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Abstract  
 Rainwater harvesting systems often include quality control systems such as a diverted 

first flush volume to improve the collected water quality. The first flush volume has traditionally 

been defined as a set volume of rain based on the first 1-2 millimeters of rain that falls on a roof. 

Diverting a volume of water can be seen as a waste when rainwater is a main source of potable 

water, sometimes leading to lack of implementation, and thus contaminating the final collected 

water. Understanding the variability of first flush volume required due to environmental 

parameters can be used to develop an optimized first flush system. This study evaluated 

rainwater catchment first flush volumes by assessing the rainwater quality over volume and time. 

To study these effects, we built a rainwater collection system on a test site in Amherst, 

Massachusetts. We performed a tracer study with the rainwater collection system to model the 

first flush volume required to wash out a dissolved contaminant. We collected four rain events 

using a fractionation first flush design. We measured water quality parameters in the atmospheric 

rain, first flush, and collection tank samples for each rain event. Our first flush samples resulted 

in elevated dissolved organic carbon (DOC) concentrations up to 40 mg/L, although there was 

high variation between the rain events. UV 254, DOC, and conductivity all trended together 

within each rain event, demonstrating a uniform wash off, of contaminants. Indicator bacteria up 

to 200 MPN/100 mL within rain event 1 and 2, indicates the need for disinfection if the water is 

to be potable. The high levels of DOC and SUVA characterization presented a concern for 

disinfection by-products (DBP) potential if the water were treated with chlorine. Higher intensity 

storms seem to increase roof wash-off deposition in the first flush. The majority of contaminants 

washed off in the first flush seemed to originate from roof wet and dry deposition, demonstrating 

the need for variable first flush volumes. Hydraulic parameters that affect wash-off, such as rain 

intensity and collection location, also led to varied first flush volumes. Considering these factors 

in the first flush volume required, could decrease treatment needs, system maintenance, and 

concern from treatment by-products.  
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1. Introduction   
Rainwater harvesting, long practiced around the world, has been of increasing interest 

globally due to initiatives around environmental sustainability, water scarcity, and stormwater 

runoff (Hamilton et al., 2019). The UNICEF and World Health Organization (WHO) Joint 

Monitoring Program, reported the number of people around the world who have access to an 

improved water source increased from 76% in 1990 to 90% in 2015 under the Millennial 

Development Goals (World Health Organization & UNICEF, 2015). Rainwater harvesting is 

considered an improved water source and can be used by rural or urban communities (World 

Health Organization & UNICEF, 2015). Rainwater harvesting systems consist of a catchment 

surface, such as impervious rooftops, a collection system made up of gutters and downspouts, a 

quality control system (could include first flush diverter, debris screens, or filters), a collection 

tank, and, finally, piping for water use (Campisano et al., 2017).  

Although rainwater harvesting is widely encouraged in many places, there is high variability 

in the water quality and system designs based on climate, collection location (canopy cover, 

proximity to pollution), and water needs (de Kwaadsteniet et al., 2013; Hamilton et al., 2019). 

There is little regulation and universal recommendations on building, maintaining, and treating 

harvested rainwater systems.  

Contamination of rainwater can originate from: 1) air wash out; 2) roof wash-off; and 3) 

collection system contamination (Fig 1). Air wash out occurs due to the acidic pH of rainwater 

that washes out airborne particles such as ash and pollution gases. Roof wash-off can transport 

both dry and wet deposition from the roof surface, including pathogens from animal droppings, 

decomposing organic matter from nearby trees and plants, and leaching of catchment material 

metals. Collection system contamination can occur from insufficient first flush, lack of 

maintenance of gutters and tank, and biofilm and organic matter buildup on tank and gutter walls 

(de Kwaadsteniet et al., 2013; Ghernaout & Elboughdiri, 2020).  

 

Fig 1. Rainwater Contamination Sources. 1 – air wash out from particles and pollution. 2- roof wash-out pushes out deposition 
on the roof surface from organic matter and animals. 3- the collection system consisting of gutters, pipes, first flush, and 
collection tank can add to contamination from lack of maintenance.  
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The purpose of first flush systems is to improve the water quality of the collected water and 

reduce tank maintenance by diverting the first wash of polluted water (de Kwaadsteniet et al., 

2013). First flush water is often sent to waste or used for washing floors or irrigation systems. 

This diverted water can be seen as a waste of water when rainwater is a source for potable use, 

sometimes leading users to omit or bypass first flush systems. Minimizing the volume of 

diverted first flush water while still maintaining the water quality of the final collection tank 

could lead to increased acceptance and use of first flush mechanisms. It is important to 

understand the many parameters that affect both microbial and chemical contamination in 

rainwater to encourage safe water use through a sustainable system design and quality control.  

Many studies recommend that first flush systems are designed to divert the first 1-2 mm of 

runoff, as pollutants from roof deposition are easily disturbed early in the rain event. (Campisano 

et al., 2017; de Kwaadsteniet et al., 2013; Kus et al., 2010). First flush systems are often geared 

to the removal of microbiological contaminants such as E. coli and Giardia lamblia, as 

consumption of waterborne pathogens can lead to acute health impacts. Chlorination along with 

a first flush system is a common and inexpensive treatment option as it inactivates many 

waterborne pathogens and is easy to use (de Kwaadsteniet et al., 2013). An analysis of first flush 

volumes in Sydney, Australia, demonstrated that the first 2 mm of rainfall allowed the final 

collection water to meet most of the Australian Drinking Water Guidelines, except for turbidity 

and lead. These levels were met by increasing the first flush to the first 5 mm.  

The study also demonstrated that rainwater organic matter concentration decreased with 

increasing volumes of first flush (Kus et al., 2010). Organic matter in rainwater is of concern 

because of the potential of disinfection by-product (DBP) formation when rainwater harvesting is 

coupled with chlorination. Natural organic matter (NOM) can come from organics in the 

atmosphere such as soil and dust, as well as plants that have come in contact with the water (D. 

