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ABSTRACT 

 

Astrocyte-derived Nitric Oxide in Manganese Neurotoxicity:  

From Cellular and Molecular Mechanisms  

Underlying Selective Neuronal Vulnerability in the Basal Ganglia  

to Potential Therapeutic Modalities. (December 2005)  

Xuhong Liu, M.D., Harbin Medical University; 

 M.S., Harbin Medical University 

Co-Chairs of Advisory Committee: Dr. Ronald B. Tjalkens  
                                                                     Dr. Evelyn Tiffany-Castiglioni  

 

 

Chronic exposure to manganese (Mn) causes the neurodegenerative movement 

disorder, manganism. A mouse model was developed to elucidate mechanisms involved 

in the etiology and progression of injury. Twelve-week old female C57Bl/6J mice were 

exposed to MnCl2 (100 mg/kg/day) by oral gavage daily for 8 weeks. After the 

experiment striatal dopamine (DA) content was decreased with the manifestation of 

hypoactivity. A distinct population of neurons was vulnerable to the effects of Mn, 

including enkephalin (ENK)-positive projection neurons, interneurons expressing 

neuronal nitric oxide synthetase (nNOS/NOS1), and choline acetyltransferase (ChAT)-

expressing interneurons. Activation of surrounding astrocytes occurred with expression 

of inducible nitric oxide synthase (iNOS/NOS2) and production of nitric oxide 

(NO)/peroxynitrite (ONOO─). Activated astrocytes were detected primarily near the 

microvasculature in both the striatum and globus pallidus (GP). It is suggested that Mn 
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exposure may damage the blood-brain barrier (BBB) and induce astrocytosis and NOS2 

expression, subsequent NO production may cause the death of adjacent neurons.  

This hypothesis was also tested in an in vitro co-culture model. Differentiated 

pheochromocytoma cells (PC12 cells) were co-cultured with primary astrocytes and 

exposed to Mn and inflammatory cytokines. Mn and cytokines induced NOS2 

expression and NO production in astrocytes, which correlated with apoptosis of PC12 

cells. Apoptosis of PC12 cells was prevented by overexpression of a phosphorylation-

deficient mutant of IκBα that inhibited NOS2 expression in astrocytes. It is concluded 

that Mn-and cytokine-dependent apoptosis in PC12 cells requires astrocyte-derived NO 

and nuclear factor κB (NF-κB)-dependent expression of NOS2. 

To explore possible means of interdicting this inflammatory process in 

astrocytes, a noval pharmacologic ligands of the peroxisome proliferator-activated 

receptor gamma (PPARγ) agonist, 1,1-Bis(3'-indolyl)-1-(p-trifluoromethylphenyl) 

methane (DIM-C-pPhCF3) were used in the same co-culture system. DIM-C-pPhCF3 

protected PC12 cells from apoptosis through inhibition of NOS2 expression in astrocytes 

after Mn and cytokines exposure. By contrast, the PPARγ antagonist, 2-chloro-5-

nitrobenzanilide (GW9622), had the opposite effect, increasing both NO production in 

astrocytes and neuronal injury. It is concluded that PPARγ is involved in the regulation 

of NOS2 expression in astrocytes and that agonists of PPARγ may represent a potential 

treatment method for Mn neurotoxicity. 
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CHAPTER I  

INTRODUCTION 

 
The Basal Ganglia Function: Physiology and Pathophysiology 

Anatomy of the Basal Ganglia 

The basal ganglia are a group of grey matter structures lying at the base of the 

forebrain surrounding the thalamus and hypothalamus involved in the control of 

movement and cognition. They are composed of three groups of nuclei: (1) the caudate 

nucleus, putamen and ventral striatum, which together are referred to as the striatum; (2) 

the GP or pallidum, which comprises an internal and an external segment, as well as a 

ventral extension; and (3) the closely related subthalamic nucleus (STN) and substantia 

nigra (SN) (Parent, 1996).  

The human striatum is composed of both projection neurons (Golgi type I cells) 

and interneurons (Golgi type II cells) (Parent, 1996). The projection neurons greatly 

outnumber interneurons in the striatum (Graveland and DiFiglia, 1985). Despite their 

relatively small number, interneurons have been shown to exert a powerful control on 

the activity of projection neurons in the striatum.  

There are two types of spiny striatal projection neurons which use GABA as their 

main neurotransmitter (Oertel et al., 1983), but also coexpress a number of neuroactive 

peptides. One type of neurons expresses substance P (SP) and dynorphin (DYN), the 
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other type of projection neurons expresses ENK. The physiological role of the various 

neuroactive peptides remains to be established. 

The striatal interneurons can be grouped into two broad categories according to 

their cell diameters: (1) the medium aspiny interneurons, and (2) the giant aspiny 

interneurons (DiFiglia et al., 1976). The medium interneurons have been further divided 

into three subcategories on the basis of their neurochemical content. The first type 

displays intense immunoreactivity for GABA and/or its synthesizing enzyme glutamic 

acid decarboxylase (GAD) and also contains pavalbumin (PV) (Cowan et al., 1990). The 

second type displays immunoreactivity for somatostatin (SOM) (Desjardins and Parent, 

1992), neuropeptide Y (NPY), and contains the enzyme nicotinamide adenine 

dinucleotide phosphate-diaphorase (NADPH-d) or NOS1 (Smith and Parent, 1986). 

These neurons form approximately 2% of the total neuronal population and may use NO 

for interneuronal communication  (Selden et al., 1994). A third type of interneurons, 

more recently discovered, expresses calretinin (CR) (Cicchetti et al., 1998). The giant 

interneurons display immunoreactivity for ChAT, the enzyme that synthesizes 

acetylcholine (ACh), and are thus considered as the cholinergic neurons of the striatum. 

These neurons are also enriched in acetylcholinesterase (AChE) (Eckenstein and 

Sofroniew, 1983) and represent approximately 1–2% of the total cell population of the 

human striatum (Holt et al., 1996). A significant proportion of these neurons also 

expresses CR in humans (Cicchetti et al., 1998). Double-antigen localization studies 

showed that virtually all large CR+, cholinergic neurons express SP (neurokinin-1) 

receptors (SPR) in monkey and human striatum (Parent et al., 1995). They are major 
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targets of SP+ fibers derived principally from the GABA+/SP+ projection neurons in 

human and rat striatum (Gerfen, 1991). Electron microscope studies have shown that 

cholinergic striatal interneurons also receive inputs from the substantia nigra pars 

compacta (SNc) dopaminergic neurons, as well as from glutamatergic neurons of the 

intralaminar thalamic nuclei and cortical neurons (Dimova et al., 1993; Contant et al., 

1996; Sidibe and Smith, 1999). Cholinergic interneurons also express high levels of δ 

opioid receptors (Mansour et al., 1994b). 

The striatum is subdivided into two major compartments — the striosomes (or 

patches) and the extrastriosomal matrix. The AChE-poor striosomes represented 

approximately 10–20% of the total striatal volume and are embedded in an AChE-rich 

matrix (Graybiel and Ragsdale, 1978). The striosomes are also characterized by low 

tyrosine hydroxylase (TH) and high ENK immunoreactivity. Calcium-binding protein 

calbindin (CB) is one of the most reliable chemical markers of the matrix. In addition, 

immunoreactivity for PV is mainly confined to the matrix in human and other species. 

By contrast, CR+ neuropil appears more intense in the striosomes than in the matrix 

(Prensa et al., 1999). 

Hypothesis of Basal Ganglia Function 

Lesions of the basal ganglia in humans lead to motor disorders that range from 

hypokinesia (e.g., PD) to hyperkinesia (e.g., hemiballismus and chorea). Furthermore, 

the basal ganglia circuits are thought to be involved in psychotic disorders, such as 

schizophrenia, and mediate behavioral effects of drugs of abuse. Therefore, it is 

important to understand how basal ganglia control motor movement and cognitive 
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function through the feedback loop from the cerebral cortex through the striatum to the 

pallidum to the thalamus and back to the cerebral cortex.  

The striatum is the major recipient structure of the basal ganglia. It receives 

inputs from (1) cerebral cortex (glutamic acid); (2) intralaminar nuclei of the thalamus 

(glutamic acid); (3) SNc (DA); (4) the raphe nuclei (5-HT); and (5) portions of the 

lateral amygdala (Parent and Hazrati, 1995). The internal segment of the globus pallidus 

(GPi) and substantia nigra pars reticulata (SNr) are the two major output structures of the 

basal ganglia.  

The striatum receives direct excitatory cortical inputs mediated by glutamate, and 

projects to GPi and SNr, through two major inhibitory projection systems, the direct and 

indirect pathways. The direct pathway arises from GABA+/SP+ striatal neurons, and 

projects monosynaptically to the GPi/SNr. The indirect pathway arises from 

GABA+/ENK+ striatal neurons, and projects first to the external segment of the globus 

pallidus (GPe), GPe neurons then in turn inhibit STN and GPi/SNr. GPi and SNr 

neurons can inhibit neurons in the thalamus sending excitatory inputs back to the cortex, 

thus closing the so-called cortico-striato-pallido-thalamo-cortical loop (Figure 1.1) 

(Parent and Hazrati, 1995). The STN can also receive direct cortical projections, 

especially from the frontal lobe (Alexander and Crutcher, 1990), then send excitatory 

projections to GPi and SNr which will in turn projects to the thalamus and cortex, 

forming the cortico-subthalamo-pallido-thalamo-cortical loop (Parent and Cicchetti, 

1998). 
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Figure 1.1. Cortico-striato-pallido-thalamo-cortical Loop. Figure adapted from (Wichmann and 
DeLong, 1996; DeLong, 2000). 

 

DA input from SNc can differentially affect striatal projection neurons based on 

the DA receptor subtypes (Gerfen et al., 1990). DYN/SP+ neurons of the direct pathway 

express D1 receptor and their activity can be enhanced by DA; whereas indirect pathway 

ENK+ neurons express D2 receptor  and are inhibited by DA (Gerfen and Young, 1988). 

Activation of the direct pathway results in reduction of tonic inhibitory basal ganglia 

output, therefore, disinhibition of thalamocortical neurons and facilitation of movement. 

By contrast, activation of indirect pathway leads to increased basal ganglia output and 

suppression of movement. The overall effect of striatal DA release is to reduce basal 
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ganglia output, leading to increased activity of thalamocortical projection neurons 

(Wichmann and DeLong, 1996). 

Besides the above motor circuit concerned with learned movement, there are also 

three other circuits related with the basal ganglia. Cognitive circuit is concerned with 

motor intentions (from prefrontal cortex to the head of caudate nucleus, through 

putamen, GP and ventral anterior nucleus of the thalamus, then back to the premotor 

cortex and prefrontal cortex); limbic circuit is concerned with emotional aspects of 

movement (from inferior prefrontal cortex, through the nucleus accubens and ventral 

pallidum, with return via the mediodorsal nucleus of the thalamus to the inferior 

prefrontal cortex); and oculomotor circuit is concerned with voluntary saccades (from 

the frontal eye field and posterior parietal cortex, through the caudate nucleus and SNr, 

to the ventral anterior nucleus of the thalamus, then back to the frontal eye field and 

prefrontal cortex) (FitzGerald and Folan-Curran, 2002). 

Interaction between Different Neurotransmitters 

Properly regulated balance between DA and ACh within the striatum is of 

fundamental importance for extrapyramidal motor control (Graybiel et al., 1994). DA 

exerts a tonic inhibitory effect on ACh release via D2-like DA receptors on cholinergic 

interneurons. ENK can also inhibit ACh release by δ receptors (Mulder et al., 1984). On 

the contrary, glutamate and SP represent the major excitatory drive to increase ACh 

release (Pisani et al., 2003).  

One study shows that the specific function of DYN and ENK is to dampen 

excessive activation of these neurons by DA and other neurotransmitters. Levels of these 
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opioid peptides are elevated by repeated, excessive activation of these pathways, which 

appears to be an adaptive or compensatory response (Steiner and Gerfen, 1998). Opioid 

peptide DYN could inhibit DA release by the following mechanisms: a. DA neurons 

express kappa receptors (Mansour et al., 1994a). Released in the SN from terminals of 

striatonigral neurons (You et al., 1994), DYN could act on inhibitory kappa receptors on 

DA neurons to inhibit nigrostriatal activity and DA release in the striatum (Reid et al., 

1988). b. DYN in the striatum may also play a role in ACh-regulated DA release 

(Gauchy et al., 1991). Via their presynaptic localization, stimulation of kappa opioid 

receptors also directly inhibits calcium-dependent glutamate release. Opioid peptide 

ENK is an endogenous ligand of δ and µ opioid receptors, which are expressed in the 

striatum (Mansour et al., 1994b). Cholinergic interneurons seem to express high levels of 

δ receptors (Mansour et al., 1994b), which inhibit ACh release (Mulder et al., 1984). 

Striatal δ-opioid agonist can stimulate DA and glutamate release. Glutamate and DA 

depresses striatal preproenkephalin mRNA levels (Ravenscroft and Brotchie, 2000). 

Some experimental studies show that ENK can decrease GABA release in the GPe from 

the same terminals while DYN reduces glutamate release in GPi. Both effects reduced 

stimulation of Gpi and SNr which in turn will have less inhibitory effect  on cortico-

thalamic traffic and possibly reduce akinesia (Maneuf et al., 1995; Henry and Brotchie, 

1996).  

DA can stimulate action potential- and calcium- dependent glutamate release 

from striatal terminals arising from the prefrontal cortex (McGinty, 1999). By way of 

their postsynaptic localization, muscarinic receptors directly stimulate glutamate release 
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and inhibit the response of medium spiny neurons to D1 receptor stimulation but will 

stimulate ENK+ neurons (Ferre et al., 1997). N-methyl-D-aspartate receptor (NMDAR) 

stimulation increases striatal NO synthesis, either directly or via stimulation of ACh 

release by interneurons, leading to muscarinic activation of NOS1-positive cells.  

Parkinson’s Disease, Parkinsonism and Manganism 

Parkinson’s Disease (PD) and Parkinsonism  

In 1817 British physician James Parkinson first described a motor disorder that 

now bears his name (Parkinson, 2002). PD or paralysis agitans is a progressive 

neurodegenerative disorder and has an unknown etiology. Risk for development of PD is 

attributed primarily to age but also to interaction between the environment and an 

individual’s specific genotype (Paganini-Hill, 2001). Postmortem studies have 

established degeneration of nigrostriatal DA as the hallmark of  PD (Kish et al., 1988). 

The main anatomic and biochemical characteristic of PD is the loss of dopaminergic 

neurons in the SNc. Neuronal loss decreases striatal DA concentrations, a process 

thought to underlie the clinical manifestation of the disease. Fluorodopa positron 

emission tomography (PET) is abnormal in PD and shows reduced striatal uptake 

particularly in the posterior putamen (Calne and Snow, 1993). 

In addition to PD, a spectrum of disorders of the basal ganglia is termed as 

parkinsonism. Parkinsonism is a clinical syndrome dominated by disorders of movement 

similar to PD which consists of akinesia, rigidity, tremor, and postural abnormalities. 

The use of the term akinesia often encompasses akinesia itself (loss of movement), 

bradykinesia (slowness of movement), and hypokinesia (reduced movement). Akinesia 
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can be caused by neurodegenerative disorders (multiple system atrophy, progressive 

supernuclear palsy, corticobasal degeneration, dementia with Lewy bodies, Alzheimer’s 

disease, pallidal degeneration, rigid variant of Huntington’s disease, Pick’s disease) or 

various secondary causes (antidopaminergic drugs induced, arteriosclerotic 

pseudoparkinsonism, hydrocephalus, postencephalitis, post-trauma, space-occupying 

lesions, toxin-induced: MPTP, CO, Mn, post anoxic encephalopathy and Wilson’s 

disease) (Bogousslavsky and Fisher, 1998).             

