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ABSTRACT

Generic Programming in Scala. (December 2006)

Olayinka N'guessan, B.S., Minnesota State University, Mankato

Chair of Advisory Committee: Dr. Jaakko J�arvi

Generic programming is a programming methodology that aims at producing

reusable code, de�ned independently of the data types on which it is operating. To

achieve this goal, that particular code must rely on a set of requirements known

as concepts. The code is only functional for the set of data types that ful�ll the

conditions established by its concepts. Generic programming can facilitate code reuse

and reduce testing.

Generic programming has been embraced mostly in the C++ community; major

parts of the C++ standard library have been developed following the paradigm. This

thesis is based on a study (by Garcia et al.) on generic programming applied to other

languages (C#, Ei�el, Haskell, Java and ML). That study demonstrated that those

languages are lacking in their support for generic programming, causing di�culties

to the programmer.

In this context, we investigate the new object-oriented language Scala. This

particular language appealed to our interest because it implements \member types"

which we conjecture to �x some of the problems of the languages surveyed in the

original study. Our research shows that Scala's member types are an expressive

language feature and solve some but not all of the problems identi�ed in the original

study (by Garcia et al.).

Scala's members types did not resolve the problem of adding associated types to

the parameter list of generic methods. This issue led to repeated constraints, implicit
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instantiation failure and code verbosity increase. However, Scala's member types

enabled constraint propagation and type aliasing, two signi�cantly useful generic

programming mechanisms.
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CHAPTER I

INTRODUCTION

Generic programming is a language-independent programming paradigm where al-

gorithms are not expressed in terms of particular types but in terms of concepts

(properties of types). Generic programming aims at achieving high degree of code

reusability and reduced code verbosity without sacri�cing performance. The domain

of reusable libraries of software components is one area where generic programming

has proven to be particularly e�ective [1, 2].

Generic programming started to gain momentum since the inclusion of the Stan-

dard Template Library (STL) [3] in the C++ standard library in 1994. Several li-

braries such as the Boost Graph Library (BGL) [4] and the Matrix Template Library

(MTL) [5, 6] have been developed using the generic programming methodology. C++

has been the prime language used for such generic libraries. Even though C++ re-

mains the most commonly used language for implementating generic libraries, various

languages possess generic programming enabling features.

The starting point of this thesis is the comparative study conducted in [7] that

evaluated the suitability of di�erent mainstream programming languages (C++ [8],

C# [9, 7], Ei�el [10], Haskell [11], Java [12] and ML [13]) for generic programming.

In that study, eight language features essential to generic programming were identi-

�ed [7]:

1. Multi-type concepts

2. Multiple Constraints

The journal model is IEEE Transactions on Automatic Control.
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3. Associated type access

4. Retroactive modeling

5. Type aliasing

6. Separate Compilation

7. Implicit Instantiation

8. Concise Syntax

A problem area for the object-oriented languages proved to be the lack of support for

accessing associated types (we give a detailed de�nition of associated types in Chapter

II). The studied object-oriented languages lack a direct mechanism to support access

to associated types. As a work-around, one adds associated types to the parameter

list of generic methods and classes. This results in an increase in the code verbosity.

Scala [14], a recently introduced object-oriented language was not part of the

languages studied in [7]. Scala supports generics similarly to Java and C#; but unlike

these languages, Scala supports \member types". We conjectured that these member

types would su�ce in expressing and accessing associated types. Consequently, this

thesis investigates Scala's support for generic programming with a particular focus

on associated types using member types.

To conduct our study, we have implemented a model library by extracting a

small but signi�cant example of generic programming from the Boost Graph Library.

The result of the analysis of our implementation constitute the main points of this

thesis. The result of this thesis serve on one hand to language designers and on the

other hand to library writers who desire to follow the generic programming approach

in developing software libraries in Scala.
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This thesis has been organized as follows: Chapter II gives a detailed presentation

of generic programming including its problems, Chapter III briey describes the Boost

Graph Library, Chapter IV presents the Scala programming language, Chapter V

describes our implementation and analysis of the Boost Graph Library in Scala, and

Chapter VI sums up the �ndings of our work.
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CHAPTER II

GENERIC PROGRAMMING

1. Generic Programming: De�nition

Generic programming is a branch of computer science that focuses on �nding abstract

representation of useful algorithms, data structures and software concepts with the

goal of making them adaptable for direct use in software construction. The following

list explains the key ideas of generic programming [15]:

� Designing algorithms with minimal assumptions about data abstractions and

expressing data abstractions with minimal assumptions about the algorithm

that will use them.

� Abstraction should not sacri�ce e�ciency when lifting a concrete algorithm to

a more generic level; performance should stay the same.

� Providing specialized forms of algorithms if a single algorithm is not e�cient

enough for all uses of an algorithm, while ensuring that the most e�cient spe-

cialized form is automatically chosen when possible.

� Supporting several generic algorithms for the same purpose if there is no single

algorithm that would provide the best e�ciency for all inputs.

� Providing a precise characterization of the abstractions of a particular domain,

such that the abstractions enable the de�nition of useful and e�cient algorithms

in that domain.

Generic programming can also be viewed as a program design and implementation

methodology that separates data structures and algorithms through the use of ab-

stract requirement speci�cations [4]. Generic algorithms are expressed in terms of
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properties of types instead of in terms of particular types. A generic algorithm can

thus be reused with any type that embodies the necessary properties. The way to

express such properties of types is done with concepts [16].

2. Concepts

The principal notion of generic programming is the notion of a concept. A concept is

the formalization of an abstraction as a set of semantic and syntactic requirements

on one or more types [9, 17]. When a type, or types, satisfy the requirements of a

concept we say that those types model the concept. A concept typically consists of

four di�erent kinds of requirements [9]: associated types, function signatures, semantic

invariants and complexity guarantees.

1. Associated types are generally de�ned to be auxiliary types related to the type

that models the concept. The associated types of a concept specify mappings

from the modeling type(s) to other collaborating types (for example, mapping

from a container type to the type of its elements) [9].

2. Function signatures (or valid expressions) specify the operations that must be

implemented for the modeling type. Calls to functions and operators de�ned

with these signatures must be syntactically valid for any types that model the

concept [4].

3. Semantic invariants are run-time properties of objects or values of the modeling

and associated types that must always be true. The invariants often take the

form of preconditions and post-conditions [4].

4. Complexity guarantees are maximum limits on the execution time complexities

of the valid expressions, or limits on how much other resources their computation
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uses [4].

In this thesis we focus on the �rst two components of concepts as Scala's type system

cannot express semantic invariants or complexity guarantees.

A fundamental notion that we need in this thesis is the notion of re�nement

between concepts. A �rst concept is said to re�ne a second concept if the �rst concept

includes all the requirements of the second concept. Thus, if a type is a model of a

particular concept, it is also a model of all the concepts that the particular concept

re�nes.