A. Reckhow et al., 1990). DBPs are compounds that form from the reaction of free chlorine with 

NOM. Some chlorinated DBPs that are regulated in the U.S. are trihalomethanes (THMs) and 

haloacetic acids (HAAs) at 80 and 60 µg/L, respectively (D. Reckhow et al., 2008). THMs have 

been found to be carcinogenic, causing bladder and other cancers, leading to their regulation in 

drinking water. Increased dissolved organic matter concentrations have been found to correlate 

to higher DBP formation (D. A. Reckhow et al., 1990; Richardson et al., 2007). In conventional 

drinking water treatment, options for minimizing DBPs in consumed water include controlling 

the disinfection process as well as controlling the DBP precursors in the water; in the case of 

rainwater, removing NOM in the first flush can decrease DBP formation potential in the 

collection tank.  

Previous studies evaluating rainwater harvesting first flush systems tend to focus on the 

removal of microbiological and chemical contaminants within a defined volume to decrease 

potential negative health effects from use of the water for potable purposes. As chlorination is a 

common treatment method for the inactivation of pathogens, there is a gap in research focusing 

on removing NOM in first flush volumes and the parameters affecting the first flush volume 

required for contaminant removal. This study aims to evaluate the first flush volume needed to 
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remove NOM, through modeling first flush volume required for roof wash out and investigating 

the effects of rain intensity and collection location on the first flush volume.  

2. Materials and Methods 

2.1. Study Site  

Field experiments were conducted on the roof of the Water Energy and Technology (WET) 

Center located at the University of Massachusetts Amherst (UMass) in Amherst, Massachusetts 

(MA) at 240 Mullins Way, adjacent to the Amherst Wastewater Treatment Plant and the UMass 

Campus (Figure 3). Experiments were conducted from June through October 2020.  

The rainwater harvesting system consisted of gutters along the west side of the roof and two 

downspouts. The WET Center roof is a slanted corrugated aluminum roof, with a total roof area 

of 1600 ft2 (Fig 2). The southwest side of the study roof lies underneath a white pine tree, 

representing a canopy-covered environment during testing (Figure 3).  

 

Fig 2. WET Center Roof Dimensions 
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Figure 3. WET Center Images. a – Location of the WET Center next to the Amherst WWTP and UMass Campus. c – the test study 
roof lies directly underneath a possible contamination source, a white pine tree.  

Precipitation data were retrieved from the Prism Climate Group at Oregon State 

University, which lists daily data collected from the Westover Airforce Base weather station in 

Chicopee, MA (PRISM Climate Group, Oregon State U, 2021). Amherst, MA, received an 

average annual precipitation of 45.2 inches from 2010-2020. Monthly precipitation averages 

from 2015 to 2020 are presented in Fig 4. October 2020, had the highest total precipitation of 5.8 

inches during the sampling period in. Overall 2020 was a low precipitation year with June-

September was classified by the U.S. Drought Monitor, as a moderate drought, and October was 

an extreme drought (Amherst Conditions, 2020).We collected on-site precipitation data from a 

Rainwise RainLogger 2.0 placed 10 feet from the study roof under the open sky. The rain gauge 

works by collecting 0.01” in a tipping bucket at a time and then counts and logs the total number 

of tips per rain event (RainWise forestry-suppliers.com, 2020). 
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Fig 4. Amherst Monthly Precipitation Averages from 2015-2020 (PRISM Climate Group, Oregon State U, 2021) 

2.2. Tracer Study 

2.2.1. Background  

First, a study was performed on the roof to model the flow characteristics of the roof 

using a tracer of known concentration. The goal was to predict the first flush volume needed for 

the test area roof size based on the volume required to wash off the tracer. We used NaCl, which 

is often used as a tracer in environmental studies because it is a conservative chemical that does 

not degrade or react, is highly soluble, and is easily measured.  

2.2.2. Experimental Setup 

To simulate rain, we constructed a manifold system to pump varying flows onto the roof. 

We constructed a 10 ft manifold that provided flow down one side of the roof, creating a test 

area of 125 ft2. The manifold consisted of a nominal 1-inch inner diameter schedule 40 PVC 

pipe, and 10 downspouts created by tees, and 90-degree elbow connectors on the pipe (displayed 

in Fig 5a, before it was placed on the roof). The 10 downspouts were placed 1 ft apart to allow 

flow down the center of each channel (Fig 5). The manifold was placed on an Unistrut system 

and connected with zip ties to keep the system in place. We cleaned the test area prior to testing 

using a power washer to remove external debris.  
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Fig 5. Tracer Study manifold design. a) Manifold on the ground being built; b) flow tests of each downspout conducted on the 
roof; c) the downspouts were centered in each channel of the roof.  

The experimental setup (Fig 6) consisted of the manifold on the study roof, a pump, and 

two 55-gallon drums connected to the same pump with a t-connection to switch the pump flow 

between them. One tank contained Amherst tap water to be used as simulated rain, while the 

second tank was synthetic contaminated rainwater made by mixing Amherst tap water with 

varying doses of NaCl tracer. A pump inside the saltwater tank was used to create constant 

mixing. Flow reducers were used on the hose pumping up to the roof to simulate different rain 

intensities. Conductivity was used to measure salt concentration at the downspout of the test area 

using a conductivity probe. A sample port was constructed to allow for the conductivity probe to 

measure continuous flow, where the probe sat directly in the effluent stream with a constant 

overflow (Fig 7). 