     Disorders that affect the SNc (such as PD) can be differentiated from those 

affecting the striatum or GP (such as most of parkinsonism) by their clinical picture and 

response to L-DOPA of patients (Olanow, 1992; Hughes et al., 2001). Patients with 

damage confined to the SNc have a clinical feature characterized by resting tremor and a 

good response to L-DOPA. On the other hand, patients with damage involving the 

striatum or GP tend to have early speech, gait and balance dysfunction without resting 

tremor and with little, if any, response to L-DOPA. 

Manganism and PD   

Manganism, like other parkinsonian disorders, resembles PD in its late phase, but 

has several distinguishing features (Beuter et al., 1994; Calne et al., 1994; Pal et al., 

1999). Although generalized bradykinesia and rigidity are found in both syndromes, 

dystonia is a neurological sign attributed to the damage of the GP in manganism (Calne, 

Chu et al. 1994) and is only minimally observed in PD patients. Other features of 

manganism that differ from PD include less frequent resting tremor, a propensity to fall 

backward and “cock walk”, little or no sustained response to L-DOPA therapy, and 
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normal fluorodopa uptake, as observed by PET (Calne, Chu et al. 1994; Pal, Samii et al. 

1999). 

Physiology of Manganese 

Physiological Functions of Manganese 

Mn, a trace mineral that functions both as an enzyme activator and as a 

component of metalloenzymes (an enzyme that contains a metal ion in its structure), was 

first shown to be an essential nutrient in 1931 (Kemmerer et al., 1931). Mn is a co-factor 

for a large number of enzymes and enhances catalysis by binding either to the enzyme or 

substrate. Mn can be replaced in many of these interactions by other divalent metal ions, 

particularly Mg2+. An exception is the Mn-specific activation of glycolsyltranserferases, 

which are important in bone formation. Another example is phosphoenolpyruvate 

carboxykinase (PEPCK), the enzyme that catalyzes the conversion of oxaloacetate to 

phosphoenolpyruvate. A third example is glutamine synthetase (GS), an enzyme 

involved in the biosynthesis of glutamine from the excitatory amino acid 

neurotransmitter glutamate (Keen et al., 1999).  

Mn also functions as a constituent of the following metalloenzymes: arginase, a 

cytosolic enzyme in the liver responsible for creating urea, a component of urine; 

pyruvate decarboxylase, an enzyme that participates in the metabolism of blood sugar; 

and Mn-dependent mitochondrial superoxide dismutase (MnSOD), an enzyme with 

antioxidant activity that protects tissues from the damaging effects of free radicals 

(Crowley et al., 2000; Keen et al., 2000; Takeda, 2003).   
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Mn can also interact with the cell surface integrin receptor (vitronectin receptor, 

CD29) and extracellular matrix (ECM) proteins (Gailit and Ruoslahti, 1988; Hemler, 

1990; Smith and Cheresh, 1990; Reichardt and Tomaselli, 1991; Humphries, 1996) in an 

RGD (Arg/Gly/Asp)-dependent process. Many studies have revealed that the vitronectin 

receptor upon binding to Mn and ECM can regulate attachment, tumorigenicity, 

differentiation, proliferation, and migration of cells (Yanai et al., 1991; Lein et al., 

2000). Also, through its interaction with the vitronectin receptor, Mn can stimulate 

several different signal transduction pathways in the cell, including the mitogen 

activated protein (MAP) kinases, extracellular signal responsive kinase 1 and 2 (ERK1 

and 2), and the stress activated kinase, p38 (Yanai et al., 1991; Roth et al., 2000).  

Absorption and Distribution of Mn under Physiological Conditions 

Under normal conditions about 1-5% of dietary Mn is absorbed into the body by 

the gastrointestinal tract (Davidsson et al., 1988; Davis et al., 1993). Studies in animals 

indicate that most of the Mn is transported into the liver, a depot of Mn, via the portal 

vein and is eliminated through biliary excretion (Ballatori et al., 1987). As such, it would 

not reach the brain or other systemic tissues in significant amounts. The molecular details 

of oral Mn absorption are not well understood. It has been reported that dietary Mn, 

which might be divalent, can be oxidized to trivalent Mn, probably by ceruloplasmin 

(Archibald and Tyree, 1987; Aschner and Aschner, 1991). Transferrin (Tf) , the 

principal Fe-carrying protein of the plasma, is a plasma carrier protein for trivalent Mn 

(Aisen et al., 1969), and Tf-bound Mn is mainly detected in the bloodstream after oral 

administration of Mn (Davidsson et al., 1989). There is also evidence suggesting an 
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active transport process (Garcia-Aranda et al., 1983), as well as  a simple passive 

diffusion-like process (Bell et al., 1989). Furthermore, there are many factors that have 

been found to affect Mn absorption, including dietary Mn levels (Britton and Cotzias, 

1966; Malecki et al., 1996), dietary levels of various minerals (Davidsson et al., 1991; 

Lai et al., 1999; Planells et al., 2000), age and developmental state of the infant (Keen et 

al., 1986), and especially iron status. There seems to be an inverse relationship between 

body iron stores and Mn absorption, perhaps due to competition for the same transport 

machinery, Tf. Several studies have demonstrated that Fe deficiency increases transport 

of orally administered Mn into the body as well as delivery to the brain (Erikson et al., 

2002). 

Absorption of Mn via the lungs has only recently been investigated and it seems 

to depend largely on particle solubility. MnCl2 or MnSO4 which are soluble salts, can be 

quickly taken into the bloodstream. Insoluble MnO2 given at similar doses is very slowly 

absorbed and at much lower overall levels (Roels et al., 1997; Dorman et al., 2001).  

  Physiological Mn concentrations in serum are in the range of 0.8-2.1 µg Mn/L 

(~20nM) (Keen et al., 2000). Thermodynamic modeling of Mn2+ in serum suggests it 

exists in several forms, including an albumin or β1-globulin-bound species (84%), as a 

hydrated ion (6.4%) and in 1:1 complexes with HCO3¯ (5.8%), citrate3-(2.0%) and other 

small molecular weight ligands (1.8%) (Foradori et al., 1967; Harris and Chen, 1994). 

Free plasma and tissue Mn concentrations tend to be extremely low (Cotzias et al., 

1968). A small percentage of trivalent Mn in serum is found 100% complexed to Tf 

(Aisen et al., 1969; Harris and Chen, 1994).  
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Distribution of Mn to the body tissues is fairly homogeneous.  An increased 

concentration of Mn is found in tissues rich in mitochondria and pigmentation. Bone, 

liver, pancreas, and kidney tend to have higher Mn levels than other tissues (Rehnberg et 

al., 1980). 

Delivery and Distribution of Mn in the Central Nervous System (CNS) 

Transport of Mn into the CNS 

Several reports implicate three sites of Mn entry into the brain: cerebral capillary 

endothelial cells of the BBB (Rabin et al., 1993), the choroid plexuses into cerebrospinal 

fluid (CSF) and then into the brain (Murphy et al., 1991) and the olfactory nerve 

(Brenneman et al., 2000). At physiological serum Mn concentrations, Mn influx is 

reported to be non-saturable and occurs primarily through the capillary endothelium of 

the BBB, while Mn influx at high plasma concentrations is saturable and occurs 

primarily via the CSF (Murphy et al., 1991; Rabin et al., 1993).  The chemical speciation 

of Mn also affects its diffusion and transport into the brain. Although Mn can assume 

numerous oxidation states (11 in total, ranging from 3- to 7+), in mammalian tissues it is 

found in only three oxidation states (2+, 3+ and 4+) (Archibald and Tyree, 1987; Keen et 

al., 2000). It is unclear yet whether there is a predominant Mn species crossing the BBB, 

and if so, the identity of that species. One recent study suggests that Mn citrate may be a 

significant chemical species of Mn transferred across the BBB, Mn bound to small 

molecular weight ligands in plasma can enter the brain more rapidly than the hydrated 

Mn ion (Crossgrove et al., 2003). 
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The mechanism by which Mn is transported into the CNS at physiological 

plasma level remains controversial. There are two distinct but related mechanisms: a Tf-

dependent and a Tf-independent pathway.  Which of the two uptake mechanisms 

functionally predominates is unknown, but the transport mechanism is likely to be cell-

type specific and may depend on the quantity of Tf receptors (TfRs) on the cell surface 

(Roth and Garrick, 2003).   

Several lines of evidence strongly suggest that trivalent Mn is transported by Tf 

through the brain capillary endothelium. For instance, TfRs are present on the surface of  

cerebral capillaries (Pardridge et al., 1987) and endocytosis of Tf is known to occur in 

these capillaries. Also high concentrations of TfRs are located in the nucleus accumbens 

and caudate putamen, which provide efferent fibers to areas rich in Mn (ventral 

pallidum, the GP and SN), suggesting that these sites may accumulate Mn via Tf-

mediated axonal transport (Sloot and Gramsbergen, 1994). In addition, Fe and Mn 

compete for the same carrier transport system. Plasma Fe overload significantly 

decreases uptake of Mn across the BBB, whereas Fe deficiency is associated with 

increased CNS burden of Mn (Aschner and Aschner, 1990).  It is noteworthy that Tf-

complexed Mn is exclusively present in the trivalent oxidation state (Aisen et al., 1969). 

Although the Tf-dependent transport is presumably responsible for much of the uptake 

of Mn, several critical steps within this pathway have not been definitively shown to 

occur during Mn import into cells. For example, a requirement for acid-dependent 

release of Mn from the Tf/TfR complex and the subsequent reduction of Mn by ferric 

reductase or a comparable enzyme within endosomes have not been demonstrated. Thus, 
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additional studies are needed to characterize fully the mechanism for Mn uptake by the 

Tf-dependent pathway (Roth and Garrick, 2003). In addition, Tf is not required to 

achieve or maintain normal brain Mn levels in mice with very low plasma Tf levels 

(Malecki et al., 1999), suggesting that Tf-independent mechanisms can maintain brain 

Mn homeostasis. Some studies show that the Tf-dependent route of Mn brain entry 

appears to play a limited role in total Mn uptake (Malecki, 2001a).  

In the absence of Tf, carrier-mediated Mn transport has been demonstrated in 

cultured brain endothelial cells (Aschner et al., 2002b; Crossgrove et al., 2003), in Caco-

2 cells from the apical, but not basolateral, side (Leblondel and Allain, 1999) and in 

astrocytes (Aschner et al., 1992). However, none of these studies has identified the 

transporter(s) at the BBB or on many other cell membrane surfaces. It has been 

hypothesized that the transmembrane divalent metal transporter-1 (DMT-1, a.k.a. 

divalent cation transporter [DCT1], natural resistance associated macrophage protein 2 

[Nramp2], transporter family gene name: SLC11A2) plays a role in brain Mn uptake. 

DMT-1 has a very broad substrate specificity and is likely the major transmembrane 

protein responsible for the uptake of a variety of divalent cations, including Fe2+, Mn2+, 

Cd2+, Co2+, Ni2+, Cu2+, and Pb2+ (Gunshin et al., 1997). Mn has a relatively high affinity 

for DMT-1. There is evidence that DMT-1 transports Mn2+ at the cell membrane or 

translocates it from endocytosed vesicles (Chua and Morgan, 1997). Studies on the 

function of DMT-1 have been greatly assisted by the use of the Belgrade rat and the 

microcytic mouse which possess identical G185R mutations that result in an inactive 

form of DMT-1 (Fleming et al., 1997b; Fleming et al., 1998b). The fact that both Fe and 
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Mn uptake in brain are decreased in the Belgrade animals (Farcich and Morgan, 1992; 

Burdo et al., 1999; Zywicke et al., 2002) strongly suggests that DMT-1 is critical for the 

transport of both metals. This hypothesis is controversial, however, as a recent study 

suggests that DMT-1 is not a major mechanism of the carrier-mediated uptake of Mn 

into brain at the BBB (Crossgrove and Yokel, 2004). In addition to DMT-1, there is also 

evidence of Mn transport via voltage regulated Ca2+ channels (Lucaciu et al., 1997; 

Kannurpatti et al., 2000). Increased uptake of Mn by depolarization of cell membranes 

can be prevented by several Ca2+ channel blockers. Similarly, increased transport of Mn 

has also been demonstrated when glutamate binds to its Ca2+-coupled receptor 

(Kannurpatti et al., 2000). It is reasonable to assume that opening of the Ca2+ gated 

channel may augment Mn uptake with the potential for enhanced cytotoxicity (Roth and 

Garrick, 2003).   

Delivery of inhaled Mn to the brain is likely to occur through direct intra-axonal 

transport via the olfactory system (Tjalve and Henriksson, 1999; Dorman et al., 2002). 

The nasal route of uptake was reported to account for more than 90% of Mn taken up 

into the rat olfactory bulb following acute inhalation exposure for up to 8 days 

(Brenneman et al., 2000). However, the significance of the contribution of this pathway 

to Mn toxicity is not clear (Tjalve et al., 1996; Dorman et al., 2002).  Furthermore, the 

physiological and anatomic differences between human and rodent nasal and brain 

complicate the interpretation of comparative studies. Thus, additional studies are 

necessary to evaluate the importance of the olfactory route of entry of Mn in humans.  
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Regional Distribution of Mn in the CNS 

Distribution of Mn in the brain is not homogeneous and even different from 

species to species. Magnetic resonance imaging (MRI) techniques show that, in exposed 

humans and macaque monkeys, Mn concentrations are highest in the striatum, GP, and 

SNr (Eriksson et al., 1992; Nagatomo et al., 1999). An analysis by flameless atomic 

absorption spectrometry showed that Mn concentrations are higher in the striatum, GP, 

SN and white matter of the cerebral cortex in the human brain of control cases. 

However, in chronic Mn poisoning cases, Mn concentrations are increased in the grey 

matter of the cerebral cortex and are decreased in the basal ganglia (Yamada et al., 

1986).  In contrast, the results from rodents are more variable, with significant elevation 

in cerebellar Mn content (Takeda et al., 1994). A very recent study showed that, after 

dietary Fe deprivation, Mn accumulated in the GP, hippocampus, and SN of rat brain 

which are normally rich in Fe (Erikson et al., 2002). Still, considerable evidence also 

suggests that Mn intoxication preferentially affects the GP. For instance, systemically 

administered radiolabeled Mn primarily accumulates in the GP (Dastur DK, 1968). Also, 

several reports indicate that Mn intoxication in humans and animal models is associated 

with pathologic changes that are most pronounced in the GP: loss of neurons, decreased 

numbers of myelinated fibers and gliosis (Pentschew et al., 1963; Yamada et al., 1986). 

These different conclusions may, in part, be explained by the relative sensitivity of the 

analytical techniques that are used (i.e., direct chemical analysis of brain Mn by atomic 

absorption spectrometry or neutron activation analysis or MRI). 
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Cellular Uptake and Subcellular Distribution of Mn in the CNS 

 After luminal secretion from capillary endothelial cells and choroidal epithelial 

cells, Mn exists as non-Tf-bound and Tf-bound forms in the extracellular fluid in the 

brain. Mn3+ binds to Tf which is secreted from oligodendrocytes (Connor et al., 1990). 