3. Constraining Type Parameters with Concepts

Concepts allow the concise expression of constraints on type parameters of generic

algorithms [18]. When a generic method or class is de�ned, one may apply restrictions

to its type parameters. The purpose of such restrictions is to guarantee that when the

algorithm is instantiated with some concrete types, those same concrete types support

all the methods that the generic method uses. In other words, those constraints are

requirements that the types must satisfy, so as not to produce a compile-time error

or a run-time error in the body of the algorithm.

Di�erent languages provide di�erent ways of representing concepts and using

them to constrain type parameters. Consider the following Scala example:

def methodA[T <: SomeClass] (x: T) : T = {

x.foo();

}

This particular example shows a method called methodA that takes the value x of

type T as input and makes a call to the foo method de�ned in T or in one of its

superclasses. The constraint on the type parameter T is expressed with the syntax:

[T <: SomeClass]. This simply means that the method methodA requires that type
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T must be a subtype of type SomeClass. In Scala, SomeClass can be a class or a

trait (see Chapter IV), and the \type models a concept" relation is thus expressed as

\type is a subtype of a trait."

Constraints allow methods to be separately type-checked. This means that at

compile-time the type-correctness of a method's body is veri�ed against the con-

straints of the method.

4. Goals of Generic Programming: Maximal Reuse and E�ciency

One of the key advantages of generic programming is maximal reuse of classes and

methods resulting in an increase in programmer productivity. The principal language

mechanism applied is type parameterization. Consider the two non-generic functions

in Figure 1. The swapint method takes as input the parameters x and y of type int,

and the swapstring method takes as input the parameters x and y of type String.

Both int and String are speci�c types, both subtypes of the type Any. It would

be time-consuming and counter-productive to write a swap method for every single

distinct type.

def swapint(x: int, y:int) : Unit = {

// This method swaps values x and y of type int.

var temp = x; x = y; y = temp;

}

def swapstring(x: String, y:String) : Unit = {

// This method swaps values x and y of type String.

var temp = x; x = y; y = temp;

}

Fig. 1. Code redundancy.

A way to solve this problem is to write a single generic method that is param-
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eterized, and that works for any type that supports assignment. This is guaranteed

by the constraint that T must be a subtype of Any:

def swap[T <: Any] (x: T, y: T) : Unit = {

// This method swaps values x and y of any type.

var temp = x; x = y; y = temp;

}

This swap method can be used with any type that is a subtype of the datatype Any

(int, String and many more).

The goal of generic programming is to generalize software components (classes

and methods) so as to facilitate their reuse [19]. In software engineering, reusability is

de�ned as the degree to which a software module can be used in more than one soft-

ware system with very little or no modi�cation [20]. If one single method is written

such that it can be applied on a multitude of types that satisfy all of its requirements,

then that method becomes potentially reusable in many context. Reusable classes

and methods reduce implementation time, cost and testing which is essential to e�-

cient software development. Generic programming has the potential to realize these

reductions.

5. Problems in Supporting Generic Programming

The study done in [7] reports a general comparison of six programming languages

(C++ [8], Generic Java [12], C#, Ei�el [10], ML [13, 21, 22], Haskell [11]) in their

ability to support programming following the generic programming paradigm. The

comparison was based on experiences collected from implementing a signi�cant por-

tion of the Boost Graph Library (BGL) [4] in each of the six languages.

One of the main results of the comparative study was that some mainstream

object-oriented languages (like Java and C#) have di�culties expressing important

aspects of generic programming. In particular, these include: access to associated
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types, constraint propagation (we also refer to this as the problem of repeated con-

straint), type aliases and implicit instantiation. We next discuss each of these issues

in more detail.

a. Access to Associated Types

An associated type requirement in a concept expresses that a type name must be

accessible from the \main" types modeling the concept. As an example, consider

a graph type: its associated types could be its vertex type and its edge type. In

other words, for every graph type, it must be possible to access its vertex and edge

types. Many object-oriented languages such as Generic C#, Java or Ei�el, do not

support associated types directly. Associated types can, however, be represented as

type parameters of interfaces and classes. This may unfortunately lead to verbose

code: associated types that are not properly encapsulated in generic interfaces, must

be written explicitly every time the interface or class is referred to. For example,

associated types become parameters of generic methods, whether the associated types

are needed in the method's implementation or not.

An example of a language mechanism that is capable of expressing associated

types is the trait class mechanism [7, 23]. This technique, introduced by Nathan

Myers [23], is one of the essential techniques used in generic programming in C++ [4].

b. Repeated Constraints

For languages like C#, Java and Ei�el, that use subtyping as their mechanism to

establish re�nement, the problem of repeated constraints arise. Consider the following

Generic C# example inspired by [7]:

interface A<T extends Someclass> { }
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class B {

public static <U, V extends A<U>>

}

Note the constraint on the type parameter T in class A. We do not repeat the

constraint for type parameter U in class B. This seems reasonable, because the type-

checker will have to check that U conforms to the restriction de�ned in A, when type-

checking the constraint V extends A<U>. However, the code above fails to typecheck

because the type-checker cannot use this information and thus U does not implement

the class Someclass. It becomes necessary to repeat the constraint on the type U

again in the de�nition of class B. The corrected version is as follows:

class B {

public static <U,

V extends A<U extends Someclass> >

}

This constraint repetition leads to code verbosity as the number of constraint in-

creases.

There is certain degree of correlation between the lack of associated types and the

problem of repeated constraints: If a language does not directly support associated

types, they may still be accessed in a generic function if they are added to the type

parameter list. Unfortunately, this then implies that not only does one have to repeat

all type arguments every time one refers to a generic interfaces, but one also has to

repeat all constraints on those type arguments.

c. Type Aliases

Type aliasing is the ability of a programming language to allow a programmer to

choose an alternative name for a type. This mechanism is very helpful, especially when

the parameterization of components introduces long type names, because it improves
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code readability. For example, C++ uses the syntax typedef to realize type aliasing.

In the following example the complicated type property_map<G,PropertyTag> can

be simply referred to with Map:

typedef typename property_map<G, PropertyTag>::type Map;

The need to repeat complex types increases the probability of error. Type aliases

come in handy to avoid long type name repetition and to allow type abstraction

without losing static type accuracy [7].

d. Implicit Instantiation

Implicit instantiation is the ability of a compiler to use the types of the function

arguments to automatically deduce the types that should be bound to type parame-

ters during instantiation, without the programmer needing to explicitly specify those

types.

Consider the example with Generic C# in Figure 2.

In the case of explicit instantiation, it is necessary to explicitly specify the types

of the values 3 (int) and 6.0 (double). This task becomes more tedious as the

number of type parameters increases. In the case of implicit instantiation, there is no

need to specify the types of the arguments. Consequently, the verbosity is reduced. In

languages that lack implicit instantiation (i.e. Ei�el), representing associated types

as type parameters will worsen the wordiness of the code.

6. Scala Member Types

We investigated Scala so as to evaluate how well this new programming language

handles the problems of generic programming that have previously been described.

Before we engaged ourselves into this task, we had some assumptions:
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public class someclass {

public static void go<T, U>(T a, U b) {

if (a == b)

{

return true;

}

else

{

return false;

}

}

}

someclass bfs = new someclass;

//instantiating the class someclass bfs.go<int, double>(3, 6.0);

//explicit instantiation bfs.go(3,6.0); //implicit instantiation

Fig. 2. Implicit and explicit instantiation in C#.

