are all collected from the VIVDS hardware.  Data 

contained in the Estimated and KF Estimate column are determined through the 

estimation and analytical techniques presented in this section.  Data in these two 

columns are determined internally by the QDA.  The column containing Baseline queue 

lengths are used for comparison with estimates produced by the QDA. The complete 

description of how the QDA processes data is available in Appendix B.  Pseudo code for 

the QDA during the red phase is presented in this appendix. 
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Table 2 Example Data Processed by the QDA 

 Time Queue Length 
Clock Hours  Minutes Seconds Baseline  Measured Estimated KF Estimated 

14:35:30 14 35 30 0 0 0 0 
14:35:40 14 35 40 0 0 0 0 
14:35:50 14 35 50 0 0 0 0 
14:36:00 14 36 0 0 0 0 0 
14:36:10 14 36 10 5 0 0 0 
14:36:20 14 36 20 5 0 0 0 
14:36:30 14 36 30 5 0 0 0 
14:36:40 14 36 40 5 0 0 0 
14:36:50 14 36 50 28 100 100 100 
14:37:00 14 37 0 58 50 50 50 
14:37:10 14 37 10 58 50 0 26 
14:37:20 14 37 20 58 50 17 34 
14:37:30 14 37 30 138 100 25 65 
14:37:40 14 37 40 135 100 70 86 
14:37:50 14 37 50 135 100 90 95 
14:38:00 14 38 0 135 100 100 100 
14:38:10 14 38 10 170 200 105 155 
14:38:20 14 38 20 129 0 0 0 
14:38:30 14 38 30 0 0 0 0 
14:38:40 14 38 40 0 0 0 0 
14:38:50 14 38 50 0 0 0 0 
14:39:00 14 39 0 0 0 0 0 
14:39:10 14 39 10 61 50 50 50 
14:39:20 14 39 20 40 50 50 50 
14:39:30 14 39 30 62 50 50 50 
14:39:40 14 39 40 90 100 50 76 
14:39:50 14 39 50 118 150 100 126 
14:40:00 14 40 0 118 150 155 152 
14:40:10 14 40 10 115 150 177 163 
14:40:20 14 40 20 82 100 186 140 
14:40:30 14 40 30 40 0 0 0 
14:40:40 14 40 40 0 0 0 0 
14:40:50 14 40 50 0 0 0 0 
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STATISTICAL ANALYSIS 

A series of statistical analyses were performed on data generated by the QDA.  The 

generated data were compared using a number of mathematical techniques so that the 

accuracy and precision of QDA generated data compared to baseline data could be 

determined.  The first step towards determining the accuracy of the new QDA using 

linear models and a Kalman Filter involved determining the error of each observation 

compared to baseline queue lengths obtained from the cameras placed adjacent to the 

roadway.  A simple method for determining the error is accomplished by calculating the 

error for each time interval (see Equation 40). The researcher would desire to have as 

low of a value of error as possible for each time interval.   

 

 kki qqError ˆ−=  (Equation 40) 

 

where 

      kq  = Baseline (ground truth) queue length, ft, and 

      kq̂  = Estimated queue length from a linear model and Kalman Filter, ft. 

 

Statistical Analysis 

The first statistic computed was the average error of estimated queue length predictions. 

The average error of the estimated queue lengths is one of the most telling statistics due 

to the ability to see whether data are biased higher or lower than target (baseline) values.  

It would be desired to obtain average error values that are close to zero, as this would 

indicate that data are normally distributed about target values.  Average error was 

computed as shown in Equation 41. 
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where 

        e  = Average error, ft, and 

        n = number of observations in the data set. 

 

The absolute average error of the entire data set was computed using the calculated error 

from any one given interval, then dividing the sum of all of these absolute error terms by 

the number of observations.  While this statistic is simplistic, it is a valuable benchmark 

to be used in subsequent statistical analyses.  The intent of this calculation is to give a 

sense of the magnitude of the error expected for each time interval.  The mathematical 

representation for absolute average error is as follows: 
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where 

     abse  = Absolute average error, ft, and 

        n = number of observations in the data set. 

 

The third statistic used to compare the different modeling techniques involves the 

determination of the standard deviation of the error.  The standard deviation of the error 

allowed the researcher to have a better understanding of the spread of the data, as well as 

the range of accuracy of a particular technique.  Equations 43 and 44 show the procedure 

for determining the standard deviation of the error. 
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 2ss =  (Equation 44) 

 

where 

        s2 = Variance of the error of the data set, ft2, 

       ek = Error of an interval “k”, ft, 

       e  = Average error, ft, and  

         s = Standard deviation of the absolute error of the data set, ft. 

 

The next series of statistics will be comprised of commonly used analysis of variance 

(ANOVA) statistics. The first analysis of variance statistic will be the sum of the squared 

error of the prediction error.  The second will be the root mean squared error.  This 

ANOVA will be accomplished by using the following statistical procedure demonstrated 

by Equation 45 and Equation 46.  Equation 47 shows the calculation of the degrees of 

freedom. 
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where 

    SSE = Sum of the squared errors, ft2, 

      iq  = Baseline value of queue length, ft, and 

      iq̂  = QDA predicted value of queue length, ft. 
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      2−= ndf  (Equation 47) 
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where 

RMSE = Root mean squared error, ft, 

      df = Degrees of freedom, and 

        n = Number of total observations during analysis. 

