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ABSTRACT

New Approaches to Weighted Frequent Pattern Mining. (December 2005)

Unil Yun, B.S., Hong Ik University; 

M.S., Korea University

Chair of Advisory Committee: Dr. John J. Leggett

Researchers have proposed frequent pattern mining algorithms that are more 

efficient than previous algorithms and generate fewer but more important patterns. Many

techniques such as depth first/breadth first search, use of tree/other data structures, top 

down/bottom up traversal and vertical/horizontal formats for frequent pattern mining 

have been developed. Most frequent pattern mining algorithms use a support measure to 

prune the combinatorial search space. However, support-based pruning is not enough 

when taking into consideration the characteristics of real datasets. Additionally, after 

mining datasets to obtain the frequent patterns, there is no way to adjust the number of 

frequent patterns through user feedback, except for changing the minimum support. 

Alternative measures for mining frequent patterns have been suggested to address these 

issues. One of the main limitations of the traditional approach for mining frequent 

patterns is that all items are treated uniformly when, in reality, items have different 

importance. For this reason, weighted frequent pattern mining algorithms have been 

suggested that give different weights to items according to their significance. The main 

focus in weighted frequent pattern mining concerns satisfying the downward closure

property. 
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In this research, frequent pattern mining approaches with weight constraints are 

suggested. Our main approach is to push weight constraints into the pattern growth 

algorithm while maintaining the downward closure property. We develop WFIM 

(Weighted Frequent Itemset Mining with a weight range and a minimum weight), 

WLPMiner (Weighted frequent Pattern Mining with length decreasing constraints), WIP 

(Weighted Interesting Pattern mining with a strong weight and/or support affinity), 

WSpan (Weighted Sequential pattern mining with a weight range and a minimum 

weight) and WIS (Weighted Interesting Sequential pattern mining with a similar level of 

support and/or weight affinity)

The extensive performance analysis shows that suggested approaches are

efficient and scalable in weighted frequent pattern mining.
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1. INTRODUCTION

1Data mining, also known as Knowledge Discovery or Knowledge Discovery in 

Databases (KDD), is defined as the process of nontrivial extraction of previously 

unknown and potentially useful information from data in databases [13], [31], [32]. Data 

mining discovers patterns hidden in data and associations between the patterns. Frequent 

pattern mining plays an essential role in many data mining tasks such as mining 

association rules [2], [3], [21], [29], [47], [65], [82], [92], mining correlations [11], [17], 

[38], [40], [44], [51], [73], [84], [86], [87], mining closed patterns [19], [24], [36], [39], 

[54], [55], [56], [64], [74], [75], [76], [77], [88], mining sequential patterns [1], [4], [14], 

[15], [16], [18], [33], [41], [42], [50], [59], [60], [62], [63], [69], [81], [89], [93], and so 

on. First introduced in 1993 by Argawal et al. [2], frequent pattern mining [20], [27], 

[34], [46], [48], [58], [68], [78], [95] has been one of the hot issues in the data mining 

field. Mining information and knowledge from very large databases is not easy work. It 

takes a long time to process the large datasets and the amount of discovered knowledge 

and number of patterns can also be very large. It is also well known that frequent pattern 

mining generates a very large number of frequent itemsets and association rules. 

Researchers have proposed frequent pattern mining algorithms that run faster than 

previous algorithms and generate fewer but more important patterns. Many techniques 

such as depth first [5], [34], [35], [40], [46], [56], [58], [77] / breadth first search [2], [3], 

[4], [11], [29], [65], [69], use of trees [34], [49], [56], [77] / other data structures [15], 

This dissertation follows the style of IEEE Transactions on Knowledge and Data Engineering.
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[23], [28], [37], [58], [85], [94], [95], top down [22], [49], [80] / bottom up traversal 

[27], [49], [56], [58], [66], [78], vertical [1], [92], [93], [94], [95] / horizontal [2], [11], 

[34], [56], [83], [86] formats, and use of constraints [6], [7], [8], [9], [10], [25], [30], 

[43], [45], [52], [57], [61], [67], [68], [70], [78], [79] have been developed. Most 

frequent pattern mining algorithms use a support measure (defined in Section 2) to prune 

the combinatorial search space. However, support-based pruning is not enough when 

considering the characteristics of real datasets. Additionally, after mining datasets to 

obtain the frequent patterns, there is no way to adjust the number of frequent patterns 

through user feedback, except for changing the minimum support. Alternative measures 

[40], [53], [71], [73], [84], [86] for mining frequent patterns have been suggested to 

address these issues. One of the main limitations of the traditional approach for mining 

frequent patterns is that all items are treated uniformly when, in reality, items have 

different importance. For this reason, weighted frequent pattern mining algorithms [12], 

[72], [82] have been suggested that give different weights to items according to their 

significance. The main focus in weighted frequent pattern mining concerns satisfying the 

downward closure property [2], [4]. 

In this research, we suggest efficient and scalable frequent pattern mining 

approaches with weight constraints. Our main approach is to push the weight constraints 

into the pattern growth algorithm while maintaining the downward closure property. 

First, we propose WFIM (Weighted Frequent Itemset Mining with a weight 

range and a minimum weight) which is based on the pattern growth algorithm. A weight 

range and a minimum weight constraint are defined and items are given different 
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weights within the weight range. The weight and support of each item are considered 

separately for pruning the search space. WFIM uses an ascending weight ordered prefix 

tree and the tree is traversed using a bottom-up strategy. In scanning the transaction 

database, the maximum weight in the transaction database is used to prune weighted 

frequent itemsets. In the mining step, the minimum weight of a prefix in the FP-trees is 

used for pruning. By doing so, the downward closure property can be retained. The 

number of weighted frequent itemsets can be reduced by setting a weight range and a 

minimum weight, allowing the user to balance support and weight of itemsets. The 

WFIM is the first weighted frequent itemset mining approach that uses a pattern growth 

algorithm.

Second, we re-examine two basic but interesting constraints, a weight constraint 

and a length decreasing support constraint and propose WLPMiner (weighted frequent 

pattern mining with length decreasing constraints). WLPMiner integrates these two 

measures to generate fewer and more meaningful patterns. For pruning techniques, we 

use the notion of WSVE (Weighted Smallest Valid Extension) to apply to both the 

length decreasing support constraints and weight constraints, and a weight range as a 

supplement to maintain the downward closure property. The key insights achieved in 

this approach are the high performance of the WSVE property and the use of a weight 

range in the weight constraint. We show that combining a weight constraint with a 

length decreasing support constraint improves performance in terms of the number of 

patterns and runtime.
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Third, we present a WIP (Weighted Interesting Pattern mining with a strong 

weight and/or support affinity) algorithm that integrates the strengths of the previous 

techniques and generates weighted interesting patterns according to user feedback. In 

WIP, a new measure, weight confidence, is defined to generate weighted hyperclique 

patterns with similar levels of weights. A weight range is used to decide weight 

boundaries and the h-confidence measure serves to identify strong support affinity 

patterns. WIP not only gives a balance between the two measures of weight and support, 

but also considers weight affinity and/or support affinity between items within patterns 

so more valuable patterns can be generated. To our knowledge, ours is the first work 

specifically to consider a level of weight affinity between items of patterns and to 

incorporate a weight confidence with an h-confidence. 

Fourth, we developed weighted sequential pattern mining algorithms: WSpan 

(Weighted Sequential pattern mining with a weight range and a minimum weight) and 

WIS (Weighted Sequential pattern mining with a similar level of support and/or weight 

affinity). WSpan focuses on weighted frequent pattern mining based on the prefix 

projected sequential pattern growth approach. A weight range and a minimum weight are

used to adjust the number of sequential patterns. In WIS, we define sequential s-

confidence and w-confidence measures and the concept of weighted interesting 

sequential patterns by using the two measures. Our main goal in this framework is to 

push sequential s-confidence and/or w-confidence into the weighted sequential pattern 

mining algorithm based on the pattern growth method. The sequential s-confidence 

and/or w-confidence measures can be used to avoid generating spurious sequential 
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patterns that involve items from different support and/or weight levels. A comprehensive 

performance study shows that these algorithms are efficient and scalable in weight-based 

pattern mining. Moreover, it generates fewer but important patterns.

1.1 Motivation

Mining the important, correlated patterns efficiently is one of the main goals in 

data mining. Most of the weighted frequent pattern mining or association rule mining 

algorithms such as [12], [47], [72], [82] have adopted an Apriori algorithm based on the 

downward closure property [2]. They have suggested the sorted closure property [47], 

the weighted closure property [72] or other techniques [12], [82] in order to satisfy the 

downward closure property. Three main limitations exist in the previous weighted 

frequent pattern mining algorithms.

First, Apriori based algorithms use candidate set generation and test approaches. 

It can be very expensive to generate and test all the candidates. Performance analyses 

[21], [26], [96] have shown that frequent pattern growth algorithms are efficient at 

mining large databases and more scalable than Apriori-based approaches. However, 

there has been no weight based mining using the pattern growth algorithm because the 

downward closure property is broken by simply applying the FP-growth methodology. 

We will develop weighted frequent pattern mining based on the pattern growth method.

Second, frequent pattern mining algorithms such as [27], [46], [49], [58], [66], 

[78] have better performance when a minimum support is high and the database is 

sparse. The main problem with these algorithms is that they can still generate an 

exponentially large number of patterns when a minimum support becomes lower. As the 
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number of frequent patterns increases, the performance becomes worse. Although closed 

pattern mining approaches such as [9], [19], [24], [54], [55], [56], [77], [79], [94] are 

used, huge frequent patterns are still generated in large dense databases with a low 

minimum support. This problem also occurs in weight-based mining. We will describe 

ways to adjust the number of patterns through user feedback.

Third, previous weighted frequent pattern mining approaches use weight as one 

of the measures. The items are given different weights in the transaction database. 

However, they only focus on how to maintain the downward closure property. Although 

patterns satisfy pruning conditions used in previous weighted pattern mining algorithms 

[12], [72], [82], they may have different characteristics, such as different levels of 

support and different levels of weight. We will suggest efficient and scalable mining 

methods in which users can decide their levels of interest and give direction for mining 

their own interesting patterns.

1.2 Organization

The remainder of this dissertation is structured as follows: In Section 2, we 

describe the frequent pattern mining problem and related work. In Section 3, WFIM

(Weighted Frequent Itemset Mining with a weight range and a minimum weight) is 

developed. In Section 4, we propose WLPMiner (Weighted frequent pattern mining with 

length decreasing support constraints), which uses advantages of WFIM and applies 

length decreasing support constraints. Section 5 presents a WIP algorithm that mines

weighted interesting patterns with a strong weight and/or support affinity. In Section 6, 

we show weighted sequential pattern mining algorithms: WSpan (Weighted Sequential 
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pattern mining with a weight range and a minimum weight) and WIS (Weighted 

Sequential pattern mining with a similar level of support and/or weight affinity). As 

further extensions, in Section 7, the applications of weighted pattern mining are shown. 

Finally, conclusions are presented in Section 8.
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2. PROBLEM DEFINITION AND RELATED WORK

2.1 Problem definition

The frequent pattern mining problem was first suggested by R. Agrawal, et al [2] 

as mining association rules between sets of items. Let I = {i1, i2... in} be a unique set of 

items. A transaction database, TDB, is a set of transactions in which each transaction, 

denoted as a tuple <tid, X>, contains a unique tid and a set of items. A pattern is called a 

k-pattern if it contains k items. A pattern {x1, x2,.., xn} is also represented as x1, x2,.., xn. 

The support of a pattern is the number of transactions containing the pattern in the 

database. A weight of an item is a non-negative real number that reflects the importance

of the item in the transaction database. We use the term, weighted itemset to represent a 

set of weighted items. A weight is given to an item within a weight range, Wmin ≤ WR ≤

Wmax. The problem of weighted frequent pattern mining is to find the complete set of 

patterns satisfying a support constraint and a weight constraint in the database. 

2.2 Related work

Several means of mining frequent patterns have been explored in previous 

research and this area is currently very active in the data mining field.

2.2.1 Apriori algorithm

The Apriori algorithm [3] was developed by Agrawal et al in 1994. To improve 

performance, an anti-monotone property (downward closure property) [4] of frequent 

patterns was suggested by Agrawal. That is, if any length k pattern is not frequent in a 
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transaction database, superset patterns can not be frequent. Based on this property, many 

frequent pattern mining algorithms have been developed to prune infrequent patterns 

more efficiently. However, two main problems [34], [35], [96] exist with this approach. 

First, Apriori based algorithms must scan the transaction database multiple times. As the 

size of the database increases, the number of scans also increases. Multiple scans of the 

database are very costly. Therefore, one of the goals is to reduce the number of database 

scans. Second, the Apriori algorithm generates a large number of candidates. Keeping 

and counting these candidates to generate actual frequent patterns is also time and space 

consuming. To reduce the number of candidates and speed up the algorithms, the pattern 

growth approach [34], [35] was suggested. 

2.2.2 Pattern growth approach

Jiawei Han [34], [35] suggested a new data structure, the FP-tree (Frequent 

Pattern tree) for generating candidates. The FP-tree is an extended prefix tree in which 

compressed data from the original database is stored. He also developed a pattern growth 

method to avoid the candidate generation and test operation of the Apriori-based 

algorithm. The pattern growth method also uses the anti-monotone property, but it 

recursively divides the database into sub-databases according to the frequent patterns 

already discovered and finds local frequent patterns using local FP-trees. FP-tree based 

methods mine the complete set of frequent patterns using a divide and conquer method 

to reduce the search space without generating all the candidates. The FP-tree based 

approaches are faster than the Apriori based approaches. Based on the pattern growth 
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method, many algorithms [27], [34], [40], [46], [56], [58], [66], [77] have been 

developed. 

2.2.3 Weighted frequent pattern mining

Weight constraints [12], [72], [82] have recently been introduced into frequent 

pattern mining. Different weights are given to items according to their importance or 

intensity. In contrast to previous frequent pattern mining approaches which are mainly 

based on support constraints, weighted frequent mining approaches consider not only the 

frequency but also the importance of patterns. The main focus of weighted frequent 

itemset mining concerns the downward closure property. The downward closure 

property is usually broken when different weights are applied to the items. All weighted 

association rule mining algorithms suggested so far have been based on the Apriori 

algorithm. 

2.2.3.1 MINWAL (Mining association rules with weighted items)

In MINWAL [12], C. H. Cai defined a weighted support measure which is 

calculated by multiplying the support of a pattern with the average weight of a pattern. 

MINWAL defined an upper bound, called k-support, to maintain the downward closure 

property. Support of patterns generated in level k must be greater than or equal to the k-

support bound. MINWAL is based on the Apriori algorithm but most of the candidates 

are infrequent. According to our performance analyses, it takes too long to use the k-

support bound for satisfying the downward closure property.
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2.2.3.2 WAR (Efficient mining of Weighted Association Rules)

WAR (Weighted Association Rules) [82] generates frequent items without 

considering weights and then does post-processing during the rule generation step. The 

WAR algorithm is not concerned with mining frequent itemsets and is a post-processing 

approach. Additionally, the WAR is also based on the Apriori algorithm.

2.2.3.3 WARM (Weighted Association Rule Mining)

In WARM (Weighted Association Rule Mining) [72], the problem of breaking 

the downward closure property is solved by using a weighted support and developing a 

weighted downward closure property. However, the meaning of weighted support is 

different from that defined in MINWAL [12]. Weighted support of a pattern AB in the 

WARM is the fraction of the weight of the transactions containing both A and B to the 

weight of all transactions. That is, WARM does not consider the support measure. This 

algorithm is also based on the Apriori algorithm.

2.2.4 Frequent pattern mining with other measures / constraints

The use of measures and constraints permits user guidance and leads to effective 

pruning of the search space and efficient mining of frequent patterns. Frequent pattern 

mining approaches with other measures and constraints represents an important direction 

for user controlled data mining. Therefore, new measures [40], [53], [71], [73], [85], 

[86]  and constraints [6], [7], [8], [9], [10], [25], [30], [43], [45], [52], [57], [61], [66], 

[67], [70], [78], [79] have been proposed extensively.
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2.2.4.1 Hyperclique miner

Hyperclique Miner [86] defines hyperclique patterns that reflect the overall 

support affinity among items within the pattern. A hyperclique pattern is a frequent 

pattern that contains items that are highly affiliated with each other in terms of support. 

The Hyperclique Miner uses an h-confidence measure. An h-confidence of a pattern is 

the minimum ratio of the support of this pattern to the support of one of the items in this 

pattern. H-confidence is used to reflect the overall affinity among items within the 

pattern. A frequent pattern is called a hyperclique pattern if h-confidence of the pattern 

is no less than a minimum h-confidence. According to our performance test, there are 

many cases where the number of hyperclique patterns is not increased or decreased 

when the minimum support is changed and the number of hyperclique patterns is very 

large. This can be true even if the minimum h-confidence is increased. In addition, the 

Hyperclique Miner has adopted an Apriori algorithm based on the downward closure 

property and it only focuses on support based pruning. 

2.2.4.2 LPMiner

LPMiner [66] is the first algorithm to find patterns that satisfy a length 

decreasing support constraint. It defines and uses the Smallest Valid Extension (SVE) 

property [66]. Assigning weights according to the importance of the items is a main 

consideration for real datasets. However, LPMiner dose not consider the importance of 

the items even though it takes into account length decreasing support constraints. 
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2.2.4.3 BAMBOO

BAMBOO [79] pushes the length decreasing support constraint deeply into 

closed itemset mining in order to generate more concise itemsets. While BAMBOO 

outperforms LPMiner, it is only concerned with the length decreasing support constraint. 

In other words, BAMBOO does not consider different weights of items within patterns. 
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3. WFIM: WEIGHTED FREQUENT ITEMSET MINING WITH A 

WEIGHT RANGE AND A MINIMUM WEIGHT∗

3.1 Overview of WFIM

We propose an efficient algorithm called WFIM (Weighted Frequent Itemset 

Mining) based on the pattern growth approach. Our main goal is to balance support and 

weight of itemsets, push the weight constraints into the pattern growth algorithm, 

maintain the downward closure property, and provide a way to adjust the number of 

itemsets and runtime [90]. A weight range and a minimum weight constraint are defined 

and items are given different weights within the weight range. WFIM uses an ascending 

weight ordered prefix tree and the tree is traversed using a bottom-up strategy. In 

scanning the transaction database, the maximum weight in the transaction database is 

used to prune weighted frequent itemsets and in the mining step, the minimum weight of 

a prefix in FP-trees is used. By doing so, the downward closure property can be retained. 

The weight and support of each item are considered separately for pruning the search 

space. The number of weighted frequent itemsets can be reduced by setting a weight 

range and a minimum weight, allowing the user to balance support and weight of 

itemsets. WFIM generates smaller but important weighted frequent itemsets in large 

databases, particularly dense databases with low minimum support. 

∗ Reprinted with permission from “WFIM: Weighted Frequent Itemset Mining with a Weight Range and a 
Minimum Weight” by Unil Yun and John J. Leggett, 2005, Proceedings of the Fifth SIAM International 
Conference on Data Mining, pp. 636-640. 2005 by SIAM.
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WFIM provides the following contributions: 1) In the WFIM, individual items 

are given different weights within weight range to reflect their importance, and weight 

constraints are pushed into the pattern growth algorithm keeping the downward closure 

property. 2) We can adjust the number of weighted frequent itemsets by changing 

parameters such as a weight range and a minimum weight although a minimum support 

is lower in the dense database or long database. 3) In WFIM, the weight and support of 

each item are considered separately for pruning the search space. WFIM allows the user 

to balance support and weight of itemsets. 4) We do extensive performance evaluation 

and analyze the relationship between a weight and a support. 

3.2 Weighted frequent itemset mining

We suggest an efficient weighted frequent itemset mining algorithm in which the 

main approach is to push weight constraints into the pattern growth algorithm and 

provide ways to keep the downward closure property. We show our approach has the 

benefit of considering a minimum support and a minimum weight separately, so the user 

can balance itemset support and weight. WFIM uses the bottom-up divide and conquer 

method in mining weighted frequent itemsets. In general, a descending ordered prefix 

tree and bottom up traversal or ascending ordered prefix tree and top down traversal are 

used together. However, our algorithm adopts an ascending weight ordered prefix tree. 

The tree is traversed bottom-up because the previous matching can not maintain the 

downward closure property. A support of each itemset is usually decreased as the length 

of an itemset is increased, but the weight has a different characteristic. An itemset which 

has a low weight sometimes can get a higher weight after adding another item with a 
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higher weight, so it is not guaranteed to keep the downward closure property. For 

instance, assume that the minimum support is 3, the support of item “A” is 2, the support 

of itemset “AB” is also 2, a weight of item “A” is 1 and a weight of item “B” is 2. The 

weighted support of item “A” is 2 and the weighted support of itemset “AB” is 3. We 

can not prune item “A” even if the weighted support (2) of item “A” is less than 

minimum support (3) because the weighted support of itemset “AB” is equal to the 

minimum support and itemset “AB” is a weighted frequent itemset. To tackle this 

problem, frequent prefix trees are constructed by weight ascending order and these trees 

are traversed in bottom up. 

We present our algorithm in detail and show actual examples in order to illustrate 

the steps in the FP-tree construction for weighted frequent itemset mining and the 

mining of a weighted frequent itemset from the FP tree.

Table 1. A transaction database TDB as a running example in WFIM

TID Set of items Frequent Item list

100 a, c, d, f, i, m c, d, f, m

200 a, c, d, f, m, r c, d, f, m, r

300 b, d, f, m, p, r d, f, m, p, r

400 b, c, f, m, p c, f, m, p

500 c, d, f, m, p, r c, d, f, m, p, r

600 d, m, r d, m, r
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Definition 3.1 Weight Range (WR)

The weight of each item is assigned to reflect the importance of each item in the 

transaction database. A weight is given to an item with a weight range, Wmin≤ W ≤ Wmax. 

Definition 3.2 Minimum weight threshold (min_weight)

In the WFIM, we want to give a balance between the two measures of weight 

and support. Therefore, we define a minimum weight constraint like a minimum support 

in order to prune items which have lower weights.

Definition 3.3 Maximum Weight (MaxW)

The maximum weight (MaxW) is defined as the value of the maximum weight of 

items in a transaction database or a conditional database. In WFIM, a MaxW is used in a 

transaction database.

Definition 3.4 Minimum Weight (MinW)

The minimum weight (MinW) is defined as the value of the minimum weight of 

items in a transaction database or a conditional database. In WFIM, a MinW is used in a 

conditional database.

Definition 3.5 Useless itemset 

An itemset X is called a useless itemset if the support of the itemset X is less 

than a minimum support (min_sup) and its weight is also less than a minimum weight.

