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ABSTRACT 
 
 

A 3-D Capacitance Extraction Algorithm Based on Kernel 
 

Independent Hierarchical Method and Geometric Moments. (May 2006) 
 

Wei Zhuang, B.S., Xi’an JiaoTong University; 

M.S., Xi’an JiaoTong University 

Chair of Advisory Committee: Dr. Weiping Shi 

 

     A three dimensional (3-D) capacitance extraction algorithm based on a kernel 

independent hierarchical method and geometric moments is described. Several techniques 

are incorporated, which leads to a better overall performance for arbitrary interconnect 

systems. First, the new algorithm hierarchically partitions the bounding box of all 

interconnect panels to build the partition tree. Then it uses simple shapes to match the low 

order moments of the geometry of each box in the partition tree. Finally, with the help of a 

fast matrix-vector product, GMRES is used to solve the linear system. Experimental results 

show that our algorithm reduces the linear system’s size greatly and at the same time 

maintains a satisfying accuracy. Compared with FastCap, the running time of the new 

algorithm can be reduced more than a magnitude and the memory usage can be reduced 

more than thirty times. 
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CHAPTER I 

INTRODUCTION 

With rapid increase of device density, the parasitic capacitance associated with 

interconnection has become a very important factor in determining the performance of the 

final circuits. Besides,due to the progresses in MCM, high density packaging and PCB 

technologies, it’s necessary to accurately calculate the capacitance of complicated three-

dimensional (3-D) structures to ensure sufficient switching speeds or other desired 

functionalities. Two typical examples of complicated three-dimensional structures, for 

which capacitance strongly affects performance, are dynamic memory cells and the chip 

carriers commonly used in high-density packaging. All these reasons have increased 

interest in computationally efficient procedures for determining capacitances of general 

three-dimensional structures. 

The capacitance extraction is made tractable by assuming the conductors are ideal 

and embedded in a piecewise-constant dielectric medium. Then to compute the capacitance, 

Laplace’s equation is solved numerically over the charge-free region with the conductors 

providing boundary conditions 

( ) ( , ') ( ') '
R

r G r r r dφ ρ= ∫ r .                   (1) 

Hereφis the potential, R is the surfaces of the conductors, ρ is the surface charge density, 

dr’ is the incremental conductor surface area, and the integral equation kernel G is the 

Green’s function, which gives the potential for a unit charge. 

____________ 

This thesis follows the style of IEEE Transactions on Microwave Theory and Techniques. 
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The boundary element method (BEM) [1] is often used for solving the integral form 

Laplace equation. In this approach the surfaces of all conductors are broken into small 

panels and it is assumed that on each panel the charge density is a low-order polynomial. 

Enforcing the equation either at a set of collocation points or with a Galerkin scheme leads 

to a dense system. That is, the potential on each panel is computed by summing the 

contributions from all the panels using Green’s functions. In this way, a matrix of potential 

coefficients, P, relating the set of n panel potentials and the set of n panel charges is 

constructed. And we get a dense linear system 

Pq v=                          (2) 

,where q∈Rn is the vector of panel charges, and v∈Rn is the vector of panel potentials. 

By transferring the integral form Laplace’s equation into this linear system, we can 

compute the capacitance matrix of conductors. 

The capacitance of m-conductor geometry can be summarized by an m×m 

capacitance matrix C [3]. Each diagonal entry Cii is positive, representing the self-

capacitance of conductor i; Each non-diagonal entries Cij is negative, representing the 

coupling capacitance between conductors. To determine the jth row of C, we compute the 

surface charges on all conductors produced by raising conductor j to one volt while 

grounding other conductors. That is, for equation (2), the potentials of panels on conductor 

j are one volt and zero elsewhere. Knowing P and v, we can solve equation (2) to get q, 

which is the vector of panel charges. Summing the contained panels’ charges, we can get 

the surface charge of each conductor. To determine all the self and coupling capacitances 

of the m condcutors, the conductor surface charges must be computed m times, with m 

different sets of condcutor potentials. 
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  To solve (2), direct methods based on triangularization, such as Gaussian 

elimination and Cholesky factorization, require O(n3) operations. Iterative algorithms 

normally require O(n2) operations per iteration. These approaches are inefficient if the 

number of panels is large, and limits the size of the problem that can be analyzed to one 

with a few conductors. 

1.1 Outline 

The algorithms presented in this thesis makes good use of the best of FastCap, 

HiCap, and Nebula, which is efficient for arbitrary interconnect configurations. It uses the 

same method as FastCap to partition the bounding box and get the FMM hierarchical tree; 

and then it uses an error approximation scheme to truncate corresponding sub-trees, which 

contains far away parts for a certain selected conductor.  The final charges of all those tiles 

are calculated by GMRES [10] based on the leaf nodes of this truncated tree. Each iteration 

given the charges of all tiles, the potentials of these leaf nodes are computed and distributed 

to the contained tiles. 

In Chapter II we will introduce the previous work. In Chapter III, we will show the 

detailed new algorithm and the complexity analysis. First, we show the main idea; second, 

we show how to define the geometric moments, group the far away tiles, and truncate the 

FMM tree; Finally, we analyze the complexity which shows that our algorithm’s 

complexity is still O(n), where n is the number of partitioned tiles. In Chapter V, we present 

numerical results demonstrating the performance of the proposed method. 
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1.2  Previous Work 

People usually use Krylov iterative methods [10] to solve the linear system with 

various compression schemes for the required matrix-vector products. Several successful 

approaches to reducing the matrix-vector product computation time have been proposed.  

1.2.1  FastCap 

The FastCap algorithm [2] of Nabors and White has the complexity of O(n) where n 

is the number of partitioned sections in the system. It is based on the fast multipole method 

(FMM) for the n-body problem designed by Greengard and Rohklin [9]. The multipole 

method, developed by Greengard and Rokhlin, exploits the fact that with increasing 

distance the interaction between well separated sets of point sources, such as charges, may 

be lumped together. This reduce the computational complexity of finding the potential for a 

given source distribution to linear time in terms of number of point sources, but without 

exceeding a given error bound. The far field potentials are expressed in multipole 

expansions first, and then transferred into local expansions, finally added to the potentials 

of different panels. People can trade between accuracy and speed with different expansion 

orders. Figure 1 shows the flow of FastCap. It has two passes. One is upward pass, which is 

used to compute the multipole expansion for each box. The other one is downward pass, 

which is used to transfer the multipole expansion into local expansion. In the end, the local 

expansion is evaluated and added to the nearby potentials, which are computed directly. 
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Initialization 
Choose a number of levels so that there are, on average, s particles per box at the 

finest level. 