 

The sum of the squared error is believed to give an overall picture of the quantity of 

error that is experienced when using a particular modeling technique.  The queue 

estimation method that produces the smallest quantity for the sum of the squared errors 

and root mean squared error will provide strong evidence for the implementation of that 

particular method in the QDA. 

 

Graphical Statistics 

This thesis will supplement the statistical analysis with graphical statistics to gauge the 

performance of the new QDA over the previous version.  The primary graphical statistic 

will be a predicted vs. actual queue plot of the Kalman Filter estimated data compared to 

the baseline data.  The predicted vs. actual queue plot is useful for determining if two 

data sets are of the same data distribution.  The predicted vs. actual queue plot will be 

setup such that Kalman Filter estimated values will be plotted on the horizontal axis, 

while baseline values are plotted on the vertical axis.  If the data are of the same 

distribution, a linear trend should be evident in the predicted vs. actual queue plot.  The 

researcher is primarily concerned with two values associated with these plots.  The first 

value is the coefficient of determination.  This value will explain how well the model is 

able to explain variance in actual observed (baseline) data.  The second is the resulting 

best-fit trendline equation.  The closer the slope of this equation is to “1”, and the closer 

the intercept value is to “0”, the lesser the amount of bias will be with respect to a 

particular queuing model. 

 

 The hypothesis for this graphical statistic would be that estimated queue length output 

form the new QDA would be of the same distribution as baseline queue length values.  



  60 

Therefore, a linear trend should be evident.  Alternatively, estimated queue length will 

not be of the same distribution as baseline data, and a non-linear trend would emerge 

from the predicted vs. actual queue plot.   

 

VALIDATION OF THE IMPROVED QDA 

Once the best method for queue estimation was determined, the resulting algorithm was 

used to reanalyze the video footage.  The new method for estimating queue length will 

be selected from one of the three methods described in the Queue Length Estimation 

Techniques subsection.  It was desired to select a method for estimating queue length 

that provides the lowest average error from baseline queue lengths, and demonstrates the 

least amount of variability.  Additionally, graphical data were used as a secondary 

consideration for selecting the best linear queue estimation model.   

 

The selected linear queue estimation model and associated Kalman Filter technique was 

then implemented in Microsoft Excel using a Visual Basic for Applications macro.  This 

application was executed similar to the application used to determine which linear model 

was best during calibration testing.  The selected queue estimation technique was then 

used to reanalyze the video footage from George Bush Drive and Wellborn Road.  Due 

to the difficulties of collecting queue data, and the requirements for also collecting 

baseline queue video footage, the same set of data were reanalyzed.  Despite the fact that 

the same data set was used for validation, there still exists some degree of randomness 

associated with the VIVDS hardware.  Due to the randomness presented by VIVDS 

hardware, it was decided to allow each algorithm to analyze the video footage five 

separate times.  During each of these five trial runs, each algorithm analyzed the video 

data from George Bush Drive and Wellborn Road for a four hour duration.  

Additionally, during each trial run, video data were allocated such that values for 

estimate and measurement error could be determined. 
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Once the best linear model application was executed and allowed to analyze the data set, 

results were produced using similar statistical methods used to produce results obtained 

during calibration.  During the validation proceedings, the best linear model was 

compared with results output from the previous QDA using the weighted average 

technique.  Results were compared by determining the average error of estimates, 

absolute average error of estimates, the standard deviation of the estimation error, the 

sum of squared errors, and the root mean squared error.  Graphical analyses consisting of 

predicted vs. actual queue plots were also used to evaluate queue models and techniques.  

These results should provide the researcher with enough evidence to support the 

implementation of one model over the other for estimating queue length during the red 

phase.  

 

Due to the methods used to calibrate the VIVDS hardware and the ways in which this 

hardware adapts to different lighting conditions and contrast features, no one 

experimental run will be identical.  The VIVDS hardware is adaptive, and factors too 

numerous to make any one experimental test identical.  Hence the need for algorithms 

for estimating queue length that are also adaptive and eliminate variability.  Therefore, 

some randomness is introduced into the validation tests that will make the validation 

tests independent of the calibration tests. 

 

The researcher realizes that the use of the same data set for calibration and validation 

procedures does introduce a problem.  However, due to time and budgetary constraints, 

collecting a new data set from a different intersection was not feasible.  The researcher 

would eventually like to obtain video data from a different intersection and validate 

queue estimation algorithms.   
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RESULTS 

 

The results presented in this section are based on the analyses described in the previous 

section.  Results were based on thorough evaluation of the three linear traffic queue 

modeling techniques, as well as the inclusion of a Kalman Filter applied to each 

technique.  Queuing models were analyzed and their results are presented in the 

following sections.  Not only will results be presented in this section, but their 

interpretation and impact to this research will be discussed.  Results will culminate in the 

determination of a definitive model for using VIVDS for quantitative queue length 

estimation, and should provide the best method for estimating queue length during the 

red interval of a traffic signal cycle. 