Example 3.1: Table 1 shows transaction database TDB. Table 2 shows example sets of 

items with different weights. The minimum support (min_sup) is 3 and the frequent list 

is: Frequent_list = <a:2, b:2, c:4, d:5, f:5, i:1, m:6, p:3, r:4>. The MinW of a WR is the 

minimum weight value of the WR and the MaxW of a WR is the maximum weight value 
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of the WR. For example, the MinW of WR1 is 1.0, MinW of WR2 is 0.7 and the MaxW 

of WR1 is 1.5, the MaxW of WR2 is 1.3 and so on. If a minimum support is only 

considered, the second columns in Table 1, give the frequent item list. 

Table 2. Example sets of items with different weight ranges

Item (min_sup = 3) a      b      c      d      f      i      m      p      r

Support 2      2      4      5      5     1      6      3      4

Weight (1.0 ≤ WR1 ≤ 1.5) 1.3   1.1   1.4   1.2   1.5   1.1   1.3   1.0   1.5

Weight (0.7 ≤ WR2 ≤ 1.3) 1.1   1.0   0.9   1.0   0.7   0.9   1.2   0.8   1.3

Weight (0.7 ≤ WR3 ≤ 0.9) 0.85 0.75 0.8   0.9   0.75 0.7   0.85 0.7   0.9

Weight (0.2 ≤ WR4 ≤ 0.7) 0.5   0.3   0.6   0.4   0.7   0.3   0.5   0.2   0.7

Definition 3.6 Weighted Frequent Itemset (WFI)

An itemset X is a weighted infrequent itemset if, following pruning, condition 

3.1 or condition 3.2 below is satisfied. If the itemset X does not satisfy both of these, the 

itemset X is called a weighted frequent itemset.

Pruning condition 3.1 (support < min_sup && weight < min_weight)

The support of an itemset is less than a minimum support and the weight of an 

itemset is less than a minimum weight constraint. 

For finding useless items, we apply pruning condition 3.1. When a weight and a 

support are considered separately, there are four cases for each item: a high support and 

a high weight, a high support and a low weight, a low support and a high weight and 

then a low support and a low weight. In definition 3.5, we defined items which have a 

low support and a low weight as useless items. The items which have a low support and 
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a low weight can be pruned because these items have low frequencies and low 

importance. However, the items having other cases can not be pruned because these 

items may have higher priority although the support of the itemset is low or the itemset 

may have higher frequency even if the weight of the itemset is low.

Pruning condition 3.2 (support * MaxW (MinW) < min_sup)

In a transaction database, the value of multiplying itemset’s support with a 

MaxW among items in the Transaction database is less than a minimum support. In 

conditional databases, the value of multiplying the support of an itemset with a MinW of 

a conditional pattern in the FP-trees is less than a minimum support. 

Definition 3.7 Weighted association rule mining

Weighted association rule mining finds a complete set of association rules in the 

transaction database with support and weight constraints. The weight for each item is 

assigned within a weight range, Wmin ≤ W ≤ Wmax. 

Lemma 3.1 When two conditions are applied to prune weighted infrequent itemsets, the 

case in which only  pruning condition 3.1, but not pruning condition 3.2, is satisfied for 

pruning weighted infrequent itemset, is that a MaxW of a transaction database or a 

MinW of  a conditional pattern in the FP-tree should be greater than one.

Proof: In this case, pruning condition 3.1, but not pruning condition 3.2 in the definition 

3.6, should be satisfied in order to prune an itemset. That is, in condition 3.1, the support 

of an itemset is less than a min_sup and the weight of an itemset is less than a 

min_weight. However, the value of multiplying the itemset’s support with a MaxW 
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(MinW) of an itemset should be greater than or equal to a minimum support. We can see 

that the following two formulas should be satisfied.

Formula 1: support < min_sup  

Formula 2: support * MaxW (MinW) ≥ min_sup

We can know that the a MaxW of a transaction database or a MinW of a 

conditional pattern in the FP-tree must be greater than or equal to one in order to satisfy 

both of the formulas. For example, assume that a min support is 5, a minimum weight 

threshold is 0.8, a support of an itemset is 4, the weight of an itemset is 0.7 and the 

MaxW of an itemset in TDB is 1.3. We know that the pruning condition 3.1 is satisfied 

but the pruning condition 3.2 is not satisfied. Therefore, this itemset is pruned by the 

condition 3.1 in definition 3.6.

Lemma 3.2 There is no limitation to use the pruning condition 3.2 of definition 3.6. 

That is, the pruning condition 3.2 (support * MaxW (MinW) < min_sup) is can be 

applied without any limitations.

When only  pruning condition 3.2, but not pruning condition 3.1 of definition 3.6 

is satisfied to prune weighted infrequent itemsets, a MaxW (Maximum Weight) of a 

transaction database or a MinW (minimum weight) of a conditional pattern in the FP 

tree can be any value.

Proof:  In this case, an itemset is pruned since pruning condition 3.2 is satisfied 

although condition 3.1 is not satisfied. We can see that the following two formulas 

should be satisfied

Formula 3: (support ≥ min_sup || weight ≥ min_weight)
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Formula 4: (support * MaxW (MinW) < min_sup)

If a support of an itemset is greater than or equal to a minimum support in the 

Formula 3, MaxW (MinW) should be less than one to satisfy Formula 4. However, if a 

weight of an itemset is greater than or equal to a minimum weight threshold in the 

formula 3 and the support of an itemset is less than a minimum support, there is no 

relationship between Formula 3 and Formula 4. In other words, pruning condition 3.2 

(support * MaxW (MinW) < min_sup) can be applied without any limitations.

Lemma 3.3 When two pruning conditions are applied to prune weighted infrequent 

itemsets, the method to use two pruning conditions, always prunes more than the 

approach to use only a minimum support when a MaxW of the transaction database or a 

MinW of the FP tree is less than one.

Proof: In the normal frequent itemset mining, every item has the same priority. That is, 

their weights are 1.0. If pruning condition 3.2 is only considered, we can understand that 

more items or itemsets will be pruned when weights of items are set as less than one. For 

example, assume that a minimum support is 4 and the support of an itemset is 5. In the 

normal frequent itemset mining, the itemset is not pruned since a weight of all the 

itemset is 1.0 and the support of the itemset is greater than a minimum support. 

However, the itemset is pruned when the weight of the itemset is 0.7 by condition 3.2 in 

definition 3.6.

Example 3.2: The columns in Table 3 show the set of weighted frequent itemsets after 

pruning weighted infrequent itemsets using pruning condition 3.1 and pruning condition 

3.2 in definition 3.6 by applying different WRs. For example, when WR3 is applied, item 
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p’s support is 3, MaxW is 0.9 and the value (2.7) of multiplying item’s support (3) with 

a MaxW (0.9) of an itemset in the TDB is less than minimum support (3) so item “p” 

can be removed. Meanwhile, the number of WFI can be increased when WR1 is used as 

the weight range. The support of item “a” in the transaction database is 2. However, the 

value (3) of multiplying the support (2) of item “a” with a MaxW (1.5) of an itemset is 

equal to a minimum support (3) so this item is added in the WFI list.    

Table 3. Weighted frequent itemsets with different weight ranges in WFIM

TID WFI list           
(0.2 ≤ WR4 ≤ 0.7)

MinW = 0.2

WFI list                   
(0.7 ≤ WR3 ≤ 0.9)

MinW = 0.7

WFI list                   
(0.7 ≤ WR2 ≤ 1.3)

MinW = 0.7

WFI list                     
(1.0 ≤ WR 1 ≤ 1.5) 

MinW = 1.0

100 d, f, m c, d, f, m c, d, f, m a, c, d, f, m

200 d, f, m c, d, f, m, r c, d, f, m, r a, c, d, f, m, r

300 d, f, m d, f, m,  r d, f, m, p, r b, d, f, m, p, r

400 f, m c, f, m c, f, p, m b, c, f, p, m

500 d, f, m c, d, f, m, r c, d, f, m, p, r c, d, f, m, p, r

600 d, m d, m, r d, m, r d, m, r

Example 3.3: Let us show another example by changing a WR and a min_weight. In 

this example, assume that the definitions of Table1 and Table 2 are used and pruning 

condition 3.1 in definition 3.6 is applied using WR2 as a weight range. If the min_weight 

is 1.2, items “a”, “b” and “i” are pruned because the support of these items is less than a 

minimum support and the weight of these items is also less than a minimum weight. In a 

similar way, we can get the following results by changing min_weight. If min_weight is 

1.1, items “i” and “b” are pruned and if min_weight is 1.0, item “i” is pruned. As a 
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result, the number of weighted frequent items can be changed according to different 

min_weights. When pruning condition 3.2 of definition 3.6 is considered, if a weight 

range is 1.0 ≤ WR1 ≤ 1.5, only item “I” is pruned because the value of multiplying item 

i’s support (1) with a MaxW (1.5) is less than a minimum support (3). However, the 

items “a” and “b” are not pruned because the value of multiplying the support (2) of 

item “a” and “b” with a MaxW (1.5) is equal to a minimum support (3). 

In a similar fashion, we can get the following results by changing WRs. If the 

weight range is 0.7 ≤ WR2 ≤ 1.3, item “a”, “b”, and “i” are pruned. If the weight range is 

0.7 ≤ WR3 ≤ 0.9, item “a”, “b”, “i” and “p” are pruned and if the weight range is 0.2 ≤

WR4 ≤ 0.7, item “a”, “b”, “c”, “i”, “p” and “r” are pruned. Thus, the number of weighted 

frequent items can be adjusted by using the different WRs.

3.3 WFIM (Apriori): WFIM based on Apriori algorithm

Before developing WFIM based on pattern growth approach, we describe WFIM 

based on Apriori approach. We apply a weight range and a minimum weight threshold in 

Apriori based approach. Therefore, the performance can be improved by efficiency of a 

weight range and a minimum weight. We will compare WFIM (Apriori) with WFIM 

based pattern growth approach which will be described.  In WFIM (Apriori), the MaxW 

of items in transaction database is calculated, if the value of multiplying the support of 

an itemset with the MaxW among items in the transaction database is less than a 

minimum support, the itemset is pruned.  Now, we summarize the weighted frequent 

itemset mining process based on Apriori approach and show the mining algorithm. 
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ALGORITHM. [WFIM (Apriori)]: Weighted Frequent Itemset Mining with a weight 

range and a minimum weight based on Apriori algorithm in a large transaction database. 

Input: (1) A transaction database : TDB, 

           (2) Minimum support threshold : min_sup, 

           (3) Weights of the items within weight range : wi, 

           (4) Minimum weight threshold: min_weight.

Output: The complete set of WFI (Weighted Frequent Itemsets).

Method: 

1. Scan TDB once and find the weighted frequent items satisfying the following 

definition: An itemset X is a weighted frequent itemset if the following pruning 

conditions 1.1 and 1.2 are not satisfied.

Condition 1.1: (support < min_sup && weight < min_weight)

Condition 1.2: (support * MaxW < min_sup)

2. For the size of itemsets in (2, 3, … , k-1) do

a. In subsequent pass called pass k, generate candidate itemsets, Ck using the weighted 

frequent itemsets found in the (k-1) pass. WFIM (Apriori) uses WFIk-1 * WFIk-1 to find a 

candidate set of itemsets Ck in which * means concatenation operation.  

b. Next, the database is scanned again and the support of candidates, Ck are counted.

 c. A candidate Ck is a weighted frequent itemset (WFIk) if the following pruning 

conditions 2.1 and 2.2 are not satisfied.

Condition 2.1: (support < min_sup && weight < min_weight)
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Condition 2.2: (support * MaxW < min_sup)

d: Prune the weighted infrequent itemsets in Ck. if the candidate, Ck is not satisfying the 

condition 2.1 and condition 2.2.

3. Generate all WFI (Weighted Frequent Itemsets).

WFIM (Apriori) is based on Apriori algorithm so it need candidate generations 

and test. The number of weighted frequent itemsets can be reduced by setting a weight 

range and a minimum weight, allowing the user to balance between the two measures of 

weight and support of itemsets. However, the overhead of generating all candidates and 

test them is so huge. Therefore, we propose efficient and scalable algorithm, WFIM 

(Weighted Frequent Itemset Mining) based on pattern growth method.

3.4 WFIM based on pattern growth algorithm

3.4.1 FP (Frequent Pattern) tree structure

Table 4. WFI after pruning and sorting with a WR: 0.7–0.9 in WFIM

TID weight ascending order item list (item: weight)

100 (f: 0.75) (c: 0.8) (m: 0.85) (d: 0.9) 

200 (f: 0.75) (c: 0.8) (m: 0.85) (d: 0.9) (r: 0.9)

300 (f: 0.75) (m:0.85) (d: 0.9) (r: 0.9)

400 (f: 0.75) (c: 0.8) (m: 0.85) 

500 (f: 0.75) (c: 0.8) (m: 0.85) (d: 0.9) (r: 0.9)

600 (m: 0.85) (d: 0.9) (r: 0.9)
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Figure 1. The global FP tree in WFIM.

The FP-trees in our algorithm are made as follows. Scan the transaction database 

one time and count the support of each item and check the weight of each item. After 

this, sort the items in weight ascending order. Although supports of items may be lower 

than the minimum support and infrequent, the items can not be deleted since infrequent 

items may become weighted itemsets in the next step. The weighted infrequent items are 

removed according to pruning conditions 3.1 and 3.2 in definition 3.6. For instance, 

assume that WR3 is used as a WR, min_sup is 3 and min_weight is 0.7. Then, items “a”, 

“b”, “p”, and “i” are removed. Table 4 shows the result of removing weighted infrequent 

itemsets and sorting them by weight ascending order. When an item is inserted in the 

FP-tree, as already discussed, a weighted infrequent item is removed and the rest, 

weighted frequent items and itemsets, are sorted by weight ascending order. As shown 

in [34], [35], each node in the FP-tree has item-id, a weight, count and node link. 

Separate header tables exist for each FP tree and there is an entry for each item in the 
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header table. Figure 1 presents the global FP-tree and corresponding header table for this 

example in WFIM. 

3.4.2 Bottom up divide and conquer

After a global FP-tree is generated from the transaction database, WFIM mines 

frequent itemsets from the FP-tree. The weighted frequent itemsets are generated by 

adding items one by one. WFIM adapts the divide and conquer approach for mining 

weighted frequent itemsets. It divides mining the FP-tree into mining smaller FP trees. 

In the above example of Figure 1, WFIM mines (1) the patterns containing item “r” 

which has the highest weight, (2) the patterns including “d” but not “r”, (3) the patterns 

containing “m” but no “r” nor “d”, (4) the patterns containing “c” but no “r”, “d” nor 

“m”, and finally the patterns containing item “f”. WFIM can find all the subsets of 

weighted frequent itemsets. To begin with, for node r, we generate a conditional 

database by starting from r’s head and following r’s node link. The conditional database 

for prefix “r:4” contains three transactions: <dmcf:2>, <dmf:1> and <dm:1>. Previous 

FP-growth algorithms only consider a support in each conditional database so an item 

“c” is only pruned because the support (2) of item “c” is less than a minimum support 

(3). However, in WFIM, before constructing the FP-tree, conditions in definition 3.6 are 

applied in order to check whether it is a weighed frequent itemset. From Table 2, we 

know that the weights of item “r”, “d”, “m”, “c”, and “f” are 0.9, 0.9, 0.85, 0.8 and 0.75 

respectively. There is only one item “r” in the conditional pattern, so the MinW of the 

conditional pattern is 0.9. By applying pruning conditions, we can see that not only an 

item “c” but also an item “f” are pruned because the value (2.7) of multiplying item f’s 
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support (3) with a MinW (0.9) is less than a minimum support (3). Although the support 

of item “f” is equal to the minimum support, the item “f” with a lower weight can be 

deleted. After that, Fig. 2 (a) shows a FP- tree with prefix “r”. As you can see, the 

conditional FP-tree for prefix “r:4” is a single path tree <md:4>. We can generate all 

kinds of combinations of items including a conditional pattern “r:4”. That is, “r:4”, “rm”, 

“rd” and “rmd”. 

The important point is that we can use a MinW of conditional patterns instead of 

the MaxW of the conditional database or the MaxW of a conditional pattern to prune 

weighted infrequent itemsets because WFIM uses an ascending weight ordered prefix 

tree structure to construct conditional databases and the MinW of a prefix is always 

greater than or equal to the weights of all the items in a conditional database. Hence, the 

MinW of a conditional pattern in the conditional database can be used for applying the 

pruning conditions. 

For node “d”, WFIM derives a frequent pattern (d:5) and three paths in the FP-

tree : <mcf:3>, <mf:1> and <m:1>.  In the FP-growth algorithm, no item is pruned. 

However, in WFIM, item “c” is pruned in this conditional database with prefix “d”, 

since the value (2.7) of multiplying item c’s support (3) with the MinW (0.9) is less than 

a minimum support (3) although the supports of these items are greater than a minimum 

support. However, items “m” and “f” are not pruned. After removing weighted 

infrequent itemsets in the conditional database, the projected FP-tree for the prefix “d:5” 

is constructed.
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Figure 2. Conditional FP trees in WFIM.

Figure 2 (b) shows a conditional FP-tree for prefix d:5. It’s not a single FP-tree, 

so we divide the conditional FP-tree to mine even smaller conditional FP-trees 

recursively. As a result, after a recursive process, we obtain weighted frequent itemsets 

based on conditional pattern “d”:  “d:5”, “dm:5”, “df:4” and “dmf:4”. Similarly, we can 

build projected FP-trees from the global FP-tree and mine weighted frequent itemsets 

from them recursively. These FP-trees are shown in Figure 2 (c)-(d). (The FP-tree for 

prefix f:5 is empty and not shown here).

3.4.3 WFIM algorithm

WFIM can push weight constraints into the pattern growth algorithm and show 

how to keep the downward closure property. A weight range and a minimum weight are 

defined and items are given different weights within the weight range. Now, we 
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summarize the weighted frequent itemset mining process and present the mining 

algorithm. 

ALGORITHM [WFIM]: Weighted Frequent Itemset Mining with a weight range and a 

minimum weight constraint in a large transaction database. 

Input: (1) A transaction database: TDB, 

           (2) A minimum support threshold: min_sup, 

           (3) weights of the items within weight range: wi, 

           (4) A minimum weight threshold: min_weight

Output: The complete set of weighted frequent itemsets.

Method: 

1. Scan TDB once to find the global weighted frequent items satisfying the following 

definition: An itemset X is a weighted frequent itemset if the following pruning 

conditions 1.1 and 1.2 are not satisfied.

Condition 1.1: (support < min_sup && weight < min_weight)

Condition 1.2: (support * MaxW < min_sup)

2. Sort items in weight ascending order. The sorted weighted frequent item list forms the 

weight_order and header of FP tree.

3. Scan the TDB again and build a global FP-tree using weight_order. 

4. Mine a global FP-tree for weighted frequent itemset mining in a bottom up manner. 

Form conditional databases for all remaining items in weight_list and complete local 



31

weighted frequent itemsets for the conditional databases. (An itemset X is a weighted 

frequent itemset if the following pruning conditions 4.1 and 4.2 are not satisfied).

Condition 4.1: (support < min_sup && weight < min_weight) 

Condition 4.2: (support * MinW < min_sup) 

5. When all the items in the global header table have been mined, WFIM is finished. 

3.5 Performance evaluation

In this section, we present our performance study over various datasets. As an 

initial work, WFIM (Apriori) is based on Apriori algorithm but it use a weight range and 

a minimum weight. The WFIM is the first weighted frequent itemset mining algorithm 

which uses a FP-growth algorithm and the extensive performance studies [21], [26], [96] 

showed that the performance of the FP-growth based algorithms is superior to that of 

Apriori-based mining algorithms in terms of runtime and scalability. 

First, we compare WFIM with other algorithms such as MINWAL [12], WFIM 

(Apriori) and FP-growth [34]. We can find previous weight based mining algorithms 

[12], [72], [82]. However, WAR [82] does not consider a weight measure in mining 

frequent patterns. After getting these patterns, WAR considers a weight measure to 

generate weighted association rules. WARM [72] uses a weight measure but does not 

use a support measure. The main two improvement of WFIM are 1) new weight features, 

a weight range and a minimum weight and 2) use of a pattern growth method for 

weighted frequent pattern mining. In order to evaluate performance of two advantages, 

we compare WFIM with MINWAL, WFIM (Apriori) and FP-growth algorithm. 
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MINWAL is weighted frequent pattern mining algorithm to use k-support upper-bound 

to maintain downward closure property and FP-growth is the first algorithm used pattern 

growth approach in mining frequent patterns.

Second, we analyze the efficiency of the weight range and the minimum weight. 

We show how the number of weighted frequent itemset and runtime can be reduced by 

adjusting the weight range and the minimum weight. Finally, we show how WFIM has 

good scalability against the number of transactions in the datasets.

Table 5. Characteristics of real and synthetic datasets

Data sets Size #Trans #Items A.(M.) t. l.

Connect 12.14M 67557 150 43 (43)

Mushroom 0.83M 8124 120 23 (23)

Pumsb 14.75M 49046 2113 74 (74)

BMS-WebView-1 1.28M 59601 497 2.51 (267)

T10I4D100K 5.06M 100K 1000 10 (31)

T10I4Dx 10.12- 50.6M 200K-1000K 1000 10 (31)

3.5.1 Test environment and datasets

In our experiments, we used three real datasets and several synthetic datasets 

which have been used in pervious experiments [34], [46], [49], [56], [58], [79]. Table 5 

shows the characteristic of these datasets. The three real datasets used are Connect, 

Mushroom and BMS-webView-1 respectively. The Connect dataset is very dense and 

includes game state information. The Mushroom dataset is a little dense and contains 
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characteristics of various species of mushrooms. The BMS-webView-1 dataset is a very 

sparse dataset with a web log. These real datasets can be obtained from the UCI machine 

learning repository (http://www.ics.uci.edu/~mlearn) and the frequent itemset mining 

dataset repository (http://fimi.cs.helsinki.fi/data/). 

The synthetic datasets were generated from the IBM dataset generator

(http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html). We use 

T10I4D100k dataset which is very sparse and contains 100,000 transactions. However, 

the synthetic datasets T10I4Dx contain 100k to 1000k transactions. WFIM and WFIM 

(Apriori) are written in C++. Experiments were performed on a sparcv9 processor 

operating at 1062 MHz, with 2048MB of memory. All experiments were performed on a 

Unix machine. In our experiments, a random generation function generated weights 

within the weight range for each item. When running algorithms, a weight range and a 

minimum weight are set up as the cut off values by users for weighted frequent patterns.