Tf-bound Mn appears to be taken up via receptor-mediated endocytosis by neurons 

which express TfRs on the surface (Moos, 1996). There is also the possibility that DMT-

1 is involved in neuronal uptake of Mn2+ and/or low molecular weight ligand-bound Mn 

(Gunshin et al., 1997). Non-Tf mediated uptake of Mn is observed in glial cell cultures 

(Takeda et al., 1998a). Additionally, astrocytes in the CNS have been shown to possess a 

high-affinity plasma membrane transporter for Mn2+ that facilitates uptake of this 

divalent metal (Aschner et al., 1992). The Mn levels are highest in mitochondria and 

cytosol, and lowest in myelin and nuclei. After chronic Mn treatment in vivo, the largest 

increases in Mn are noted in nuclei and mitochondria. Such observations suggest that 

mitochondria and nuclei may be subcellular targets for Mn neurotoxicity (Lai et al., 

1999). 

Mn Neurotoxicity-Manganism 

Sources of Mn Exposure 

Although Mn is essential for normal physiological functions, overexposure to Mn 

can cause a disorder known as manganism or Mn-induced parkinsonism. In 2000, the 

Institute of Medicine at the National Academy of Sciences established the Tolerable 

Upper Intake Level (UL) for Mn at 11 mg for adults (National Academy of Sciences, 

2001). Overexposure may result from dietary, metabolic and environmental sources. 
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Grains, tea, and green leafy vegetables contain the highest amounts of dietary Mn as 

reported in the Total Diet Study (Pennington and Schoen, 1996). Soy-based infant 

formulas tend to have more Mn than human milk, and this causes many concerns 

(Lonnerdal, 1994; Krachler and Rossipal, 2000).  

Individuals receiving total parenteral nutrition (TPN) are at higher risk for Mn 

toxicity, because the normal mechanisms of Mn metabolism are bypassed (i.e., the gut), 

and 100% of the Mn in the TPN solution enters the body as compared to approximately 

5% of that taken orally. There have been reported intoxications from TPN solutions 

containing 0.1 mg Mn/day (Bertinet et al., 2000).  Several papers have also revealed that 

patients with chronic liver failure exhibit increased serum and brain levels of Mn and 

display some of the behavioral symptoms and neurodegenerative features of Mn 

intoxication (Hauser et al., 1994; Krieger et al., 1995). Because Mn is normally 

eliminated in bile, any condition that compromises normal liver function could 

potentially lead to Mn intoxication (Papavasiliou et al., 1966).  

Environmental contaminants may also provide sources of overexposure to Mn. 

Mn is used in the manufacture of dry batteries, steel, aluminum, welding metals and 

contained in a widely used organochemical fungicide (Maneb) and also animal feed and 

pigments ( Keen and Leach, 1988; Keen et al., 2000). In addition, combustion emissions 

from power plants, iron and steel foundries and coke ovens make significant 

contributions to the concentration of Mn in air (Lioy, 1983). Workers from manganese 

mines, mills and foundries were reported to develop manganism since 1837 (Couper, 

1837; Yamada et al., 1986; Huang et al., 1989). The gasoline additive, 
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methylcyclopentadienyl manganese tricarbonyl (MMT), is a controversial source of 

additional airborne Mn which has been used in Canada for more than 10 years as a 

replacement for lead as an antiknock agent. Its use in the United States is still under 

debate (Kaiser, 2003). Upon combustion in automobile engines, MMT yields a complex 

mixture of phosphate, sulfate, and oxide forms of Mn. However, studies have shown that 

the air Mn content in Canadian cities with the most traffic is near or below the current 

inhalation  reference concentration (RfC) for inhalable Mn, which is 0.05 µg Mn/m3, as 

set by the United States Environmental Protection Agency (Loranger and Zayed, 1997; 

Clayton et al., 1999). 

Clinical Features of Manganism 

Manganism is characterized by psychiatric symptoms and extrapyramidal 

manifestations. Chronic exposure to high levels of inhalable Mn (>1-5 mg Mn/m3) is the 

most frequently observed cause of manganism (Mergler et al., 1994) and was first 

recognized by Couper in 1837 among workers engaged in the grinding of Mn ores 

(Couper, 1837). Cases of Mn poisoning have also been reported in families exposed to 

Mn through contaminated well-water (Kawamura, 1941). The early phase of psychiatric 

symptoms of manganism is also called “manganese madness” or “locura manganica” 

and is characterized by emotional liability, mania, compulsive or violent behavior, 

hallucinations, disturbance of sleep, and eating and sexual disturbances but few, or 

subtle, motor effects. A later phase (“established” phase), is dominated by motor 

symptoms such as bradykinesia, rigidity, and dystonia (prolonged muscle contractions) 

(Rodier, 1955). A particularly characteristic finding is the so-called “cock walk”, in 
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which patients strut on their toes, with elbows flexed and the spine erect. It is noteworthy 

that patients can develop the motor deficits of manganism without having experienced 

any phase of manganese madness (Huang et al., 1989) and patients with manganism may 

develop increasing neurologic dysfunction long after cessation of exposure (Huang et al., 

1993). 

Functional Imaging of Manganism 

MRI and PET are helpful techniques for diagnosis of manganism. The GP of 

humans exposed to parenteral Mn show a characteristic bilateral, symmetrical signal 

hyperintensity on T1 weighted MRI (Lucchini et al., 2000), which is in accordance with 

elevated blood serum Mn concentrations in most cases (Rosenstock et al., 1971; Huang 

et al., 1989; Pal et al., 1999). PET with [18F]-6-fluoro-L-dopa (6-FD) uptake provides an 

index of prestriatal dopaminergic function (Martin et al., 1989), while [11C] raclopride 

(RAC) is a PET marker for postsynaptic (D2 receptor) dopaminergic function (Farde et 

al., 1989). Cerebral glucose metabolism can be revealed by 18F-2-fluoro-2-deoxyglucose 

(FDG) PET (Reivich et al., 1979). In patients with manganism 6-FD uptake was normal, 

RAC binding was in the low normal range in the putamen and FDG scans revealed a 

widespread decline in cortical glucose metabolism (Wolters et al., 1989; Shinotoh et al., 

1997; Pal et al., 1999).  

Neurochemical and Neuropathological Changes in Manganism 

Neurochemical changes of manganism are observed prior to neuropathological 

ones (Neff et al., 1969). A severe reduction in DA levels in the caudate nucleus, putamen 

and SN, a distinct reduction of noradrenaline in hypothalamus and normal serotonin (5-
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HT) in these areas was reported in a patient dying with chronic manganism (Bernheimer 

et al., 1973).  

The pathologic changes in human manganism are mainly in the GP, especially 

the medial segment where neuronal loss and reactive gliosis occur. A less severe 

degeneration occurs in the putamen, caudate nucleus and SNr (Yamada et al., 1986). 

Damage involving the STN has also been reported and, less frequently, the SNc 

(Scholten, 1953; Calne et al., 1994).  Mn accumulates in multiple brain regions including 

the basal ganglia, frontal cortex, pre-optic area, and hypothalamus, indicated by 

flameless atomic absorption spectrometry analytical determination in autopsy samples 

(Yamada et al., 1986). 

Experimental Manganism   

  The data from nonhuman primates, but not from rodents, are similar to those 

obtained from humans with manganism (Calne et al., 1994), except that the key feature 

of reactive gliosis observed in monkeys is the presence of Alzheimer type II astrocytosis 

(Pentschew et al., 1963; Olanow et al., 1996). Ultrastructural studies in rats report that 

reactive astrocytes and microglia surround degenerating neurons and contain increased 

numbers of large secondary lysosomes, indicative of an active phagocytic process 

(Bikashvili et al., 2001). However, rodent studies have yielded variable results 

concerning regional brain Mn distribution and neurochemical and neuropathological 

responses to Mn exposure (Brenneman et al., 1999; Newland, 1999). Further, the 

behavioral changes observed in Mn-poisoned humans are not replicable in rodents, 
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which further confounds interpretation of results from those studies in assessing the 

consequences of human exposure (Aschner et al., 1999). 

Treatment of Manganism 

Treatment includes removing Mn from the body by chelation with 

ethylenediaminetetraacetic acid (EDTA) or other compounds for early cases and 

symptomatic improvement using drugs such as L-DOPA (levodopa). There are 

conflicting reports about the efficacy of these treatments, the reasons for which may 

include different routes of Mn exposure, as well as differences in severity, duration, and 

stage of Mn poisoning when the treatment is given. The effectiveness of chelating agents 

such as EDTA is probably limited to the early cases of manganism without structural 

neurological lesions and extrapyramidal signs and symptoms (Pal et al., 1999). Although 

EDTA was reported to cause significant improvement in patients with manganism for 

two and a half years (Penalver, 1957), this improvement was not maintained and poor 

responses were also seen in some patients (Cook et al., 1974). In addition, repeated use 

of EDTA may cause nephrotoxicity (Levine, 1970). Patients with chronic manganism 

must tolerate higher doses of L-DOPA than patients with PD to gain improvement in 

rigidity, tremor and facial expressions (Rosenstock et al., 1971; Huang et al., 1989). 

However, in the cases with absence of rigidity or dystonia or both, L-DOPA seems 

ineffective (Cook et al., 1974). The absence of a sustained response to L-DOPA is 

considered as a criterion for distinguishing manganism from PD (Lu et al., 1994). Other 

therapies reported to be effective are 5-hydroxytryptophan  (5-HTP) (Mena et al., 1970) 

and para-aminosalicylic acid (PAS) (Ky et al., 1992). However, their mechanisms of 
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action are unclear. Because of the lack of a clearly effective therapy for manganism, 

preventive measures are necessary to avoid exposure and neurological examinations to 

detect early signs of exposure are required for high risk populations. 

Cellular Mechanisms of Manganism  

Any satisfactory hypothesis concerning mechanisms of Mn neurotoxicity should 

be able to explain the selective vulnerability of the GP and the chronic progression of 

clinical symptoms even after cessation of Mn exposure (Pal et al., 1999). Several aspects 

of possibilities have been studied in the past; however, the final conclusion has not been 

reached. Several potential mechanisms for Mn-induced neurotoxicity will be briefly 

considered in the following sections: oxidative stress, mitochondrial damage, 

excitotoxicity, neurotransmitter dysfunction and interation with Fe. In addition, specific 

direct effects of Mn on neurons leading to cell death and on astrocyte functions will be 

considered. 

Mn and Oxidative Stress  

Experimental evidence supports the role of Mn both as a powerful pro-oxidant 

and antioxidant, depending upon valence state, cellular localization, and protein binding 

(Kono et al., 1976; Donaldson et al., 1981). There are reports that Mn2+ suppresses lipid 

peroxidation by its antioxidant properties both in vivo (Donaldson et al., 1982) and in 

vitro (Tampo and Yonaha, 1992). Mitochondria also rely heavily on Mn2+ for antioxidant 

protection as it is the critical cofactor for MnSOD (HaMai et al., 2001). In astrocytes, 

Mn2+ is essential for the function of GS which converts the excitatory neurotransmitter 

glutamate to glutamine, which is safely shuttled back to neurons in a metabolite 
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trafficking loop. Proper functioning of this enzyme is important to protect neurons from 

excitotoxicity (Boksha et al., 2000; Weber et al., 2002). 

However, excess Mn2+ can be oxidized to higher valence forms, which are 

associated with oxidative stress induced neurotoxicity (Desole et al., 1997; Stokes et al., 

2000). There is evidence that stimulaton of cultured astrocytes with Mn2+ results in 

oxidative stress accompanied by decreases in antioxidant enzyme activities (Chen and 

Liao, 2002). There are several mechanisms of reactive oxygen species (ROS) formation 

in neurons after Mn exposure. For example, there is a significant increase in the 

expression of TfR mRNA and cellular 59Fe net uptake by cultured neurons, but not 

astrocytes. These findings suggest that Mn may contribute to neuronal cytotoxicity by 

elevating intracellular free Fe levels (Zheng and Zhao, 2001). Excess intracellular Fe can 

actively participate in generation of Fe-mediated ROS, leading to neuronal cell death 

(Youdim et al., 1993). Several studies show that TfR is expressed in neurons and to a 

lesser extent in astrocytes. The rather low base-level of TfR may partially explain the 

insensitivity of astrocytes to Fe cytotoxicity (Zheng and Zhao, 2001). In addition, Mn 

can also catalyze the oxidation of DA and other catecholamines in neurons, which can 

generate ROS, such as superoxide anion, hydroxyl radical, and hydrogen peroxide. 

These ROS are believed to cause neurotoxicity and neuronal death (Graham, 1984). Ali 

et al. (1995) demonstrated dose-related increases in ROS production in rat caudate 

nucleus after in vivo Mn exposure (Ali et al., 1995). Tyree and Archibald (1987) have 

postulated that trivalent Mn is the neurotoxic cation of concern. In vitro trivalent Mn can 

oxidatively destroy DA, epinephrine, norepinephrine, and their precursor dopa, but the 
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presence and relative abundance of this valence state in brain remains to be determined 

(Archibald and Tyree, 1987). Desole et al. also provided evidence for Mn-induced 

oxidative stress via xanthine oxidase (Desole et al., 1994). The production of ROS in 

neurons exposed to Mn may also due to the indirect consequence of the toxic actions of 

Mn on the mitochondria, as a number of mitochondria toxicants have been shown to 

promote formation of ROS (Kitazawa et al., 2002; Samavati et al., 2002). Mn is 

transported into the mitochondria via the high-capacity, low-affinity Ca2+-uniporter, 

whereupon it inhibits Na+-dependent Ca2+ efflux from brain mitochondria, promoting an 

increase in matrix Ca2+ levels and subsequent oxidative stress (Gavin et al., 1990). Other 

sources of ROS caused by accumulation of Mn include depletion of intracellular thiols 

(Eriksson and Heilbronn, 1983), inhibition cellular antioxidant defense mechanisms 

(Liccione and Maines, 1988) and increased expression of cytochrome P-450 enzymes 

with superoxide radical formation (Liccione and Maines, 1989).  

Mn and Mitochondria 

The similarity between the neuropathology of manganism and the 

neuropathology of patients intoxicated with known mitochondrial toxicants such as 

cyanide or carbon monoxide (CO) (both of which have a predilection for the GP) forms 

the basis for suspecting Mn to be a mitochondrial toxicant (Beal, 1992). As mentioned, 

Mn accumulates in mitochondria via the calcium uniporter and is transported out of 

mitochondria mainly via the slow Na+-independent efflux mechanism, which is an active 

(energy-requiring) process. Mn inhibits Ca2+ efflux, thereby promoting a Ca2+ 

permeability transition (PT) and collapsing the mitochondrial membrane potential (Ψm), 
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which will eventually cause rupture of the mitochondria and cell death (Gavin et al., 

1999). On the subcellular level, Mn2+ is most concentrated in mitochondria (Maynard 

and Cotzias, 1955) and is postulated to spontaneously give rise to Mn3+. Even in trace 

amounts, Mn3+ can cause formation of ROS (HaMai et al., 2001), which can damage 

components of the electron transport and oxidative phosphorylation machinery of the 

mitochondria and in turn subject the cells to energy failure (Gavin et al., 1992; Calabrese 

et al., 2001).  It has also been suggested that Mn toxicity of PC12 cells could be the 

result of either a direct or indirect effect on complex I activity, mediated by oxidative 

stress (Galvani et al., 1995).   Gavin et al. showed that the ATPase complex is inhibited at 

very low levels of mitochondrial Mn and that complex I is inhibited at higher Mn 

concentrations (Gavin et al., 1999).  It has also been shown that Mn3+ is more effective at 

inhibiting complex I (Archibald and Tyree, 1987; Ali et al., 1995; Chen et al., 2001). In 

another study, treatment of striatal neurons with Mn showed dose-dependent loss of Ψm 

and complex II activity (Malecki, 2001b). Collectively, these results indicate that Mn 

may trigger neuronal cell death secondary to energy depletion caused by mitochondrial 

dysfunction. Mitochondrial dysfunction would in turn result in free radical damage to 

mitochondrial DNA. Together with the slow clearance of Mn from mitochondria, a 

progressive loss of function may continue. This chain of events may partially explain 

why human manganism continues to progress despite withdrawal from exposure 

(Brouillet et al., 1993).  
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Mn and Excitotoxicity 

Glutamate excitotoxicity in neurons is associated with increased influx of Na+ 

and Ca2+ ions that cause mitochondrial Ca2+ overload, loss of ATP production, and cell 

death. Increased intracellular Na+ and Ca2+ causes cell swelling and eventually cell lysis. 