 

QUEUE LENGTH MEASUREMENT RESULTS 

The queue length measurement results are based on the raw measurements obtained 

from the detectors drawn and input to the VIVDS hardware.  These measurements are 

based on the output obtained from detectors oriented such as in Figure 9.  These 

measurements, rounded to the nearest 50 ft increment, were expected to show poor 

accuracy compared to results produced when a combination of these measurements and 

advanced mathematical techniques is used.  The distribution of the raw queue 

measurement data can be seen in Appendix C.  These data represent QDA measurement 

output for all phases during all signal cycles during the four hour analysis period.  Queue 

measurements were taken over an approximate four hour period every 10 seconds, 

resulting in 914 individual measurements of queue length during the red phase of all 

traffic signal cycles.  However, the measurement of queue length during the red phase is 

of particular interest to the researcher.  Figure 13 displays the distribution of queue 

measurements for red phases during the analysis period.  This distribution gives the 

researcher an idea of the traffic conditions experienced during the analysis period.  Also, 

this distribution should resemble baseline data distributions shown in Appendix C.   
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Figure 13 Histogram of Queue Length Measurements During Red Phase 
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These distributions are intended to give the researcher a graphical representation of the 

frequency with respect to detector activation, and to be able to qualitatively compare 

measurement detector activations to baseline queue length distributions during the 

analysis period. 

 

Notice that nearly 100 of the measurements are accounted for when the VIVDS system 

detected a queue length of “0 ft”.  These measurements are most probably during 

intervals where towards the beginning of the red phase, a queue has not begun to form.  

During this time period, the QDA will not be executed. Instead, until a queue is sensed 

by a detector, the QDA outputs a queue length of zero.  Also, when a queue was detected 

at the subject approach, measurements of 50 ft, 100 ft and 150 ft were most common.  

Measurements longer than 150 ft displayed a decreasing trend. 

 

COMPARISON OF LINEAR QUEUE MODELS 

The three linear queue modeling techniques each implementing a Kalman Filter for 

combining previous estimates of queue length with current measurements of queue 

length were analyzed.  The results of these experiments are described in this subsection.  

The results are broken in two parts.  The first part describes the calibration results, 

whereby the best linear queue modeling technique was determined.  The second part 

takes the best linear queue modeling technique, validates these results and compares 

them to the results of the previous QDA that used the weighted average method.  A 

discussion of all results is included at the end of this subsection. 

 

Statistical Analysis Results 

The primary statistics used for this analysis consist of the average error, absolute average 

error, the standard deviation of the error, the sum of the squared error, as well as the root 

mean squared error..  It was desired to produce an algorithm composed of one of the 

three modeling techniques plus Kalman Filter that produces results that minimize all 
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three statistical analyses.  While this analysis only examines models and techniques to be 

used during the red interval of a traffic signal cycle, the algorithm that minimizes these 

five statistics will provide the most reliable method for projecting traffic trends during 

the clearance intervals as well. 

 

Table 3 summarizes the results of the statistical analysis.  Of the three linear models, 

results indicate that the linear regression technique produced the lowest values for the 

average error, absolute average error, the standard deviation of the error, the sum of the 

squared error, and the root mean squared error.  Conversely, the incremental slope 

method yielded the highest values for these statistics.   

 

 

Table 3 Statistical Analysis of Results for Calibration of Models 

Statistic 
Incremental 

Slope 
Moving 
Slope 

Linear 
Regression 

Ave. Error, ft 11.292 9.003 7.666 
Abs Ave Error, ft  32.331 29.443 27.578 
Stdev. Error, ft 44.856 39.553 36.431 
Sum of Squared Error, ft2 1955689 1483684 1287219 
Root Mean Squared Error, ft 44.856 39.553 36.431 

 

 

Graphical Statistics Results 

Graphical statistics for the incremental slope method show results that do not match the 

accuracy of the other techniques analyzed.  A coefficient of determination value of 

approximately 73 percent is produced for the incremental slope method.  This coefficient 

of determination value is not particularly desirable, and is believed to be rather low 

compared to other estimation techniques.  The researcher will demonstrate in following 

subsections that in fact, the incremental slope technique performed the worst of the three 

models analyzed.  Hence, the implementation of the incremental slope method is not 

advised. 
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Notice in Figure 14 that results show data that are consistently dispersed vertically 

corresponding to specific queue estimates.  This trend is especially noticeable at 

distances of 50 ft, 100 ft and 150 ft on the horizontal axis (estimated queue length axis).  

This results due to the way in which this method computes the rate of growth of a queue.  

The method only utilizes data from the previous two intervals leading up the current 

measurement.  For example, if a detector is first turned on at a time “k-1,” and the 

measured queue length is 100 ft, then the estimate of queue length at time “k” is based 

on measurements from “k-2,” which may be 50 ft, and the measurement of 100 ft at “k-

1.”  The resulting slope is 50 ft divided by the 10 seconds separating these measurement 

intervals.  If these previous two measurements are used to calculate the growth of the 

queue length during the time separating them, equivalent to 10 seconds, this produces an 

estimate of queue length of 150 ft.  Considering that this scenario plays out numerous 

times in the data set, it is not surprising that only certain values of estimated queue 

length are possible depending on rate of growth of the queue, as well as the current 

measurement of queue length. 
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Figure 14 Predicted vs. Actual Queue Plot the Incremental Slope Technique 

 

 