3.5.2 Experimental results

3.5.2.1 Comparison with WFIM and other algorithms
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Our experiment shows that in most cases, WFIM outperforms MINWAL, WFIM 

(Apriori) and FP-growth algorithms.  First, we evaluate the performance on the Connect 

dataset. Figure 3 and Figure 4 show WFIM generate smaller patterns and run faster than 

FP-growth. Specifically, the smaller patterns are generated as the weight range is 

increased. In Figure 5, WFIM (Apriori) generates smaller patterns than MINWAL and 

FP-growth because WFIM (Apriori) can reduce the number of patterns and runtime by 

adjusting a weight range and a minimum weight but MINWAL does not use weight 

range effectively. However, in Figure 6, FP-growth is the fastest among three algorithms 

since the FP-growth algorithm is based on pattern growth approach so it does not need 

all candidate generation and test. From Figure 3 to Figure 6, we can see that WFIM is 

the fastest among other algorithms. In addition, the number of patterns discovered by 

WFIM is several orders of magnitude smaller than the number of patterns found by 

MINWAL and FP-growth.
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From Figure 7 to Figure 9 demonstrate the results of performance test using 

Mushroom dataset by setting weight range from 0.4 to 0.9. WFIM outperforms 

MINWAL, WFIM (Apriori), and FP-growth. When the support threshold is lowered, the 

performance difference becomes bigger. Not that in Figure 7, the number of patterns for 

WFIM is increased as the minimum support is decreased. However, the number of 

patterns in MINWAL and FP-growth is substantially increased. In Figure 8 and Figure 9, 

we can see that the runtime of pattern growth based algorithms, WFIM and FP-growth is 
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faster than Apriori based algorithms, MINWAL and WFIM (Apriori). The difference 

becomes bigger as a minimum support is lowered.
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In Figure 10 and Figure 11, we report the evaluation results for BMW-webview-

1dataset. We set up a weight range: 0.7 – 0.9 in Figure 10 and Figure 11. The main 

performance difference between WFIM and MINWAL is result from not only using a 

weight range but also applying pattern growth method. By decreasing support threshold, 

the number of patterns of every algorithm is increased in Figure 10. However, the 
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number of MINWAL is extremely increased. Note that in Figure 11, WFIM (Apriori) is 

faster than MINWAL and FP-growth and even faster than WFIM. Additionally, 

MINWAL is faster than WFIM with greater than a minimum support, 0.003 %. From 

[96], we already know that in very sparse dataset such as BMW-webview-1, Apriori 

based algorithms can be faster that pattern growth algorithms due to overhead of 

constructing FP-tree structure in pattern growth methods. However, the different run 

time between WFIM (Apriori) and WFIM is less than one second so it’s negligible. Our 

above experiments showed that WFIM and WFIM (Apriori) can generate smaller but 

important weighted frequent itemset with various WRs.

Table 6. Effectiveness of a minimum weight in WFIM

Minimum 
Support  of 

Connect dataset

Num of W.F.I

WR: 0.5 –1.5

MW: 1.5

Num of W.F.I

WR: 0.5 – 1.5

MW: 1.0

Num of W.F.I

WR: 0.5 – 1.5

MW: 0.5

Num of 
F.C.I

Num 
of F.I

64179 (95%) 125 784 1471 812 2205

60801 (90%) 690 2346 5312 3486 27127

54046 (80%) 2769 2989 3044 15107 533975

47290 (70%) 3997 4089 4093 35875 4129839

The Table 6 lists the number of Weighted Frequent Itemsets (WFI) with various 

minimum weights, Frequent Itemset (FI) and Frequent Closed Itemsets (FCI). From 

Table 6, WFIM can generate smaller WFI by using different Minimum Weight (MW) 

thresholds. For example, in Table 6, the number of WFI at a minimum support: 90%, a 

WR: 0.5 – 1.5 and a min_weight: 0.5, is 5312. However, the number of WFI can be 
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reduced to 2346 with a min_weight: 1.0 and can be further reduced to a 690 with a 

min_weight: 0.5. The numbers of frequent closed itemsets and frequent itemsets are 

3486 and 27127 respectively. In this way, the proper number of weighted frequent 

itemsets can be found by adjusting a minimum weight. 

3.5.2.2 Scalability test

To test the scalability with the number of transactions, the T10I4DxK datasets 

were used. WFIM is compared with MINWAL, WFIM (Apriori) and FP-growth. In 

Figure 13 and Figure 14, both WFIM and FP-growth show linear scalability with the 

number of transactions from 100k to 1000k. However, WFIM is much more scalable 

than the others. 

First, we tested scalability of WFIM with regard to the number of transactions 

from 100K to 1000K. We set different minimum support of 0.1% to 0.5%. and weight 

range as 0.2 to 0.8 on the T10I4Dx synthetic datasets.
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In Figure 12, we can see that WFIM has good scalability in terms of number of 

transactions and becomes better as the minimum support is increased. Second, we 

compared WFIM with MINWAL, WFIM (Apriori) and FP-growth. We set minimum 

support as 0.1% in Figure 13 and 0.5% in Figure 14, and a weight range from 0.2 to 0.8 

respectively. In Figure 13 and Figure 14, we can see that WFIM has much better 

scalability in terms of base size. The slope ratio of WFIM in both Figure 13 and Figure 

14, is lower than other algorithms.  In comparison with other algorithms, WFIM not only 

runs faster, it also has much better scalability in terms of base size.
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3.6. Summary

In summary, WFIM is efficient and scalable in weighted frequent itemset 

mining. Previous weighted frequent itemset mining algorithms use Aprori based 

algorithms. However, WFIM uses divide and conquer approaches and maintains  

downward closure property. WFIM is faster than MINWAL, WFIM (Apriori) and FP-

growth. Additionally, it becomes much faster and generates fewer but important frequent 

itemset for larger database even with a very low minimum support. Various FP-growth 

based frequent itemset mining algorithms with better performance have been developed 

such as [46], [49], [58], [77]. The performance of WFIM can be further improved by 

incorporating these algorithms. 
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4. WLPMINER: WEIGHTED FREQUENT PATTERN MINING 

WITH LENGTH-DECREASING SUPPORT CONSTRAINTS∗

4.1 Overview of WLPMiner

Two main concerns exist for frequent pattern mining in the real world. First, each 

item has different importance so researchers have proposed weighted frequent pattern 

mining algorithms that reflect the importance of items. Second, patterns having only 

smaller items tend to be interesting if they have high support, while long patterns can 

still be interesting although their supports are relatively small. Weight and length 

decreasing support constraints are key factors, but no mining algorithms consider both 

constraints. 

In this approach, we propose weighted frequent pattern mining with length 

decreasing support constraints [91]. The simple way to use a length decreasing support 

constraint is to set min l>0 f(l) as a minimum support and remove patterns which do not 

satisfy the length decreasing constraints. However, it takes a lot of time to generate 

frequent patterns. WLPMiner takes into account two features, a weight constraint and a 

length decreasing support constraint instead of only resetting the minimum support. This 

allows WLPMiner to generate more meaningful patterns. For pruning techniques, we 

propose 1) the notion of Weighted Smallest Valid Extension (WSVE) to apply to both 

∗Reprinted with permission from “WLPMiner: Weighted Frequent Pattern Mining with Length-
Decreasing Support Constraints” by Unil Yun and John J. Leggett, 2005, Proceedings of the Ninth 
Pacific-Asia Conference, PAKDD 2005, pp. 555-567, Lecture Notes in Computer Science with kind 
permission of Springer Science and Business Media.
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the length decreasing support constraints and weight constraints and 2) a weight range is 

used as a supplement to maintain the downward closure property. 

The main contributions of this approach are: 1) incorporation of two key features 

for real datasets, a weight constraint and a length decreasing support constraint, 2) 

introduction of the concept of the weighted smallest valid extension property, 3) 

description of pruning techniques, transaction pruning and node pruning, using the 

weighted smallest valid extension property, 4) implementation of our algorithm, 

WLPMiner, and 5) execution of an extensive experimental study to compare the 

performance of our algorithm with BAMBOO [79] and WFIM. 

4.2 Weighted frequent pattern mining with WSVE property

In this section, we suggest an efficient weighted frequent pattern mining 

algorithm with a length decreasing support constraint, called WLPMiner. Our approach 

is to push a weight constraint and a length decreasing support constraint into the pattern 

growth algorithm. We introduce the weighted smallest valid extension (WSVE) property 

to prune the search space. Based on weighted smallest valid extension property, we 

define transaction pruning, and node pruning. In addition, we show that the effect of 

combining a weight constraint and a length decreasing support constraint generates 

smaller but important patterns. 

Definition 4.1 Weighted Smallest Valid Extension (WSVE) property

Given a pattern P and a conditional pattern P` such that (support (P) * weight (P)) 

< f (|P|), then f -1(support (P) * weight (P)) = min (l| f (l) ≤ (support (P) * weight (P))) is 
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the minimum length that a super pattern of P must have before it can potentially satisfy 

the length deceasing support constraint.

Lemma 4.1 As the value, x, of multiplying the support with the weight of pattern P 

decreases, the value of the inverse function, f -1(x), of a length decreasing support 

constraint function increases. Meanwhile, as the value of x increases, the value of the 

inverse function of a length decreasing support constraint function, f -1(x) decreases. 

The WSVE property allows us to prune the search space. It considers not only a 

support measure but also a weight measure. From the WSVE property, if the pattern P is 

a weighted infrequent pattern, the length of any superset of the pattern P should have at 

least f -1(support (P) * weight (P)). If not, the superset is also a weighted infrequent 

pattern, so it can be pruned.  

Lemma 4.2 Given a conditional pattern, X, and a pattern in the conditional database, Y,    

a weight of the conditional pattern, X is no less than a weight of a pattern, Y within a 

transaction, t in the conditional database. 

In the weighted smallest valid extension property, weight (X) is used as a weight 

parameter of the inverse function of a length decreasing support constraint. WLPMiner 

uses an ascending weight ordered prefix tree and the tree is traversed using a bottom-up 

strategy. Therefore, the weight of a conditional pattern, X, is always greater than or 

equal to the weight of an item, Y of a transaction, t, within a conditional database.

Lemma 4.3 The following formula is always satisfied: f -1(support (X) * weight (X)) ≤ f 

-1 (support (X) * weight (Y)) ≤ f -1(support (X+Y) * weight (Y)). 
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As stated in lemma 4.2, weight (X) is always no less than weight (Y) and weight 

(X+Y) is always no less than weight (Y). From lemma 4.1, we know that f -1 (weight 

(X)) ≤ f -1(weight (X+Y)) ≤ f -1(weight (Y)). Finally, f -1(support (X) * weight (X)) is 

less than or equal to f -1(support (X) * weight (Y)) and f -1(support (X) * weight (Y)) is 

less than or equal to f -1(support (X+Y) * weight (Y)). In lemma 4.3, we see that f -1 

(support (X) * weight (X)) is the minimum length for a superset (X+Y) of a conditional 

pattern (X). Weighted frequent patterns with a length decreasing support constraint 

should satisfy the WSVE property, although other patterns may also satisfy the WSVE 

property. 

4.3 Pruning by WSVE property

Using the weighted smallest valid extension property, we suggest two pruning 

techniques, transaction pruning and node pruning. Transaction pruning is applied before 

constructing FP-tree, while node pruning is used after building FP-tree.

4.3.1 Transaction pruning by WSVE property

Given a length decreasing support constraint f(l), and a conditional database D` 

with regard to a conditional pattern X, a pattern Y ∈ D` can be pruned from D` if 

((support (X) * weight (X)) < f (|X| + |Y|)).  

The transaction pruning method is used to remove candidate transactions of a 

conditional database. It uses the weighted smallest valid extension property. Separate 

local FP-trees are built for all patterns that contain the conditional pattern. From the 

WSVE property, any superset (X+Y) of a conditional pattern (X) must have a length of 
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at least f -1(support (X) * weight (X)). We can remove any patterns (Y) with a length of 

less than f -1(support (X) * weight (X)) - |X|. This formula can be rewritten as: |X| + |Y| < 

f -1(support (X) * weight (X)), which is the same as (support (X) * weight (X)) < f (|X| + 

|Y|).  

4.3.2 Node pruning by WSVE property

Given a length decreasing support constraint f(l), a conditional pattern database 

D` with regard to a conditional pattern P, and the FP tree, T, built from D`, a node v in T 

can be pruned from T if ((h (v) + |P|) < f -1 (support(I (v)) * weight (I (v)))). 

The node pruning method reduces nodes of a conditional local FP-tree. Assume 

that I(v) is the item stored in this node and h(v) is the height of the longest path from the 

root to a leaf node in which path, the node, v should be located. From the weighted 

smallest valid extension property, we can see that a node that contributes to a weighted 

frequent pattern, should adhere to the following formula: h(v) + |P| ≥ f -1 (support (I(v)) * 

weight (I(v))). Therefore, we can define node pruning by the weighted smallest valid 

extension in definition 4.1. This formula can be rewritten as: f (h(v) + |P|) ≤ (support 

(I(v)) * weight (I(v))). We can remove a node if ((h (v) + |P|) < f -1 (support (I(v)) * 

weight (I(v)))). Assume that the transactions of the conditional database are sorted in 

decreasing transaction length and traverse each transaction in that order. Let t be a 

transaction and l (t) be its length. For practical considerations, we can use this formula: 

((l (t) + |P|) < f -1 (support (I (v)) * weight (I (v)))) instead of ((h (v) + |P|) < f -1 (support 

(I (v)) * weight (I (v)))). 
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4.4 Weighted frequent patterns with length decreasing support constraints

A pattern X is a weighted frequent pattern with a length decreasing constraint if 

all of the following pruning conditions are satisfied. If pattern X does not satisfy anyone 

of them, the pattern is called a weighted infrequent pattern with a length decreasing 

constraint. 

Pruning condition 4.1: (support ≥ f (maxLength) || weight ≥ min_weight)

Pruning condition 4.2: (support * MaxW (MinW) ≥ f (maxLength)

Pruning condition 4.3: Transaction pruning by the WSVE property

Pruning condition 4.4: Node pruning by the WSVE property 

In a transaction database, the value of multiplying the support of a pattern with a 

maximum weight (MaxW) among items in the transaction database is less than f 

(maxLength). In conditional databases, the value of multiplying the support of a pattern 

with a minimum weight (MinW) of a conditional pattern in the conditional database is 

less than f (maxLength), a length decreasing minimum support. 

In WLPMiner, an ascending weight order method and a bottom-up traversal 

strategy are used in mining weighted frequent patterns. WLPMiner defines weighted 

Smallest Valid Extension property and prunes transactions and nodes by the WSVE 

property. The performance of pruning conditions 4.1 and 4.2 may not be good since the 

minimum support for the longest pattern of the length decreasing support constraint must 

be used in order to keep downward closure property. However, performance can be 

improved by using these pruning conditions with the weighted closure property and the 
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weight range. The weighted smallest valid extension and the downward closure property 

are both used to prune the search space. 

4.5 WLPMiner algorithm

The WLPMiner algorithm uses a weight range and a minimum weight. Items are 

given different weights within the weight range. We now the weighted frequent pattern 

mining process and present the mining algorithm. 

WLPMiner algorithm: Mining weighted frequent patterns with a length decreasing 

support constraint

Input: (1) A transaction database: TDB 

           (2) f(x): a length decreasing support constraint function

           (3) Weights of the items within weight range : wi

           (4) A minimum weight threshold : min_weight

Output: (1) WFP: the complete set of Weighted Frequent Patterns that satisfy the length 

decreasing support constraint.

Begin 

1. Let WFP be the set of weighted frequent patterns that satisfy the length decreasing 

support constraint. Initialize WFP ← 0; 

2. Scan TDB once to find the global weighted frequent items satisfying the following 

definition: A pattern X is a Weighted Frequent Pattern (WFP) if the following pruning 

conditions 2.1 and 2.2 are not satisfied.

Condition 2.1: (support < f(maxLength) && weight < min_weight)
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The support of a pattern is less than a minimum support and the weight of a pattern is 

less than a minimum weight constraint. 

Condition 2.2: (support * MaxW < f(maxLength))

In a transaction database, the value of multiplying the support of a pattern with a 

maximum weight (MaxW) of each item in the transaction database is less than a 

minimum support.

3. Sort items of WFP in weight ascending order. The sorted weighted frequent item list 

forms the weighted frequent list.

4. Scan the TDB again and build a global FP-tree using weight_order. 

5. Call WLPMiner (FP-tree, 0, WFP)

Procedure WLPMiner (Tree, α, WFP)

1:  for each ai in the header of Tree do

2: set β = α U ai;

3:   get a set Iβ of items to be included in β conditional database, CDBβ;  

4:   for each item in Iβ, compute its count in β conditional database; 

5:   for each bj in Iβ do 

6:    if (sub (β bj) < f(maxLength) && weight (β bj) < min_weight) delete bj from Iβ;             

7:        if (sub (β bj) * MinW < f(maxLength)) delete bj from Iβ;

8:   end for

9:    CDBβ ← transaction_pruning_by_WSVE (β, CDBβ);

10:   Treeβ ← FP_Tree_Construction (Iβ, CDBβ)
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11:   Treeβ ← node_pruning_by_WSVE (β, Treeβ);

12:   if Treeβ ≠ 0 then 

13:      call WLPMiner (Treeβ, β, WFP)

14:   end if

15: end for   

In the WLPMiner algorithm, TDB is scanned once, weighted frequent items 

satisfying condition 2.1 and 2.2 are found and these items are sorted in weight ascending 

order. The WLPMiner algorithm then calls the recursive procedure WLPMiner (Tree, α, 

WFP).  Lines 6 and 7 generate weighted frequent patterns with a length decreasing 

constraint. Line 9 conducts transaction pruning by the WSVE property. If a pattern in a 

conditional database satisfies the transaction pruning, it is inserted into a local FP-tree. 

After a local FP-tree is constructed in line 10, node pruning by the WSVE property is 

carried out in line 11. WLPMiner algorithm adopts the bottom-up divide and conquer 

paradigm to grow the current the prefix. If the local FP-tree is not empty, the procedure 

WLPMiner (Treeβ, β, WFP) is called recursively in line 13.

4.6 Performance evaluation

In this section, we present our performance study over various datasets. 

WLPMiner is the first weighted frequent pattern mining algorithm that considers both 

weight constraints and length decreasing support constraints which are characteristics of 

real datasets. We report our experimental results on the performance of WLPMiner in 

comparison with recently developed algorithms such as BAMBOO [79] and WFIM. Our 
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results show that WLPMiner not only generates more concise and important result sets, 

but also has much better performance than recently developed mining algorithms 

through incorporating a length decreasing support constraint into weighted frequent 

pattern mining. Moreover, WLPminer has good scalability of the number of transactions. 

In our experiments, we compared WLPMiner with BAMBOO [79] which is a frequent 

pattern mining algorithm with a length decreasing support constraint. We also compared 

WLPMiner with WFIM that is a weighted frequent pattern mining algorithm developed 

recently. 

4.6.1 Test environment and datasets

Table 5 shows the characteristics of the datasets used for performance evaluation. 

The three real datasets used are Connect, Mushroom and Pumsb respectively. The 

Connect dataset is very dense and includes game state information. The Mushroom 

dataset is a little dense and contains characteristics of various species of mushrooms. 

The Pumsb dataset is census dataset. We use T10I4D100k which is very sparse and 

contains 100,000 transactions. The synthetic datasets T10I4Dx contain from 100k to 

1000k transactions. WLPMiner was written in C++. Experiments were performed on a 

sparcv9 processor operating at 1062 MHz, with 2048MB of memory. All experiments 

were performed on a Unix machine. In our experiments, a random generation function 

was used to generate weights for each item. When running WLPMiner, the minimum 

support was determined as the cut off value for the maximum pattern length under the 

corresponding length decreasing support constraint.
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Figure 15. Length decreasing support constraints in WLPMiner (Connect dataset). 
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Figure 16. Length decreasing support constraints in WLPMiner (Mushroom dataset). 
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Figure 17. Length decreasing support constraints in WLPMiner (Pumsb dataset). 
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Figure 18. Length decreasing support constraints in WLPMiner (T10I4DnK dataset). 

 
From Figure 15 to Figure 18 show various length decreasing support constraints 

used in the performance evaluation for different datasets. LPMiner and BAMBOO are 

recently developed mining algorithms using length decreasing support constraints. These 

length decreasing support constraints are similar to those used in BAMBOO. When 

running WLPMiner, the minimum support was determined as the cut off value for the 

maximum pattern length under the corresponding length decreasing support constraint. 

4.6.2 Experimental results

In our experiments, we compared WLPMiner with BAMBOO which is a 

frequent pattern mining algorithm with a length decreasing support constraint. Bamboo 

outperforms LPMiner in terms of runtime and the number of frequent patterns. 

Therefore, we compared WLPMiner with BAMBOO. Additionally, we also compared 

WLPMiner with WFIM that is a weighted frequent pattern mining algorithm developed 

recently. 
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4.6.2.1 Comparison of WLPMiner with WFIM and BAMBOO
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Figure 19. Number of patterns in WLPMiner (Connect dataset). 
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Figure 20. Runtime in WLPMiner (Connect dataset). 

 

In this test, we focused on the efficiency of incorporation of weight constraint 

and length decreasing support constraints. First, we evaluated the performance on the 

Connect dataset. We use two weight ranges, 0.6 – 0.7 and 0.7 – 0.8 respectively. Figure 

19 and Figure 20 show results of performance test for the Connect dataset. Figure 19 

compares the number of weighted frequent patterns of WLPMiner with those of WFIM 
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and BAMBOO. Figure 20 shows the runtime of the algorithms under the same weight 

range. In Figure 19, we can see WLPMiner generates smaller frequent patterns than that 

of BAMBOO.  From Figure 20, we see that WLPMiner is much faster than BAMBOO.  

Although WLPMiner and BAMBOO algorithms use a length decreasing support 

constraint, WLPMiner outperforms BAMBOO because WLPMiner uses the Weighted 

Smallest Valid Extension property and incorporates weight constraints into length 

decreasing support constraints. 
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Figure 21. Number of patterns in WLPMiner (Mushroom dataset). 
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Figure 21 and Figure 22 demonstrate the results of performance test using the 

Mushroom dataset with weight ranges, 0.6 – 0.8 and 0.7 – 0.9. WLPMiner outperforms 

WFIM. When a weight range is lowered, the performance becomes better. Although 

WLPMiner and WFIM use same weight range, WLPMiner have better performance 

since WLPMiner use pruning techniques based on Weighted Smallest Valid Extension 

property. 
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Figure 23. Number of patterns in WLPMiner (Pumsb dataset). 
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Figure 24. Runtime in WLPMiner (Pumsb dataset). 
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From Figure 23 to Figure 24, we report the evaluation results for the Pumsb 

dataset. We set up a weight range: from 0.4 – 0.8. In most cases, WLPMiner is faster 

than WFIM and generates fewer patterns. Users may increase a minimum support to find 

fewer patterns with higher frequency. However, the number of patterns at minimum 

support 35% in WFIM is dramatically increased. Meanwhile, the number of patterns in 

WLPMiner is controllable.  
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Figure 25. Number of patterns in WLPMiner (T10I4D100K dataset). 
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In Figure 25 and Figure 26, we report the evaluation results for T10I4D100K 

dataset. We set up a weight range: 0.3 – 0.6 in Figure 25 and Figure 26. The main 

performance difference between WLPMiner and WFIM is result from using length 

decreasing support constraints. Additionally, WLPMiner outperforms BAMBOO since 

WLPMIner applies weight constraint. By decreasing a support threshold, the number of 

patterns of every algorithm is increased in Figure 25. However, the number of WFIM is 

extremely increased. From Figure 25 to Figure 26, we can see that WLPMiner generates 

fewer but important patterns. In addition, it can be several orders of magnitude faster 

than WFIM since the Weighted Smallest Valid Extension property for the length 

decreasing support constraint is effective and efficient in pruning the result set in the

datasets.

