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ABSTRACT

Resource Allocation in DS-CDMA Systems with

Side Information at the Transmitter. (December 2006)

Bemini Hennadige Janath Peiris, B.Sc., University of Moratuwa, Sri Lanka;

M.Eng., Asian Institute of Technology, Thailand

Co–Chairs of Advisory Committee: Dr. Krishna R. Narayanan
Dr. Scott L. Miller

In a multiuser DS-CDMA system with frequency selectivity, each user’s spread-

ing sequence is transmitted through a different channel and the autocorrelation and

the cross correlation properties of the received sequences will not be the same as

that of the transmitted sequences. The best way of designing spreading sequences

for frequency selective channels is to design them at the receiver exploiting the users’

channel characteristics. By doing so, we can show that the designed sequences out-

perform single user AWGN performance.

In existing sequence design algorithms for frequency selective channels, the de-

sign is done in the time domain and the connection to frequency domain properties

is not established. We approach the design of spreading sequences based on their

frequency domain characteristics. Based on the frequency domain characteristics of

the spreading sequences with unconstrained amplitudes and phases, we propose a

reduced-rank sequence design algorithm that reduces the computational complexity,

feedback bandwidth and improves the performance of some existing sequence design

algorithms proposed for frequency selective channels.

We propose several different approaches to design the spreading sequences with
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constrained amplitudes and phases for frequency selective channels. First, we use the

frequency domain characteristics of the unconstrained spreading sequences to find a

set of constrained amplitude sequences for a given set of channels. This is done either

by carefully assigning an already existing set of sequences for a given set of users or by

mapping unconstrained sequences onto a unit circle. Secondly, we use an information

theoretic approach to design the spreading sequences by matching the spectrum of

each user’s sequence to the water-filling spectrum of the user’s channel.

Finally, the design of inner shaping codes for single-head and multi-head magnetic

recoding channels is discussed. The shaping sequences are designed considering them

as short spreading codes matched to the recoding channels. The outer channel code

is matched to the inner shaping code using the extrinsic information transfer chart

analysis.

In this dissertation we introduce a new frequency domain approach to design

spreading sequences for frequency selective channels. We also extend this proposed

technique to design inner shaping codes for partial response channels.
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CHAPTER I

INTRODUCTION

Today, the wireless communication industry is one of the fastest growing fields in the

communication industry and there is an increasing demand from the customers for the

radio system resources. To satisfy the customers’ requirements, the communication

system designers have to design the systems such that the system resources are used

most efficiently and at a low cost. Further, the wireless communication systems are

mostly multiuser systems and the limited system resources should be carefully shared

among the users.

In most of the systems, user specific signals are separated either in time domain

(time division multiple access, TDMA), frequency domain (frequency division mul-

tiple access, FDMA) or in code domain (code division multiple access, CDMA). In

TDMA or FDMA schemes, the decoder can simply recover the users’ information

by decoding the information corresponding to each user’s specified time or frequency

slot. But, in a CDMA system, users are allowed to share the bandwidth and time

resources by transmitting simultaneously over the same band. In this case, each

user’s information is encoded using a user specific signature sequence. However, at

the receiver, each user’s information is recovered by simply despreading the received

signal using that user’s spreading sequence. But, since the received signal is a linear

combination of all the user’s transmitted signals, each user’s decoded signal could be

subjected to a heavy interference from the other users’ signals in the system, if the

spreading sequences are arbitrarily designed. The reduction of the interference from

the other users is usually handled through a careful design of spreading sequences.

The journal model is IEEE Transactions on Automatic Control.
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Precisely, when the received signal is corrupted only by additive white Gaussian noise

(AWGN), the signature sequences should be designed such that the sum of squared

cross correlation among the users’ spreading sequences is minimized [1].

The capacity of direct sequence code division multiple access (DS-CDMA) sys-

tems for additive white Gaussian noise channels has been studied extensively in lit-

erature [2]-[3]. In [2], Rupf and Massey have derived the capacity region of a single

cell synchronous CDMA system for a given set of spreading sequences. There, they

have shown that the sum rate of a DS-CDMA system with equal power users can

be maximized by designing the spreading sequences to be orthogonal to each other

when the number of users is less than or equal to the spreading length. If the number

of users is greater than the spreading length, the sequences should be designed to

achieve the Welch bound with equality (WBE). In the latter scenario, sum rate of

the multiuser system is equal to the sum capacity of the system.

In [3], Viswanath et al. have defined the user capacity of a CDMA cell as the

maximum number of users per unit spreading length admissible in the system such

that each user has a given signal to interference ratio (SIR). They have defined the

admissibility of K users for the system with spreading length N , power constraint P

and each having certain SIR requirement as being able to find signature sequence and

a power for each and every user such that each user achieves the target SIR. Existence

of these sequences were also proved and shown that the sequences are orthogonal when

K < N and achieves Welch bound when K > N , hence the information theoretic

sum capacity of the system.

In literature, there have been many attempts to find practical algorithms to

design spreading sequences for DS-CDMA systems [4]-[7]. In [4], Ulukus and Yates

have proposed an iterative algorithm that updates transmitter signature sequences

sequentially in a distributed fashion. At each step of the algorithm, each user’s
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signature sequence is replaced by the minimum mean squared error (MMSE) receiver

designed for that particular user. By doing so, they have shown that the sum of

squared cross correlations among the users’ spreading sequences is minimized at each

user’s iteration. They have also shown that, when the number of users is greater than

the spreading length, the Welch bound equality can be obtained. In [5], Rajappan and

Honig also have shown a similar iterative algorithm to design the spreading sequences

based on the Lagrangian optimization technique.

While [4]-[7] consider the spreading sequence designs for frequency flat fading

channels, practical wireless channels are often notoriously dispersive and this disper-

sion leads to intersymbol interference (ISI) where the energy of a given symbol spills

over into the adjacent symbols. Due to this phenomena, it is not sufficient to minimize

the sum of squared correlations among the spreading sequences for frequency selec-

tive channels. This is because, in a frequency selective channel, each user’s spreading

sequence is transmitted through a different frequency selective channel and the corre-

lation properties of the filtered spreading sequences may be different from that of the

transmitted spreading sequences. In a DS-CDMA system, it is a common practice

to use a RAKE receiver which attempts to collect the energy from all the paths that

the transmitted signal follows. The RAKE receiver requires the knowledge of the

channel coefficients to perform the maximal ratio combining of the signals coming

from different paths with different gains and phase shifts. Since the receiver has ac-

cess to the channel state information, it is desirable to use these estimated channel

coefficients to design a set of spreading sequences that is best suited for a particular

set of channels. The objective here is to exploit the channel state information and

design a set of sequences to maximize the ratio between each user’s received power

and the interference plus noise at the receiver.

The design of signature sequences for frequency selective channels has received
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some attention only recently. Jang and Vojcic [8] proposed a transmitter precoding

technique to reduce the multiple access and inter-chip interference (ICI). Rajappan

and Honig [9] proposed a technique for joint transmitter and receiver adaptation for

multipath inter-symbol interference channels. Using this technique, for the uplink,

they have shown that near single user performance can be achieved. In [10], Concha

and Ulukus have considered the optimization of spreading sequences with multipath

fading under the constraint that each user requires a target signal to interference

plus noise ratio (SINR). It is worthwhile to note that, although some of the existing

techniques such as [8]-[11] use adaptive algorithms for the maximization of the sum

rate of the system, most of those efforts are based on designing spreading sequences

in time domain and the connection to frequency domain characteristics of spreading

sequences is not made.

In this dissertation, we embark the journey to find whether we can get some

insight into the design of the spreading sequences by looking into the frequency do-

main characteristics of well designed spreading sequences. Based on the frequency

domain properties of the well-designed sequences, we propose to design the sequences

for frequency selective channels with reasonably less computational complexity and

feedback bandwidth.

In most of the existing algorithms which have been proposed for frequency

selective channels, the spreading sequences are assumed to have constrained am-

plitudes and phases. This demands high feedback bandwidth to transmit the de-

signed sequences from the designed end (transmitter/receiver) to the other end (re-

ceiver/transmitter). The other difficulty of using unconstrained sequences is that, at

the mobile unit, the peak to average power ratio could be very high. This demands

considerably large power amplifier dynamic range increasing the cost of the transmit-

ter amplifier. Hence, the design of constrained amplitude spreading sequences is a
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demanding task.

In [12] and [13], Krishnamurthy et al. have proposed a discrete stochastic opti-

mization technique to adaptively optimize the signature sequences employing a mini-

mum mean square receivers for slowly time-varying channels. The method is a global

optimization technique for discrete alphabets where the algorithm try to optimize the

global cost function which is the sum of signal to noise plus interference ratio values

of all the active users in the system. Unfortunately, the computational complexity of

this algorithm increases exponentially with the spreading length and the number of

users. Hence, for a practical system, this method is too computationally complex to

be incorporated. Instead, In this dissertation, we propose three new approaches to

design constrained amplitude spreading sequences for slowly time-varying frequency

selective channels. The main advantage of our scheme over the scheme proposed in

[12] is that our proposed algorithm provides a set of sequences for slowly time-varying

channels that performs very close to that of the scheme proposed in [12] with much

reduced complexity.

In the first approach, we apply the Lagrangian relaxation method on existing

sequence design algorithms to design the constrained alphabet sequences. In the

second method, we use the knowledge of the frequency domain characteristics of the

well-designed unconstrained spreading sequences and carefully assign existing set of

narrow-band spreading sequences to maximize the system performance which is the

SINR. Finally, we assume that the spreading sequences are a set of low rate channel

codes and we design the spreading sequences to maximize the single user information

rate while minimizing the cross correlation among the users.

Since the introduction of magnetic tape recording 50 years ago, the magnetic

recording devices play an important role of recording vast amounts of data and re-

trieving the stored data very quickly [14]. Today, hard disk drives have become the
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most common form of mass storage from personal computers to portable entertain-

ment devices. Like any other product of the electronics industry, hard drives are

subjected to the inexorable law of miniaturization. Today, the main challenge of the

hard disk manufacturers is to design a compact, fast, high storage devices at low cost.

In modern hard disk drives, multiple heads are used for fast recoding of data

to the magnetic disk and retrieving of data from it. Since magnetic recording tracks

have become narrower to increase in the areal density, the read-back signals of the

tracks inevitably interfere with each other causing inter-track interference. Hence, a

magnetic recording track can be modelled as a partial response channel that allows

to interfere only with adjacent tracks and this type of interference is called the inter-

track interference (ITI) [15]. When there exist an inter-track interference, single track

decoding is not the optimal way of decoding the information in a magnetic recording

media.

In this dissertation, we propose a new technique to design inner shaping codes for

magnetic recording channel. We mainly focus on the low-rate code design schemes.

For this, we assume that the magnetic recording channel is a frequency selective chan-

nel and try to design the optimum shaping codes by assuming that the shaping codes

are the spreading sequences in an equivalent multiuser frequency selective system. It

is important to note that the inputs to the magnetic recording channels are derived

from a binary alphabet. Hence, we design the spreading sequences with binary chips.

We will show in Chapter VI that our proposed algorithm in Chapter IV to design

finite alphabet spreading sequences for frequency selective channel can successfully

be used to design above shaping sequences for magnetic recording channels.

The rest of the dissertation is organized as follows. The second chapter gives

the necessary background for the discussions of the dissertation work coming in fol-

lowing chapters. Third chapter introduces the spectral domain approach to design
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the spreading sequences for frequency selective channels. In Chapter IV, we discusses

the design of constrained alphabet and amplitude sequences based on the spectral

properties of unconstrained spreading sequences. Chapter V discusses the design of

constrained alphabet sequences based on the water-filling algorithm. In Chapter VI,

the design of shaping codes for single-head and multi-head magnetic recoding channels

is discussed. Finally, Chapter VII gives the conclusion of the dissertation.
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CHAPTER II

BACKGROUND

In this chapter, we provide the necessary theoretical background that is required in the

later chapters of this dissertation. First, we discuss the system model for a multiuser

DS-CDMA system. Then, we discuss different types of optimum and suboptimum

receivers for a DS-CDMA system which are used to separate the users’ information

in a multiuser environment. We also discuss the concept behind the turbo encoding

and decoding schemes which is required in Chapter V. Finally we discuss about the

low density parity check codes and EXIT charts which are useful in Chapter VI.

A. System model

Consider an uplink DS-CDMA system with K active users. Here, at the mth epoch,

kth user’s information symbol xm,k is spread using the user specific spreading sequence

sk(t), modulated by a carrier frequency fc and transmitted over the channel hk(t).

The signal at the receiver’s end is a linear combination of all the users received signal

and it is corrupted by additive white Gaussion noise n(t) with double-sided spectral

density N0/2. The received signal r(t) can be represented as

r(t) =
K−1
∑

k

∑

m

xk,mhk(t − mT )sk(t − mT ) cos(2πfct + θ) + n(t) (2.1)

where hk(t) =
∑L−1

j=0 hk,jδ(t − jTc) and sk(t) =
∑N−1

j=0 sk,jP (t − jTc) while P (t) is the

shaping pulse. T is the symbol duration.