This method of queue estimation is not recommended because only certain values of 

estimated queue length are possible using the incremental slope model.  The Kalman 

Filter does not correct the estimates, as the rates of growth calculated, as well as the 

current measurement, which are rounded to the nearest 50 ft, are not specific.  Patterns 

are formed whereby the same numbers are produced depending on patterns in previous 

estimates and current measurements.  Furthermore, drastic differences in queue 

measurements from one time step to the next can cause estimated queue lengths to be 

very large.  This contributes to much of the error experienced with this model, and is 

believed responsible for the rest of the analyzed queue growth models to noticeably 

outperform the incremental slope method. 
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Figure 15 shows the predicted vs. actual queue plot of the results for the implementation 

of a method that uses the moving slope technique.  The coefficient of determination, R2, 

can be interpreted as 80 percent of the queue estimate data can be explained by the 

model composed of the moving slope technique and Kalman Filter. 
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Figure 15 Predicted vs. Actual Queue Plot for the Moving Slope Technique 

 

 

The results presented in the statistical analysis as well as the predicted vs. actual queue 

plot shown in Figure 15 pertaining to the moving slope technique are a bit surprising to 

the researcher.  Data points between the initial and previous measurement were 

essentially not considered when making the estimation of the queue growth. Therefore it 

was believed that this model would not produce accurate results as the model only 

considered two data points when producing values for rate of growth (slope). Due to 

limited intervals considered in this analysis, it was believed that this could introduce 
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problems if an errant detection from the previous measurement occurred.  However, this 

situation was not evident based on these results.  Instead where these phenomena did 

occur, the Kalman Filter usually corrected these types of errant queue growth 

projections, and offset them with accurate measurements from the current interval. 

 

Besides noting which methods are most or least successful, it was important to note 

trends within the data pertaining to each linear queue model.  Notice that near the left 

side of Figure 15 there is a large stack of data running from the point of origin to just 

above 50 ft on the vertical axis.  These values represent values where the technique 

failed to make any estimate at all, when there in fact was a small queue present on the 

approach.  Some of these occurrences can be explained by the fact that when a short 

queue was present, vehicles may not have extended to the first detector (placed at the 25 

ft mark, but reported 50 ft).  This trend is believed to contribute a degree of error to not 

only this model, but for other models as well.  This trend is present in all models 

analyzed.  This contribution to the error is believed to be relatively minor, and is a 

definite limitation of the VIVDS technology and its capabilities for queue estimation. 

 

The last technique, the linear regression technique plus Kalman Filter, yields a slightly 

higher coefficient of determination value of 83 percent.  While this value may not appear 

to be significantly higher than the 80 percent value obtained for the moving slope 

method, it is important to keep in mind that this is a large sample set consisting of more 

than 900 instances.  The results for the linear regression technique can be seen in Figure 

16. 

 

A very definite linear trend is present in the data shown in Figure 16.  While some 

baseline values are seen to spike from the trendline, the researcher believes that this 

model provides the most accurate queue estimation model of the three new models 

proposed.  This is based on the statistical analysis, as well as graphical statistics 

illustrated through predicted vs. actual queue plots.  The estimates produced by this 
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technique take all previous measurements into consideration, unlike the moving slope 

and incremental slope techniques.  This method produces its rate of growth based on 

growth during the entire red phase, and produces a “best-fit” for determining the slope of 

queue growth.  The researcher believes this to be better in the sense that all trends are 

taken into consideration, and it is not as likely that one errant detection will send 

projected queue length estimates out of control before a Kalman Filter is applied.   
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Figure 16 Predicted vs. Actual Queue Plot for the Linear Regression Technique (Calibration) 

 

 

Therefore, it is the researcher’s recommendation that the linear regression technique and 

accompanying Kalman Filter be used to validate results using a different data set.  The 

results of this analysis are presented in the following subsection. 
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Validation of Results 

The validation procedure was carried out using the same data from George Bush Drive 

and Wellborn Road.  During this procedure, five trial runs were conducted with each 

trial run consisting of approximately four hours of video data and over 5500 intervals.  

Results pertaining to the statistics used in the validation process can be seen in Table 4.   

 

 

Table 4 Statistical Analysis for Validation of Models 

Statistic Weighted Average Linear Regression 
Ave. Error, ft 12.71 6.52 
Abs. Ave. Error, ft 22.22 21.86 

Stdev. Error, ft 36.63 36.60 
Sum of Squared Error, ft2 8800839 8097047 
Root Mean Squared Error, ft 44.69 46.59 

 

 

The results for the graphical statistics indicated similar results, whereby the linear 

regression method was observed to outperform the weighted average method.  The 

predicted vs. actual queue plot for QDA validation using the weighted average technique 

shown in Figure 17 indicates that the coefficient of determination, R2, is approximately 

0.8511.  This indicates a relatively good fit, and much of the variance can be described 

by this model.  However, the predicted vs. actual queue plot for the validation of data 

using the linear regression technique plus the application of a Kalman Filter shows 

slightly better results for this analysis.  This model results in an R2 value of 0.8574.  This 

indicates that the linear regression model and Kalman Filter provides a rather good 

system for producing queue estimates.  Most of the variance in the actual queue length 

can be described by the model, as is evident by the linear trend in Figure 18. 
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Figure 17 Predicted vs. Actual Queue Plot for the Weighted Average Technique 
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Figure 18 Predicted vs. Actual Queue Plot for the Linear Regression Technique (Validation) 

