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ABSTRACT

Refined Error Estimates for Matrix-valued Radial Basis Functions. (May 2006)

Edward J. Fuselier, Jr., B.S., Southeastern Louisiana University

Co–Chairs of Advisory Committee: Dr. Francis Narcowich
Dr. Joe Ward

Radial basis functions (RBFs) are probably best known for their applications to

scattered data problems. Until the 1990s, RBF theory only involved functions that

were scalar-valued. Matrix-valued RBFs were subsequently introduced by Narcowich

and Ward in 1994, when they constructed divergence-free vector-valued functions

that interpolate data at scattered points. In 2002, Lowitzsch gave the first error

estimates for divergence-free interpolants. However, these estimates are only valid

when the target function resides in the native space of the RBF. In this paper we de-

velop Sobolev-type error estimates for cases where the target function is less smooth

than functions in the native space. In the process of doing this, we give an alternate

characterization of the native space, derive improved stability estimates for the in-

terpolation matrix, and give divergence-free interpolation and approximation results

for band-limited functions. Furthermore, we introduce a new class of matrix-valued

RBFs that can be used to produce curl-free interpolants.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

A. Introduction

Radial basis functions (RBFs) are probably best known for their applications to

scattered data problems. Suppose you are given a finite set of points X ⊂ Rn and

data associated with each point and are asked to find a continuous function that

fits the data at the points. Given an RBF φ one can build an interpolant out of

linear combinations of shifts of φ, i.e., φ generates a “basis” of the approximation

space. Also, for RBFs we have φ(x) = φ(‖x‖), which leads to the name radial basis

functions. Such functions do exist, and popular examples include Gaussians, Hardy

mulitiquadrics, thin plate splines, and Wendland functions (see Table I and the table

on page 12).

Table I. Popular Examples of RBFs

RBF φ(x)

Gaussians e−α‖x‖2
2 , α > 0

Hardy Multiquadrics (−1)dβ/2e(c2 + ‖x‖2
2)

β, β > 0, β /∈ N

Inverse Multiquadrics (−1)dβ/2e(c2 + ‖x‖2
2)

β, β < 0, β /∈ N

Powers (−1)dβ/2e‖x‖β
2 , β > 0, β /∈ 2N

Thin Plate Splines (−1)k+1‖x‖2k
2 log(‖x‖2), k ∈ N

Wendland Functions φn,k (see Table II)

Although RBFs were initially studied to solve the interpolation problem, it turns

out their applications are much more broad. RBFs can also fit data coming from a

The journal model is Advances in Computational Mathematics.
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very large class of continuous linear functionals. In particular, they can interpolate

derivative and integral data at any point, and therefore can be used to solve partial

differential equations numerically. Furthermore, one can use scalar-valued RBFs to

build functions that produce vector-valued interpolants with certain physical proper-

ties, such as being divergence-free or curl-free.

Hardy was probably the first to study RBFs for the purpose of scattered data

interpolation in the early 1970s. He used the so-called Hardy multiquadrics to approx-

imate topographical surfaces [9]. In the late 1970s, Duchon studied the approximation

properties of the thin plate spline [5, 6]. Throughout the 1980s, important aspects

to the theory were solved, such as the existence and uniqueness of RBF interpolants

[17, 18]. With the rise of computational power in the 1990s, RBFs became more

popular, and they are now being used for many applications, including computer

animation, medical imaging, and fluid dynamics [1, 10, 11, 13, 16].

Until the 1990s, RBF theory only involved functions that were scalar-valued.

However, many physical applications involve vector fields that are divergence-free or

curl-free, so there was interest in using RBFs to construct vector-valued approxima-

tions with similar characteristics. Matrix-valued RBFs were subsequently introduced

by Narcowich and Ward in 1994 [22]. They constructed matrix-valued functions that

yield divergence-free interpolants at scattered points. Constructing such functions

turns out to be fairly simple. If φ is a scalar-valued function consider

Φdiv :=
(
−∆I + ∇∇T

)
φ,

where ∇ is the n×1 gradient operator and ∆ = ∇T∇ is the Laplacian operator. This

is an n×n matrix-valued function with divergence-free columns. If φ is an RBF, then

this function can be used to produce divergence-free interpolants. We note that Φdiv

is not a radial function, but because it is usually generated by an RBF φ, it is still
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commonly called a “matrix-valued RBF”.

One builds a divergence-free interpolant in the following way. Given a finite

point set X = {xj}N
j=1 ⊂ Rn and data dj ∈ Rn associated with each xj, we look for

coefficient vectors {cj}N
j=1 ⊂ Rn so that

N∑

j=1

Φdiv(xk − xj)cj = dk ∀ k = 1, . . . , N.

This leads to the matrix equation

AX,Φdiv
c = d, (1.1)

where c and d are nN × 1 vectors whose jth n components are given by cj and dj,

respectively. Also, AX,Φdiv
is an nN × nN matrix whose (j, k)th n× n block is given

by Φdiv(xj −xk). This matrix is symmetric and positive definite, so (1.1) has a unique

solution.

In 2002, Lowitzsch [14] gave the first error estimates for the divergence-free in-

terpolants, at least in the case where the data is given by an underlying function

with a particular smoothness. She also gave stability estimates for the interpolation

process, and used the divergence-free RBFs to successfully model a physical problem

described by the Navier-Stokes equation [16].

Matrix-valued RBF theory is quite new, so there is much room for improvement.

Much has been discussed about divergence-free functions, but their counterpart, curl-

free functions, have not been dealt with yet. In this paper we will address this issue

by introducing a class of functions that yield curl-free interpolants. We will see that

many of the results we will prove for divergence-free RBFs will carry over to the

curl-free case.
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Another issue that needs to be resolved is the current error estimates. In order

to discuss this further, we need to introduce the idea of the native space. Each scalar

RBF φ gives rise to a space of functions called the native space of φ, denoted Nφ.

In the scalar case, these are Hilbert spaces with an inner product (·, ·)Nφ
such that if

f ∈ Nφ, then (f, φ(·−y))Nφ
= f(y). There is an analogue of this in the matrix-valued

theory. The error estimates given in [14] are only valid for classes of functions within

these native spaces. Native spaces are usually comprised of functions which are very

smooth and tend to be small, so such error estimates are quite limited. Our main goal

here is to show that the approximation properties of matrix-valued RBFs extend to

functions rougher than those in the native space. Finding such estimates for functions

outside the native space is sometimes referred to as “escaping” the native space.

Even for scalar-valued RBFs, this is a very recent development. The first “es-

cape” was made by Narowich and Ward in 2002 concerning functions on the n-sphere

using spherical basis functions (SBFs), which are positive definite functions on the

sphere [23]. Results for RBFs on Rn soon followed [2, 24, 25]. We refer the reader to

[19] for a comprehensive overview of these findings. Due to applications to PDEs, it

is desirable to obtain error estimates in terms of Sobolev norms. The above findings

address this partially, but they only have the appropriate norms on one side of the

estimate. However, this issue has recently been completely resolved by Narcowich,

Ward, and Wendland for a large class of RBFs, Wendland functions and thin plate

splines in particular [26]. Our strategy will be largely based on their approach, and

the estimates we present will be of the form

‖f − IXf‖Hk(Ω) ≤ hτ−k
X,Ω‖f‖Hτ (Ω),

where k ≤ τ is an integer, IXf is the RBF interpolant to the target function f on

the point set X. Here hX,Ω represents the mesh norm, which we will define later.
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This paper is organized as follows. In the rest of this chapter, we introduce

notation and state the necessary definitions. The Fourier transform and its inverse

are crucial tools in RBF theory, so we give their definitions. Next we discuss Sobolev

spaces and some notions concerning Sobolev spaces, such as extensions and trace.

Finally we give the definition of matrix-valued positive definite functions and give a

brief introduction to RBFs.

In chapter II we will discuss two important classes of matrix-valued RBFs. First

we mention divergence-free RBFs. Next we introduce a new class of matrix-valued

RBFs, which can be used to produce curl-free interpolants. We finish the chapter by

proving that the functions constructed are strictly positive definite.

We will present results on native spaces for matrix-valued kernels in chapter

III. While these native spaces were already defined in [14], our presentation here

follows the treatment of native spaces for scalar-valued functions found in [30]. We

will begin by giving the definition of a reproducing kernel Hilbert space (RKHS) and

define the native space for a positive definite matrix-valued function. Next we present

a uniqueness result, which will allow us to give more useful characterizations native

spaces. In particular, we will use the Fourier transform and show that the native

space of certain kernels is comprised of functions with a specific smoothness. When

the Fourier transform of φ has algebraic decay, which is the case with Wendland

functions, we will get “sobolev-like” spaces. We end this chapter with a discussion of

generalized interpolation on native spaces. This has already dealt with in [14], but

it was proved for a different definition of the native space. Our result will show that

the two definitions are in fact equivalent.

Perhaps surprisingly, stability plays a crucial role in the escape process. In

chapter IV we explore the stability of the interpolation matrix through its spectral

condition number. As done in [16] and [22], we do this by estimating the norm of the
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inverse of AX,Φ. Since the interpolation matrix is symmetric and positive definite,

this amounts to bounding its lowest eigenvalue, λmin(AX,Φ), from below. The way

this is usually done is by finding a matrix-valued function Ψ such that

N∑

j,k=1

α∗
jΦ(xj − xk)αk ≥

N∑

j,k=1

α∗
jΨ(xj − xk)αk ≥ λ‖α‖2,

where αj ∈ Cn and α ∈ CnN with the jth n elements of α given by αj. Such a λ is

obviously a lower bound for λmin(AX,Φ). In [16] and [22], this was done for divergence-

free matrix valued functions and λ was found not to depend on N , but only on the

dimension n and the minimum separation radius of X, denoted qX . We will choose a

Ψ different than that used in [16] and [22] and obtain slightly improved results.

We will discuss band-limited functions in chapter V. In the scalar theory, the final

escape of the native space in [26] was made by using the approximation properties

of band-limited functions, which are functions in L2 whose Fourier transforms are

compactly supported. These functions are analytic, and their smoothness puts them

in most native spaces. We will show that band-limited functions can simultaneously

approximate and interpolate both functions in the native space and rougher functions,

enabling one to eventually use a triangle inequality to escape the native space.

In this chapter VI we present the main result of the paper, which is to show

that interpolants rising from matrix-valued RBFs can approximate functions that are

more rough than those in the native space. We begin the chapter with a discussion

on extending Sobolev functions from a bounded domain Ω ⊂ Rn to the native space.

Once a function is extended to the native space, best approximation properties of

interpolants can be used to help estimate the error. The error estimates we give are

in terms of the mesh norm. Given a compact set Ω ⊂ Rn and a finite set X ⊂ Ω, the
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mesh norm is given by

hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖2.

As stated before, the norms involved in the estimates will be Sobolev norms.

Finally, we end with a brief summary in chapter VII. We also include some

possible problems for further study.

B. General Notation

We will use the usual multi-index notation: Let α = (α1, . . . , αn) be an n-tuple of

nonnegative integers and define |α| :=
∑

j αj. We will use ‖x‖2 to denote the standard

euclidean norm of x ∈ Rn. If f is a matrix-valued function or distribution, we write

f ∗ for the conjugate transpose of f , i.e., f ∗ = f̄T . We define the ceiling function dxe

to be the function that returns the integer k such that k − 1 < x ≤ k, and the floor

function bxc to be the functions that returns the integer k such that k ≤ x < k + 1.

Also, we let (x)+ = x if x ≥ 0 and 0 otherwise.

Let Ω ⊆ Rn and f : Ω → R. We will say f ∈ Ck(Ω) if f is k-times continuously

differentiable. Lp spaces are defined in the usual way: we say f ∈ Lp(Ω) if
∫
Ω
|f |pdx

is finite. In the case Ω = Rn, we define Ck := Ck(Rn) and Lp := Lp(R
n). Also, if f is

vector-valued, we say that f ∈ Ck(Ω) or f ∈ Lp(Ω) if each of its components are in

Ck(Ω) or Lp(Ω), respectively. This should cause no confusion.

C. The Fourier Transform

The Fourier transform plays an important role in the theory of RBFs. We will use the

following convention for the Fourier transform of a function or tempered distribution:

f̂(ξ) :=

∫

Rn

f(x)e−ixT ξdξ,
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and let the inverse Fourier transform of a function or tempered distribution be defined

by

f̌(x) :=
1

(2π)n

∫

Rn

f(ξ)eiξT xdξ.

If f is a matrix-valued function, we will take f̂ to be the matrix of Fourier transforms

of each component of f .

D. Sobolev Spaces

1. Scalar-valued Sobolev Spaces

The error estimates will deal with vector-valued functions whose components reside in

Sobolev spaces, which we define now. Let Ω be an open domain in Rn, 1 ≤ p <∞, and

k be a non-negative integer. Suppose u is locally integrable and that the distributional

derivatives Dαu exist for all |α| ≤ k. Then we define the Sobolev norm to be

‖u‖W k
p (Ω) :=


∑

|α|≤k

‖Dαu‖p
Lp(Ω)




1/p

.

For the case p = ∞ we have

‖u‖W k
∞(Ω) := max

|α|≤k
‖Dαu‖L∞(Ω).

We define the Sobolev spaces to be

W k
p (Ω) :=

{
u ∈ L1

loc(Ω) : ‖u‖W k
p (Ω) <∞

}
.

It is also possible to have Sobolev spaces of fractional order. Let 1 ≤ p < ∞, k

be a non-negative integer, and 0 < t < 1. We define the Sobolev space W k+t
p (Ω) to
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be all u such that the following norm is finite:

‖u‖W k+t
p (Ω) :=


‖u‖p

W k
p (Ω)

+
∑

|α|=k

∫

ω

∫

Ω

|Dαu(x) −Dαu(y)|p
|x− y|n+pt

dxdy




1/p

.

In the special case p = 2, we define Hτ (Ω):=W τ
2 (Ω). It is well-known that Hτ (Ω)

is a Hilbert space, and that in the case of Ω = Rn, we may use the Fourier transform

to characterize Hτ (Rn):

Hτ (Rn) :=
{
u ∈ L2(R

n) : û(·)
(
1 + ‖ · ‖2

2

)τ/2 ∈ L2(R
n)
}
.

The inner product in Hτ (Rn) is given by

〈g, f〉Hτ (Rn) =

∫

Rn

(1 + ‖ξ‖2
2)

τ f̂(ξ)ĝ(ξ)dξ.

2. Vector-valued Sobolev Spaces

Let u : Ω → Rn, with uj denoting the jth coordinate of u. If uj ∈ W k
p (Ω) for

all j = 1, . . . , n, then we say u ∈ (W k
p (Ω))n. We impose the following norms on

u ∈ (W k
p (Ω))n for 1 ≤ p <∞:

|u|(W k
p (Ω))n :=

(
n∑

j=1

|uj|pW k
p (Ω)

)1/p

, ‖u‖(W k
p (Ω))n :=

(
n∑

j=1

‖uj‖p
W k

p (Ω)

)1/p

.