In addition, Ca2+ overload leads to stimulation of numerous Ca2+–activated enzymes that 

degrade cellular structual proteins and produce ROS. ROS inhibits excitatory amino acid 

(EAA) transporter function limiting removal of excess extracellular glutamate, thus 

producing increased NMDAR stimulation, with further production of ROS and greater 

inhibition of EAA transport. This feed-forward NMDAR- and Ca2+ mediated cycle will 

eventually lead to cell death. Furthermore, elevated extracellular glutamate inhibits the 

uptake of cystine, a precursor of glutathione (GSH), thus decreasing intracellular GSH 

levels and antioxidant function (Choi, 1992; Sonnewald et al., 2002). 

It has been shown that Mn neurotoxicity may be due to an indirect excitotoxic 

event caused by increased extracellular glutamate levels (Brouillet et al., 1993). As Mn 

is concurrently released with glutamate from glutamatergic neuron terminals (Takeda et 

al., 2002), the hyperactivity of corticostriatal neurons observed in the course of Mn 

intoxication may partially contribute to the elevated extracellular glutamate levels 

(Centonze et al., 2001). In the brain, both Mn uptake (Aschner et al., 1992) and 

glutamate uptake predominantly occur in astrocytes (Aschner et al., 2001). Therefore, it 

is also critical to address the relationship between Mn and glutamate uptake system in 

astrocytes in order to fully understand Mn induced excitotoxicity in the CNS. The 

glutamate uptake process occurs via glutamate transporters which are sodium/potassium-
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dependent membrane proteins. Among them, glutamate transporter and 

glutamate/aspartate transporter (GLAST) are the prominent astrocytic transporters 

(Kondo et al., 1995; Danbolt, 2001), intracellularly transporting both glutamate and 

aspartate. A previous study showed that overnight  exposure of cultured rat astrocytes to 

Mn caused a 30% decrease in glutamate uptake (Hazell and Norenberg, 1997). A later 

study showed that exposure to 500 mM MnCl2 led to decreased mRNA levels of GLAST 

(Erikson and Aschner, 2002). Therefore, decreased glutamate uptake in astrocytes is 

linked to decreased GLAST mRNA after Mn exposure. Thus, the excitotoxicant effect of 

increased extracellular glutamate is also associated with Mn-induced glutamate uptake 

inhibition in astrocytes (Desole et al., 1997; Miele et al., 2000; Stokes et al., 2000; 

Montes et al., 2001).  

Mn and Neurotransmitter Dysfunction 

As mentioned above, Mn and glutamate are concurrently released from 

glutamatergic neuron terminals (Takeda et al., 2002), the abnormal excitation of striatal 

neurons in the course of Mn intoxication may be due to hyperactivity of corticostriatal 

neurons, a presynaptic mechanism upstream of calcium-entry-triggered events (Centonze 

et al., 2001). In this light, the strong D2-DA-receptor mediated inhibitory control of 

corticostriatal transmission reported in Mn treated rats may represent an adaptive change 

aimed at counteracting abnormal glutamate release (Calabresi et al., 2001). The 

enhancement of excitatory transmission in the striatum is an early event in the course of 

Mn poisoning and plays a pathogenic role in the development of further striatal damage. 

This might explain why motor symptoms appear after emotional symptoms, as abnormal 
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inhibitory dopaminergic control on corticostriatal glutamatergic inputs has been 

previously proposed to play a critical role in schizophrenia (Carlsson and Carlsson, 

1990). 

Evidence for anterograde axonal transport of Mn was indicated in the 

GABAergic striato-nigral and/or dopaminergic nigro-striatal pathways (Takeda et al., 

1998b). The axonal transport of Mn in these circuits seems to reflect the association with 

neuronal activity (Sloot and Gramsbergen, 1994). Takeda reported that levels of gamma-

aminobutyric acid (GABA) in the perfusate were remarkably decreased during perfusion 

with Mn in the striatum (Takeda et al., 2003). A novel finding recently was that the Mn 

concentration in the striatum was negatively correlated with the GABA concentration 

(Erikson and Aschner, 2003). The inhibitory action of low Mn concentrations against 

GABAergic neuron activity seems to be important to understand the abnormal excitation 

of striatal neurons during Mn intoxication, which may be associated with hyperactivity 

of corticostriatal fibers (Centonze et al., 2001).   

It has been demonstrated that Mn2+ permeates presynaptic voltage-dependent 

Ca2+ channels and induced DA release from depolarized nerve terminals (Narita et al., 

1990). Altered glutamatergic and GABAergic function also can contribute to altered 

striatal DA release. For example, increased glutamate in the SN can increase striatal DA 

release via NMDARs (Castro and Zigmond, 2001; Page et al., 2001). It is also been 

found that the striatum is sensitive to a modest increase in Mn concentration (~40% 

increase compared to control) which leads to a decrease in GABA levels. This 

disturbance in GABAergic inhibitory firing into the SN may lead to increased striatal 
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DA levels. Therefore, the neurotoxic effects of Mn on striatal DA may be indirectly 

mediated via abnormal striatal glutamate and/or GABA metabolism (Erikson and 

Aschner, 2003). 

Another study, however, showed that low cumulative Mn exposure increased 

striatal GABA but not DA in a pre-Parkinson’s rat model (Gwiazda et al., 2002). Motor 

dysfunction in the absence of measurable effects on striatal DA has also been observed 

at low Mn cumulative doses both in monkeys (Olanow et al., 1996) and rodents (Witholt 

et al., 2000). These results suggest that initial motor deficits might not be due to Mn 

effects on the dopaminergic nigro-striatal system, but possibly in the GABAergic and/or 

other circuits of the basal ganglia (Gwiazda et al., 2002). 

The influence of Mn on TH activity is of importance. Bonilla showed an initial 

increase in the enzyme activity and then a decrease at later stages. The initial increase in 

the enzyme activity may thus account for an early increase in the levels of DA and 

norepinephrine, while the decrease in the enzyme activity at later stages may be the 

cause of a decrease in the levels of these amines after chronic exposure (Bonilla, 1980). 

Mn and Fe  

The co-accumulation of Fe and Mn in the same brain region (the GP) after Mn 

exposure raises the concern that Fe may be a contributing factor facilitating neuronal cell 

loss during Mn intoxication since Fe deposition is also found in degenerative brain areas 

of other neurological disorders, including Alzheimer’s, Parkinson’s, and Huntington’s 

disease (Shoham and Youdim, 2000; Berg et al., 2001; Thompson et al., 2001). Fe is 

capable of generating ROS via the Fenton reaction, leading to oxidative stress, lipid 
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peroxidation, and eventually cell death. In addition, Fe can have both a direct and an 

indirect influence on the transport of Mn and other divalent metals in that it is capable of 

regulating expression of a number of the key proteins involved in metal transport such as 

Tf and DMT1 (Oates et al., 2000; Moos et al., 2002; Roth et al., 2002b).   

Mn and Neuronal Cell Death 

Several in vitro studies in PC12 cells show that Mn induced both apoptotic and 

necrotic cell death depending on the intracellular ATP level (Roth et al., 2000; Hirata, 

2002; Roth et al., 2002a). There is strong evidence that Mn elicits caspase-dependent 

apoptosis in PC12 cells that is blocked by Bcl-2 under conditions in which ATP levels 

remained unchanged (Hirata, 2002). Many enzymes of classical signaling pathways 

associated with apoptosis are activated in cells treated with Mn, such as the JNK and p38 

protein kinases, caspase- 3-dependent cleavage of poly(ADP ribose) polymerase 

(PARP), ERK et al. (Desole et al., 1996; Hirata, 2002). However, apoptosis only 

partially explains the cytotoxic actions of Mn, because inhibitors of several classic 

apoptotic markers, including the caspase family of proteases and p38 kinase, fail to 

prevent cytotoxicity (Roth et al., 2000). Therefore, other cytotoxic events must account 

for the observed decrease in cell viability provoked by Mn. As previously mentioned, 

Mn can disrupt mitochondria function and the subsequent depletion of ATP will 

ultimately cause necrotic cell death (Roth et al., 2000; Chen and Liao, 2002), which is 

likely to be the prevailing mechanism responsible for Mn-induced cell death, even when 

apoptotic signaling is initiated. 
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Mn Neurotoxicity and Astrocytes 

Astrocytes are postulated to be the principal repository for Mn in the CNS 

following the demonstration that GS, for which Mn is a required cofactor, is located 

mainly in this cell type (Martinez-Hernandez et al., 1977). Spin resonance studies show 

that GS is an octameric protein that can bind up to 8 Mn ions per octamer (Wedler and 

Denman, 1984) and as a result it is considered that 80% of brain Mn is associated with 

GS (Wedler et al., 1982), which catalyzes the conversion of glutamate and ammonium to 

glutamine, driven by the hydrolysis of ATP (Derouiche and Frotscher, 1991).  

The level of astrocytic Mn is hypothesized to regulate GS activity (Wedler et al., 

1994). Although the question has not been studied in vivo, in vitro animal studies show 

that Mn has a complex effect on GS activity. Mn activates GS in a narrow range of 

concentrations (Wedler and Denman, 1984), whereas further increases in Mn 

concentration have a negative effect on the enzyme activity (Tholey et al., 1987). GS 

homogenates from human brain also shows the similar trend of Mn2+ dependence of GS 

activity (Boksha et al., 2000). Decreases in GS activity in the presence of high 

concentrations of Mn might be mediated by multiple mechanisms. For example, the GS 

macromolecule is susceptible to oxidative modification after high Mn exposure, 

resulting in decreased synthetic activity (Levine et al., 1981; Liaw et al., 1993). In 

addition, the oxidized GS protein undergoes rapid degradation by intracellular proteases 

leading to decreases in both activity and protein levels. 

Glutamine produced in astrocytes via GS is taken up by neighboring 

glutamatergic or GABAergic neurons as precursors for neurotransmitter synthesis as part 
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of the glutamate–glutamine cycle (Schousboe et al., 1992). Its formation serves both as a 

glutamatergic intermediary for glutamate and GABA and also as a by-product of 

detoxification of ammonia (Cooper and Plum, 1987). In addition to providing glutamine 

to neurons, other glutamate-derived metabolites, such as the tricarboxylic acid (TCA) 

cycle precursors lactate, malate and citrate are utilized by neurons for energy production 

(Sonnewald et al., 1991). Thus, inhibition of GS activity may result in decreased 

neuronal energy levels, decreased synthesis of glutamine, glutamate and GABA, and 

inability to detoxify ammonia within the CNS.   

Optimal brain function is dependent upon cross talk between multiple cell types. 

In particular, astrocytes produce trophic factors, regulate neurotransmitter and ion 

concentrations, and remove toxicants and debris from the extracellular space around the 

neurons. Therefore, impairment of astrocytic functions by Mn has the potential to 

indirectly induce and/or exacerbate neuronal dysfunction (Aschner et al., 2002a). For 

example, in addition to inhibition of GS activity, removal of  neurotransmitters such as  

GABA, glutamate, and DA from the extracellular fluid by astrocytes can be altered after 

Mn exposure (Lipe et al., 1999; Gwiazda et al., 2002; Erikson and Aschner, 2003). 

Neurons neighboring affected astrocytes are then potentially made susceptible to 

excitotoxicity or other downstream dysfunction because of the imbalanced extracellular 

neurochemistry.    

Increasing evidence suggests that astrocytes are involved in early dysfunction in 

Mn neurotoxicity. In addition to disturbance of GS activity, exposure of astrocytes to Mn 

also results in other important changes including increased densities of binding sites for 
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the “peripheral-type” benzodiazepine receptor (PTBR), a class of receptor localized to 

mitochondria of astrocytes and involved in oxidative metabolism, mitochondria 

proliferation, and neurosteroid synthesis (Hazell et al., 1999a); increased gene 

expression and activity of the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), known to be associated with apoptosis (Hazell et al., 1999b); 

increased expression of NOS2  together with increased uptake of L-arginine, a substrate 

for NOS2 which can lead to ROS as a consequence of NO production (Hazell and 

Norenberg, 1998). Potential consequences of these alterations in astrocytes play a key 

role in Mn-induced neuronal cell death.  

It has been reported recently that neurons treated for 5 days with MnCl2 are 

extremely susceptible to oxidative stress and energy failure as the result of mitochondrial 

dysfunction (Zwingmann et al., 2003), whereas astrocytes are relatively unaffected after 

the same treatment. When the cells are co-cultured, Mn-exposed astrocytes fail to 

provide neurons with substrates for energy and neurotransmitter metabolism, leading to 

deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy 

depletion. It has also been reported in many cases that astrocytes have higher levels of 

GSH and some other antioxidant defenses than neurons (Tiffany-Castiglioni and Qian, 

2001; Hazell, 2002). Several other studies show that up-regulation of intracellular lactate 

dehydrogenase (LDH) activity (Chen and Liao, 2002), elevation of lactate levels (Hirata 

et al., 1998) and impairment of oxidative metabolism (Brouillet et al., 1993) are seen in 

astrocytes after treatment with Mn indicating a switch from oxidative phosphorylation to 

glycolytic energy production occurrs in these cells. Astrocytes are considered to be 
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“glycolytic” cells that can survive in an environment toxic to mitochondria, whereas 

neurons do not have the ability to invoke glycolysis to maintain ATP production 

(Pauwels et al., 1985; Walz and Mukerji, 1988). 

Spranger and colleagues (Spranger et al., 1998) were the first to speculate that 

activated astrocytes might contribute to Mn-induced parkinsonism through excessive 

production of NO. They demonstrated that Mn-induced injury to neurons required the 

presence of astrocytes and was associated with increased astrocytic expression of NOS2. 

NO can inhibit the activity of certain components of the mitochondrial respiratory chain, 

including cytochrome c oxidase (Bolanos et al., 1997). Furthermore, it has recently been 

shown that endogenous NO formation in primary neurons triggers a rapid and transient 

ATP depletion associated with collapse of Ψm across the mitochondrial inner membrane 

and apoptosis (Almeida and Bolanos, 2001). The mitochondria is a key organelle 

playing a role in NO-mediated apoptosis because disruption of Ψm dissipates the 

electrochemical gradient necessary for ATP synthesis (Mitchell, 1961). Moreover, 

collapse of Ψm is associated with mitochondrial swelling, disruption of the outer 

mitochondrial membrane, and the release of proapoptotic factors such as cytochrome c 

and apoptosis-inducing factor from the intermembrane space (Liu et al., 1996; Susin et 

al., 1999). 

Studies examining the molecular regulation of NOS2 have begun to elucidate the 

signaling pathways responsible for activation of this gene in astrocytes. NF-κB, a Rel 

protein family member, is the principal transcription factor that mediates stress-inducible 

expression of NOS2 in glial cells (Nishiya et al., 2000; Nomura, 2001). The most well 
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studied isoform of NF-κB is a heterotrimeric protein composed of p50 and p65 subunits, 

plus an inhibitory protein, IκBα, that maintains the transcription factor in the cytoplasm 

in an inactive state. NF-κB is activated by distinct signaling pathways that converge on 

IκB kinase(IKK), which  phosphorylates the NF-κB inhibitory subunit, IκBα, resulting 

in its dissociation and degradation (Karin et al., 2002). The resulting NF-κB dimer 

translocates to the nucleus, where it binds cognate DNA sequences and activates 

transcription of specific target genes such as nos2 (Grilli and Memo, 1999).  