Upward Pass 

  Begin at the finest level, and create multipole expansions from the source points 
and strengths. The expansions for all boxes at all higher levels are then formed by the 
merging procedure. 

Downward Pass 

  From the coarsest level, we convert the multipole expansion into a local expansion 
about the centers of all boxes in its interaction list. 

 

  Finally, there is a local expansion in each box at each level. Beginning at the 
coarsest level, these local expansions are shifted to the children’s level and added to the 
children’s local expansions. After this recursive process reaches the finest level, a local 
expansion will have been created for each box, which describes the field due to all 
particles outside the box’s neighbors. In the end, this expansion is evaluated and the 
nearby interactions are computed directly. 

Fig. 1   FastCap algorithm. 

 

 

Unfortunately, multipole method assumes that we are dealing with point sources. 

Therefore, in order to accurately capture near field effects a fine subdivision of conductors 

is necessary, which increases the computation time although the complexity is still O(n) †. 

From the experiments of Nebula [8], we know there are strong charge density variations on 

the selected and nearby conductors, while   smooth variations on far away conductors. 

Besides, the charge density reduces quickly with the distance increasing from the selected 

conductor. So it’s unnecessary to subdivide far away conductors as fine as the selected 

conductor. In other words, it’s unnecessary to compute the potentials of far panels in such a 
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fine level, because the errors of these far panels will be far below those of panels on the 

selected or nearby conductors. We can group these far panels to trade unnecessary accuracy 

for faster computation. Besides, the multipole expansion is designed for the kernel 1/r, so 

FastCap is kernel dependent, which means it, is hard to be used in multilayer case. 

1.2.2  HiCap 

Hierarchical refinement is another method to deal with the same class of problems 

to which parasitic extraction belongs, that is, the solution of Fredholm-type integral 

equation. This approach has been successfully applied to computationally expensive 

problems in physics and in computer graphics. Shi applied this approach to capacitance 

extraction in 1998 [3], where a set of conductors are given and the appropriate non-uniform 

sectioning is found by recursively subdividing the surfaces until the partition error drops 

below a given limit. The partition error is approximated by an error predictor function, 

which suggests that this error depends only on the potential matrix element between the 

two interacting sections and on their sizes. Applying the refinement procedure to a pair of 

panels will lead to a hierarchical partition tree for each panel, and each part of the panels is 

guaranteed to interact on a level as high as possible. If a set of N conductors are to be 

subdivided, the recursive procedure must be applied to each pair of conductors, leading to 

O(N2) time complexity for the data structure construction.  

An example is shown in Figures 2 and 3. Two conductors A and B are partitioned 

according to the estimate of the potential coefficient. Figure (e) shows the final partition. 

We can see from it that the nearby parts of the two conductors are partitioned to a fine level, 

while the remote parts are partitioned to a coarse level. So HiCap in some meaning trades 

the unnecessary accuracy in far away parts for small problem size. The interaction matrix is 
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stored hierarchically which is shown in figure 3. The panels are stored as nodes in the tree 

and the coefficients are stored as links. 

 
Fig. 2   Partition the conductor surfaces into panels. 

 

 

 
Fig. 3   Potential coefficients stored as links. 

 

 

between nodes. The value of each coefficient is stored as a floating-point number 

associated with each link. Each tree represents one conductor surface, each non-leaf node 
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represents one panel further subdivided, and each leaf node represents one panel not further 

subdivided. The union of all the leaf nodes completely covers the surfaces of the 

conductors.     

Hierarchical refinement works well in some cases, while detailed analysis shows 

that refinement does not maintain O(N) † complexity for systems where the average 

segment size is much smaller than the overall system size, such as for typical on-chip 

interconnect systems [7]. For these systems, if the accuracy requirements are chosen 

reasonably, the hierarchical refinement procedure will not lead to any refinement since 

most conductor pairs are far apart enough. 

   Analyzing the recursive refinement procedure of HiCap, which is used to subdivide 

large panels, we can see it decides whether to subdivide the larger one of two panels by 

judging whether the potential coefficient of these two panels is below a given precision 

limit. So HiCap subdivides the conductors according to the mutual potential coefficients 

between conductors, which are determined by the relative positions. This is different from 

FastCap, which partitions the conductors only by the geometry of each conductor. 

Experimental results show that in most cases HiCap is faster than FastCap because its 

partition of surfaces considers the potential coefficients’ accuracy, which trades some 

unnecessary accuracy for speed. But it still has some shortcomings. 

The first one is in refinement procedure HiCap considers the mutual potential 

coefficients very well, but forgets the self ones. When conductors are close to each other, 

this will not cause problems. But when some conductors are very far from the others, this 

will not lead to good partition on those far away conductors. See the following example 

______________ 

†   N is the number of original segments in the system. 
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shown in figure 4, conductors 1 and 2 are very close to each other but 3 are very far from 1 

and 2. HiCap will subdivide conductors 1 and 2 to a very fine level because they are very  

close and the potential coefficients of panels between them are large. For conductor3, 

HiCap even won’t subdivide it because it is very far from other conductors, and the mutual 

potential coefficients between it and other conductors are very small. If conductor3 is not 

subdivided, when computing the capacitance column corresponding to it we will get a large 

error, especially for the self-capacitance of conductor3. If we want to subdivide conductor 

3, we need to set a very small peps, but this will also subdivide conductors 1 and 2 to an 

unnecessary fine level, which causes the problem size very large. 

    The second shortcoming is the subdivision of HiCap usually causes unnecessary 

partition of conductors. Let’s still see the set of conductors in figure5. When we compute 

the capacitance column corresponding to conductor3, there is a strong charge variation on 

conductor3 while a smooth and small charge variation on conductor 1 and 2. So we should 

use a fine partition level on conductor3 while a coarse level on 1 and 2 to get enough 

accuracy. But the HiCap gives an opposite partition. The reason is that the partition of 

HiCap only considers the mutual potential coefficient without considering the charge 

distribution. We know the potential caused by a point charge in distance r is 

                    v = q / (4πε · r)   (3) 

Where q is the charge of the source and r is the distance from the source. So the potential is 

determined by not only distance by also charge. Only considering the distance of course 

will introduce errors and cause unnecessary problems size in some cases. 



10 

1 

2 

3 
D1 

D2 

Notes: D1>>D2 

 
Fig. 4   A set of three conductors. 

 

 

1.2.3  Nebula 

    Kapur and David proposed another approach [8], which uses a representation for 

charge distribution that decouples the charge variation from geometry. They turned it into a 

commercial software called Nebula and claimed it’s efficient enough to compute the full 

capacitance matrix of typical interconnect problems with thousands of nets in a few hours. 

The key idea of Nebula is to use a new representation for charge distributions that 

decouples charge variation from conductor geometry, which significantly reduces the 

problem size compared to a traditional partition and results in a large speed improvement. 