For p = ∞ we have:

|u|(W k
∞(Ω))n := max

1≤j≤n
|uj|W k

∞(Ω), ‖u‖(W k
∞(Ω))n := max

1≤j≤n
‖uj‖W k

∞(Ω).

Note that (Hτ (Ω))n is a Hilbert space, and in the special case Ω = Rn the inner

product can be defined by

〈g, f〉(Hτ (Rn))n =

∫

Rn

(1 + ‖ξ‖2
2)

τ f̂(ξ)∗ĝ(ξ)dξ.
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When the context is clear, we will use the notation H τ (Ω) = (Hτ (Ω))n. This should

cause no confusion.

We will also be interested in spaces that are divergence-free or curl-free. A

function is divergence-free if and only if ∇ · f = 0. For τ ≥ 0, we define space

Hτ
div(Ω) := {f ∈ Hτ (Ω) : ∇ · f = 0} .

This is a closed subspace of Hτ (Ω).

We would like to define a similar space for curl-free functions. In the case n = 2,

a function f is curl-free if and only if ∂f2/∂x− ∂f1/∂y = 0. When n = 3, a function

f is curl-free if and only if ∇ × f = 0. We will use the sloppy notation ∇ × f to

represent the curl of a vector field if n = 2. Thus for n = 2 or 3 we define

Hτ
curl(Ω) := {f ∈ Hτ (Ω) : ∇× f = 0} .

This is also a closed subspace of Hτ (Ω). When n > 3, there is no simple analogue

for curl involving a nice differential operator. However, using differential forms and

Poincaré’s Lemma we see that a vector-valued function on a manifold has no rotation

if and only if it is the differential of a scalar valued function. Therefore for general

n we will say a function f ∈ Hτ (Rn) is curl-free on Rn if and only if there is a

scalar-valued function in Hτ+1(Rn)/R such that ∇φ = f .

3. Extension and Trace

Let Ω ⊂ Rn, and let f ∈W τ
p (Ω). Two concepts we will need are that of extending f to

W τ
p (Rn) and extending f to the boundary of Ω, denoted by ∂Ω. If Ω has a Lipschitz

boundary and satisfies an interior cone condition, there is a continuous extension
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operator E : W τ
p (Ω) → W τ

p (Rn) such that Ef |Ω = f and

‖Ef‖W τ
p (Rn) ≤ C‖f‖W τ

p (Ω).

Also, the same operator works for all Sobolev spaces W τ
p (Ω). The operator was

produced by Stein for integer τ in [27] and extended to fractional τ later (for a proof

of the fractional case, see [4]). We will refer to this operator as Stein’s operator When

f is vector-valued, we will let Ef denote Stein’s operator acting on each component

of f.

Another important idea is that of a trace, which one gets by extending a Sobolev

function to the boundary of its domain. It is well-known that when ∂Ω is Lipschitz,

the trace exists and is continuous in the following way

‖f |∂Ω‖W
τ−1/p
p (∂Ω)

≤ C‖f‖W τ
p (Ω).

These notions will be especially important in chapter VI.

E. Positive Definite Matrix-Valued Functions

An m × m matrix-valued function Φ is positive definite on Rn if given any finite,

distinct set of points X := {x1, . . . , xN} ⊂ Rn we have

∑

j,k

αT
j Φ(xj − xk)αk ≥ 0

for all α1, . . . , αN in Rm. If the inequality is strict when αi 6= 0 for some i, then

we say the Φ is strictly positive definite (SPD). This is equivalent to saying that the

mN×mN matrix whose (j, k)th m×m block is given by Φ(xj−xk) is positive definite,

and hence invertible. We will denote this matrix by AX,Φ. In this paper we will only

concentrate on the cases m = 1 and m = n, where n is the dimension of the domain.
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When m = 1, we get the special case of scalar-valued positive definite functions.

A positive definite function φ that depends only on the length of its argument, i.e.,

φ(x) = φ(‖x‖2), is called a Radial Basis function (RBF). Some popular examples are

given in Table 1. Wendland functions are particularly important because they are

piecewise polynomials with compact support, and are hence easy to compute. We

will let φn,k denote the Wendland function that is 2k times continuously differentiable

and is positive definite on Rn. Table II lists several of these functions. Examples of

Wendland functions are graphed in Figures 1 and 2.

Table II. Examples of Wendland Functions

Space dimension Function Smoothness

n = 1 φ1,0(x) = (1 − ‖x‖2)+ C0

φ1,1(x) = (1 − ‖x‖2)
3
+(3‖x‖2 + 1) C2

φ1,2(x) = (1 − ‖x‖2)
5
+(8‖x‖2

2 + 5‖x‖2 + 1) C4

n ≤ 3 φ3,0(x) = (1 − ‖x‖2)
2
+ C0

φ3,1(x) = (1 − ‖x‖2)
4
+(4‖x‖2 + 1) C2

φ3,2(x) = (1 − ‖x‖2)
6
+(35‖x‖2

2 + 18‖x‖2 + 3) C4

n ≤ 5 φ5,0(x) = (1 − ‖x‖3)
3
+ C0

φ5,1(x) = (1 − ‖x‖2)
5
+(5‖x‖2 + 1) C2

φ5,2(x) = (1 − ‖x‖2)
7
+(16‖x‖2

2 + 7‖x‖2 + 1) C4
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Fig. 2. The Wendland function φ3,2 on R2.
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CHAPTER II

DIVERGENCE-FREE AND CURL-FREE RBFS

In this chapter we will discuss two important classes of matrix-valued RBFs. First we

briefly mention divergence-free RBFs. Next we introduce matrix-valued RBFs which

can be used to produce curl-free interpolants. We finish the chapter by proving that

the curl-free RBFs are positive definite.

A. Divergence-free Matrix-Valued RBFs

Matrix-valued RBFs which yield C∞ divergence-free interpolants were first introduced

by Narcowich and Ward in 1994. In 2002, Lowisitzch introduced a class of these

functions which are C2k and compactly supported. Constructing such functions turns

out to be fairly simple. If φ is a scalar-valued function consider

Φdiv :=
(
−∆I + ∇∇T

)
φ,

where ∇ is the n×1 gradient operator and ∆ = ∇T∇ is the Laplacian operator. Then

Φdiv is an n× n matrix-valued function with divergence-free columns. If φ is positive

definite, then this function can be used to produce divergence-free interpolants. An

example of a compactly supported divergence-free RBF is shown in Figure 3.

B. Curl-free Matrix-Valued RBFs

We now present curl-free matrix-valued RBFs. As in the divergence-free case, they

are easy to produce. Again we chose a positive definite scalar-valued function and

act on it with the appropriate differential operator. Given φ ∈ C2, define

Φcurl := −∇∇Tφ.
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Fig. 3. A two-dimensional divergence-free RBF with φ = φ3,2.

It is easy to see that the columns of this function are curl-free. The j th column is

given by Φcurlej, where ej is the standard basis vector with a one in the jth position.

This gives us

Φcurlej = −∇∇Tφej = ∇
(
−∇T (φej)

)
= ∇g,

where g = −∂φ/∂xj, which is a scalar function. Since the column is the gradient of

a scalar, it is curl-free. An example of a curl-free RBF is shown in Figure 4.

To see that Φcurl is positive definite, we will use the Fourier transform and its

inverse. In order to be rigorous, we must assume that φ, −∆φ, and their Fourier

transforms are in C ∩ L1. This enables us to recover Φ from Φ̂ using the inverse
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Fig. 4. A two-dimensional curl-free RBF with φ = φ3,2.

Fourier transform.

cTAX,Φcurl
c =

∑

j,k

cTj Φcurl(xj − xk)ck =
∑

j,k

cTj

(∫

Rn

Φ̂curle
ixT

j ξe−ixT
k ξdξ

)
ck

=

∫

Rn

(∑

j

cje
−ixT

j ξ

)∗

ξξT φ̂

(∑

k

cke
−ixT

k ξ

)
dξ

=

∫

Rn

∣∣∣∣∣
∑

j

ξT cje
−ixT

j ξ

∣∣∣∣∣

2

φ̂ dξ ≥ 0. (2.1)

This shows that Φcurl is positive definite. To see when it is strictly positive definite,

we will need the following lemma.

Lemma 1. Let X = {xj}N
j=1 and {cj}N

j=1 be finite subsets of Rn, and let U be an

open subset of Rn. If the function f(ξ) =
∑

j ξ
T cje

ixT
j ξ is zero on U then cj = 0 for

all j = 1, . . . , N .
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Proof. Note that f can be extended to an analytic function on Cn. Since it analytic

and identically zero on an open subset of Rn, it must be zero on all of Rn. Now let

g be any function in L1 such that g and its first derivatives can be recovered by the

inverse Fourier transform and consider:

0 = f(ξ)ĝ(ξ) =
∑

j

ξT cje
ixT

j ξĝ(ξ) =

(∑

j

∇T (g(· − xj)cj)

)̂

=⇒
∑

j

∑

i

cji
∂

∂xi

g(· − xj) ≡ 0,

where cji is the ith coordinate of cj. We will show that c11 = 0, and the rest are proved

similarly. To do this, we choose g to have compact support withing the ball of radius

ε < min
j 6=k

‖xj − xk‖, and that at the origin ∂g/∂x1 = 1 and ∂g/∂xj = 0 for all j 6= 1.

For a concrete example that such a g exists, one can use Hermite-Birkoff interpolation

to find a linear combination of Wendland functions with those properties. Applying

this to the above equation gives us the result.

Applying the lemma to (2.1), we see that if φ̂ is continuous, then Φcurl is strictly

positive definite. This almost proves the following theorem.

Theorem 1. Let φ ∈ C2 be a scalar-valued strictly positive definite function on Rn

such that φ and −∆φ are in L1. Then Φcurl is a strictly positive definite matrix-valued

function with columns that are curl-free.

Proof. We need only show that if φ ∈ C2 be a scalar-valued positive definite function

on Rn such that φ and −∆φ are in L1, then we can recover them through the inverse

Fourier transform. This will happen if the Fourier transforms of φ and −∆φ are in

L1. Since φ is positive definite, by Bochner’s theorem so is −∆φ. Now we use [30,

Corollary 6.12], which says that if a positive definite function is continuous and L1

integrable then its nonnegative Fourier transform is in L1.
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CHAPTER III

NATIVE SPACES FOR MATRIX-VALUED KERNELS

While native spaces were defined with distributions in [14], our presentation here

follows the treatment of native spaces for scalar-valued functions found in [30]. We

will begin by giving the definition of a reproducing kernel Hilbert space (RKHS) and

define the native space for a positive definite matrix-valued function. Next we offer a

uniqueness result. This feature will allow us to give a more useful characterization of

the native space. In particular, we will use the Fourier transform and show that the

native space of certain kernels is comprised of functions with a specific smoothness.

When the Fourier transform of φ has algebraic decay, which is the case with Wendland

functions, we will get “Sobolev-like” spaces.

In the last section we will deal with generalized interpolation on native spaces.

The has already been done in the case where native spaces were defined distribution-

ally, but it has not been shown for the definition of the native space given here. In

the process of proving this we will show that the two definitions are equivalent.

A. Native Spaces as Reproducing Kernel Hilbert Spaces

An important idea in the theory of RBFs is that of a reproducing kernel Hilbert

space, which we define now.

Definition 1. Let F be a Hilbert space of vector-valued functions f : Ω → Rn. A

continuous n× n matrix-valued function Φ is called a reproducing kernel for F if for

all x ∈ Ω and c ∈ Rn we have

1. Φ(· − x)c ∈ F .

2. cTf(x) = (f,Φ(· − x)c)F for all f ∈ F .
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Remark 1. Note that other than the fact that Ω should not be empty, there is

no restriction on Ω in the definition. However, in the context of RBFs one usually

assumes that Ω = Rn.

The first property of the definition tells us that such an F would contain all

functions of the form f =
∑N

j=1 Φ(x− xj)αj, where αj ∈ Rn and xj ∈ Ω. The second

property gives us an expression for the norm of such functions:

‖f‖2
F =

N∑

k=1

N∑

j=1

α∗
jΦ(xj − xk)αk.

These features will guide us in the construction of a RKHS for a given SPD matrix-

valued function. Encouraged by this, we define the space

FΦ(Ω) :=

{
N∑

j=1

Φ(· − xj)αj : xj ∈ Ω, αj ∈ Rn, and N ∈ N

}
.

We furnish this space with the bilinear form

(
N∑

j=1

Φ(· − xj)αj,

M∑

k=1

Φ(· − yk)βk

)

Φ

:=
N∑

j=1

M∑

k=1

βT
k Φ(yk − xj)αj.

If Φ is SPD then this bilinear form defines an inner product on FΦ(Ω).

We will denote the completion of FΦ(Ω) with respect to the ‖·‖Φ norm as FΦ(Ω).

The elements of FΦ(Ω) are abstract, and we wish to interpret them as functions. To

do this we define function values for an element f by fj(x) := (f,Φ(· − x)ej)Φ. Will

will show that this leads to an injective linear mapping R : FΦ(Ω) → C(Ω) given by

R(f)j(x) := (f,Φ(· − x)ej)Φ. The image of this map is the space of functions we are

looking for.

Lemma 2. The mapping R : FΦ(Ω) → C(Ω) is an injective linear map.

Proof. The map is obviously linear. First we show that each coordinate of R(f) is
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continuous. We have

|R(f)j(x) −R(f)j(y)| =
∣∣(f,Φ(· − x)ej)Φ − (f,Φ(· − y)ej)Φ

∣∣

=
∣∣(f,Φ(· − x)ej − Φ(· − y)ej)Φ

∣∣

≤ ‖f‖Φ‖Φ(· − x)ej − Φ(· − y)ej‖Φ.

To conclude that R(f)j is continuous, we use the continuity of Φ and the fact that

‖Φ(· − x)ej − Φ(· − y)ej‖2
Φ = 2eT

j Φ(0)ej − eT
j Φ(x− y)ej − eT

j Φ(y − x)ej.

For injectivity, suppose R(f) = 0 for some f ∈ FΦ(Ω). This means that ∀x ∈ Ω and

all c ∈ Rn we have (f,Φ(· − x)c)Φ = 0. Thus f is perpendicular to FΦ, but FΦ is the

completion of FΦ, so f = 0 and R is injective.

With this result, we are able to define the native space.

Definition 2. The native Hilbert function space corresponding to the SPD kernel Φ

is defined by

NΦ(Ω) := R(FΦ(Ω)).

It is equipped with the inner product

(f, g)NΦ(Ω) := (R−1f,R−1g)FΦ(Ω).

Defined in this way, we see that the native space is indeed a Hilbert space of

continuous functions with reproduction kernel Φ. To see this, since Φ(· − x)c is

mapped to itself through R for all x ∈ Ω and c ∈ Rn, we get

fj(x) =
(
R−1f,Φ(· − x)ej

)
Φ

= (f,Φ(· − x)ej)NΦ

for all f ∈ NΦ. One can also use the fact that FΦ(Ω) is dense in NΦ with ‖f‖Φ =

‖f‖NΦ
for all f ∈ FΦ to conclude that the native space for Φ is unique in the following
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way.