The received signal is converted to a baseband signal by down-converting with

the use of a locally generated oscillator matched to the carrier frequency fc with

phase offset θ. Then, the demodulated signal is passed through a chip-matched filter

P ∗(t). Assuming L << N , that is ignoring the inter-symbol interference (inter-chip
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Fig. 1. Block diagram of a synchronous uplink DS-CDMA system.

interference still exists), the output of the chip level matched filter at the base station

for the qth chip interval is given by

rq,m =
K−1
∑

k=0

L−1
∑

j=0

xk,msk,q−jhk,j + nq,m, 0 ≤ q ≤ N − 1 (2.2)

where rq,m =
∫ mT+qTc

mT r(t)p∗(t− (mT + qTc))dt and nq,m =
∫ mT+qTc

mT n(t)p∗(t− (mT +

qTc))dt. The channel between the kth user’s transmitter and the receiver (base

station) is assumed to be a frequency selective slow fading channel. Here, sk =

[sk,0, sk,1, ...., sk,N−1]
T is the spreading sequence of length N for the kth user. The kth

user’s channel with L taps is given by the vector hk = [hk,0, hk,1, ...., hk,L−1]
T . This

discrete time model simplifies most of our theoretical analysis and simulations and

the corresponding block diagram of a K user synchronous uplink DS-CDMA system

is shown in Fig. 1.

Equation (2.2) can be written in vector form as

rm =
K

∑

k

Hkskxk,m + nm (2.3)
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where nm = [n0,m, n1,m, · · · , nN−1,m]T , rm = [r0,m, r1,m, · · · , rN−1,m]T and Hk is an

N × N matrix given by

Hk =

































hk,0 0 0 . . . 0

hk,1 hk,0 0 . . . 0

... hk,1 hk,0 . . .
...

hk,L−1
... hk,1 . . .

...

...
...

... . . . hk,0

































.

Here, the first column of Hk is hk followed by N − L zeros. The rest of the columns

are obtained by downshifting the first column of Hk. Further, if the kth user’s filtered

spreading sequence is fk which is given by fk = Hksk, then, rm can be represented as

rm =
K

∑

k

fkxk,m + nm. (2.4)

B. Multiuser detectors in a DS-CDMA system

In a downlink DS-CDMA system, each mobile communication unit concerns only on

the detection of its own signal while in the uplink, the base station detects all ac-

tive users’ signals simultaneously or separately. The optimal detector for the joint

detection of the users’ information is the maximum likelihood (ML) detector which

simultaneously detects all the users’s information symbols. Unfortunately the compu-

tational complexity of the maximum likelihood detector increases exponentially with

the number of users, hence it has a very little practical significance. In literature,

several suboptimal detectors have been proposed for DS-CDMA systems which will

be briefly discussed in this subsection [16].

In conventional matched filter detection method, kth user’s receiver is simply a
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matched filter given by fk. Hence, the kth user’s decoded signal is given by

x̂k,m = |fk|
2xk,m +

K
∑

j 6=k

fH
k fjxj,m + fH

k nm (2.5)

It can be clearly seen from the expression that, depending on the cross correlations

among the filtered sequences, the k user’s bit error rate (BER)/SINR performance

varies. Hence, with the use of a matched filter, much care has to be taken to design

sequences such that the cross correlations among the filtered spreading sequences are

significantly small.

1. De-correlator detector

Using the previous section’s results, the output vector of bank of K matched filters

can be written as

zm = FHFxm + n̂m (2.6)

where F is an N ×K matrix with the kth column fk and n̂m = fk
Hnm. Let the cross

correlation matrix of the filtered sequences R = FHF be invertible. Then we can

pre-multiply the received vector by R−1 resulting

x̂m = xm + R−1n̂m (2.7)

It can be seen that the de-correlator detector completely removes the multiple access

interference but, this could lead to a noise enhancement.

2. MMSE detector

To achieve a certain tradeoff between interference rejection and noise enhancement,

linear MMSE detectors are used in CDMA systems. The goal here is to find a linear

detector ck for each user k such that E[|xk,m − 〈ck, zm〉|
2] is minimized. The cor-
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.

..

Fig. 2. Block diagram of a multiuser detector.

responding ck is given by [R + σ2I]−1Hksk. Here, σ2 is the noise variance. When

σ → ∞, ck becomes the matched filter detector while when σ → 0, ck becomes the

de-correlator detector.

3. Successive interference cancellation

The performances of the suboptimal detectors as the matched filter detector, the

de-correlator detector and the linear MMSE detector are inferior to the maximum

likelihood detector when the cross correlations among the sequences are significant.

However, the use of maximum likelihood detector is prohibitively complex. To circum-

vent this problem, a new form of joint detection scheme is proposed in the literature.

These decoders are generally called as multistage detectors. There are two types of

multistage detectors: parallel interference cancellers and serial interference cancellers.

Let’s assume the output signal at the kth user’s matched filter is as

zk,m =
N−1
∑

j=0

fk,j
∗rj,m, 0 ≤ k ≤ K − 1. (2.8)

Fig. 2 shows a block diagram of a parallel interference cancellation based mul-
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tiuser detector. The following iterative steps briefly describe the function of the

parallel interference cancellation based multiuser detector [17].

1. Estimate the kth user’s bit by x̂k,m = sgn(zk,m).

2. Reconstruct the multiple access interference for each user k based on the esti-

mation obtained in step 1. Let us assume that the calculated interference for

the nth iteration for the kth user is Ik,n.

3. For each user k, subtract multiple access interference (MAI) given by Ik,n from

the received signal rm. Here Ik,0 = 0. This interference reduced signal can

be considered as the new input to the kth user’s matched filter to get a more

accurate decision for the kth user’s bit, xk,m.

4. Steps 2 and 3 are followed iteratively for a sufficient number of times until the

BER of each user converges.

An improved version of the parallel interference canceller is introduced in [18]

where, for each user, the weighted multiple access interference (WMAI) given by

(w1Ik,n + w2Ik,n−1)/(w1 + w2) is subtracted. The parallel interference cancellation

scheme works very well when there is no or less near-far ratio effect.

In serial or successive interference cancellation schemes, the user with the high-

est received power is detected first. Once that user is detected, the user’s signal is

reconstructed and subtracted from the received signal. Then, the user with the sec-

ond highest received power is detected. Similarly the rest of the users are detected

according to the descending order of their received powers.
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4. Turbo codes

In their landmark paper [19], Berrou, Glavieux and Thitimajshima proposed a new

coding scheme that performs very close to the Shannon capacity. These codes were

later baptized as turbo codes. The main idea of turbo codes is to use two recursive

systematic convolution codes with an interleaver in between. Fig. 3 gives the basic

block diagram of a turbo encoder. At the output of the encoder, parity bits are

punctured to get the required information rate.

A turbo code can be regarded as a large block code and its performance depends

not only on the minimum distance of constituent codes but also on the overall weight

distribution of the constituent codes [20]. The role of the interleaver is to make the

input patterns giving low weight codewords to be interleaved to produce high weight

codewords.

The optimum decoding scheme for turbo codes is a maximum likelihood decoder.

However, the interleaver embedded in the encoder structure causes the joint trellis to

have extremely large number of states and practical implementation of ML detection
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Fig. 4. Block diagram of a turbo decoder.

of turbo codes is nearly impossible. To overcome this obstacle, a suboptimal iterative

decoding scheme is proposed.

Fig. 4 shows a basic block diagram of a turbo decoder. Each constituent Soft

input soft output (SISO) decoder obtains two types of soft inputs. They are, apri-

ori information and systematic information that is provided by systematic bits. At

the first stage, there will be no apriori information for the SISO decoder 1. Then

the decoder exploits the Markov structure of the coded bits to the first encoder and

produces the soft outputs which measure the reliability of the information bits. The

output information consists of three types of information. They are the apriori and

systematic information provided at the input of the encoder and the extrinsic infor-

mation exploited by the decoder using the Markov structure of the coded bits. SISO

decoding algorithms follows the BCJR decoding algorithm proposed in [21]. The

extrinsic information is interleaved and fed back to the SISO decoder 2 which will

consider this information as the apriori information for the second decoder. From

SISO decoder 2, new extrinsic information is generated and the interleaved version

of the information is fed back to the first decoder and so on.
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5. Low density parity check codes

Low density parity check codes are a class of linear block codes and were first intro-

duced in [22] by Gallager in 1960 and reinvented by MacKay in 1999 [23]. The name

low density parity check (LDPC) codes comes from the characteristics of the parity

check matrix of the code which contains only few non-zero entries. There are two

types of LDPC codes called regular LDPC codes and irregular LDPC codes. For reg-

ular LDPC codes, the weight of the every column and raw in the parity check matrix

is the same. For irregular LDPC codes, the number of ones in rows and columns are

not the same. LDPC codes perform very close to the channel capacity for a variety

of channels. In [24], Tanner introduced a graphical representation for LDPC codes

C C C C C C CC 0 1 2 3 4 5 6 7

f f f f
0 1 2 3

Variable Nodes

Check Nodes

Fig. 5. Graph structure of an LDPC code.

which not only provides the complete description of codes but also helps to describe

the decoding algorithm for these codes. Tanner graph is a bipartite graph where the

nodes of the graph are separated into two sets of nodes called the variable nodes and

the check nodes. The number of variable nodes corresponds to the number of symbols

in the codeword and the number of check nodes corresponds to the number of parity
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bits. The edges of the Tanner graph are arranged such that the code bits satisfy the

parity checks in the code. Fig. 5 shows the Tanner graph for a (7,4) hamming code.

The most commonly used decoding algorithm for LDPC codes is the message

passing algorithm [25],[26]. In this algorithm, in each half iteration, a variable node

processes it’s input message and passes it to the neighboring check node (Neighboring

nodes are the nodes that are connected by an edge). In the next half of the iteration,

each check node processes its input messages passed from the neighboring check nodes

and passes its resulting extrinsic information back to the neighboring check nodes.

This iterative process is carried out until it achieves some stopping criteria and finally,

the decoder performs a decision on the coded bits.

6. Extrinsic information transfer chart

The extrinsic information transfer (EXIT) chart pioneered by ten Brink [27] is a

powerful technique which is used to analyze the convergence behavior of iterative

decoding techniques. As we have discussed earlier, in the turbo decoding technique,

each constituent decoder obtains apriori and systematic information and produces

extrinsic information which is considered as the apriori information for the second

decoder. In the iterative decoding scheme that discussed earlier, information transfer

between the two decoders is not easy to analyze and to describe. In [27], ten Brink

proposed that by studying how the extrinsic information evolves in a constituent

decoder with respect to apriori information, it is possible to analyze the convergence

behavior of iterative decoders. Specifically, if X represents systematic information,

EXIT chart is the plot of I(Le; X) versus I(La; X) or the plot I(Le; X) = T(I(La; X)).

Where, I(Le; X) is the mutual information between X and extrinsic information Le

and I(La; X) is the mutual information between X and apriori information La. It is

proved that for a binary erasure channel, the area under the EXIT chart corresponds
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to the channel code-rate under optimal decoding [28].

In Chapter VI, we design inner shaping codes for frequency selective channels

such that the EXIT chart for the inner code is almost flat. In this scenario, the outer

code observes a channel which is equivalent to an AWGN channel. Hence, the outer

codes matched to an AWGN channel will also be optimum for the frequency selective

channels with our designed inner shaping codes and this simplifies the design of the

outer code for those channels.
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CHAPTER III

A SPECTRAL DOMAIN APPROACH TO DESIGN SPREADING SEQUENCES

FOR FREQUENCY SELECTIVE FADING CHANNELS

In this chapter, we propose a new way of designing spreading sequences by analyzing

their frequency domain characteristics. We show that for frequency selective chan-

nels, designing of spreading sequences subjected to maximizing SINR is similar to

designing spreading sequences by concentrating their spectra at the spectral peaks of

the channels’ responses while avoiding the overlapping of spectra of the sequences if

possible. We will further show that it is possible to represent each user’s spreading

sequence with fewer parameters in the frequency domain than that of in the time

domain. This allows the reduction in the computational complexity and the feedback

bandwidth required and improves the performance of some existing algorithms.

A. Background

First, we will briefly look into the joint transmitter receiver adaptation scheme pro-

posed by Rajappan and Honig [9] as this will facilitate an understanding of the tech-

niques proposed here. Here, we consider a group optimization of signature sequences

where in the optimization, each user’s SINR is iteratively maximized assuming other

users’ signals as interference. Further, we assume that the design is performed at

the base station and the perfect channel state information is available both at the

transmitter and at the receiver.

For this analysis, we assume the discrete time model proposed in the section A

of Chapter II, which is given by

rm =
K

∑

k

Hkskxk,m + nm. (3.1)
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Then, the output of the kth user’s receiver filter corresponding to the mth bit is given

by

yk,m = ck
Hrm. (3.2)

Let the kth user’s receiver be a matched filter given by

ck =
Hksk

||Hksk||
(3.3)

and let the SINR output of the user’s matched filter be given by

γk =

∣

∣

∣cH
k Hksk

∣

∣

∣

2

cH
k Rkck

(3.4)

where Rk =
∑K−1

p=0,p 6=k Hpsps
H
p HH

p +σ2I is the interference plus noise covariance matrix.