� Scala has traits, so it was natural to research how this language can express

concepts. Note that Scala traits are like Java interfaces, but they allow de-

fault implementation of the required methods. Traits in Scala are thus entirely

unrelated to the C++ traits.

� Scala is often considered to be a \Java-like" language, it was then expected that

implicit instantiation would be fully supported like it is in Java.

� Scala has member types that could potentially serve as associated types just

like in C++. Consequently, it was also anticipated that member types would

serve as a type aliasing mechanism.

These were the aspects we focused on in our evaluation.
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CHAPTER III

SCALA BOOST GRAPH LIBRARY DESCRIPTION

The Boost Graph Library (BGL) [4] is an extensible and widely used C++ generic

library that was developed following the generic programming paradigm. It uses

similar forms of documentation and coding conventions as the (STL) [24]. Interfaces

(concepts) are central to the BGL because similarly to the STL iterator concepts,

BGL de�nes a set of graph concepts that enables graph algorithms to be written

independently of the particular data types they operate on [4]. The BGL implements

a large selection of generic graph algorithms and data structures.

In this thesis, we implemented a subset of the BGL in Scala so as to evalu-

ate Scala's support for generic programming. This subset was chosen because it

demonstrates many typical situations found in generic libraries, and thus serves as a

stress-test for the implementation language. For example, all the chosen algorithms

are highly parameterized, generic algorithms are called from within other generic

algorithms, etc.

We implemented the following graph concepts from the BGL:

� VertexListGraph

� IncidenceGraph

� EdgeListGraph

Moreover we used the Read Map and Read/Write Map concepts (which are variants

the property map concepts) so as to provide a convenient way to express relations

between graph elements and domain-speci�c data [7]. For example, the edge of a

graph may have a weight that may symbolize a distance or some type of quantity;

property maps provide a way to express such quantities.
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We implemented the following generic algorithms from the BGL:

� Breadth First Search

� Depth First Search

� Dijkstra's Shortest Paths

� Bellman-Ford Shortest Paths

� Johnson's All-Pairs Shortest Paths

� Prim's Minimum Spanning Tree

Additionally, the above generic algorithms use three auxiliary generic algorithms that

are internal to the library:

� Graph Search

� DFS Graph Search

� Relax

The Graph Search algorithm is used by the Breadth First Search and Dijkstra's Short-

est Paths algorithms. The DFS graph search algorithm is used by the Depth First

Search algorithm. Bellman-Ford Shortest Paths algorithm relies on Relax. Finally,

the Dijkstra's Shortest Paths is used by both Johnson's All-Pairs Shortest and Prim's

Minimum Spanning Tree algorithms. All the generic graph algorithm that we use are

parameterized with a graph type that must model both the Incidence Graph and the

Vertex List Graph concepts.

Figure 3 taken from [7], illustrates the graph algorithms we implemented, their

relationship and their ideal parameterization. A large rectangle corresponds to an
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algorithm and the attached small boxes represent its type parameters. An arrow

from an algorithm to another signi�es that the �rst algorithm uses the second one.

Finally, an arrow from a type parameter to an un-boxed name means that the type

parameter must model the concept.

Breadth-First Search
G

<uses>

Dijkstra Shortest Paths
G D W < +

<uses>

Johnson All-Pairs
G W < +

<uses>

<uses>

Prim Min Span Tree
G D W <

<uses>

Graph Search
G VisB

Incidence Graph

<models>

Vertex List Graph
<models>

Bellman-Ford Shortest Paths
G D W < +

Edge List Graph

<models>

Read-Map
Read/Write-Map

<models>
<models>

Read/Write-Map

<models>

Read-Map

<models>

C

Read/Write-Map
<models>Vertex List Graph

<models>
Vis

BFS Visitor

<models>

Visitor

<models>

Bag
<models>

C

Read/Write-Map

<models>

Fig. 3. Boost Graph Library generic algorithm organization and parameterization

In our implementation, we were able to respect the relationship between the algo-

rithms. However, we were not able to respect the ideal parameterization of Figure 3.

We had to add more parameters to the graph algorithms because of the issues of

expressing associated types, described in Chapter V.



16

CHAPTER IV

THE SCALA LANGUAGE

1. Motivation

Scala has been developed between 2001 and 2004 by Martin Odersky in the program-

ming methods laboratory at EPFL (�Ecole Polytechnique F�ederale de Lausanne). He

has co-designed and implemented the Pizza [25] and GJ [26] extensions of the Java

language. Scala is a modern multi-paradigm programming language designed to ex-

press common programming patterns in a concise, elegant and type-safe way [14].

Additionally, Scala is said to smoothly fuse features of object-oriented and functional

languages [14]. Scala targets the construction of components and component system,

which is an elusive goal of the software industry [27]. Scala is the result of a research

e�ort to develop better language support for component software. Scala was designed

to be compatible with mainstream platforms such as Java and .NET.

2. Basic Language Features

In Scala, every value (including functions) is an object, so Scala can be character-

ized as a pure object-oriented language. The superclass of all classes is scala.Any

which has two direct subclasses [14]. Its �rst subclass scala.AnyVal corresponds

to primitive types such as integers and oating point numbers. Its second subclass

scala.AnyRefs corresponds to reference classes (i.e user-de�ned classes) [14].

User-de�ned types can be de�ned with classes or traits. Classes are static tem-

plates that can be instantiated into many objects at runtime [14]. The example in

Figure 4 illustrates how classes (and methods) are de�ned in Scala. The class Point

de�nes two variables (x and y) and two methods, move and toString. The return
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class Point(xc: Int, yc: Int) {

var x: Int = xc;

var y: Int = yc;

def move(dx: Int, dy: Int): Unit = {

x = x + dx;

y = y + dy;

}

override def toString(): String = "(" + x + ", " + y + ")";

}

Fig. 4. Scala classes and method de�nition.

type Unit for the function move corresponds to the void type, say, in Java. This

implies that function move does not return anything.

The example in Figure 5, taken from [14], illustrates the syntax of class instantia-

tion and method calls. In the case of class instantiation, pt is an instance of the class

object Classes {

def main(args: Array[String]): Unit = {

val pt = new Point(1, 2); // class instantiation

Console.println(pt);

pt.move(10, 10); // method calls

}

}

Fig. 5. Scala class instantiation.

Point; pt may use all the methods de�ned in that class. Note the di�erence between

val and var constructs: val de�nes a constant and var an updatable variable.

Similar to Java interfaces, traits are used to de�ne interfaces of object types

by specifying the signature of the methods that the object types must support [14].

Unlike java interfaces, Scala traits allow methods to have a default implementation.
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Contrary to classes, traits cannot have constructors. Traits are what we will use

in Scala to represent concepts. The following example illustrates the mechanism of

traits:

trait Similarity {

def isSimilar(x: Any): Boolean;

def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

Traits collect a set of method signatures. Classes that inherit from a trait have to

provide an implementation for all the signatures declared in the trait. This corre-

sponds to the mechanism of trait integration which is analogous to implementing

interfaces in Java. In the above example, any classes integrating this trait will have

to implement the method isSimilar. Note that the method isNotSimilar has a

default implementation which will be used if an integrating class does not provide an

implementation for this method.