 

 

Discussion of Results 

The statistical analysis indicates that for any one given queue estimate that the linear 

regression technique plus Kalman Filter will provide the best estimate of queue lengths 

of the three queue estimation models investigated.  This is demonstrated by the fact that 

the statistical analysis produced results that were favorable for the linear regression 

technique compared to the remaining models.  Predicted vs. actual queue plots 

strengthen the conclusion that the linear regression technique was better by producing a 

larger coefficient of determination, whereby the linear regression model was better able 

to explain variations in queue length data. 
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The data indicate that the linear regression method slightly outperforms the weighted 

average method used in the previous QDA under the calibration tests.  This trend was 

confirmed, as when validation tests were conducted, the linear regression method was 

shown to outperform the weighted average method with respect to average error, 

absolute average error, standard deviation of the error, sum of squared error, and root 

mean squared error.  These statistics all demonstrate lower values for the linear 

regression technique with a Kalman Filter.  The average error was determined to be 6.52 

for the linear regression technique, as compared to the 12.71 for the weighted average 

method.  It would be desirable to obtain a technique that produces an average error close 

to zero.  This would indicate that a modeling technique would more adequately 

normalize the error about the actual queue length values.  Furthermore, the smaller 

magnitude of error (demonstrated by the absolute average error) and standard deviation 

of error terms were smaller for the linear regression technique.  This indicates that the 

linear regression method produces estimates that are less variable, and are able to better 

approximate actual queue length values.  The combination of the ability to construct a 

normal distribution with estimates that are closer to actual queue length values, and 

demonstrate less variance, support the relevance of the linear regression technique 

applied with a Kalman Filter. 

 

Similar trends were observed when comparing predicted vs. actual queue plots for the 

validation tests.  Both tests yielded high R2 values in the validation tests.  The linear 

regression method produced a value of 0.8574, compared to the 0.8511 demonstrated by 

the weighted average method.  It was the researcher’s goal to decipher a queue 

estimation method using VIVDS hardware and an algorithm that best describes the 

actual queue length at an approach, while capable of describing variances in actual 

queue length data.  A method capable of describing 85 percent of the variance of a data 

set provides strong support for the implementation of this method for VIVDS queue 

estimation.  Therefore, the researcher believes the linear regression method with a 
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Kalman Filter is a viable alternative to the weighted average method, and is capable of 

adequately estimating queue lengths. 

 

The Kalman Filter is an additional correction mechanism that is applied to queue 

estimates produced during each polling interval performed by the QDA.  It provides a 

system that controls the growth of the queue estimate.  The Kalman Filter is an 

intelligent means for merging current estimates of queue length and the current 

measurements provided by VIVDS.  While there are many ways to combine these two 

values using weighting factors and calibration procedures, the Kalman Filter minimizes 

the mean-squared error with little to no calibration (11, 14, 15).  The Kalman Filter 

minimizes the squared deviation between an estimator and the true value it is attempting 

to estimate (15).  The implementation of the Kalman Filter at the very least  provides a 

process for controlling queue growth trends, and combining queue estimates and 

measurements intelligently with the intent of minimizing error between estimated and 

actual baseline queue values. 

 

From examination of the data sets, the researcher believes that the application of the 

Kalman Filter, while useful for merging measurements and estimates of current queue 

length, does not directly influence accuracy.  This is noticed when seeing the obvious 

performance differences of the models (see Table 3).  The moving slope method is 

shown to outperform the incremental slope method, while the linear regression method is 

shown to outperform both of them.  Obviously, the Kalman Filter cannot be responsible 

for these improvements when comparing methods, as the Kalman Filter was applied to 

all three queue estimation methods. Instead, accurate queue estimation is heavily 

dependant upon the queue model used.  As shown by the statistical analysis and 

graphical statistics, there is a noticeable difference in performance between the linear 

queue models.   
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The three linear queue models are simplistic in their mathematical processes, and it can 

be argued that a more sophisticated model may provide a more accurate model for 

describing vehicle queuing.  This analysis had to assume linear queue growth, thus, this 

thesis assumed random arrivals.  A more complex queue estimation technique should 

incorporate more detectors with smaller graduations between detection zones.  This 

should allow for the utilization of a more complex queue growth model, as the smaller 

detector spacing will not cause as much initial error as detectors spaced at 50 ft 

introduces to the queue growth models.  The fact that there can only be a limited number 

of detectors applied to an approach severely limits the design of queue models.  A 

simplistic hardware setup requires a simplistic modeling approach supported by 

correction procedures that ensure that the model is under control.  The new QDA, using 

a linear regression model and a Kalman Filter accomplishes the stated objective, and 

minimizes noise with respect to queue estimation.  The QDA and use of the linear 

regression method is shown to minimize error to a surprising degree given that only 

eight detectors over a 400 foot analysis area were used.   
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CONCLUSION AND RECOMMENDATIONS 

 

Conclusions drawn from the results presented in this thesis are presented in this section 

as well as responses to stated objectives.  Additionally, recommendations are given with 

respect to considerations for future research and investigation, as well as for potentially 

application of the QDA. 