Nebula comes from the observation that there is a strong variation in the charge on the 

selected conductor while a smooth variation on the far conductors, and the partition of 

previous methods, such as, FMM, IES3, HiCap, tends to be dictated by the problem 

geometry rather than by the charge variation. Nebula decouples the charge variation from 

geometry, which allows it to capture the smoothly varying parts with only a few numbers 

regardless of how complex the geometry is. This reduces the problem size and computation 

time greatly. In Nebula, the charge density, geometry, and potential distribution are 

described by expansions based on Legendre polynomials. 
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The following figure shows the main flow of Nebula algorithm. 
 
 

 
Initialization 

For a certain selected conductor, recursively subdivide the space containing the full 
geometry into boxes to isolate the selected conductor and any nets in its immediate 
neighborhood. In boxes containing the selected conductor and in adjacent boxes, it uses a 
traditional Galerkin discretization.  

 
Upward Pass 

For each Nebula box, it calculates moments of the geometry and forms the matrix PR, 
which can be used to find the product of charge and geometry expansions according to PR * 
f, where f is the charge expansion of the box. 

 
Fast Matrix-Vector Product 

It uses a similar scheme to FMM to compute the matrix-vector product, which is 
called FDM. It uses an upward pass to find the charge distribution of each box. Then it uses 
a downward pass to find the box-to-box interactions throughout the tree. Finally, it 
interpolates the potential distributions downward to the leaves. The interactions between 
pair of tiles for the part of the problem done with a traditional discretization are done 
directly. 

 
After the final charge expansions are got for each box, integrating the charge on each 

conductor gives the capacitance column. 
Fig. 5   Nebula algorithm. 

 
 

Our experiments also show that, if replace a geometry with an approximated one 

which has the same 0th, 1st, and 2nd geometric moments, the error from approximating the 

geometry decreases exponentially beyond a distance proportional to the size of the 

geometry. Normally, the error is <1% in all directions at the distance equal to the size of the 

geometry. The error in the near domain is not small, but we know the charge density is very 

small in far away parts, and this geometry approximation is only used on these far away 

parts, so the final total error will not exceed required accuracy limit. 
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Nebula is superior in the case of huge size problems, but suffers from re-

partitioning and re-computing geometric moments for every selected conductor in the case 

of medium and small size problems. Besides, the computations of geometric moments are 

done by integration with the basis of Legendre polynomials, which takes much time. 

1.2.4  Others 

There also exist other efficient algorithms that are not based on the n-body problem, 

such as pre-corrected fast Fourier transform (FFT) [4] algorithm of Phillips and White, and 

the singular values decomposition (SVD) algorithm [5] of Kapur, both of which have the 

complexity of O(nlogn). Le Coz and Iverson proposed a Monte Carlo algorithm [6] and 

successfully turned it into the popular commercial software QuickCap. Beattie and Pileggi 

combined the FMM with the hierarchical refinement method [7] to improve the speed 

further. 
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CHAPTER II 

NEW ALGORITHM 

Our algorithm gets the idea from FastCap, Nebula and HiCap, that is, we use a 

kernel independent multipole method with geometric moments and hierarchical 

refinement to speed up the matrix-vector computation time.  

Analyzing the FastCap, we know in order to accurately capture near field effects 

between adjacent conductors, a very fine subdivision of conductors is used for all 

conductors, which increases the computation time. Of course, the complexity is still O(n), 

but n is much large that the total increase greatly. From the experiments of Nebula, we 

know the charge density only has a strong variation on selected and nearby conductors, 

while a smooth variation on far away conductors. Besides, the charge density value and 

variation reduce quickly with the increase of distance from the selected conductor. An 

example is shown in Figure 6. There are three 2-D conductors (plates) in the space, which 

are shown in (a); we need to compute the capacitance matrix, which is a 3x3 matrix. 

Figure (b) and (c) show the charge density distributions on conductor1 and conductor2 

when we compute the column corresponding to conductor1. We can see there is a strong 

charge density variation on conductor1 especially on edges, while the charge variation on 

conductor2 is smooth and small. The average charge density on conductor1 is more than 

10 times of that one on conductor2. 

Because the charge density on far away conductors is small and smooth, if we use 

the same fine subdivision for these conductors, the error will be so far below than those 

on selected conductors. Here comes our idea that we can use a coarser subdivision on 

these far conductors to reduce the size of system in order to trade unnecessary accuracy 
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for faster computation. 

 

 

 
(a) 

 

 
 

Fig. 6   The charge density variation is strong on selected conductor and weak on far 
conductors. (a) 3 square conductors are in the space, we compute the capacitance column 
corresponding to conductor1, which is located in the left bottom. (b) The charge variation 
on conductor 1. (c) The charge variation on conductor 2(the middle one). 
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                                             (b) 

 

 

 
                                           (c) 

Fig. 6   continued. 
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In Nebula, for different selected conductors, it repartitions the space containing the 

full geometry. In the boxes containing the selected conductor and in adjacent boxes, it uses 

a traditional Galerkin partition. With the distance increasing from the selected conductor, 

the geometry is partitioned into larger and larger boxes. These boxes are called Nebula 

boxes, then for each box it calculates the moments of the geometry and form the matrix PR, 

which can be used to compute the product of geometry and charge variation through PR * f, 

where PR is the linear transformation matrix and the f is the charge variation polynomial. A 

modified GMRES [10] is used to find the distribution that results in a potential of one volt 

on the selected conductor and zero volts elsewhere.  Finally, integrating the charge density 

on each conductor gives the column of the capacitance matrix corresponding to the selected 

net. Nebula has several shortcomings:  (1) For each selected conductor, it needs to 

repartition the space and re-compute the geometric moments for each box and this 

computation is a integration based on the Legendre polynomials which needs much time; (2) 

For those tiles partitioned from the selected and nearby conductors, potentials are computed 

directly. This needs about one-half to one-third of the total time in Nebula. (3) After Nebula 

gets the final moments of the charge density for each box, it still needs to integrate the 

charge density to get the charge. For higher order moments, this still takes time.                                               

Analyzing FastCap and Nebula, we can develop a new algorithm based on FMM 

which can overcome the shortcomings of Nebula. That is, with the new algorithm, we don’t 

need to rediscretize the space and re-compute the geometric moments for each box for 

different selected conductors and can speed up the computation for tiles discretized by the 

traditional method. For the purpose of speeding up the computation for nearby tiles, the 

FMM can solve this and the accuracy can be controlled with some scheme, such as 
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changing the distance to interact for high level boxes. For the purpose of avoiding 

recomputing the geometric moments for each Nebula box, we need to find a new scheme. 