The following example shows how traits are integrated:

class Point(xc: Int, yc: Int) extends Similarity {

// Trait integration

var x: Int = xc;

var y: Int = yc;

def isSimilar(obj: Any) =

obj.isInstanceOf[Point] &&

obj.asInstanceOf[Point].x == x;

}

Trait integration is expressed using the extends keyword. Here, the method isSimilar

is provided with an implementation. The method isNotSimilar is generated by the

default implementation.

Class abstractions can be extended by subclassing. The sub-classing mechanism

is very similar to that of Java or C++. Subclassing is also expressed with the keyword
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extends. The following example illustrates class extension and method overloading

in Scala:

class Point(xc: Int, yc: Int) {

val x: Int = xc

val y: Int = yc

def move(dx: Int, dy: Int): Point =

new Point(x + dx, y + dy)

}

class ColorPoint(u: Int, v: Int, c: String) extends Point(u, v) {

val color: String = c;

def compareWith(pt: ColorPoint): Boolean =

(pt.x == x) && (pt.y == y) && (pt.color == color)

def move(dx: Int, dy: Int): ColorPoint =

new ColorPoint(x + dy, y + dy, color);

}

Note that in this example, Point is the superclass of ColorPoint and ColorPoint

is a subclass of Point. This implies that the class ColorPoint inherits all members

from its superclass Point. In other words, ColorPoint inherits the values x, y, as

well as the method move.

Also, note that ColorPoint implements two methods : compareWith (which

determines whether two points are identical) and move (which returns a new point

with new coordinates). The move method of the class ColorPoint overrides the move

method of the class Point. Note that the move methods have di�erent signatures:

Covariant return types are allowed.

Access to the superclass's overridden member function is using the keyword

super. The inherited method move (of the point class) can thus be accessed as:

super.move(...) [14].
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3. Features Relevant to Generic Programming

a. Polymorphic Methods

In Scala, methods can be parameterized with both values and types. Value parameters

are enclosed in a pair of parenthesis, while type parameters are declared within a pair

of brackets. The following example shows a recursive method dup that takes as input

a value of arbitrary type T and an integer (n). This method returns a list containing

n duplicates of the value of the type T:

object PolyTest extends Application {

def dup[T](x: T, n: Int): List[T] = {

if (n == 0) Nil

else x :: dup(x, n - 1)

}

// method call

Console.println(dup[Int](3, 4));

// method call with type inference

Console.println(dup("three", 3));

}

Method dup is parameterized with type T and with the value parameters x: T

and n: Int. When a generic method is called, the programmer can either specify

the type arguments explicitly, or let the compiler infer them from the types of the

actual arguments to the method. The �rst call to dup shows an example of specify-

ing arguments explicitly and the second call illustrates an example of inferring type

parameters [14].

b. Generic Classes

In addition to parameterized methods, Scala also supports parameterized classes. The

example below shows how a stack class is implemented generically in Scala [10].

class Stack[T] {

var elems: List[T] = Nil;
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def push(x: T): Unit = elems = x :: elems;

def top: T = elems.head;

def pop: Unit = elems = elems.tail;

}

This class Stack is represented internally as a list. When the stack class is instanti-

ated, elems is an empty list. Method push appends an element at the beginning of

the list elems. The methods top and pop, respectively, return the �rst element of

the list and the rest of the list without its �rst element. The next example shows the

use of this stack class.

val stack = new Stack[Int]; // instance creation

stack.push(1);

c. Variance Annotation

In Scala, subtyping of generic types remains invariant. This means that Stack[T] is

a subtype of Stack[S] if and only if S = T. Scala allows however, type parameters

annotations (\variance annotation") to control the subtyping behavior of generic

types.

In co-variant subtyping [28], if T is a subtype of type S then Stack[T] is a

subtype of Stack[S]. In contra-variantsubtyping [28], if T is a subtype of type S then

Stack[S] is a subtype of Stack[T]. Co-variant and contra-variant subtyping hold if

type parameters are explicitly annotated with variance annotations.

The annotation +T declares that the type parameter T is co-variant. Co-variant

subtyping is not type-safe in general, so a co-variant parameter can only be used

in co-variant positions. Similarly, -T declares that the type parameter T is contra-

variant. Contra-variant subtyping is not type-safe in general, so a contra-variant

parameter can only be used in contra-variant positions. Method result type positions

are categorized as co-variant, method argument positions and upper type parameter
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bounds are classi�ed as contra-variant [27]. Scala's type system detects violations of

these rules by keeping track of the positions where a type parameter is used [27].

Even though variance annotation is an interesting mechanism regarding generics,

we have not identi�ed it to be a key feature in our BGL implementation.

d. Upper and Lower Type Bounds

In Scala, the type parameters can be restricted using a lower or an upper bound. An

upper type bound T <: A declares that the arbitrary type T is a subtype of type A.

This declaration enables objects of type T to use methods declared in class or trait A.

Consider the example in Figure 6. The method findSimilar works for only classes

or traits that inherit from the trait Similar. Its inputs are some value e and a list.

The method returns a boolean based on whether or not an instance of e is found.

The method isSimilar is made usable for the object e of type T with the upper type

bound expression T <: Similar.

A lower bound T >: A expresses that type T is a supertype of type A. We have

found no signi�cant use of lower bounds in our BGL implementation.

e. Abstract Type Members

Abstract types members are types whose identity is not precisely known. Consider

the following code:

abstract class AbsCell {

type T;

val init: T;

private var value: T = init;

def get: T = value;

def set(x: T): unit = { value = x}

}
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trait Similar {

def isSimilar(x: Any): Boolean;

}

case class MyInt(x: Int) with Similar {

def isSimilar(m: Any): Boolean =

m.isInstanceOf[MyInt] &&

m.asInstanceOf[MyInt].x == x;

}

object UpperBoundTest with Application {

def findSimilar[T <: Similar](e: T, xs: List[T]): Boolean = {

if (xs.isEmpty) false

else if (e.isSimilar(xs.head)) true

else findSimilar[T](e, xs.tail);

}

val list: List[MyInt] = List(MyInt(1), MyInt(2), MyInt(3));

Console.println(findSimilar[MyInt](MyInt(4), list));

}

Fig. 6. Type bounds in Scala.

The AbsCell class does not de�ne any type or value parameters. Instead it has

an abstract type member T. Instances of AbsCell can be created by binding all

abstract members to concrete de�nitions|including the type member T. The following

example shows how an abstract class is instantiated, and used, with respect to the

previous code snippet:

val cell = new AbsCell {type T = int; val init = 1;}

cell.set(cell.get * 2)
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CHAPTER V

BGL IMPLEMENTATION IN SCALA

To realize generic programming in Scala, we need to represent essential notions of

generic programming with the language constructs o�ered by Scala. For this we make

use of Scala's classes, abstract classes, traits, polymorphic methods, and abstract

types members. In particular, we use:

� traits to represent concepts

� inheritance between traits to represent re�nement between concepts

� <: symbol to represent that a type models a particular concept and to represent

constraints on type parameters and associated types

� member types to represent associated types

� parameterized methods to represent generic algorithms

In this chapter, we describe how we applied these Scala features in the BGL imple-

mentation, and analyze their suitability for generic programming.