Theorem 2. Suppose that Φ is a SPD matrix-valued kernel. Suppose further that G is

a Hilbert space of functions f : Ω → Rn with reproducing kernel Φ. Then G = NΦ(Ω)

and the inner products are the same.

Proof. From the remarks after Definition 1, we know that FΦ(Ω) ⊆ G and ‖f‖G =

‖f‖NΦ(Ω) for all f ∈ FΦ(Ω). Let f ∈ NΦ(Ω). By density of FΦ(Ω) in the native space,

there is a Cauchy sequence {fn} in FΦ(Ω) converging to f in NΦ(Ω). One can show

that if a sequence converges in a RKHS, then it converges point-wise. Indeed if Φ is

the reproducing kernel for the RKHS F , we have

|(fn)j(y) − fj(y)| =
∣∣(fn − f,Φ(· − y)ej)F

∣∣ ≤ ‖fn − f‖F‖Φ(· − y)ej‖F .

Thus we get f(y) = lim
n→∞

fn(y). Note that {fn} is also a Cauchy sequence in G, so

it also converges to a g ∈ G. The reproducing-kernel property of G gives g(y) =

lim
n→∞

fn(y) = f(y). Therefore f = g ∈ G, so NΦ(Ω) ⊆ G and ‖f‖NΦ(Ω) = ‖f‖G for all

f ∈ NΦ(Ω).

Now suppose that NΦ(Ω) is not equal to G. Then we can find an element g ∈

G \ {0} orthogonal to NΦ(Ω). However, since Φ(· − y)ej ∈ NΦ this means that

gj(y) = (g,Φ(· − y)ej)G = 0 for all y ∈ Ω and all j = 1, . . . , n. Thus NΦ(Ω) = G. To

finish the proof, by polarization we know that the inner products are equal because

the norms are.

This feature will give us the tools to give other characterizations of the native

space in the next section. In particular, we will use the Fourier transform and show

that the native space of certain kernels is comprised of functions with a specific

smoothness.
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B. Alternate Characterizations of Native Spaces

In the theory of scalar-valued positive definite functions, it is well-known that in the

case of φ ∈ C(Rn) ∩ L1(R
n), one may characterize the native space of φ by

Nφ(R
n) =

{
f ∈ L2 ∩ C :

∫

Rn

|f̂(ξ)|2
φ̂(ξ)

dξ <∞
}
,

with inner product given by

(f, g)Nφ(Rn) := (2π)−n/2

∫

Rn

ĝ(ξ)f̂(ξ)

φ̂(ξ)
dξ. (3.1)

If Φ̂(ξ) is invertible for all ξ, an appropriate guess for the generalization of (3.1) would

be

(f, g)NΦ(Rn) := (2π)−n/2

∫

Rn

ĝ(ξ)∗Φ̂(ξ)−1f̂(ξ)dξ.

However, Φ̂div and Φ̂curl are not invertible at any point. Nevertheless we get around

this obstruction by considering the Moore-Penrose inverse, or pseudo-inverse, of Φ̂(ξ),

which we denote by Φ̂(ξ)+. Thus a more appropriate inner product would be

(f, g)NΦ(Rn) := (2π)−n/2

∫

Rn

ĝ(ξ)∗Φ̂(ξ)+f̂(ξ)dξ.

Also, to make sure the inner product is strictly positive definite, one should be careful

about what functions are allowed in the space. In particular, we should avoid those

whose Fourier transforms are perpendicular to the columns of Φ̂(ξ)+.

In the case of divergence-free and curl-free matrix-valued functions, a simple

calculation gives us the following equalities:

Φ̂div(ξ)
+ =

1

‖ξ‖2
2φ̂(ξ)

(
I − eξe

T
ξ

)

Φ̂curl(ξ)
+ =

1

‖ξ‖2
2φ̂(ξ)

(
eξe

T
ξ

)
,
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where eξ is the unit vector in the ξ-direction. We would like for Φ̂(ξ)+Φ̂(ξ) to be

the identity for the Fourier transforms of functions in the native space. Therefore in

the divergence-free case, we will consider functions f such that eT
ξ f̂(ξ) = 0. In the

curl-free case we want functions of the form f̂(ξ) = eξh(ξ), where h is a scalar-valued

function. Now we are ready to state and prove the following results.

Theorem 3. Suppose that φ ∈ C2 is a positive definite function such that ∆φ ∈ L1.

Define

Gdiv :=

{
f ∈ L2 ∩ C :

∫

Rn

f̂(ξ)∗Φ̂div(ξ)
+f̂(ξ)dξ <∞ and eT

ξ f̂(ξ) = 0 a.e.

}

and equip this space with the bilinear form

(f, g)Gdiv
:= (2π)−n/2

∫

Rn

ĝ(ξ)∗Φ̂div(ξ)
+f̂(ξ)dξ.

Then Gdiv is a Hilbert space with inner product (·, ·)Gdiv
and reproducing kernel Φdiv.

Hence Gdiv = NΦdiv
and the inner products are the same.

Proof. We begin by noting that since f ∈ Gdiv satisfies eT
ξ f̂(ξ) = 0 for all ξ, we have

(f, f)Gdiv
= (2π)−n/2

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2φ̂(ξ)

dξ. (3.2)

Also, since φ is positive definite so is −∆φ. Then that fact that it is continuous

and L1 integrable puts its Fourier transform is in L1(R
n) [30, Corollary 6.12]. This

means that f̂ ∈ L1 for all f ∈ Gdiv. Indeed, we have

∫

Rn

|f̂j(ξ)|dξ ≤
(∫

Rn

|f̂j(ξ)|22
‖ξ‖2

2φ̂(ξ)
dξ

)1/2(∫

Rn

‖ξ‖2
2φ̂(ξ)dξ

)1/2

.

This allows us to recover f point-wise from its Fourier transform by the inverse Fourier

transform.

We now show that (·, ·)Gdiv
is an inner product. The linearity and conjugate
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symmetry properties are obvious. The fact that φ̂ is positive along with (3.2) tells us

(f, f)Gdiv
= 0 implies that f = 0. Thus (·, ·)Gdiv

is positive definite and hence an inner

product.

To show completeness of Gdiv, suppose that {fn} is a Cauchy sequence in Gdiv.

This means that the sequence
{
f̂n(‖ · ‖2

2φ̂)−1/2
}

is Cauchy in L2, and so it converges

to a function g ∈ L2. Note that the function g satisfies g

√
‖ · ‖2

2φ̂ ∈ L1 ∩L2. Namely,

∫

Rn

∣∣∣∣gj(ξ)

√
‖ξ‖2

2φ̂(ξ)

∣∣∣∣ dξ ≤ ‖gj‖L2

∥∥∥‖ · ‖2
2φ̂
∥∥∥

1/2

L1

and ∫

Rn

∣∣∣∣gj(ξ)

√
‖ξ‖2

2φ̂(ξ)

∣∣∣∣
2

dξ ≤ ‖gj‖2
L2

∥∥∥‖ · ‖2
2φ̂
∥∥∥

L∞

.

for all j = 1, . . . , n. Thus

f(x) := (2π)−n/2

∫

Rn

(
g(ξ)

√
‖ξ‖2

2φ̂(ξ)

)
eixT ξdξ

is well defined, continuous, an element of L2, and satisfies

f̂(‖ · ‖2
2φ̂)−1/2 = g ∈ L2. (3.3)

Note that since g is the L2 limit of the sequence
{
f̂n(‖ · ‖2

2φ̂)−1/2
}

, g satisfies eT
ξ g(ξ) =

0 a.e. This is because eT
ξ f̂n(‖ · ‖2

2φ̂)−1/2 tends to eT
ξ g(ξ) in L2 as n tends to ∞, and

the former is a sequence of zeros. Then by (3.3), the Fourier transform of f satisfies

the orthogonality condition. Therefore f resides in Gdiv. Now we have that

‖fn − f‖2
Gdiv

= (2π)−n/4‖f̂n(‖ · ‖2
2φ̂)−1/2 − f̂(‖ · ‖2

2φ̂)−1/2‖L2

= (2π)−n/4‖f̂n(‖ · ‖2
2φ̂)−1/2 − g‖L2

→ 0

as n tends to ∞. We conclude that Gdiv is complete.

All that is left is to show that Φdiv is the reproducing kernel of Gdiv. Let c and
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y be vectors in Rn. We have

(f,Φdiv(· − y)c) = (2π)−n/2

∫

Rn

(
Φ̂div(ξ)ce

−iξT y
)∗

Φ̂div(ξ)
+f̂(ξ)dξ

= (2π)−n/2

∫

Rn

cT Φ̂div(ξ)Φ̂div(ξ)
+f̂(ξ)eiξT ydξ

= (2π)−n/2

∫

Rn

cT
(
I − eξe

T
ξ

)
f̂(ξ)eiξT ydξ

= cT
(

(2π)−n/2

∫

Rn

f̂(ξ)eiξT ydξ

)
= cTf(x).

Theorem 4. Suppose that φ ∈ C2 ∩ L1 is a positive definite function such that

∆φ ∈ L1. Define

Gcurl :=

{
f ∈ L2 ∩ C :

∫

Rn

f̂(ξ)∗Φ̂curl(ξ)
+f̂(ξ)dξ <∞ and f̂(ξ) = eξh(ξ), h ∈ L2

}

and equip this space with the bilinear form

(f, g)Gcurl
:= (2π)−n/2

∫

Rn

ĝ(ξ)∗Φ̂curl(ξ)
+f̂(ξ)dξ.

Then Gcurl is a Hilbert space with inner product (·, ·)Gcurl
and reproducing kernel Φcurl.

Hence Gcurl = NΦcurl
and the inner products are the same.

Proof. The proof is the same as the previous, with minor modifications. See Appendix

B.

We have a few observations. First, the inner products for NΦdiv
and NΦcurl

are

exactly the same: if f and g are in one of these spaces, the inner product is given by

(f, g) = (2π)−n/2

∫

Rn

ĝ(ξ)∗f̂(ξ)

‖ξ‖2
2φ̂(ξ)

dξ.

Also, if Φ := −I∆φ, it can be shown that the inner product for NΦ is the same one

as above and NΦ = NΦdiv
⊕NΦcurl

.
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C. Native Spaces as Sobolev Spaces

Now that our native spaces have a more useful form, we will be able to see how certain

native spaces, particularly those associated with Wendland functions, are related to

Sobolev spaces. We begin by defining some “Sobolev-like” spaces. If τ ≥ 0, we define

H̃τ (Rn) :=

{
f ∈ (L2(R

n))n :

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ <∞

}
.

It is not difficult to see that this space a Hilbert space with the inner product

(f, g) eHτ (Rn) :=

∫

Rn

ĝ(ξ)∗f̂(ξ)

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ.

Also, we define the corresponding spaces

H̃τ
div(R

n) :=
{
f ∈ H̃τ (Rn) : eT

ξ f̂(ξ) = 0 a.e.
}

H̃τ
curl(R

n) :=
{
f ∈ H̃τ (Rn) : f̂(ξ) = eξh(ξ), where h ∈ L2(R

n)
}
.

As in the case of Sobolev spaces, we will sometimes use H̃τ as shorthand for H̃τ (Rn).

From the results of the last section we see that these are native spaces when the

Fourier transform of φ has algebraic decay, as is the case with Wendland functions.

Corollary 1. Let τ > n/2 and let φ be a positive definite function and let Φ := −∆φI.

If φ̂ has algebraic decay, i.e., if there exists constants c1 and c2 such that

c1
(
1 + ‖ξ‖2

2

)−(τ+1) ≤ φ̂(ξ) ≤ c2
(
1 + ‖ξ‖2

2

)−(τ+1)
, (3.4)

then NΦ = H̃τ (Rn) with equivalent norm.

The following result will allow us to see a more precise relationship H̃τ (Rn) has

to a Sobolev space.
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Proposition 1. The norm for the space H̃τ (Rn) is equivalent to the norm defined by

‖f‖2
∗ :=

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

dξ + ‖f‖2
Hτ (Rn). (3.5)

Proof. To get the above equivalence, it is enough to show the existence of positive

constants c1 and c2 such that

c1

(
1

‖ξ‖2
2

+ (1 + ‖ξ‖2
2)

τ

)
≤ (1 + ‖ξ‖2

2)
τ+1

‖ξ‖2
2

≤ c2

(
1

‖ξ‖2
2

+ (1 + ‖ξ‖2
2)

τ

)
.

The first part of this inequality can be done easily with c1 = 1. We have

(1 + ‖ξ‖2
2)

τ+1

‖ξ‖2
2

=
(1 + ‖ξ‖2

2)
τ

‖ξ‖2
2

+ (1 + ‖ξ‖2
2)

τ ≥ 1

‖ξ‖2
2

+ (1 + ‖ξ‖2
2)

τ .

For the reverse inequality we consider ‖ξ‖2 ≤ 1 and ‖ξ‖2 > 1 separately. If ‖ξ‖2 > 1,

we have

(1 + ‖ξ‖2
2)

τ+1

‖ξ‖2
2

=
(1 + ‖ξ‖2

2)
τ

‖ξ‖2
2

+ (1 + ‖ξ‖2
2)

τ ≤ 2(1 + ‖ξ‖2
2)

τ .

If ‖ξ‖2 ≤ 1 we have (1 + ‖ξ‖2
2) ≤ 2 which gives us

(1 + ‖ξ‖2
2)

τ+1

‖ξ‖2
2

≤ 2τ+1

‖ξ‖2
2

.

This shows that we can take c2 = 2τ+1.

This “decomposition” of the norm tells us that H̃τ (Rn) is the subspace of Hτ (Rn)

consisting of functions f such that there is a potential g ∈ H τ+1(Rn) with
√
−∆g = f .

Indeed, if f ∈ H̃τ (Rn) then the Fourier transform of the appropriate potential would

be ĝ = f̂/‖ · ‖2. Conversely, if
√
−∆g = f with g ∈ Hτ+1(Rn), then ‖f‖2

eHτ (Rn)
=

‖g‖2
Hτ+1(Rn) <∞. This makes sense since we differentiated φ to get our kernel Φ, that

is, one may expect that differentiating the kernel would result in “differentiating” the

native space. It also shows us that when we measure functions in the native space,

we are essentially measuring their “anti-derivative”. Furthermore, it is important to
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note that when restricted to a bounded Lipschitz domain Ω, these native spaces are

Sobolev spaces.

Theorem 5. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Then we

have

Hτ (Ω) =
{
f |Ω, f ∈ H̃τ (Rn)

}
.

Furthermore, the norms are equivalent.

Proof. See Appendix B.

One can also use Proposition 3.5 to show that the spaces H̃τ
div(R

n) and H̃τ
curl(R

n)

consist of functions in H̃τ (Rn) that have potentials inHτ+1(Rn) in the following sense.

Proposition 2. The function spaces H̃τ
div(R

n) and H̃τ
curl(R

n) can be characterized as

follows:

H̃τ
div(R

n) =
{
f ∈ Hτ | ∃ g ∈ Hτ+1 with ∇× g = f

}

H̃τ
curl(R

n) =
{
f ∈ Hτ | ∃ g ∈ Hτ+1 with ∇g = f

}
,

where n = 2 or 3 in the divergence-free case.