Physiological Function, Cytotoxicity and Synthesis of NO 

Physiological Function and Cytotoxicity of NO 

NO plays a critical role in a variety of physiologic processes but excessive levels 

of NO can be cytotoxic. Of importance to normal brain function, NO activates guanylate 

cyclase (GC) and is thereby involved in various cyclic guanosine monophosphate 

(cGMP)-regulated signaling pathways, including those that regulate the glycolytic 

enzyme, GAPDH, in astrocytes. Furthermore, NO has also been implicated to play an 

important role in a number of other physiological processes in the CNS, i.e. pain 

perception, synaptic plasticity and learning (Garthwaite et al., 1988; Heales et al., 1997; 

Heales et al., 1999). However, the reaction between NO and superoxide anion (O2˙¯) 

results in the formation of ONOO¯, which is cytotoxic (Lipton et al., 1993). Excessive 

NO and ONOO¯ formation have been implicated in the pathogenesis of many 

neurological disorders (Dawson and Dawson, 1996). 

A major target of ONOO¯ is mitochondrial MnSOD (MacMillan-Crow et al., 

1996).  Inactivation of MnSOD by ONOO¯ initiates a self-propagating cascade of cell 
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injury subsequent to failure of scavenging of O2˙¯ in the mitochondrion, leading to 

further enhancement of ONOO¯ formation. In addition, NO affects mitochondria in three 

principal ways which all result in energy depletion: reversible inhibition of respiration; 

irreversible inactivation of mitochondrial enzymes; and induction of mitochondrial PT. 

Mitochondrial dysfunction is widely thought to be critical to the progression of injury in 

neurodegenerative diseases including manganism and PD. 

The primary function of the mitochondrial electron transport chain (ETC) is ATP 

synthesis. The ETC located in the inner mitochondrial membrane is comprised of more 

than 70 polypeptide components which are grouped into four enzyme complexes. 

Complex I is NADH ubiquinone reductase, complex II is succinate ubiquinone 

reductase, complex III is ubiquinol cytochrome c reductase and complex IV is 

cytochrome c oxidase. Transfer of reducing equivalents from NADH or FADH2 to 

molecular oxygen is coupled with the pumping of protons across the inner mitochondrial 

membrane and results in the formation of a proton gradient. Dissipation of this proton 

gradient induces a conformational change in the active site of ATP synthase (complex 

V) which favors ATP synthesis (Pedersen, 1994). Since NO resembles dioxygen and has 

an unpaired electron, it binds reversibly to the Fe2+ center of cytochrome a3 and also to 

the Cu2+ center of complex IV so that it can reversibly inhibit complex IV dependent 

respiration. Furthermore, ONOO─ can also cause irreversible complex II-III-IV damage 

and complex I damage under the condition of GSH deficiency (Heales et al., 1999). 

Mitochondrial PT is caused by certain inner membrane proteins amalgamate and 

form a nonspecific 2-3nm pore after exposure to oxidizing species. The possible 
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mechanisms of ONOO¯-mediated pore opening include: (1) ONOO¯-induced cross-

linking of inner membrane protein thiol groups, leading to protein amalgamation and 

pore formation; (2) ONOO¯-induced lipid peroxidation, products of which are potent 

inducers of PT; and (3) ONOO¯-induced mitochondrial respiratory chain dysfunction. 

Pore opening leads to loss of Ψm (the ability of ATP synthesis) and the ability to 

sequester Ca2+, both of which may be important factors in necrotic cell death.  

However, it also appears that mitochondrial PT is an important early event in 

programmed cell death (apoptosis). Pore opening leads to the release of mitochondrial 

cytochrome c, which can be prevented by the anti-apoptic proteins Bcl-2 and Bcl-XL 

and can be activated by the proapototic protein Bax. Once in the cytoplasm, cytochrome 

c binds to Apaf1 and procaspase 9, leading to the sequential activation of caspase 9 and 

caspase 3 (Heales et al., 1999).  

NO or ONOO¯ can also mediate DNA damage by several possible mechanisms. 

Production of NO in an oxidative environment can result in formation of nitrogen 

trioxide (N2O3), which can cause DNA-strand breaks. ONOO¯ can also oxidize DNA, 

resulting in DNA-strand breaks. Additionally, ONOO¯ can inactivate DNA ligase, 

further enhancing DNA damage (Wink and Mitchell, 1998). DNA-strand breaks, 

particularly single-strand breaks, are potent activators of the nuclear enzyme PARP 

(Szabo and Dawson, 1998). PARP is a nuclear enzyme which facilitates DNA repair and 

is important in maintaining genomic stability. It is important to know that PARP does 

not itself repair DNA and that DNA repair occurs in the absence of PARP (Satoh et al., 

1994). Upon activation, PARP transfers hundreds to thousands of ADP-ribose moieties 
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from nicotinamide adenine dinucleotide (NAD) to itself and other nuclear receptor 

proteins within minutes (Lautier et al., 1993). For every 1 mol of ADP-ribose 

transferred, 1 mol of NAD is consumed and four ATP are required to regenerate NAD. 

Over activation of PARP, can therefore, rapidly deplete cellular energy stores (Berger, 

1985).  Loss of NAD in a setting in which ATP generation is compromised can lead 

ultimately to energy failure and cell death. 

It has been noted that, within the brain, there is a differential susceptibility of 

various brain cell types to NO/ ONOO¯ (Bolanos et al., 1995). Induction of NOS2 in 

astrocytes leads to marked damage to the ETC. However, despite such damage, cell 

death does not occur. The apparent resistance of these cells, in this situation, appears to 

be mediated by a compensatory increase in glycolysis, i.e there was a marked increase in 

glucose consumption coupled with lactate formation. In contrast to astrocytes, neurons 

seem to be particular vulnerable to the actions of ONOO¯. Such vulnerability may arise 

from an inability to sustain cellular energy demands by glycolysis and an inferior 

capacity to handle oxidizing species such as ONOO¯ (Almeida et al., 2001). Various 

lines of evidence are now available to implicate a key role for GSH in dictation cellular 

susceptibility to ONOO¯; the results suggest that astrocytes, but not neurons, up-regulate 

GSH synthesis as a defense mechanism against excess NO (Gegg et al., 2003). Another 

study indicates that the concentration of GSH in cultured astrocytes seems to be double 

that of neurons cultured under identical conditions (Bolanos et al., 1995). Another factor 

contributing to the relative resistance of astrocytes to ONOO¯ exposure may be their 

greater concentration of α-tocopherol (vitamin E) (Makar et al., 1994). An exception to 
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the vulnerability of neurons is NOS1 interneurons. NOS1 interneurons are reported to be 

resistant to the neurotoxic environment they create (NO production) (Koh et al., 1986; 

Koh and Choi, 1988). Immunohistochemical co-localization experiments confirmed that 

MnSOD is expressed at higher levels in these neurons than in other neuronal cell types. 

Antisense knockdown of MnSOD renders NOS1 interneurons susceptible to N-methyl-

D-aspartate (NMDA) neurotoxicity without influencing the overall susceptibility of 

other cortical neurons to NMDA neurotoxicity. Knockout of MnSOD through genetic 

targeting results in exquisite sensitivity of NOS1 neurons to NMDA neurotoxicity 

(Gonzalez-Zulueta et al., 1998).  

Regulation of Nitric Oxide Synthase Expression and Activity 

NO is generated by nitric oxide synthase (NOS), of which there are at least three 

isoforms: neuronal NOS isoform (nNOS, NOS1) being the isoform predominately found 

in neuronal tissue, inducible NOS isoform (iNOS, NOS2) being the isoform inducible by 

cytokines and other agents in macrophages, astrocytes and other glial cells, endothelial 

NOS isoform (eNOS, NOS3) being the isoform first found in vascular endothelial cells. 

The active form of NOS are composed of two NOS monomers associated with two 

calmodulin (CaM) subunits (Alderton et al., 2001). All NOS have binding sites for 

NADPH, FAD, and FMN near the carboxyl terminus (the reductase domain), and 

binding sites for tetrahydrobiopterin (BH4) and heme near the amino terminus (the 

oxygenase domain). The reductase and oxygenase domain are linked by a CaM binding 

site. NOS catalyzes the conversion of arginine to citrulline and NO (Mayer, 2000) 

(Figure 1.2).  
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Figure 1.2.  Overall Reactions Catalysed and Cofactors of NOS.  Figure adapted from (Alderton 
et al., 2001).  
 

 

Increased expression of NOS1 mRNA seems to represent a response of neuronal 

cells to stress or injury induced by physical, chemical and biological agents (Zhang et 

al., 1994; Lam et al., 1996). NOS1 expression can also be triggered by steroid hormones, 

estradiol and pregnancy has been demonstrated to induce NOS1 expression (Weiner et 

al., 1994). Down regulation of NOS1 expression has been documented in rats after 

lipopolysaccharide (LPS) and interferon gamma (IFN-γ) treatment (Bandyopadhyay et 

 



 43

al., 1997). NOS1 is a Ca2+ and calmodulin-dependent enzyme. Its activity is regulated by 

physiological changes in the intracellular Ca2+ concentrations. In addition to this acute 

mechanism of regulation, another important one is the subcellular localization of NOS1 

protein. The N-terminal 220 amino-acids of NOS1 are unique to the neuronal isoform 

and contain a PDZ domain (PSD-95 discs large/ZO-1 homology domain). PSD-95 (post 

synaptic density protein 95) targets NOS1 to synaptic sites in brain. The membrane 

association of NOS1 in neurons is mediated by PDZ domain (Brenman et al., 1996). 

PSD-95 also binds to the C-terminus of NMDAR through PDZ domains, PSD-95 may 

contribute to the co-localization and functional coupling of NOS1 to NMDARs (Kornau 

et al., 1995). Thus, NOS1 may be the enzyme primarily activated during NMDAR-

mediated Ca2+ influx into neuronal cells. Finally, NOS1 can be phosphorylated at serine 

and threonine residues by Ca2+/CaM-dependent protein kinase II and protein kinase A, 

C, and G which reduces the catalytic activity of the enzyme (Nakane et al., 1991; 

Dinerman et al., 1994).  

Like NOS1, NOS3 also requires Ca2+ and CaM. Both NOS1 and NOS3 are 

constitutive, low output, Ca2+-activated enzymes that function in physiological signal 

transduction. Exercise training and shear stress produced by flowing blood upregulate 

NOS3 expression; increased NOS3 immunoreactivity has also been reported in cerebral 

blood vessels during cerebral ischemia (Zhang et al., 1993; Sessa et al., 1994). It has 

been reported that estrogens can also upregulate the expression of NOS3 mRNA and 

protein (Weiner et al., 1994). Although an increase in the intracellular concentration of 

free Ca2+ is the most important mechanism for acute changes in enzyme activity, recent 
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evidence suggests that it can also be activated in a Ca2+–independent way, with tyrosine 

phosphorylation of NOS3 or an associated regulatory protein (Fleming et al., 1997a; 

Fleming et al., 1998a). The subcellular targeting of the enzyme to Golgi membranes may 

be also important for its activity (Sessa et al., 1995). 

Expressional regulation of NOS2 is the main mechanism of its activation since 

once expressed, NOS2 does not seem to be subject to any significant regulation of its 

enzymatic activity. In uninduced cells, expression of NOS2 is usually very low or 

undetectable. The first agents to induce its expression are LPS and cytokines, such as 

interleukin-1 (IL-1), IFN-γ, and tumor necrosis factor-α (TNF-α). The 5’-flanking region 

of the murine nos2 gene have been cloned (Lowenstein et al., 1993). The promoter of 

this gene contains a “TATA box” and numerous consensus sequences for the binding of 

transcription factors such as NF-κB. The NF-κB inhibitor PDTC blocked the activation 

of the protein and its binding to  the NF-κB-binding site as well as the production of NO 

in LPS-treated macrophages, indicating that NF-κB activation is essential for 

transcription  of the nos2 gene (Xie et al., 1994).  However, it is noteworthy that signal 

transduction pathways leading to nos2 gene induction seem to differ markedly from 

species to species and even between cells (Kleinert et al., 1996; Linn et al., 1997). In 

addition to transcriptional regulation, post-transcriptional regulation can also induce 

NOS2 expression (Weisz et al., 1994).  

The Objectives of This Research 

This dissertation has three objectives. One objective of this research is to identify 

the specific vulnerable neurons within the basal ganglia after Mn overexposure which 
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attribute to the symptoms of manganism and the possible mechanisms of their 

vulnerability. We hypothesized that the symptoms of manganism were caused by the 

death of specific neurons in the basal ganglia and the surrounding reactive astrocytes 

with NO production might be involved in neurodegeneration. In this experiment, 12- 

week old C57Bl/6J female mice weighing 25 ± 5g given 100mg/kg MnCl2 by gastric 

gavage for 8 weeks were used as an in vivo model.  

The second objective of this research is to elucidate the mechanisms by which 

astrocyte-derived NO causes loss of neurons after excessive Mn exposure. As some 

previous studies showed that NF-κB was the principal transcription factor that mediates 

stress inducible expression of NOS2 in astrocytes (Nishiya et al., 2000).We 

hypothesized in this study that Mn exposure resulted in astrocyte activation and NF-κB 

dependent expression of NOS2, which attributed to neuronal injury through the 

production of NO. The rationale behind this hypothesis was that once the mechanisms of 

neuronal loss after excessive Mn exposure had been identified, therapeutic intervention 

would be possible. In order to test the hypothesis, co-cultures of primary astrocytes and 

differentiated PC12 cells exposed to Mn and cytokines were used as an in vitro model.  

Finally, after we demonstrated that Mn exposure resulted in NF-κB dependent 

expression of NOS2 in activated astrocytes, which attributed to neuronal injury through 

the production of NO in our co-culture model, we tried to find a practical way to prevent 

the neurodegeneration. We postulated that activation of NF-κB in this system is 

regulated by the nuclear receptor PPARγ. To test this hypothesis, co-cultured astrocytes 
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and differentiated PC12 cells were exposed to Mn and cytokines in the presence of a 

novel PPARγ agonist, DIM-C-pPhCF3.  
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CHAPTER II 

ASTROCYTE-DERIVED NITRIC OXIDE MODULATES 

NEURONAL DEGENERATION IN A MOUSE MODEL OF 

MANGANESE-INDUCED PARKINSONISM 

 
Overview 

Chronic exposure to excessive levels of Mn through diet or inhalation results in a 

neurodegenerative movement disorder called manganism or Mn-induced parkinsonism. 

A mechanistic basis for Mn-induced neurodegeneration is not well established but 

involves excitotoxicity and disruption of mitochondrial function within the basal ganglia. 

The objective of this study was to develop a mouse model of Mn-induced parkinsonism 

to elucidate cellular and neurochemical targets of Mn in the nigro-striatal system as well 

as the mechanisms underlying the selective vulnerability of this brain region. Female 

C57Bl/6J mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage once 

daily for 8 weeks.  At the cessation of treatment animals were evaluated for locomotor 

activity, catacholamine levels, and histopathological changes in the striatum and SN.  