Analyzing the FMM structure, we find we can use the FMM tree to find the final structure 

for different selected conductors. We can go from the bottom level to the top, and compute 

the new geometry information for each box from low level boxes. After that, we can find 

the geometry information for all boxes in the tree. And then, for a certain selected 

conductor, we use some scheme to decide which level the far away parts should be used to 

compute the potential to get a truncated tree which has a similar structure to the one of 

Nebula. The benefit of this scheme is that for the whole geometry, we only need to compute 

geometric information for the FMM tree one time which can save much time. Besides, in 

FMM for all those tiles, we get the charge of each tile directly in the end. So to find the 

charges of all conductors, we do not need to integrate by moments but adding the contained 

tiles’ charges. In a word, use the FMM structure; we can solve the typical three problems of 

Nebula. The left problems are how to define geometric information and how to truncate the 

FMM tree to approximate the far away parts. 

2.1 Shape Approximation 

Nebula uses moments based on Legendre polynomials to express the geometric 

information; we use shape to approximate the geometry. One benefit of shape 

approximation is that it is much easy to implement in FMM tree, and the other benefit is 

that we have closed forms to commpute the moments based on the shapes unlike Nebula 

needs to do integration . The idea of shape approximation is that for an original geometry, 

we replace it with a new shape which has the same specified p-th order geometric moments. 

In FastCap, the interaction of two well seperated boxed are done by multipole expansion. 
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While in our algorithm, the interaction of two well-seperated boxes are computed 

according to the approximate shapes.  

Now, we need to find the way to approximate the geometric moments. The two-

dimensional geometric moment of order p+q of a function f (x, y) is defined as 

2 2

1 1
( , )

a b p q
pq a b

M x y f x y dxdy= ∫ ∫                    (4) 

 
, where p ,q = 0,1,2,…,∞. Note that the monomial product p qx y  is the basis function for 

this moment definition. A set of n moments consists of all M pq for   p + q ≤ n , i.e., the set 

contains (n+1)*(n+2)/2 elements. For example, the 2nd order moments are M00, M01, M10, 

M11, M20, M02. For a geometry, if we define f(x,y) = 0 on the surface and 0 elsewhere, 

according to equation (4), it’s easy for us to find the physical meaning of low order 

geometric moments. 
2 2

00 1 1
( 2 1)*( 2 1)

a b

a b
M dxdy a a b b= = −∫ ∫ −  is the area of the surface, 

2 2 2 2

10 011 1 1 1
,

a b a b

a b a b
M xdxdy M ydxdy= =∫ ∫ ∫ ∫  are the gravity center, and 

2 2 2 2 2 22
11 02 201 1 1 1 1 1

, ,
a b a b a b

a b a b a b

2M xydxdy M y dxdy M x dxdy= = =∫ ∫ ∫ ∫ ∫ ∫  are the area distribution 

directions. Based on this observation, we design the shceme to approxiamate the geometry 

with a shape matching the low order geometric moments. Our experiments show that 

approximating the low order moments up to 2nd is accurate enough, but in general higher 

order moments are supported by the same scheme.  

     For each box in the FMM tree, it contains many partitioned tiles. For the purpose of 

approximating the low 2nd order moments we use a rectangle. A centered rectangle can not 

be used to approximate the 2nd moment Mxy because the Mxy of a symmetric rectangle is 

always 0, but the experimental result show that approximating the geometry with the other 
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five moments are accurate enough. To approximate the zero order geometric moments, 

which is in fact area, we let the area of the rectangle equal to the total area of all contained 

tiles; to approximate the 1st order, we locate the rectangle’s center at the gravity center; 

finally, to approximate the Mxx and Myy, we need to determine the horizontal and vertical 

edge lengths. We know for a rectangle show in figure 7, according to equation (4), 
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Fig. 7   A rectangle located at the origin. 
 
 
 

M00 = 4AB; Mx0 = M0y = 0; M xx = 4*A3*B/3; M yy = 4*B3*A/3, and we can get  
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= ⋅                                      (5) 
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= ⋅                                       (6) 

 
Based on (5) and (6), we can determine the horizontal and vertical edge lengths of the 

approximated rectangle to match Mxx and Myy. But it’s not hard to see, there are only two 

parameters of the rectangle: A and B, so a rectangle cannot be used to match M00, Mxx, Myy. 

What we do is to match Mxx, Myy. The reason why we use a rectangle to approximate the 

geometry is that we have simple closed forms to compute the potential coefficients for 

these rectangles which are easy to implement and time saving. Figure 8 briefly shows the 

idea of computing the interaction between two well-separated boxes by multipole 
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expansion of FMM and shape approximation of our algorithm. The benefit of this scheme 

is that it is much easy to implement by a hierarchical scheme and it does not need to 

compute any integration, which saves much time. 

 

 
Fig. 8   Use low order geometric moments to compute potential. 

 
 
 
 

Now, we explain in detail how we find these 2nd order geometric moments of each 

box in the FMM tree. For zero order geometric moments, we need to find the total area. 

Because we partition the geometry into uniform quad lateral squares, to find the total area 

we only need to know the number of contained tiles. 

For the bottom box, we just find the number of contained tiles. For boxes at higher 

levels this number can be found by adding up those of its children. For the gravity center of 

a bottom box, we find the averages of x and y coordinates of all contained tiles, which are 

in fact the gravity center’s coordinates. For the boxes at higher levels the gravity center’s 

position can be found based on the gravity centers and numbers of tiles of its children. For 

example, for a high-level box m, it has four children boxes 1, 2 3, and 4. And the gravity 

centers’ coordinates and numbers of tiles of these children boxes are n1, (x1, y1), n2, (x2, 

y2), n3, (x3, y3) and n4, (x4, y4) respectively. Then the gravity center of box m can be 
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found by 

    1 1 2 2 3 4 4 4
1 2 3 4m

n x n x n x n xx
n n n n

× + × + × + ×
=

+ + +
    (7) 

 
1 1 2 2 3 4 4 4

1 2 3 4m
n y n y n y n yy

n n n n
× + × + × + ×

=
+ + +

    (8) 

 
To approximate the second geometric moments we need to find the Mxx and Myy 

of each box. For a bottom box, it contains tiles, which are uniform lateral squares. 

According to equation (5) and (6), we know for a square (A =B) located at the origin, Mxx 

= Myy = 4*A4/3. For a square which is not located at the origin shown in figure 9, 
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Fig. 9   An equal lateral square located at (x0, y0). 