As shown in [9], the kth user’s spreading sequence sk that maximizes the user’s

SINR under constrained transmitter power p, is the solution to the maximization

problem

Jk = γk + λ(sH
k sk − p). (3.5)

The optimum sk can be obtained by finding the solution for sk satisfying

Hk
H

[

2I −
sH
k HH

k HkskRk

sH
k HH

k RkHksk

]

Hksk = sH
k HH

k Hksksk. (3.6)

It can be clearly seen from (3.6) that the kth user’s spreading sequence is the eigen-

vector of the matrix Hk
H

[

2I −
sH
k

HH
k

HkskRk

sH
k

HH
k

RkHksk

]

Hk that maximizes (3.5). The optimum

set of spreading sequences that maximizes
∑k=K

k=0 γk can be obtained using coordinate

ascent method [29]. That is, at each iteration, we fix all but the kth user’s spreading

sequence sk and optimize sk. Iterations are performed over all the users until the

global maximum is obtained. In the above algorithm, spreading sequences are initial-

ized with a properly normalized random vector of length N and the final value for
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the kth user’s spreading sequence can be found by calculating sk in (3.6) iteratively

until it converges [9].

B. Frequency domain characteristics of good spreading sequences

Here, we consider a single user DS-CDMA system in a frequency selective environ-

ment. Now, if we consider the single user optimization with a matched filter receiver,

the optimum spreading sequence is the solution to

J = sH
k HH

k Hksk + λ(sH
k sk − p). (3.7)

The solution to the above optimization problem is given by

HH
k Hksk =

[

sH
k HH

k Hksk

]

sk. (3.8)

Since HH
k Hk is a Hermitian matrix, we can perform the singular value decomposition

of the matrix HH
k Hk as [30]

HH
k Hk = UH

k ΛUk. (3.9)

Further, we can observe that Hk is a Toeplitz matrix. Using the asymptotic (N À

1) equivalence of a Toeplitz and a circulant matrix [31], we can conclude that the

eigenvalues of Hk are the DFT coefficients of hk and Uk is the DFT transform matrix.

Hence, by simplifying, (3.8) can be expressed as

Λfk = χfk (3.10)

with χ = sH
k HH

k Hksk and fk is the DFT of the kth user’s spreading sequence sk.

It can be clearly seen that the optimum spreading sequence is the eigenvector

corresponding to the maximum eigenvalue of HH
k Hk. That is, the optimum spreading

sequence for a single user system is a sequence whose spectrum is an impulse at the
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Fig. 6. Power spectrum of each user’s spreading sequence.

frequency where the channel frequency response has the highest magnitude. However,

for a multiuser CDMA system, it is not enough just to maximize the individual user’s

performance since each user’s performance depends on the interference induced by the

other users. Hence, the objective must be to maximize each user’s performance while

keeping the cross correlation among the users’ spreading sequences at a sufficiently low

value. According to Parseval’s theorem, the cross correlation between two sequences

in the frequency domain is the same as that of in the time domain. That is, we

can design the sequences in the frequency domain instead of designing them in the

time domain considering the criteria for minimizing the interference among the users
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as the minimization of the frequency domain cross correlation among the users. It

is worthwhile to study the characteristics of well-designed spreading sequences for

multipath channels in the frequency domain.

To observe how the optimized spreading sequences are positioned in the frequency

domain in a multiuser environment, we have computed the optimum set of spreading

sequences using the iterative algorithm in (3.6) for a 12 user system. The spreading

length used is 16. Each user’s channel is assumed to be a randomly generated two

path channel and kept fixed throughout the simulation.
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As seen in Fig. 6 and Fig. 7, the frequency spectrum of each user’s spreading

sequence is narrow band and lies around the frequencies of that user’s strongest

channel components (To preserve clarity of the figure, only 4 of the 16 users’ spectra

are included). Further, the figure illustrates that for users whose strongest channel

components occur at different frequencies, the spectra of the optimum spreading

sequences have little or no overlap. It was also verified that when two or more users’

channels have the same frequency as the strongest channel component, although

the spectra of those user’s spreading sequences overlap, correlations among those

sequences are small. For example, in Fig. 7, user 1 and user 2 have overlapping

spectra. In this case, the adaptation algorithm in (3.6) adapts amplitudes and phases

of those 2 users’ spreading sequences such that the cross correlation between those

2 users’ spreading sequences is minimized (The normalized cross correlation in this

case was 1.173 × 10−4).

While the above example shows the typical spectra of the spreading sequences,

it is only one example. It is quite difficult to analytically prove this behavior. In

order to make a more convincing argument about the spectra of the spreading se-

quences and their relation to the frequency response of the channel, we consider the

cumulative distribution function (CDF) of the amount of power contained in the D

strongest frequency components of the optimized spreading sequence. In order to

explain this further, let the kth user’s spreading sequence, optimized by the adap-

tive algorithm in [9] be sk and the filtered version of sk after passing through the

channel hk be given by wk = hk ¯ sk, where ¯ refers to the convolution opera-

tion. Let the N -point discrete Fourier transforms of the sequences sk and wk be

given by [sk(λ0), sk(λ1), · · · , sk(λN−1)]
T and [wk(λ0),wk(λ1), · · · ,wk(λN−1)]

T respec-

tively. If lk = {l1, l2, · · · , lD} are the kth user’s channel’s strongest D frequency

components in decreasing order of magnitude of the spectrum, then we define power
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Fig. 8. Cumulative Density Functions (CDFs) of the transmitted and the received

power of users’ spreading sequences.

of sk and wk confined to D frequency components as Pink,D =
∑

∀r∈l |sk(λr)|
2 and

Poutk,D =
∑

∀r∈l |wk(λr)|
2.

Fig. 8 shows the CDF’s of Pink,D and Poutk,D for D = 5. Both 2-tap and 5-tap

channels are considered and the CDFs are obtained over 105 channel realizations.

The power of sk is normalized to 1. It can be observed from the figure that 90% of

the time, most of the power of the optimized spreading sequence sk (97% and 93%

of the power of sk in 2-tap and 5-tap channels, respectively) is confined to a much

narrower band than the available bandwidth. Further, we can see from the CDFs for
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the power in the filtered sequences (received power) that, 5-tap channels provide much

higher output power (Poutk,D) than that of 2-tap channels. This is because that 5-

tap channels provide more frequency selectivity than 2-tap channels resulting spectral

peaks with much higher gains. Since the bandwidth of the optimized sequences are

bandlimited and localized around those peaks, the transmitted power of the sequences

are amplified by the spectral peaks, hence, providing much higher output power than

that of in 2-tap case. If the frequency spectrum of an optimized spreading sequence

were flat, there would not be a such power gain at the output of the channel. From

these observations we draw some important conclusions.

1. Since most of the power in the optimized spreading sequences is concentrated

in a few frequency components, it is possible to represent each user’s spreading

sequence with less number of parameters. Since the transmitter (e.g. mobile

unit) has to obtain the information about the user’s spreading sequence from the

receiver (e.g. base station) through the reverse channel, this representation of

sequences with less number of parameters allows the reduction of data overhead

in the feedback channel. With a small abuse of terminology, we will refer to

spreading sequences as being narrowband if most of the power is concentrated

in a few (not necessarily contiguous) strongest frequency components.

2. There are some existing algorithms to design spreading sequences for multipath

channels with low cross correlations. But, some of those algorithms attempt

to optimize received power (received power normalized by the channel gain)

and do not guarantee that the designed sequences will successfully exploit the

channel gain. By observing each user’s channel response, we can impose an

additional constraint on the sequences so that the received absolute power will

be high. We will show that by doing so, we can optimize the transmitter power
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and improve the system performance of some already existing algorithms (e.g.

[10]).

3. It is possible to simplify the existing sequence design algorithms. This is be-

cause, since the bandwidth of the spreading sequences are narrow, the users

can be grouped into different frequency regions. Hence, the optimization can

be done separately for separate groups with less complexity. This technique

will be used to design the spreading sequences with constrained amplitudes and

phases.

The applications of each of the above conclusions will be discussed in following

sections.

C. Designing of spreading sequences with unconstrained amplitudes and phases in

the frequency domain

In this section, we discuss some applications for the design of suitable spreading

sequences with unconstrained amplitudes and phases for multipath channels, where

we can make use of the important conclusions reached in the previous section. In

subsections 2 and 3 of this chapter, we propose to improve the performance of some

existing sequence design algorithms for multipath channels by implementing them in

the frequency domain rather than in the time domain.

1. Main idea

Since the length of each user’s spreading sequence is N , it is possible to represent each

user’s spreading sequence with N linearly independent basis vectors. For example,

the set of N linearly independent basis vectors can be selected as {f0, f1, · · · , fN−1},
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where fr is given by

fr =
[

1, e
j2πr

N , e
j2π2r

N , · · · , e
j2π(N−1)r

N

]

, 0 ≤ r ≤ N − 1. (3.11)

It is clear that, fr corresponds to a sinusoid (or rows of the DFT transform matrix)

whose frequency response is an impulse at the rth frequency index and the kth user’s

spreading sequence can be represented by

sk =
N−1
∑

r=0

ak,rfr. (3.12)

According to the analysis in section B, the optimized spreading sequences are narrow

band. Hence, it is possible to represent each user’s spreading sequence with fewer pa-

rameters with significant accuracy. For this, we select each user’s spreading sequence

as a linear combination of a set of basis vectors considering that each user’s basis is

a set of sinusoids whose frequency components are located at the strongest frequency

components of the corresponding user’s channel. For example, if a user’s channel’s

strongest D frequency components are located at l = {l1, l2, · · · , lD} in decreasing

order of magnitude of the spectrum, then the corresponding optimum spreading se-

quence is approximated by

sk =
∑

∀r∈l

ak,rfr. (3.13)

This allows us to select the best smallest set of vectors as each user’s basis.

2. Proposed modification to the approach in [32]

It can be seen that, for unconstrained amplitude spreading sequences, the data over-

head in the feedback channel is QN bits per user, where Q is the precision in bits

for quantization of the unconstrained chip amplitudes. To reduce the overhead in the

feedback path, Rajappan and Honig [32] have also introduced a reduced-rank trans-
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mitter adaptation scheme where the signature sequences are constrained to lower

dimensional subspaces spanned by some orthogonal basis vectors.

For example, if Fk is the N × D matrix whose D columns are the basis vectors

of the kth user, the optimum spreading sequence sk is a linear combination of D

columns of Fk given by sk = Fkak. In [32], it is assumed that the basis vectors for

Fk are randomly selected D orthonormal vectors. The corresponding ak value, with

a minimum mean squared error receiver ck = Rk
−1Hksk (MMSE receiver assuming

perfect knowledge of SNR), is given by

(Fk
HFk)

−1Fk
HHk

HRk
−1HkFkak = νak (3.14)

and with a matched filter receiver ck = Hksk

||Hksk||
, it is given by

(Fk
HFk)

−1Fk
HHk

H(
2I

aH
k Fk

HHk
HHkFkak

−

Rk

aH
k Fk

HHk
HRkHkFkak

)HkFkak = νak. (3.15)

Equations (3.14) and (3.15) can be derived by selecting sk = Fkak in (3.5) and

maximizing it over ak for matched filter and MMSE receivers. It is clear that ak cor-

responds to an eigenvector of the matrices given in (3.14) and (3.15). The appropriate

eigenvector is selected by finding the eigenvector that maximizes the SINR, given by

γk = |ck
HHksk|

2

ck
HRkck

at the receiver output. For the kth user, ak has to be iteratively

calculated and once it is found, the optimum spreading sequence can be calculated

by sk = Fkak. According to the discussion in the beginning of this section, we have

shown that, each user’s spreading sequence can be represented by the best D basis

vectors which are carefully selected according to the user’s channel response. Hence,

the selection of the kth user’s subspace Fk, as a set of sinusoids which lie at the

frequencies of the D strongest frequency components of the kth user’s channel, allows
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the maximization of the received power rather than selecting an arbitrary set of D

orthogonal vectors. Hence, with the proposed selection criteria for basis vectors, the

algorithm proposed in (3.14) and (3.15) will be shown an improved performance over

the scheme proposed in [32].

To verify the performance of the proposed method, simulations were carried out

for a DS-CDMA system. Each user’s channel is assumed to be an L-tap frequency

selective channel, where taps are drawn from a Gaussian distribution and the power

is normalized to one. Slow fading similar to that in [5]-[9] is assumed. That is,

we assume that each user’s channel experiences a frequency selective block fading.

The block duration is long enough so that users’ channels can be assumed to be

fixed within the period that all the users’ spreading sequences are being updated.

Spreading sequence length N and the number of users K are selected corresponding

to a 75% loading. Performance of each system is evaluated by averaging the users’

performance in the given system over a large number of channel realizations. For the

reduced-rank optimization, we consider two schemes. The first is the scheme proposed

by Rajappan and Honig [32], where for each user, a subspace with dimensionality D

is generated randomly according to the method discussed in [32]. The second is our

proposed scheme, where each user’s basis vectors are selected such that those vectors

are D sinusoids whose spectra are frequency impulses centered at the user’s strongest

channel components. In this case, simulations were carried out for both uplink and

downlink scenarios.

From Fig. 9, it can be seen that for the uplink with 2-tap channels with a single

user MMSE receiver, our proposed scheme with K = 12, N = 16 and D = 5 provides a

2 dB gain at a bit error rate of 10−3 over the scheme in [32]. Further, the performance

difference between the proposed scheme and the full-rank optimization scheme is

small. Also note that the performance is close to the performance of a single user
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Fig. 9. Performance comparison of the two reduced-rank optimization schemes.

RH=Rajappan and Honig algorithm [32].

when the ISI channel is perfectly known at the transmitter, which presents a lower

bound on the achievable bit error rate.