  

c. Roof Channels b. Manifold Flow a. Manifold Design 
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Fig 6. Tracer Study system design 

 

 

 

 

  

Fig 7. Tracer Study Sample Port with the design layout (a) and the conductivity probe in a 
constant overflow port (b) 

a. Tracer Study Sample Port Design  b. Tracer Study Sample Port Overflow 
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2.2.3. Experimental Procedure  

We varied salt dose to represent changes in contaminant concentration and varied flow 

rates to mimic different rain intensities. Six experiments were conducted with pump flow rates 

varying from 4, 5, and 10 gallons per minute (gpm) and salt additions of 52, 500, and 1000 

grams to the 55-gallon drum.  

We first equalized the flow coming from each of the manifold downspouts by adjusting 

the angle of the downspout. Then we measured the time it took to fill a 1000 mL Erlenmeyer 

flask for each spout three times and averaged these times (Fig 5). The mean flow rate of all 10 

downspouts represents the average flow rate over the roof surface in gallons per minute. These 

values were converted to average rain intensity (in/hr) by dividing by the test area of 125 ft2.  

Next, initial conductivity measurements were taken in the influent tap water tanks (C0) 

and the saltwater tank (C). Saltwater was then pumped up onto the roof and through the 

manifold, with sample water channeled into the downspout. Conductivity in the effluent was 

measured every 30 seconds in an overflow sample port open to the atmosphere (Thermo 

Scientific 4-cell Conductivity). Once the effluent conductivity reached the influent conductivity 

(C), the influent tank valves were switched to pumping tap water onto the roof, marking the 

beginning of flushing. Effluent conductivity was then manually measured and recorded every 30 

seconds until the conductivity reduced to the initial tap water tank conductivity (C0). For each 

experiment, the test number, pump flow rate (gpm), average flow rate over roof surface (gpm), 

average simulated rain intensity (in/hr), and salt addition (grams) were recorded (Table 1). The 

time needed to lower the effluent conductivity from C to C0 was recorded as the time need to 

flush out the tracer contaminant.  

Table 1. Tracer Test Experiments  

Test # Pump Flow 

Rate (gpm) 

Average Flow Rate Per 

Spout (gpm) 

Average Simulated 

Rain Intensity per 125 

ft2 (in/hr) 

Salt Added (NaCl) 

per 55 gallons 

(g) 

1 10 1.01 0.78 52 

2 10 1.02 0.79 500 

3 5 0.53 0.41 500 

4 4 0.45 0.35 500 

5 4 0.49 0.38 1100 

6 10 1.01 0.78 1000 

 

2.3. Fractionation Experiment 

2.3.1. Background  

We used both the first flush estimation results from the tracer study and previously 

published work (Campisano et al., 2017) to inform the design for a first flush system in the 

fractionation method. The test area for the fractionation method was one entire side of the WET 

Center roof with a total area of 800 ft2. Based on the average first flush volume result from the 

tracer study and the 2 mm runoff “rule of thumb” estimated first flush volume (Kus et al., 2010), 
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we chose a first flush system of 40 gallons. We designed and implemented a fully functional first 

flush system at the WET Center, named the Bois’ Eau de Plui. Our design purpose was to 

fractionate the first flush water to create a profile of the first wash out over both time and 

volume.  

2.3.2. Experimental Setup  

We designed our 40 gallons of first flush to be split into eight 5-gallon buckets to create a 

fractionated profile. Rainwater collected on the roof would flow down into the gutter system, 

with the middle downspout covered, and into a 2-inch inner diameter schedule 40 PVC pipe that 

then flowed into the five-gallon bucket first flush system (Fig 8). The five-gallon buckets were 

made of high-density polyethylene (HDPE) plastic. The design allows for the buckets to fill 

consecutively, so that once each bucket is filled the rest of the precipitation can flow over and 

into the 55-gallon collection tank. A vent consisting of a 2-inch pipe placed between the 

downspout and fractionation buckets allowed the system to depressurize before filling the 

buckets, thus reducing bucket lid malfunctions.  

 

Fig 8. Fractionation Test System Design  
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A plastic collection bucket was placed on the study roof to collect atmospheric rainwater 

that did not contact the collection system. These samples are used as a control to compare 

contaminants that are deposited on the collection system itself. The collection system includes 

the WET Center roof, the gutters, piped system, first flush buckets, and the collection tank (Fig 

9). Rain intensity data was collected in real-time using the Rainwise RainLogger placed 10 feet 

from the collection system.  

 

2.3.3. Experimental Procedure  

The experimental method for each rain event allowed rainwater to flow into the 

collection system, with an overflow on the collection tank if more than 95 gallons were 

collected. Samples were collected from each fractionation bucket and the collection tank. The 

samples were taken in 250 mL amber jars from each fractionation bucket. Samples were 

collected by removing the lid and mixing the bucket with a 1-inch piece of pipe that had been 

cleaned with deionized water (DI) to obtain a representative sample of both dissolved and settled 

contaminants. The jars were placed directly in the buckets to collect the water. If the collection 

tank was full, two samples were taken from the collection tank: one from the top of the tank and 

the other from the bottom overflow valve, and reported values are an average of the two samples. 

We also collected an atmospheric sample from a bucket located on the roof to have a 

representative sample that did not touch the collection system, which we refer to subsequently as 

“raw” rainwater. 

System maintenance after sampling included dumping and draining excess collected 

water from the collection system and cleaning the fractionation buckets, atmospheric sample 

bucket, and collection tank with DI water. The gutter was cleaned out periodically when large 

settlements of debris collected on top of the gutter guard by removing clumps of leaves and tree 

deposits.  

Four precipitation events were captured. The samples from the atmospheric rain, 

fractionation buckets, and collection tank were compared by measuring the following water 

a. Rain Logger b. Fractionation Setup 

Fig 9. The Fractionation Experiment included a) an onsite rain gage and b) the rainwater harvesting setup with our unique first flush design. 
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quality parameters: pH, conductivity, UV 254, and total and dissolved organic carbon. Total 

coliform and E. coli were measured in a subset of buckets. The precipitation event number, the 

date, and the average rain intensity are outlined in Table 2.  