Note that we have used the Scala 1.4.0.3 compiler [14] to realize our implementa-

tion. The changes that have been made to later Scala versions should not signi�cantly

a�ect our BGL implementation.

1. Concepts as Traits

The means to group a set of constraints, valid expressions and associated types, is

encapsulating them into a Scala trait, as function signatures and member types, re-

spectively. The three traits that represent the graph concepts described in Chapter III

serve as an example (see Figure 7).



25

trait VertexListGraph {

type Vertex;

type VertexIterator <: Iterator[Vertex];

def vertices: VertexIterator;

def num_vertices: int;

}

trait IncidenceGraph {

type Vertex;

type Edge <: GraphEdge;

type OutEdgeIterator <: Iterator[Edge];

def out_edges(v: Vertex): OutEdgeIterator;

def out_degree(v: Vertex): int;

}

trait EdgeListGraph {

type Edge <: GraphEdge;

type EdgeIterator <: Iterator[Edge];

def edges: EdgeIterator;

}

Fig. 7. Scala concepts.

These graph concepts contain method signatures and member types. As one

may observe, none of the methods have an implementation; classes that inherit from

these traits must provide an implementation for the methods. The associated types

(Vertex, Edge, EdgeIterator and OutEdgeIterator) are directly expressed as mem-

ber types of the traits representing the graph concepts. Furthermore, member types

can be constrained with subtype constraints which can be seen, for example, in the

Edge member of the IncidenceGraph trait: Edge type inherits from the GraphEdge

trait shown in Figure 8.
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trait GraphEdge {

type Vertex;

def source: Vertex;

def target: Vertex;

}

Fig. 8. GraphEdge trait.

2. Concept Re�nement in Scala

Concept re�nement is represented using inheritance between traits. BGL de�nes a

bidirectional graph concept [4]. An incidence graph is a directed graph that can be

represented by a list of all the outgoing edges for each vertex of the graph. On the

other hand, a bidirectional graph is an incidence graph that can also be represented

by a list of all the incoming edges for each vertex of the graph. This implies that the

incidence graph concept is a re�nement of the bidirectional graph concept. Conse-

quently, with respect to the de�nition of the IncidenceGraph trait in Figure 7, we

may de�ne the BidirectionalGraph trait as follows:

trait BidirectionalGraph extends IncidenceGraph {

type InEdgeIterator <: Iterator[Edge];

def in_edges(v: Vertex): InEdgeIterator;

def int_degree(v: Vertex): int;

def degree(e: Edge): int;

}

Observe that the BidirectionalGraph trait inherits all the types and methods of

IncidenceGraph trait.

3. Modeling Relation in Scala

Using Scala, we can express that a type models a concept by inheriting from the

trait corresponding to the concept. The example in Figure 9 shows parts of the
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implementation of an adjacency list data structure (adjacency_list) that mod-

els the VertexListGraph, IncidenceGraph, and EdgeListGraph concepts. Since

class adjacency_list extends VertexListGraph

with IncidenceGraph

with EdgeListGraph {

type Vertex = int;

type Edge = adj_list_edge {type Vertex = int};

type VertexIterator = Iterator[int];

type OutEdgeIterator = Iterator[Edge];

type EdgeIterator = Iterator[Edge];

def vertices: Iterator[int] = {

vertices_.Iterator;

}

...

}

Fig. 9. Adjacency list class.

the adjacency_list models all the graph concepts presented in Figure 7, it auto-

matically inherits all the associated types of those concepts, namely Vertex, Edge,

VertexIterator, OutEdgeIterator, and EdgeIterator, to which it must bind con-

crete types.

Observe that we equate concrete types int, adj_list_edge {type Vertex = int},

Iterator[int], Iterator[Edge], and Iterator[Edge] to the inherited member

types Vertex, Edge, VertexIterator, OutEdgeIterator, and EdgeIterator, re-

spectively. Similar to type members, classes inheriting from the graph concepts will

have to provide implementations for the methods that those graph concepts require.

In Figure 9, we only show the implementation of the vertices method, required by

the VertexListGraph concept. In our full implementation of the adjacency list data

structure, we provide de�nitions for all required methods.
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The main data structure that we used to represent graphs in our BGL imple-

mentation was the adjacency list. In order to remain consistent with previous imple-

mentation of the BGL [7], we have chosen an implementation where the vertices are

of type int.

4. Generic Algorithms

Scala does not support \free-standing" functions. Instead, all functions are members

of some class or object. Scala supports both parameterized classes and parameterized

methods. Generic algorithms can thus be represented either as non-generic methods

of generic classes, or as generic methods of non-generic classes. We chose to use the

latter: we represent generic algorithms with parameterized methods. The former

choice would have ruled out Scala's type inference mechanism discussed later. Fig-

ure 10 shows an example of a generic algorithm in Scala. We name the class enclosing

the parameterized function to indicate the algorithm: here, breadth_first_search.

By convention [7], we name the parameterized function as go.

To call a generic algorithm means creating an instance of the enclosing class, and

invoking the go method for this object. The object of the breadth_first_search

class has, however, no role in the implementation of the algorithm. Hence, we would

like to make go a static method. Unlike in Java, static methods are not supported in

Scala. However, the Scala programmer can declare a method in a singleton object. In

that way, method call would simply be using the object name. Consider the example

in Figure 11. Observe that using a singleton object skips the instantiation process.

We could have made the breadth_first_search class an object so that we could

have accessed the generic method go with the syntax breadth_first_search.go.

However, the version of Scala that we have used for our implementation (version

1.4.0.3) did not allow us to put our generic method within singleton objects. The
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class breadth_first_search {

def go[Vertexb,

Edgeb <: GraphEdge {type Vertex = Vertexb;},

VertexIteratorb <: Iterator[Vertexb],

OutEdgeIteratorb <: Iterator[Edgeb],

Graphb <: VertexListGraph with IncidenceGraph

with EdgeListGraph

{type Vertex = Vertexb; type Edge = Edgeb;

type OutEdgeIterator = OutEdgeIteratorb;

type VertexIterator = VertexIteratorb},

Visb <: Visitor

{type Graph = Graphb ; type Vertex = Vertexb;

type Edge = Edgeb;},

ColorMapb <: ReadWritePropertyMap

{type Key = Vertexb; type Value = int},

QueueTypeb <: Buffer{type Value = Vertexb}]

(g: Graphb ,s: Vertexb, vis: Visb ,color: ColorMapb ): Unit = {

.....