4.6.2.2 Quality of patterns in WLPMiner

We showed that WLPMiner not only generates more concise and important result 

patterns, but also has much better performance than recently developed algorithms, 

BAMBOO and WFIM. In this section, we show the quality of weighted frequent patterns 

with length decreasing support constraints. In most of test datasets, items are expressed 

as integer values so it is not easy to understand the meaning of items and discovered 

patterns. In this analysis, the T10I4D100K dataset is used to test the quality of weighted 

frequent pattern mining. A minimum support is set to 0.002% and a weight range is set 

as 0.3 – 0.6. We analyzed the frequent patterns to show effectiveness of mining weighted 

frequent pattern mining with a length decreasing support constraints. We compared the 

patterns mined by WLPMiner with those of WFIM. First, BAMBOO generate following 
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patterns: <110, 282, 810, 956>: 14, <48, 55, 185, 637, 877, 989>: 19 and <185, 234, 

631, 877, 958, 989>: 19. However, these patterns are pruned by WLPMiner because 

these patterns have low weights although the supports of these patterns are no less than 

length decreasing support constraints. Second, <529, 541, 829, 937>:12, <295, 529, 541, 

829, 937>: 12 and <41, 208, 529, 590, 606>:12 are discovered by WFIM. Meanwhile, 

these patterns are all pruned by WLPMiner since WLPMiner consider length decreasing 

support constraints. Note that WLPMiner apply not only a weight constraint but also 

length decreasing support constraints so more important and reasonable patterns can be 

mined.  

4.6.2.3 Scalability test
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Figure 27. Scalability test in WLPMiner (T10I4Dx dataset, WR: 0.3 - 0.6).

To test the scalability with the number of transactions, T10I4DxK datasets are 

used. We set a weight range as 0.3 to 0.6 and changed the minimum support from 

0.001% to 0.005%. In this scalability test, WLPMiner is compared with BAMBOO. 

BAMBOO shows linear scalability with the number of transactions from 200k to 1000k. 
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However, WLPMiner is much more scalable than BAMBOO. From Figure 27, the 

difference between the two algorithms becomes clear. We first tested the scalability in 

terms of base size from 200K tuples to 1000K tuples and different minimum support of 

0.001% to 0.005%. From Figure 27, we can see that WLPMiner has much better 

scalability in terms of base size. The slope ratio for each different minimum support is 

almost similar.

4.7. Summary

We developed the WLPMiner algorithm that integrates a weight constraint with a 

length decreasing support constraint for mining frequent patterns. The key insights 

achieved in this approach are the high performance of the WSVE property and the use of 

a weight range in the weight constraint. We show that combining a weight constraint 

with a length decreasing support constraint improves performance in terms of the 

number of patterns and runtime. The extensive performance analysis shows that 

WLPMiner is efficient and scalable in weighted frequent pattern mining. In future work, 

the WSVE property will be used with different pruning techniques suggested in other 

algorithms using length decreasing support constraints.
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5. WIP: WEIGHTED INTERESTING PATTERN MINING 

WITH A STRONG WEIGHT AND/OR SUPPORT AFFINITY

5.1 Overview of WIP

In this approach, we propose an efficient mining algorithm called WIP 

(Weighted Interesting Pattern mining) based on the pattern growth approach. We define 

the concept of a weighted hyperclique pattern that uses a new measure, called weight-

confidence, to consider weight affinity and prevent the generation of patterns with 

substantially different weight levels. The weight confidence is used to generate patterns 

with similar levels of weights and the actual h-confidence serves to identify strong 

support affinity patterns. The Hyperclique Miner [86] which first used an h-confidence, 

adopted an Apriori algorithm. In addition, Hyperclique Miner used an upper bound on h-

confidence. However, the actual h-confidence is more accurate than the upper bound of 

h-confidence. WIP uses the actual h-confidence instead of the upper bound of h-

confidence so weak support affinity patterns can be pruned earlier. The actual h-

confidence can be calculated without additional computation cost in WIP based on the 

FP-tree structure (section 5.5). An extensive performance analysis shows that weighted 

interesting patterns are extremely valuable patterns, since they have strong affinity in 

terms of a weight and/or support. Users can adjust the number of frequent patterns or 

find more valuable patterns by using weighted frequent patterns or weighted frequent 

patterns with weight affinity and/or support affinity, instead of only obtaining frequent 

patterns by changing the support threshold. Weighting applications exist in which items 
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have different importance and patterns with a similar level of support and/or weight are 

more meaningful. For example, strong support and/or weight affinity measures can be 

applied in DNA analysis and web log mining by giving more weights to specific DNA 

patterns or web log sequences. 

The main contributions of this approach are: 1) introduction of the weight-

confidence measure and weighted hyperclique patterns, 2) integration of two key 

features, a weight and a support, 3) improvement in performance by applying actual h-

confidences without additional computation cost, 4) implementation of our algorithm, 

WIP, and 5) an extensive experimental study that compared the performance of our 

algorithm with WFIM and the Hyperclique Miner [86]. 

5.2 Analysis of previous algorithms

Previous weighted frequent pattern mining algorithms [12], [72], [82] are based 

on the Apriori algorithm which uses a candidate set generation and test mechanism. 

WFIM is the weighted frequent itemset mining algorithm to use a pattern growth 

algorithm.  WFIM focused on the downward closure property while maintaining 

algorithm efficiency. Patterns generated by WFIM have weak support and/or weight 

affinity patterns. WFIM uses a weight range to adjust the number of patterns. However, 

WFIM does not provide ways to remove patterns that include items with different 

support and/or weight levels. It would be better if the weak affinity patterns could be 

pruned first, resulting in fewer patterns after mining.

To mine correlated patterns, interesting measures [11], [40], [53], [71], [73], [84]

have been suggested. In Hyperclique Miner [86], a hyperclique pattern was defined that 
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generates patterns involving items with a similar level of support. The Hyperclique 

Miner has the following limitations. First, Hyperclique Miner has adopted an Apriori 

algorithm which uses candidate set generation and test approaches. It is very costly to 

generate and test all the candidates. Second, Hyperclique Miner uses an upper bound on 

h-confidence which is defined as Min1 ≤ j ≤ m {support ({ij})} / Max1≤ k ≤ m {support 

({ik})} when a pattern P = {i1, i2, …, im} is given. Because Hyperclique Miner is based 

on the Apriori algorithm, the upper bound can reduce the computation cost. However, 

the upper bound on h-confidence is no more accurate than the original h-confidence. In 

Apriori based algorithms, the cost for computing support for patterns with size greater

than or equal to two is higher than the cost for computing support for single items. 

However, in pattern growth methods which use the FP-tree structure, the real support 

value of a pattern with any size (instead of the minimum support of items within 

patterns) can be calculated without additional computation cost. Third, our performance 

tests show that many cases exist in which the number of hyperclique patterns is not 

increased or decreased, even though the minimum support is changed. Additionally, the 

minimum h-confidence must be set very high. Otherwise, the number of hyperclique 

patterns becomes very large or is unchanged even if the minimum h-confidence is 

increased. The h-confidence can be an effective measure, but the effect is not always 

present in real datasets. 

5.3 Weighted hyperclique patterns

In this section, we define the weight confidence measure, explain the concept of 

weighted hyperclique patterns, and show important properties.  
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Definition 5.1 Weight confidence (w-confidence)

Weight confidence of a pattern P = {i1, i2, …, im}, denoted as wconf (P), is a 

measure that reflects the overall weight affinity among items within the pattern. It is the 

ratio of the minimum weight of items within the pattern to the maximum weight of items 

within the pattern. That is, this measure is defined as 

j

k

1  j m

1  k m

Min {weight ({i })} 
Wconf (P) = 

Max {weight ({i })}
≤ ≤

≤ ≤
 

Definition 5.2 Weighted Hyperclique Pattern (WHP)

A pattern is a weighted hyperclique pattern if the weight confidence of a pattern 

is greater than or equal to a minimum weight confidence. In other words, given a set of 

items I = {i1, i2, …, im}, a pattern P is a hyperclique pattern if and only if |P| > 0 and 

wconf (P) � min_wconf, where min_wconf is a minimum weight confidence.

Example 5.1: consider a pattern P = {A, B, C} and P` = {D, E, F}. Assume that a 

minimum weight confidence is 0.5, weight ({A}) = 0.2, weight ({B}) = 0.5, weight 

({C}) = 0.8, weight ({D}) = 0.4, weight ({E}) = 0.5, and weight ({F}) = 0.6, where 

weight (X) is the weight value of a pattern X. Then, the average weight of pattern P and 

pattern P` are both 0.5, wconf (P) = 0.25 and wconf (P`) = 0.67.  Therefore, pattern P is 

not a weighted hyperclique pattern but pattern P` is a weighted hyperclique pattern.

Property 5.1 Anti-monotone property of w-confidence

The anti-monotone property of w-confidence is similar to that of the support 

measure used in frequent pattern mining. If the w-confidence of a pattern P is no less 
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than a minimum w-confidence, every subset of pattern P is also no less than the 

minimum w- confidence.

Lemma 5.1 The w-confidence measure has the anti-monotonic property. 

From definition 5.1, we can see that Max 1 ≤ k ≤ m  {weight ({ik})} of the pattern P 

is always greater than or equal to that of a subset of pattern P and Min1 ≤ j ≤ m {weight 

({ij})} of the pattern P is always less than or equal to that of subset of pattern P. 

Therefore, we know that 

j j

k k

1  j m 1  j m - 1

1  k m 1  k m - 1

Min {weight ({i })} Min {weight ({i })} 

Max {weight ({i })} Max {weight ({i })}
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
≤

That is, if the w-confidence of the pattern {i1, i2, …, im} is greater than or equal 

to a minimum w-confidence, so is every subset of size m - 1. Therefore, the w-

confidence can be used to prune the exponential search space.

Property 5.2 Cross weight property

A pattern is called a cross weight pattern if the pattern contains items which have 

different levels of weights. Given a min_wconf (minimum weight confidence) as a 

threshold, if w-confidence has the cross weight property, for any cross weight pattern P 

with regard to a min_wconf, the value of the w-confidence is less than the min_wconf.

Lemma 5.2 The w-confidence has the cross weight property. 

Given definition 5.1, assume that there is a cross weight pattern P = {i1, i2, ..., im} 

that contains at least two items x and y such that weight ({x}) / weight ({y}) < t. where 0 

< t < 1. 



66

j

k

1  j m

1  k m

Min {weight ({i })} 
Wconf (P) = 

Max {weight ({i })}
≤ ≤

≤ ≤

1  k m

1  j mMin {..., weight ({x}), ..., weight({y}), ... }

Max {..., weight ({x}), ..., weight({y}), ... }≤ ≤

≤ ≤≤

1  k m

weight ({x}) 

Max {..., weight ({x}), ..., weight ({y}), ... }≤ ≤

≤

weight ({x}) 

weight ({y})
t≤ <

Therefore, we know that the value of the w-confidence is less than the 

min_wconf for any cross weight pattern P with regard to a w-confidence threshold, t.

5.4 Effectiveness of w-confidence

Let us give a concrete example to show the effectiveness of w-confidence and 

weighted hyperclique patterns generated by using w-confidence. Given six items, their 

weights {“gold ring:5”, “silver ring:2”, “bronze ring:1.5”, “gold necklace:4”, “silver 

necklace:1.5”, and “bronze necklace:1”} and a minimum w-confidence, 60%, we see 

that gold has a high weight, and silver and bronze have lower weights, even though the 

weight of silver is higher than that of bronze. Using a w-confidence measure, patterns 

that consist of items with similar levels of weight can be generated. For instance, “gold 

ring” and “gold necklace” are more important than other rings and necklaces so they 

have high weights. Meanwhile, “bronze ring” and “bronze necklace” are less important, 

so they have low weights. However, the item “gold ring” has lower support (frequency) 

than “silver ring” and “bronze ring” because “gold ring” is so expensive that customers 

do not usually buy it. We can think of the “necklace” items in a similar way. We know 
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that some customers who buy item “gold ring” are usually interested in other costly 

items such as “gold necklace”. 

In contrast, other buyers who want to get a cheap “bronze ring” would like to 

find cheaper items such as “silver necklace” and “bronze necklace”. Patterns such as 

“gold ring, gold necklace” can not be mined by using a support measure and patterns 

such as “bronze ring, bronze necklace” or “silver ring, bronze necklace” can not be 

found by using a weight measure. Although the pattern “bronze ring, bronze necklace” 

and “bronze ring, silver necklace” have low weights, the w-confidences of the patterns 

are 67% (1/1.5) and 100% (1.5/1.5) respectively. Therefore, it is certain that they have 

more w-confidence than the pattern “gold ring, bronze necklace” (wconf = 20%) or 

“gold ring, silver necklace” (wconf = 30%). Using w-confidence, we can generate strong 

weight affinity patterns such as “gold ring, gold necklace” (wconf = 80%), “bronze ring, 

bronze necklace” (wconf = 67%) and “bronze ring, silver necklace” (wconf = 100%).

5.5 Mining weighted interesting patterns

In this section, we define weighted interesting pattern mining and show the 

mining process. 

Definition 5.3 Weight Range (WR)

The weight of each item is assigned to reflect the importance of each item in the 

transaction database. A weight is given to an item with a weight range, Wmin ≤W ≤ Wmax. 

Definition 5.4 Weighted Interesting Pattern (WIP)

A pattern is a weighted interesting pattern if the following pruning conditions are 

satisfied. W-confidence can also be used independently.



68

Pruning condition 5.1: (support * MaxW (MinW) ≥ min_sup) 

In a transaction database, the value of multiplying the support of itemsets with a 

maximum weight (MaxW) among items in the transaction database is greater than or 

equal to a minimum support. In conditional databases, the value of multiplying the 

support of an itemset with a minimum weight (MinW) of a conditional pattern in the FP-

trees is greater than or equal to a minimum support.

Pruning condition 5.2: (w-confidence ≥ min_wconf) 

The pattern is a weighted hyperclique pattern if the w-confidence of a pattern is 

no less than a minimum w-confidence. 

Lemma 5.3 The w-confidence measure can be applied irrespective of different 

weight ranges.

WIP uses the weight range to maintain the downward closure property. For 

example, the WRk of a pattern K = {A, B, C} is from 1 to 3 and the WRk` of a pattern K` 

= {D, E, F} is from 0.1 to 0.3. Assume that weight ({A}) = 1, weight ({B}) = 2, weight 

({C}) = 3, weight ({D}) = 0.1, weight ({E}) = 0.2, and weight ({F}) = 0.3, where weight 

is the weight value of a pattern. Then, wconf (K) = 0.33 and wconf (K`) = 0.33. Using 

WRk` rather than WRk generates fewer patterns by pruning condition 5.1. However, the 

weight confidences (0.33) of patterns K and K` are the same in spite of different weight 

ranges. We know that w-confidence is defined as the ratio of the minimum weight of 

items within the pattern to the maximum weight of items within the pattern. 

Therefore, if ratios of the minimum weight to the maximum weight of different 

weight ranges are the same, the effect is the same. In other words, the w-confidence of a 
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pattern is only decided by a level of weight affinity between items of a pattern, not by a 

weight range. 

Pruning condition 5.3: (actual h-confidence ≥ min_hconf) 

The pattern is a hyperclique pattern if the h-confidence of a pattern is no less than 

a minimum h-confidence. Given a pattern P = {i1, i2, ..., im}, h-confidence of the pattern 

P is defined as support ({i1, i2, …, im}) / Max1≤ k ≤ m {support ({ik})}. The h-confidence 

for a pattern P has the following upper bound: upper (hconf (P)) = Min1≤ j ≤ m {support 

({ij})} / Max1≤ k ≤ m {support ({ik})}. WIP uses actual h-confidence instead of the upper 

bound of h-confidence. 

Lemma 5.4 The actual h-confidence can be used in the pattern growth method 

instead of the upper bound of h-confidence without additional computation cost.

Pattern growth approaches compute local frequent items of a prefix by scanning 

a projected database and making local FP-trees for the next step. In local FP-trees, the 

support of a local frequent item means the support of a pattern that includes a conditional 

pattern and a local frequent item. 

Therefore, we can obtain the supports of patterns without additional computation 

cost by using the local FP-tree structure. In section 5.5.1, we show examples in which 

actual h-confidence is more accurate then upper bound of h-confidence.
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Table 7. A transaction database TDB as a running example in WIP

TID Set of items

100 a, b, c, d, g

200 a, b, d, f

300 a, b, c, d, g, h

400 c, f, g

500 a, b, c, d

600 d, f, h

5.5.1 FP-tree structure and bottom up divide and conquer

We use the transaction database TDB in Table 7. Assume that min_sup is 2, 

min_wconf is 0.6, min_hconf is 0.8  and use 0.2 � WR � 0.6 as the weight range in which 

the weight list is <a:0.6, b:0.5, c:0.3, d:0.3, f:0.2, g:0.5, h:0.4>. After the first scan of the 

transaction database, we know that the frequent list is <a:4, b:4, c:4, d:5, f:3, g:3. h:2> 

and the MaxW is 0.6. 

When an item is inserted in the FP-tree, weighted infrequent items are removed 

and the rest are sorted by weight ascending order. From pruning by weighted support 

constraint, items “f”, “g” and “h” are pruned because the values of multiplying the 

supports of items “f”, “g” and “h” with a MaxW (0.6) is less than a minimum support 

(2). 
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Figure 28. The global FP tree in WIP.

Figure 28 presents the global FP-tree and the related header table. After the 

global FP-tree is generated from the transaction database, WIP mines weighted 

interesting patterns from the FP-tree. The weighted interesting patterns are generated by 

adding items one by one. WIP adapts the divide and conquer approach for the mining 

process. WIP divides mining the FP-tree into mining smaller FP trees. From the global 

FP-tree, WIP mines (1) the patterns containing item “a” which have the highest weight, 

(2) the patterns including “b” but not “a”, (3) the patterns containing “d” but no “a” or 

“b”, and finally (4) the patterns containing “c” but no “a”, “b” or “d”. For node “a”, we 

generate a conditional database by starting from a’s head and following a’s node link. 

The conditional database for prefix “a:3” contains two transactions: <bdc:3> and 

<bd:1>. In WIP, item “c:3” is pruned by the weighted support constraint of condition 5.1 

in definition 5.4 because the value (1.8) of multiplying item c’s support (3) with a MinW 

(0.6) of the conditional pattern is less than the minimum support (2). In addition, a local 

item “d:4” is pruned by weight confidence. The candidate pattern, from a local item 
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“d:4” and a conditional pattern “a”  is “ad:4” and the weight confidence (0.5) of the 

candidate pattern “ad:4” is less than the minimum weight confidence (0.6). Note that 

there is only one item “a” in the conditional pattern, so the MinW of the conditional 

pattern is 0.6. After that, Figure 29 (a) shows a FP- tree with prefix “a”. For node “b”, 

WIP derives a conditional pattern (b:3) and two paths in the FP-tree: <dc:3>, and <d:1>. 

A local item “c:3” is pruned by the weighted support constraint of condition 5.1 in 

definition 5.4 because the value (1.8) of multiplying the support (3) of an item “c”  with  

MinW (0.6) of a conditional pattern “b” is less than the minimum support (2). After 

pruning weighted uninteresting patterns in the conditional database, the projected FP-

tree for the prefix “b:3” is constructed. Figure 29 (b) shows a conditional FP-tree for 

prefix b:3. For node “d”, the conditional database for prefix “d:3” contains a transaction: 

<c:3>. Note that no item is pruned in this step when the upper bound of h-confidence is 

used in Hyperclique Miner [86], [87].

Figure 29. Conditional FP trees in WIP.
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the pattern ”bc” is 1 (shown in Table 8) but the real h-confidence of the pattern is 0.75. 

The h-confidence (0.75) of the candidate pattern, “bc:4”, is less than the minimum h-

confidence (0.8). In this way, we can build local projected FP-trees from the global FP-

tree and mine weighted interesting patterns from them recursively. (The FP-trees for 

prefix d:3 and c:4 are empty and not shown in Figure 29). Note that the candidate pattern 

“bcd” is pruned by the anti-monotone property (downward closure property) of w-

confidence. That is, if a pattern “bd” is not a weighted hyperclique pattern, the superset 

“bcd” of the pattern “bd” is also not a weighted hyperclique pattern and the candidate 

patterns are not generated. Table 8 shows examples of pruning candidate patterns by 

weighted support, w-confidence, upper bound of h-confidence and actual h-confidence. 

Table 8. Pruning candidate patterns in WIP

Candidate 
patterns

Weighted 
support

Weight 
confidence

Upper bound of  
h-confidence

Actual            
h-confidence

ab : 4 (0.6 * 4) 0.83 1.0 (4/4) 1.0 (4/4)

ac : 3 Pruned         
(0.6 * 3)

Pruned        
(0.5)

1.0 (4/4) Pruned
0.75 (3/4)

ad : 4 (0.6 * 4) Pruned 
(0.5)

0.8 (4/5) 0.8 (4/5)

bd : 4 (0.6 * 4) 0.6 0.8 (4/5) 0.8 (4/5)

bc : 4 (0.6 * 4) 0.6 1.0 (4/4) Pruned        
0.75 (3/4)

dc : 3 Pruned         
(0.6 * 3)

1.0 0.8 (4/5) Pruned          
0.6 (3/5)
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5.5.2 Comparison of w-confidence and h-confidence

In this section, we compare w-confidence with h-confidence. W-confidence is a 

weight measure that considers the weight affinity of items within a pattern. However, h-

confidence is a support measure which is used to identify strong affinity patterns in 

terms of support. The previous use of a weight constraint [12], [82], [72] can generate 

many patterns containing different levels of weights or miss interesting low weight 

patterns. W-confidence is applied to find weighted frequent patterns with similar levels 

of weight. We defined w-confidence as Min1≤ j ≤ m {weight ({ij})} / Max1≤ k ≤ m {weight 

({ik})} instead of weight ({i1, i2, …, im})  / Max1≤ k ≤ m  {weight ({ik})} because the latter 

does not satisfy the anti-monotone property (downward closure property). Meanwhile, 

Min1≤ j ≤ m {weight ({ij})} / Max1≤ k ≤ m {weight ({ik})} satisfies both the anti-monotone 

and cross weight properties. The computation of an upper bound on h-confidence is less 

accurate than the computation of the exact h-confidence value. 