 

Table 2. Fractionation Experiments  

Rain Event  Date  
Average Rain 

Intensity (in/hr)  

1 9/2/2020 0.13 

2 9/10/2020 0.27 

3 9/29/2020 0.02 

4 10/29/2020 0.06 

 

2.4. Canopy Method  

2.4.1. Background  

Following the fractionation method, we investigated the effect of the collection 

environment on dry and wet deposition in our collected rainwater. We accomplished this by 

splitting the gutter system into the two downspouts. The first downspout is at the center of the 

study roof and the second directly under the white pine tree. Figure 10 demonstrates the 

difference in deposits on the roof when looking at the area above downspout #2 (underneath the 

tree, left) and downspout #1 (on the right). Notably, more pine needles and organic matter are 

sitting on the left side of the roof.  

 

Figure 10. Roof Deposits. Pine needles and other organic matter debris can be seen on the study site roof.  
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2.4.2. Experimental Setup and Design  

 

Fig 11. Canopy Design  

For this experiment, we converted the gutter to PVC pipe using the downspout 2” PVC 

adapter and directing each downspout directly into a 55-gallon drum with an overflow port (Fig 

11). We collected three precipitation events. Two 250 mL composite samples were collected 

from both collection tanks for each precipitation event, as well as an atmospheric rain sample. 

The samples from each tank were then compared to investigate canopy drip effects by measuring 

pH, conductivity, UV 254, and total and dissolved organic carbon.  

Table 3. Canopy Experiments 

Rain Event  Date  
Average Rain 

Intensity (in/hr) 

1 10/7/2020  0.22 

2 10/13/2020 0.37 

3 10/16/2020  0.09 

 

2.5. Analytical Method  

2.5.1. pH and Conductivity   

The pH and conductivity of samples were measured immediately after sample collection 

in 250 mL amber bottles (fractionation and canopy method) using the Orion Star A215 

pH/Conductivity Benchtop Multiparameter Meter with Atlas Scientific Lab Grade pH probe and 

the Thermo Scientific 4-cell Conductivity probe. 
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2.5.2. Natural Organic Matter Measurements  

Ultraviolet absorbances at 254 nm (UV254) are a surrogate measurement of NOM 

concentration in water. UV254 was measured after filtering with a 0.4 µm syringe filter on the 

Hach DR6000 Laboratory Spectrophotometer.  

Samples were tested for total organic carbon (TOC) and dissolved organic carbon (DOC) 

following Standard Methods Method 5310 (“5310 Total Organic Carbon (Toc),” 2018). DOC 

samples were first filtered through a 0.4 µm syringe filter and then run on the Schimadzu TOC-

VCPH Total Organic Carbon Analyzer. Calibration of the instrument was performed using a 10 

mg/L potassium hydrogen phthalate standard and dilutions at 5, 2, 1, and 0.5 mg/L. Milli-Q 

ultrapure water was used for dilutions and blanks. Samples were analyzed in duplicate, with each 

sample having multiple injections, and the mean value was reported with a standard deviation 

less than 0.05. 

Specific ultraviolet absorbance (SUVA254) was calculated by dividing UV254 (m
-1) by 

DOC (mg/L), to give SUVA (L/ mg-m). SUVA represents the nature of NOM, with a higher 

SUVA representing hydrophobic NOM (SUVA >4), while a lower SUVA (<2) demonstrates 

hydrophilic organics. (American Water Works Association & James Edzwald, 2011) 

2.5.3. Biological Activity  

Total coliform and E. coli were tested using IDEXX Colilert Quanti-Trays 2000, to 

quantify the most probable number (MPN) of viable bacteria cells per 100 mL of sample. 

Samples were incubated at 35°C for 24 hours. The samples were collected directly from the 

rainwater catchment fractionation buckets, collection tank, and atmospheric plastic bucket.  

3. Results  

3.1 Tracer Study Results 

We first calculated a mass balance of NaCl to determine if our study was representative in 

flushing out the tracer. The initial salt concentration in the salt tank was calculated using the 

recorded mass of NaCl added to the 55-gallon tank and converting to concentration (mg/L). We 

then calculated the amount of salt recovered by integrating the entire area under the curve in the 

plot of conductivity versus time for each test (Figure 13). At least 90% of the salt was recovered 

in the six simulated rain tests (Figure 12). In test 6 there was 110 more grams recovered than 

dosed, which may be due to running multiple tests in a row and excess salt from previous test 

being washed off.  
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Figure 12. Tracer Study Mass Balance. The yellow columns represent the salt dosed into the influent tanks while the red columns 
demonstrate the mass of salt recovered based off the effluent conductivity.  

The tracer study was performed to calculate an expected first flush volume needed for our study 

roof. We plotted conductivity versus time for each test and calculated the amount of first flush 

volume required based on the time to reach the tap water conductivity within 90 percent of C0. 

(Figure 13). 

 

Figure 13. Tracer Test 1 Conductivity vs. Time. The shaded area is the time from when flushing with tap water began to when 
the conductivity stabilized to the initial conditions.  

We determined the first flush volume required by integrating from the time when the tap water 

was turned on until initial conditions were reached (Equation 1).  
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V = (Average flow) x (Time to reach C
0
)                               (Equation 1) 

This volume was for the test roof area of 125 ft2; we scaled up the calculated volume to the entire 

roof area of 800 ft2 by multiplying by 6.4 to find the calculated first flush volumes required for 

the entire study area (Table 4). 