 
 
 

We can compute the Mxx and Myy by  
 

0 0

0 0

/ 2 / 2
2 3

0 0
/ 2 / 2

( / 2) ( / 2)
3

x h y h

xx
x h y h

hM x dxdy x h x h
+ +

− −

3⎡ ⎤= = ⋅ + − −⎣ ⎦∫ ∫     (9) 

 
0 0
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/ 2 / 2
2 3

0 0
/ 2 / 2

( / 2) ( / 2)
3

x h y h

yy
x h y h

hM y dxdy y h y h
+ +

− −

3⎡ ⎤= = ⋅ + − −⎣ ⎦∫ ∫  . (10) 

 
For each tile contained in the bottom box, we compute the Mxx and Myy. Add up these 

values for all these tiles we get the Mxx and Myy of the bottom box. 

    For boxes at all coarser levels, we need to shift the Mxx and Myy of its children 

boxes to its center. See the rectangle in figure 10, which is not located at the origin, we can 
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compute the Mxx and Myy by  
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Fig. 10   A rectangle located at (x0, y0). 
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x
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hM y dxdy y hy y h
++

− −

3⎡ ⎤= = ⋅ + − −⎣ ⎦∫ ∫    (12) 

 
In 2-D case, a coarser level box has four such children boxes. For each of these children 

boxes, computing the Mxx and Myy and adding them up we get the Mxx and Myy of the 

box, with which we can determine the horizontal and vertical edge lengths of it according 

to equations (5) and (6). 

    First, we use a rectangle located at the gravity center to match the 2nd moments set 

including Mx0, My0, Mxx, Myy. Experimental results show that matching above four moments 

already gives accurate enough results as long as the designer sets a reasonable partition 

depth of the hierarchical tree and precision limit. 

To match M00, we use a different scheme. We put four squares with the area of 

M00/4 along x,y axis symmetrically. See figure 11, all these four squares are put on the axis 

with the distance from origin A and B respectively. Mxx, Myy determine the values of A 

and B.
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Notes: The area of each square is M00 /4.  
 

Fig. 11   Use four squares to match five moments. 
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If we put the gravity center of these four squares at the gravity center of a box in the 

hierarchical tree, we can use these four squares to match M0x, M0y. The M00 is already 

matched because the total areas of these four squares are M00. And according to equations 

(14) and (15) we can set reasonable A and B to match Mxx, Myy by equations (16) and (17). 

Experimental results show that the accuracy improvement of this scheme compared with the 

rectangle scheme is very small, while the time increases much. 

3 3
2 2

2 200 00
00 00

00

5( ) 2 (
4 4 96

)xx
M M M M M

A
M

− + − ⋅ −
=       (16) 
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3 3
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5( ) 2 (
4 4 96 yy
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− + − ⋅ −
=

)
       (17) 

 
     To match geometric moments higher that 2nd, a more complicated shape is needed. 

For example, we can use a cross, which is located at the gravity center. Figure 12 shows 

how to approximate the geometry with 0th and 1st geometric moments and the idea to 

approximate higher order ones.  

 

Fig. 12   Shape approximation of 1st and higher order. 

 
 
2.2 Grouping Far Away Parts 

To group the far away parts, what we do is to traverse the FMM tree from top to 

bottom, and check whether the boxes separated from the ones containing selected 

conductors are far enough, if so, we record it as a leaf node of the truncated FMM tree. And 

then, when we compute the potentials of downward tiles, we do not go down but just take 

them as a whole conductor (approximated rectangle described in the previous section). 

After we get the potential of this conductor, we distribute this value to all contained tiles, 

that is, all contained tiles have the same potential of the approximated conductor. By doing 
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this, the problem size will be reduced greatly and experimental results show that this 

approximation will not affect the converge speed of the iterative method. For example, 

there are totally three squares and they are partitioned into 300 square tiles in testcase3.lst, 

which is shown in Figure 6 (a). For FMM, no matter which conductor is selected, the 

problem size is 300×300; the compression comes from mutipole approximation. While in 

our algorithm, the problem size is reduced greatly, and this contributes much saving on 

time and memory. For example, when conductor 1 is selected to compute the capacitance 

column, conductor 2 will be taken as four rectangles each of which represents 25 bottom 

tiles, and conductor 3 is taken as one rectangle, which represents contained 100 bottom 

tiles. Figure 13 shows the final approximation for conductor 1 selection, after the 

approximation, the problem size is reduced from 300×300 to 105×105. 

 
 

 

1 

2 

3 

25 tiles are 
taken as one 

100 tiles are 
taken as one 

Notes: When conductor 1 is 
selected, the problem size is 
reduced from 300x300 to 
105x105. 

 
 
 
 
 
 
 
 
 

Fig. 13   Final partition panels of above problem. 
 
 

 
Figure 14 briefly shows the idea of grouping far away parts. We can see from this 

graph that the further the far parts away from the selected conductor, the higher level the 

boxes will be. In other words, the further the larger approximation will be used. Notice for 

the real FMM algorithm, the tree is not a binary tree but a quad tree in 2-D case or an octal 

tree in 3-D case. Finally, we use these leaf nodes and bottom tiles on selected and nearby 
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conductors to compute the potentials. Of course, there exist potential variations on these 

tiles. But we know the charge density variation and value are very small on these tiles such 

as those shown in figure 7, so the potential variations are also small. Thus, assuming the 

potential is uniform on these tiles is reasonable, and does not introduce much error. As 

mentioned before experimental results show that this approximation has very little effect on 

the final result, and does not affect the converge speed of the iterative solving.  

 

 
Boxes which have selected
conductor panels

Leaf nodes

Truncated boxes

 
 

Fig. 14   Use an error estimate function to truncated FMM tree. 
 
 
 

How can we say two boxes are far apart enough? We use a simple error estimate 

similar to the one in HiCap to judge. We will explain this scheme in detail in next section. 

2.3  Separation 

HiCap uses [3] 

              (18)  
     

to estimate the potential coefficient to judge whether it’s necessary to subdivide a panel 

further. The users give a precision limit, if the estimated potential coefficient is below the 

limit, the accuracy is good enough, do not need to divide. We use a similar but simpler 

scheme to judge whether two boxes are far enough and can interact at current level. Given 
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the precision limit peps, for two boxes, assume one’s area is A1, the other’s area is A2, and 

the distance between two boxes is d, if A1*A2 / d < peps, we think the accuracy is enough. 

Else, they cannot interact but need to subdivide further to satisfy the precision requirement.  

    When compute the far field potentials of nearby tiles, we use this scheme to 

determine the interaction list of each box. For example, see the case shown in figure 6, for 

the box X. we check the children of those boxes who are the nearby boxes of X’s parent. 

For a box Y belongs to these box, if Ax*Ay / d < peps, it can interact with X at current level. 

One thing needs to be mentioned is that this is similar to the one of FastCap, but different. 