5.5.3 Comparison of w-confidence and weighted support constraint

W-confidence and weighted support constraints both use a weight feature. As 

shown in section 5.4, w-confidence can avoid generating patterns with different levels of 

weights. Although the weighted support constraint considers weight and support 

measures, it can generate weak weight affinity patterns. In other words, patterns 

satisfying weighted support constraint can not satisfy the w-confidence if they contain 

different levels of weights. 
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5.6 WIP algorithm

In WIP, an ascending weight order method and a bottom-up traversal strategy are 

used in mining weighted interesting patterns. WIP defines a w-confidence measure and 

generates weighted hyperclique patterns. Items are given different weights within the 

weight range. We now show the weighted interesting pattern mining process and present 

the mining algorithm. 

WIP algorithm: Weighted Interesting Pattern mining with a weight confidence and/or 

an h-confidence

Input: (1) A transaction database: TDB, 

           (2) A minimum support: min_sup, 

           (3) Weights of the items within weight range: wi, 

           (4) A minimum w-confidence: min_wconf

           (5) A minimum h-confidence: min_hconf

Output: The complete set of weighted hyperclique patterns.

Begin 

1. Let WIP be the set of weighted interesting patterns that satisfy the constraints. 

Initialize WIP ← {};

2. Scan TDB once to find the global weighted frequent items satisfying the following 

definition: A pattern is a weighted frequent pattern if the following pruning condition is 

not satisfied. 

Pruning condition: (support * MaxW < min_support)
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In a transaction database, the value of multiplying the support of a pattern with a MaxW 

of each item in the transaction database is less than a minimum support.

3. Sort items of WIP in weight ascending order. The sorted weighted frequent item list 

forms the weighted frequent list.

4. Scan the TDB again and build a global FP-tree using weight_order. 

5. Call WIP (FP-tree, {}, WIP)

Procedure WIP (Tree, α, WIP)

1:   For each ai in the header of Tree do

2:          set β = α U ai;

3:   Get a set Iβ of items to be included in β conditional database, CDBβ;  

4:   For each item in Iβ, 

            Compute its count in β conditional database; 

5:   For each bj in Iβ do 

6:         If (sub (β bj) * MinW < min_support) delete bj from Iβ;

7:         If (wconf (β bj) < min_wconf) delete bj from Iβ;                       

8:         If (hconf (β bj) < min_hconf) delete bj from Iβ;

9:   End for

10: Treeβ ← FP_Tree_Construction (Iβ, CDBβ)

11:       If Treeβ ≠ 0 then 

12:           Call WIP (Treeβ, β, WIP)  

13: End if
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14: End for   

In the WIP algorithm, TDB is scanned once, weighted frequent items satisfying 

the pruning conditions are found and these items are sorted in weight ascending order. 

The WIP algorithm then calls the recursive procedure WIP (Tree, α, WFP).  Line 6 

generates weighted frequent patterns. Line 7 generates weighted hyperclique patterns 

with weight confidence. Line 8 generates hyperclique patterns with h-confidence. If a 

pattern in a conditional database satisfies the above constraints, it is inserted into a local 

FP-tree in line 10. The WIP algorithm adopts the bottom-up divide and conquer 

paradigm to grow the current prefix. If the local FP-tree is not empty, the procedure WIP 

(Treeβ, β, WFP) is called recursively in line 12. Since WIP is tail recursive, it is 

amenable to efficient iterative implementation. Note that the minimum thresholds such 

as a minimum support, a minimum w-confidence and a minimum h-confidence can be 

used selectively under user control.

5.7 Performance evaluation

In this section, we report our experimental results on the performance of WIP in 

comparison with two recently developed algorithms, WFIM and Hyperclique Miner 

[86]. WFIM is a weighted frequent pattern mining algorithm based on the pattern growth 

approach and Hyperclique Miner is a hyperclique pattern mining algorithm based on the 

Apriori algorithm. The main purpose of this experiment is not only to show the 

effectiveness of weight confidence in generating weighted hyperclique patterns but also 
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to demonstrate how effectively the weighted interesting patterns can be generated by 

incorporating a weight measure with a support measure.

First, we show how the number of weighted interesting patterns in real datasets 

and synthetic datasets can be adjusted through user feedback and the efficiency of the 

WIP algorithm. Second, we analyze quality of patterns discovered in WIP. Third, we 

show that WIP has good scalability against the number of transactions and attributes in 

the datasets.

5.7.1 Test environment and datasets

The three real datasets used are Connect, Pumsb and Mushroom respectively. 

The synthetic datasets T10I4Dx contain from 100k to 1000k transactions. We used 

synthetic datasets with different parameter settings for the scalability test. 

Table 9. Parameter settings for the TaLbNc datasets in WIP

Data sets |T| |L| N Size (Mbytes)

T10.L1000.N10000 10 1000 10000 4.96

T20.L2000.N20000 20 2000 20000 10.73

T30.L3000.N30000 30 3000 30000 16.43

T40.L4000.N40000 40 4000 40000 22.13

A summary of the parameter settings is shown in Table 9, where |T| means the 

average size of a transaction, N means the number of items and |L| means the maximum 

number of potential frequent patterns. Each dataset in Table 9 contains 100000 
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transactions, with an average frequent pattern length equal to 4. We will call these 

synthetic datasets the TaLbNc datasets. WIP was written in C++. Experiments were 

performed on a sparcv9 processor operating at 1062 MHz, with 2048MB of memory. All 

experiments were performed on a Unix machine. In our experiments, a random 

generation function was used to generate weights for each item.

5.7.2 Experimental results

5.7.2.1 Comparison of WLPMiner with BAMBOO and WFIM

The effect of w-confidence pruning
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In this test, we focused on the efficiency of w-confidence. First, we evaluated the 

performance on the Connect dataset. We set up a weight range from 0.1 to 0.2. Figure. 

30 and Figure 32 show that WIP generates fewer patterns than WFIM and Hyperclique 

Miner. Specifically, fewer patterns are generated as the w-confidence is increased. In 

Figure 31 and Figure 33, we can see that WIP is faster than WFIM and Hyperclique 

Miner. In Figure. 32 and Figure 33, WIP did not use an h-confidence but only a w-

confidence for the performance test of the w-confidence. The number of patterns 

discovered by WIP is several orders of magnitude fewer than the number of patterns 

found by Hyperclique Miner. Note that, in Figure 30, Hyperclique Miner generates a 

huge number of patterns with h-confidence of less than 90%. From Figure 32, we see 

that the number of patterns generated by Hyperclique Miner is unchanged although the 

minimum support is reduced. Hyperclique Miner uses two thresholds, a minimum h-

confidence and a minimum support. However, from Figure 30, we see that the number of 

patterns increases quickly for the Hyperclique Miner as a minimum h-confidence is 

decreased. In Figure 31, we could not show the runtime of Hyperclique Miner because 

the runtime becomes so much larger as the minimum h-confidence is decreased. For 

example, the runtimes of Hyperclique Miner are 71 seconds with a minimum h-

confidence of 90%, 146.27 seconds with a minimum h-confidence of 80% and 814.15 

seconds with a minimum h-confidence of 70%. As a reverse case, the number of patterns 

in Hyperclique Miner is not reduced although a minimum support is increased in Figure 

32. Meanwhile, runtime is increased when the minimum support becomes lower 

showing that the h-confidence is not always effective with different parameter settings in 
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real datasets. In Figure 30 and Figure 31, the number of patterns and runtime is not 

changed in WFIM because WFIM does not use an h-confidence measure.        

The effect of w-confidence pruning
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The effect of combination of w-confidence and h-confidence pruning
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Figure 36. Number of patterns in WIP (Pumsb dataset, WR: 0.2 – 0.4). 
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From Figure 34 to Figure 39, we report the evaluation results for the Pumsb 

dataset. We set up a weight range: 0.2 – 0.4 from Figure 34 to Figure 37 and 0.2 – 0.5 in

Figure 38 and Figure 39. The main performance difference between WIP and 

Hyperclique Miner in the real datasets results from not only using a weight range but 

also applying w-confidence. By increasing the w-confidence threshold, fewer patterns 

with a higher level of affinity in terms of weight can be generated. However, the 

performance gap between WIP and WFIM results from using w-confidence and h-

confidence. Note that in Figure 34 and Figure 35, the number of patterns and runtime of 

WIP at different h-confidences from 0% to 50% do not change. From Figure 34 and 

Figure 35, we see that there are cases where the h-confidence measure is not effective 

with different parameter settings in this dataset. That is, the number of patterns and 

runtime of Hyperclique Miner is not reduced, although the minimum h-confidence is 

increased up to 50%. We fixed a minimum h-confidence at 90% in Figure 36 and Figure 

37, and 70% in Figure 38 and Figure 39, and used several minimum weight confidences 
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as parameter values to test the effect of weighted interesting patterns as the minimum 

support threshold is changed.  In most cases, WIP is the fastest among the three 

algorithms and generates fewer patterns. 

We can also see that, with w-confidence pruning, the number of patterns can be 

adjusted. In other words, fewer interesting patterns with more weight affinity can be 

found. Users may increase a minimum support to find fewer patterns with higher 

frequency. However, the number of patterns at a minimum h-confidence 70% in 

Hyperclique Miner is unchanged, although the minimum support is decreased in Figure 

38. 

The effect of w-confidence pruning
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Figure 41. Runtime in WIP (Mushroom dataset, Min_sup = 10%).
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Figure 42. Number of patterns in WIP (Mushroom dataset, WR: 0.6 – 0.9). 
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Figure 43. Runtime in WIP (Mushroom dataset, WR: 0.6 – 0.9). 
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Figure 40 to Figure 43 demonstrates the results of performance test using the 

Mushroom dataset with a weight range from 0.6 to 0.9. WIP outperforms WFIM and 

Hyperclique Miner. When the w-confidence threshold is lowered, the performance 

difference becomes larger. At higher w-confidences such as 90%, the performance of 

WIP becomes better. We can see that the number of patterns for WIP is decreased as the 

w-confidence and h-confidence are increased. Recall that WFIM can also adjust the 

number of patterns by resetting the weight range, although we fixed the weight range in 

these tests. However, WFIM generate weak affinity patterns even if a weight range is 

changed. 

5.7.2.2 Quality of patterns in WIP

We have showed that the w-confidence can be used to prune patterns with weak 

weight affinity from real datasets. In most test datasets, items are expressed as integer 

values, so it is not easy to understand the meaning of items and discovered patterns. For 

example, in this analysis, the Pumsb dataset is used to test the quality of weighted 

frequent pattern mining. A minimum support is set to 20% and a weight range is set as 

0.2 – 0.4. We analyzed the affinity patterns to show effectiveness of weighted frequent 

pattern mining with weight affinity. We compared the patterns mined by WIP with those 

of WFIM. For instance, patterns <260, 4426, 4436, 4438, 4940>: 40791 and <180, 260, 

4404, 4436, 7092, 7112>: 37757 are mined by WFIM and patterns <170, 180, 4432, 

4436, 4438, 7062>:44373 and <180, 4432, 4438, 4940, 7092>: 44217 are discovered by 

Hyperclique Miner with a min_hconf, 90%. However, these patterns are all pruned by 

w-confidence in WIP (min_wconf = 90%). In other words, these patterns contain items 
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with weak weight affinity although they have strong support affinity. In WFIM, although 

the minimum support is increased or the weight range is changed, weak affinity patterns 

are still found. The weak affinity patterns can be effectively pruned by w-confidence 

while mining strong weight affinity patterns. 

5.7.2.3 Scalability test

The TaLbNc dataset is used to test scalability with the number of attributes and 

the T10I4DxK dataset is used to test scalability with the number of transactions. From 

the performance test, WIP scales much better than WFM and becomes better by weight 

and h-confidence thresholds. WIP and WFIM show linear scalability with the number of 

attributes from 100000 to 400000 and the number of transactions from 100k to 1000k. 

However, WIP is much more scalable than WFIM. From Figure 44 to Figure 47, the 

difference between WIP and WFIM becomes clear.  

0

100000

200000

300000

400000

500000

600000

10000 20000 30000 40000
Number of attributes

N
um

be
r 

of
 p

at
te

rn
s

WFIM

WIP min_hconf =
10%, min_wconf
= 10% 
WIP min_hconf =
30%, min_wconf
= 30%
WIP min_hconf =
50%, min_wconf
= 50%
WIP min_hconf =
70%, min_wconf
= 70%
WIP min_hconf =
90%, min_wconf
= 90%
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Figure 45. Scalability test (Runtime) in WIP (TaLbNc dataset). 
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Figure 46. Scalability test (Number of patterns) in WIP (T10I4Dx dataset). 
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First, we tested the scalability in terms of the number of attributes from 10000 to 

40000 using TaLbNc datasets which are used in [86]. In this test, we set a support 

threshold to 0.01% and a weight range from 0.3 to 0.9. From Figure 44 and Figure 45, 

we can see that WIP has much better scalability in terms of base size and WIP is much 

faster than WFIM. The slope ratio becomes higher as a w-confidence threshold and an h-

confidence threshold are lower. With higher w-confidence and h-confidence, the number 

of patterns is more controllable and the runtime becomes faster. 

Second, we performed a scalability test with regard to the number of transactions 

from 100K to 1000K on the T10I4Dx synthetic datasets. We set a minimum support as 

0.003% and a weight range as 0.1 to 0.9. In Figure 46 and Figure 47, we can see that 

WIP has much better scalability in terms of number of transactions and becomes faster 

as the weight and h-confidence threshold is increased. Without w-confidence and h-

confidence pruning, in WFIM, the number of patterns increases dramatically. The 

interesting result from Figure 47 is that the run time of WIP and WFIM is similar even if 

the runtime of WIP is a little faster than that of WFIM. We believe that the overhead of 

computing w-confidence of a pattern is negligible. 

5.8 Summary

In summary, WIP is efficient and scalable in weighted interesting pattern mining. 

Although WFIM used a weight range and a minimum weight to reduce number of 

patterns, these patterns included items with different support levels and/or weight levels. 

For Hyperclique Miner, according to our performance test, there are many cases where 

the number of patterns and runtime did not reduce, although the minimum support or 
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minimum h-confidence was increased. As a result, WIP is faster than WFIM and 

Hypercliqe Miner and generates fewer but more interesting patterns for users.
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6. WEIGHTED SEQUENTIAL PATTERN MINING

Sequential pattern mining is an important data mining area with broad 

applications. Researchers have suggested sequential pattern mining algorithms which 

mine the set of frequent subsequences satisfying a minimum support constraint in a 

sequence database. However, previous sequential mining algorithms treat sequential 

patterns uniformly while real sequential patterns have different importance. Another 

main problem in most of the sequence mining algorithms is that they still generate an 

exponentially large number of sequential patterns when a minimum support is lowered 

and they do not provide alternative ways to adjust the number of sequential patterns 

other than increasing the minimum support. In this chaper, we propose a Weighted 

Sequential pattern mining algorithms. Our main approach is to push the weight 

constraints into the sequential pattern growth approach while maintaining the downward

closure property. We develop two approaches using weight constraints. 

6.1 Problem definition and related work

6.1.1 Problem definition

Let I = {i1, i2... in} be a unique set of items. A sequence S is an ordered list of 

itemsets, denoted as 〈s1, s2, .., sm〉, where sj is an itemset which is also called an element 

of the sequence, and sj ⊆ I. That is, S = 〈s1, s2, …, sm〉 and sj is  (x1x2…xk),where xt is an 

item. The brackets are omitted if an itemset has only one item. An item can occur at 

most one time in an element of a sequence but it can occur multiple times in different 
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elements of a sequence. The size |s| of a sequence is the number of elements in the 

sequence. The length, l(s), is the total number of items in the sequence. A sequence with 

length l is called an l-sequence. A sequence database, D = {S1, S2, .., Sn}, is a set of 

tuples 〈sid, s〉, where sid is a sequence identifier and Sk is an input sequence. A sequence 

α = 〈X1, X2, .., Xn〉 is called a subsequence of another sequence β = 〈Y1, Y2, .., Ym〉 (X ≤

Y), and β is called  a super sequence of α if there exist an integer 1≤ i1< … < i1 < m such 

that X1 ⊆ Yi 1, …,  ⊆ Xn ⊆ Yi n. A tuple (sid, S) is said to contain a sequence Sa if S is a 

super sequence of Sa. The support of a sequence Sa in a sequence database D is the 

number of tuples in SDB that contains Sa. Given a support threshold, min_sup, a 

sequence Sa is a frequent sequence in the sequence database if the support of the 

sequence Sa is no less than a minimum support threshold. The problem of sequential 

pattern mining is to find the complete set of sequential patterns in the database with a 

support constraint.

Table 10. A sequence database as a running example in WSpan

Sequence ID Sequence

10 <a (abc) (ac) d (cf)>

20 <(ad) c (bc) (ae) bc>

30 <(ef) (ab) (df) cb>

40 <eg (af) cbc>

50 <a (ab) (cd) egh>

60 <a (abd) bc>
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Example 6.1: Table 10 shows the input sequence database SDB in our running example. 

Assume that a minimum support is 2. The SDB has eight unique items, and six input 

sequences. A sequence 〈a (abc) (ac) d (cf)〉 in SDB has five elements: a, (abc), (ac), d, 

(cf) where items “a” and “c”  appear three times in different elements of the sequence. 

The size of 〈a (abc) (ac) d (cf)〉 is 5 and the length of this sequence is 9. Sequence 〈a (bc) 

d〉 is a sub sequence of 〈a (abc) (ac) d (cf)〉 since sequences 10 and 20 contain sub 

sequence s =〈a (bc) d〉 and the support of the sequence is no less than 2. Therefore, s is a 

sequential pattern of length 4. 

6.1.2 Related work

No sequential pattern mining algorithms, to date, have considered weighted 

sequences. Instead, all the sequential pattern mining algorithms suggested so far have 

given the same importance to the sequences and the elements in a sequence. However, it 

is important to distinguish important sequences from a large number of sequence 

patterns. Previous studies have suggested efficient algorithms [1], [4], [14], [16], [25], 

[33], [50], [59], [60], [62], [69], [74], [75], [93] for mining sequential patterns. 

GSP [69] mines sequential patterns based on an Apriori-like approach by 

generating all candidate sequences. This is inefficient and ineffective. To overcome this 

problem, the database projection growth based approach, FreeSpan [33], was developed. 

Although FreeSpan outperforms the Apriori based GSP algorithm, FreeSpan may 

generate any substring combination in a sequence. The projection in FreeSpan must keep 

all sequences in the original sequence database without length reduction. 
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PrefixSpan [59], a more efficient pattern growth algorithm was proposed which 

improves the mining process. The main idea of PrefixSpan is to examine only the prefix 

subsequences and project only their corresponding suffix subsequences into projected 

databases. In each projected database, sequential patterns are grown by exploring only 

local frequent patterns. 

In SPADE [93], a vertical id-list data format was presented and the frequent 

sequence enumeration was performed by a simple join on id lists. SPADE can be 

considered as an extension of vertical format based frequent pattern mining. 

SPAM [1] utilizes depth first traversal of the search space combined with a 

vertical bitmap representation of each sequence. Before SPAM, SPADE and PrefixSpan 

were two of the fastest algorithms. According to performance evaluations [1], SPAM 

outperforms SPADE on most datasets and PrefixSpan outperforms SPAM slightly on

very small datasets. Except for this case, SPAM outperforms PrefixSpan. Therefore, 

WSpan will be compared with SPAM for performance evaluation.
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6.2 WSpan: Weighted sequential pattern mining with a weight range and a 

minimum weight

6.2.1 Overview of WSpan

We propose an efficient method for weighted sequential pattern mining to tackle 

these problems of previous sequential pattern mining. Our main goal in this framework 

is to push weight constraints into the sequential pattern growth algorithm while keeping 

the downward closure property. In WSpan, a weight range is applied, items are given 

different weights within the weight range to reflect characteristics of the real dataset, and 

the weights of sequences are calculated. The weight range is utilized to generate a 

reasonable number of weighted sequential frequent patterns even in a dense database 

with a low minimum support. In addition, both the weight and support of each item are 

considered separately for pruning the search space. An extensive performance study 

shows that the number of weighted sequential patterns can be easily adjusted by setting a 

weight range and the runtime is efficient. 

The main contributions of this approach are: 1) introduction of the concept of 

weighted sequential patterns, 2) classification and incorporation of two key features, a 

weight and a support, 3) description of weighted sequential pattern mining by using a 

weight range and a minimum weight, 4) analysis of applications of weighted sequential 

patterns, 5) implementation of our algorithm, WSpan, and 6) execution of an extensive 

experimental study to compare the performance of our algorithm with a recently 

developed algorithm, SPAM [1]. 
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6.2.2 Preliminaries

The problem of weighted sequential pattern mining is to find the complete set of 

weighted sequential patterns in the database with a support constraint and a weight 

constraint. The main consideration in applying a weight constraint to sequential pattern 

mining is that the downward closure property may be broken by simply applying a 

weight constraint. A sequence with lower weight can be a frequent sequential pattern by 

combining items with higher weight in the sequence. To solve problems, a weight range 

is applied to give weight boundaries. 

Definition 6.1 Weight Range (WR) 

A weight of an item is a non-negative real number that shows the importance of 

each item. The weight of each item is assigned to reflect the importance of each item in 

the sequence database. A weight is given to an item within a weight range, Wmin ≤ WR ≤

Wmax. 

Definition 6.2 Minimum weight constraint (min_weight) 

In WSpan, we want to give a balance between the two measures of weight and 

support. Therefore, we define a minimum weight constraint like a minimum support 

(min_sup) in order to prune items which have lower weights.

Definition 6.3 Weighted sequence and maximum weight 

We can use the term, weighted sequence to represent a set of weighted sequential 

patterns. Weights of weighted sequences are obtained by calculating the average value of 

the weights in items of a sequence. A maximum weight (MaxW) is defined as a value of 

the maximum weight of items in a sequence database or a projected database. In mining 
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weighted sequential patterns, the number of weighted sequential patterns can be 

decreased if MaxW is less than one, otherwise, the number of weighted sequential 

patterns will be increased. 

Definition 6.4 Useless sequence pattern 

A sequential pattern is called a useless sequential pattern if the support of the 

sequential pattern is less than a minimum support (min_sup) and its weight is also less 

than a minimum weight (min_weight).