Proof. See Appendix B.

D. Generalized Interpolation on Native Spaces

In this section we investigate the situation where we are reconstructing a vector-

valued function from generalized data, that is, data coming from any continuous

linear functional (not just point evaluations). This has already been done in [14], but

it was proved for a slightly different definition of the native space. In our definition,

we “built” the native space out of translates of the kernel, whereas in [14] the native
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space was constructed with convolutions of the kernel with any compactly supported

distribution. This fact gives the older native space definition an advantage: one

gets the existence of generalized interpolants basically for free. In our case, there is

something to prove, which we do now.

Theorem 6. Suppose that NΦ is a real Hilbert space of vector-valued functions with

matrix-valued reproducing kernel Φ. Let µ, ν ∈ N ∗
Φ and let νyΦ(· − y) denote the

vector-valued function whose ith coordinate is given by νy acting on the ith column of

Φ(· − y). Then νyΦ(· − y) ∈ NΦ and

ν(f) = (f, νyΦ(· − y))NΦ
for all f ∈ NΦ.

Also, we have (ν, µ)N ∗
Φ

= µxνyΦ(x− y).

Proof. Given ν ∈ N ∗
Φ, the Riesz Representation Theorem guarantees the existence

of hν ∈ NΦ such that ν(f) = (f, hν)NΦ
for all f in the native space. Using the

reproducing kernel properties of Φ, we get:

ν(Φ(· − x)ei) = (Φ(· − x)ei, hν)NΦ
= (hν ,Φ(· − x)ei)NΦ

= eT
i hν(x).

Since x was arbitrary, it follows that hν = νyΦ(·−y) and the first property is proved.

For the last result, we have

(ν, µ)N ∗
Φ

= (hµ, hν)NΦ
= µ(hν) = µxνyΦ(x− y).

This result shows that the definitions of native spaces are equivalent. As you will

recall, we constructed the native space out of the dense subspace

FΦ(Ω) =

{
N∑

j=1

Φ(· − xj)αj : xj ∈ Ω, αj ∈ Rn, and N ∈ N

}
.
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Our approach is the same in [14], but instead of FΦ(Ω) the space used contains all

functions of the form νyΦ(· − y), where ν is a compactly supported linear functional.

This space was then closed in the norm given by ‖νyΦ(·−y)‖2 = νxνyΦ(x−y), which

coincides with our norm if one restricts the linear functionals to be point evaluations.

Thus our native space is contained in the other one. Theorem 6 shows that this space

is contained in our definition of the native space, and the norms are the same.

This theorem also guarantees the existence of generalized interpolants. Suppose

that {νi}N
i=1 is a linearly independent subset of N ∗

Φ. Let the matrix A be defined by

Ai,j = νx
i ν

y
j Φ(x− y). From the above result we immediately see that A is symmetric,

and we will soon see that it is positive definite. Let c ∈ RN be nonzero and let

L =
∑
ciνi. We have

cTAc =
N∑

i,j=1

ci
(
νx

i ν
y
j Φ(x− y)

)
cj

=
N∑

i=1

ciν
x
i

(
N∑

j=1

νy
j Φ(x− y)cj

)

=

(
N∑

i=1

ciνi

)x( N∑

j=1

cjνj

)y

Φ(x− y)

= LxLyΦ(x− y) = ‖L‖2
N ∗

Φ
> 0,

where the last inequality follows from the fact that the functionals are linearly inde-

pendent. This shows us that given linearly-independent functionals {νi}N
i=1 and data

{di}N
i=1, one can find an interpolant sν of the form

sν(·) =
N∑

j=1

cjν
y
j Φ(· − y)

such that

νksν(·) =
N∑

j=1

cjνkν
y
j Φ(· − y) = dk ∀k = 1, . . . , N.



31

Thus matrix-valued RBFs can be used not only to interpolate point evaluations, but

data coming from any continuous linear functional on the native space. In particular,

one can use Hermite-Birkoff data to approximate solutions to differential equations.

Again, this was already known, but since we used a different definition of the native

space we needed to show it.
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CHAPTER IV

STABILITY

Knowing the stability of the interpolation process turns out to be very important in

the escape process. Let X be a finite subset of Rn. In this section we explore the

stability of the interpolation matrix, AX,Φ, through its spectral condition number.

As done in [16] and [22], we do this by estimating the norm of the inverse of AX,Φ.

Since the interpolation matrix is symmetric and positive definite, this amounts to

bounding its lowest eigenvalue, λmin(AX,Φ), from below. The way this is usually done

is by finding a matrix-valued SPD function Ψ such that

N∑

j,k=1

α∗
jΦ(xj − xk)αk ≥

N∑

j,k=1

α∗
jΨ(xj − xk)αk ≥ λ‖α‖2,

where αj ∈ Cn and α ∈ CnN with the jth n elements of α given by αj. Such a λ is

obviously a lower bound for λmin(AX,Φ).

In [16] and [22], this was done for divergence-free matrix valued functions and

λ was found not to depend on N , but only on the dimension n and the minimum

separation radius of X, denoted qX . We will choose a Ψ different than that used in

these papers and obtain slightly improved results.

A. Lower Bounds For λmin(AX,Φdiv
)

Let χσ
2
,n(ξ) be the characteristic function for the ball B(0, σ/2) ⊂ Rn. It was shown

in [21, Eq. 3.9] that its Fourier transform is given by

χ̌σ
2
,n(x) =

(
σ2

8π

)n/2(‖x‖2σ

2

)−n/2

Jn/2

(‖x‖2σ

2

)
,
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where Jn/2 is the Bessel function of the first kind of order n/2. We know from [23,

page 6] that χ̌σ
2
,n(0) is given by

χ̌σ
2
,n(0) =

(σ/(4
√
π))n

Γ ((n+ 2)/2)
. (4.1)

We define φσ by

φσ := χ̌2
σ
2
,n.

This function is band-limited. More precisely, supp(φ̂σ) ⊆ B(0, σ) [23, page 6]. This

is the same function used in [21] to bound the lower eigenvalue in the scalar case. We

define Φσ
div via

Φσ
div :=

(
−∆I + ∇∇t

)
φσ.

Now we calculate the derivatives of φσ. The derivatives of the Bessel function

satisfy the identity (see [28, page 66])

d

dz
z−νJν(z) = −z−νJν+1(z).

From this we have

∂

∂xk

χ̌σ
2
,n =

(
σ2

8π

)n/2
∂

∂xk

((‖x‖2σ

2

)−n/2

Jn/2

(‖x‖2σ

2

))

=

(
σ2

8π

)n/2
(
−
(‖x‖2σ

2

)−n/2

J(n+2)/2

(‖x‖2σ

2

)
xkσ

2‖x‖2

)

= −xk
σ2

4

(
σ2

8π

)n/2
((‖x‖2σ

2

)−(n+2)/2

J(n+2)/2

(‖x‖2σ

2

))

= −xk2π

(
σ2

8π

)(n+2)/2
((‖x‖2σ

2

)−(n+2)/2

J(n+2)/2

(‖x‖2σ

2

))

= −xk2πχ̌σ
2
,n+2. (4.2)
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Using (4.2), we have

∂

∂xk

φσ =
∂

∂xk

(
χ̌2

σ
2
,n

)
= 2χ̌σ

2
,n

(
∂

∂xk

χ̌σ
2
,n

)

= 2χ̌σ
2
,n

(
−xk2πχ̌σ

2
,n+2

)

= −xk4πχ̌σ
2
,n

(
χ̌σ

2
,n+2

)
.

We now consider second order derivatives of φσ. We have

∂2

∂2xk

φσ = −4πχ̌σ
2
,n

(
χ̌σ

2
,n+2

)
− xk4π

∂

∂xk

(
χ̌σ

2
,n

(
χ̌σ

2
,n+2

))

= −4πχ̌σ
2
,n

(
χ̌σ

2
,n+2

)
− xk4π

((
χ̌σ

2
,n+2

) ∂

∂xk

χ̌σ
2
,n +

(
χ̌σ

2
,n

) ∂

∂xk

χ̌σ
2
,n+2

)

= −4πχ̌σ
2
,n

(
χ̌σ

2
,n+2

)
+ x2

k8π
2
((
χ̌σ

2
,n+2

)2
+ χ̌σ

2
,n

(
χ̌σ

2
,n+4

))
.

Let j 6= k. Then we have

∂2

∂xj∂xk

φσ = −xk4π
∂

∂xj

(
χ̌σ

2
,n

(
χ̌σ

2
,n+2

))

= −xk4π

((
χ̌σ

2
,n+2

) ∂

∂xj

χ̌σ
2
,n +

(
χ̌σ

2
,n

) ∂

∂xj

χ̌σ
2
,n+2

)

= xjxk8π
2
(
χ̌2

σ
2
,n+2 + χ̌σ

2
,n

(
χ̌σ

2
,n+4

))
.

Now we define

A := 4πχ̌σ
2
,n

(
χ̌σ

2
,n+2

)
, (4.3)

B := 8π2
(
χ̌2

σ
2
,n+2 + χ̌σ

2
,n

(
χ̌σ

2
,n+4

))
. (4.4)

With these definitions and our formulas for the derivatives of φσ, we get the following

equality:

Φσ
div(x) = (n− 1)A(x)I +B(x)

(
−‖x‖2

2I + xxt
)
.

Note that this is a symmetric matrix-valued function. Also, the eigenvalues of Φσ
div(x)

are (n−1)A(x)−‖x‖2
2B(x) with multiplicity (n−1) and (n−1)A(x) with multiplicity
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1. The value A(0) turns out to be important, so we compute it now: using (4.1) we

have

A(0) = 4π
(σ/4

√
π)

n

Γ ((n+ 2)/2)

(σ/4
√
π)

n+2

Γ ((n+ 4)/2)
=

(
σ2

16π

)n+1
8π

(n+ 2)Γ2 ((n+ 2)/2)
.

Here we have used the fact that Γ(z + 1) = zΓ(z).

Now we get a bound on the eigenvalues of Φ(x). Recall that the eigenvalues of

Φ(x) are (n − 1)A(x) − ‖x‖2
2B(x) with multiplicity (n − 1) and (n − 1)A(x) with

multiplicity 1. Therefore they are bounded by

Λ(x) := (n− 1)|A(x)| + ‖x‖2
2|B(x)|. (4.5)

We bound Λ(x) with the following lemma.

Proposition 3. Let Λ(x) = (n − 1)|A(x)| + ‖x‖2
2|B(x)|, then we have the following

bound

Λ(x) ≤ 2n+5

(
σ2

8π

)n+1
(

(n− 1)

(‖x‖2σ

2

)−n−2

+ 4

(‖x‖2σ

2

)−n−1
)
. (4.6)

Proof. We will make use of [21, Lemma 3.3], which states that for s = 1, 2, . . . , and

for all z > 0,

J2
s/2(z) ≤ 2s+2/zπ.

First we concentrate on |A(x)|.

|A(x)| = 4π

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−1 ∣∣∣∣Jn/2

(‖x‖2σ

2

)
J(n+2)/2

(‖x‖2σ

2

)∣∣∣∣

≤ 4π

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−1(
2n+3

(π‖x‖2σ/2)

)

= 2n+5

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−2

. (4.7)
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Now we bound the terms of ‖x‖2
2|B(x)|. We have

8π2‖x‖2
2χ̌

2
σ
2
,n+2 = 8π2‖x‖2

2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−2

J2
(n+2)/2

(‖x‖2σ

2

)

≤ 8π2‖x‖2
2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−2(
2n+4

(π‖x‖2σ/2)

)

= 2n+7π‖x‖2
2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−3

= 2n+7π‖x‖2
2

4

‖x‖2
2σ

2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−1

= 2n+6

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−1

,

8π2‖x‖2
2χ̌σ

2
,nχ̌σ

2
,n+4 = 8π2‖x‖2

2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−2

Jn/2

(‖x‖2σ

2

)
J(n+4)/2

(‖x‖2σ

2

)

≤ 8π2‖x‖2
2

(
σ2

8π

)n+2(‖x‖2σ

2

)−n−2(
2n+4

(π‖x‖2σ/2)

)

= 2n+6

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−1

This gives us that

‖x‖2
2B(x) ≤ 2n+7

(
σ2

8π

)n+1(‖x‖2σ

2

)−n−1

. (4.8)

Adding the above inequality to our bound on (n− 1)|A(x)| gives us the result.

In [20], it was shown that we have the estimate

∑

j 6=k

f(|xj − xk|) ≤ 3n

∞∑

m=1

mn−1κf,m, (4.9)

where f is a scalar valued function on Rn and κf,m is given by

κf,m := sup {|f(‖x‖2)| : mqX ≤ ‖x‖2 ≤ (m+ 1)qX}

and qX is the separation radius of X. We will use this fact with the above estimate
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on Λ(x) to prove the following.

Lemma 3. Choose σ such that σ ≥ max
{

2/qX , C̃/qX

}
, where

C̃ := 24

(
π(n+ 2)(n+ 3)n

4(n− 1)
Γ2

(
n+ 2

2

))1/(n+1)

.

Then we have

max
k

∑

j 6=k

Λ(xj − xk) ≤
n− 1

2n
A(0). (4.10)

Proof. Note that that fact that σ ≥ qX/2 combined with (4.6) gives us

κΛ,m ≤ 2n+5

(
σ2

8π

)n+1(
(n− 1)

(mqXσ
2

)−n−2

+ 4
(mqXσ

2

)−n−1
)

= 2n+5

(
σ2

8π

)n+1 (qXσ
2

)−n−1
(

(n− 1)
(qXσ

2

)−1

m−n−2 + 4m−n−1

)

≤ 2n+5

(
σ2

8π

)n+1 (qXσ
2

)−n−1 (
(n− 1)m−n−1 + 4m−n−1

)

= 2n+5(n+ 3)

(
σ2

8π

)n+1 (qXσ
2

)−n−1

m−n−1.

Using this with (4.9) we have

max
k

∑

j 6=k

Λ(xj − xk) ≤ 3n

∞∑

n=1

mn−1κΛ,m

≤ 3n2n+5(n+ 3)

(
σ2

8π

)n+1 (qXσ
2

)−n−1
∞∑

m=1

mn−1m−n−1

= 3n2n+5(n+ 3)

(
σ2

16π

)n+1 (qXσ
4

)−n−1
∞∑

m=1

m−2

= π23n−12n+4(n+ 3)

(
σ2

16π

)n+1 (qXσ
4

)−n−1

≤ π2(n+ 3)

(
σ2

16π

)n+1 (qXσ
24

)−n−1

Here we have used the well known fact that
∞∑

m=1

m−2 = π2/6. Using the fact that
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σ > C̃/qX , we continue with the inequality to get

max
k

∑

j 6=k

Λ(xj − xk) ≤ π2(n+ 3)

(
σ2

16π

)n+1
(
C̃

24

)−n−1

= π2(n+ 3)

(
σ2

16π

)n+1(
4(n− 1)

π(n+ 2)(n+ 3)nΓ2 ((n+ 2)/2)

)

=
1

2n

(
σ2

16π

)n+1
8π(n− 1)

(n+ 2)Γ2 ((n+ 2)/2)
=
n− 1

2n
A(0).