To demonstrate the effect of the increase of channel taps on the system perfor-

mance, we have simulated the proposed scheme with L = 5, N = 32 and D = 10 while

keeping the overloading factor at 75% (K = 24). Fig. 9 shows that performances of

all three schemes ([9],[32] and the proposed) are increased with the increase of the

channel taps. This is expected since 5-tap channels provide more frequency selectiv-

ity. Further, we can see that our proposed scheme performs almost the same as the

full-rank scheme. Proposed scheme outperforms the reduced-rank scheme in [32] by
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Fig. 10. Performance comparison of the two reduced-rank optimization schemes.

RH=Rajappan and Honig algorithm [32]. K=12, N=16 and L=2.

about 2.5 dB. Fig. 10 shows that similar performance improvement can be obtained

when the proposed scheme is used for the downlink. The results show that the pro-

posed reduced-rank optimization provides similar performance to that of the full-rank

optimization, but at a significantly reduced complexity and feedback bandwidth. In

the overloaded case, the full-rank optimization scheme still tries to track the spectral

peaks of the channel but, the algorithm cannot effectively minimize the cross corre-

lation among overlapping users. This significantly high cross correlation cannot be

handled by both the MMSE receiver and the matched filter receiver. For example,

when L = 2, N = 16 and K = 20, an error floor around 10−2 was observed both in
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full-rank adaptation and in the proposed scheme.

a. Computational complexity

We will compare the computational complexities of the full-rank optimization scheme

and the proposed scheme with an MMSE receiver in (3.14) [33]. In the case of the

full-rank optimization scheme, the expression (3.14) reduces to Hk
HRk

−1Hksk = νsk

(Fk = IN). The required number of computations to calculate Rk and Rk
−1 are N2K

and 2
3
N3 respectively [34] . Once Rk

−1 is calculated , we require 2(2L−1)N2 compu-

tations to calculate Hk
HRk

−1Hk. The eigenvectors can be calculated by 12N3 compu-

tations. Hence, the total number of computations required to calculate eigenvectors in

(3.14) is N2K + 2
3
N3+2(2L−1)N2+12N3. Once the eigenvectors are calculated, it is

required to calculate the optimum eigenvector, that maximizes the SINR. For this, it

can be shown that the required number of computations is 2N3. Hence, the total num-

ber of computations in each user iteration is N2K + 2
3
N3+2(2L−1)N2+12N3+2N3.

For the proposed adaptation scheme, the matrix used to calculate the eigenvalues in

the expression (3.14) can be rewritten as (Fk
HFk)

−1
Fk

HWHWHk
HRk

−1HkW
HWFk,

where W is the Fourier transformation matrix. Since (Fk
HFk) is an identity matrix,

no computation is required to calculate it. Similar to the full-rank scheme, we re-

quire 2(2L − 1)N2 computations to calculate Hk
HRk

−1Hk. Both Fk
HWH and WFk

can be calculated with DN log(N) computations. Further, WFk is an N × D sparse

matrix with only D non-zero entries all of which are 1, which will just permute the

rows and columns of the matrix Hk
HRk

−1Hk. To calculate the DFT of Hk
HRk

−1Hk

twice we need 2N2 log(N) computations. Finally, to calculate the eigenvalues we re-

quire 12D3 computations. To find the optimum eigenvalue, another 2D2N + 2N2D

computations are needed. Hence, the required number of total computations is

N2K + 2
3
N3 + 2(2L − 1)N2 + DN log(N) + 2N2 log(N) + 12D3 + 2D2N + 2N2D.
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For Q = 8, N = 16 and D = 5, the required computation is only 23% of that for

the full-rank case. For sufficiently large N , this fraction reduces to ∼ 2/3N3+N2K
2/3N3+14N3 =

2+3K/N
44

< 12%, which is a significant reduction.

b. Required feedback bandwidth

In the proposed scheme, to convey each user’s optimized spreading sequence from the

base station to the mobile unit, it is required to transmit QD bits plus the frequency

indices of the D strongest channel components which requires D log2(N) bits. Hence,

for the proposed sequence adaptation scheme, the required feedback bits per user is

QD + D log2(N). In the full-rank scheme, it is required to transmit QN bits per user.

Hence, for the proposed scheme, the number of feedback bits can be decreased by a

factor of QD+D log2(N)
QN

. For Q = 8, N = 16 and D = 5 the reduction is around 50%,

which is significant.

3. The proposed modification for an existing signature sequence optimization

scheme

a. Transmitter and spreading sequence optimization scheme

In [10], Concha and Ulukus have considered a technique to optimize the transmitter

powers as well as the signature sequences for users in a DS-CDMA system under

multipath channel conditions. The optimality of the set of sequences is measured

by the effective squared cross correlation among the sequences which is related to

the achievable signal to interference plus noise ratio. The effective squared cross

correlation TSCeff is given by

TSCeff =
∑

i,j

|s̃H
i s̃j|

2, 0 ≤ i, j ≤ K − 1 (3.16)
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where s̃i = Hisi

||Hisi||
. It is shown that, to achieve a common signal to interference ratio

β such that SINRi > β for 0 ≤ i ≤ K − 1, β should satisfy the constraint β ≤ 1
ρ(A)

,

where ρ(A) is the largest eigenvalue of A and it is given by

(A)i,j =















|
sH
i

HH
i

Hjsj

||Hisi||||Hjsj ||
|2, if i 6= j

0, otherwise.
(3.17)

It can be easily derived that the quantity ρ(A) is upper and lower bounded by,

1
K

TSCeff − 1 ≤ ρ(A) ≤ 1
2
(TSCeff − K). Hence, it can be assumed that it is rea-

sonable to minimize TSCeff to maximize 1
ρ(A)

which allows β to have wider range of

SINR.

It is also shown in [10] that, TSCeff can be maximally decreased by updating

each user’s spreading sequence sk by

sk =
1

(vHD−1v)1/2
UD−1/2v, 0 ≤ k ≤ K − 1 (3.18)

where U is the matrix with eigenvectors of HH
k Hk and D is the corresponding diagonal

matrix whose diagonal elements are the eigenvalues. Here, v is the eigenvector of

D−1/2UHHH
k ZkHkUD−1/2 corresponding to the minimum eigenvalue, where

Zk =
∑

j 6=k

Hjsjs
H
j HH

j

||Hjsj||2
, 0 ≤ k ≤ K − 1. (3.19)

TSCeff can be reduced by evaluating the expression in (14) iteratively over all the

users. Hence, by minimizing TSCeff ,
1

ρ(A)
can be maximized such that β < 1

ρ(A)
.

If the designed set of sequences can satisfy this condition, non-negative values for

each user’s transmitted power can be found by p̃ = βσ2(1 − βA)−11, with p̃ =

[p̃0, p̃1, · · · , p̃K−1]
T and p̃i = pi||Hisi||

2. The value pi is the ith user’s transmitted

power.

However, it cannot be guaranteed that these pi values are the optimum values
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to achieve a given SINR. This is because, in the minimization of TSCeff , only the

normalized filtered spreading sequences are considered and the absolute power of the

received filtered sequences has not been taken in to account. For example, for a given

set of users’ channels, one can design a set of spreading sequences which has the

required TSCeff . But, if the optimized set of spreading sequences does not exploit

the channel gain properly, for some users, say si, the energy of the received filtered

sequence, Hisi, can be very low. Thus, to achieve a given SINR requirement, the

required transmitted power pi = p̃i/||Hisi||
2 can be very high. Hence, we cannot

guarantee that this optimization technique will give the set of spreading sequences

that uses the optimum transmitter power to achieve a common SINR, β.

To overcome this, we propose to impose an additional constraint on the spreading

sequences. This is done by representing each spreading sequence sk as sk = Fkak,

where Fk consist of D orthonormal basis vectors similar to that in the subsection A.

That is, they are selected such that the basis vectors are the sinusoids which align with

the strongest channel components of user k. With this constraint, we can guarantee

that the received power of each user’s spreading sequence will be considerably high.

With this constraint, the corresponding TSCeff is given by

TSCeff =
sH
k HH

k ZkHksk

sH
k HH

k Hksk

+ κ =
aH

k GH
k ZkGkak

aH
k GH

k Gkak

+ κ (3.20)

where κ is independent of sk and Gk = HkFk. After doing some matrix manipulation

to (16), it can be shown that the optimum ak that reduces TSCeff maximally is given

by

ak =
U′D′−1/2

v′

(

v′HD′−1v′
)1/2

, 0 ≤ k ≤ N − 1 (3.21)

where U
′

and D
′

are matrices with the same eigenvectors and the eigenvalues of

GH
k Gk. Here, v

′

is the eigenvector of D
′−1/2

U
′H

GH
k ZkGkU

′

D
′−1/2

corresponding to
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the minimum eigenvalue. It can be easily shown that

GH
k Gk =









































Hk,1 0 0 0 0 . . .

0 Hk,2 0 0 0 . . .

0 0
...

...
... . . .

0 0
... Hk,r 0 . . .

...
...

...
...

...
...

0 0 0 0 . . . Hk,D









































.

where Hk,r is the rth strongest channel component of the kth user’s channel.

Our proposed modification to the algorithm in [10] gives some additional ad-

vantages. As we have mentioned earlier, in the iterative algorithm in (3.18), D is a

diagonal matrix whose diagonal elements are the eigenvalues of HH
k Hk. It is easy to

show that, for a sufficiently large spreading sequence length N , the determinant of

the matrix HH
k Hk is almost zero. In practice, Hk is calculated by pilot symbols and

the estimation of Hk is imperfect due to the background noise. Hence, a small per-

turbation in the calculation of matrix HH
k Hk could make the matrix D singular. But,

in our proposed scheme, we always select the basis vectors according to the strongest

channel components, and the resulting matrix GH
k Gk is always guaranteed to be non

singular. Simulation results verify the convergence of our proposed algorithm.

b. Signature sequence optimization based on MMSE criteria

In the previous subsection, we have discussed the method of optimizing both trans-

mitter power and the spreading sequence set. In [10], Concha and Ulukus have also

discussed a method of optimizing the spreading sequences for a fixed transmitted

power. In this scheme, the optimized set of spreading sequences is obtained by up-

dating the kth user’s sequence in an iterative fashion according to
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sk =
1

(zH
0 D−1z0)

UD−1z0, 0 ≤ k ≤ K − 1 (3.22)

where U and D are the matrices with eigenvectors and eigenvalues of the matrix I +

pkH
H
k (Zk+σ2I)−1Hk and z0 is the eigenvector of D−1/2UHHH

k (Zk+σ2I)−2HkUD−1/2

corresponding to the maximum eigenvalue. We can come up with a reduced-rank se-

quence updating algorithm by following the same line of arguments as in (3.18)-(3.19).

The details of the approach will not be discussed here. Further, we can modify the

transmitter and signature sequence optimization scheme discussed in the subsection

3.a to be used for signature sequence optimization under constrained transmitter pow-

ers, by fixing each user’s transmitted power. Similar to the discussion in subsection

2.b, it can be easily shown that the proposed reduced-rank scheme requires fewer

feedback overhead bits. To compare the performance of the transmitter and the

signature sequence optimization scheme in [10] with the proposed subspace based op-

timization scheme (3.a), simulations were carried out with 1
σ2 =5 dB and L = 2. Here

also we assume that each user’s channel experiences frequency selective block fading

and the performance is evaluated by averaging the users’ performance in the given

system over a large number of channel realizations. Dimensionality of the subspace is

selected as D = 3. The number of users is 8 while the spreading length is 5. It can be

seen from Fig. 11 that, at the low target SINR region, the proposed method requires

less transmitter power than the scheme in [10] while it needs less transmitter power

in the high SINR region. The reason for this behavior is that, with the additional

power constraint on the proposed scheme, the achievable ρ(A) value is higher than

that of the scheme in [10]. Hence, according to 3.a, the corresponding target SINR

region for which the system can perform well is much higher for the scheme in [10]

than that of the proposed scheme. But, for a 12 user system with spreading sequence
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Fig. 11. Performance comparison of the transmitter power and spreading sequence

optimization scheme [10] with the proposed reduced-rank version of it.

CU=Concha and Ulukus [10]. K=8, N=5 and L=2. 1
σ2 =5 dB.

length 16 and D = 5, which is a more practical situation, both the proposed and the

system in [10] can achieve the lowest possible ρ(A) value which is 0. The reason for

the proposed system to achieve this minimum ρ(A) value is, with K ≤ N , there is

much freedom to select a set of signature sequences that optimizes the cost function

in (3.16). Thus, the SINR region that both systems successfully operate in is [0,∞).

Hence, with the additional power optimization strategy, the proposed system out-

performs the one in [10]. The simulation results in Fig. 12 verify this by illustrating

that, the required average transmitter power for the proposed scheme is always 5 dB
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Fig. 12. Performance comparison of the transmitter power and spreading sequence

optimization scheme [10] with the proposed reduced-rank version of it.

CU=Concha and Ulukus [10]. K=12, N=16 and L=2. 1
σ2 =5 dB.

less than that of the transmitter and signature sequence optimization scheme in [10].

Fig. 13 and Fig. 14 compare the performance of MMSE based sequence optimization

scheme in [10] with the proposed reduced-rank MMSE sequence optimization scheme.