Table 11. Example sets of items with different weight ranges

Item  <a>    <b>    <c>    <d>    <e>    <f>    <g>    <h>

Support   6        6        6         5        4         3        2        1

Weight (0.7 ≤ WR1 ≤ 1.3)  1.1    1.0      0.9      1.0     0.7      0.9     1.3     1.2

Weight (0.7 ≤ WR2 ≤ 0.9)    0.9    0.75    0.8     0.85   0.75     0.7     0.85    0.8

Weight (0.2 ≤ WR3 ≤ 0.6) 0.5     0.2     0.6      0.4      0.6      0.3      0.5    0.3

Example 6.2: Given the sequence database in Table 10, the examples of sets of items 

with different weights in Table 11 and minimum support = 2, the set of items in the 

database, i.e., length-1 subsequences in the form of “item:support” is <a> : 6, <b> : 6, 

<c> : 6, <d> : 5, <e> : 4, <f> : 3, <g> : 2, <h> : 1.   When WR2 is used, the weight of a 

sequence <a (abc) (ac) d (cf)> is  0.8 ((0.9 + 0.75 + 0.8 + 0.85 + 0.7) / 5). MaxW of the 

weight range is the maximum value of a weight range. For example, the MaxW of WR1, 

WR2, and WR3 is 1.3, 0.9 and 0.6 respectively.
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6.2.3 Weighted sequential patterns

In this section, we suggest the concept of weighted sequential patterns, and show 

their properties. A sequential pattern is a weighted infrequent sequential pattern if, 

following pruning, condition 6.1 or condition 6.2 is satisfied. If the sequential pattern 

does not satisfy both of these, the sequential pattern is called a weighted frequent 

sequential pattern.

Pruning condition 6.1 (support < min_sup && weight < min_weight) 

The support of a sequential pattern is less than a minimum support and the 

sequence weight is less than a minimum weight constraint. 

Pruning condition 6.2 (support * MaxW < min_sup) 

In a sequence database, the value of multiplying the support of a sequential 

pattern with a maximum weight among items in the sequence database is less than a 

minimum support. In projected sequential databases, the value of multiplying the support 

of a sequence with a maximum weight of items in the projected sequential databases is 

less than a minimum support. Note that MaxW is used to maintain downward closure 

property.

Lemma 6.1 When two conditions are applied to prune weighted infrequent sequential 

patterns, the case in which only pruning condition 6.1, but not pruning condition 6.2, is 

satisfied for pruning weighted infrequent sequential patterns, is that a MaxW of a 

sequence database should be greater than one.

Proof: In this case, pruning condition 6.1, but not pruning condition 6.2 in the above, 

should be satisfied in order to prune a sequential pattern. That is, in condition 6.1, the 
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support of a sequence is less than a min_sup and the weight of the sequential pattern is 

less than a min_weight. However, the value of multiplying the support with a MaxW of 

a sequential pattern should be no less than a minimum support. We can see that the 

following two formulas should be satisfied.

Formula 1: support < min_sup  

Formula 2: support * MaxW ≥ min_sup

We know that the MaxW of a sequence database or projected databases must be 

no less than one in order to satisfy both of the formulas. For example, assume that a 

minimum support is 5, a minimum weight is 0.8, a support of a sequence is 4, the weight 

of the sequential pattern is 0.7 and the MaxW of a sequential pattern in SDB is 1.3. We 

know that pruning condition 6.1 is satisfied but pruning condition 6.2 is not satisfied. 

Therefore, this sequential pattern is pruned by condition 6.1.

Lemma 6.2 There is no limitation on using pruning condition 6.2. That is, pruning 

condition 6.2 (support * MaxW < min_sup) can be applied without limitation.

When only pruning condition 6.2, but not pruning condition 6.1 is satisfied to prune 

weighted infrequent sequential patterns, a MaxW (Maximum Weight) of a sequence 

database or projected databases can be any value.

Proof:  In this case, a sequential pattern is pruned since pruning condition 6.2 is satisfied 

although condition 6.1 is not satisfied. We see that the following two formulas should be 

satisfied.

Formula 3: (support ≥ min_sup || weight ≥ min_weight)

Formula 4: (support * MaxW < min_sup)
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If a support of a sequential pattern is no less than a minimum support in Formula 

3, MaxW should be less than one to satisfy Formula 4. However, if a weight of a 

sequential pattern is greater than or equal to a minimum weight threshold in formula 3 

and the support of a sequential pattern is less than a minimum support, there is no 

relationship between Formula 3 and Formula 4. In other words, pruning condition 6.2 

(support * MaxW < min_sup) can be applied without limitation.

Lemma 6.3 When two pruning conditions are applied to prune weighted infrequent 

sequential patterns, the method always prunes more than the approach of using only a 

minimum support when a MaxW of the transaction database or projected databases is 

less than one.

Proof: In normal frequent sequential pattern mining, every item has the same priority. 

That is, their weights are 1.0. If pruning condition 6.2 is only considered, we can see that 

more sequential patterns will be pruned when weights of items are set to less than one. 

For example, assume that a minimum support is 4 and the support of a sequential pattern 

is 5. In normal sequential pattern mining, the sequential pattern is not pruned since 

weights of items in the sequence are 1.0 and the support (5) of the sequential pattern is 

greater than a minimum support (4). However, the sequential pattern is pruned when the 

weight of the sequential pattern is 0.7 by condition 6.2 in section 6.2.3.

Example 6.3: The columns in Table 12 show the set of weighted sequential patterns 

after pruning weighted infrequent sequential patterns using pruning condition 6.2 by 

applying different WRs. For example, when WR3 is applied and a minimum support is 2, 

pattern f’s support is 3, MaxW is 0.6 and the value (1.8) of multiplying the sequential 
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pattern’s support (3) with a MaxW (0.6) in the SDB is less than minimum support (2), so 

a pattern “f” in each sequence in SDB can be removed. Meanwhile, the number of 

weighted sequential patterns can be increased when WR1 is used as a weight range. The 

support of a pattern “g” in the sequence database is 2. However, a maximum weight is 

1.3 so the value (2.6) of multiplying pattern’s support (2) with a MaxW (1.3) of a pattern 

is greater than a minimum support (2), so the pattern “g” is not pruned in the weighted 

sequence list.    

Table 12. Weighted sequential patterns with different weight ranges

SID

Weighted        
Sequence List      

 (0.7 ≤ WR1 ≤ 1.3)

Weighted      
Sequence List      

 (0.7 ≤ WR2 ≤ 0.9)

Weighted         
Sequence List      

(0.2 ≤ WR3 ≤ 0.6)

10 <a(abc)(ac)d(cf)> <a(abc)(ac)d(cf)> <a(abc)(ac)dc>

20 <(ad)c(bc)(ae)bc> <(ad)c(bc)(ae)bc> <(ad)c(bc)(ae)bc>

30 <(ef)(ab)(df)cb> <(ef)(ab)(df)cb> <e(ab)dcb>

40 <eg(af)cbc> <e(af)cbc> <eacbc>

50 <a(ab)(cd)egh> <a(ab)(cd)e> <a(ab)(cd)e>

60 <a(abd)bc> <a(abd)bc> <a(abd)bc>

Example 6.4: Let us show another example by changing a minimum weight. In this 

example, Table 10 and Table 11 are used for a sequence database and the weight range 

respectively. Assume that a weight range is 0.2 ≤ WR3 ≤ 0.6 and a minimum support is 

3. Then, the pruning condition 6.1 is applied as follows. If a minimum weight is 0.6, 

items “g” and “h” in each sequence are pruned. If a minimum weight is 0.4, the item “h” 

in each sequence is only pruned. Meanwhile, no item in each sequence is pruned if a 
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minimum weight is less than 0.4. In a similar way, the number of weighted sequential 

patterns can also be adjusted by using a minimum weight.

6.2.4 Mining weighted sequential patterns

We introduce a weighted sequential prefix pattern growth method called WSpan. 

It computes a local frequent sequence pattern of a prefix by scanning its projected 

database. The projection is based on a frequent prefix. By considering the support and 

weight of sub-sequences, the weighted sequential patterns are mined. In the following, 

we use the sequence database SDB in Table 10 and apply 0.7 ≤ WR2 ≤ 0.9 as a weight 

range from Table 11. Assume that min_sup is 2. In WSpan, mining weighted sequential 

pattern is performed as follows. 

Step 1: Find length-1 weighted sequential patterns.

Scan the sequence database once, count the support of each item, check the

weight of each item and find all the weighted frequent items in sequences. Although 

supports of items in sequences are lower than the minimum support and infrequent, the 

items can not be deleted since infrequent items in sequences may become weighted 

itemsets in the next step. The weighted infrequent items are found and removed 

according to pruning condition 6.1 and 6.2. For instance, assume that WR2 is used as a 

weight range and a minimum support is 2. After the first scan of the transaction 

database, items “g”, and “h” are pruned because the value (1.8) of multiplying the 

support (2) of the sequential patterns with a maximum weight (0.9) is less than a 

minimum support (2). Therefore, length-1 frequent sequential patterns are <a> : 6, <b> : 

6, <c> : 6, <d> : 5, <e> : 4, <f> : 3, the weight list is <a:0.9 b:0.75, c:0.8, d:0.85, e: 0.75, 
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f:0.7>, and the MaxW is 0.9. Note that an item with a low support can be a weighted 

frequent item if it has a higher weight. 

Step 2: Divide search space.

The complete set of weighted sequential patterns can be partitioned into 

following seven subsets according to seven prefixes: (1) the ones having prefix <a>; (2) 

the ones with prefix <b>, (3) the ones with prefix <c>, (4) the ones with prefix <d>, (5) 

the ones with prefix <e>,  and (6) the ones with prefix <f>.

Step 3: Find subsets of sequential patterns.

The subsets of sequential patterns can be mined by constructing the 

corresponding set of projected databases and mining them recursively. The process of 

weighted sequential pattern mining in WSpan is explained as follows.

A. Find weighted sequential patterns with prefix <a>

We only collect the sequences which have <a>. Additionally, in a sequence 

containing <a>, only the subsequence prefixed with the first occurrence of <a> should be 

considered. For example, in sequence <a (abc) (ac) d (cf)>, only the subsequence <(abc) 

(ac) d (cf)> are considered and in sequence <(ad) c (bc) (ae) bc>, only the sequence  

<(~d) c (bc) (ae) bc> are collected. The sequences in sequence database, SDB containing 

<a> are projected with regards to <a> to form the <a>-projected database, which 

consists of six suffix sequences: <(abc) (ac) d (cf)>, <(~d) c (bc) (ae) bc>, <(~b) (df) 

cb>, <(~f) cbc> <(ab) (cd) e> and <(abd) bc>. By scanning <a> projected database once, 

its local items are a:4, b:6, c:6, d:4, e:2, f:2, (~b):4, (~d):1, (~e):1 and (~f):1. 
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However, in WSpan, the pruning conditions defined are used. From Table 11, we 

know that the maximum weight of a sequence database is 0.9 and the locally frequent 

items which have two as a support are also removed because the value (1.8) of 

multiplying the support (2) of the sequential patterns with a maximum weight (0.9) is 

less than a minimum support (2). Therefore, in WSpan, not only (~d):1 (~e):1, and (~f):1 

but also e:2 and f:2 are removed. All the length-2 weighted sequential patterns prefixed 

with <a> are: <aa>:4, <ab>:6, <ac>:6, <ad>:4, and <(ab)>:4. Previous sequential 

pattern mining algorithms only consider a support as a measure in each projected 

database, so sequential patterns with one as the support are only pruned. However, in 

WSpan, before constructing the next projected database, pruning conditions are applied 

in order to check whether it is a weighed sequential pattern. Although the supports of the 

sequential patterns are equal to the minimum support, the sequential patterns with a 

lower weight can be deleted. Recursively, all the sequential patterns with prefix <a> can 

be partitioned into four subsets: 1) those prefixed with <aa>, 2) those prefixed with 

<ab>, 3) those prefixed with <ac>, 4) those prefixed with <ad>, and finally, 5) those 

prefixed with <(ab)>. These subsets can be mined by constructing respective projected 

databases and mining each recursively as follows. 

1) The <aa> projected database consists of four suffix subsequences prefixed 

with <aa>: <(~bc) (ac) dc)>, <bc>, <(~b) (cd)>, and <(~bd) bc>. By scanning <aa> 

projected database once, its local items are a:1, b:2, c:4, d:2, (~b):3, and (~c):1. In 

WSpan, items a:1, b:2, d:2 and (~c):1 are pruned according to the pruning conditions 

because the values (0.9/1.8) of multiplying the supports (1/2) of the items with a 
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maximum weight (0.9) are less than a minimum support (2).  Therefore, <aa> projected 

database returns four sequential patterns: <aac>:4, and <a(ab)>:3.  

2) The <ab> projected database consists of five suffix subsequences prefixed 

with <ab>: < (~c) (ac) dc >, <(~c) a bc>, <c>, <(cd)> and < (~d) bc>. By scanning <ab> 

projected database once, its local items are a:2, b:2, c:5, d:2, (~c):2, and (~d):1. Items 

a:2, b:2, d:2, (~c):2 and (~d):1 are not weighted frequent so the items are pruned 

according to the pruning conditions. Therefore, <ab> projected database returns one 

sequential pattern: <abc>:5. 

3) The <ac> projected database consists of five suffix subsequences prefixed 

with <(ac) dc>, <(bc) abc>, <b>, <bc>, <(~d) >. By scanning <ac> projected database 

once, its local items are a:2, b:3, c:3, d:1 and (~d):1. Not that the items, d:1 and (~d):1 

are infrequent and the item, a:2 is frequent. Previous sequential pattern mining 

algorithms prune only items d:1 and (~d):1 but WSpan prunes the item, a:2 because it is 

a weighted infrequent item according to pruning conditions. Therefore, in WSpan, 

weighted sequential patterns for <ac> projected database are <acb>:3, and <acc>:3.

4) The <ad> projected database consists of three suffix subsequences prefixed 

with <ad>: <c>, <cb> and <bc>. By scanning <ad> projected database once, its locally 

frequent items are b:2, and c:3. In WSpan, after pruning b:2 by pruning conditions, <ad> 

projected database returns only <adc>:3 as a weighted sequential pattern. 

5) The <(ab)> projected database consists of four suffix subsequences prefixed 

with <ad>: <(~c) (ac) dc>, <dcb>, <(cd)> and <(~d) bc>. By scanning <(ab)> projected 

database once, its local items are a:1, b:2, c:4, d:3, (~c):1 and (~d):1. In WSpan, items 
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a:1, b:2, (~c):1 and (~d):1 are pruned from pruning conditions so <(ab)> projected 

database returns only <(ab)c>:4 and <(ab)d>:3 as  weighted sequential patterns. 

B. Find weighted sequential patterns with prefix <b>, <c>, <d>, <e>, and <f> 

respectively. This can be done by constructing the <b>, <c>, <d>, <e>, and <f> 

projected databases and mining them, respectively. 

Step 4: The set of sequential patterns is the collection of patterns found in the above 

recursive mining process. In this example, the number of weighted sequential patterns 

becomes fewer than the number of sequential patterns generated in the previous 

sequential pattern mining algorithms because WSpan consider a weight constraint as 

well as a support constraint. We can see that WSpan can reduce the number of sequential 

patterns by adjusting a weight range and a minimum weight.

6.2.5 WSpan algorithm

WSpan pushes weight constraints into the projection based sequential pattern 

mining approach. A weight range and a minimum weight are used and items are given 

different weights within the weight range. We now show the weighted sequential pattern 

mining process and present the mining algorithm. 

WSpan algorithm: Weighted Sequential pattern mining with a weight range and a 

minimum weight in large sequence databases. 

Input: (1) A sequence database: SDB, 

           (2) The minimum support threshold: min_sup, 

           (3) The minimum weight threshold: min_weight, 
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           (4) The weights of the items within weight range: wi,            

Output: The complete set of weighted sequential patterns.

Begin

1. Let WSP be the set of Weighted Sequential Patterns that satisfy the constraints. 

Initialize WSP ← {};

2. Scan SDB once, count the support of each item, check the weight of each item and 

find each weighted frequent item, β, in sequences satisfying the following pruning 

conditions: β is a weighted sequential item if the following pruning conditions are not 

satisfied. 

Condition 1: (support < min_sup && weight < min_weight) 

Condition 2: (support * MaxW < min_sup) 

3. For each weighted frequent item, β, in SDB

          Call WSPan (WSP, <β>, 0, SDB)

    End for

End

Procedure WSpan (WSP, α, L, S|α)

Parameter: 

(1) α is a weighted sequential pattern that satisfies the above pruning conditions,

(2) L is the length of α, 

(3) S | α is the sequence database, SDB if α is null, otherwise, it is the α-projected 

database.
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1. Scan S | α once, count the support of each item, and find each weighted frequent item, 

β in sequences satisfying the following pruning conditions: β is a weighted sequential 

item if the following pruning conditions are not satisfied. 

Condition 1: (support < min_sup && weight < min_weight) 

Condition 2: (support * MaxW < min_sup) 

(a) β can be assembled to the last element of α to form a sequential pattern or  

(b) <β> can be appended to α to form a sequential pattern. 

2. For each weighted frequent item β, 

Add it to α to form a sequential pattern α`, and output α`.

3. For each α`, 

Construct α`-projected database S| α`;

Call WSpan (α`, L+1, S | α`)

After WSpan algorithm calls the procedure WSpan (WSP, <β>, 0, SDB), WSpan (α`, 

L+1, S | α`) is called recursively after α` projected database S|a` is constructed.

6.2.6 Performance evaluation

In this section, we present our performance study over various datasets. The 

WSpan is the first sequential pattern mining algorithm to consider weight of items within 

sequences and sequential patterns. We report our experimental results on the 

performance of WSpan in comparison with a recently developed algorithm, SPAM [1], 

which is the fastest algorithm for mining sequential patterns. The main purpose of this 

experiment is to demonstrate how effectively the weighted sequential patterns can be 
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generated by incorporating a weight measure with a support measure. First, we show 

how the number of weighted sequential patterns can be adjusted through user feedback, 

the efficiency in terms of runtime of the WSpan algorithm, and the quality of weighted 

sequential patterns. Second, we show that WSpan has good scalability against the 

number of sequence transactions in the datasets. 

Table 13. Parameters for IBM Quest sequence data generator

Symbol Meaning

D Number of customers in 000s in the dataset

C Average number of transactions per customer

T Average number of items per transactions

S Average length of maximal sequences

I Average length of transactions within the 
maximal sequences

N Number of different items in 000s

6.2.6.1 Test environment and datasets and datasets

We used synthetic datasets generated by the IBM dataset generator. Table 13 

shows parameters and their meanings in this synthetic sequential dataset generation. 

More detail information can be found in [4]. WSpan was written in C++ and 

experiments were performed on a sparcv9 processor operating at 1062 MHz, with 

2048MB of memory. All experiments were performed on a Unix machine. In our 

experiments, a random generation function was used to generate weights for each item.
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6.2.6.2 Experimental results

6.2.6.2.1 Comparison of WSpan and SPAM

In this performance test, we focused on the efficiency of using a weight range 

and a minimum weight. Our experiment shows that in most cases, WSpan outperforms 

SPAM. First, we evaluate the performance on the D1C10T5S8I5 dataset. We set up 

different weight ranges but the minimum weight is fixed as a minimum value within 

weight ranges for testing the effect of the WR. 
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Figure 48 and Figure 49 show that WSpan generates fewer sequential patterns 

and runs faster than SPAM. Specifically, fewer sequential patterns are generated as the 

weight range is decreased. Note that SPAM generates huge sequential patterns and it is 

much slower as the minimum support is decreased. In SPAM, the number of sequential 

patterns increases quickly when a minimum support is less than 10 %. Moreover, the 

runtime becomes much larger as the minimum support is less than 6%. Meanwhile, 

WSpan generates fewer patterns than SPAM by adjusting a weight range. We can see 

that WSPan is faster than SPAM. In addition, the number of patterns discovered by 

WSpan is several orders of magnitude fewer than the number of sequential patterns 

found by SPAM. 
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D7C7T7S7I7 dataset

Figure 50 and Figure 51 demonstrate the results of performance test using the 

D7C7T7S7I7 dataset by setting different weight ranges from 0.2 to 0.5. WSpan 

outperforms SPAM and the performance difference becomes larger when the support 

threshold is lowered. In Figure 50, the number of sequential patterns is increased as the 

minimum support is decreased, but the number of sequential patterns in SPAM is 

substantially increased as the minimum support becomes lower. In SPAM, there is no 

way to adjust the number of sequential patterns except for decreasing the minimum 

support. Recall that the number of sequential patterns in WSpan can be adjusted by 

changing the weight ranges. In Figure 51, the runtime of WSpan is faster than SPAM 

and the difference becomes bigger as a minimum support is lowered. 
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D15C15T15S15I15 dataset

In Figure 52 and Figure 53, we report the evaluation results for 

D15C15T15S15I15 dataset. We set up different weight ranges. The main performance 

difference between WSpan and SPAM results from using a weight range. By decreasing 

the support threshold, the number of sequential patterns of WSpan is increased but the 

number of SPAM is extremely increased. In Figure 52, we could not show the number of 

sequential patterns of SPAM, because the number of sequential patterns mined by 



115

SPAM is huge with the minimum support of less than 55%. For example, the numbers of 

sequential patterns in SPAM are 449,403 with a minimum support of 55%, 1,365,328 

with a minimum support of 50%, 44,062,294 with a minimum support of 45%, and so 

on. In Figure 53, WSpan is faster than SPAM. 

Our above experiments showed that WSpan can generate fewer but important 

weighted frequent sequential patterns with various weight ranges in several datasets. In 

previous mining algorithms, it is difficult to reduce frequent sequential patterns without 

changing the minimum support but WSpan can reduce the number of sequential patterns 

by adjusting weight ranges when giving weights to each item. 

Table 14. Effectiveness of a minimum weight in WSpan 

(D7C7T7S7I7 dataset)

Minimum 
support

Number of 
W.S.P

WR:0.8 – 1.2
MW : 1.2

Number of 
W.S.P

WR:0.8 – 1.2
MW : 1.0

Number of 
W.S.P

WR:0.8 – 1.2
MW : 0.8

Number of  
S.P

WR:0.8 – 1.2

5 % 56897 79320 113712 124728

5.5 % 36475 48356 66825 81792

6% 27826 36156 48827 63207

6.5% 19394 26204 36475 44262

Table 14 lists the number of Weighted Sequential Patterns (WSP) with various 

minimum weights by WSpan and Sequential Patterns (SP) generated by SPAM. From 

Table 14, WSpan can generate fewer WSP by using different Minimum Weight (MW)
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thresholds. For example, in Table 14, the numbers of sequential patterns are 63,207. 

Meanwhile, the number of WSP at a minimum support: 6%, a WR: 0.8 – 1.2 and a 

minimum weight: 0.8 is 48,827, the number of WSP can be reduced to 36,156 with a 

minimum weight: 1.0 and can be further reduced to 27,826 with a minimum weight, 1.2. 

In this way, the proper number of weighted sequential patterns can be found by adjusting 

a minimum weight. 