With these results we are now ready to prove the following theorem.

Theorem 7. Let φ be an even positive definite function, which possesses a positive

Fourier transform φ̂ ∈ C(Rn/0). With the function

M(σ) := inf
‖ξ‖2≤σ

φ̂(ξ)

a lower bound on the smallest eigenvalue of the interpolation matrix is given by

λmin(AX,Φdiv
) ≥

(
σ2

16π

)(n+2)/2
M(σ)π

(4π)nΓ ((n+ 2)/2)

for any σ > 0 satisfying

σ ≥ C̃/qX .

Proof. Define ψ by

ψ :=
M(σ)Γ ((n+ 2)/2)

σnπn/2
φσ.

Note that ψ is positive definite and the support of ψ̂ is B(0, σ). Then φ̂(ξ) ≥ ψ̂(ξ)

for ‖ξ‖2 > σ. If ‖ξ‖2 ≤ σ we have

ψ̂(ξ) ≤ M(σ)Γ ((n+ 2)/2)

σnπn/2
vol(B(0, σ)) ≤M(σ) ≤ φ̂(ξ).
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This shows us that

N∑

j,k=1

α∗
jΦ(xj − xk)αk =

∫

Rn

∥∥∥(I − eξe
T
ξ )
(∑

αje
iξT xj

)∥∥∥
2

2
‖ξ‖2φ̂(ξ)dξ

≥
∫

Rn

∥∥∥(I − eξe
T
ξ )
(∑

αje
iξT xj

)∥∥∥
2

2
‖ξ‖2ψ̂(ξ)dξ

=
N∑

j,k=1

α∗
jΨdiv(xj − xk)αk,

where αj ∈ Rn and Ψdiv is defined by

Ψdiv := (−∆ + ∇∇t)ψ.

Next we use Lemma 3 to get:

N∑

j,k=1

α∗
jΨdiv(xj − xk)αk ≥ ‖α‖2

2ψ(0) −
∑

j 6=k

|α∗
jΨdiv(xj − xk)αk|

≥ ‖α‖2
2ψ(0) − n max

1≤j≤N

∑

j 6=k

M(σ)Γ ((n+ 2)/2)

σnπn/2
Λ(xj − xk)

= ‖α‖2
2ψ(0) − n‖α‖2

2 max
1≤j≤N

∑

j 6=k

M(σ)Γ ((n+ 2)/2)

σnπn/2
Λ(xj − xk)

= ‖α‖2
2

(
ψ(0) − n

M(σ)Γ ((n+ 2)/2)

σnπn/2

n− 1

2n
A(0)

)

= ‖α‖2
2

(
ψ(0) − M(σ)Γ ((n+ 2)/2)

σnπn/2

n− 1

2
A(0)

)

= ‖α‖2
2

ψ(0)

2
.

Plugging in the value of ψ(0) gives us

λmin(AX,Φdiv
) ≥ (1/2)

M(σ)(n− 1)

σnπn/2

(
σ2

16π

)n+1
8π

(n+ 2)Γ ((n+ 2)/2)

≥ M(σ)

σnπn/2

(
σ2

16π

)n+1
π

Γ ((n+ 2)/2)

=

(
σ2

16π

)(n+2)/2
M(σ)π

(4π)nΓ2 ((n+ 2)/2)
.
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Here we have used the fact that (n− 1)/n+ 2) ≥ 1/4 for n ≥ 2.

Corollary 2. In the case of the compactly supported Wendland functions φ = φn,k

the smallest eigenvalue of the interpolation matrix AX,Φdiv
can be bounded by

λmin(AX,Φdiv
) ≥ cnq

2k−1
X ,

where cn is a constant depending only on n.

To see the improvement, we compare the above result to the older estimates. For

φn,k, the previous estimate was

λmin(AX,Φdiv
) ≥ Cq

(2k+1)(n+1)/n
X ,

where C depends only on n. Note that the new estimates are better in that the power

of qX is smaller and no longer depends on n. It is worthy to note that the result in

Corollary 2 is exactly what one would expect. In the scalar theory the kernel φn,k is

in C2k and the resulting estimate is

λmin(AX,φ) ≥ Cq2k+1
X . (4.11)

Thus a reduction in smoothness of the kernel should reduce the power of qX in a precise

way. That is, one should be able to just replace the 2k with the new smoothness. To

get Φdiv we differentiate φn,k twice, so it is in C2k−2. Replacing the 2k in 4.11 with

2k − 2 gives us the same estimate derived in Corollary 2. Furthermore, the orders of

qX in the scalar estimates are sharp, so we expect that the bounds presented here are

sharp as well.
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B. Lower Bounds For λmin(AX,Φcurl
)

To get the stability estimates in the curl-free case we go through the same basic steps

as in the previous section. Using the same φσ as before, we begin by defining

Φσ
curl := −

(
∇∇t

)
φσ.

With our formulas for the derivatives of φσ, we get the following equality:

Φσ
curl = A(x)I −B(x)

(
xxt
)
,

Where A(x) and B(x) are given by (4.3) and (4.4), respectively. Note that the

eigenvalues of Φσ
curl(x) are A(x) with multiplicity n − 1 and A(x) − B(x)‖x‖2

2 with

multiplicity 1. Furthermore, Λ(x) from the previous section bounds the eigenvalues

of Φσ
curl(x). Therefore we may use Lemma 3 to prove the following theorem:

Theorem 8. Let φ be an even positive definite function, which possesses a positive

Fourier transform φ̂ ∈ C(Rn/0). With the function

M(σ) := inf
‖ξ‖2≤σ

φ̂(ξ)

a lower bound on λmin(AX,Φcurl
) is given by

λmin(AX,Φcurl
) ≥

(
σ2

16π

)(n+2)/2
M(σ)π

(4π)nΓ ((n+ 2)/2)

for any σ > 0 satisfying

σ ≥ C̃/qX .

Sketch of Proof. Define ψ by

ψ :=
M(σ)Γ ((n+ 2)/2)

σnπn/2
φσ.

As shown in the proof of Theorem 7, we have ψ̂(ξ) ≤ φ̂(ξ) for all ξ ∈ Rn. This shows
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us that

N∑

j,k=1

α∗
jΦ(xj − xk)αk =

∫

Rn

∥∥∥(I − eξe
T
ξ )
(∑

αje
iξT xj

)∥∥∥
2

2
‖ξ‖2φ̂(ξ)dξ

≥
∫

Rn

∥∥∥(I − eξe
T
ξ )
(∑

αje
iξT xj

)∥∥∥
2

2
‖ξ‖2ψ̂(ξ)dξ

=
N∑

j,k=1

α∗
jΨdiv(xj − xk)αk,

where αj ∈ Rn and Ψdiv is defined by

Ψdiv := (−∆ + ∇∇t)ψ.

Next we use Lemma 3 and follow the same steps in the proof of Theorem 7, replacing

Ψdiv with Ψcurl.

Corollary 3. In the case of the compactly supported Wendland functions φ = φn,k

the smallest eigenvalue of the interpolation matrix AX,Φcurl
can be bounded by

λmin(AX,Φcurl
) ≥ cnq

2k−1
X ,

where cn is a constant depending only on n.
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CHAPTER V

BAND-LIMITED INTERPOLATION AND APPROXIMATION

In the scalar theory, escaping the native space involves using the approximation prop-

erties of band-limited functions, which are functions in L2 whose Fourier transforms

are compactly supported. These functions are analytic, and their smoothness puts

them in most native spaces. In fact, they are contained in every native space of

the scalar RBFs mentioned in this paper. It turns out that band-limited functions

approximate both functions in the native space and rougher functions, enabling one

to eventually use a triangle inequality to escape the native space.

To make use of band-limited functions for matrix-valued RBFs, we must ensure

that they live within the native spaces Φdiv and Φcurl. As seen in chapter III, functions

in these native spaces must satisfy

∫

Rn

‖f̂(ξ)‖2

‖ξ‖2
2

dξ <∞.

Therefore we will work with the following band-limited spaces:

Bσ :=
{
f ∈ (L2)

n : supp(f̂) ⊂ B(0, σ)
}

B̃σ :=

{
f ∈ Bσ :

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

dξ <∞
}

B̃σ
div :=

{
f ∈ B̃σ : eT

ξ f̂(ξ) = 0
}

B̃σ
curl :=

{
f ∈ B̃σ : f̂(ξ) = eξh(ξ), h ∈ L2

}
.

A. Divergence-Free and Curl-Free Approximation

First we show that a divergence-free function in H̃ t can be approximated by a band-

limited divergence-free function in B̃σ
div. The proof is simple; one only has to chop
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off the Fourier transform of the function. The same proof works in the curl-free case,

with the obvious modifications.

Proposition 4. Let t ≥ r ≥ 0. If f ∈ H̃ t is divergence-free then for every σ > 0 we

have a function gσ ∈ B̃σ
div with

‖f − gσ‖ eHr ≤ σr−t‖f‖ eHt .

Proof. To do this, we simply multiply the Fourier transform of f with a cut off

function. Define gσ by ĝσ := f̂χσ, where χσ is the characteristic function of the ball

B(0, σ). Since t ≥ r, for all ‖ξ‖2 ≥ σ we have the inequality

(
1 + ‖ξ‖2

2

)r−t ≤ σ2(r−t).

This gives us

‖f − gσ‖2
eHr =

∫

‖ξ‖≥σ

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)r+1
dξ

=

∫

‖ξ‖≥σ

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)t+1 (
1 + ‖ξ‖2

2

)r−t
dξ

≤ σ2(r−t)

∫

‖ξ‖≥σ

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)t+1
dξ

≤ σ2(r−t)‖f‖2
eHt .

We still need to check that gσ is divergence-free. Note that ĝσ is equal to a scalar

function times f̂ , so any relation f̂ has with ξ is inherited by ĝσ. Thus gσ is divergence-

free as long as f is. This also shows that if f were curl-free, gσ would be curl free.

B. Divergence-Free Band-limited Interpolation

In the previous section we showed we can approximate a divergence-free function in

H̃τ with a band-limited divergence-free function in B̃σ
div. Now it is our aim to show
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that we can simultaneously approximate and interpolate with divergence-free band-

limited functions. We will follow the approach used for the scalar-valued case in [26].

There it was shown that if one chooses σ ∼ 1/qX , for every continuous function f

there exists a band-limited interpolant fσ whose Fourier transform is supported in

B(0, σ). We will prove something similar, and to do this we will need the following

result from [24, Prop. 3.1],

Proposition 5. Let Y be a (possibly complex) Banach Space, V be a subspace of Y,

and Z∗ be a finite dimensional subspace of Y∗, the dual of Y. If for every z∗ ∈ Z∗

and some β > 1, β independent of z∗,

‖z∗‖Y∗ ≤ β‖z∗|V‖V∗ , (5.1)

then for y ∈ Y there exists v ∈ V such that v interpolates y on Z∗; that is, z∗(y) =

z∗(v) for all z∗ ∈ Z∗. In addition, v approximates y in the sense that ‖y − v‖Y ≤

(1 + 2β)dist(y,V).

We will also need some results involving the space H̃τ
div. This space can be

characterized as a reproducing kernel Hilbert space for τ > n/2. The kernel K̃τ
div is

defined by its Fourier transform:

̂̃Kτ
div(ξ) =

(
‖ξ‖2

2I − ξξT
) (

1 + ‖ξ‖2
2

)−(τ+1)
.

The inverse Fourier transform of (1 + ‖ξ‖2
2)

−(τ+1)
is given by

Kτ := cτ‖x‖τ+1−n/2
2 Kτ+1−n/2(‖x‖2),

where Kν is the modified Bessel function of the second kind and cτ is a constant

[30, Theorem 6.13]. Taking the inverse Fourier transform gives us that K̃τ
div can be
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written as

K̃τ
div(x) = cτ

(
−∆I + ∇∇T

)
‖x‖τ+1−n/2

2 Kτ+1−n/2(‖x‖2). (5.2)

Suppose that X = {x1, . . . , xN} ⊂ Ω is a set of distinct points from a bounded

set Ω ⊂ Rn, and that c1, . . . , cN are vectors in Rn. If g :=
N∑

j=1

K̃τ
div(· − xj)cj, using

the fact that H̃τ
div is the native space for K̃τ

div gives us

‖g‖2
eHτ = (2π)n

∑

j,k

c∗jK̃τ
div(xj − xk)ck. (5.3)

As a result, we have that

(2π)nλX‖c‖2
2 ≤ ‖g‖2

eHτ ≤ (2π)nΛX‖c‖2
2, (5.4)

where λX and ΛX are the minimum and maximum eigenvalues of the nN×nN matrix

AX, eKτ
div

, and c is the vector in RnN whose jth n-components are given by cj.

We can get a lower bound to the minimum eigenvalues using the stability esti-

mates of Theorem 7. The result is

λX ≥ cτ,nq
2τ−n
X , (5.5)

where qX is the separations radius for X and cτ,n is a constant depending on its

subscripts. To get upper bounds for ΛX , we need to calculate the kernel explicitly.

The function Kν satisfies (see [28, page 79])

d

dz
(z−νKν(z)) = −zνKν+1(z).

Note that this is the same formula for Jν as in (4.2). The calculations following (4.2)

show us that that the kernel has the form:

K̃τ
div = A(x)I +B(x)

(
−‖x‖2

2 + xxT
)
, (5.6)
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where A(x) and B(x) are given by

A(x) := cτn‖x‖−(ν+1)
2 Kν+1(‖x‖2)

B(x) := cτ‖x‖−(ν+2)
2 Kν+2(‖x‖2). (5.7)

Here ν = τ + 1 − n/2. From 5.6, we see that the eigenvalues of K̃τ
div(x) are A(x) −

‖x‖2
2B(x) with multiplicity n−1 and A(x) with multiplicity 1. This gives us that the

modulus of the largest eigenvalue of the n× n matrix K̃τ
div(x) is bounded by

ΛeKτ
div

(x) := |A(x)| + ‖x‖2
2|B(x)|.

We will also need the following estimate:

Proposition 6. The function ‖x‖−ν
2 Kν(‖x‖2) is positive, decreasing on [0,∞), and

has the bound

‖x‖−ν
2 Kν(‖x‖2) ≤

√
2π‖x‖ν−1/2

2 e
−‖x‖2+ ν2

2‖x‖2 . (5.8)

Proof. See Corollary 5.12 and Lemma 5.13 in [30].

Note that if ‖x‖2 > 1, we have:

|ΛeKτ
div

(x)| ≤ cτn‖x‖−(ν+1)
2 Kν+1(‖x‖2) + cτ‖x‖2

2‖x‖−(ν+2)
2 Kν+2(‖x‖2)

≤ Cτ,n‖x‖ν+7/2
2 e−‖x‖2 =: Γ(x), (5.9)

where ν = τ + 1 − n/2. Furthermore, Γ(x) will be decreasing with ‖x‖2 if ‖x‖2 >

ν + 7/2. This can be shown by simple calculus.