}

}

Fig. 10. Breadth-�rst-search.

invocation of the breadth-�rst-search algorithm is thus as follows:

val bfs = new breadth_first_search;

bfs.go[Vertexb, Edgeb,

VertexIteratorb, OutEdgeIteratorb,

Graphb, PrintingVisitorb,

Colormapb, Queuetypeb]

(g, 3, visitorb, colorb);

Note that in addition to the method parameters we also explicitly pass the type

parameters to the breadth-�rst-search algorithm. In general, there are two ways to

invoke generic functions: implicit and explicit instantiation. With implicit instanti-

ation, type parameters are inferred from the type of the method's arguments. With
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// method in a class

class bfs1 {

def go1: Unit = {}

}

// method in a singleton objects

object bfs2 {

def go2: Unit = {}

}

object testing extends Application {

// class instantiation

var bfs1instance = new bfs1;

bfs1instance.go1;

// using the singleton object

bfs2.go2;

}

Fig. 11. Singleton objects versus classes.

explicit instantiation, the programmer has to explicitly state the type parameters.

With implicit instantiation, the call in Figure 10 could be written as:

breadth_first_search.go(g, 3, visitorb, colorb);

In this case, type parameter inference, should deduce the types Vertexb, Edgeb,

VertexIteratorb, OutEdgeIteratorb, Graphb, PrintingVisitorb, Colormapb and

Queuetypeb from the types of the arguments g, 3, visitorb and colorb, and hence

avoid specifying them explicitly. Unfortunately, we were not able to make use of

implicit instantiation. In Section 5 of this chapter and in Chapter VI, we discuss how

Scala's type inference mechanism was not adequate for our purposes.
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class breadth_first_search {

def go[Vertexb, Edgeb <: GraphEdge {type Vertex = Vertexb;},

VertexIteratorb <: Iterator[Vertexb],

OutEdgeIteratorb <: Iterator[Edgeb],

Graphb <: VertexListGraph with IncidenceGraph

with EdgeListGraph

{type Vertex = Vertexb; type Edge = Edgeb;

type OutEdgeIterator = OutEdgeIteratorb;

type VertexIterator = VertexIteratorb},

Visb <: Visitor {type Graph = Graphb; type Vertex = Vertexb;

type Edge = Edgeb;},

ColorMapb <: ReadWritePropertyMap

{type Key = Vertexb; type Value = int;}]

(g: Graphb, s: Vertexb, vis: Visb, color: ColorMapb): Unit = {

var Q: queue {type Value = Vertexb;}

= new queue {type Value = Vertexb;};

var u_iter: VertexIteratorb = g.vertices;

val ColorValue = new ColorValue;

val gs = new graph_search;

while(u_iter.hasNext) {

var u: Vertexb = u_iter.next;

vis.initialize_vertex(u, g);

color.set(u, ColorValue.white);

}

gs.graph_search[Vertexb, Edgeb, VertexIteratorb, OutEdgeIteratorb,

Graphb, Visb, ColorMapb, queue {type Value = Vertexb;}]

(g, s, vis, color, Q);

}

Fig. 12. Scala breadth-�rst-search.

5. Analysis of Generic Programming in Scala

The mapping from generic programming notions to Scala language constructs suggests

a direct mechanism for implementing generic libraries. We encountered, however,

several obstacles when applying the mapping to implement BGL. We illustrate these

problems by focusing on the implementation of the breadth-�rst-search algorithm as

it demonstrates all the interesting aspects of the di�culties encountered.

Figure 12 shows the full implementation of the breadth-�rst-search algorithm.
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The implementation is clearly not ideal with respect to generic programming.

In particular, one notices the abundant type parameters and constraints on them.

By contrast, rigorously following the mapping described above would have given the

implementation shown in Figure 13. This implementation, however, is not valid. In

what follows, we explain the sources of discrepancy between the practical and ideal

implementations.

object breadth_first_search{

def go[Graphb <: VertexListGraph

with IncidenceGraph

with EdgeListGraph

Visb <: Visitor {type Graph = Graphb},

ColorMapb <: ReadWritePropertyMap

{type Key = Graphb.Vertex; //Incorrect syntax

type Value = int}]

(g: Graphb, s: Graphb.Vertex,

vis: Visb, color: ColorMapb): Unit = {

var Q: queue{type Value = Graphb.Vertex;} =

new queue{type Value = Graphb.Vertex;};

var u_iter: Graphb.VertexIterator = g.vertices;

val ColorValue = new ColorValue;

val gs = new graph_search;

while(u_iter.hasNext)

{var u: Graphb.Vertex = u_iter.next;

vis.initialize_vertex(u, g);

color.set(u, ColorValue.white);}

gs.graph_search(g,s,vis,color,Q); //call to auxiliary method.

}

Fig. 13. Ideal breadth-�rst-search.
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a. Accessing Associated Types

In an ideal representation of the breadth-�rst-search algorithm (generic go method),

the only type parameters would be Graphb, Visb and ColorMapb which correspond to

three out of four argument types of this generic algorithm. The fourth argument type

(which is the vertex type of the graph Graphb) is determined by the type Graphb.

This explains why the fourth argument type is represented as Graphb.Vertex.

However, our actual implementation contains type parameters Vertexb, Edgeb,

VertexIteratorb, and OutEdgeIteratorb. This correspond to the associated types

in VertexListGraph, IncidenceGraph, and EdgeListGraph concepts. We need to

access these associated types in the constraints of the go method in order to establish

several type equivalences. Ideally, we would access the associated types directly with

Scala's \dot notation" as shown in Figure 13. For example, the expression

type key = Graphb.Vertex;

would establish that the key associated type in the ColorMap concept is equal to the

Vertex associated type in VertexListGraph.

Unfortunately, the Scala language does not allow such use of the syntax with the

expression Graphb.Vertex because of the context in which it occurs. Scala's \dot

notation" (p.t) is allowed when p is a path.

The syntax Graphb.Vertex implies that Graphb is a path and Vertex a type [29].

Unfortunately, Graphb is not a path in the context in which we are using it. A path

can only be one of the following [29]:

� (1) C.this, where C is the name of the class directly enclosing the reference.

� (2) p.x where p is a path and x is a stable member (member introduced by

value or object de�nition) of p
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� (3) C.super.x or C.super[M].x where C is the name of the class directly en-

closing the reference and x references a stable member of the super class or

designated parent class M of C.

Graphb does not qualify in any of these three path de�nitions. Additionally,

we may not use Graphb.this.Vertex to refer to the Vertex type because Graphb

is not the enclosing class. As a result, Graphb.this is not a path. In our sit-

uation, the enclosing class is breadth_first_search. Consequently, the syntax

breadth_first_search.super.Vertex would produce a compiler error because the

class breadth_first_search does not have a super class (the enclosing class of the

generic algorithm (breadth_first_search), does not inherit from anything). Sim-

ilarly, the expression Graphb.VertexIterator would not be allowed for the same

reasons as the expression Graphb.Vertex.

b. Associated Types as Type Parameters

Due to the lack of exibility of the problem of paths in Scala, we had to main-

tain Vertexb, Edgeb, VertexIteratorb, and OutEdgeIteratorb as \extra" type

parameters of the breadth-�rst-search algorithm (Figure 12). In this way, we are

equating two associated types to one another by using an extra parameter. For ex-

ample:

� The associated type Vertex of the trait VertexListGraph is equated to the

\extra" type Vertexb.