Table 4. Tracer Study First Flush Results 

Test # Average 

Simulated Rain 

Intensity per 125 

ft2 (in/hr) 

Salt Added  

(NaCl) per 

55 gallons 

(g) 

First Flush Volume 

Required (gals) 

1 0.78 52 19.48 
2 0.79 500 32.76 
3 0.41 500 27.15 
4 0.35 500 30.12 
5 0.38 1000 42.27 
6 0.78 1000 51.91 

 

We investigated the effect on required first flush volumes by varying the salt 

concentration and rain intensities, where salt is meant to represent varying concentrations of 

dissolved contaminants. We compared calculated first flush volume required to salt added 

(Figure 14). First flush required results were proportional to increasing salt dose. We also 

compared rain intensity at both a low (500 grams) and a high (1100 grams) salt dose (Figure 15) 

and found that a lower intensity led to less required first flush volume and that, again, the volume 

required was proportional to increasing salt dose.  

 

Figure 14. First Flush Volume versus Salt Addition  
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Figure 15. First Flush Volume Required versus Rain Intensity 

We used the first flush volumes from the tracer study to inform our subsequent fractionation 

method design with an average predicted first flush volume of 33 gallons for the study area of 

800 ft2.  

3.2  Fractionation Results  

Four fractionation rain events were collected to evaluate the first flush volumes needed for 

contaminant removal. The rain intensities and dry period durations were evaluated for each 

measured rain event, based off the days since a rainstorm of 0.1 inches or more (Fig 16). Rain 

event 1 and 4 had an average rain intensity of 0.13 and 0.06 in/hour respectively and relatively 

short dry period. Rain event 2 had the highest rain intensity, while rain event 3 had the lowest 

intensity of 0.06 inches an hour and a prior dry period of 18 days (Table 5).  

Table 5. Fractionation Experiments  

Rain Event  Date  

Average 

Rain 

Intensity 

(in/hr)  

Dry 

Period 

Duration 

Roof Maintenance  

1 9/2/2020 0.13 3.00 
Power washed 

prior to event  

2 9/10/2020 0.27 6.00 None 

3 9/29/2020 0.02 18.00 
Gutters cleared out 

after event  

4 10/29/2020 0.06 1.00 None  
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Fig 16. Rain events, rain intensity, total rain, and days since last rain. The bars represent the total rainfall in each rain event 
during the fractionation experiment. The blue color intensity correlates to the average rain intensity in inches/hour for each 
event. The four events that were collected in the fractionation experiment are outlined in red. Rain data shown was collected 
from the rain gauge.   

To determine if our first flush volume was successful in increasing the collected water 

quality, we measured the conductivity, UV 254, and DOC within the fractionated first flush 

volume for each rain event (Fig 17). 
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Fig 17. Fractionation results. The rows demonstrate the measurements of conductivity, UV 254, and DOC and the colors represents the unique rain events. 

The x-axis represents each bucket in the rainwater collection system, with R as the raw rainwater, buckets1-8 represent the first flush buckets, and C as the 

55-gallon collection tank. The time it took to fill buckets 1-8 is represented on the time x-axis in minutes, with bucket 1 filling first. In rain event 3, the 

collection tank did not fill so no data was collected for C. In rain event 4 the raw DOC level was 0 mg/L.  
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The measured water quality parameters follow similar trends within each bucket within a 

given rain event. For example, in rain event 3, bucket 3 and 5 shows a drop in conductivity, with 

corresponding drops in UV 254 and DOC in the same buckets. When comparing across each of 

the rain events, there is a general trend where the raw water has the lowest concentrations, 

increasing concentrations in the first flush buckets, and decreasing concentrations in the 

collection tank. 

  

Fig 18. Fractionation of DOC. The DOC concentration across the raw rainwater, the eight first flush buckets, and the collection 
tank for each of the rain events.  
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Fig 19. Fractionation of DOC deposited on the roof. These DOC concentrations were calculated by subtracting the atmospheric 
(raw) DOC concentration from each sample, to represent only the roof deposition DOC value.  

Fig 18 shows the concentration of DOC in each rain event from the raw rainwater to the 

collection tank. Prior to rain event 1, the test site roof and gutters were power washed, therefore 

likely removing deposition. In rain event 1 the DOC throughout the first flush fractionation was 

consistent with the raw rainwater, demonstrating that there was little roof wash off dry or wet 

deposition. In Fig 19 the DOC levels were all less than 5 mg/L, demonstrating that the DOC 

measured in the first flush were majority atmospheric DOC.  

Rain event 2 was a high intensity storm after a six-day dry period, where it did not rain more 

than 0.1 inches. The DOC results for this storm demonstrated that the DOC concentration 

increased in bucket 1 and 2 to approximately 10 mg/L, then decreased in the collection tank to 5 

mg/L (still above the raw level of 3.5 mg/L). Fig 19 results suggest that roof deposition DOC 

likely made up the majority of measured DOC in buckets 1-3, such as in bucket 1 where the 

measured concentration was 12 mg/L and the roof deposition was then 9 mg/L. In bucket 4, the 

DOC collected was at the same concentration of the atmospheric rain, and then the roof 

deposition DOC concentration increased in the later buckets.  

Rain event 3 was the lowest intensity storm measured and had the longest dry period of 18 

days. Longer times without rain allows for roof deposition, such as pine needle debris, to build 

up. Rain event 3 had the highest observed concentrations of DOC, at 40 mg/L (Fig 18). The rain 

intensity was very low, resulting in the wash out of roof deposition likely occurring in the later 
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buckets (7 and 8), and the collection tank did not fill the entire 55 gallons. The raw DOC 

concentration at 0.01 mg/L was lower than during rain event 1 and 2, but the first flush 

concentrations were much higher, demonstrating that DOC is likely originating from deposition 

in the roof and collection system, as seen when comparing Fig 18 and 19.  

During rain event 4, raw rainwater had 0 mg/L of DOC, with an increase in the fractionated 

buckets up to 11 mg/L, and a subsequent decrease in the collection tank to 3 mg/L. This suggests 

that the organic matter washed off from the roof surface was concentrated in the early buckets 

and decreased by 8 mg/L throughout the 40 gallons of flushing.  