Locomotor activity was assessed by open field activity tracking in xyz dimensions using 

infrared monitoring chambers. DA and its metabolite DOPAC were quantified by high 

performance liquid chromatography (HPLC). Serial sections from the striatum, GP and 

SN were analyzed for neuronal viability and expression of TH, NOS1, ENK, ChAT, 

DYN and glial acidic fibrillary protein (GFAP). Levels of 3-nitrotyrosine protein 

adducts were also determined by immunohistochemistry. Mn content, as determined by 
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inductively-coupled plasma-mass spectrometry (ICP-MS), was significantly increased in 

the striatum after Mn treatment. Striatal DA content decreased in animals exposed to Mn 

and the DA/DOPAC ratio slightly increased.  In open field activity experiments, the total 

distance traveled was decreased with a trend toward an increase in margin time in the 

Mn treated group. Mn exposure also caused an increase in fluorojade-positive neurons 

within the striatum and GP. The NOS1-, ChAT-, and ENK-expressing neurons displayed 

increased DNA fragmentation upon terminal deoxynucleotidyl transferase-mediated 

dUTP-biotin nick-end labeling (TUNEL) staining in Mn-treated animals, however, TH-

positive neurons and nerve terminals were morphologically unaltered. These regions also 

displayed an increase in GFAP staining that co-localized with staining for 3-

nitrotyrosine protein adduct. Activated GFAP-expressing astrocytes, in the striatum and 

GP proximal to the microvasculature and to regions where neuronal injury was most 

evident, co-expressed NOS2. It is concluded from these studies that Mn exposure 

resulted in depletion of striatal DA levels and degeneration of neurons (NOS1+ and 

ChAT+ interneurons and ENK+ projection neurons) in the striatum and GP with 

astrocyte activation, NOS2 expression and overproduction of NO. The location of 

neuronal injury and astrocyte activation proximal to the microvasculature suggests an 

involvement of metal transport and/or disrupted BBB function in the mechanism of 

injury.  

Introduction 

Mn is an essential nutrient that functions as a co-factor in enzymes involved in 

the metabolism of proteins, lipids and carbohydrates, such as glycolsyltranserferases, 
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PEPCK, pyruvate decarboxylase et al., and modulates a variety of other physiological 

functions (Kemmerer et al., 1931; Keen et al., 2000). However, it is also been 

recognized that overexposure of Mn causes neurotoxicity resulting in manganism or 

manganese-induced parkinsonism (Couper, 1837; Kawamura, 1941; Huang et al., 1989; 

Mergler et al., 1994). 

In addition to occupational exposure (such as in the manufacture of dry batteries, 

steel, aluminum, welding metals and organochemical fungicide) (Keen and Leach, 1988; 

Keen et al., 2000), individuals receiving TPN (Bertinet et al., 2000) and patients with 

chronic liver failure are at higher risk of Mn intoxication (Hauser et al., 1994; Krieger et 

al., 1995).  Soy-based infant formulas have levels of Mn up to 200-fold greater than 

human milk (Lonnerdal, 1994; Krachler and Rossipal, 2000), and the addition of MMT 

to gasoline in the United States and Canada as an anti-knock agent also increases the risk 

for excessive exposure to Mn. 

Manganism or Mn-induced parkinsonism caused by chronic Mn poisoning, is 

characterized by psychiatric and motor symptoms. The early phase of manganism is also 

called “manganese madness” and is characterized by emotional liability, mania, 

compulsive or violent behavior, hallucinations, disturbance of sleep, and eating and 

sexual disturbances but few, or subtle, motor effects. A later phase (“established” phase), 

is dominated by motor symptoms such as bradykinesia, rigidity, and dystonia (prolonged 

muscle contractions) (Rodier, 1955). A particularly characteristic finding is the so-called 

“cock walk”, in which patients strut on their toes, with elbows flexed and the spine erect. 

It is noteworthy that patients can develop the motor deficits of manganism without 
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having experienced any phase of manganese madness (Huang et al., 1989) and patients 

with manganism may develop increasing neurological dysfunction long after cessation 

of exposure (Huang et al., 1993). 

Neurochemical changes were observed prior to neuropathological ones (Neff et 

al., 1969). A severe reduction in DA levels in the caudate nucleus, putamen and SN, a 

distinct reduction of noradrenaline in hypothalamus and normal 5-HT in these areas was 

reported in a patient dying with chronic manganism (Bernheimer et al., 1973). A later 

study showed that after chronic MnCl2 administration in rats, the striatal content of DA, 

norepinephrine, and homovanillic acid initially increased, then normalized, followed by 

a decline in catecholamines and their metabolites (Autissier et al., 1982). 

The pathologic changes in human manganism are mainly in the GP, especially 

the medial segment where neuronal loss and astrocytosis occur. A less severe 

degeneration occurs in the putamen, the caudate nucleus and SNr (Yamada et al., 1986).  

Data from nonhuman primates are similar to those obtained from humans with 

manganism (Calne et al., 1994). However, the type of neuronal loss in the striatum and 

GP and its role in pathogenesis of manganism has never been identified. So far, rodent 

studies have yielded variable results (Brenneman et al., 1999; Newland, 1999) and there 

are only a limited number of mouse models of  manganism. It is postulated in this study 

that specific neuronal subtypes within the striatal-pallidal system are selectively 

vulnerable to Mn neurotoxicity and that astrocyte-derived NO plays a role in the 

observed neuronal degeneration. To test this hypothesis, we developed a mouse model of 

Mn-induced parkinsonism utilizing a gastric gavage dosing regimen to mimic human 
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dietary exposure to moderate doses of Mn. The findings represent, to our knowledge, the 

first data on specific subpopulations of neurons vulnerable to Mn in the striatal-pallidal 

system. 

Materials and Methods 

Materials 

All chemical reagents were obtained from Sigma Chemical Co. (St. Louis, 

MO). C57Bl/6J mice were obtained from Harlan (Indianapolis, IN). Primary antibodies 

to TH, ChAT and ENK were from Chemicon (Temecula, CA). Primary antibodies to 

GFAP and NOS1 were from Santa Cruz Biotechnology (Santa Cruz, CA), primary 

antibodies to 3-nitrotyrosine were from Upstate (Charlottesville, VA) and primary 

antibodies to Leumorphin were from Serotec (Oxford, UK). Horseradish peroxidase-

conjugated secondary antibodies and diaminobenzidine reagents were part of the 

Vectastain ABC kit from Vector Labs (Burlingame, CA). Terminal Transferase 

Recombinants were from Roche Molecular Biochemicals (Indianapolis, IN). 

AlexaFluor-488-labled dUPT and AlexaFluor-568-labled secondary antibodies were 

from Molecular Probes (Eugene, OR).  

Animal exposure regimen 

Twelve week-old female C57Bl/6J mice were housed in microisolator cages (4 

animals per cage) and kept on 12 hr light/dark cycles with access to lab chow and water 

ad libitum.  Mice received 0.9% normal saline or MnCl2 by gastric gavage at 100 mg/kg  

(n=19 each group) once daily for 8 weeks. 
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Locomotor activity 

Locomotor activity was determined in each animal at 0, 2, 4, 6 and 8 weeks 

during the gavage regimen. Activity was assessed in xyz planes utilizing infrared beam 

activity chambers. Computerized integration of the data obtained from the monitors 

afforded the recording of activity for multiple indices relating to basal ganglia function 

including total distance traveled, center time or margin time, and horizontal activity et al. 

(Miller et al., 2001).  Treated and control animals were paired in activity monitors during 

each recording session. Animals were monitored for 20 minutes to 1 hr and the data 

binned in 1 min increments from 0 - 5 min. Activity data for multiple indices relating to 

dopaminergic function was analyzed using Microsoft Excel software. 

Determination of tissue catacholamine levels and Mn 

The content of total striatal DA, DOPAC, GABA, and 5-HT was determined by 

HPLC using electro-chemical detection as described (Champney et al., 1992). Tissue Mn 

levels will determined by ICP-MS as described (Melnyk et al., 2003). 

Immunohistochemistry and fluorojade staining 

All mice were deeply anesthetized intraperitoneally with 2.5% tribromoethanol 

(0.01ml/g body weight) and perfused intracardially with 4% paraformaldehyde in 0.1 M 

PBS buffer (pH 7.4). The brains were collected and kept in cold 4% paraformaldehyde 

overnight and stored in cold PBS buffer. Immunohistochemistry of paraffin embedded, 

10 µm coronal serial sections through the SN, STN, GP, and striatum (caudate-putamen) 

was performed as described (Harlan et al., 2001) with primary antibodies to TH (1:400), 

GFAP (1:400), and 3-nitrotyrosine (1:200). Sections was developed using horseradish 
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peroxidase-conjugated secondary antibodies and diaminobenzidine reagents from the 

Vectastain ABC kit. Fluorojade staining of paraffin-embedded sections was performed 

as described (Schmued et al., 1997). 

Immunofluorescence and TUNEL Staining 

Immunofluorescence was performed on fixed, paraffin-embedded, 10 µm coronal 

serial sections through the caudate-putamen and GP. Sections were first examined for 

TUNEL-positive cells using Terminal deoxynucleotidyl Transferase (TdT) reagents per 

the manufacturer’s instructions and visualized with AlexaFluor-488-labled dUTP. All 

slides included a control section lacking primary antibody and TdT to insure specificity 

of staining. Following TUNEL labeling, sections were incubated with anti-NOS1 

(1:200), anti-ChAT (1:50), anti-ENK (1:300), anti-Leumorphin (1:50) antibodies, then 

with AlexaFluor-568-labeled secondary antibody. Cells were imaged by fluorescence 

microscopy as described below.  

Fluorescence Microscopy 

 Fluorescence images of fluorojade-stained brain tissue were acquired using a 

Zeiss Axiovert 200M microscope equipped with a 63X 1.4 N/A oil immersion objective 

and Hamamatsu ORCA-ER cooled charge-coupled device camera. Samples were excited 

using a Sutter DG-4 xenon source at 490 nm (Ex) and 515 nm (Em) for TUNEL staining 

and 555 nm (Ex)/590 nm (Em) for antibody staining. Co-localization of GFAP and 

NOS2 staining was performed using 3-D deconvolution imaging by acquiring images 

every 0.5 microns across  a 12 micron z-series and applying a no-neighbor algorythm 

with Slide Book software (v. 4.1, Intelligent Imaging Innovations,  Inc, Denver, CO). 
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The deconvolved images were extrapolated into a single, composite 2-D image to 

illustrate morphological details not evident in any single optical plane. 

Statistics 

Differences between two groups were analyzed using a two-tailed t-test at 

p<0.05. 

Results 

Increased Mn Levels in Striatum after Mn Exposure 

As shown in Figure 2.1A, there were no evident body weight changes before and 

after Mn exposure in either control or Mn-treated mice. However, there was significant 

(p<0.05) increase in Mn levels in striatum of Mn treated mice in comparison with 

control mice (Figure 2.1B). Mn levels were also elevated in the SN (p<0.09). 

Decreased Locomotor Activity after Mn Exposure 

During 8 weeks’ treatment, The moter function indices such as total distance 

traveled in mice exposed to Mn was initially decreased during the first two weeks 

(probably due to psychotic symptoms), then increased in the following 5 weeks, peeks at 

about 6 weeks, then was significantly decreased at the end of 8 weeks (Figure 2.2; 

Figure 2.3A). Horizontal activity decreased some but not significantly (Figure 2.3B). 

There were also slight changes in center time (decreased) and/or margin time (increased) 

(Figure 2.3C,D), indicative of alterations in anxiety level and novel seeking behavior in 

Mn-treated animals (Belzung and Griebel, 2001).  
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Figure 2.1. Body Weights and Mn Contents in Brain Regions of C57Bl/6J Mice After Mn 
Exposure. A, Body weights were measured before and after the experiments. B, Tissue Mn levels was 
determined by inductively coupled plasma-mass spectrometry. Values represent mean ± S.E.M. *p<0.01 
compared to control striatum. Control striatum: n=12, Mn striatum: n=8; control substantia nigra: n=4, Mn 
substantia nigra: n=6. 
 
 
 

 

Figure 2.2. Time Course Study of Total Distance Traveled in C57Bl/6J Mice Subchronically 
Exposed to Mn. Female C57Bl/6J mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage 
daily for 8 weeks. Mice were paired in recording chambers (control and treated) at week 0, 2, 4, 6, 8 and 
activity in xyz axes was quantified for 20min.  Data from the first 5 min were binned and analyzed for 
total distance traveled. Values represent mean ± S.E.M. Control: n=6; Mn: n=6. 
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Figure 2.3. Locomotor Activity in C57Bl/6J Mice Subchronically Exposed to Mn. Female 
C57Bl/6J mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage once daily for 8 weeks. 
Mice were paired in recording chambers (control and treated) and activity in xyz axes was quantified for 
20min.  Data from the first 5 min were binned and analyzed for A, total distance traveled; B, horizontal 
activity; C, center time; D, margin time. Values represent mean ± S.E.M. *p<0.05 compared to control. 
Control: n=19; Mn: n=19. 
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Decreased DA in the Striatum after Mn Exposure 

Measurements of striatal DA (Figure 2.4A), DOPAC (Figure 2.4B), and GABA 

(Figure 2.4D) contents indicated that there was a decrease of striatal DA in the treated 

mice while there was no significant change in GABA content. The turnover ratio of DA 

(DOPAC/DA) (Figure 2.4C) was slightly elevated in Mn-treated mice. 

 

 

Figure 2.4. Striatal Neurotransmitters in C67Bl/6J Mice Exposed to Mn.  Female C57Bl/6J 
mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage once daily for 8 weeks.  At the 
cessation of treatment animals were evaluated for A, striatal DA; B, DOPAC; C, DOPAC/DA; D, GABA 
levels by high performance liquid chromatography using electrochemical detection. Values represent mean 
± S.E.M. * p<0.05 compared to control. Control: n=19; Mn: n=19. 
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Generalized Nigrostriatal Injury  

Generalized neuronal injury in the SN, GP, and striatum was determined by 

histochemical staining with fluorojade to detect irreversible neurodegeneration. There 

was significant increase in the number of fluorojade-positive cells in both the striatum 

(Figure 2.5A, B) and pallidum, SN (data not shown) in Mn treatment group. Many of the 

injured cells were appeared to localize to areas proximal to the microvasculature. There 

was also a marked decrease in the number of darkly staining nissl-positive cell bodies or 

axons in the striatum (Figure 2.5C, D) and GP (Figure 2.5E, F) after Mn exposure.  

 

 

Figure 2.5. Generalized Nigrostriatal Injury in C57Bl/6J Mice Exposed to Mn. Female 
C57Bl/6J mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage once daily for 8 weeks.  
At the cessation of treatment animals were evaluated for histopathological changes in the striatum (st) and 
the globus pallidus (gp). A, B, Fluorojade (A, st, control; B, st, +Mn). C-F: Cresyl Violet (C, st, control; D, 
st, +Mn; E, gp, control; F, gp, +Mn).  
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Identification of Vulnerable Neuronal Sub-types  

TH-positive neurons in the SN (Figure 2.6C, D, E, F) and nerve terminals in the 

striatum (Figure 2.6A, B) were morphologically unaltered. Representative images of 

TUNEL-positive NOS1+ and ChAT+ interneurons and ENK+ projection neurons are 

shown in Figure 2.7F, I, L. The death of NOS1+ and ChAT+ interneurons can be found 

in the striatum, GP, and SN. The dying ENK+ projection neurons were mainly located in 

the GP. DYN+ projection neurons were intact (data not shown). Many of these injured 

cells were localized near the blood vessels. 