It can be seen that both schemes perform equally well; note however, that the pro-

posed schemes uses only the 5 strongest frequency components. The figures further

show that, when we fix the transmitter power and use the proposed reduced-rank

transmitter and receiver optimization scheme (3.a), the performance of the system is

almost the same as that of the MMSE based sequence optimization scheme (refer to
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Fig. 13. Performance comparison of MMSE sequence optimization scheme [10] with the

proposed reduced-rank version of it. CU=Concha and Ulukus [10]. Uplink is

considered. K=12, N=16 and L=2.

3.b). It can be further seen (compare with Fig. 9 and Fig. 10) that, the performance

of the reduced-rank MMSE sequence optimization scheme is very close to that of the

transmitter adaptation scheme (Rajappan and Honig).

In this chapter, we have proposed a frequency domain approach to design a set

of spreading sequences for a DS-CDMA system in the presence of frequency selective

fading. We showed that the number of parameters involved in the design of optimal

spreading sequences can be made smaller when they are analyzed in the frequency

domain, than when they are analyzed in the time domain. Further, it was shown that
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Fig. 14. Performance comparison of MMSE sequence optimization scheme [10] with the

proposed reduced-rank version of it. CU=Concha and Ulukus [10]. Downlink

is considered. K=12, N=16 and L=2.

for multipath channels, designing a set of spreading sequences in the frequency domain

reduces to assigning a spreading sequence for each user with a spectrum whose spectral

lines are located at the strongest spectral components of the users channels spectrum

while keeping the cross correlation at a very low value for spreading sequences with

overlapping spectra. We have also showed that by designing spreading sequences in

the frequency domain, the performance of some existing algorithms for the design of

spreading sequences can be improved and/or the computational complexities can be

reduced.
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CHAPTER IV

THE DESIGN OF CONSTRAINED AMPLITUDE SPREADING SEQUENCES

USING SPECTRAL DOMAIN PROPERTIES

In the previous chapter, we have discussed the design of spreading sequences for

frequency selective channels by exploiting the users’ channel state information. There,

the designed sequences have shown superior performance over that of the conventional

sequence design schemes and also have outperformed the single user AWGN channel

performance.
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Fig. 15. PAPR distributions of single code and multi-code DS-CDMA signals.

Unfortunately in almost all the proposed algorithms, the designing has been

done with the assumption that the chips of the sequences have unconstrained ampli-
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tudes and phases. There are many disadvantages of using unconstrained sequences

in a DS-CDMA system. First, once the sequences are designed at the designed

end (transmitter/receiver), the sequences have to be transmitted to the other end

(receiver/transmitter) of the communication channel. This demands a considerable

feedback bandwidth. Secondly, unconstrained sequences have high peak to average

power ratio (PAPR) at the transmitter output. For example, in Fig. 15 we have

plotted the PAPR distributions of single code and multi-code systems, where the

spreading sequences are optimized according to the scheme proposed in [9]. It can

be seen that, when each user is allowed to use a single spreading sequence, 5% of

the time, the PAPR is greater than 3 dB at the user’s transmitter output. If the

system supports users to use multiple spreading sequences, the PAPR could be much

higher. For example, when users are allowed to use two spreading sequences, more

than 40% of the time, the PAPR is greater than 3 dB. This high PAPR demands a

wider dynamic range of the transmitter amplifier increasing the cost of the amplifier.

Hence, we can see that there is a considerable demand for the design of constrained

amplitude sequences for CDMA systems.

In this chapter, we capitalize the observation in Chapter III that the spectra of

the spreading sequences designed according to existing algorithms are narrowband

and are located at the strongest spectral components of the users’ channels to design

constrained amplitude sequences for frequency selective channels.



45

A. Constrained amplitude sequence design

1. Constrained amplitude sequence design by mapping unconstrained sequences

onto a unit circle

If we restrict the chips of the spreading sequences to have a unit amplitude, the

optimization problem is a solution to

max γk s.t. |sk,q| =
√

(p/N), 0 ≤ q ≤ N − 1 (4.1)

where γk is the received SINR of the kth user and sk,q is the qth chip of the spreading

sequence sk. The optimization problem in (4.1) is equivalent to the optimization

problem in (3.5) except the constraint imposed on each chip of the spreading sequence

sk.

This kind of an optimization is intractable in general [35]. To circumvent this

problem, we first relax the constraint imposed on the chips of the spreading sequences

and perform the unconstrained optimization proposed in [9]. Then, at each iteration,

we simply project the chips of the optimized unconstrained spreading sequences onto

a unit circle. That is, in each user iteration, the kth user’s optimized sequence sk

is replaced by a unit circle sequence where the qth chip of the spreading sequence

sUNIT k which is sUNIT k,q is given by

sUNIT k,q = exp (j arg [sk,q]) , 0 ≤ q ≤ N − 1. (4.2)

The unit circle mapping allows to reduce the PAPR. But, since the phases of the chips

of a unit circle sequences can take any value between 0 and 2π, to transmit the phase

information it requires a considerable amount of feedback bits. For example, if we

quantize each chip’s phase with A bits, the required number of feedback bits is A×N .

Instead of directly quantizing phases of the chips, we propose the following algorithm.
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Fig. 16. The performance of the unit circle sequences with frequency domain quantized

coefficients. K=12, N=16. RH-quantized = Sequences designed according to

(3.13) with quantized αk,r. RH-unquantized = Sequences designed according

to (3.13) with unquantized αk,r and D = N .

First, we observe the narrowbandness of each spreading sequence sk and represent sk

with a reduced number of basis vectors (say D) according to (3.11) and (3.13). Then

we do the optimization to find the optimum basis vector coefficients αk,rs for each

user. Secondly, we quantize the coefficients αk,rs of the basis vectors with Q bits before

mapping the reconstructed sk onto a unit circle sequence. That is, if the quantized

coefficients of the basis vectors for the kth user’s spreading sequence are α̂k,rs, then

the corresponding unit circle sequence is given by ŝUNIT k = exp(j arg(
∑

∀r∈l α̂k,rfr)).

Note that D and Q are selected such that the required number of overhead bits Q×D
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is as small as possible while the performance of the reduced-rank quantized sequences

is very close to that of full rank unquantized sequences.

It should be noted that to reconstruct the unit circle sequences both at the

receiver and the transmitter, it needs only the information of the quantized coefficients

α̂k,rs of the basis vectors. Hence, it is sufficient to transmit only α̂k,rs from the

designed end to the other end of the communication channel (transmitter/receiver)

and no additional information has to be transmitted regarding the phases of the chips.

To verify the performance of the proposed unit circle sequences, simulations

were carried out for a DS-CDMA system. Each user’s channel is assumed to be a

2-tap frequency selective channel where taps are drawn from a Gaussian distribution

and the power is normalized to one. Very slow fading similar to that of in [9], [32]

is assumed and therefore, in the simulations the channels do not change over the

time duration required to design the spreading sequence and feed it back. Spreading

sequence length is 16 and the number of users is 12 corresponding to a 75% loading.

Fig. 16 shows the performance of an uplink DS-CDMA system with chips of

the spreading sequences mapped onto a unit circle according to the subsection 1 in

section A. For comparison, we have also included the single user performance in

an AWGN channel, performance of the un-quantized sequences ([9], D = N) and

the performance of the complex sequences proposed in [36]. Since it requires at

least 2N bits to represent any complex spreading sequences (e.g. QPSK), to make

a fair comparison between the unit circle sequences and any other type of complex

sequences, we have selected D and Q such that D = 5 and αk,r is uniformly quantized

with 3 bits per dimension. Hence, the required number of feedback bits is almost 2N .

It can be seen that with the use of a parallel interference canceller and an MMSE

detector, the performance of the unit circle sequences is 0.5 dB and 1.4 dB away

from that of the un-quantized sequences. It also shows that, even with the MMSE
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receiver, unit circle sequences outperform single user AWGN performance. This is

because, each user’s unit circle sequence is designed to exploit that user’s channel

gain. Performance of the complex sequences proposed in [36] is 0.8 dB away from

that of the proposed unit circle sequences.

2. The design of constrained amplitude sequences using already existing family of

sequences

As discussed in Chapter III, it is possible to design nearly optimum spreading se-

quences for multipath channels by assigning spreading sequences with narrowband

spectra centered around the strongest channel frequencies, while maintaining a low

cross correlation among the sequences that have overlapping frequency spectra. If it

is possible to design a set of spreading sequences with fixed amplitude chips with the

above given characteristics then, that set will provide good performance while main-

taining a reduced feedback bandwidth and a low PAPR at the transmitter output.

To tackle this problem we first select a subset of spreading sequences from the set

of Oppermann sequences. An Oppermann sequence [37] is a unit amplitude sequence

where the members of the spreading sequence set are given by

oM
i = (−1)iM exp

[

jπ(Mmip + in)

N

]

, 0 ≤ M, i ≤ N − 1, (4.3)

where m, p, n are any real numbers. The triple {m, p, n} specifies the sequence set

and the M refers to the Mth sequence in the family. It is shown in [37] that, if p is

set to 1, all the sequences will have the same autocorrelation magnitude. Hence, the

corresponding spectra will have the same shape while localized at different frequencies.

Further, it is shown that if N is prime, correlation between any two sequences in the

same family is zero. We select the Oppermann sequences with p = 1 and m = 1 and

vary n until we get a set of spreading sequences whose spectra are narrow band and
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centered around N different discrete frequency points. If we assign these spreading

sequences for users such that each user’s strongest channel frequency matches with

the center frequency of the spreading sequence, we can guarantee that the received

filtered sequences will also have low cross correlation properties. The reason for

this is that, since the spreading sequences are narrow band sequences, after filtering

through the corresponding channels, the received filtered sequences will also have

spectra close to those of the transmitted sequences. But this assignment of spreading

sequences is not always possible since there is a possibility that two or more users

may have the same strongest channel frequency. We have developed the following

strategy for assigning sequences for such users. (For this technique, we select two

sets of Oppermann sequences with narrow band spectra given by {o1
i } and {o2

i },

0 ≤ i ≤ N − 1).

Let the kth user’s channel be hk and the corresponding frequency indices of the

user’s r strongest channel components be [lk1, lk2, · · · , lkr].

1. For the kth user’s channel hk, select the corresponding Oppermann sequence

o1
j , such that F(o1

j) = lk1 (we define F as the operator that gives frequency

index of the strongest frequency of a sequence). If the selected sequence o1
j has

not been assigned for the users 1, · · · , k − 1, assign that sequence for the kth

user.

2. If the selected sequence o1
j has previously been assigned to a user u with channel

hu then, we search the second set of Oppermann sequences o2 and select the

Oppermann sequence o2
m such that F(o2

m) = F(o1
j) = lk1. This guarantees that

the received power at the kth user’s receiver is high. But, since the sequences

of the users k and u are not from the same Oppermann sequence set, the cross

correlation between the two users is not necessarily small. To reduce the cross
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correlation, we multiply the kth user’s Oppermann sequence by ejθ so that the

spreading sequence for user k is given by o2
mejθ. The angle θ is selected such

that the real part of the cross correlation between the filtered sequences of the

users k and p is zero. That is <[õ1
H

j õ2
m exp(jθ)] = 0. Where õ1

j = hp ¯ o1
j

and õ2
m = hk ¯ o2

m. ¯ is the convolution operation. The value of θ is given

by, θ = tan−1[<(õ1
j
H õ2

m)/=(õ1
j
H õ2

m)]. Note that this is possible only if o2
m has

not been assigned previously. The algorithm does not optimize more than two

users at a time since optimization with more users leads to an increase in the

complexity of the algorithm.
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3. If both o1
j and o2

m have been assigned previously, then select an unassigned

Oppermann sequence o1
q from the set o1 such that F(o1

q) = lki for 2 ≤ i ≤

N − 1. The selection should be done such that the algorithm searches for the

next strongest channel frequency lkr in the descending order.

4. Carry out this for all the users in the system.

From the above given algorithm, it is possible to obtain a set of spreading se-

quences whose filtered outputs have smaller cross correlation while producing suffi-

ciently high SNR output at the receiver. Further, the optimization here reduces to

optimizing the performances of two users (k and u) at a time rather than optimiz-

ing all N users jointly. The latter is prohibitively complex for a set of spreading

sequences with fixed amplitude chips. Another advantage of using Oppermann se-

quences is that only {M,m, n, θ} need to be sent from the transmitter to the receiver

if the optimization is centralized.

Fig. 17 shows the performance of the system when the chips of the spreading

sequences are derived from a subset of Oppermann sequences. These spreading se-

quences are from the selected subset of Oppermann sequences with N=15. Here, n

has been varied to obtain two families of orthogonal narrow band sets of sequences

as discussed in this subsection. Simulation conditions are the same as that of in

subsection 1, section A. It can be seen from Fig. 17, the proposed scheme to design

spreading sequences with a fixed amplitude alphabet provides a 1.6 dB gain over the

single user AWGN performance with the use of a PIC. The proposed scheme also pro-

vides 2 dB gain over complex sequences proposed in [36]. Further, the performance of

the system with Oppermann sequences is only a few tenths of a dB away from that of

the unconstrained sequences. Even with the use of an MMSE receiver, the unit circle

sequence outperforms AWGN performance and the complex sequences proposed in
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[36] by about 0.4 dB and 0.7 dB respectively.
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CHAPTER V

THE DESIGN OF FINITE ALPHABET SPREADING SEQUENCES BASED ON

THE WATERFILLING CONCEPT

In the previous chapter, we mainly discussed the design of spreading sequences with

constrained amplitude chips which was helpful to reduce the PAPR at the transmitter

output over that of the unconstrained spreading sequences.