6.2.6.2.2 Quality of patterns in WSpan

In most test datasets, items are expressed as integer values so it is difficult to 

understand the meaning of items and discovered sequential patterns. We illustrated that 

weighted sequential patterns can be used in real applications. In this evaluation, the 

D7C7T5S4I2.5 dataset is used to illustrate the quality of weighted frequent pattern 

mining. We analyzed the patterns discovered by WSpan to show the effectiveness of 

mining weighted frequent patterns. We compared the patterns mined by WSpan with 

those of SPAM. For example, sequential patterns <(17, 45) (91) (70) (91)>:22   and 

<(45) (27, 91) (70)>:21 are mined by SPAM with a minimum support, 3%. However, 

these patterns are pruned by WSpan with a weight range, 0.3 – 0.4 because these 

sequential patterns are weighted infrequent patterns. Although the minimum support is 

increased from 3% to 5%, weighted infrequent patterns such as <(17, 45) (91) (70) 

(91)>:22 and <(45) (27, 91) (70)>:21 are found by SPAM. In other words, the supports 

of these sequential patterns are more than the minimum support but the weights of the 

patterns are relatively less important. The weighted sequential mining approach can be 

effectively applied to discover unusual patterns and detect fraudulent patterns. 
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6.2.6.2.3 Scalability test
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Figure 54. Scalability test (Runtime) in WSpan (Min_sup = 0.4%).
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The DxC2.5T5S4I2.5 dataset is used to test scalability with the number of 

sequences in a sequence database. From the performance test, WSpan scales much better 

than SPAM and becomes better by decreasing a weight range. WSpan and SPAM show 

linear scalability with the number of sequences from 20K to 100K. However, WSpan is 

much more scalable than SPAM. In Figure 54 and 55, the difference between WSpan 

and SPAM becomes clear. We set a minimum support as 0.4% and 0.5% respectively, 

and used different weight ranges. We can see that WSpan has much better scalability in 

terms of number of sequences in the database and becomes faster as a weight range is 

increased. Without the weight constraint, in SPAM, the number of sequential patterns 

and runtime increase dramatically.

6.2.7. Summary

In summary, WSpan is efficient and scalable in weighted sequential pattern 

mining. WSpan is faster than SPAM which is a recently suggested sequential pattern 

mining algorithm. Additionally, it becomes much faster and generates fewer but 

important sequential patterns even with a very low minimum support for larger 

databases. 
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6.3 WIS: Weighted interesting sequential pattern mining with a level of support

and/or weight affinity

6.3.1 Overview of WIS

In this approach, we suggest an efficient sequential pattern mining algorithm 

called WIS (Weighted Interesting Sequential pattern mining) based on a level of support 

and/or weight affinity. We divide the support and weight constraints more specifically 

and define the concept of a sequential support/weight affinity pattern that uses new 

measures, called sequential s-confidence and w-confidence which consider 

support/weight affinity and prevent the generation of sequential patterns with 

substantially different support and/or weight levels. The sequential s-confidence measure 

is used to generate patterns with similar levels of support and the sequential w-

confidence measure is utilized to identify strong weight affinity patterns, so more 

meaningful sequential patterns can be generated. An extensive performance analysis 

shows that weighted interesting sequential patterns are extremely valuable patterns, since 

they have strong affinity in terms of a support and/or a weight. Users can adjust the 

number of sequential patterns or find their interesting sequential patterns by using 

weighted sequential patterns with support and/or weight affinity, instead of only 

obtaining frequent patterns by changing the minimum support threshold. To decrease the 

number of thresholds, sequential s-confidence, w-confidence and weighted support can 

be used selectively.

The main contributions of this approach are: 1) definition of new measures, a 

sequential s-confidence, and a sequential w-confidence, 2) classification and 
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incorporation of two key features, a support and a weight, 3) introduction of the 

weighted sequential affinity pattern in terms of support and weight, 4) description of 

weighted interesting sequential pattern mining by using sequential s-confidence and/or 

w-confidence, 4) implementation of our algorithm, WIS, and 5) execution of an 

extensive experimental study to compare the performance of our algorithm, WIS with 

SPAM [1] and WSpan.

6.3.2 Sequential affinity patterns

In this section, we define the sequential s-confidence and w-confidence 

measures, explain the concept of weighted sequential affinity patterns, and show 

important properties

6.3.2.1 Sequential support affinity pattern

Definition 6.5 Sequential support-confidence (s-confidence)

Support confidence of a sequential pattern S = {s1, s2, …, sm}, and sj is 

(x1x2…xk), where xt is an item, denoted as sequential s-confidence, is a measure that 

reflects the overall support affinity among items within the sequence. It is the ratio of the 

minimum support of items within this pattern to the maximum support of items within 

the sequential pattern. That is, this measure is defined as 

m'm' k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {support ({x s })}
S-conf (P) = 

Max {support ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆

Definition 6.6 Sequential support affinity pattern

A sequential pattern is a sequential support affinity pattern if the s-confidence of 

the sequential pattern is no less than a minimum s-confidence (min_sconf). In other 
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words, a sequential pattern S is a sequential support affinity pattern if and only if |S| > 0 

and s-confidence (S) ≥ min_sconf.

Property 6.1 Anti-monotone property of sequential s-confidence

The anti-monotone property of sequential s-confidence is similar to that of the 

support measure used in frequent pattern mining. If the s-confidence of a sequential 

pattern S is no less than a min_sconf, sequential s-confidence of every subset of the 

sequential pattern S is also no less than the min_sconf.

Lemma 6.4 Sequential s-confidence has the anti-monotonic property. 

Given a sequential pattern, S = 〈s1, s2, …, sm〉 and sj is  (x1x2…xk),where xt is an 

item, Max (1 ≤ m″ ≤ m, 1 ≤ k″ ≤ k) {support ({xm″ k″ ⊆ sm″})} of a sequential pattern S is always 

greater than or equal to that of a sub-sequence of the sequential pattern S and Min (1  ≤ m′

≤ m, 1 ≤ k′ ≤ k) {support ({xm′ k′ ⊆ sm′})} of the pattern S is always no less than that of a 

subset of the sequential pattern S. Therefore, we know that 

m'm' k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {support ({x i })}
S-conf (P) = 

Max {support ({x i })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆

m'

m' '

m'  k'

m' '  k' '

1  m'  m - 1, 1  k'  

1  m' '  m - 1, 1  k' '  

Min {support ({x s })}

Max {support ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤

m'm'  k'

m' 'm' '  k' '

1  m' - 2  m, 1  k'  

1  m' ' - 2  m, 1  k' '  

Min {support ({x s })}

Max {support ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤

That is, if the s-confidence of a sequential pattern is greater than or equal to a 

min_sconf, so is every subset of size m - 1. Therefore, the sequential s-confidence can be 

used to prune the exponential search space. 
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Property 6.2 Cross support sequential pattern property

A pattern is called a cross support sequential pattern if the sequential pattern 

contains items which have different levels of supports. Given a min_sconf as a threshold, 

if sequential s-confidence has the cross support sequential pattern property, for any cross 

support sequential pattern S with regard to a min_sconf, the value of the sequential s-

confidence is less than the min_sconf. 

Lemma 6.5 Sequential s-confidence has cross support property. 

Given definition 6.5, assume that there is a cross support pattern S = {s1, s2, ..., 

sm} that contains at least two items X and Y such that support ({X}) / support ({Y}) < t. 

where 0 < t < 1. 

m'm'  k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {support ({x s })}
S-conf (P) = 

Max {support ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

support {X}), support ({Y})

{..., support ({X}), ..., support ({Y}), ... }

Min {...,  (  ..., , ... }

Max 
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
≤

1  m' '  m, 1  k' '  

support ({X}) 

Max {..., support ({X}), ..., support ({Y}), ... }k≤ ≤ ≤ ≤

≤

support ({X}) 

support ({Y})
t≤ <

Therefore, we know that the value of the sequential s-confidence is less than the 

min_sconf for any cross support sequential pattern S with regard to a sequential s-

confidence threshold, t.
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6.3.2.2 Sequential weight affinity pattern

Definition 6.7 Sequential weight-confidence (w-confidence)

Weight confidence of a sequential pattern S = {s1, s2, …, sm},  and sj is 

(x1x2…xk), where xt is an item, denoted as sequential w-confidence, is a measure that 

reflects the overall weight affinity among items within the sequential pattern. It is the 

ratio of the minimum weight of items within this pattern to the maximum weight of 

items within the sequential pattern. That is, this measure is defined as 

'mm'  k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {weight ({x s })}
W-conf (P) = 

Max {weight ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆
⊆

Definition 6.8 Sequential weight affinity pattern

A sequential pattern is a sequential weight affinity pattern if the w-confidence of 

the sequential pattern is no less than a minimum weight confidence (min_wconf). In 

other words, a sequential pattern S is a sequential weight affinity pattern if and only if |S| 

> 0 and w-confidence (S) ≥ min_sconf. 

Property 6.3 Anti-monotone property of sequential w-confidence

The anti-monotone property of weight confidence is similar to that of the support 

measure used in frequent pattern mining. If w-confidence of a sequential pattern S is no

less than min_wconf, sequential w-confidence of every subset of sequential pattern S is 

also no less than the min_wconf.

Lemma 6.6 Sequential w-confidence has the anti-monotonic property. 

From definition 6.7, we can see that Max (1  ≤ m″ ≤ m, 1  ≤ k″ ≤ k) {weight ({xm″ k″ ⊆

sm″})} of a sequential pattern S is always greater than or equal to that of a sub-sequence 
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of the sequential pattern S and Min (1  ≤ m′ ≤ m, 1 ≤ k′ ≤ k) {weight ({xm′ k′ ⊆ sm′})} of the 

pattern S is always no less than that of a subset of the sequential pattern S. Therefore, we 

know that 

m'm'  k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {weight ({x s })}
W-conf (P) = 

Max {weight ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆

m'

m' '

m'  k'

m' '  k' '

1  m'  m - 1, 1  k'  

1  m' '  m - 1, 1  k' '  

Min {weight ({x s })}

Max {weight ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤

'

'

m'm'  k

m' 'm' '  k' 

1  m' - 2  m, 1  k'  

1  m' ' - 2  m, 1  k' '  

Min {weight ({x s })}

Max {weight ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤

In other words, if w-confidence of a sequential pattern S is no less than a 

min_wconf, so is every subset of size m - 1. Therefore, the sequential w-confidence 

satisfies the downward closure property and prunes weak weight affinity patterns.

Property 6.4 Cross weight sequential pattern property

A sequential pattern is called a cross weight pattern if the pattern contains items 

which have weak affinity. Given a min_wconf as a threshold, if sequential w-confidence 

has the cross weight property, for any cross weight sequential pattern S with regard to a 

min_wconf, the value of the sequential w-confidence is less than the min_wconf.

Lemma 6.7 Sequential w-confidence has cross weight property. 

Given definition 6.7, assume that there is a cross weight sequential pattern S = 

{s1, s2, ..., sm} that contains at least two items Z and W such that weight ({Z}) / weight 

({W}) < t. where 0 < t < 1. 
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m'm'  k'

m' 'm' '  k' '

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {weight ({x s })}
W-conf (P) = 

Max {weight ({x s })}
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆

1  m'  m, 1  k'  

1  m' '  m, 1  k' '  

Min {..., weight ({Z}), ..., weight ({W}), ... }

Max {..., weight ({Z}), ..., weight ({W}), ... }
k

k

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤

1  m' '  m, 1  k' '  

weight ({Z}) 

Max {..., weight ({Z}), ..., weight ({W}), ... }k≤ ≤ ≤ ≤

≤

weight ({Z}) 

weight ({W})
t≤ <

Therefore, we know that the value of the w-confidence is less than the 

min_wconf for any cross weight sequential pattern S with regard to a sequential w-

confidence threshold, t.

6.3.3 Weighted interesting sequential patterns

In this section, we define weighted interesting sequential pattern mining and 

show pruning approaches. 

Definition 6.9 Weight range (WR)

A weight of an item is a non-negative real number that shows the importance of 

the item. The weight of each item is assigned to reflect the importance of each item 

within sequences in the sequence database. A weight is given to an item within a weight 

range, Wmin ≤ WR ≤ Wmax.

Lemma 6.8 Sequential w-confidence can be applied irrespective of different weight 

ranges.

WIS uses the weight range to maintain the downward closure property. For 

example, WRk of a sequential pattern K = {<A>, <A, B>, <A, B, C>} is from 1 to 3 and 
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WRk` of a sequential  pattern K` = {<D>, <D, E>, <D, E, F>} is from 0.1 to 0.3. Assume 

that weight ({A}) = 1, weight ({B}) = 2, weight ({C}) = 3, weight ({D}) = 0.1, weight 

({E}) = 0.2, and weight ({F}) = 0.3, where weight is the weight value of a sequential 

pattern. Then, sequential w-confidence (K) = 0.33 and sequential w-confidence (K`) = 

0.33. Using WRk` rather than WRk generates fewer sequential patterns. However, the w-

confidences (0.33) of sequential patterns K and K` are the same in spite of different 

weight ranges. We know that sequential w-confidence is defined as the ratio of the 

minimum weight of items within this sequential pattern to the maximum weight of items 

within the sequential pattern. Therefore, if ratios of the minimum weight to the 

maximum weight of different weight ranges are the same, the effect is the same. In other 

words, the w-confidence of a sequential pattern is only decided by a level of weight 

affinity between items of a sequential pattern, not by a weight range. 

Definition 6.10 Weighted Interesting Sequential pattern (WIS) 

A sequence is a weighted interesting sequential pattern if the following pruning 

conditions are satisfied. Note that these pruning conditions can be applied selectively. 

For example, pruning conditions (1, 2), (1, 3) and (1, 2, 3) can be used as desired. 

Sequential s-confidence and w-confidence can also be used independently.

Pruning condition 1: (support * MaxW ≥ min_sup) 

Pruning condition 2: (s-confidence ≥ min_sconf) 

The sequential pattern is a sequential support affinity pattern if the s-confidence 

of a pattern is greater than or equal to a minimum s-confidence. 

Pruning condition 3: (w-confidence ≥ min_wconf) 
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The sequential pattern is a sequential weight affinity pattern if the sequential w-

confidence is no less than a min_wconf. 

6.3.3.1 Sequential w-confidence VS. s-confidence

Sequential s-confidence is a support measure which is used to identify strong 

affinity patterns in terms of support and sequential w-confidence is a weight measure 

that considers the weight affinity of items within a sequential pattern. The previous use 

of a weight constraint in WSpan can generate many spurious patterns containing 

different levels of weights or miss interesting low weight patterns. Both measures satisfy 

the anti-monotone property. Therefore, these measures can be effectively used to prune 

weak affinity patterns. 

6.3.3.2 Sequential w-confidence VS. weighted support constraint

Although weighted support constraint considers weight and support, it can 

generate weak affinity patterns in terms of weight. Sequential w-confidence uses only 

weights of items within patterns. Patterns with a high support and a high weight satisfy 

the weighted support constraint but the w-confidences of these patterns can not satisfy 

the minimum w-confidence if they are patterns with different levels of weights. 

6.3.3.3 Sequential s-confidence VS. support constraint

Sequential s-confidence and support constraint both use a support measure. 

Support constraint generates weak affinity patterns. Although the sequential patterns 

with a high support satisfy the support constraint, these sequential patterns can not 
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satisfy the sequential s-confidence when they are sequential patterns including items 

with different levels of support. 

6.3.4 Mining weighted interesting sequential patterns with support and/or weight 

affinity

In this section, we show how to mine sequential affinity patterns by using a 

prefix-based projection approach that computes local frequent sequential patterns of a 

prefix by scanning its projected database. The projection is based on a frequent prefix. 

We use the sequence database SDB in Table 15, Assume that min_sup is 2, min_wconf 

is 0.7, min_sconf is 0.7 and a weight range is 0.4 ≤ WR ≤ 0.8 in which the weight list is 

<a:0.6, b:0.8, c:0.5, d:0.6, e:0.4, f:0.8, g:0.5, h:0.6>. In the WIS, mining weighted 

interesting sequential patterns is performed as follows.  

Table 15. A sequence database as a running example in WIS

Sequence ID Sequence

10 〈a (abc) (ac) d (cf)〉

20 〈(ad) abc (bcd) (ae) bcde〉

30 〈a(ef) b (ab) c (df) ac〉

40 〈ac (bc) eg (af) acb (ch) (ef)〉

50 〈ba (ab) (cd) eg (hf)〉

60 〈a (abd) bc (he)〉
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Step 1: Find length-1 weighted sequential patterns.

Scan the sequence database once, count the support of each item, check the 

weight of each item and find all the weighted frequent items in sequences. The weighted 

infrequent items are found and removed according to pruning condition 1 in definition 

6.10. After the first scan of the sequence database, length-1 frequent sequential patterns 

are <a> : 6, <b> : 6, <c> : 6, <d> : 5, <e> : 5, <f> : 4, <h> : 3 and <g> : 2. The weight 

list is <a:0.6, b:0.8, c:0.5, d:0.6, e: 0.4, f:0.8, h:0.6, g:0.5> and the maximum weight 

(MaxW) is 0.8. From pruning by weighted support constraint, item “g” is removed 

because the value (1.6) of multiplying the support (2) of item “g” with a MaxW (0.8) is 

less than a min_sup (2).  Note that an item with a lower support can be a weighted 

frequent item if it has a higher weight. After the projected database is generated from the 

sequence database, WIS mines weighted interesting sequential patterns from the 

projected databases recursively and the weighted interesting patterns are generated by 

adding items one by one.

Step 2: Divide search space.

The complete set of weighted sequential patterns can be partitioned into the 

following seven subsets having prefix: (1) <a>; (2) <b>, (3) <c>, (4) <d>, (5) <e>, (6) 

<f>, and (7) <h>.

Step 3: Find subsets of sequential patterns.

The subsets of sequential patterns can be mined by constructing the 

corresponding set of projected databases and mining them recursively. The process of 

weighted sequential pattern mining in WIS is explained as follows.
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1. Find weighted sequential patterns with prefix <a>

We only collect the sequences which have <a>. Additionally, in a sequence 

containing <a>, only the subsequence prefixed with the first occurrence of <a> should be 

considered. For example, in sequence <a (abc) (ac) d (cf)>, only the subsequence <(abc) 

(ac) d (cf)> is considered and in sequence <(ad) abc (bcd) (ae) bcde>, only the sequence  

<(~d) abc (bcd) (ae) bcde> is collected. The sequences in sequence database SDB 

containing <a> are projected with regards to <a> to form the <a>-projected database, 

which consists of six suffix sequences: <(abc) (ac) d (cf)>, <(~d) abc (bcd) (ae) bcde>, 

<(ef) b (ab) c (df) ac>,  <c (bc) eg (af) acb (ch) (ef)>, <(ab) (cd) eg (hf)> and <(abd) bc 

(he)>. By scanning the <a> projected database once, its locally frequent items are a:6, 

b:6, c:6, d:d, e:5, f:4, h:3, g: 2 (~b):4, (~c):1, (~d):1, (~e):1 and (~f):1. In WIS, the 

pruning conditions in definition 6.10 are used. The locally frequent item “g” which has 

less than two as a support is removed by weighted support constraint because the value 

(1.6) of multiplying the support of the sequences with a maximum weight (0.8) is less 

than a minimum support (2). Therefore, in WIS, (~c):1, (~d):1, (~e) and (~f):1 are also 

removed. In addition, a local item “e:5” is pruned by sequential w-confidence. The 

candidate pattern, from a local item “e:5” and a conditional prefix “a”  is <ae:5> and the 

sequential w-confidence (0.68) of the candidate sequential pattern <ac:5> is less than the 

minimum w-confidence (0.7). Moreover, the candidate pattern <ah:3> is pruned by 

sequential s-confidence because the s-confidence of the sequential pattern is 0.5 which is 

less than the minimum s-confidence (0.6). All the length-2 sequential patterns prefixed 

with <a> are: <aa>:6, <ab>:6, <ac>:6, <ad>:5 <af>:4 and <(ab)>:4. Note that 
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previous sequential pattern mining algorithms only consider a support as a measure in 

each projected database so sequences <(ac):1> <(ad):1> and <(ae:1> are only pruned 

because they are not frequent. The recently developed WSpan algorithm uses weighted 

support constraint. However, in WIS, before constructing the next projected database, 

sequential w-confidence and s-confidence are applied to prune sequential weak affinity 

patterns. The final <a>-projected database is generated as follows: <(abc) (ac) d (cf)>, 

<(~d) abc (bcd) a bcd>, <fb (ab) c (df) ac>,  <c (bc) (af) acbcf>, <(ab) (cd) f> and 

<(abd) bc>. Recursively, all the sequential patterns with prefix <a> can be partitioned 

into six subsets prefixed with: 1) <aa>, 2) <ab>, 3) <ac>, 4) <ad>, 5) <af> and 6) 

<(ab)>. These subsets can be mined by constructing respective projected databases and 

mining each recursively as follows.

1) The <aa> projected database consists of six suffix subsequences prefixed with 

<(~bc) (ac) d (cf)>, <bc (bcd) abcd>, > <(~b) c (df) ac>, < (~f) acbcf>, < (~b) (cd) f>, 

and <(~bd) bc>. By scanning the <aa> projected database once, its local items are a:4, 

b:4, c:6, d:5, f:4, (~b):4, and (~c):1. The locally frequent item “(~c):1” is pruned by 

weighted support constraint. The <aa> projected database returns the following 

sequential patterns: <aaa:4>, <aab:4>, <aac:6>, <aad:5>, <aaf:4> and <(aab):4>. 

Sequential s-confidence and w-confidence of these patterns are no less than a minimum 

s-confidence and w-confidence respectively. Recursively, sequential patterns with prefix 

<aa> are partitioned and mined.

2) The <ab> projected database consists of six suffix subsequences prefixed with 

<ab>: <(~c) (ac) d (cf)>, <c (bcd) abcd>, <(ab) c (df) ac>,  <(~c) (af) acbcf>, <(cd) f> 
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and <(~d) bc>. By scanning the <ab> projected database once, we obtain its local items: 

a: 4, b:4, c:6, d:4, f:4, (~c):1, and (~d):1. Items (~c):1, and (~d):1 are pruned by 

weighted support constraints because the value (0.8) of multiplying support (1) of the 

items with a MinW (0.8) is less than the minimum support (2). In WIS, the sequential 

candidate pattern, <abf>:4 can be removed by sequential s-confidence because the 

sequential s-confidence (0.67) of pattern <abf> is less than a min_sconf (0.7). From 

sequential w-confidence, sequence candidate <abc>:4 is pruned because the w-

confidence (0.625) of the sequence candidate <abc>:4 is less than min_wconf (0.7). The 

final sequential pattern is <abd>:4. Recursively, sequential patterns with prefix <ab> are 

partitioned and mined.