� The associated type Vertex of the trait Visitor is also equated to the \extra"

type Vertexb.

� In conclusion, we have established equality between both Vertex associated

types of the traits VertexListGraph and Visitor.
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In short, since we could not directly write:

A.Vertex = B.Vertex

we had to create an extra parameter type Verteb and use that to express the equality

transitively, as follows:

A.Vertex = Vertexb; B.Vertex = Vertexb;

Unlike, say, member typedef in C++ [8], Scala's member types are not bound

statically to the enclosing class, but instead can vary from object to object. They are

thus like virtual types in this sense [30]. This is a potential source of more equality

constraints which did not, however, manifest notably in our BGL implementation.

There are, however, generic algorithms where this issue arises. In practice, the e�ect

is that the equality of the same associated type accessed via two di�erent objects of

the same type is not automatically guaranteed. Consider, the following example:

abstract class A {

type Vertex;

}

var a1 = new A {type Vertex = int}

var a2 = new A {type Vertex = float}

The objects a1 and a2 are both instances of the abstract class A, however their type

Vertex are di�erent.

c. Renaming Type Parameters

A minor inconvenience we encountered was the fact that we had to rename some of

our type parameters, in order to avoid cyclic type references. This explains why the

type parameter for vertices was named Vertexb, instead of Vertex in the go method.

A cyclic reference arises if we try to write the constraint as follows:
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class breadth_first_search {

def go[Vertex,

Edgeb <: GraphEdge

{type Vertex = Vertex;},// ERROR!

......

]}

The corrected version renames the type parameter in conict:

class breadth_first_search {

def go[Vertexb,

Edgeb <: GraphEdge {type Vertex = Vertexb;}, //COMPILES.

....

]

...

}

d. Inadequate Support for Implicit Instantiation

The call to method go demanded a verbose declaration depicted in Figure 14. The

ideal representation would have been as in Figure 15. Unfortunately, Scala's type

inference mechanism fails in that ideal context. This is because the type parameters

Vertexb, Edgeb, VertexIteratorb, and OutEdgeIteratorb of the go method do not

appear in types of the arguments of the method. They only appear in constraints

of other type parameters. The following example explains why in such a case type

inference and thus implicit instantiation fails:

trait GraphEdge[T] {}

class Edge extends GraphEdge[int] {}

class algorithm {

def go1[T, U <: GraphEdge[T]](b: U): Unit = {}

def go2[T, U <: GraphEdge[T]](c:T, b: U): Unit = {}

}

object det1 with Application {

var x: Edge = new Edge ;

var y:int = 3;
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val colorb = new hash_property_map

{type Key = int; type Value = int;};

val visitorb = new printing_Visitor {

type Graph = adjacency_list;

type Vertex = int;

type Edge = adj_list_edge {type Vertex = int}; };

type Vertexb = int; type Edgeb = adj_list_edge{type Vertex =int};

type VertexIteratorb = Iterator[Vertexb];

type OutEdgeIteratorb = Iterator[Edgeb];

type Graphb = adjacency_list;

type PrintingVisitorb

= printing_Visitor {type Graph =adjacency_list;

type Vertex = int ;

type Edge = adj_list_edge {type Vertex = int}};

type Colormapb = hash_property_map

{type Key = int ; type Value = int;};

type Queuetypeb = queue{type Value = int; };

val bfs = new breadth_first_search;

bfs.go[Vertexb, Edgeb, VertexIteratorb,

OutEdgeIteratorb, Graphb, PrintingVisitorb, Colormapb]

(g, 3, visitorb, colorb);

Fig. 14. Breadth-�rst-search instantiation process.

var algo = new algorithm ;

algo.go1[int, Edge](x); //(Case 1)Compiles

algo.go2(y,x); //(Case 2)Compiles. Successful Implicit instantiation.

algo.go1(x); //(Case 3) Error !

}

In Case 1, method go1 is explicitly instantiated; all the type parameters are explicitly

de�ned. In Case 2, implicit instantiation works because every type parameter is di-

rectly used as an argument type of the method go2. In Case 3, implicit instantiation

does not works because every type parameter is not directly used as a parameter type

of the method go1. The type-checker cannot deduce a value for the type parameter

T. T only occurs in the constraint U <: GraphEdge[T], and even though x has type
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val colorb = new hash_property_map

{type Key = int ;

type Value = int;};

val visitorb = new printing_Visitor

{type Graph = adjacency_list ;

type Vertex = int ;

type Edge = adj_list_edge {type Vertex = int}; };

val bfs = new breadth_first_search; bfs.go(g, 3, visitorb, colorb);

// Error!

Fig. 15. Breadth-�rst-search ideal instantiation process.

Edge and Edge inherits from GraphEdge[int], the Scala type-checker cannot infer

that T is int.
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CHAPTER VI

DISCUSSION AND CONCLUSION

This sections summarizes our �ndings regarding support for generic programming in

Scala. We �rst focus on the two problems identi�ed in the previous section that we

see as being a hindrance to e�ective generic programming in Scala: lack of access to

member types and lack of full implicit instantiation. Secondly, we discuss the three

advantages that have facilitated our programming experience: constraint propagation,

compound types, and support for type aliasing. Thus, this chapter has the following

progression:

� Member types in Scala

� Incomplete support for implicit instantiation

� Constraint propagation support

� Compound types

� Type aliasing

1. Member Types in Scala

a. Lack of Access to Scala Member Types

Member types can encapsulate associated types. From the generic programming

perspective, this is an improvement over Java or C#, where a separate type parameter

is needed for each associated type. However, when accessing member types from the

constraints of generic algorithms, we need to translate the member types into type

parameters. This brings us e�ectively to the same situation as with Java or C#.

This was because we needed to express equality constraints between associated types
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of di�erent concepts. Expressing such constraints is only possible between a type

parameter and a member type, not between two member types directly.

b. Repeated Constraints

In principle, traits can enclose associated types as member types. We need to translate

those member types into type parameters of generic algorithms. This implies that we

need to also repeat all the constraints on those associated types. Consider Figure 16

that represents the type parameters of the go method of the breadth_first_search

object. The problem that can be discerned is the one concerning repeated constraints.

def go[Vertexb,

Edgeb <: GraphEdge {type Vertex = Vertexb;},

VertexIteratorb <: Iterator[Vertexb],

OutEdgeIteratorb <: Iterator[Edgeb],

Graphb <: VertexListGraph

with IncidenceGraph

with EdgeListGraph

{type Vertex = Vertexb; type Edge = Edgeb;

type OutEdgeIterator = OutEdgeIteratorb ;

type VertexIterator = VertexIteratorb},

Visb <: Visitor

{type Graph = Graphb ;

type Vertex = Vertexb;

type Edge = Edgeb;

ColorMapb <: ReadWritePropertyMap

{type Key = Vertexb; type Value = int}]

Fig. 16. Type parameters of the go method.