 

 

Figure 2.6. Tyrosine Hydroxylase Expression in C57Bl/6J Mice Exposed to Mn.  Female 
C57Bl/6J mice were exposed to saline or MnCl2 (100 mg/kg/day) by oral gavage once daily for 8 weeks.  
At the cessation of treatment animals were evaluated for expression of TH in the striatum (st) and 
substantia nigra (sn) by immunohistochemistry. A, st, control; B, st, +Mn. C, sn, control; D, sn, +Mn. E, F, 
representative images of dopaminergic neurons in sn (E, control; F, +Mn).  
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Figure 2.7. Identification of Vulnerable Neuronal Sub-types. Immunofluorescence was 
performed to detect TUNEL-positive cells using TdT reagents and visualized with AlexaFluor-488-labled 
dUPT. Following TUNEL labeling, tissue sections were incubated with anti-NOS1, anti-ChAT, anti- ENK, 
and anti-Leumorphin antibodies and visualized with AlexaFluor-568-labeled secondary antibody. Cells 
were imaged using a Zeiss 63X oil immersion 1.4 N/A objective and Hamamatsu ORCA-ER camera. A, B, 
C, representative images of NOS1+ interneuron, ChAT+ interneuron and ENK+ projection neuron 
respectively in saline treated animals. D-F, representative TUNEL-positive NOS1+ interneuron in the 
striatum after Mn treatment. D, NOS1+ interneuron; E, TUNEL-positive nucleus; F, merged image of 
TUNEL-positive nucleus of NOS1+ interneuron. G-I, representative TUNEL-positive ChAT+ interneuron 
in the striatum after Mn treatment. G, ChAT+ interneuron; H, TUNEL-positive nucleus; I, merged image 
of TUNEL-positive nucleus of ChAT+ interneuron. J-L: representative TUNEL-positive ENK+ projection 
neuron in the striatum after Mn treatment. J, ENK+ projection neuron; K, TUNEL-positive nucleus; L, 
merged image of TUNEL-positive nucleus of ENK+ projection neuron. Scale bar = 10 µm. 
 

Astrocyte Activation and Nitric Oxide Production  

Activation of astrocytes was examined in the GP and striatum using antibodies to 

GFAP (Figure 2.8A, B, C, D; Figure 2.9A, E) and NOS2 (Figure 2.9B, F), respectively. 

Production of NO/peroxynitrite was determined using a primary antibody directed 

against 3-nitrotyrosine-modified proteins (Figure 2.8G, H). There were increased 

reactive astrocytes (Figure 2.8A, B) and 3-nitrotyrosine protein adducts (ONOO- 
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formation) in the striatum and GP after Mn exposure (Figure 2.8G, H). Further evidence 

showed that GFAP-positive astrocytes were the only cells that expressed NOS2 (Figure 

2.9H). NOS2-expressing astrocytes were nearly always located proximal to blood 

vessels in both the striatum and GP. In contrast to the high levels of astrocytosis 

observed, no apparent microgliosis occurred in these Mn-treated mice, based upon 

immunohistochemcial staining with Mac-1/cd11b (data not shown). 

 

 

Figure 2.8. Astrocyte Activation and Peroxynitrite Formation in C57Bl/6J Mice Exposed to 
Mn.  Control and Mn-treated mice were evaluated for expression of glial fibrillary acidic protein (GFAP) 
and 3-nitrotyrosine protein adducts by immunohistochemistry. Relative intensities for GFAP and 3-
nitrotyrosine were determined by digital imaging. A, B, st and gp, GFAP (10X). A, control; B, +Mn. C, D, 
st, GFAP (60X). C, control; D, +Mn. E, F, gp, GFAP (60X). E, control; F, +Mn.  G, H, st, 3-nitrotyrosine 
(10X). G, control; H, +Mn. 
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Figure 2.9. Co-localize GFAP and NOS2 in the Striatum of C57Bl/6J Mice Exposed to Mn. 
Control and Mn-treated mice were evaluated for co-localization of GFAP and NOS2 by 
immunofluorescence. Images were acquired using a Zeiss 63X PlanApochromat oil objective by 3-D 
deconvolution imaging. Spatial bar represents 10 microns. A, control GFAP; B, control NOS2; C, control 
DAPI; D, control merged image of GFAP, NOS2 and DAPI. E, control GFAP; F, control NOS2; G, 
control DAPI; H, control merged image of GFAP, NOS2 and DAPI. 
 

Discussion 

Lesions of the basal ganglia in humans lead to various types of motor 

disturbances that range from hypokinesia (e.g., PD) to hyperkinesia (e.g., hemiballismus 

and chorea) and psychotic disorders, such as schizophrenia. The striatum is the major 

recipient structure of the basal ganglia; the GPi and SNr are the two major output 

structures of the basal ganglia. These brain regions are severely affected in manganism 

but precise cellular mechanisms underlying the known pathological effects of Mn have 

remained elusive. The present studies provide insight into both the vulnerable neuronal 

subtypes in the striatal-pallidal system as well as the role of astrocyte-derived NO in the 

pathological changes observed. 

The regional distribution of Mn after overexposure in rodents varies, (Takeda et 

al., 1994), but in our model there were significant (p<0.05) increases of Mn levels in 

striatum of Mn treated mice compared to controls, consistent with reports in exposed 
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humans and macaque monkeys  (Eriksson et al., 1992; Nagatomo et al., 1999). Mn levels 

increased (p<0.09) in SN, but variability within the relatively small sample size (n=4 in 

Mn-treated group) reduced the power of this observation. Additionally, the small overall 

size of this brain region in the mouse contributes to the difficulty of acquiring an 

anatomically precise section of tissue for analytical determination of metal content 

(Figure 2.1B). Elevated brain Mn in exposed mice correlated with hypoactivity (decrease 

in total distance traveled) as well as development of anxiety and novelty seeking 

(increased center time or decreased margin time) (Figure 2.3). Moreover, these changes 

in behavioral indices were associated with a drop in striatal DA of approximately 50% 

(Figure 2.4). This degree of diminution in catecholamine content represents an early 

established phase of manifestation and indicates the effectiveness of utility of these 

behavior measures in assessing locomotor dysfunction following Mn overexposure. 

A study in rats after chronic MnCl2 administration showed that, the striatal 

content of dopamine, norepinephrine, and homovanillic acid initially increased, then 

normalized, followed by a decline in catecholamines and their metabolites (Autissier et 

al., 1982), which may explain the motor activity changes (from overactive to hypoactive) 

occurred in our preliminary time couse study (Figure 2.2). 

The striatum receives excitatory cortical inputs and dopaminergic inputs from 

SNc, and projects to GPi and SNr through direct and indirect inhibitory pathways. DA 

input from SNc can differentially affect striatal projection neurons based on the DA 

receptor subtypes (Gerfen et al., 1990). DYN+/SP+ projection neurons of the direct 

pathway express D1 receptor and their activity can be enhanced by DA; whereas indirect 
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pathway ENK+ projection neurons express D2 receptor  and are inhibited by DA 

(Gerfen and Young, 1988). Activation of the direct pathway results in reduction of 

inhibitory basal ganglia output, therefore, disinhibition of thalamocortical neurons and 

facilitation of movement. By contrast, activation of indirect pathway leads to increased 

basal ganglia output and suppression of movement (Wichmann and DeLong, 1996). In 

this mice model of early established phase of Mn-induced parkinsonism, the 

neuropathology showed that ENK+ projection neurons of indirect pathway and ChAT+ 

interneurons were preferentially lost (Figure 2.7), as reported in early Huntington’s 

disease (Growdon et al., 1977; Reiner et al., 1988; Sun et al., 2002). ChAT+ 

interneurons can inhibit DYN+ projection neurons of the direct pathway and excite 

ENK+ projection neurons (Gauchy et al., 1991; Dimova et al., 1993). Consequently, the 

loss of ChAT+ and ENK+ neurons reduces the inhibition of neurons in the Gpe, causing 

excessive discharge of these neurons and inhibition of STN neurons. The resulting 

functional inactivation of STN neurons in turn causes reduction of the basal ganglia 

output and less inhibition of the thalamus, which could explain the overactive symptoms 

during Mn exposure (Figure 2.2). 

The symptoms of early established phase of Mn induced parkinsonism observed 

in our study may be either caused by the loss of NOS1+ interneurons or the malfunction 

of the neurons in the direct pathway (DYN+ projection neurons) without morphological 

degeneration. The role of NOS1+ interneurons in motor control is not quite clear yet, but 

evidence suggested that they had an influence on DA related responses of the DYN+ 

projection neurons (Saka et al., 2002). Interestingly, it has been reported that striatal 
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somtostatin (another neuropeptide carried by NOS1+ neurons) is reduced in 

parkinsonism and increased in Huntington’s chorea (Bolam et al., 2000). 

NOS1+ interneurons are reported to be resistant to the neurotoxic environment 

they create (NO production). Immunohistochemical co-localization experiments 

confirmed that MnSOD is expressed at higher levels in NOS1+ neurons than in other 

neuronal cell types. Knockout of MnSOD through genetic targeting results in increased 

sensitivity of NOS1+ neurons to NMDA neurotoxicity (Gonzalez-Zulueta et al., 1998).  

The death of NOS1+ neurons in this study (Figure 2.7) may be due to malfunction of 

MnSOD and excessive excitotoxicity during Mn exposure although there was no direct 

evidence. It has been reported that Mn neurotoxicity may be due to an indirect 

excitotoxic event caused by increased extracellular glutamate levels (Brouillet et al., 

1993). Since Mn is concurrently released with glutamate from glutamatergic neuron 

terminals (Takeda et al., 2002), the hyperactivity of corticostriatal neurons observed in 

the course of Mn intoxication may partially contribute to the elevated extracellular 

glutamate levels (Centonze et al., 2001). Glutamate excitotoxicity is associated with 

increased influx of Na+ and Ca2+ ions, which causes cell swelling and eventually cell 

lysis. In addition, Ca2+ overload leads to stimulation of numerous Ca2+–activated 

enzymes that degrade cellular structual proteins and produce ROS. ROS inhibits EAA 

transporter function of excess extracellular glutamate removal, thus producing increased 

NMDAR stimulation, further production of ROS and greater inhibition of EAA 

transport. This feed-forward NMDAR- and Ca2+ mediated cycle will eventually lead to 

cell death. Furthermore, elevated extracellular glutamate inhibits the uptake of cystine, a 
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precursor of GSH, thus decreases intracellular GSH levels and antioxidant function 

(Choi, 1992; Sonnewald et al., 2002). 

The location and morphology of dying cells identified by Fluojade staining 

(Figure 2.5) suggest that endothelial cells of the striatal microvasculature may be an 

important target of dysfunction in Mn neurotoxicity, with subsequent disruption of the 

BBB. This may explain why much of the noted neuronal injury and astrocytosis 

occurred proximal to vessels. It was postulated earlier by Spranger and colleagues 

(Spranger et al., 1998) that activated astrocytes might contribute to Mn-induced 

parkinsonism through excessive production of NO in studies that showed that Mn-

induced injury to neurons required the presence of astrocytes and was associated with 

increased astrocytic expression of NOS2. In our study, the observed relative increased 

intensities for GFAP and 3-nitrotyrosine (Figure 2.8) as well as co-localization of GFAP 

and NOS2 after Mn exposure (Figure 2.9) indicated that astrocytosis and atrocyte-

derived NO may be involved in the neurodegeneration. Further evidence showed that 

NOS2-expressing astrocytes were nearly always located proximal to blood vessels in 

both the striatum and GP, suggesting that the death or dysfunction of endothelial cells 

comprising the BBB might trigger astrocytosis and NOS2 expression in astrocytes which 

in turn predisposes to neuronal injury in these areas after Mn exposure.  

 Collectively, the data from these studies demonstrate that subchronic exposure of 

mice to moderate levels of Mn by intragastric gavage recapitulates both locomotor and 

neurochemical features of manganism. Moreover, it appears that astrocytosis and 

subsequent overproduction of NO are involved in neuronal injury and that this injury 
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occurs in specific neuronal subtypes within the striatum and GP. Dysfunction of the 

BBB is suggested by the proximal location of injured neurons and activated astrocytes to 

blood vessels. It is suggested that this dietary exposure regimen represents a good model 

with which to study early pathological changes within the basal ganglia that are relevant 

to human manganism. 
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CHAPTER III 

NF-κB-DEPENDENT PRODUCTION OF NITRIC OXIDE BY 

ASTROCYTES MEDIATES APOPTOSIS IN DIFFERENTIATED 

PC12 CELLS FOLLOWING EXPOSURE TO MANGANESE AND 

CYTOKINES ∗ 

 

Overview 

Neuronal injury in manganism is accompanied by activation of astrocyte within 

the basal ganglia that is thought to increase production of inflammatory mediators such 

as NO. The present studies postulated that astrocyte-derived NO mediates neuronal 

apoptosis induced by Mn and pro-inflammatory cytokines. PC12 cells differentiated with 

nerve growth factor (NGF) were co-cultured with primary astrocytes and exposed to Mn 

and TNF-α plus IFN-γ. Mn enhanced cytokine-induced expression of NOS2 and 

production of NO in astrocytes that correlated with apoptosis in co-cultured PC12 cells, 

as determined by caspase activity, TUNEL, and nuclear morphology. Apoptosis in PC12 

cells required the presence of astrocytes and was blocked by overexpression of a 

phosphorylation-deficient mutant of IκBα (S32/36A) in astrocytes which prevented 

induction of NOS2. Pharmacologic inhibition of NOS2 with (±)-2-amino-5,6-dihydro-6-

                                                 
∗ Reprinted with permission from NF-κB-dependent Production of Nitric Oxide by 
Astrocytes Mediates Apoptosis in Differentiated PC12 Cells Following Exposure to 
Manganese and Cytokines by Xuhong Liu, Julie A. Buffington, Ronald B. Tjalkens, 
Molecular Brain Research, accepted. Copyright 2005 by Elsevier. 
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methyl-4H-1,3-thiazine (AMT) significantly reduced  apoptosis of PC12 cells and the 

addition of low concentrations of the NO donor, S-nitroso-N-acetyl penacillamine 

(SNAP) to PC12 cells cultured without astrocytes was sufficient to recover the apoptotic 

phenotype following exposure to Mn and TNF-α/IFN-γ. It is concluded that Mn-and 

cytokine-dependent apoptosis in PC12 cells requires astrocyte-derived NO and NF-κB-

dependent expression of NOS2. 

Introduction 

 Mn is an essential element for numerous enzymes important to metabolic 

homeostasis in the CNS, including GS (Wedler and Toms, 1986), MnSOD (Stallings et 

al., 1991), and PEPCK (Bentle and Lardy, 1976). It is also involved in cell-matrix 

interactions that regulate neurite outgrowth through binding to β1 integrin receptor 

(Walowitz and Roth, 1999; Ivins et al., 2000; Poinat et al., 2002). However, excessive 

exposure to Mn through dietary or industrial sources produces neurotoxicity resulting in 

a degenerative brain disorder (manganism, Mn-induced parkinsonism) characterized by 

psychiatric symptoms and extrapyramidal neurological deficits (Pal et al., 1999; Albin, 

2000). Pathologic changes in human manganism present as neuronal loss and 

astrocytosis within the basal ganglia, principally the GPi and SNr (Yamada et al., 1986). 

Injury to the striatum and an accompanying loss of striatal DA levels are also observed 

that contribute to the motor deficits of the disorder (Daniels and Abarca, 1991; Huang et 

al., 2003). However, the role of astrocyte in the pathophysiology of manganism remains 

poorly understood. 
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Several lines of evidence implicate astrocytes as an early target of Mn. 

Astrocytes are the principal repository for Mn in the CNS, demonstrated by studies 

showing that GS, for which Mn is a required cofactor, is located predominantly in this 

cell type (Martinez-Hernandez et al., 1977). Astrocytes also possess a high affinity 

uptake system for Mn (Aschner et al., 1992). A selective decrease in immunoreactivity 

for GFAP and S100β occurs in rats exposed to Mn that precedes any apparent neuronal 

injury (Henriksson and Tjalve, 2000). Additionally, it was recently observed that an 

early upregulation of the PTBR occured in adult rats exposed subacutely to Mn that was 

associated with astrocytosis in the GP (Hazell et al., 2003). 