In FastCap, only neighboring boxes are taken as nearby boxes; while in our case, whether it 

is a nearby box is determined by the given precision limit. A box taken as well separated in 

FastCap could be taken as nearby in our algorithm. 

    As mentioned in the previous section, when truncate the FMM tree; we use this 

scheme to determine which level the far away tiles should be approximated. For example, 

in Figure 15, the tiles contained in Y will be approximated by one conductor. When 

computing the potentials of these contained tiles, they are taken as one, and the final 

potential will be distributed to all these potentials. 

 

 
Fig. 15   Use the estimate of potential coefficient to determine interaction list. 
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2.4   The New Algorithm 

2.4.1    Preprocessing 

This step is used to prepare the input data. All the conductors of the problem are 

discretized into small tiles. In out current research, we discretize the conductors uniformly 

into equal lateral squares. Generally, triangle and adaptive discretization can be used for 

accuracy and efficiency. After that, we get a list file in the standard form of FastCAP list 

file, which depicts the coordinates of these small panels. 

2.4.2 The Main Flow  

The following Figure 16 shows the 2-D algorithm. With some work, it can be easily 

expanded to 3-D. 

Initialization 

    Choose a number of levels so that there are, on average, s particles per box at the 
finest level. The bounding box of the system is repeatedly spatially subdivided using a 
quad-tree structure in 2-D or octal-tree in 3-D until reach the finest level. Each particle is 
then assigned to a box on the lowest level of the tree. Finally, the depth of the quad-tree 

is 4log Nh
s

⎡= ⎢⎢ ⎥
⎤
⎥ , and there are 4  boxes in the finest level, where N is the total number of 

tiles. 

h

 
Upward Pass to Find the 2nd Order Geometric Moments 

Comment [We proceed from the finest level, computing the geometric moments for every 
box based on the number of particles it has.] 
 

Step1 

Comment [At the finest level, the moments of each box are found according to the 
particles within it.]  
 
 
 

 

Fig. 16   New algorithm 
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do   1, 2,..., 4hibox =

1

n

i
i

area area
=

= ∑ ; 

1

1_
n

i
i

gravity x x
n =

= ⋅∑ ; 
1

1_
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gravity y y
n =

= ⋅∑ ; 
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xx xxi
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M
=

= ∑
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yy yyi
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; M M
=

= ∑

4

 M

enddo   

Step2 

Comment [For boxes at all coarser mesh levels, the gravity center and area are computed 
by merging those values of their children boxes.] 
 

do 1,..., 0l h= −  

do 1,2,..., 4libox =   

1 2 3st nd rdarea area area area area= + + + th  

1 1 2 2 3 3 4 4

1 2 3 4

_ _ _ __ st st nd nd rd rd th t

st nd rd th

gravity x n gravity x n gravity x n gravity x ngravity x
n n n n

× + × + × + ×
=

+ + +
h

1 1 2 2 3 3 4 4

1 2 3 4

_ _ _ __ st st nd nd rd rd th t

st nd rd th

gravity x n gravity x n gravity x n gravity x ngravity x
n n n n

× + × + × + ×
=

+ + +
4

1

_ _

h

xx xxi
i

M Shift of M
=

= ∑ ; 
4

1

_ _yy yyi
i

M Shift of M
=

= ∑ ; 

  enddo
enddo  
 

Compute Potentials of Approximate Boxes Directly 

Step3 

Comment [For the potentials of approximated boxes, we compute directly. For an 
approximated box, we add up the potentials which come from other boxes and nearby tiles.] 

 
do 1,...,ibox M=  

do   1,...,jbox M=

    
0

1 1 1
( ) ( ) 4

i j

ij j i
i jx ibox x jbox

P d
area ibox area jbox x xπε∈ ∈

= ×
−∫ ∫ a da

arg
arg

 

   . . .ijibox potential ibox potential P jbox ch e= + ×

   . . .ijjbox potential jbox potential P ibox ch e= + ×
 enddo 

Fig. 16   continued. 
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do ktile = 1,…,K 

  
0

1 1 1
( ) ( ) 4

i k

ik k i
i kx ibox x ktile

P d
area ibox area ktile x xπε∈ ∈

= ×
−∫ ∫ a da

arg
arg

 

. . .ikibox potential ibox potential P ktile ch e= + ×  

. . .ikktile potential ktile potential P ibox ch e= + ×  
              enddo 

enddo 
 

Notes: 

Pij is computed based on the approximated rectangle of each box, which is determined 
with the 2nd order moments. 

 
Downward Pass to Find Far Field Potential for Nearby Tiles 

Comment [In this phase, we use the FMM scheme to find the far filed potentials of nearby 
tiles. We proceed from the coarsest level, computing the far filed potential for each box 
with given peps, which guarantees that interactions are consistently computed at the 
coarsest possible level. When computing the potential from a well-separated box, we use 
the approximated shapes and an analytic form to find the potential coefficient. ] 
 

Step4 

do 1,..., 1l h= −  

do 1,2,..., 4libox =   
    _ 0far potential =

   for intjbox eractionlist∈   
 

0

1 1 1
( ) ( ) 4

i j

ij j i
i jx ibox x jbox

P d
area ibox area jbox x xπε∈ ∈

= ×
−∫ ∫ a da

arg

 

_ _ .ijfar potential far potential P jbox ch e= + ×  

          endfor  
    enddo
enddo   
 
 

Notes:
1 1int { : tan ( . . ) & tan ( ) }k keractionlist box dis ce ibox parent box parent dis ce ibox boxkpeps peps

⎡ ⎤ ⎡
= − ≤ −

⎤
>⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
for small size problems, the potentials can be solved directly by direct methods. 

 
 

Fig. 16   continued. 
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Final Potential Evaluation 

Comment [In this phase, we combine the far and local field potentials to get the final 
potential for each nearby tile. For far tiles approximated by boxes, we distribute the 
potential of the box to its contained tiles. ] 
 

Step5 

Comment [A downward pass is executed to distribute the far filed potential to the finest 
level. Because potential is not expansion, no shift operation is needed.] 
 
       do 1,..., 1l h= −
        do 1,2,..., 4libox =
     .1 .1 .ibox st potential ibox st potential ibox potentil− > = − > +

.2 .2 .ibox nd potential ibox nd potential ibox potentil− > = − > +  

.3 .3 .ibox rd potential ibox rd potential ibox potentil− > = − > +  

.4 .4 .ibox th potential ibox th potential ibox potentil− > = − > +  
         enddo
       enddo  
 

Step6 

Comment [For each box, distribute the potential of the box to the contained tiles.] 
 
do 1,...,ibox M=  

DistributePotentialToTheBottomTiles(ibox); 
enddo  

 

Step7 

Comment [Compute potential due to nearest neighbors directly.] 
 
do 1,2,..., 4hibox =  

For every nearby tile  jp  in box  , directly compute interactions with all other  ibox
particles within the box and its nearest neighbors. 

enddo  
 

Step8 

Comment [For each nearby tile adds direct and far-filed terms together.] 