Since we were unable to deduce the associated types from the graph type Graphb,

we had to introduce arbitrary types (namely Vertexb, Edgeb, VertexIteratorb,

and OutEdgeIteratorb) to which we attributed constraints. Thus, we had to re-
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peat the constraints already stated in the graph concepts for the corresponding as-

sociated types on the extra type parameters (namely Edgeb, VertexIteratorb and

OutEdgeIteratorb). The constraint

Edgeb <: GraphEdge {type Vertex = Vertexb;}

is an example of this.

In principle, we can encapsulate constraints on associated types of traits. How-

ever, when we translate the associate types to type members in generic algorithms,

these constraints become a proof of obligation, rather than an assumption.

2. Implicit Instantiation Failure

Implicit instantiation is supported in Scala depending on the context in which it is

used. As explained previously, implicit instantiation in Scala only works if each type

parameter of the generic method is found in the type of one of the arguments of that

same generic method. This scenario occurred frequently in our BGL implementation.

All associated types were expressed as extra type parameters of generic algorithms,

and these type parameters typically only appeared as constraints of other type pa-

rameters, not in types of the method parameters. For example, in the case of the

breadth-�rst-search algorithm, type inference was inadequate for the more complex

parametrization common in generic libraries. Compared to other object-oriented lan-

guages, C#'s type inference has similar limitations as Scala. Java, on the other hand

would be capable of handling the above described scenarios.

The lack of access to associated type lead us to add them as type parameters

of generic methods. Doing so resulted in three problems: Code verbosity increase,

type constraint repetition (leading to more code verbosity increase), and implicit

instantiation failure (leading to more code verbosity increase (Figure 17).



42

Fig. 17. Problem ow of generic programming in Scala

3. Constraint Propagation Support

We had to repeat constraints on the added types Edgeb, VertexIteratorb, and

OutEdgeIteratorb. Consider the code snippet in Figure 18. We do not need to

Graphb <: VertexListGraph

with IncidenceGraph

with EdgeListGraph

{type Vertex = Vertexb; type Edge = Edgeb;

type OutEdgeIterator = OutEdgeIteratorb ;

type VertexIterator = VertexIteratorb}

Fig. 18. Compound type mechanism

repeat the constraints on the types Edge, VertexIterator, and OutEdgeIterator

while assigning them to the types Edgeb, VertexIteratorb, and OutEdgeIteratorb,

respectively. The constraints of those types were already established in the graph
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concept de�nition (see Figure 7). For example, we don't need to specify that the

VertexIterator inherits from the Iterator[Vertex] type by writing again:

type VertexIterator <: Iterator[Vertex];

4. Compound Types

We found Scala's compound types useful. The inability to simultaneously con-

strain a type parameter with more than one interface was reported to be a prob-

lem in [7], requiring the explicit introduction of compound interfaces, such as (for

example) VertexListAndIncidenceAndEdgeListGraph. In Scala, this is unneces-

sary. Scala allows parameters to have several constraints. By observing the Graphb

type declaration in Figure 10, it can be seen that the graph type (Graphb) inher-

its from the traits VertexListGraph, IncidenceGraph and EdgeListGraph at the

same time by using the with connective and grouping all the associated types within

a single pair of curly braces (see Figure 18). Realizing this grouping using the

appropriate syntax has lead us to obtain a compound type equivalent to a type

VertexListAndIncidenceAndEdgeListGraph.

5. Type Aliases

Scala supports type aliasing. Since the parametrization of components introduces

long type names, it was often convenient to use a shorter name to refer to them. For

example, here we name a complex type with the type alias PrintingVisitorb.

type PrintingVisitorb

= printing_Visitor

{type Graph = adjacency_list; type Vertex = int;

type Edge = adj_list_edge {type Vertex = int}};

Type aliasing helps reduce code verbosity and facilitates the abstraction of the actual

type without losing type accuracy.
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6. The Scala Experience

The Scala syntax is easy to pick up for programmers familiar with Java and C#. With

respect to generics, Scala uses object-oriented techniques as primary mechanism to

build abstractions and establish concept modeling relations. Compared to Ei�el,

Java, and C#, Scala provides support for a broader version of generic programming

with type members (used as associated types) and the type aliasing mechanism.

The BGL implementation in Scala resulted in a few surprises. Contrary to our

initial expectations, member types support the expression of associated types in a

limited way. Additionally, support for implicit instantiation is only partial. In our

experiment the weak support for associated types manifested as extra type parame-

ters in generic functions. This adds to the verbosity of generic code as every reference

to generic software component (class, trait, or function) must explicitly list all its type

parameters. In particular, the extra type parameters are such that they only occur in

constraints of other type parameters. Scala cannot infer such type parameters in func-

tion calls, which prevents implicit instantiation for many generic algorithms. In fact,

implicit instantiation does not work for any of the BGL algorithms we implemented.

The combination of the above factors increased the verbosity of the entire imple-

mentation. Scala's type aliasing mechanism turned out to be bene�cial in generic

programming. Member types in Scala had less impact in generic programming than

we had anticipated. Still, Scala remains a language with considerable support of

generic programming, and as it is constantly evolving, there is still room for it to

become more powerful with respects to generics.
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7. Conclusion

Generic programming is a methodology for designing and implementing reusable li-

braries of software components. The inclusion of the Standard Template Library

in the C++ standard library has propulsed the popularity of generic programming

within C++. Many other mainstream languages o�er varying forms of generics as

well. However, several languages have been reported to lack some essential features

necessary to fully embrace the generic programming paradigm [7]. In particular lan-

guages such as C# [9, 7], Ei�el [10] and Java [12] lack direct support for associated

types. Instead these languages would add associated types to the parameter list of

generic functions to provide access to them. Unfortunately, this technique results

in cluttered and verbose code. To make matters worse, this practice of representing

associated types prevents implicit instantiation of generic methods in, e.g., C# [9, 7]

and Ei�el [10].

In this thesis we evaluated how Scala, a new object-oriented language can support

generic programming. In particular, Scala supports member types that can in princi-

ple be used as associated types. Our experiment consisted in implementing a subset

of a state-of-art generic library (the Boost Graph Library) to analyze a wide range of

generic programming techniques in Scala. Determining the impact of member types

and the degree of support to implicit instantiation turned out to need careful study-

ing. We report on these aspects in detail and point out how Scala member types do

not fully su�ce for generic programming. We cannot entirely get rid of the problems

with accessing associated types. Member types only o�er a partial solution and at

times we still need to resort to representing associated types using type parameters.

Moreover, implicit instantiation is only possible in Scala under the condition that

each element of the type parameter list corresponds to types of the arguments of the
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function, a condition that does not hold in typical generic libraries. Therefore, we

had to explicitly instantiate calls to many generic functions.

Otherwise, we found that Scala's support for generic programming was adequate.

Scala uses the inheritance mechanism to establish the concept modeling relation.

Multi-type concepts and multiple constraints are supported. Scala's support for type

aliasing also turned out to be very practical throughout our implementation.
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