Lemma 4. Let g :=
∑N

j=1 K̃τ
div(· − xj)cj and define gσ by ĝσ = ĝχσ, where χσ is the

characteristic function of the ball B(0, σ). Then, there exists a constant κ > 0, which

is independent of X and the cj’s, such that for σ = κ/qX the following inequality
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holds

Iσ := ‖g − gσ‖ eHτ ≤ 1

2
‖g‖ eHτ . (5.10)

Proof. From the definition of Iσ and the change of variables to ξ = σξ, we have

I2
σ =

∫

‖ξ‖2≥σ

ĝ∗(ξ)
̂̃Kdiv

+

(ξ)ĝ(ξ)dξ = σn

∫

‖ξ‖2≥1

ĝ∗(σξ)
̂̃Kdiv

+

(σξ)ĝ(σξ)dξ

= σn

∫

‖ξ‖2≥1

ĝ∗(σξ)

(
I − ξξT

‖ξ‖2
2

)
ĝ(σξ)

(1 + σ2‖ξ‖2
2)

τ+1

|σξ|2 dξ

= σn+2

∫

‖ξ‖2≥1

(∑

j

cje
−ixT

j σξ

)∗ (
‖ξ‖2

2I − ξξT
)

(1 + σ2‖ξ‖2
2)

(τ+1)

(∑

k

cke
−ixT

k σξ

)
dξ

Note that the matrix (I‖ξ‖2
2−ξξT ) is a scaled projection, so the integrand is positive.

Now since ‖ξ‖2 ≥ 1, we have the inequality

1

(1 + σ2‖ξ‖2
2)

τ+1
≤ 2τ+1

σ2τ+2

1

(1 + ‖ξ‖2
2)

τ+1
,

so that

I2
σ ≤ 22τ+2σn−2τ

∫

Rn

(∑

j

cje
−i(σxT

j )ξ

)∗ (‖ξ‖2
2I − ξξT

)

(1 + ‖ξ‖2
2)

(τ+1)

(∑

k

cke
−i(σxT

k )ξ

)
dξ

= 22τ+2σn−2τ

∫

Rn

(∑

j

cje
−i(σxT

j )ξ

)∗

̂̃Kτ
div(ξ)

(∑

k

cke
−i(σxT

k )ξ

)
dξ

= 22τ+2σn−2τ

∫

Rn

(∑

j

cje
−i(σxT

j )ξ

)∗

̂̃Kτ
div

∗

(ξ)
̂̃Kτ

div

+

(ξ)
̂̃Kτ

div(ξ)

(∑

k

cke
−i(σxT

k )ξ

)
dξ

= (2π)n22τ+2σn−2τ
∑

j,k

c∗jK̃τ
div(σxj − σxk)ck ≤ (2π)n22τ+2σn−2τΛσX‖c‖2

2. (5.11)

In the third line of the inequality we have used the fact that K̃τ
div is Hermitian, and

the last line follows from the fact that K̃τ
div is a reproducing kernel. From (5.4) and

(5.5), we also have the estimate

(2π)ncτ,nq
2τ−n‖c‖2

2 ≤ ‖g‖2
eHτ ,
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so we obtain

I2
σ ≤ 22τ+2c−1

τ,n(σqX)n−2τΛσX‖g‖2
eHτ (Rn)

. (5.12)

Now note that the set σX has separation distance qσX = σqX . This will enable us

to choose σ so that we get a uniform bound on ΛσX . Let c be the unit eigenvector

associated with ΛσX and let cj ∈ Rn be the jth n-components of c. We choose σ so

that σqX ≥ ν + 7/2 and use (4.9) to get:

ΛσX =
∑

j,k

cTj K̃τ
div(σxj − σxk)ck = A(0) +

∑

j 6=k

cTj K̃τ
div(σxj − σxk)ck

≤ A(0) + n
∑

j 6=k

|ΛeKτ
div

(σxj − σxk)| ≤ A(0) + n
∑

j 6=k

Γ(σxj − σxk)

≤ A(0) + n3nCτ,n

∞∑

m=1

mn−1Γ(mσqX)

≤ A(0) + n3nCτ,n

∞∑

m=1

mn−1Γ(m) := C1,τ,n, (5.13)

Here we have used the fact that such a choice of σ allows us to use (5.9), such a

choice causes Γ to be decreasing, and the above series is convergent since Γ is rapidly

decreasing. From this bound it follows that

I2
σ ≤ 22τ+2C1,τ,nc

−1
τ,n (σqX)n−2τ ‖g‖2

eHτ .

Now choose σqx = κ so large that the factor multiplying ‖g‖2
eHτ

is less than 1/4.

Taking square roots gives us the result.

Now we describe the scenario for proving the main result of this section. The

result will follow from Proposition 5, and we will apply it to the following scheme:

Y = H̃τ
div

V = B̃σ
div

Z∗ = span
{
cT δxj

: c ∈ Rn, xj ∈ X
}
.
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Theorem 9. Let τ, t ∈ R such that τ > n/2 and t > 0. Given f ∈ H̃τ+t
div and a point

set X ⊂ Rn with separation distance qX , there exists a function fσ ∈ B̃σ
div such that

f |X = fσ|X and ‖f − fσ‖ eHτ ≤ 5 · dist eHτ (f, B̃σ
div) ≤ 5κ−tqt

X‖f‖ eHτ+t .

with σ = κ/qX , where κ ≥ 1 depends on only τ and n.

Proof. The proof will follow from Proposition 5 once we establish the following. Given

z∗ ∈ Z∗, we need to show that

‖z∗‖( eHτ
div)∗ ≤ 2‖z∗| eBσ

div
‖( eHτ

div)∗ .

Since H̃τ
div is a reproducing kernel Hilbert space with kernel K̃div, then by The-

orem 6 K̃τ
div(x− xj)c is the Riesz representer of the functional cT δxj

. It follows that

if z∗ =
∑
cTj δxj

and g =
∑ K̃τ

div(· − xj)cj we have ‖z∗‖( eHτ
div)∗ = ‖g‖ eHτ

div
. Also, note

that ‖z∗| eBσ
div
‖( eHτ

div)∗ = ‖gσ‖ eHτ
div

, where gσ is defined by ĝσ = ĝχσ. This can be seen by

‖z∗| eBσ
‖( eHτ

div)∗ = sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

z∗(f) = sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

(f, g) eHτ
div

= sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

∫

Rn

ĝ∗(ξ)
̂̃Kdiv(ξ)

+f̂(ξ)dξ

= sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

∫

B(0,σ)

ĝ∗(ξ)
̂̃Kdiv(ξ)

+f̂(ξ)dξ

= sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

∫

Rn

ĝσ
∗(ξ)

̂̃Kdiv(ξ)
+f̂(ξ)dξ

= sup
f∈ eBσ

div
‖f‖

eHτ
div

=1

(f, gσ) eHτ
div

= ‖gσ‖ eHτ
div
.
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Now, by Lemma 4 for a sufficiently large κ and all σ = κ/qX we have the estimate

‖gσ‖ eHτ ≥ ‖g‖ eHτ − ‖gσ − g‖ eHτ

≥ ‖g‖ eHτ −
1

2
‖g‖ eHτ =

1

2
‖g‖ eHτ .

Thus the conditions of Proposition 5 are satisfied with β = 2. The proposition tells

us that for any divergence-free function f ∈ H̃τ+t
div (Rn) there exists a divergence-free

function fσ ∈ B̃σ, with σ = κ/qX , such that fσ interpolates f on X and approximates

it, in the sense that

‖f − fσ‖ eHτ
div(Rn) ≤ 5 · dist eHτ (f, B̃σ

div).

For the last inequality, note that if f ∈ H̃τ+t
div , then we have

dist eHτ (f, B̃σ
div)

2 =

∫

‖ξ‖2≥σ

f̂(ξ)∗
(
I − ξξT

‖ξ‖2
2

)
f̂(ξ)

(1 + ‖ξ‖2
2)

τ+1

‖ξ‖2
2

dξ

=

∫

‖ξ‖2≥σ

f̂(ξ)∗
(
I − ξξT

‖ξ‖2
2

)
f̂(ξ)

(1 + ‖ξ‖2
2)

τ+t+1

‖ξ‖2
2(1 + ‖ξ‖2

2)
t
dξ

= σ−2t

∫

‖ξ‖2≥σ

f̂(ξ)∗
(
I − ξξT

‖ξ‖2
2

)
f̂(ξ)

(1 + ‖ξ‖2
2)

τ+t+1

‖ξ‖2
2

dξ

= σ−2t‖f‖2
eHτ+t .

Taking square roots and using the fact that σ = κ/qX gives us the result.

The estimates in Theorem 9 are exactly what we expected based the on the ones

proved in [26, Theorem 3.4]. There it was shown that a function f in H τ+t can be

approximated by a band-limited interpolant with the estimate

‖f − fσ‖Hτ ≤ 5 · distHτ (f,Bσ) ≤ 5κ−tqt
X‖f‖Hτ+t .

In other words, if the error is being measured in a space that is t degrees less smooth

than the space the target function resides, then the approximation rate should be
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given by qt
X . Also, we would like to point out just how crucial the new stability

estimates were in proving this result. In order to achieve the proper approximation

rates, the power of qX in (5.5) had to exactly match that of σ in in the proof of

Lemma 4, so that σ could be chosen to “control” qX .

C. Curl-Free Band-limited Interpolation

One can also interpolate a curl-free function with a band-limited curl-free function.

The next result follows by using the same steps as in the proof of Theorem 9, replac-

ing any divergence-free functions with the corresponding curl-free function. It also

requires an estimate similar to that of Lemma 4, which is easy to show by mimicking

its proof.

Theorem 10. Let τ, t ∈ R such that τ > n/2 and t > 0. Given a function f ∈ H̃τ+t
curl

and a point set X ⊂ Rn with separation distance qX , there exists a curl-free function

fσ ∈ B̃σ
curl such that

f |X = fσ|X and ‖f − fσ‖ eHτ
n
≤ 5 · dist eHτ (f, B̃σ

curl) ≤ 5κ−tqt
X‖f‖ eHτ+t .

with σ = κ/qX , where κ ≥ 1 depends on only τ and n.
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CHAPTER VI

ERROR ESTIMATES FOR FUNCTIONS OUTSIDE THE NATIVE SPACE

In this chapter we present the main result of the paper, which is to show that vector-

valued RBFs can approximate functions that are more rough than those in the native

space. The error estimates we give are in terms of the mesh norm. Given a compact

set Ω ⊂ Rn and a finite set X ⊂ Ω, the mesh norm is given by

hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖2.

Another important value in the estimates is the mesh ratio, given by ρX,Ω := hX,Ω/qX .

In what follows, we will let IXf be the divergence-free RBF interpolant to f on X

if f is divergence-free, and the curl-free RBF interpolant to f on X if f is curl-free.

This should cause no confusion. Also, to be able to work on Sobolev spaces, we must

assume that the Fourier transform of φ has algebraic decay, i.e.,

c1
(
1 + ‖ξ‖2

2

)−(τ+1) ≤ φ̂(ξ) ≤ c2
(
1 + ‖ξ‖2

2

)−(τ+1)
. (6.1)

Our goal is to introduce error estimates in terms of Sobolev norms.

A. Extensions of Sobolev Spaces to the Native Space

To estimate error in the scalar-valued theory, one is able to start with a Sobolev

function on a bounded domain and then extended the function continuously to Rn in a

way that puts it inside of a native space, at least in the case where the native space is a

Sobolev space. Once in the native space, best approximation properties of interpolants

can be used to help estimate the error. It is our wish to do something similar here;

that is, we want to extend divergence-free or curl-free Sobolev functions defined on a

domain Ω to NΦdiv
or NΦcurl

. In the scalar-valued case, one has the advantage that the
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native spaces are Sobolev spaces, so well-known extension operators can be used. As

we have seen in Corollary 1, native spaces for divergence-free and curl-free kernels are

almost, but not quite Sobolev spaces, even though they are closely related. However,

when working on a bounded domain we will see that it is still possible to begin with

a Sobolev function and extend it to the native space in a continuous manner. The

ability to do this will depend upon the geometry of Ω. In what follows we will work

on a bounded Lipschitz domain Ω ⊂ Rn that satisfies an interior cone condition. We

will also assume Ω is simply connected, i.e., it has no “holes”.

Let m ≥ 0 be an integer. We will require our extension operators to extend

functions continuously from Hm(Ω) to H̃m(Rn). Further, if a function is divergence-

free or curl-free on Ω then the extensions should also be divergence-free or curl-free,

respectively. We will be able to construct such operators for functions that can be

written as the gradient or curl of a potential function. Most results involving vector

potentials on Sobolev spaces are only proved in small dimensions, so in what follows

n = 2 or 3. Once we obtain a potential, we will extend the original function by using

Stein’s extension operator.

We will begin with the more simple case of curl-free functions. By definition of

Hm
curl(Ω), if Ω is a simply connected domain, ∇× u = 0 for u ∈ L2(Ω) if and only if

there is a potential function φ such that u = ∇φ. Furthermore, by choosing φ to have

zero average value, it is unique up to a constant. Also, note that when u ∈ Hm(Ω) we

automatically get that φ ∈ Hm+1(Ω). To see this, we need to check that derivatives

of order m + 1 or less of φ are in L2(Ω). If α is a multi-index with |α| ≤ m + 1,

then Deα is a differential operator of order |α̃| ≤ m, where αj = α̃j for all j 6= i and

α̃i = αi − 1. Since u = ∇φ we get ui = ∂φ/∂xi and

Dαφ = Deαui ∈ L2(Ω).
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In order for the extension we construct to be continuous, we need an estimate of

the form ‖φ‖Hm+1(Ω) ≤ C‖u‖Hm(Ω). Proving this is an easy application of the Closed

Graph Theorem.

Lemma 5. Let m ≥ 0 be an integer and let Ω ⊂ Rn be a simply connected domain

with Lipschitz boundary. There exists a continuous operator T : Hm
curl(Ω) → Hm+1(Ω)

such that u = ∇(Tu).

Proof. For each curl-free function u, we will let Tu be one of its potential functions.

To be sure that T is well-defined, Tu will be the potential with minimum norm in

Hm+1(Ω). Using the fact that all potentials of u differ by a constant, it is easy to

show that if φ is any function such that u = ∇φ, then

Tu = φ− 1

|Ω| 〈1, φ〉L2(Ω),

where |Ω| is the Lebesgue measure of Ω. From this we get that T is a well-defined

linear operator.

Now we show that T is a closed map. Suppose that un → u in Hm(Ω) and

Tun → φ in Hm+1(Ω). We need to show that Tu = φ. This will follow if φ satisfies

u = ∇φ and 〈1, φ〉L2(Ω) = 0. We have

‖u−∇φ‖Hm(Ω) ≤ ‖u− un‖Hm(Ω) + ‖∇(Tun) −∇φ‖Hm(Ω)

≤ ‖u− un‖Hm(Ω) + ‖Tun − φ‖Hm+1(Ω) → 0.