 

CONCLUSION 

Three linear queue estimation models were analyzed as the base of a new queue and 

delay estimation algorithm for estimating queue length during the red phase of a traffic 

signal on an approach.  Applied to each one of these linear queue estimation models was 

a Kalman Filter.  The filter was designed to minimize the mean squared error of 

estimates and to provide an intelligent method of combining current queue 

measurements that contained some degree of error, with queue estimates based on queue 

growth trends.   

 

The results of this research show that when the three linear queue models were tested, a 

model using a linear regression technique whereby a best-fit line of previous queue 

measurements was used to predict a queue growth rate.  The queue rate was then used in 

the Kalman Filter to optimize current queue estimates.   

 

When these results for the linear regression technique and Kalman Filter were compared 

to results produce using a weighted average technique applied in the previous version of 

the QDA, it was found that statistics produced very similar results, with the linear 

regression method slightly outperforming the weighted average technique.  Graphical 

statistics through the use of predicted vs. actual queue plots reveal the linear regression 

technique is better able to explain variances in queue length data, as well as 

demonstrating the ability to better normalize estimates about predicted values.  
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While the improvements are small when considering that the linear regression technique 

only slightly outperforms the weighted average technique, it must be considered that the 

linear regression technique and Kalman Filter requires no weighting factors and very 

little calibration to implement.  The new technique is adaptive in the sense that it seems 

to automatically correct itself using the Kalman Filter and does not allow estimates to 

get out of control.  It would be the researcher’s recommendation that this method be 

given consideration for future implementation in the QDA due to its adaptive nature, 

little calibration, and proven accuracy when estimating queue length. 

 

RECOMMENDATIONS 

The potential for using existing VIVDS technology and applying an algorithm that 

estimates queue length introduces an entirely new function for this technology.  The 

potential to use the QDA for estimating MOEs such as queue length and ultimately delay 

for adaptive control of a signal controller offers the traffic engineer one more tool that 

may improve the overall operation and safety of an intersection.  As such, the researcher 

has made recommendations that may aid the traffic engineer with implementing the 

QDA. 

 

Future Research and Development 

Many improvements and research should be conducted before the QDA should be relied 

upon for adaptive control of an intersection.  While the research conducted in this thesis 

is a valuable step towards producing accurate queue estimates, the researcher believes 

many steps are necessary before optimal estimates can be made.  Therefore, the 

researcher has made the following recommendations for future research and 

development: 
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• Multiple VIVDS systems should be tested for compatibility with the QDA.   

• A wider variety of intersections should be analyzed under both day and nighttime 

conditions. 

• A variety of traffic conditions should be analyzed, including situations where 

cycle failures are present. 

• Multiple cameras should be tested for situations where the queue length extends 

beyond the view of only one VIVDS camera. 

• The new QDA should be implemented in the previous QDA Visual Basic 6.0 

code.  The code for determining the queue length during the red phase using the 

weighted average method should be removed and the linear regression method 

and Kalman Filter method inserted. 

• The effects of cycle failure and the presence of an initial queue should also be 

tested using both the linear regression technique and weighted average technique.  

A video data set where cycle failure occurs would need to be obtained. 

• Video data for approaches where non-random arrivals occur should be analyzed.  

This could potentially nullify the assumption of linear queue growth used in this 

thesis. 

 

QDA Implementation 

The following recommendations should be taken into consideration by the traffic 

engineer when implementing the QDA, and the modeling techniques analyzed in this 

thesis for optimal results: 

 

• Due to the limited view of the VIVDS camera, the engineer should consider 

multiple cameras if queues are believed to consistently extend beyond what the 

VIVDS camera is able to reasonably detect. 

• Adequate lighting should be provided at the approach 
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• The VIVDS camera should be positioned such that lane occlusion is minimized.  

Ideally, the camera should be placed at the center of the approach such that 

multiple lanes of traffic can utilize queue detectors. 

• High-quality, high resolution VIVDS cameras should be used for queue detection 

if possible.   

• Investigate the accuracy of the QDA using more detectors spaced at increments 

less than 50 ft. 
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APPENDIX A 

Illustration of Queue Estimation Techniques Applied to the Kalman Filter 

 

 
Baseline data are then compared to the QDA Kalman Filter output of the estimated 

queue length. 

Detector Information from 
Autoscope “Rackvision” 

VIVDS system 

Measurement Data Interpreted by 
the QDA 

Estimate Queue Growth by 
Determining the Slope 

(Use 1 of the 3 proposed models) 
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Kalman Filter 

Kalman Filter 
Queue Estimate 

QDA 

Measurement Error 

Estimation Error 



  84 

APPENDIX B 

Visual Basic Pseudo Code for Queue Estimation including a Kalman Filter  

 

Moving Slope Method 
 
Initialize Variables: 
 
 Get offline measurement standard deviation (Meas_SD) 
 Get estimate standard deviation (Est_SD) 
 Set queue reporting period to 10 seconds (t_Rpt) 
 Set previous measurement of queue to 0 (Meas_queue_t_1) 
 Set Iteration to 1 (Iteration) 
 
Initialize Kalman Filter Variables: 
  