 
 

Fig. 16   continued. 
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do 1,2,..., 4hibox =  
For every particle jp   in box , add direct and far-field terms together. ibox

enddo  
Fig. 16   continued. 

 
 
 

If we use iterative methods to solve the linear system Pq=v where is the potential 

coefficient matrix, q is the unknown charge vector, and v  is the desired potential vector, we 

need to evaluate the matrix-vector product Pq in each iteration. It’s clear that the fast 

matrix-vector multiplication only needs the later 6 steps of above algorithm. We can call it 

“Fast Matrix-Vector Multiplication”. 

P

2.4.3  Complexity Analysis 

A brief analysis of the algorithmic complexity is shown in Figure 17. We assume 

there are N partitioned tiles totally; for a selected conductor, we assume there are N1 

nearby tiles, and M approximated boxes in the FMM tree for far away tiles.  

 

 

  Step#             Operation count                Explanation                                     

Step1 order N                      each tile is accessed three times to compute the gravity  
                                                                       center and area 

Step2  order N          at the  level, we need 25 operations for each box thl
 
Step3  order (N1+M)*M          each box interacts with other boxes and nearby tiles 
 

Step4  order 213 (1 2 ) 1N
peps
⎡ ⎤

≤ × + × ×⎢ ⎥
⎢ ⎥

        There are at most 213 (1 2 )
peps

⎡ ⎤
× + × ⎢ ⎥

⎢ ⎥
  

entries in the interaction list for each box at each level.    
For example, if 1peps = , there are at most 27 entries.  
If we use fixed # of sub boxes to compute the , e.g.  ijP

      Fig. 17   Complexity analysis 
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 4 for each box, the # of operations for each box is also  
 fixed (constant). 

  Step5              order N1                  each FMM internal box needs 4 operations 

  Step6               order N-N1                                 the number of far away tiles is N-N1, and the operations  
                                                                             of downward pass to distribute the potential of a sub tree  
                                                                             is linear of the bottom tiles 

   Step7  order 

21(1 2 )
1

2 n
peps

N k

⎡ ⎤
+ × ⎢ ⎥

⎢ ⎥≤ ⋅       Let  be a bound on the number of  nearby  nk

            tiles per box at the finest mesh level. Interactions must  
                                                                         be computed within the box and its nearest neighbors    
                                                                         and we only need to compute half of the pair wise.  
 

   Step8     order N1                        Adding two terms for each particle. 

Fig. 17   continued. 

 

If we omit the hidden number of operations in each step, the estimate for the 

running time is therefore 

       215 ( 1 ) 1((3 ) (1 2na N b M N M c N k
peps

⎡ ⎤
⋅ ⋅ + ⋅ ⋅ + + ⋅ + ⋅ + × +⎢ ⎥

⎢ ⎥
) 1)   (19) 

with the constants a, b and c determined by the computer system, language, implementation, 

etc. Note that implicit in the complexity estimate is a condition that the number of tiles per 

box at the finest mesh level is bounded.  

It’s easy to see from equation (19) that the complexity is a function of pesp , and 

when peps ↓ , the co and mplexity ↑ accuracy ↑ . In other words, we can use pesp to trade 

off the accuracy and complexity. In some meaning, pesp is equal to the percentage of far-

filed potential computed by approximation. Figure 18 shows the peps ~ approximation 

percentage curve of a test case which has five conductors and partitioned into five hundred 

uniform quad-lateral squares without considering grouping far away tiles. Generally 
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speaking, if all partitioned tiles are distributed uniformly,  

            Approximation percentage ≈  211 (1 2 ) / N
peps s

⎡ ⎤
− + × ⎢ ⎥

⎢ ⎥
  (20) 

where N is the total number of particles and s is the number of particles in each bottom box. 

This function is drawn in figure 19 with / 25N s 6= , that is, the quad-tree height is 5. 

If we let p = approximation percentage, according to (5) and (6), we can rewrite the 

complexity as the function of p 

(1 ) (3 ) 1 / 5 ( 1 ) 1np c k N N s a N b M N M c N− ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅   (21) 

It’s not hard to see from equation (21) that the complexity is sensitive to the multipole 

expansion percentage p, especially in large systems, in which case N and N1 are much 

large. In such systems, when the percentage gets low the complexity grows drastically. This 

is why we suffer in large systems to get higher accuracy using low multipole expansion 

percentage. In our algorithm, we use new a scheme to group far away tiles as much as 

possible, which increase the approximation percentage as much as possible. So it can 

reduce the total time greatly. 

In our implementation, we can also specify the depth of the FMM tree. Analyzing 

the algorithm, we know changing the depth along will not change the approximation of far 

away parts, it only affects the complexity to compute nearby tiles’ potentials. The reason is 

we go from the top of the FMM tree to decide which level we should approximate the far 

away parts. So the leaf nodes of the truncated FMM tree will not change with the depth. 

But the depth in deed will affect the accuracy of geometric moments and the complexity to 

compute nearby tiles’ potentials. So people need to combine the depth and peps parameters 

at the same time to trade the accuracy and speed most economically. 
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Fig. 18   Peps versus approximation percentage for one test case with five conductors. 
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Fig. 19   Peps versus approximation percentage for uniform distribution. 
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CHAPTER III  

IMPLEMENTATION AND RESULTS 

The new algorithm is implemented in C/C++ and simulation results are reported. 

The new algorithm, the FastCap, and HiCap are complied and executed on a PC with 

CPU1.3G, 256M DRAM and Windows XP OS. FastCap(0) is the fastest in the FastCap 

package, and is about twice as fast as FastCap(2). However FastCap(0) has 5% to 10% 

relative error with respect to FastCap(2). 

The difference or error of capacitance matrices is defined as follows. Let the 

capacitance matrix computed by FastCap(2) be C and the capacitance matrix computed by 

another program be C’. Then the difference is estimated according to the norm [11]: ||C – 

C’|| / ||C||. This is the standard way to measure the difference between two matrices. 