None of the measured rain events achieved DOC levels in the collection tank matching the 

raw rainwater concentrations; the closest was rain event 2 where the collection tank was 1 mg/L 

higher than the raw rainwater. 

We investigated the effect of rain intensity on the washout of DOC in the first flush by 

graphing the average rain intensity (interpreted from the time it took to fill each bucket) and the 

DOC concentration (Fig 20). The rain intensity data was collected from the onsite rain gauge that 

can take per-minute data by measuring how many times a 0.01-inch bucket was filled.  

 

Fig 20. DOC and intensity in the first flush. These figures demonstrate the average rain intensity and DOC concentration over the 
time in each rain event. Each data point corresponds to the time it took to fill a fractionation bucket of 5 gallons. The bars 
represent the average rain intensity over the time it took to fill each bucket, while the points represent the DOC concentration 
(mg/L) measured in the fractionation bucket.  

 Rain event 1 filled the full 40 gallons of first flush after 55 minutes. Although the average 

rain intensity differed by bucket, the DOC concentration stayed consistent, suggesting that there 

little roof wash off needed to occur. Rain event 2 was a high intensity event and filled the 

buckets in 11 minutes. The DOC concentration decreased slightly in bucket 6 when the intensity 

decreased and increased again with increasing intensity. Rain event 3 had variable intensities per 
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bucket and took 218 minutes to fill the first flush. The changes in DOC concentration per bucket 

did not correlate with the changes in intensity. Rain event 4 took 99 minutes to fill the first flush 

and demonstrated a steady decrease of DOC concentration from bucket 1 to 8, from 11 to 4 

mg/L.  

The DOC and intensity values for bucket 1 were similar between every rain event 

(approximately 11 mg/L), suggesting that the first bucket is most likely to receive DOC from a 

similar source such as the gutter section right next to the downspout. Comparing the four rain 

events in Fig 20, demonstrates that the rain intensity per bucket, does not directly affect the 

collected DOC concentration. When looking at the effect of the overall rain event intensity, the 

results demonstrate that rain event 2, the highest intensity storm at 0.27 in/hr, provided collection 

tank water with a DOC concentration closest to the raw water level (1.3 mg/L difference). 

Higher intensity rainfall may better wash out particulate contaminants such as pine needles 

within the first 40 gallons of first flush.  

 

Fig 21. UV and SUVA during the first flush. The bars represent the UV 254 concentration per bucket and the points are the SUVA 
values over the time it took to fill each bucket.  

We investigated UV 254 and SUVA values within each first flush bucket to characterize the 

NOM in the collected rainwater (Fig 21). The overall SUVA values were within the range of 2-4 

L/mg-m with an outlier in rain event 3. Lower SUVA means the NOM is more likely hydrophilic 

and the range from 2-4 L/mg-m has a mixture of hydrophobic and hydrophilic NOM (American 

Water Works Association & James Edzwald, 2011). The EPA Guidelines for drinking water 

DBP states that a SUVA value greater than 4 is associated with high UV, high chlorine demand, 

and high THM formation potential (US EPA, 2015b). Rain event 1 had a consistent SUVA 

(approximately 2 L/mg-m), demonstrating that the NOM was likely atmospheric. During rain 
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event 2, SUVA was in the mid-range (2-4 L/mg-m), which can be interpreted as NOM collected 

from a mixture of both atmospheric and roof deposition. For rain event 3, SUVA were all below 

2 L/mg-m, with the outlier (6 L/mg-m) in the fifth bucket. The NOM that built up during the dry 

period came from both atmospheric and the collection system. Rain event 4 generally had a 

SUVA less than 2 L/mg-m. 

In rain event 2, the SUVA increased when the intensity dropped; however, this phenomenon 

was not observed in rain events 3 or 4. This could be due to the irregular DOC concentrations in 

rain event 3 and the overall intensity of the storm event. SUVA and DOC data demonstrated that 

rain event 3 would have higher potential for DBP formation if chlorinated because of the 

quantity of DOC and the hydrophobic condition of the DBP precursors.  

 

Figure 22. Total Coliform and E. coli Fractionation Results. The fractionation of indicator bacteria is displayed on a log-10 scale. 
The lower method detection limit was < 100 MPN / 100 mL, thus all results reported at 100 MPN are below this value, indicated 
by the cross hatch.  

Indicator bacteria samples for fecal contamination were collected for rain event 1 and 2 from 

the raw rainwater, buckets 1,4, 8 and the collection tank. Coliforms are bacteria commonly found 

in soil and natural waters, while E. coli is more specific indicator of potential human or animal 

feces ((World Health Organization, 2017). Total coliform and E. coli concentrations are 

indicators of microbial quality. Their presence is source of microbial contamination or, in the 

case of E.coli, suggest the presence of pathogenic microorganisms that could cause waterborne 

illness. The EPA Total Coliform Rule, states that total coliform and E. coli maximum 

contaminant level goal to be 0 CFU/ 100 mL (US EPA, 2015a).  

In both rain events, the E. coli concentration increased from the raw and first buckets to the 

collection tank from <100 MPN/100 mL to 200 MPN/100 mL, demonstrating that the first flush 

was insufficient in removing indicator bacteria from the final collected water. Contamination 

could have come from bucket contamination or the sample collection method, as the system was 

not sterilized between rain events. However, the presence of E. coli in the collection system 

demonstrates the need for disinfection in the rainwater if the water is to be used for potable use.  
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The simplest and most common form of disinfection of rainwater is chlorine, either through 

adding chlorine tablets or bleach to the collection tank (Campisano et al., 2017). The risk of 

adding chlorine when natural organic matter is present is the formation of DBP. Organic matter 

reacts with the free chlorine to create chlorinated species such as THM and HAAs. Our collected 

rainwater resulted in high DOC of up to 13 mg/L in the collection tank during rain event 1, and 

25 mg/L in bucket 8 during rain event 3. In the EPA’s 2008 report, “Long-Term Variability of 

NOM as Precursors in Watershed Sources”, a cumulative frequency plot for the estimation of 

THM formation from carbon precursors in surface water, was reported (D. Reckhow et al., 

2008). Using this plot and considering rainwater as a surface water and a cumulative frequency 

of 50% (e.g. 50% of the carbon in the water would react with chlorine to produce THMs), we 

estimated that the specific THM concentration in our water would be 25 µg of THMs per 1 mg 

of carbon. This assumes that chlorine dosing would align with a simulated distribution system. 