 Q = (Est_SD) ^ 2 
     R = (Meas_SD) ^ 2 
 
     Pk = 0 
     xk = 0 
  
QDA (For Red Phase Only When the First Detector is Activated): 
 
 Get Time 
 Get phaseStatus 
 
 If phaseStatus is Red 
  

Do Until phaseStatus is not Red 
 
  If  Iteration equals 1 

Get time_init 
Get queue_init 

    
QDA obtains the time and queue length for the interval before red 

  
Get Cur_queue_meas  

 
QDA gets current queue measurement 

    
B=0 
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uk=0 
zk=Cur_queue_meas 

    
Set initial Kalman Filter variables 

 
If Iteration does not equal 1 

Get time_prev 
Get queue_prev 
Get Cur_queue_mes 

 
Obtain the queue length and time interval of previous interval. Also 
obtain the current queue measurement 

  
Slope = (queue_prev-queue_init)/(time_prev-time_init) 
uk=Slope 
zk=Cur_queue_meas 

  End If 
 

 xk_ = xk + uk 
 Pk_ = Pk + Q 
 

Kalman Filter predictor portion calculation 
 
 Kk = Pk_ / (Pk_ + R) 
 xk = xk_ + Kk * (zk - xk_) 
 Pk = (1 - Kk) * Pk_ 
 

Kalman Filter corrector portion calculation 
   

Output current queue estimate (xk) 
Iteration = Iteration +1 

 
Loop 

 
 If phaseStatus is not Red 
 

Iteration =1  
Pk = 0 
xk = 0 
 
Reset Variables for next Red phase 
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Incremental Slope Method 

 
Initialize Variables: 
 
 Get offline measurement standard deviation (Meas_SD) 
 Get estimate standard deviation (Est_SD) 
 Set queue reporting period to 10 seconds (t_Rpt) 
 Set previous measurement of queue to 0 (Meas_queue_t_1) 
 Set Iteration to 1 (Iteration) 
 
Initialize Kalman Filter Variables: 
  

 Q = (Est_SD) ^ 2 
     R = (Meas_SD) ^ 2 
 
     Pk = 0 
     xk = 0 
  
QDA (For Red Phase Only When the First Detector is Activated): 
 
 Get Time 
 Get phaseStatus 
 
 If phaseStatus is Red 
  

Do Until phaseStatus is not Red 
 
  If  Iteration equals 1 
  

Get Cur_queue_meas  
 

QDA gets current queue measurement 
    

B=0 
uk=0 
zk=Cur_queue_meas 

    
Set initial Kalman Filter variables 

 
If Iteration does not equal 1 

Get queue_prev 
Get queue_prev_2 
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Get Cur_queue_meas 
 

Obtain the queue length and for the previous interval and two 
intervals before current interval.  Also obtain the current queue 
measurement 

  
Slope = (queue_prev-queue_prev_2)/(t_Rpt) 
uk=Slope 
zk=Cur_queue_meas 

  End If 
 

 xk_ = xk + uk 
 Pk_ = Pk + Q 
 

Kalman Filter predictor portion calculation 
 
 Kk = Pk_ / (Pk_ + R) 
 xk = xk_ + Kk * (zk - xk_) 
 Pk = (1 - Kk) * Pk_ 
 

Kalman Filter corrector portion calculation 
   

Output current queue estimate (xk) 
Iteration = Iteration +1 

 
Loop 

 
 If phaseStatus is not Red 
 

Iteration =1  
Pk = 0 
xk = 0 

 
Reset Variables for next Red phase 
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Linear Regression Method 
 

 
Initialize Variables: 
 
 Get offline measurement standard deviation (Meas_SD) 
 Get estimate standard deviation (Est_SD) 
 Set queue reporting period to 10 seconds (t_Rpt) 
 Set previous measurement of queue to 0 (Meas_queue_t_1) 
 Set Iteration to 1 (Iteration) 
 
Initialize Kalman Filter Variables: 
  

 Q = (Est_SD) ^ 2 
     R = (Meas_SD) ^ 2 
 
     Pk = 0 
     xk = 0 
 
Clear Linear Regression Input Variables: 
 
 Xi_sum = 0 
 Yi_sum = 0 
 Xi_2_sum = 0 
 XiYi_sum = 0 
 
QDA (For Red Phase Only When the First Detector is Activated) : 
 
 Get Time 
 Get phaseStatus 
 
 If phaseStatus is Red 
  

Do Until phaseStatus is not Red 
 

If  Iteration equals 1 
  

Get Cur_queue_meas 
Get queue_prev 
Get time_prev  

 
QDA gets Previous measurement of queue length, the previous time 
interval and current queue measurement 
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B=0 
uk=0 
zk=Cur_queue_meas 

    
Set initial Kalman Filter variables 

 
n=1 
 
Number of instances of queues and times collected.  This value is to 
be used for the summation during the linear regression calculation. 

 
If Iteration does not equal 1 

If n=1 then 
B1=0 
 
B1 Term to describe the initial slope of the linear regression 
calculation. 