First, we compare our algorithm with FastCap. To avoid the effect of different 

implementation, we also implement the zero order FastCap with the same data structure 

and other implementation methods. Testcase1 has three squares and have been partitioned 

into 300 tiles, which are shown in figure 6(a).  Testcase2 has 5 complicated conductors, 

which is shown in figure 20. Table I shows the experimental results. We can see the new 

algorithm will reduce the problem size and number of interactions greatly while at the same 

time remains an acceptable accuracy. In fact, the data in the table is with parameters: depth 

= 4 and peps = 0.5, we still can use peps and the tree depth parameters to trade the accuracy 

and problem size. Other test cases have similar geometries. 
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Fig. 20   Five complicated conductors separated into 216 tiles. 
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TABLE I 
COMPARISON WITH FASTCAP WITH A RECTANGLE 

 
Error Problem Size Compression # of interactions Test Case 

New Alg.(2) FastCAP(0) New Alg. FastCAP New Alg. FastCAP 
1 0.74% 2.77% (0) 108x108 

(1) 108x108 
(2) 108x108 

300x300 (0) 108x108 
(1) 108x108 
(2) 108x108 

29604  
 

2 2% 3% (0) 62x62 
(1) 66x66 
(2) 54x54 
(3) 55x55 
(4) 64x64 

216x216 (0) 62x62 
(1) 66x66 
(2) 54x54 
(3) 55x55 
(4) 64x64 

11288 

3 1.31% 2% (0) 53x53 
(1) 48x48 
(2) 33x33 
(3) 39x39 
(4) 45x45 

145x145 (0) 53x53 
(1) 48x48 
(2) 33x33 
(3) 39x39 
(4) 45x45 

4429 

4 0.8% 4.63% (0) 57x57 
(1) 76x76 
(2) 57x57 
(3) 67x67 
(4) 79x79 
(5) 76x76 

282x282 (0) 57x57 
(1) 76x76 
(2) 57x57 
(3) 67x67 
(4) 79x79 
(5) 76x76 

13374 

 
Notes:  (1) One thing we need to mention is that in our algorithm, the # of interactions is in 
fact the number of operations no matter how high the order of geometric moments is 
because we use the single term to compute the potential. While for FastCap the operations 
are a linear function of expansion order and the number of interactions. So for FastCap (2) 
the number of operations is two times of the number of interactions. (2) Besides, there are 
several iterations for the GMRES to converge, so total difference of operations of the new 
algorithm and FastCap is much large. 

 

Second, we compare it with HiCap to show it works well in the case HiCap does 

not. See the test case shown in figure 21, it has three conductors. Two of them are very 

close to each other while the other one are very far from these two. We use a very small p 

for HiCap to compute the final value. If too small p is used, the accuracy will not be 

improved, but the running time increases greatly because the two close tiles are partitioned 

to too many unnecessary panels and the far panels is still not be partitioned to a necessary 

fine level. Table II shows the experimental results. 
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Fig. 21   Three conductors and one is very far. 

 

 

TABLE II 
COMPARISON WITH HICAP WITH A RECTANGLE 
 

FastCap(2) New Alg.(2) HiCap 
Cap Matrix Panels 

# 
Cap Matrix Error Panels 

# 
Cap Matrix Error Panels 

# 
40.19  -5.123  -0.2182  
-5.123  40.19  -0.2336  
-0.2182 -0.2336  39.49 

300 40.2323 -5.0687 -0.2993 
-5.0687 40.1997 -0.2993 
-0.2993 -0.2993 39.6064 

0.45% (0) 117 
(1) 110 
(2) 101 

40.73 -5.25   -
0.00 
-5.25  40.73  -
0.00 
-0.20  0.22   
36.07 

7.6% 16383 

N/A 400 N/A 0.98% (0) 109 
(1) 106 
(2) 102 
(3) 102 

N/A 3.4% 8192 

 

 

Third we compare the improvement of different geometric moments. We do this on 

several test cases, and table III shows the improvement. Experimental results show that 

when the geometry is complicated the improvement is much large. For the scheme of 

rectangle and 4 squares, we can see the accuracy improvement is small, while the 

experimental results show that the time increases much. 
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                                              TABLE III 
COMPARISON WITH DIFFERENT GEOMETRIC MOMENTS 
 

Test Cases 1st order error 2nd order error 
(rectangle) 

2nd order error 
(4 squares) 

1 (300 tiles, 3 conductors) 1.1% 3.85% 3.5% 
2 (145 tiles, 5 conductors) 7.5% 1.64% 1.44% 
3 (282 tiles, 6 conductors) 3.5% 0.8% 0.7% 
4 (154 tiles, 6 conductors) 4.2% 1.8% 2.0% 
5 (282 tiles, 7 conductors) 2.8% 1.7% 1.6% 
 

 

Fourth, we compare the new algorithm with FastCap in large cases. We know, in 

VLSI design, we often need to compute the capacitance over a large ground plane. In such 

cases, to capture the effects of the ground plane accurately, the ground plane should be 

discredited to small enough tiles, which usually causes the test case to be very large. Our 

new algorithm will save much time and memory in these cases. Table IV shows the 

experimental results. Figure 22 shows 3 conductors and a large ground plane. 
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Fig. 22   Three conductors and a large ground plane. 

 

 

TABLE IV  
COMPARISON WITH FASTCAP IN LARGE CASES 

FastCap(2) New Alg. (2) Test Case 
Time(s) Mem(MB) Time Mem(MB) 

ERR 

25g3-1 17* + 11.5** 130*+ 142** 20 + 1.57 3.8 + 14 1.7% 
25g3-2 16 + 16.2 125 + 141 20 + 0.932 3.8 + 13 2.2% 
25g5 20 + 25 131 + 142 22 + 2.85 3.9 + 13 1.87% 
3g3 17 + 30 150 +170 23 + 3.8 4.1 + 35 4.7% 
3g5 -- -- 27 + 5.8 4.1 + 41 -- 

         
*   The time or memory of preprocessing phase.  
** The time or memory of computation phase. 
-- The time is too long to give the results. 

 

 

 

 



43 

CHAPTER IV 

CONCLUSIONS 

 A three dimensional (3-D) capacitance extraction algorithm based on a kernel 

independent hierarchical method, geometric moments and charge distribution is described. 

It incorporates several techniques, which leads to a better overall performance for arbitrary 

interconnect systems. First, it hierarchically partitions the bounding box of all sources to 

build the partition tree and then uses a simple shape to match the low order moments of the 

geometry of each box in the partition tree to balance the accuracy and speed. The charge 

and potential are then approximated by a single term based on these simple shapes, which 

guarantees the algorithm is kernel independent. Using a simple shape to match the 

geometric moments rather than by Legendre polynomials has one benefit that we have 

closed forms to compute the geometric moments without any integration which will save 

much time and it is easy to be implemented within the hierarchical partition tree. Second, it 

uses an error estimate scheme to group far away parts with respect to certain selected 

conductor to trade unnecessary accuracy for speed, which is based on the fact that the 

charge variations on far parts are smooth and small. Experimental results show that our 

algorithm reduces the problem size greatly and at that same time maintains a satisfying 

accuracy. 
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