Similarly, we have

|〈1, φ〉L2(Ω)| = |〈1, φ− Tun〉L2(Ω)| ≤ |Ω|‖Tun − φ‖L2(Ω) → 0. (6.2)

Thus Tu = φ and T is closed. By the Closed Graph Theorem, T is continuous, and

we get the bound ‖Tu‖Hm+1(Ω) ≤ C‖u‖Hm(Ω).
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With this result we are able to construct our extension operator. Let E denote

the Stein’s extension operator on Ω. We extend u by

Ẽcurlu := ∇(ETu).

Note that Ẽcurlu is automatically curl-free since it is the gradient of a scalar function.

To show that Ẽcurl : Hm
curl(Ω) → H̃m

curl(R
n) is continuous, consider

‖Ẽcurlu‖2
eHm

curl(R
n)

=

∫

Rn

‖̂̃
Ecurlu‖2

2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ

=

∫

Rn

‖ξÊ(Tu)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ

≤
∫

Rn

‖Ê(Tu)‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ = ‖ETu‖2

Hm+1(Rn)

≤ C‖Tu‖2
Hm+1(Ω) ≤ C‖u‖2

Hm(Ω).

This proves the following theorem.

Theorem 11. Let m ≥ 0 be an integer and let Ω ⊂ Rn be a simply-connected bounded

Lipschitz domain satisfying an interior cone condition. Then there exists a continuous

operator Ẽcurl : Hm
curl(Ω) → H̃m

curl(R
n) such that Ẽcurlu|Ω = u for all u ∈ Hm

curl(Ω).

Our strategy for the divergence-free case is the same: first we work on domains

that allow for potential functions, construct a continuous operator T that assigns a

potential to each divergence-free function, and use Stein’s operator E to construct a

continuous extension. The divergence-free case is slightly more difficult because it is

not immediately obvious how to construct the operator T so that it is well-defined.

Nevertheless, it is possible to get around this.

We will need several results from Appendix A. First, Proposition 9 tells us that

given a divergence-free vector field u on Ω, we can find a vector potential such that

∇ × φ = u. Using Proposition 11, we see that when u ∈ Hk(Ω) and the boundary
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of Ω is Ck+1,1, then the potential φ is in Hk+1(Ω). Furthermore, by Proposition 10,

when Ω is simply connected, there is a unique vector potential φ satisfying

∇× φ = 0, ∇ · φ = 0, φ · n = 0 on ∂Ω. (6.3)

Now we can prove the following.

Lemma 6. Let m ≥ 0 be an integer and let Ω be a simply-connected domain of Rn

with Ck+1,1 boundary, where k ≥ m is an integer. Then there exists a continuous

operator T : Hm
div(Ω) → Hm+1(Ω) such that u = ∇× (Tu).

Proof. For each divergence-free function u, we will let Tu be the unique potential

satisfying (6.3). From this we get that T is well-defined, and we can easily check that

it is linear.

As in the curl-free case, we show that T is a closed map. Suppose that un → u

in Hm(Ω) and Tun → φ in Hm+1(Ω). We need to show that Tu = φ. This will follow

if φ satisfies (6.3). We have

‖u−∇× φ‖Hm(Ω) ≤ ‖u− un‖Hm(Ω) + ‖∇ × (Tun) −∇× φ‖Hm(Ω)

≤ ‖u− un‖Hm(Ω) + C‖Tun − φ‖Hm+1(Ω) → 0.

Similarly, we have

‖∇ · φ‖L2(Ω) = ‖∇ · φ−∇ · Tun‖L2(Ω) ≤ ‖Tun − φ‖Hm(Ω) → 0.

Also, the Trace theorem gives us

‖φ · n‖L2(Γ) = ‖φ · n− Tun · n‖L2(Ω) ≤ ‖φ− Tun‖L2(Γ)

≤ C‖φ− Tun‖H1/2(Γ) → 0.

Thus φ satisfies (6.3) and T is closed. By the Closed Graph Theorem, T is continuous,
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and we get the bound ‖Tu‖Hm+1(Ω) ≤ C‖u‖Hm(Ω).

With this result we are able to construct our divergence-free extension operator.

We extend u by

Ẽdivu := ∇× (ETu),

where ETu represents Stein’s extension operating on each coordinate of the function

Tu. Note that Ẽdivu is automatically divergence-free since it is the curl of a vector

field. To show that Ẽdiv : Hm
div(Ω) → H̃m

div(R
n) is continuous, consider

‖Ẽdivu‖2
eHm

div(Rn)
=

∫

Rn

‖̂̃
Edivu‖2

2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ

=

∫

Rn

‖ξ × Ê(Tu)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ

≤ C

∫

Rn

‖Ê(Tu)‖2
2

(
1 + ‖ξ‖2

2

)m+1
dξ

= C‖ETu‖2
Hm+1(Rn) ≤ C‖Tu‖2

Hm+1(Ω) ≤ C‖u‖2
Hm(Ω).

This proves the following theorem for n = 2 or 3.

Theorem 12. Let m ≥ 0 be an integer and let Ω ⊂ Rn be a simply-connected domain

with Ck+1,1 boundary, where k ≥ m is an integer. Then there exists a continuous

operator Ẽdiv : Hm
div(Ω) → H̃m

div(R
n) such that Ẽdivu|Ω = u for all u ∈ Hm

div(Ω).

Remark 2. Note that we only showed that our extension operators were continuous

for integer-ordered Sobolev spaces. We expect the same to be true for fractional-

ordered Sobolev spaces.

B. Interpolation Error Estimates

With our extensions defined, we are now able to begin estimating interpolation ap-

proximation rates. In what follows we assume that Ω is a simply-connected domain
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satisfying an interior cone condition and has a Ck+1,1 boundary. Also, we require

φ to satisfy (6.1) for some τ . The proofs will only address the divergence-free case

because are essentially the same in the curl-free case. We will begin by making use of

a recent result from Narcowich, Ward, and Wendland concerning Sobolev estimates

of functions with many zeros [25, Theorem 2.12].

Proposition 7. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and

let α be a multi-index satisfying k > |α| + n/p, or p = 1 and k ≥ |α| + n. Also, let

X ⊂ Ω be a discrete set with mesh norm hX,Ω. Then there is a constant depending

only on Ω such that if hX,Ω ≤ CΩ and if u ∈ W k+s
p (Ω) satisfies u|X = 0, then

|u|
W

|α|
q (Ω)

≤ Ch
k+s−|α|−n(1/p−1/q)+
X |u|W k+s

p (Ω), (6.4)

where (x)+ = x is x ≥ 0 and is 0 otherwise. Here the constant C is independent of

hX,Ω and u.

One can use the relation between p and q norms to get the same result for

u ∈ W k+s
p (Ω)n.

|u|
W

|α|
q (Ω)n =

(
n∑

j=1

|uj|q
W

|α|
q (Ω)

)1/q

≤ Chk+s−|α|−n(1/p−1/q)+

(
n∑

j=1

|uj|qW k+s
p (Ω)

)1/q

≤ Cn(1/q−1/p)+hk+s−|α|−n(1/p−1/q)+

(
n∑

j=1

|uj|pW k+s
p (Ω)

)1/p

= Chk+s−|α|−n(1/p−1/q)+ |u|W k+s
p (Ω)n .

We will use this to prove our first error estimate, which bounds the error for a class

of functions in the native space.

Theorem 13. Let m = dτe, and let p and q be as in Proposition 7. If f ∈ Hm(Ω) is
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divergence-free, we have

‖f − IXf‖W β
q (Ω) ≤ Ch

τ−β−n(1/2−1/q)+
X,Ω ‖f‖Hm ,

for all β satisfying 0 ≤ β ≤ τ .

Proof. The remarks after the previous lemma gives us that

‖f − IXf‖W β
q (Ω) ≤ Ch

τ−β−n(1/2−1/q)+
X,Ω ‖f − IXf‖Hτ (Ω).

Recall that in our case the native space is equivalent to H̃τ (Rn). Now we continuously

extend f to H̃m(Rn) using Ẽdiv from Theorem 12. Since m ≥ τ , we have that

Ẽdivf ∈ H̃τ (Rn). Once in H̃τ (Rn) we can use the best approximation property of the

interpolant in the native space to get

‖f − IXf‖Hτ (Ω) ≤ ‖Ẽdivf − IXf‖Hτ (Rn) ≤ C‖Ẽdivf − IXf‖ eHτ (Rn)

≤ C‖Ẽdivf‖ eHτ (Rn) ≤ C‖Ẽdivf‖ eHm(Rn)

≤ C‖f‖Hm(Ω)

Putting the above inequalities together finishes the proof.

We will also need to measure the error of the band-limited interpolant to the

RBF interpolant of f . Note that in this case f may not be in the native space.

Lemma 7. Let m, p, and q be as in Theorem 13, and let β be an integer such that

β ≤ τ . If f ∈ Hβ(Ω) is divergence-free, let fσ ∈ B̃σ be the interpolant to Ẽdivf on X

from Theorem 9 with t = 0. Then we have

‖fσ − IXfσ‖W µ
q (Ω) ≤ Ch

β−µ−n(1/2−1/q)+
X,Ω ρβ−τ

X,Ω‖f‖Hβ(Ω),

for all µ satisfying 0 ≤ µ ≤ β.
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Proof. Note that since fσ is band-limited, it is in H̃ t(Ω) for all t. Since fσ − IXfσ is

a function with zeroes on X, we get

‖fσ − IXfσ‖W β
q (Ω) ≤ Ch

τ−β−n(1/2−1/q)+
X,Ω ‖fσ − IXfσ‖Hτ (Ω).

We can estimate the right hand side using the best approximation property of IXfσ

in H̃τ (Ω):

‖fσ − IXfσ‖Hτ (Ω) ≤ ‖fσ − IXfσ‖ eHτ (Rn) ≤ ‖fσ‖ eHτ (Rn).

Since (1+‖ξ‖2
2)

τ+1 ≤ στ−β(1+‖ξ‖2
2)

β+1 for ‖ξ‖2 ≤ σ, we have the Bernstein inequality

‖fσ‖ eHτ (Rn) ≤ Cqβ−τ
X ‖fσ‖ eHβ(Rn),

which implies that

‖fσ − IXfσ‖ eHτ (Rn) ≤ Chτ−β
X,Ωq

β−τ
X ‖fσ‖ eHβ(Rn) = Cρτ−β

X,Ω‖fσ‖ eHβ(Rn).

All we have left to show is that ‖fσ‖ eHβ(Rn) ≤ C‖f‖Hβ(Ω). Using the approximation

property of fσ and the continuity of Ẽdiv gives us:

‖fσ‖ eHβ(Rn) ≤ ‖fσ − Ẽdivf‖ eHβ(Rn) + ‖Ẽdivf‖ eHβ(Rn)

≤ C1‖Ẽdivf‖ eHβ(Rn) + C2‖f‖Hβ(Ω)

≤ C‖f‖Hβ(Ω).

The result thus follows.

Now we come to our main result, which is to estimate the RBF approximation

error for divergence-free functions less smooth than those in the native space.

Theorem 14. Let m, p, and q be as in Proposition 7 and let β be a positive integer
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such that β ≤ τ . If f ∈ Hβ(Ω) is a divergence-free function, then

‖f − IXf‖W µ
q (Ω) ≤ Ch

β−µ−n(1/2−1/q)+
X,Ω ρτ−β

X,Ω‖f‖Hβ(Ω),

where µ is any real number such that 0 ≤ µ ≤ β.

Proof. Using the fact that f − IXf is a function with many zeros, we get

‖f − IXf‖W µ
q (Ω) ≤ Ch

β−µ−n(1/2−1/q)+
X,Ω ‖f − IXf‖Hβ(Ω). (6.5)

The rest of the proof will be to estimate ‖f − IXf‖Hβ(Ω). We extend f to H̃β(Rn)

by Ẽdivf . According to Theorem 9 we may select a divergence-free function fσ ∈ B̃σ

with σ = κ/qX so that fσ|X = Ẽdivf |X and

‖Ẽdivf − fσ‖ eHβ(Rn) ≤ ‖Ẽdivf‖ eHβ(Rn).

Since fσ interpolates f on X implies that IXf = IXfσ. This gives us

‖f − IXf‖Hβ(Ω) ≤ ‖f − fσ‖Hβ(Ω) + ‖fσ − IXfσ‖Hβ(Ω)

≤ ‖Ẽdivf − fσ‖ eHβ(Rn) + ‖fσ − IXfσ‖Hβ(Ω)

≤ C‖Ẽdivf‖ eHβ(Rn) + ‖fσ − IXfσ‖Hβ(Ω).

≤ C‖f‖Hβ(Ω) + ‖fσ − IXfσ‖Hβ(Ω).

Now we use Lemma 7 to get

‖fσ − IXfσ‖Hβ(Ω) ≤ Cρβ−τ
X,Ω‖f‖Hβ(Ω).

Using the fact that ρX,Ω ≥ 1, we get

‖f − IXf‖Hβ(Ω) ≤ Cρβ−τ
X,Ω‖f‖Hβ(Ω).

We plug the above inequality into (6.5) to complete the proof.
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Of course, there is an analogous theorem in the curl-free case. The proof follows

from exactly the same arguments in this section. However, we can strengthen the

result a bit by relaxing the smoothness of ∂Ω. Here we only need to assume that

the boundary is Lipschitz, while in Theorem 14 the boundary had to be Ck+1,1. The

reason for this is to ensure that the we can use the extension operator Ẽdiv.

Theorem 15. Let m, p, and q be as in Proposition 7 and let β be an integer such

that β ≤ τ . If f ∈ Hβ(Ω) is a curl-free function, then

‖f − IXf‖W µ
q (Ω) ≤ Ch

β−µ−n(1/2−1/q)+
X,Ω ρτ−β

X,Ω‖f‖Hβ(Ω),

where µ is any real number such that 0 ≤ µ ≤ β.
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CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

We have introduced a new class of matrix-valued RBFs which yield curl-free in-

terpolants. We have offered a new characterization of the native space for both

divergence-free and curl-free RBFs, based on the Fourier transform of the kernel as in

the scalar theory. This led us to the fact that when the Fourier transform of the kernel

decays algebraically, as is the case of compactly-supported Wendland functions, we

get native spaces that are subspaces of H̃τ (Rn). Also, we derived new upper bounds

on the stability of the interpolation process by estimating the norm of the inverse of

the interpolation matrix. We found that the bounds depend on the separation radius,

qX , and the smoothness of the kernel. Our results coincide with the stability estimates

of the scalar-valued theory. We proved an approximation result using band-limited

functions, and then showed that one can simultaneously approximate and interpolate

a divergence-free function with a band-limited divergence-free function. Finally, we

developed Sobolev-type error estimates when the divergence-free target function is

less smooth than functions in the native space. Also, as one might expect, for every

divergence-free result there was an analogous curl-free result.

There are several possibilities for future research in this area. One is to escape the

native space for other RBFs. Here we only dealt with native spaces that are Sobolev

spaces, such as those arising from Wendland functions. What about divergence-

free RBFs arising from other popular RBFs, such as the Gaussian or the Hardy-

multiquadric? This question has not even been answered in the case of scalar-valued

RBFs and would be of much interest.