In this chapter, we focus on the design the spreading sequences not only with

constrained amplitude chips but also with chips derived from a finite alphabet. Here,

we restrict the alphabet of the chip sequences to be from a QPSK constellation. In this

design, we consider two cases - (i) knowledge of the channel state information (CSI) of

all the users is available centrally during the design process such as at the base station

(ii) the design is at the mobile unit when each user knows only the CSI of his/her

frequency selective channel. In both cases, we propose novel techniques to design

spreading sequences whose spectra are well matched to the waterfilling spectrum of

the frequency selective channel. In the former case, a set of short spreading sequences

is designed that is both well matched to the frequency selective channels and possesses

a low cross correlation. In the latter case, the use of long spreading sequences and

error control coding is proposed. The sequences that follow the waterfilling spectra are

obtained by considering that the sequences are to be from the outputs of appropriately

designed Markov sources.

A. Design of spreading sequences

For our analysis, we consider the system model in (2.2) which is given by

rq,m =
K−1
∑

k=0

L−1
∑

j=0

xk,msk,q−jhk,j + nq, 0 ≤ q ≤ N − 1. (5.1)
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If we represent (5.1) in terms of filtered chip sequences fk = sk¯hk, where ¯ denotes

the convolution, it becomes

rq,m =
∑

k

xk,mfk,q + nq (5.2)

where fk,q is the qth element of fk. The SINR at the front end of the kth user’s

matched filter receiver is given by

SINRk =
||sk ¯ hk||

2

∑

j 6=k ||sj ¯ hj||
2 + σ2

=
||fk||

2

∑

j 6=k ||fj||
2 + σ2

. (5.3)

1. Basic idea

In Chapter III, we have shown that the power spectrum of a user’s spreading sequence

that tries to maximize the user’s SNR should be narrowband and lies very close to

the strongest spectral components of the channel. But, in a multiuser environment

an additional care has to be taken to design the users’ sequences to reduce the cross

correlation effect. the best way to do this is to jointly optimize the sequences that

minimize a global cost function. For an uncoded system, the cost function is the sum

of mean squared error of all the user’s information bits. This optimization is handled

in an iterative fashion in [9] where each user tries to maximize that user’s SNR while

avoiding interference from other users.

But, for a coded system, it is shown in information theory that the sum capacity

of a multiuser system is achieved by way of multiuser waterfilling [38]. In terms

of design of spreading sequences, optimal long spreading sequences are those whose

spectra are obtained according to the multiuser waterfilling. Although waterfilling

across the users is the optimal technique to achieve the sum capacity, practically this is

very complex and an iterative technique is required [39]. Further, since the multiuser



55

waterfilling is optimal only asymptotically in the length of spreading sequences, it is

not straightforward to design good short spreading codes based on the multiuser water

filling. As an alternative but sub optimal approach, we design the users’ spreading

sequences such that each user’s spreading sequence is well matched to the single

user waterfilling spectrum. Here, each user’s spreading sequence is obtained at the

output of a Markov source with an appropriately chosen probability transition matrix.

Once a set of single user spreading sequences are designed for each user’s channel we

select the optimum set, one code from each user, such that the cross correlation

among the users’ spreading sequences are minimized. It should be noted that, this

proposed technique is not restricted only to the sequences that follows the waterfilling

spectrum. Generally, we can design a set of spreading sequences that require given

spectral characteristics with very low cross correlation properties. For example, for

an uncoded system, the sequences should be designed such that spectrum of each

user’s spreading sequence is a narrowband one centered at the strongest spectral

components of the channel.

2. Single user design

In the absence of the other users, the received signal at the kth user’s matched filter

is given by

yk,q =
L−1
∑

j=0

hk,jsk,q−j + nq, 0 ≤ q ≤ N − 1. (5.4)

It is shown in [40] that, for a discrete-time Gaussian channel, the spectrum

εk = (εk,0, εk,1, ...., εk,N−1) of the capacity achieving sequence sk should satisfy

εk,q =















N0

2
(θ − |Hk,q|

−2), if θ|Hk,q|
2 > 1

0, otherwise
(5.5)

where (Hk,0, Hk,1, .....Hk,N−1) is the discrete-time channel frequency spectrum given
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by

Hk,q =
N−1
∑

p=0

hk,pe
−j2πpq/N , 0 ≤ q ≤ N − 1. (5.6)

Here, θ is a parameter given by

N−1
∑

q=0,Hk,q 6=0

max(θ − |Hk,q|
2, 0) = 2NEs/N0 (5.7)

where Es is the chip energy. From (5.5)-(5.7) the required waterfilling spectrum of the

particular channel can easily be found. It should be noted that the channel coefficients

of the low pass equivalent model of a practical multipath channel are complex. Hence,

the desired waterfilling spectrum is not necessarily symmetric about zero frequency.

It is impossible to match this asymmetric waterfilling spectrum with a real valued

spreading sequence which can only provide a symmetric power spectrum. To achieve

this spectrum, it is necessary to use a complex valued spreading sequence having a

certain degree of correlation between real and imaginary parts of the sequence.

In our approach, for user k, we first generate a long complex valued sequence

(much longer than the spreading length) Sk = {sk,j}
t
j=1 of length t that possesses

the desired spectrum. As a computationally efficient method, we consider Sk to be

an output of a Markov chain with a given probability transition matrix (PTM). In

our simulation we generate Sk with QPSK signals derived from the constellation

c = [c0, c1, c2, c3]
T with cm = ej(2m+1)π/4 for 0 ≤ m ≤ 3, according to the probability

transition matrix given below

P =

























p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

























.

Here, pml for 0 ≤ m ≤ 3 and 0 ≤ l ≤ 3 denotes the probability that the symbol cl is
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selected as the output in a given interval, given that the symbol cm is selected in the

previous interval. If the autocorrelation function of the generated Markov sequence

is given by R̂(q), where q is the time index, then it can be shown that

R̂(q) = E[sk,nsk,n+q
∗]

=
∑

m,l

cmcl
∗Pr(sk,n = cm, sk,n+q = cl) (5.8)

where sk,n is the nth chip of the kth user’s Markov sequence and ∗ denotes complex

conjugate. We can rearrange (5.8) as

R̂(q) =
∑

m,l

cmcl
∗Pr(sk,n = cm)Pr(sk,n+q = cl/sk,n = cm)

=
1

4

∑

m,l

cmcl
∗Pq

m,l (5.9)

where Pq
m,l is the mth row lth column element of Pq (P is the PTM). Here, we have

assumed that each symbol in the constellation is equiprobable. After rearranging the

terms inside the summation, it can be easily shown that the autocorrelation R̂(q) of

the complex valued Markov sequence with a given PTM is given by

R̂(q) =
1

4
cHPqc. (5.10)

If the autocorrelation function of the desired spectrum (waterfilling spectrum) is

R(q), we can find a suitable PTM that generates the longer complex sequences Sk,

which approximately matches the desired waterfilling spectrum in the mean squared

sense by

P̂ = arg min
p

∑

q

|R̂(q) − R(q)|
2
. (5.11)

Fig. 18 illustrates an example of this method for a channel with channel coeffi-

cients given by hk = [0.6381 − 0.5252j,−0.5323 + 0.1834j]. It can be seen from the

figure that, the power spectrum of a sequence that is generated as an output of an
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Fig. 18. Comparison of the waterfilling spectrum with the spectrum of the complex

sequence generated by an appropriate first order Markov chain.

appropriate Markov chain and the power spectrum of a 31 length sequence derived

from that Markov sequence closely follows the waterfilling spectrum of the channel.

3. Selection of the optimal short spreading sequences

In designing of short spreading sequences, we assume that the knowledge of each user’s

CSI is available centrally. Fig. 19 illustrates the selection procedure of short spreading

sequences from the long Markov sequence. Here, for user k, a set of spreading se-

quences of length N is obtained from Sk according to sn
k = [sk,n, sk,n+1, ..., sk,n+N−1]

T .

The selected sn
k sequences are the best ones in the sense that, the MSE between the

desired waterfilling spectrum of the kth user’s channel and the spectrum of sn
k is
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Fig. 19. Figure that illustrates the selection procedure of short spreading sequences

from the long Markov sequence.

higher than that of the rest of the sequences in Sk. In simulations, we have selected

the best 5% sequences in Sk. Once the set of good sequences for each user is found

we have to select a set of K sequences which includes one spreading code from each

single user’s spreading code set that minimizes the overall BER of the system with

the use of a suitable multiuser detector. This is similar to the selection of spreading

sequences such that each user experiences a minimum interference from other users.

Here, we explain a procedure to perform this minimization. Let the kth user’s

filtered spreading sequence fk be given by, fk = [fk,0, fk,1, ...., fk,N−1]
T . We define the

matrix F of filtered spreading sequences as F = [f1 f2 . . . fK]T . Then, the correspond-

ing correlation matrix among the filtered sequences is given by R = FHF. It can

be shown that Rkk and
∑K−1

p=0,p 6=k Rkp gives the signal and interference components of

the kth user at the receiver after despreading the received signal using the kth user’s

filtered spreading sequence fk. Here, Rij is the ith row jth column element of the

matrix R. To select a set of spreading codes that have minimum interference among

the users, the following steps are followed (see Fig. 20).

1. Randomly select a sequence sk from each user k to form a set of sequences
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S = [s0, s1, ...., sK−1] . Here, sk is the set of spectrum matched short sequences

for the kth user. Find the matrix F of filtered spreading sequences.

2. Calculate the maximum possible normalized interference Ik experienced by each

user k given by Ik = (
∑K−1

p=0,p 6=k |Rkp|)/Rkk .

3. Find the maximum value of interference Imax = max(Ik) for all users.

4. Repeat steps 1-3 Q times and pick the set of sequences which gives the minimum

Imax.

Once the set of spreading sequences are found, we can assign these spreading

sequences to the corresponding users so that the multiuser detector at the receiver

can decode each user’s information with considerably less performance degradation

relative to their single user performance.

4. Long spreading codes with channel coding

In this subsection, we also consider the design of each user’s spreading sequence where

the knowledge of the rest of the users’ spreading sequences is not necessary. Here,

we attempt to maximize single user performance through the use of long spreading

sequences or equivalently, by the use of different spreading sequences for different

bits. The main advantage of this approach is that joint optimization of spreading

sequences is not required since there is no attempt to minimize the short time cross

correlation. This is useful in the situation where each user has the knowledge only on

his frequency selective channel. Here, the average cross correlation between sequences

(averaged over different bit intervals) can be made quite small since the length of the

sequences is large. Although the average cross correlation is small, the instantaneous

cross correlation can be quite large. Therefore, this approach is not suitable for
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uncoded transmission as this will result in an error floor. However, in the presence

of a channel code, the fact that instantaneous cross correlation can be large is not a

significant issue due to the time diversity provided by the channel code.

B. Receiver structure

For the receiver at the base station, we use an MMSE receiver followed by a parallel

interference canceller [18]. Here, the receiver includes a set of N matched filters, one

for each user, followed by an MMSE receiver and an iterative interference rejection

system. Each user’s matched filter is matched to the filtered spreading sequence of

the corresponding user. The output signal at the kth user’s match filter is given by

zk,m =
N−1
∑

j=0

fk,jrj,m, 0 ≤ k ≤ K − 1. (5.12)

The following iterative steps briefly describe the function of the MMSE front end-

parallel interference cancellation detector.

1. Find the MMSE estimator of the kth user’s information symbol as x̂k,m =

∑K−1
p=0 Ak,pzp,m. Where Ak,p is the kth row, pth column of A which is given by

A = [R + σ2I]−1.

2. Reconstruct the multiple access interference for each user k based on the esti-

mation obtained in step 1. Let us assume that the calculated interference for

the nth iteration, for the kth user is Ik,n.

3. For each user k, subtract the weighted multiple access interference given by

(Ik,n + Ik,n−1)/2 from the received signal rm. Here Ik,0 = 0. This interference

eliminated signal can be considered as the new input to the kth user’s matched

filter to get a more accurate decision for the kth user’s bit xk,m.
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Fig. 21. BER performance comparison of the system with short codes. N=16, K=12.

4. Steps 2 and 3 are followed iteratively for a sufficient number of times until the

BER of each user converges.

To verify the performance of the proposed method, simulations were carried out

for the uplink of a DS-CDMA system. Each user’s channel is assumed to be a 2-

tap frequency selective slow fading channel, where taps are drawn from a Gaussian

distribution and the power is normalized to one, which remains fixed for the period

of transmission. A set of short spreading sequences are carefully selected according

to the technique proposed in section A, subsection 3 and the receiver described in

section B was used. To compare the performance of the proposed method, simulations

were also carried out with 4-phase sequences proposed in [36] which are assigned
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randomly to each user. Fig. 21 shows the performance of the designed short codes
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Fig. 22. BER performance comparison of the system with long codes [41]. K=5,

N=16.

for a heavily loaded system with spreading code length 16. The number of users

in this system is 12 corresponding to a 75% loading. Here the obtainable gain for

spectrum matched sequences with the use of a sub optimal detector over single user

performance in an AWGN channel is 1 dB at a BER of 10−3. In this case, the

spectrum matched spreading sequences give a 1.8 dB performance improvement over

the 4-phase sequences proposed in [36]. We also have shown the performance of long

spreading sequences (without optimizing the cross correlation). It can be seen from

the figure that, the system with long spreading sequences results in an error floor
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in the absence of channel codes. Furthermore, it can be noted that this is close to

the optimized performance for uncoded BER in the range of 10−1 to 10−2 which is

typically the region of interest in coded systems.