 
Else  

B1 = (XiYi_sum - (Yi_sum * Xi_sum) / n) / (Xi_2_sum - 
(Xi_sum) ^ 2 / n) 

End If 
 
n=n+1 
  
Get Cur_queue_meas 
Get queue_prev 
Get time_prev 
 
QDA gets Previous measurement of queue length, the previous time 
interval and current queue measurement 
 
Slope = t_Rpt* B1 
 
uk=Slope 
zk=Cur_queue_meas 
 
Set Kalman Filter variables 

 
End If 
 
Xi = time_prev 
Yi = queue_prev 
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Xi_sum = Xi_sum + Xi 
Yi_sum = Yi_sum + Yi 
Xi_2 = (Xi) ^ 2 
Xi_2_sum = Xi_2_sum + Xi_2 
XiYi = Xi * Yi 
XiYi_sum = XiYi_sum + XiYi 
 
Linear regression procedure.  Notice for the first iteration, Xi_sum and 
Yi_sum were cleared at “0” at the beginning of the algorithm. 

 
 xk_ = xk + uk 
 Pk_ = Pk + Q 
 

Kalman Filter predictor portion calculation 
 
 Kk = Pk_ / (Pk_ + R) 
 xk = xk_ + Kk * (zk - xk_) 
 Pk = (1 - Kk) * Pk_ 
 

Kalman Filter corrector portion calculation 
   

Output current queue estimate (xk) 
Iteration = Iteration +1 

 
Loop 

 
 If phaseStatus is not Red 
 

Iteration =1  
Pk = 0 
xk = 0 

 
Reset Variables for next Red phase 
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APPENDIX C 

Baseline Data Distributions from the Calibration Data Set 

 

Table 5 Frequency Table for Baseline Queue Lengths 

Bin Frequency 
0 332 
50 217 
100 190 
150 225 
200 163 
250 87 
300 63 
350 26 
400 11 
450 14 
500 0 
550 0 

More 0 
Sum 1328 

 

 
Figure 19 Histogram of Baseline Queue Lengths 
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Measurement Data Distributions from the Calibration Data Set 

 

Table 6 Frequency Table for Queue Length Measurements 

Bin Frequency 
0 512 
50 222 
100 222 
150 185 
200 86 
250 43 
300 30 
350 23 
400 5 
450 0 
500 0 
550 0 

More 0 
Sum 1328 

 

 
Figure 20 Histogram of Queue Length Measurements 
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Baseline Data Distributions from the Calibration Data Set During Red Phases 

 

Table 7 Frequency Table for Baseline Data During Red Phases 

Bin Frequency 
0 3 
50 197 
100 176 
150 210 
200 156 
250 77 
300 55 
350 23 
400 8 
450 9 
500 0 
550 0 

More 0 
Sum 914 

 

 
Figure 21 Histogram of Baseline Queue Lengths During Red Phases 
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Measurement Data Distributions from the Calibration Data Set During Red Phases 

 

Table 8 Frequency Queue Length Measurements During Red Phases 

Bin Frequency 
0 96 
50 211 
100 188 
150 209 
200 102 
250 52 
300 36 
350 16 
400 3 
450 1 
500 0 
550 0 

More 0 
Sum 914 

 

 
Figure 22 Histogram of Measurement Queue Lengths During Red Phases 
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Baseline Data Distributions from the Validation Data Set 

 
Table 9 Frequency Table for Baseline Queue Lengths (Validation) 

Bin Frequency 
0 321 
50 191 
100 150 
150 149 
200 122 
250 93 
300 71 
350 60 
400 38 
450 22 
500 0 
550 0 

More 0 
SUM 1217 

 

 
Figure 23 Histogram of Baseline Queue Lengths (Validation) 
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Measurement Data Distributions from the Validation Data Set 

 

Table 10 Frequency Table for Queue Length Measurements (Validation) 

Bin Frequency 
0 351 
50 184 
100 138 
150 177 
200 77 
250 55 
300 52 
350 59 
400 88 
450 36 
500 0 
550 0 

More 0 
SUM 1217 

 

 
Figure 24 Histogram of Queue Length Measurements (Validation) 
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Baseline Data Distributions from the Validation Data Set During Red Phases 

 

Table 11 Frequency Table for Baseline Data During Red Phases (Validation) 

Bin Frequency 
0 12 
50 220 
100 146 
150 151 
200 112 
250 83 
300 70 
350 43 
400 21 
450 39 
500 0 
550 0 

More 0 
Sum 897 

 

 
Figure 25 Histogram of Baseline Queue Lengths During Red Phases (Validation) 
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Measurement Data Distributions from the Validation Data Set During Red Phases 

 
Table 12 Frequency Queue Length Measurements During Red Phases (Validation) 

Bin Frequency 
0 69 
50 171 
100 142 
150 169 
200 61 
250 67 
300 49 
350 59 
400 89 
450 21 
500 0 
550 0 

More 0 
Sum 897 

 

 
Figure 26 Histogram of Measurement Queue Lengths During Red Phases (Validation) 
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APPENDIX D 

Offline Standard Deviation Results for Measurement Error and Estimate Error 

 
Table 13 Standard Deviation of Error for Measurements (Offline) 

Standard Deviation, ft 
Calibration Validation 

85.866 45.667 
 

 
Table 14 Standard Deviation of Estimates During Calibration (Offline) 

Standard Deviation 

Incremental Slope Moving Slope Linear Regression 
(Calibration) 

Linear Regression 
(Validation) 

68.056 52.989 48.225 51.013 
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