We could also extend our results to more general domains. Our error estimates

were proved only for simply connected domains. The proofs relied heavily on the
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fact that domains without holes always have the property that divergence-free fields

have a vector potential that can be used to extend the function to the native space.

However, domains with holes never have this property. Take for example the vector

field v(x) = x/‖x‖3
2 on R3. Away from the origin, this function is divergence-free.

If one restricts this function to an annulus around the origin, it is impossible to

extend it to a divergence-free function on R3 (such an extension would violate Green’s

Theorem). Numerical tests confirm that on simply connected domains away from the

origin, one gets good approximation, but on domains surrounding the origin the

approximation properties of divergence-free RBFs break down. It should be possible

to modify the process on domains with holes in such a way that the interpolant has

good approximation properties.

As we have seen in Chapter IV, as one adds more nodes the interpolation matrix

becomes more unstable. This makes things difficult when dealing with large data

sets. To make the numerical implementation more realistic, some preconditioning is

in order. Preconditioners have been already successfully constructed for some classes

of scalar-valued RBFs [7, 12], and some of these ideas might extend to matrix-valued

RBFs.

Another avenue of research, and probably the most important, is to test the ap-

proximation properties of these functions in some real-world applications. In many

physical applications vector fields need to be divergence-free or curl-free, such as those

arising from fluids. One possible application is to apply matrix-valued RBFs to fluids

by solving the Navier-Stokes equations. This has been done in [15], where Lowitzsch

used a collocation approach to numerically solve a simple two-dimensional driven cav-

ity problem, and more examples would be valuable. Another possible application is

the Maxwell eigenvalue problem, which is used to solve problems in electro-magnetics.

Also, only collocation methods have been used to test vector-valued RBF approxi-
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mants. In the scalar theory one can also use RBFs to solve problems variationally

(see [29]), and this idea extends easily to matrix-valued RBFs. It would be interesting

to see how these methods compare on various applications.
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APPENDIX A

DIVERGENCE-FREE AND CURL-FREE FACTS

In the following we assume that Ω is a connected, bounded region of Rn with

Lipschitz boundary with n = 2 or 3.

Proposition 8. Let Ω be simply-connected. A function f ∈ L2(Ω)n satisfies

∇× f = 0

if and only if there exists a function φ ∈ H1(Ω)n such that f = ∇φ. Furthermore, if

we require that the average value of φ on Ω is zero, then φ is unique.

Proof. See [8, Theorem 2.9].

Proposition 9. Suppose ∂Ω has p connected components, and denote the connected

components of ∂Ω by Γi, 0 ≤ i ≤ p. A vector field v ∈ L2(Ω) satisfies

∇ · v = 0, 〈v · n, 1〉Γi
= 0 for 0 ≤ i ≤ p (A.1)

if and only if there exists a vector potential φ in H1(Ω) such that

v = ∇× φ.

Furthermore,

∇ · φ = 0.

Proof. See [8, Theorem 3.4].

Proposition 10. Let Ω be as in Proposition 9 and let v ∈ L2(Ω) satisfy A.1. Among

the vector potentials satisfying v = ∇× φ and ∇ · φ = 0, we can choose φ such that

φ · n = 0. When Ω is simply-connected, such a φ is unique.
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Proof. See [8, Theorem 3.5].

Proposition 11. Let Ω be a bounded open subset of Rn (n = 2 or 3) with Ck+1,1

boundary. Suppose u ∈ L2(Ω), ∇ × u ∈ Hk(Ω), ∇ · u ∈ Hk(Ω), and n · u|∂Ω ∈

Hk+1/2(∂Ω). Then u ∈ Hk+1(Ω).

Proof. See [3, Chapter 9]
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APPENDIX B

VARIOUS PROOFS

Proof of Theorem 4

Proof. We begin by noting that since f ∈ Gcurl satisfies f̂(ξ) = eξh(ξ) for some h ∈ L2,

we have

(f, f)Gcurl
= (2π)−n/2

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2φ̂(ξ)

dξ. (B.1)

Also, since φ is positive definite so is −∆φ. Then that fact that it is continuous

and L1 integrable puts its Fourier transform is in L1(R
n) [30, Corollary 6.12]. This

means that f̂ ∈ L1 for all f ∈ Gcurl. Indeed, we have

∫

Rn

|f̂j(ξ)|dξ ≤
(∫

Rn

|f̂j(ξ)|22
‖ξ‖2

2φ̂(ξ)
dξ

)1/2(∫

Rn

‖ξ‖2
2φ̂(ξ)dξ

)1/2

.

This allows us to recover f point-wise from its Fourier transform by the inverse Fourier

transform.

We now show that (·, ·)Gcurl
is an inner product. The linearity and conjugate

symmetry properties are obvious. The fact that φ̂ is positive along with (B.1) tells

us (f, f)Gcurl
= 0 implies that f = 0. Thus (·, ·)Gcurl

is positive definite and hence an

inner product.

To show completeness of Gcurl, suppose that {fn} is a Cauchy sequence in Gcurl.

This means that the sequence
{
f̂n(‖ · ‖2

2φ̂)−1/2
}

is Cauchy in L2, and so it converges

to a function g ∈ L2. Note that the function g satisfies g

√
‖ · ‖2

2φ̂ ∈ L1 ∩L2. Namely,

∫

Rn

∣∣∣∣gj(ξ)

√
‖ξ‖2

2φ̂(ξ)

∣∣∣∣ dξ ≤ ‖gj‖L2

∥∥∥‖ · ‖2
2φ̂
∥∥∥

1/2

L1

and ∫

Rn

∣∣∣∣gj(ξ)

√
‖ξ‖2

2φ̂(ξ)

∣∣∣∣
2

dξ ≤ ‖gj‖2
L2

∥∥∥‖ · ‖2
2φ̂
∥∥∥

L∞

.
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for all j = 1, . . . , n. Thus

f(x) := (2π)−n/2

∫

Rn

(
g(ξ)

√
‖ξ‖2

2φ̂(ξ)

)
eixT ξdξ

is well defined, continuous, an element of L2, and satisfies

f̂(‖ · ‖2
2φ̂)−1/2 = g ∈ L2. (B.2)

To conclude that f ∈ Gcurl, we need to show that there is a scalar-valued L2

function h such that f̂ = eξĥ(ξ). Each fn satisfies f̂n(ξ) = eξhn(ξ) for some scalar-

valued hn ∈ L2. Since the sequence
{
f̂n(‖ · ‖2

2φ̂)−1/2
}

converges to g in L2, it follows

that the sequence
{
hn(‖ · ‖2

2φ̂)−1/2
}

converges to eT
ξ g(ξ) in L2. This gives us that

h(x) := (2π)−n/2

∫

Rn

(
eT

xig(ξ)

√
‖ξ‖2

2φ̂(ξ)

)
eixT ξdξ

is well defined, continuous, an element of L2, and satisfies ĥ(ξ)(‖ξ‖2
2φ̂(ξ))−1/2 =

eT
ξ g(ξ). Now we have

‖g − eξe
T
ξ g‖L2

≤ ‖g − f̂n(‖ · ‖2
2φ̂)−1/2‖L2

+ ‖f̂n(‖ · ‖2
2φ̂)−1/2 − eξĥ(‖ · ‖2

2φ̂)−1/2)‖L2

= ‖g − f̂n(‖ · ‖2
2φ̂)−1/2)‖L2

+ ‖eξĥn(‖ · ‖2
2φ̂)−1/2 − eξĥ(‖ · ‖2

2φ̂)−1/2)‖L2

≤ ‖g − f̂n(‖ · ‖2
2φ̂)−1/2)‖L2

+ ‖ĥn(‖ · ‖2
2φ̂)−1/2 − ĥ(‖ · ‖2

2φ̂)−1/2)‖L2
→ 0.

Thus g = eξe
T
ξ g, which implies that

g(ξ) = eξĥ(ξ)(‖ξ‖2
2φ̂(ξ))−1/2.

Putting this together with (B.2) gives us that

f̂(ξ) = eξĥ(ξ),

Which means that f is curl-free and f ∈ Gcurl. Finally, we show that {fn}∞n=1 con-
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verges to f in Gcurl.

‖fn − f‖2
Gcurl

= (2π)−n/4‖f̂n(‖ · ‖2
2φ̂)−1/2 − f̂(‖ · ‖2

2φ̂)−1/2‖L2

= (2π)−n/4‖f̂n(‖ · ‖2
2φ̂)−1/2 − g‖L2

→ 0

for n→ ∞. We conclude that Gcurl is complete.

All that is left is to show that Φcurl is the reproducing kernel of Gcurl. This follows

from

(f,Φcurl(· − y)c) = (2π)−n/2

∫

Rn

(
Φ̂curl(ξ)ce

−iξT y
)∗

Φ̂curl(ξ)
+f̂(ξ)dξ

= (2π)−n/2

∫

Rn

cT Φ̂curl(ξ)Φ̂curl(ξ)
+f̂(ξ)eiξT ydξ

= (2π)−n/2

∫

Rn

cT
(
eξe

T
ξ

)
f̂(ξ)eiξT ydξ

= cT
(

(2π)−n/2

∫

Rn

f̂(ξ)eiξT ydξ

)
= cTf(x).

Proof of Theorem 5

First we will need the following Lemma.

Lemma 8. Let g ∈ L1(R
n) such that supp(g) ⊂ Ω, where Ω is a compact subset of

Rn. Then there exists a constant c depending only on Ω such that for all ‖ξ‖2 ≤ 1 we

have

|ĝ(ξ) − ĝ(0)| ≤ c‖ξ‖2‖g‖L1
. (B.3)

Proof. A quick application of the Mean Value Theorem gives us the estimate |1 −

e−iξT x| ≤ ‖ξ‖2‖x‖2. Now we have

|ĝ(ξ) − ĝ(0)| =
∣∣∣∣
∫

Ω

g(x)
(
1 − e−iξT x

)
dx

∣∣∣∣ ≤
∫

Ω

|g(x)|‖ξ‖2‖x‖2dx

= ‖ξ‖2

∫

Ω

|g(x)|‖x‖2dx ≤
(

sup
x∈Ω

‖x‖2

)
‖ξ‖2‖g‖L1

.
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Putting c = sup
x∈Ω

‖x‖2 finishes the proof.

Now we can prove Theorem 5.

Proof. Let H̃τ (Ω) be defined by

H̃τ (Ω) :=
{
f |Ω, f ∈ H̃τ (Rn)

}
.

By Proposition 1, if g ∈ H̃τ (Rn) then g ∈ Hτ (Rn). Thus g|Ω ∈ Hτ (Ω) and H̃τ (Ω) ⊂

Hτ (Ω). Also, we have

‖g‖Hτ (Ω) ≤ ‖g‖Hτ (Rn) ≤ ‖g‖ eHτ (Rn).

For the reverse direction, we must be able to extend every function g ∈ H τ (Ω) to

a function Ẽg ∈ H̃τ (Rn). For the norms to be equivalent, this extension needs to be

continuous. We will be able to construct such an extension using the above Lemma

and Stein’s extension.

A useful fact about Stein’s extension operator is that if V is any neighborhood

of Ω so that Ω̄ is compact in V , then E can be chosen so that the support of any

extended function is contained in V . Since Ω is bounded we can choose V to be a

large ball. Now fix a point x0 so that if f is any function supported in V , then the

supports of f(x) and f(x− x0) do not intersect. For g ∈ Hτ (Ω), we define our linear

extension by

Ẽg(x) := Eg(x) − Eg(x− x0).

By our choices of V and x0 we have that Ẽg|Ω = g, so Ẽ is an extension. It is

linear since E is. To show continuity, instead of the H̃τ norm we work with the

equivalent norm given in (3.5). Since the support of g is compact and g ∈ L2(R
n),

then g ∈ L1(R
n) and so is Ẽg. This makes its Fourier transform continuous, so

̂̃
Eg(0)

is well-defined. Our construction of Ẽg shows that
̂̃
Eg(0) = 0. Now we may use the
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Lemma to get

∫

Rn

|̂̃Eg|2
‖ξ‖2

2

dξ =

∫

‖ξ‖2≤1

|̂̃Eg|2
‖ξ‖2

2

dξ +

∫

‖ξ‖2>1

|̂̃Eg|2
‖ξ‖2

2

dξ

≤ c

∫

‖ξ‖2≤1

‖Ẽg‖2
L1
‖ξ‖2

2

‖ξ‖2
2

dξ +

∫

‖ξ‖2>1

|̂̃Eg|2dξ

≤ c‖Ẽg‖2
L1

+ ‖Ẽg‖2
Hτ (Rn)

≤ c‖Ẽg‖2
Hτ (Rn).

With this and the fact that E is continuous in the H τ -norm we get

‖Ẽg‖2
eHτ (Rn)

=

∫

Rn

‖̂̃Eg(ξ)‖2
2

‖ξ‖2
2

dξ + ‖Ẽg‖2
Hτ (Rn)

≤ C‖Ẽg‖2
Hτ (Rn) = 4C‖Eg‖2

Hτ (Rn) ≤ C̃‖g‖2
Hτ (Ω).

Thus Ẽ is continuous and the result follows.

Proof of Proposition 2

Proof. Containment in one direction is simple. If f = ∇× g for some g ∈ H τ+1, we

get f ∈ Hτ , it is divergence-free, and

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

dξ ≤ C

∫

Rn

‖ξ‖2
2‖ĝ(ξ)‖2

2

‖ξ‖2
2

dξ = ‖g‖2
2 <∞.

By Proposition 1, f is in H̃τ
div(R

n). The curl-free case is similar.

To show the reverse direction, suppose that f ∈ H̃τ
div(R

n). Using the fact that f

is divergence-free, we get the equality

ξ × ξ × f̂(ξ) = ‖ξ‖2
2f̂(ξ). (B.4)

Thus we define g by

ĝ :=
−i
‖ξ‖2

(
ξ × f̂(ξ)

)
.
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This function is in Hτ+1. To see this, consider

‖g‖2
Hτ+1 =

∫

Rn

‖ĝ(ξ)‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ ≤

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ <∞.

Also, using (B.4), we see that g satisfies ∇×g = f . This completes the divergence-free

case.

For the curl-free case, f ∈ H̃τ
curl(R

n) means there is a function h ∈ Hτ such that

f̂(ξ) = eξĥ(ξ). We define g by

ĝ :=
−i
‖ξ‖2

ĥ(ξ).

To see that g is in Hτ+1, consider

‖g‖2
Hτ+1 =

∫

Rn

|ĝ(ξ)|2
(
1 + ‖ξ‖2

2

)τ+1
dξ =

∫

Rn

‖f̂(ξ)‖2
2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ <∞.

Also, it is easily seen that f = ∇g. Therefore we get containment both ways, and

the proof is finished.



79

VITA

Edward J. Fuselier, Jr. was born in Portsmouth, Virginia on Febuary 24, 1978.

He received his Bachelor of Science in Mathematics from Southeastern Louisiana

University in December, 2000. He has been a graduate assistant pursuing his Ph.D.

in the Department of Mathematics at Texas A&M University from September 2001 to

the present. His permanant address is 30525 Old Baton Rouge Highway, Hammond,

LA 70403.