To demonstrate the effect of the use of a powerful channel code in the low SNR

region, simulations were carried out with the use of a rate one-half turbo code where

the generator polynomial of the component encoder is [5,7] and the block length is

2000. As shown in Fig. 22, for a 5 user system with spreading length 16 with the

use of channel coding, the error floor which occurred in an uncoded system can be

eliminated. It is further shown that, by doing so, the performance of a coded system

with long spreading codes is inferior to that of a coded system with short spreading

codes only by about 0.5 dB. Furthermore, with the application of turbo codes BER

performance of a system with long spreading codes is superior to the coded single

user AWGN channel performance with turbo codes. Hence, it is clear that spectrally

matched long codes along with a very powerful channel code can successfully be used

in multipath CDMA systems. The BER performance of long codes is few tenths of a

dB away from the performance of a system with spectrally matched short codes with

good cross correlation properties.
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CHAPTER VI

THE DESIGN OF SHAPING CODES FOR PARTIAL RESPONSE CHANNELS

In this chapter, we discuss the design of channel coding schemes for single-track/head

and multi-track/head magnetic recoding channels. The channel code is considered to

be a concatenation of an inner shaping code and an outer channel code. The outer

channel code is matched to the inner shaping code using the EXIT chart analysis.

We mainly focus on the low-rate code design schemes. For this, we assume that the

magnetic recording channel as a frequency selective channel and try to design the

optimum shaping codes by assuming that the shaping codes are the spreading se-

quences in an equivalent multiuser frequency selective system. It is important to note

that the inputs to the magnetic recording channels are derived from a binary alpha-

bet. Hence, we design the spreading sequences with binary chips. We show that our

proposed algorithm in Chapter IV to design finite alphabet spreading sequences for

frequency selective channel can successfully be used to design above shaping sequences

for magnetic recording channels.

For single-track magnetic recording channels, we design the shaping sequences

such that the trellis corresponding to the shaping code has multiple parallel branches

to increase the rate of the outer code which will also increase the overall rate of the

concatenated code. For multi-track recoding schemes, we design the inner shaping

sequences with a low rate. These shaping sequences for the tracks are designed jointly

to maximize the single-track performance at the low rate region, while minimizing the

interference from the neighboring tracks. The encoding is performed separately and

decoding is performed jointly at the decoder. Performance of multi-track recoding

schemes with the use of per-survivor decoding is also discussed.
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A. Background

Channel coding is necessary for digital magnetic recording for a variety of reasons

such as error correction, timing recovery and the reduction of the effect of nonlinear-

ities. The channel codes should be selected such that they are easily implementable

with a considerably small penalty on the information density. The design of channel

codes for partial response channels has recently received some attention. According

to information theory, the capacity of a power-constrained partial response channel

whose input alphabet is not constrained to be finite can be obtained by the well

known waterfilling argument [42]. However, in a magnetic recording channel, data is

encoded in the media by magnetizing the magnetic domains in one of the two possible

directions (longitudinal/perpendicular). Hence, the input alphabet is constrained to

a binary one.

A partial response channel with constrained input alphabet can be represented by

a finite state machine and the definition of the capacity C of a partial response channel

is described in [43]. It should be noted that, there are no known analytical result for

either the capacity or the spectrum of the input distribution for constrained input

alphabets as in the unconstrained input alphabet case. The i.u.d capacity Ci.u.d of a

partial response channel refers to the information rate when inputs are independent

and uniformly distributed (i.u.d.) random variables.

The computation of the capacity C and the i.u.d. capacity Ci.u.d of a partial

response channel has been a subject of researchers’ attention for some time. In [44],

Goldsmith and Varaiya have formulated the information rate of a finite-state machine

channel. This formulation was generalized for ISI channel by Sharma and Singh in

[45]. They have also computed a lower bound on the channel capacity of partial

response channels. Arnold and Loeliger [46] and Pfister et al. [47] proposed a Monte
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Carlo method to compute the information rate of a finite-state machine channel where

the inputs are generated from a Markov process. They have also computed a lower

bound for the i.u.d. capacity on C . In [48], Kavcic et. al. have proposed a method

to design capacity-approaching codes for partial response channels. Here, the codes

are constructed as concatenations of inner trellis codes and outer low density parity

check (LDPC) codes. In the design, the inner trellis code is constructed to mimic the

transition probabilities of a first order Markov process that achieves a high information

rate. The outer LDPC code is optimized using the density evolution. However, this

scheme has high computational complexity even for the channels with short memories.

In modern hard disks, multiple heads are used for fast recoding of data to the

magnetic disk and retrieval of data from it. Since magnetic recording tracks have

become narrower and narrower to obtain a great increase in the areal density, the

read-back signals of the heads inevitably interfere with each other causing inter-track

interference. Hence, a magnetic recording track can be modelled as a partial response

channel that interferes only with adjacent tracks called the inter-track interference

(ITI). For example, in a disk configuration where only N tracks are written and read

at a time, the inter-track interference matrix can be represented as

H =






















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.

where α is the inter-track interference.

In [49] and [50], the general problem of simultaneous detection of multiple tracks

using multiple heads was studied. In [49], a maximum likelihood detection that
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operates on the samples of the zero forcing equalizer is proposed. In [50], the detection

is based on decision feedback equalizing and a simple algorithm for computing the

performance of an infinite-length decision feedback equalizer is presented.

This chapter focusses on two areas. First, we discuss the design of inner shaping

codes for single-track/head magnetic recording schemes. The inner shaping code is a

trellis code and the shaping trellis has multiple parallel branches to increase the rate of

the outer code. The design of shaping codes with a high rate also increases the overall

rate of the concatenated code. For a dicode channel, our proposed scheme with rate

2/3 outer shaping code outperforms the scheme with bi-phase coding as shaping codes.

Secondly, for multi-track recoding schemes, we design the inner shaping sequences

with a low rate. These shaping sequences for the tracks are designed jointly to

maximize the single-track rate at low rate region, while minimizing the interference

from the neighboring tracks. The encoding is performed separately for different tracks

and for each track, the outer channel code is matched to the inner shaping code using

EXIT chart analysis. The decoding is performed jointly at the decoder. We also show

that the performance of multi-track recoding schemes with the use of per-survivor

decoding is very close to the optimum joint decoding when the shaping sequences are

designed jointly.

B. The design of shaping codes for single-track magnetic recording systems

As described in [51], at low SNR region, the channel output is mainly contributed by

AWGN noise. Hence, the technique for unconstrained input signals can be used as a

guideline to design the codes with constrained alphabets. Further, it was shown in

[51] that, at the low rate region, due to the very low input energy, most of the power of

the waterfilling spectrum is constrained at the bottom of the inverted channel. Hence,
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Fig. 23. i.u.d. capacity dicode channel with bi-phase coding vs i.u.d. capacity of

dicode channel.

in the low rate region, the waterfilling spectrum of a channel code corresponds to the

maximization of the energy of the code at the channel output. Fig. 23 shows the

i.u.d. capacity and the capacity of the channel for a dicode channel (1 − D) with

bi-phase coding [51]. The bi-phase code can be represented as a two-state trellis with

two branches emerging from each state with input sequences [0 1] and [1 0]. The

figure clearly shows that, at the low rate region of channel capacity less than 0.4

bits/sample, the capacity of the system with bi-phase codes outperforms the i.u.d.

capacity of the channel with binary inputs. The main disadvantage of the above

scheme is that, there is a reasonable rate loss in the high SNR region. The maximum
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achievable rate is 0.5 bits/sample where the i.u.d capacity and the capacity of the

channel can reach up to 1 bits/sample.

As we have mentioned in the previous paragraph, with the use of shaping codes

that form the shaping trellis with no parallel branches, the maximum achievable rate

is 0.5 bits/sample. One option to increase the overall rate of the system is to design

the shaping codes that form a trellis with parallel branches. For example, if the

shaping code length is n and the number branches from each state is k, then the

achievable rate is k/n. The important consideration here is that, these shaping codes

for each branch has to be carefully selected so that the spectrum of the code closely

follows the waterfilling spectrum. Note that, at low rate region, waterfilling spectrum

is equivalent to the spectrum that maximizes the energy of the shaping code at the

output of the channel.

01/110

11/101

00/010

10/001

01/11011/101

00

1 1

10/001 00/010

Fig. 24. Trellis section with assigned shaping codes.

The design algorithm for shaping codes can be described as follows. We consider

a DS-CDMA system with 2k/2 number of users. Users’ spreading sequences’ length

is n. Each user’s channel is assumed to be a frequency selective channel with channel
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response 1 − D. Based on the iterative algorithm proposed in section A, Chapter

IV, we design the shaping codes for the frequency selective multiuser system. But,

in each user’s iteration, the sequences are mapped onto binary sequences rather than

onto unit circle sequences using the Lagrangian relaxation method. It should be

noted that the algorithm tries to generate the sequences whose filtered versions are

orthogonal. But, we know that, the inverted version of the sequences, which are not

generated by the algorithm, can also be used as shaping sequences since our focus

here is to generate the shaping sequences with higher minimum distance and desired

spectra. Altogether there will be 2k number of nearly bi-orthogonal sequences and

we can assign those sequences as for the branches of the trellis. To illustrate the
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Fig. 25. Capacity of the scheme with parallel branches. Rate=2/3.
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above shaping codes assigning algorithm, we have used shaping codes with length 3

for a dicode channel with 2 parallel branches. Here, each state transition is defined

by one of the four possible two bit input sequences as shown in Fig. 24. Hence, the

maximum overall rate is 2/3 bits/sample. The channel capacity of the scheme with

assigned shaping codes is shown in figure Fig. 25. The channel capacity is calculated

using the Monte-Carlo simulation method proposed in [46]. It can be seen that, at

low rates, the 2/3 shaping code gives almost the same capacity as that of the bi-phase

code. At higher rates around 0.5 bits/sample, the 2/3 shaping codes perform better

than the bi-phase code and the capacity gap between i.u.d. input sequences and the

proposed shaping code is significantly small. Hence, our proposed coding scheme is a

better option for a wide range of code rates.

C. The design of shaping codes for a multi-track magnetic recording systems

As we have discussed earlier, in a multi-track recording system, there are more than

one magnetic read/write heads hovering over the magnetic disk/tape which allow

reading or writing multiple tracks simultaneously allowing fast retrieval and recording

of information. If the inter-track gap is reasonably large then we can assume that

there are no inter-track interference and we can consider the tracks as a set of parallel

channels. However, in practice, track widths are made to be smaller and tracks are

aligned closely to increase the recording density. This inevitably causes inter-track

interference. In this subsection, we discuss the method of designing of low rate inner

shaping codes and outer channel codes for a two-track magnetic recoding media.
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1. The design of shaping codes for two-track magnetic recording systems

Let x1(D) and x2(D) be D transforms of constrained input sequences [x11, x12, x13 . . .]

and [x21, x22, x23 . . .] that are going to be recorded on a two-track magnetic recording

channel. Let the channel inter-track interference be α. Then, the channel correlation

matrix is given by

H =









1 α

α 1









.

If the recoded signals on tracks are given by y1(D) and y2(D) then, y1(D) = (x1(D)+

αx2(D))h(D) + n1(D) and y2(D) = (x2(D) + αx1(D))h(D) + n2(D). Here, h(D) is

the D transform of the channel impulse response. If we simply combine y1(D) and

y2(D) we get a channel of

y(D) = (1 + α)(x1(D) + x2(D))h(D) + n(D). (6.1)

where n(D) = n1(D) + n2(D).

The optimum way of detecting x1(D) and x2(D) is the maximum likelihood

detection. Obviously the detection of x1(D) and x2(D) from y(D), hereinafter the

combined decoding, causes some capacity loss over the detection of x1(D) and x2(D)

from [y1(D) y2(D)], hereinafter the joint decoding. In Appendix A, we have derived

the fractional capacity loss due to the combined detection scheme over the joint

detection scheme. Fig. 26 shows the fractional capacity loss of the combined detection

scheme with respect to the achievable capacity due to the joint detection scheme at

the low rate region. According to the figure, we can see that, when the inter-track

interference α is greater than 0.6, the fractional capacity loss is less than 5% of the

capacity due to the joint detection. Hence, this combined model can be used when

we have very heavy inter-track interference. Here after, for two track channel, we
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Fig. 26. Fractional capacity loss due to the combining of two channels.

assume the model proposed in (6.1). That is, at the decoder, we can simply combine

the received signals y1(D) and y2(D) and perform the decoding assuming the received

signal is y(D). In other words, the decoding problem becomes a multiuser detection

problem in a frequency selective channel. In a multiuser system, the optimal way

of designing users’ codes is to design them such that the codes follow the multiuser

waterfilling spectrum. However, at low rate region with identical channels, multiuser

waterfilling spectrum lies at the bottom of the common inverted channel and each

user’s spectrum would be such that they try to maximize the single user performance.