Using this estimation, THM concentrations could be up to 300 µg/L in rain event 1 and 600 µg/L 

in rain event 3, both exceeding the EPA regulation of 80 µg/L. This is a rough estimate, as 

rainwater differs in makeup compared to surface water.  The average pH in measured rainwater 

was around 5.5, while a simulated distribution system would be 7.5-8.5. Future tests directly 

measuring THM formation potential in rainwater samples could confirm this estimation.  

4.1 Canopy Drip  

After measuring high concentrations of DOC in our fractionation experiment, we 

investigated the source of the NOM in our collected rainwater. After splitting our collection 

system into two separate downspouts collected from the two different roof areas (one under the 

white pine tree, and one not), we collected composite samples from two collection tanks, one 

directly under canopy drip of the white pine tree and the other under open sky. Three events were 

collected with varying rain intensities (Table 6). The difference between the roof depositions can 

be seen in Figure 23, where the south side of the roof underneath the white pine (left) had a much 

higher concentration of pine needles on the roof surface and on the gutter guard.  

Table 6. Canopy Rain Events  

Rain Event  Date  

Average 

Rain 

Intensity 

(in/hr) 

1 10/7/2020  0.22 

2 10/13/2020 0.37 

3 10/16/2020  0.09 
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Figure 23. Canopy Roof Conditions. The figure on the right shows the gutter guard removed on a section for the photo, to see the 
pine needles that passed through.  

 

Figure 24. Canopy Drip DOC results.  

 The DOC concentrations measured in water from the collection tank under the tree 

resulted in up to six times the concentration of DOC. Additionally, the gutter under the white 

pine clogged, potentially leading to more stagnant water and increasing the time for leaching 
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NOM, increasing the DOC concentration. Since our fractionation experiment was set up directly 

under the canopy, it is likely that the water collected in the first flush was represented of the 

concentrated NOM water under the white pine, as it was closest to the downspout. Future work 

could perform the fractionation experiment on the non-canopy side of the roof, to measure 

whether the NOM concentrated water would be delayed in the collection. These results 

demonstrate that the location of a rainwater harvesting system should likely account for canopy 

drip, and ideally a roof not directed covered by a tree.  

4. Discussion  
The tracer study was conducted to inform the first flush volume required for the test study 

roof. Our results from the NaCl tracer in a test area of 125 ft2 resulted in an average first flush 

volume required of 33 gallons for the entire 800 ft2 study roof. We also found that increasing the 

tracer salt dose was directly proportional to the first flush volume required, the greater the salt 

dose, the more volume required. This aligns with the study conducted in Australia where 

rainwater organic matter decreased in the collection tank when first flushed volume increased 

(Kus et al., 2010). Lower simulated rain intensity was related to a smaller required first flush 

volume, likely due to a longer contact time of the water and contaminants on the roof. In this 

study we were modeling an ideal, dissolved contaminant with a freshly cleaned roof. This study 

did not consider the variability of air wash out, roof wash off, and buildup of deposition from dry 

periods. It did, however, result in an average volume requirement of 33 gallons, similar to the 

“2mm rule” (40 gallon) estimate in the literature, based on the idea that most particles are 

washed off in the beginning of the storm runoff (Campisano et al., 2017; de Kwaadsteniet et al., 

2013; Kus et al., 2010). Although this tracer study method provided a baseline, we later found 

that most contaminants originate from roof deposition and not the raw rainwater itself. Future 

work could test this theory by conducting a tracer study by scattering the NaCl on the roof to 

model roof wash off.  

The fractionation experiment was designed based on the tracer study results and the 2mm 

runoff guideline and was designed as a first flush system with a capacity of 40 gallons for our 

800 ft2 collection site. Our four collected rain events demonstrated that the first flush was 

successful in diverting concentrated water as the collection tank concentrations were less than 

the average first flush values. The 40-gallon volume was not sufficient to decrease conductivity, 

UV254, and DOC to the low levels of the raw rainwater. However, conductivity, UV 254 and 

DOC wash out all trended together within the four rain events, demonstrating a uniform wash out 

of roof deposition. The high concentrations of DOC in our samples due to the collection system 

environment may have led to an increased first flush volume required. The canopy drip 

experiment suggests that most of the DOC concentration was likely from the canopy and pine 

needle deposition from the white pine tree located directly above the downspout for the 

fractionation experiment. Lower intensity storms, such as rain event 3, seemed to increase the 

required first flush volume, although, since this storm was also after the longest dry period, we 

do not know if the need for higher flush volumes was due to rain intensity or time between rain 

events. The higher intensity storm rain event 2, resulted in collection water with a DOC 

concentration closest to that of the raw rainwater.  
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When looking at first flush volumes and the removal of DBP precursors, we did not see a 

reduction of UV 254 and DOC within our rainwater harvesting system. We did find high 

concentrations of indicator bacteria, suggesting the need for treatment such as chlorine for 

potable use. The concern of DBP formation with a canopy covered rainwater harvesting 

environment is elevated due to the higher dry deposition. Using the EPA’s cumulative frequency 

plot for THM precursors in surface water, we estimated the potential of DBP formation upwards 

to 7.5 times the EPA limit for potable water, leading to a high concern of chlorination with this 

system. Future tests directly measuring THM formation potential in rainwater samples could 

confirm this estimation.  