3) The <ac> projected database consists of five suffix subsequences prefixed with 

<ad>: <(ac) d (cf)>, <(bcd) a bcd>, <(df) ac>,  <(bc) (af) acbcf>, and <(~d) f>.  By 

scanning the <ac> projected database once, its local items are a:4, b:2, c:4, d:3, f:4, 

(~d):1 and (~f):1. Sequential candidate patterns <a(cd)>:1, <a(cf)>:1 and <acb>:2 are 

pruned by weighted support constraint. The weighted sequential patterns <aca>: 4, 

<acc>:4 <acd>:3 and <acf>:4 are generated. Recursively, sequential patterns with prefix 

<ac> are partitioned and mined.

4) The <ad> projected database consists of six suffix subsequences prefixed with 

<(cf)>, <abc (bcd) abcd>, <(~f) ac>, <f> and <bc>. By scanning the <ad> projected 

database once, its local items are a:2, b:2, c:4, d:1, f:2, and (~f):1. Among these 

candidate patterns, the only weighted frequent item is c:4, so <ad> projected database 
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returns one sequential pattern: <adc>:4. Recursively, sequential patterns with prefix 

<ad> are partitioned and mined.

5) The <af> projected database consists of five suffix subsequences prefixed with 

<af>: <b (ab) c (df) ac>, and <acbcf>.  By scanning the <af> projected database once, 

its local items are a: 2, b:2, c:2, d:1, and f:2. All local items are pruned because they do 

not satisfy the pruning conditions in definition 6.10. Recursively, sequential patterns 

with prefix <af> are partitioned and mined.

6) The <(ab)> projected database consists of four suffix subsequences prefixed with 

<ad>: <(~c) (ac) d (cf)>, <c (df) ac>, <(cd) f> and <(~d) bc>. By scanning the <(ab)> 

projected database once, its local items are a: 2, b:1, c:4 d:3, f:3, (~c):1 and (~d):1.  

Local items “b:1” “(~c):1 and “(~d):1” are pruned by the weighted support constraint 

and sequential candidate pattern <(ab)c>:4 is pruned by sequential w-confidence because 

the w-confidence of the pattern is 0.625 which is less than the minimum w-confidence 

(0.7). The candidate pattern “(ab)f” is pruned  by sequential s-confidence because it is a 

weak support affinity pattern. Finally, the sequential pattern generated by the <(ab)> 

projected database is  <(ab)d>:3. Recursively, sequential patterns with prefix <(ab)> are 

partitioned and mined.

2. Mine remaining weighted sequential patterns. This can be done by constructing the 

<b>, <c>, <d>, <e>, <f> and <h> projected databases and mining them, respectively as 

shown above. 

Step 4: The set of sequential patterns is the collection of patterns found in the above 

recursive mining process. You can see that in this example, the number of weighted 
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sequential patterns is fewer than the number of sequential pattern generated in the 

previous sequential pattern mining algorithms because WIS provides pruning by 

sequential s-confidence and w-confidence as well as weighted support constraint defined 

in WSpan.

Table 16 shows examples of pruning candidate patterns by weighted support, 

sequential s-confidence, and w-confidence. In this example, a minimum support is 2 and 

a minimum s-confidence and w-confidence are 0.7 respectively. The number of 

sequential patterns can be adjusted by changing minimum thresholds. However, previous 

sequential pattern mining algorithms still generate weak affinity patterns even though the 

minimum support is high. By using two objective measures, sequential s-confidence and 

w-confidence, these weak affinity patterns can be pruned first when the number of 

patterns need to be reduced. Note that weighted support, sequential s-confidence and w-

confidence may be used selectively. 

Table 16. Pruning candidate patterns in WIS

Candidate     
patterns

Weighted    
support

Sequential 

w-confidence

Sequential     

s-confidence

<ae> : 4 (0.8 * 4) Pruned 0.67 (0.4/0.6) 0.83 (5/6)

<ah> : 3 (0.8 * 4) 1 (0.6/0.6) Pruned 0.5 (3/6)

<acb> : 2 Pruned (0.8 * 2) Pruned 0.625 (0.5/0.8) 1 (6/6)

<adb> : 2 Pruned (0.8 * 2) 0.75 (0.6/0.8) 0.83 (5/6)

<(ab)c> : 4 (0.8 * 4) Pruned 0.625 (0.5/0.8) 1 (6/6)

<(ab)f> : 3 (0.8 * 3) 0.75 (0.6/0.8) Pruned 0.67 (4/6)
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6.3.5 WIS algorithm

WIS pushes sequential s-confidence and w-confidence into the projection based 

on pattern growth approach and mines strong affinity patterns in terms of support and/or 

weight. We now show the weighted sequential pattern mining process and present the 

mining algorithm. 

WIS algorithm:Weighted sequential pattern mining with support and/or weight affinity. 

Input: (1) A sequence database: SDB, 

           (2) A support threshold: min_sup, 

           (3) A w-confidence threshold: min_wconf

           (4) A s-confidence threshold: min_sconf

           (5) The weights of the items within weight range: wi,            

Output: The complete set of weighted sequential patterns.

Begin

1. Let WSP be the set of Weighted Sequential Patterns that satisfy the constraints. 

Initialize WSP ← {};

2. Scan SDB once, count the support of each item, check the weight of each item and 

find each weighted frequent item, β, in sequences satisfying the following pruning 

conditions: β is a weighted sequential item if the following pruning conditions are not 

satisfied. 

Condition 1: (support * MaxW < min_sup) 

3. For each weighted frequent item, β, in SDB
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          Call WIS (WSP, <β>, 0, SDB)

    End for

End

Procedure WIS (WSP, α, L, S|α)

Parameter: 

(1) α is a weighted sequential pattern that satisfies the above pruning conditions,

(2) L is the length of α, 

(3) S | α is the sequence database, SDB if α is null, otherwise, it is the α-projected 

database.

1. Scan S | α once, count the support of each item, and find each weighted frequent item, 

β in sequences satisfying the following pruning conditions: β is a weighted sequential 

item if the following pruning conditions are not satisfied. 

Condition 1: (support * MaxW < min_sup) 

Condition 2: (w-confidence < min_wconf) 

Condition 3: (s-confidence < min_sconf) 

(a) β can be assembled to the last element of α to form a sequential pattern or  

(b) <β> can be appended to α to form a sequential pattern. 

2. For each weighted frequent item β, 

Add it to α to form a sequential pattern α`, and output α`;

    End for

3. For each α`, 
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Construct α` projected database S| α`;

Call WIS (α`, L+1, S | α`) 

End for

6.3.6 Performance evaluation

In this section, we present our performance study over various datasets. The WIS 

is the first sequential pattern mining algorithm to consider a level of support and/or 

weight affinity between items of sequential patterns. WIS gives a balance between the 

two measures of weight and support, but also considers support affinity and/or weight 

affinity between items within sequential patterns, so more valuable patterns can be 

generated. We report our experimental results on the performance of WIS in comparison 

with recently developed algorithms: SPAM [1] and WSpan. The main purpose of this 

experiment is to demonstrate how effectively the weighted sequential patterns can be 

generated by using sequential s-confidence and/or w-confidence. First, we show how the 

number of weighted sequential patterns can be adjusted through user feedback, the 

efficiency of the WIS algorithm, and quality of weighted sequential affinity patterns. 

Second, we illustrate that WIS has good scalability against the number of transactions in 

the datasets.

6.3.6.1 Test environment and datasets

We used synthetic datasets generated by the IBM dataset generator as shown in 

section 6.2.6. WIS was written in C++. Experiments were performed on a sparcv9 

processor operating at 1062 MHz, with 2048MB of memory. All experiments were 
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performed on a Unix machine. In our experiments, a random generation function was 

used to generate weights for each item. When running WIS, minimum s-confidence 

and/or w-confidence are set up as the cut off values for mining weighted sequential 

patterns.

6.3.6.2 Experimental results

6.3.6.2.1 Comparison of WIS with SPAM and WSpan

Our experiment shows that, in most cases, WIS outperforms SPAM [1] and 

WSpan. First, we evaluated the performance on the D1C10T5S8I5 dataset.

The effect of sequential w-confidence pruning
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Figure 56. Number of patterns in WIS (sequential w-confidence).
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The effect of combination of sequential s-confidence and w-confidence pruning
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Figure 60. Number of patterns in WIS (Min_sup = 2.0%).
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Figure 61. Runtime in WIS (Min_sup = 2.0%).

D1C10T5S8I5 dataset

From Figure 56 to Figure 59, we set up a weight range from 0.3 to 0.6. The 

number of sequential patterns and runtime of WIS are compared with those of SPAM 

and WSpan as the minimum support is increased. WIS generates fewer sequential 

patterns than SPAM and WSpan. Particularly, smaller sequential patterns are generated 

as the sequential s-confidence in Figure 56, and w-confidence in Figure 58, are 

increased. In Figure 57, 59 and 61, we can see that WIS is faster than SPAM and 



141

WSpan. In Figure 56 and Figure 57, the sequential s-confidence is only used to prune 

weighted sequential patterns with weak support affinity. Meanwhile, in Figure 58 and 

Figure 59, sequential w-confidence is only utilized to remove weighted sequential 

patterns involving items with different levels of weight. Note that sequential s-

confidence and/or w-confidence can be used individually without combination with 

other measures. Sequential s-confidence and w-confidence in WIS show better 

performance than SPAM and WSpan. Specifically, the performance gaps increase as the 

minimum s-confidence and/or the minimum w-confidence increase. SPAM generates a 

huge number of sequential patterns with a minimum support of less than 10%. For 

instance, the numbers of patterns of SPAM are 38,615 with a minimum support of 10%, 

160,685 with a minimum support of 8%, and 443,639 with a minimum support of 6%. In 

Figure 60 and Figure 61, a minimum support threshold is fixed at 2% and the 

performance is evaluated as the minimum s-confidence and w-confidence are changed. 

The number of sequential patterns discovered by WIS is several orders of magnitude 

smaller than the number of sequential patterns found by WSpan. From performance 

results in Figure 60 and Figure 61, we see that sequential s-confidence and w-confidence 

can be individually used without a minimum support. Note that, in Figure 60 and Figure 

61, the number of sequential patterns and runtime is not changed in WSpan because 

WSpan does not use sequential s-confidence and w-confidence measures. Although the 

sequential patterns are generated after decreasing a minimum support threshold, the 

sequential patterns with weak support and/or weight affinity remain because the 

minimum support threshold alone can not prune weak affinity patterns. Sequential s-
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confidence and w-confidence can be effectively used to prune weak affinity patterns and 

adjust the number of sequential patterns at constant minimum support.

The effect of sequential s-confidence and/or sequential w-confidence pruning
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Figure 62. Number of patterns in WIS (min_wconf = 60%).
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Figure 63. Runtime in WIS (min_wconf = 60%).
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Figure 64. Number of patterns in WIS (min_wconf = 80%).
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Figure 65. Runtime in WIS (min_wconf = 80%).
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Figure 67. Runtime in WIS (Min_sup = 2.5%).

D7C7T7S7I7 dataset

From Figure 62 to Figure 67, we report the evaluation results for D7C7T7S7I7 

dataset. We set up a weight range: from 0.1 to 0.3 for Figure 62 to Figure 65 and from 

0.2 to 0.3 for Figure 66 and Figure 67. The main performance difference between WIS 

and other algorithms such as SPAM and WSpan results from using sequential s-

confidence and/or sequential w-confidence. By increasing sequential s-confidence and/or 

w-confidence thresholds, fewer patterns with a higher level of affinity in terms of 

support and/or weight can be generated. We can also see that the performance of using 

both sequential s-confidence and w-confidence is better than using either one alone. In 

addition, given a minimum s-confidence and w-confidence at 60%, the effect of 

sequential s-confidence pruning outperforms that of sequential w-confidence. However, 

at a threshold of 80%, the performance of sequential w-confidence becomes better than 

that of sequential s-confidence. In most cases, WIS is the fastest among the three 

algorithms and generates fewer patterns. In Figure 62 and Figure 63 we could not show 

the number of patterns generated by SPAM because the number of patterns becomes 
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huge at less than 4%. For example, the number of patterns in SPAM are 170,965 with a 

minimum support of 4%, 292,161 with a minimum support of 3.5%, 439,953 with a 

minimum support of 3.0%, 701,760 with a minimum support of 2.5%, and 1,646,818 

with a minimum support of 2%. 

       The effect of combination of sequential s-confidence and w-confidence pruning
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Figure 68. Number of patterns in WIS (WR: 0.4 – 0.8).
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Figure 71. Runtime in WIS (Min_sup = 0.5%).

D15C15T15S15I15 dataset

Figure 68 to Figure 71 demonstrate the results of a performance test using the 

D15C15T15S15I15 dataset with a weight range from 0.4 to 0.8. WIS outperforms 

SPAM and WSpan. When the w-confidence threshold is lowered, the performance 

difference becomes larger. At higher weight confidences, such as 90%, the performance 

of WIS becomes better. We can see that the number of patterns for WIS is decreased as 

the sequential s-confidence and w-confidence are increased. Recall that WSpan can also 
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adjust the number of patterns by resetting the weight range, although we fixed the weight 

range in these tests. Decreasing a weight range means more priority is given to a support 

measure. However, WIS prunes the sequential patterns with weak support and/or weight 

affinity. Users can choose their level of interest and use a sequential s-confidence and/or 

w-confidence. If users increase the sequential w-confidence threshold, it means they 

want patterns that involve items with higher weight affinity.

6.3.6.2.2 Quality of patterns in WIS

In previous evaluation, we showed that the sequential s-confidence and w-

confidence can be used to prune patterns with weak support and/or weight affinity and 

the sequential patterns with high affinity sequential patterns can be used in real 

applications. In all test datasets, items are expressed as integer values so it is difficult to 

understand the meaning of items and discovered sequential patterns. In this evaluation, 

the D7C7T5S4I2.5 dataset is used to illustrate the quality of weighted sequential patterns

mined by WIS. A minimum support is set to 2.5% and a weight range is set as 0.1 – 0.3. 

We analyzed the patterns discovered by WIS to show the effectiveness of weighted 

sequential pattern mining with support and/or weight affinity. We compared the patterns 

mined by WIS with those of SPAM and WSpan. For instance, sequential patterns <(2) 

(45) (27, 91) (17, 70)>:12 and <(1, 61, 91) (27) (91) (70)>:12 are mined by SPAM and 

sequential patterns <(70) (61) (45, 61)>:40 and <(91) (47) (91) (27, 91)>:47 are 

discovered by WSpan. However, these patterns are all removed by s-confidence 

(min_sconf = 0.6) and w-confidence (min_wconf = 0.6) respectively. That is, these 

sequential patterns are patterns with weak affinity patterns. 
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Although the minimum support threshold is increased, these weak affinity 

patterns such as <(2) (45) (27, 91) (17, 70)>:12 and <(1, 61, 91) (27) (91) (70)>:12 are 

found by SPAM. In addition, although the minimum support threshold is increased 

and/or the weight range is changed, the weak affinity patterns such as <(70) (61) (45, 

61)>:40 and <(91) (47) (91) (27, 91)>:47 are still discovered in WSpan. The weak 

affinity patterns can be effectively pruned by sequential s-confidence and/or w-

confidence. The affinity pattern mining approach can be effectively applied to discover 

unusual patterns which may need special attention (to detect fraudulent sequential 

patterns used by money laundering and other financial crimes).

6.3.6.2.3 Scalability test
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Figure 72. Scalability test in WIS (Min_sup = 0.4%).
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DxC2.5T5S4I2.5 dataset

The DxC2.5T5S4I2.5 dataset was used to test scalability with the number of 

sequences in the database. From the performance test, WIS scales much better than 

WSpan and becomes better as sequential s-confidence and/or w-confidence are 

increased. WSpan shows linear scalability with the number of transactions from 20k to 

100k. However, WIS is much more scalable than WSpan. In this test, we set a minimum 

support as 0.4% and 0.5% respectively and a weight range as 0.1 to 0.5. In Figure 72 and 

Figure 73, we can see that WIS has much better scalability in terms of number of 

sequences and becomes faster as the sequential s-confidence and w-confidence are 

increased. 

6.3.7 Summary

In summary, WIS is efficient and scalable in weighted interesting pattern mining. 

Although WSpan uses a weight range and a minimum weight to adjust the number of 

sequential patterns, these sequential patterns include items with weak support and/or 
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weight affinity. WIS is faster than WSpan and SPAM and generates smaller but more 

important sequential patterns. 
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7. FURTHER EXTENSIONS

In this section, future extensions for weighted pattern mining are discussed. We 

show examples of applications for weighted frequent pattern mining. In huge datasets, 

extracting valuable patterns is not easy work. Previous pattern mining algorithms use the 

same priority for each pattern. The number of frequent patterns becomes huge as the 

minimum support becomes lower. Therefore, it is difficult for users to find more 

important patterns. Applying weights is effective and efficient to not only generate more 

important patterns but also adjust the number of patterns. Specifically, it is more 

effective to apply weight constraints to pattern mining with lower minimum support. 

Many opportunities exist to apply weight based pattern mining. 

7.1. Applications of weighted pattern mining

7.1.1 Biomedical and DNA data analysis

Weight-based sequential pattern mining can be applied in biomedical data and 

DNA analysis. The weighed sequential pattern mining approach can be applied in search 

and comparison among DNA sequences, and identification of co-related gene sequences. 

For example, most diseases are not triggered by a single gene but by a combination of 

genes. When identifying specific disease gene sequences, we can give more weight to 

the important gene sequences and identify co-occurring gene sequences including the 

disease gene sequences.
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7.1.2 Analysis of Web access pattern

In web log mining, we can apply weighted sequential pattern mining to analyze 

web access patterns. It is more efficient to find important sequential patterns by giving 

more weights to items within important sequences. For example, in application domain 

such as financial data analysis, retail industry and telecommunication industry, weighted 

sequential pattern mining can also be used to detect unusual access such as sequences 

related to financial crimes, fraudulent telecommunication activities, and purchase of 

expensive items within a short time. In this case, high weights are given to previously 

found fraudulent sequences to discover the suspicious sequential patterns. 

7.2 Applications of weighted pattern mining with support and/or weight affinity

Weighting applications are common and important in the real world. Particularly, 

more meaningful patterns can be found and used in the real world by mining patterns 

with support and/or weight affinity. In other words, weighted sequential pattern mining 

with support and/or weight affinity can be used to find previous fraudulent users and 

their usage patterns in crimes such as money laundering, purchase of expensive items 

within a short time, and use of stolen mobile. We can apply weighted sequential pattern 

mining approaches in several ways. 

First, after giving more weight to previously found fraudulent sequences, similar 

patterns can be mined and analyzed. Second, patterns with different levels of support 

may be identifying fraudulent patterns since the usage (transaction) frequency for each 

user are regular. Additionally, in analyzing customer buying patterns, the level of 

affinity can help catch fraudulent patterns. For example, customers have purchasing 
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styles. Sequential patterns with different level of price (weight) may be fraudulent 

patterns. The techniques of mining patterns with different level of support and/or weight 

affinity can be applied to detect fraudulent patterns used in money laundering and other 

financial crimes. 

Finally, techniques of mining patterns with support and/or weight affinity can be 

applied to identify co-occurring gene sequences in biomedical data and DNA analysis. 

The pattern mining with support and/or weight affinity can help determine the kinds of 

genes that are likely to co-occur together in target samples.
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8. CONCLUSIONS

Many studies on frequent pattern mining have been conducted in the last decade. 

One of the main limitations of the traditional method for mining frequent patterns is that 

all items are treated uniformly, while real items have different characteristics. For this 

reason, weighted frequent pattern mining algorithms have been studied. Mining the 

complete set of patterns often suffers from generating a very large number of patterns

and association rules. Although frequent closed/maximal patterns mining algorithms are 

suggested, they, in large databases, still generate too many patterns when support is low 

or the pattern becomes long. Additionally, the previous weighted association rule mining 

algorithms adopted an Apriori algorithm. However, Apriori-based weighted frequent 

pattern mining algorithms use candidate set generation and test that is very costly to do 

that. 

In this research, we suggested efficient and scalable frequent pattern mining 

algorithms with weight constraints. Our main approach is to push the weight constraints

into the pattern growth algorithm while maintaining the downward closure property. 

First, we developed WFIM which focuses on weighted frequent pattern mining 

based on a pattern growth algorithm. A weight range and a minimum weight constraint 

are defined and items are given different weights within the weight range. The extensive 

performance analysis shows that WFIM is efficient and scalable in weighted frequent 

pattern mining. Many improved algorithms using divide and conquer methods have been 
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suggested. In future work, the WFIM can be extended by using a combination of FP-

growth based algorithms with better performance.  

Second, we developed the WLPMiner algorithm that integrates a weight 

constraint measure with a length decreasing support constraint measure for mining 

frequent patterns. The key insights achieved in this approach are the high performance of 

the WSVE property and the use of a weight range in the weight constraint. We show that 

combining a weight constraint with a length decreasing support constraint improves 

performance in terms of the number of patterns and runtime. WLPMiner is efficient and 

scalable in weighted frequent pattern mining. In future work, the WSVE property will be 

used with different pruning techniques suggested in other algorithms using length 

decreasing support constraints.

Third, we defined the problem of mining weighted interesting patterns. We 

introduced a w-confidence measure and the concept of weighted hyperclique patterns 

using the w-confidence. Our main goal in this framework is to push a w-confidence and 

an h-confidence into a weighted frequent pattern mining algorithm based on the pattern 

growth method and to prune weak affinity patterns. In WIP, the w-confidence and/or the 

h-confidence are used to avoid generating patterns that involve items with different 

weight and/or support levels. The extensive performance analysis shows that WIP is 

efficient and scalable in weighted frequent pattern mining. 

Finally, we studied the problem of mining weighted sequential patterns and 

suggested weighted sequential pattern mining algorithms: WSpan (Weighted Sequential 

pattern mining with a weight range and a minimum weight) and WIS (Weighted 
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Interesting Sequential pattern mining with a similar level of support and/or weight 

affinity). WSpan focused on weighted frequent pattern mining based on the prefix 

projected sequential pattern growth approach. A weight range and a minimum weight are 

used to adjust the number of sequential patterns. In WIS, we define sequential s-

confidence and w-confidence measures and the concept of weighted interesting 

sequential patterns by using the two measures. Our main goal in this framework is to 

push sequential s-confidence and/or w-confidence into the weighted sequential pattern 

mining algorithm based on the pattern growth method. The sequential s-confidence 

and/or w-confidence measures can be used to avoid generating spurious sequential 

patterns that involve items from different support and/or weight levels. The extensive 

performance analysis shows that WSpan and WIS are efficient and scalable in weighted 

affinity pattern mining. Many improved techniques such as sequential pattern mining 

using pseudo projection or bitmap representation have been suggested. In future work, 

these algorithms can be extended by using a combination of the techniques.  

As the reader can see, this area is a very promising research area. Many 

opportunities exist to improve the performance of weighted frequent pattern mining.
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