Fig. 27 shows the EXIT chart for a two-track magnetic recording system where the

channel frequency responses of the tracks overlap (both of the channels’ impulse

response is 1 − D). A heavy inter-track interference (α > 0.6) is assumed hence the
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Fig. 27. The EXIT chart for the two-track magnetic recording channel with individu-

ally optimized sequences. Optimum combined decoding assumed. Inner code

rate is 0.25 bits/sample.

combined model is applicable. The shaping codes, with a rate of 0.25 bits/sample,

are such that 1 is mapped to [0101] and 0 is mapped to [1010]. In this case, we can

see from the figure that the EXIT charts for the channels are no longer flat. Hence,

if we use an outer code that is optimized for an AWGN channel, there will be a rate

loss or else the decoder should iterate number of times between the outer decoder and

inner decoder.

The reason behind the above impairment is that, the codes we have designed are

matched only to the waterfilling spectrum of the channels. The cross correlation effect
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Fig. 28. The EXIT chart for two-track channel with jointly optimized sequences. Op-

timum combined decoding is assumed. Inner code rate is 0.25 b/sample.

among the shaping sequences of two different tracks were not taken in to consideration.

In contrast to the above results, we will soon show that if we design the tracks’ shaping

codes jointly, we can achieve better rates for the two-track recording channel while

using outer codes which are optimized for AWGN channels. For this, the design

technique is as follows. Let’s assume that for each track’s shaping trellis, there are P

outgoing branches and there are K number of tracks in the system and the shaping

code length is L.

1. Assume a DS-CDMA system with PK/2 users having the same ISI channel

with spreading length L.
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2. Optimize the sequences of PK/2 users according to the algorithm proposed in

section A, Chapter IV to get a set of binary spreading sequences. It should be

noted that the algorithm proposed in section A, Chapter IV produces nearly

orthogonal sequences.

3. Assign P/2 sequences for each track. The rest of the P/2 branches are obtained

by inverting the assigned P/2 sequences.

4. For each track’s channel trellis, we can consider the total P sequences as

branches emerging from the states.

For example, let’s consider a two-track dicode channel with 4 bit shaping codes.

Here, each state has two outgoing branches corresponding to input bits 0/1. Then,

the number of codes to be optimized is 2 × 2 = 4. Since we can use both shaping

codes and their inverted sequences, the required number of length 4 sequences to be

optimized is 2. Fig. 28 shows the EXIT chart obtained by optimizing the sequences

according to the earlier mentioned algorithm. The optimized sequences for the first

channel are given by [1, 0, 1, 0] and [0, 1, 0, 1] and the optimized sequences for the

second channel are given by [0, 1, 1, 0] and [1, 0, 0, 1]. We can clearly see that the

EXIT charts are flat hence it is possible to use outer codes which are optimized for

AWGN channels. Further, we can see that the achievable sum rate is higher than that

of the individually optimized sequences. This can be seen from Fig. 29 too. That is,

there is a sum rate gain when we optimize the tracks’ shaping codes jointly over the

individually matched codes.

D. Two-track system with suboptimal decoding

In the previous subsection, the EXIT chart analysis and the capacity calculations

assumed that the receiver performs the optimum decoding. The maximum Likelihood
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Sequence Estimation is the optimum decoder for a data sequence that has transmitted

over a dispersive and noisy channel. But, for a multiuser/multi-track system, since the

number of states in the joint MLSE decoder increases exponentially with the number

of users/tracks and the the length of the channel impulse response, a high-complexity

trellis decoder is required which is prohibitively complex. In [52], Raheli proposed

a suboptimal alternative to this classical technique and it is called the per-survivor

decoding technique. The basic idea behind the per-survivor decoding is to cancel

the effects of residual ISI from the interfering user directly within the calculation of

each transition metric in the trellis based on the data sequence associated with the
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survivor leading to that transition.

Here, we describe the suboptimum per-survivor decoding algorithm. Let the mth

state of the kth track’s channel trellis at tth time interval is given by mk
t . Then, any

branch in the trellis can be represented as bt(m
k
t ,m

′k
t+1). Let the input sequence and

the corresponding output sequence related to the trellis branch bt(m
k
t ,m

′k
t+1) is given

by xt(m
k
t ,m

′k
t+1) and yt(m

k
t ,m

′k
t+1) respectively. Further, we assume that yt is the

noisy received sequence at time t. Note that, at the beginning, both tracks’ channels

are flushed with zeros to start at the zeroth state mk
0 = 0.

The suboptimal decoding algorithm is as follows.

FOR t=0:length of the trellis

1. For each branch bt(m
1
t ,m

′1
t+1) of the track 1 trellis, calculate y1

t = yt(m
1
t ,m

′1
t+1).

Subtract y1
t from yt to form yt − y1

t. For the track 2, estimate y2
t(m

2
t ,m

′2
t+1)

based on the minimum Euclidean distance.

2. For each branch bt(m
1
t ,m

′1
t+1) for the track 1 trellis, find the branch matric

γt(m
1
t ,m

′1
t+1). Here, the estimated y2

t(m
2
t ,m

′2
t+1) in step 1 is used to calculate

γt(m
1
t ,m

′1
t+1).

3. At time t + 1, at each state of trellis m
′1
t+1, calculate the survivor path. From

the survivor path calculate the state of the track 2 trellis m
′2
t+1

END

If the modulation index is M and the memory of the channel is L, there is total

number of M22L +2M2L computations to find the branch matrices of both the track’

channel trellises. Hence, the computational complexity of the per-survivor decoding

scheme is M22L+2M2L

M222L = (1 + 2
M

) 1
2L th of the optimal joint decoding scheme.
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E. Simulation results
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Fig. 30. BER perfromance with different shaping codes. N=40,000, overall rate is

0.125. Rate LDPC=0.50.

Fig. 30 shows the BER performance of different inner shaping codes. Inner shap-

ing codes with code rate 0.25 are selected to match the channels’ power spectra. The

outer code is an irregular LDPC code of rate 0.50 optimized for an AWGN channel.

A degree profile of maximum left degree 100 and right degree 12 is selected. The over-

all rate of the combined outer LDPC and inner shaping code is 0.125. We consider

two cases. In the first case, we design each tracks’s shaping codes disregarding other

tracks’ presence (greedy algorithm) . In the second case, we optimize tracks’ shaping

codes jointly using the optimization algorithm discussed in the previous subsection.

For individually matched shaping codes, for both tracks, we have used the [1010]
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Fig. 31. BER perfromance with different shaping codes. N=40,000, overall rate is

0.0625. Rate LDPC=0.25.

shaping code and its inverted sequence [0101] as shaping sequences. For jointly op-

timized codes, we have used our proposed algorithm to obtain the set of shaping

sequences. The corresponding rate 0.25 shaping codes obtained from the optimiza-

tion scheme are [1010] and its inverted sequence for the first channel and, [0110] and

its inverted sequence for the second channel.

It can be seen from the figure that, with jointly matched shaping codes, we can

achieve an 8 dB SNR gain than that of using individually matched shaping codes.

We have also simulated the performance of the system with the per-survivor decoding

scheme. It should be noted that, for the per-survivor decoding scheme, in step 1 of
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the decoding algorithm, to estimate y2
t(m

2
t ,m

′2
t+1), we simply despread yt − y1

t. It

can be proved that, there is a 25% decrease in the computational complexity in the

per-survivor decoding scheme over the optimal decoding scheme. The performance of

the suboptimal per-survivor decoding scheme is about 0.50 dB inferior to that of the

optimal joint decoding scheme. Since the suboptimal per-survivor decoding scheme

uses decision feedback, we should first decode the track whose shaping codes has the

highest filtered energy. In our example, it can be easily observed that the first track’s

shaping sequence has the highest filtered energy. We have also separated tracks by

simply despreading. It is found that the performance of this scheme only around

0.3 dB away from that of the per-survivor decoding scheme. However, for the scheme

where despreading is used to separate the tracks, the computational complexity is

just over 50% of the computational complexity of the optimal joint decoding scheme.

Fig. 31 shows that, when we use an LDPC code of rate 0.25 (overall rate of 0.0625

bits/sample), the performance loss due to the use of individually shaped sequences

is not that severe. But, still it is possible to get a 2 dB gain by designing the

multi-track’ shaping sequences jointly.

From the above observations we can conclude that, at the low rate region, when

the magnetic tracks have overlapping spectra with high ITI, individually designed

shaping sequences degrades the system performance and the joint designing of shaping

sequences is a better option.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we have proposed some novel techniques to design the spread-

ing/shaping sequences for frequency selective multiuser systems. These spreading/shaping

sequences are designed assuming that the designed unit, which can be either the trans-

mitter or the receiver, has access to the channel state information. The interesting

observation uncovered in the dissertation is that, irrespective of the constellation of

the chips of the spreading sequences, the users in the system optimize their perfor-

mance by restricting the spectrum of each user’s sequence to a narrow frequency band

at the spectral peaks of that user’s channel.

In Chapter I, we have given an introduction to the design of constrained and

unconstrained amplitude spreading/shaping sequences. In Chapter II, the under-

lined theoretical background which was necessary to develop the spreading/shaping

sequence design schemes was presented.

In Chapter III, we have approached the problem of designing of spreading se-

quences in frequency domain perspective. Based on the frequency domain character-

istics of the spreading sequences with unconstrained amplitudes and phases we have

proposed a reduced-rank sequence design algorithm. The proposed scheme helps to

reduce the computational complexity and the feedback bandwidth. The selection of

the subspace for the basis vectors based on the frequency selectivity of a channel

also allows us to improve the performance of some existing sequence design algorithm

proposed for frequency selective channels.

In Chapter IV, the design of constrained amplitude spreading sequences for fre-

quency selective channels was discussed. To design those constrained amplitude se-

quences, different approaches were taken. For this, we have used the frequency domain
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characteristics of the unconstrained spreading sequences to find a set of constrained

amplitude set of sequences for a given set of channel. This was done either by care-

fully assigning already existing set of sequences for given set of users or by mapping

constrained amplitude sequences onto a unit circle.

In Chapter V, we have proposed an approach to design each user’s spreading

sequence that follows a specific power spectrum. In this case, first we have assumed

a long chip sequence generated from an output of a first order Markov chain where

the entries of the transition probability matrix were selected such that the power

spectrum of each user’s chip sequence closely follows the user’s desired spectrum.

Once the long spreading sequence is generated, a set of short spreading sequences

which closely follow the user’s desired spectrum is obtained. Once a set of single user

spreading sequences are designed for each user’s channel we select the optimum set,

one code from each user, such that the cross correlation among the users’ spreading

sequences are minimized.

In Chapter VI, the design of shaping codes for single-head and multi-head mag-

netic recoding channels was discussed. The shaping sequences were designed assuming

that the branch symbols of the shaping trellises were short spreading codes matched

to the magnetic recoding channels. The outer channel code was matched to the inner

shaping code using the EXIT chart analysis. For multi-track recoding schemes, en-

coding was performed separately and decoding was performed jointly at the decoder.

Performance of multi-track recoding schemes with the use of per-survivor decoding

was also discussed.
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APPENDIX A

THE DERIVATION OF THE SUM CAPACITY LOSS FOR TWO-TRACK

MAGNETIC RECORDING SYSTEM WHEN THE SIGNALS OF THE TWO

TRACKS ARE COMBINED

According to the section A, Chapter VI, the read signals from the two-magnetic

read heads are given by

y1(D) = (x1(D) + αx2(D))h(D) + n1(D), (A.1)

y2(D) = (x2(D) + αx1(D))h(D) + n2(D). (A.2)

Here, we assume that N symbols are read from each track. Taking N length Fourier

transform of the signals read from the two heads

Y1,k = HkX1,k + αHkX2,k + N1,k, (A.3)

Y2,k = HkX2,k + αHkX1,k + N2,k. (A.4)

Here, Hk is the frequency spectrum of the channel at the kth frequency index. Since

we are considering the symmetric capacity of the channel, we assume that E[|X1,k|
2] =

E[|X2,k|
2] = pk. Where, pk is the each read head’s signal power at the kth subcarrier.

The capacity of the system at the kth subcarrier is given by

Ck = h(Y1,k, Y2,k) − h(Y1,k, Y2,k|X1,k, X2,k, Hk). (A.5)

At low SNR region, the effect of the noise dominates and we can assume that

h(Y1,k, Y2,k) is jointly Gaussian. Hence, the capacity of the system at the kth subcar-

rier is given by

C =
1

2
log( |I2 +

pk

σ2
HkH

H
k |) (A.6)
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where

Hk =









1 α

α 1









Hk. (A.7)

The sum capacity is given by Ck = 1
2
log( |I2 + pk

σ2HkH
H
k |) can be simplified as

Ck =
1

2
log(1 + 2H2

k

pk

σ2
(1 + α2) + H2

k(
pk

σ2
)2(1 + α2)2 − 4H2

k(
pk

σ2
)2α2) (A.8)

AS SNR → 0, we can further simplify the formula and get

C =
Q

σ2
(1 + α2) (A.9)

where Q =
∑

H2
kpk. Now, if we simply combine the channels in (6.1) we get an

equivalent channel as

Yk = (1 + α)(X1,k + X2,k)H
2
k + Nk. (A.10)

Here, the variance of the noise Nk will be 2σ2. The capacity of the combined channel

at the kth subcarrier, can be shown as

Ck,combined =
1

2
log(1 + H2

k

pk

σ2
(1 + α)2) =

pk

2σ2
(1 + α)2 (A.11)

The capacity of the combined channel is given by

Ccombined =
Q

2σ2
(1 + α)2. (A.12)

Hence, the fractional capacity loss C−Ccombined

C
is given by

κ = (1 − α)2/(2(1 + α2)). (A.13)
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