Overall, we found that the first flush volume required is variable and should not be a “one 

size fits all” model only dependent on collection roof size. The volume should take into 

consideration parameters that can lead to increase in contamination from the three categories of 

air wash out, roof wash-off, and collection system contamination. Our results demonstrated that 

most of the contamination within our first flush originated from roof wash off. This dry and wet 

deposition is dependent on environmental factors including nearby sources of deposition, 

seasonal variation, and time since previous rain. Our microbiological results could be due to both 

roof wash-off and collection system contamination, while this is dependent again on dry period 

duration, animal activity, and system maintenance. It is also important to consider parameters 

that affect the hydraulics of wash off such as rain intensity and collection location. Taking these 

factors into consideration could lead to decrease in treatment needs, system maintenance, and 

concern from treatment by-products as well.  

One limitation of this study is that all tests were performed in the Northeast United States on 

the same sampling roof, leading to unique conclusions for these specific conditions. The specific 

contaminants of this study site, such as the white pine tree and atmospheric levels, led to the 

specific results. Sampling for these experiments took place from June- October 2020, with July-

September classified as a moderate drought and October an extreme drought month by the U.S. 

Drought Monitor (Amherst Conditions, 2020). Due to the drought conditions, it was difficult to 

collect enough rain events with similar conditions. The variability in the rain events collected 

complicated comparisons between events. Also, the first flush volume was capped at 40 gallons, 

which was our estimate for washing out contaminants; however, a larger volume first flush was 

likely required. The collected events were primarily in the fall season, so seasonality data is 

lacking in our results.  

Taking these results and limitations into consideration, future work on this study could 

include performing a tracer study to model roof-wash off volumes by spreading the solid tracer 

on the roof rather than dissolved. Collecting more rain events using the fractionation system, 

with varying intensities and seasonal variation, could help generalize trends observed in this 

study. Furthermore, sampling rain events with the fractionation setup under the non-canopy side 

would inform the hydraulics of the first flush water.  Increasing the total fractionation volume to 

more than 40 gallons could allow for measuring whether collected water quality concentrations 

decreased to the raw level. Based off the estimation from this study for the high potential of DBP 

formation, it would be insightful to conduct experiments where rainwater samples are dosed with 
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chlorine and THM and HAA concentrations are measured to understand their formation potential 

in acidic rainwater. Overall, future work could lead to a first flush volume equation that allows 

for the calculation of a variable first flush volume based on the parameters of rain intensity, dry 

period duration, location, and maintenance of the system, and the ranking of these parameters 

effects, to optimize the volume of first flush that needs to be diverted for each rain event or 

season.  

5. Rainwater Catchment Experiments  
We learned valuable lessons from performing rainwater dependent experiments that could be 

useful in future work.  

• First, creating experimental controls is extremely difficult when working with the 

variability of rain events. Moving forward, it is recommended to develop a defined 

maintenance method for creating an experimental control.  

o Consistent method of cleaning the gutters before each event 

o Develop a method of categorizing roof debris  

• Increase the volume of the first flush system to obtain a larger profile of air and roof 

wash off.  

o Increase number of buckets, or 

o Increase the size of buckets since 40 gallons was insufficient, start out with 10-

gallon buckets, then decrease the volume of subsequent buckets 

• Perform a dye test to map out the hydraulic route of collected water on the roof.  

o Start out by placing dye on each channel of the roof and collected both simulated 

rain events using the manifold and real rain events to see what water is collected 

in the first flush and collection tank first.  

• Atmospheric collection container needs to be thoroughly cleaned immediately prior to 

rain collection to limit contamination.  

• A remote starter if using an autosampler to collect timed samples (rain start times often 

differ from predictions).   

• Rain predictions for both intensity and occurrence are highly varied (weather forecasts 

are often inaccurate). An onsite rain gauge was essential for accurate intensity data, and it 

is recommended to collect data with it for the entirety of a sampling period.  

• It may be important to measure E. coli and turbidity in every collected storm, which are 

useful for direct public health applications. It also may be useful to directly measure 

metals and DBPs concentrations.   

• Novel rainwater harvesting technology ideas could include:  

o Wire gutter guards with a tiny gap between the roof and the gutter guard to only 

allow the flow of water and not pine needles, or   

o Green roof first flush system that is connected to radar that adjusts first flush 

volume by shutting off a valve to diverted tank based off rain intensity and dry 

period duration data  
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6. Conclusion  
The goal of rainwater first flush systems is to divert the concentrated water from the final 

collection tank. This study aimed to evaluate the effects of rain intensity, dry period duration, 

and collection location to determine if first flush volumes can be catered to specific 

conditions, to encourage implementation. The results demonstrated that the predicted 40 

gallons of first flush for the 800 ft2 roof was insufficient to wash out the deposited NOM 

from the collection surface and ensure that water collected for use resembled the water 

quality observed in atmospheric rain. A decreased rain intensity and increased dry period 

resulted in increased DOC levels in the first flush. These high levels of DOC are a concern 

when considering chlorination for a possible treatment method due to likely DBP formation. 

Other alternatives for disinfecting rainwater containing high organic matter are boiling water 

or UV disinfection. This study demonstrates that a rainwater collection system design should 

be dictated by the specific characteristics of both atmospheric rainwater and collection 

system deposition. In our case, the collection system was located under a canopy drip which 

requires that the first flush system focus on removing roof wash-off contamination. A 

rainwater system in an area of high air pollution would need to focus more on an air washout 

design and pH control. Understanding the mechanisms that affect contamination within 

collected rainwater could lead to optimized first flush systems, reducing the overall treatment 

needs and maintenance of this system, while providing quality potable water.  
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