Astrocytes activated during stress and injury produce a number of inflammatory 

mediators that are injurious to neurons, including IL-1β, TNF-α, IFN-γ, and NO, which 

are elevated in several disorders of the basal ganglia (Hirsch et al., 1998; Langston et al., 

1999). Although it has been reported that Mn potentiates the effects of pro-inflammatory 

cytokines on expression of NOS2 and production of NO in astrocytes that promotes 

injury to co-cultured neurons (Spranger et al., 1998), the specific signaling pathways 

underlying the observed induction of NOS2 have not been identified. NF-κB, a Rel 

protein family member, is the principal transcription factor that mediates inducible 

expression of NOS2 in response to LPS and pro-inflammatory cytokines (Xie and 

Nathan, 1993; Xie et al., 1994). NF-κB is activated by distinct signaling pathways that 

converge on IKK, which phosphorolates the NF-κB inhibitory subunit, IκBα, resulting 

in its dissociation and degradation by the 26S proteosome (Karin et al., 2002). Recent 

studies from our laboratory demonstrated that inhibition of NF-κB through 
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overexpression of a dominant-negative mutant of IκBα completely blocks the 

enhancement of Mn on LPS-induced expression of NOS2 in C6 glioma cells (Barhoumi 

et al., 2004). It was therefore postulated in the present studies that potentiation of 

cytokine-induced NOS2 expression in astrocytes by Mn is NF-κB dependent and that 

astrocyte-derived NO causes neuronal injury resulting in apoptosis.  

Materials and Methods 

Materials 

PC12 cells were obtained from the American Type Culture Collection 

(Manassas, Virginia, Catalog number CRL-1721). C57B1/6 mice were obtained from 

The Jackson Laboratory (Bar Harbor, ME). Cell culture media, fetal bovine serum, 

antibiotics, and laminin were purchased from Sigma-Aldrich (St. Louis, MO). Co-

culture 6-well companion plates and inserts were from BD Biosiences (Bedford, MA). 

Polyvinylpyrolidine membranes (Hybond-N), enhanced chemiluminescence (ECL) 

reagents were purchased from Amersham Biosciences (Piscataway, NJ). Polyclonal 

antibodies against mouse NOS2 and horseradish peroxidase-conjugated anti-rabbit IgG 

were obtained from BD Pharmingen (San Diego, CA). Monoclonal antibody to β-actin 

was obtained from Sigma (St. Louis, MO). Prolong Antifade kit, cell permeant pan-

caspase substrate rhodamine 110 bis-(L-aspartic acid amide), Hoechst 3342, 4-amino-5-

methylamino-2’, 7’-difluorofluorescein diacetate (DAF-FM diacetate), and SNAP were 

purchased from Molecular Probes (Eugene, Oregon). AMT was purchased from 

Calbiochem (La Jolla, CA). Terminal Transferase Recombinants and Complete™ 
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protease inhibitor cocktails were from Roche Molecular Biochemicals (Indianapolis, 

IN).  

Cell Culture 

PC12 cells were maintained in Dulbecco’s modified Eagle’s medium/Ham’s F12 

50/50 mix (DMEM/F12) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS), 50 units/ml penicillin, 50 ng/ml streptomycin, and 100 ng/ml neomycin (PSN) in 

a humidified atmosphere at 37 °C, 5% CO2. Primary astrocytes were isolated from the 

cortex of day 1 postnatal C57B1/6 mice essentially as described (Aschner et al., 1992), 

except that the number of extractions was reduced by half to accommodate the lower 

yield of cortical tissue from mice as compared to rats. Astrocyte cultures were 

maintained at 37 °C, 5% CO2 in Minimal Essential Medium (MEM) supplemented with 

Earle’s salts, 10% FBS, and PSN, and grown 18 days to maturity prior to experiments. In 

our laboratory, this method routinely yields cultures consisting of 95-98% astrocytes, 

based upon immunofluorescence staining for GFAP. 

Astrocyte-neuron Co-culture 

Confluent PC12 cells were detached with 0.5 mM EDTA and subcultured onto 

laminin-coated (5 µg/ml) 22 mm round glass coverslips in 6-well plates at 3×105/well, 

then differentiated with NGF (50 ng/ml) for 5 days prior to experiments. Astrocytes 

were detached with 0.25% Trypsin/0.5mM EDTA and plated on permeable cell culture 

inserts (0.45 µm pore size) at 2×104/well in DMEM/F12 medium containing 10% FBS 

and PSN 3 days before co-culture with PC12 cells. Upon treatment, PC12 cells and 

astrocytes were washed with phosphate-buffered saline (PBS, pH 7.4), the culture 
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medium was changed to DMEM/F12 containing 10% FBS without phenol red or PSN. 

PC12 cells were treated singly or in co-culture with astrocytes for 1 – 3 days with 

physiologic saline, 50µM MnCl2, TNF-α (10 µg/ml)/IFN-γ (1 ng/ml), or 50µM MnCl2 + 

TNF-α/IFN-γ. Astrocytes were removed at the conclusion of treatment and PC12 cells 

were examined for indices of apoptosis as described below. 

Determination of Steady-state Nitric Oxide Production 

Steady-state production of NO in live astrocytes was measured by wide-field 

fluorescence microscopy using the fluorescent indicator DAF-FM diacetate (Kojima et 

al., 1998), prepared as a 5 mM stock solution in DMSO and diluted in culture medium to 

a final concentration of 5 µM. The fluorescence intensity of DAF-FM diacetate was 

determined kinetically by collecting images at 490 nm excitation/520 nm emission at 15 

sec intervals for 20 min (see below for microscopy) to permit reaction of NO with DAF-

FM diacetate to reach equilibrium. Intensity data were then analyzed by calculating a 

normalized fluorescence value for each image as dF/F0, where F represents the 

background-subtracted fluorescence of a given cell at time t divided by the background-

subtracted fluorescence of the same cell at time zero (F0). 

Determination of NOS2 mRNA and Protein 

Steady state-levels of NOS2 mRNA were determined by real-time PCR using a 

Prism 7700 instrument and Syber Green reagents (PerkinElmer Life and Analytical 

Sciences, Inc., Boston, MA) and normalized to β-actin mRNA. The following primers 

from the mouse NOS2 and β-actin coding sequences were used: (NOS2) 5' - TCA CGC 

TTG GGT CTT GTT C - 3' (forward), 5 ' - CAG GTC ACT TTG GTA GGA TTT G - 3' 
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(reverse); (β-actin) 5' - GCT GTG CTA TGT TGC TCT AG - 3' (forward), ' - CGC TCG 

TTG CCA ATA GTG - 3' (reverse). RNA was isolated using the RNAeasy kit (Qiagen, 

Valencia, CA). NOS2 protein levels were determined in astrocytes by immunoblotting. 

Both mRNA and protein were measured after 24 hrs exposure to Mn and/or TNF-α/IFN-

γ in DMEM/F12 culture medium containing 10% fetal bovine serum without phenol red 

or antibiotics. Total protein was harvested in RIPA buffer (50 mM HEPES, pH 7.4, 500 

mM NaCl, 1.5 mM MnCl2, 1 mM EGTA, 10% glycerol, 1% Triton X-100) containing 

0.2 mM sodium orthovanadate and Complete™ protease inhibitor cocktail. Cells isolates 

were then incubated on ice for 1 h and debris pelleted by centrifugation at 10,000 × g for 

10 min at 4°C to yield a supernatant designated as total cellular protein. 50 µg of total 

protein was resolved by 10% SDS-PAGE and transferred to polyvinylpyrolidine 

membranes. Primary polyclonal antibody for NOS2 was used at 1:500 dilution. Blots 

were visualized by ECL with a horseradish peroxidase-conjugated secondary antibody at 

1:1000 dilution. Blots were stripped and reprobed with a monoclonal antibody to β-actin 

at 1:1000 dilution to control for the amount of protein loaded. 

Expression of Mutant-IκBα 

A phosphorylation-deficient mutant of IκBα, IκBα-(S32,36A)-HA, was 

overexpressed in primary astrocytes using an adenoviral vector (provided by Dr. David 

Brenner, Columbia University), delivered for 24 hrs at 2×106 viral particles per ml of 

culture medium, with a multiplicity of infection (MOI) of 1×103 virions per cell. Parallel 

control experiments utilized the same adenoviral construct lacking the insert. Following 
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incubation with the mutant IκBα construct for 24 hrs, astrocytes were washed with PBS 

to remove viral particles and cultured in fresh medium for 24 hrs prior to gene 

expression studies or co-culture with PC12 cells. Expression of the mutant construct in 

infected astrocytes was confirmed by immunoblotting for the hemaglutinen epitope. 

Caspase Acitvation and Fluorescence Imaging 

Activation of caspases was detected using the cell permeant pan-caspase 

substrate rhodamine 110 bis-(L-aspartic acid amide). Cleavage of the aspartate amide by 

active caspases results in a highly fluorescent product that is readily visualized by 

fluorescence microscopy. Cellular and nuclear morphology were examined by 

differential interference contrast (DIC) imaging and staining with Hoechst 3342, 

respectively. Following 24 hrs co-culture in the presence of Mn and/or TNF-α/IFN-γ, 

astrocytes were removed and PC12 cells loaded with 10µM rhodamine 110 bis-(L-

aspartic acid amide) and 10 µM Hoechst 3342 for 20 min at 37 °C in incubation medium 

(phenol red-free DMEM/F12 plus 2 mM L-glutamine and 25 mM HEPES, pH 7.4). 

Following incubation, cells were placed into fresh incubation medium and examined by 

wide field fluorescence microscopy for activation of caspases. Nomarski differential 

interference contrast images were acquired sequentially with images of rhodamine 110 

bis-(L-aspartic acid amide) and Hoechst 3342 fluorescence at 490 nm excitation /520 nm 

emission  and 380 nm excitation/400 nm emission, respectively, on an Olympus IX-70 

microscope equipped with an ORCA-ER cooled, interline charge-coupled device camera 

(Hamamatsu Photonics, Hamamatsu City, Japan). The mean fluorescence intensity per 

cell was calculated using Simple PCI software (Compix, Cranberry Township, PA). 
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TUNEL and Determination of Nuclear Apoptotic Phenotype 

PC12 cells were co-cultured and treated as described above and fixed with 4% 

paraformaldehyde. Fixed cells were permeabilized with 0.1% Triton X-100 and 

incubated in equilibration buffer (1X Tris EDTA, pH7.4, 5X terminal transferase buffer, 

25mM CoCl2) and TUNEL reaction buffer (1X Tris EDTA, pH7.4, 5X terminal 

transferase buffer, 25mM CoCl2, 1 mM Alexafluor 488 dUTP, 1mM dATP) for 30 min 

at 37 °C, then soaked in 1X SSC (150mM NaCl, 15mM sodium citrate) for 15 min to 

stop the reaction. Hoechst 3342 (0.5 µM) was added to the final 10 min of the wash. 

Cover slips were mounted onto slides using Prolong Antifade reagent mounting medium. 

TUNEL-positive nuclei were detected by fluorescence imaging at 490 nm excitation/520 

nm emission as described above using a 10X PlanApochromat air objective and 

quantified by counting a minimum of 800 – 1000 cells per treatment group from at least 

3 independent experiments. Images of nuclear morphology were collected at 380 nm 

excitation/400 nm emission using a 60X 1.45 N/A PlanAprochromat oil immersion 

objective. 

Statistical Analysis 

Differences between two treatments were analyzed using a two-tailed t-test at 

p<0.05, while differences between multiple treatments were evaluated by one-way 

ANOVA followed by Tukey’s test for multiple comparisons using a significance value 

of p<0.05. 
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Results 

Mn and Cytokine-induced NOS2 Expression and NO Production in Primary Astrocytes 

Requires Activation of NF-κB 

The capacity of Mn to potentiate cytokine-induced expression of NOS2 and 

production of NO was examined in primary murine cortical astrocytes exposed to TFN-

α and IFN-γ  (Figure 3.1). Only modest increases in NOS2 mRNA (Figure 3.1A) and 

protein (Figure 3.1B) were observed following 24 hrs exposure to either 50 µM MnCl2 

or 10 pg/ml TNF-α  + 1 ng/ml IFN-γ individually. However, combined exposure to Mn 

and TFN-α/IFN-γ resulted in large increases in steady-state levels of mRNA and protein. 

This induction was abrogated by blocking activation of NF-κB through adenovirus-

mediated overexpression of a phosphorylation-deficient mutant of IκBα (mtIκBα, IκBα-

S32/36A). This genetic approach was selected to inhibit NF-κB without affecting other 

pathways, otherwise the use of less specific pharmacologic inhibitors, such as TPCK (N-

tosyl-L-phenylalanine chloromethyl ketone), will broadly inhibit cellular proteases 

(Papaccio et al., 2005). Expression mtIκBα completely prevented induction of NOS2 

mRNA in cells exposed to either Mn or TNF-α/IFN-γ individually but only partially 

inhibited induction of NOS2 mRNA in cells exposed to both Mn and TFN-α/IFN-γ. 

Levels of NOS2 message and protein in cells infected with a control adenoviral vector 

and exposed to Mn and TFN-α/IFN-γ were similar to uninfected wildtype controls. 

Similarly, cytokine-induced production of NO in astrocytes was dramatically potentiated 

by Mn (Figure 3.1C), as determined by live-cell digital fluorescence microscopy within 
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single astrocytes using the fluorescent NO indicator DAF-FM diacetate. Production of 

NO was attenuated by expression of mtIκBα but not by the control vector. 

 

 

Figure 3.1. Mn and Cytokine-induced NO Production and Expression of NOS2 in Primary 
Murine Astrocytes Requires Activation of NF-κB. Primary astrocytes were exposed for 24 hrs to saline 
control, 50µM MnCl2, 10 pg/ml TNF-α  + 1 ng/ml IFN-γ, or 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml 
IFN-γ. Levels of NOS2 mRNA A, protein B, and NO C were determined in the absence or presence of a 
dominant-negative mutant of IκBα (IκBα-S32/36A) or control vector. NOS2 mRNA was determined by 
semi-quantitative real-time PCR and was normalized to β-actin. NOS2 immunoblots were stripped and re-
probed with anti-β-actin primary antibody to control for protein loading. Steady-state production of NO 
was determined by live cell fluorescence imaging. Data represent the mean ± S.E.M. for triplicate 
determinations from three independent experiments. Differing letters denote significant difference from 
other treatment groups (p>0.05). 
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Caspase Activation in Co-cultured PC12 Cells Exposed to Mn and Cytokines Requires 

Functional NF-κB in Astrocytes 

To examine the effect of Mn- and cytokine-activated astrocytes on co-cultured 

neurons, PC12 cells differentiated to a neuronal phenotype with NGF were exposed to 

Mn and TFN-α/IFN-γ in co-culture with astrocytes grown on permeable inserts that 

permit diffusion of small molecules but not cell-cell contact (Figure 3.2). Following 24 

hrs exposure to Mn and TFN-α/IFN-γ, astrocytes were removed and caspase activity was 

examined in live PC12 cells by fluorescence microscopy using the cell permeant pan-

caspase substrate, rhodamine 110 bis-(L-aspartic acid amide). No differences were 

observed in either cell morphology or caspase activation in co-cultured neurons exposed 

to saline control or 50 µM MnCl2 (Figure 3.2A, B). Neurites and axons were evident in 

these treatment groups and no loss of dendritic arborization occurred. Quantitation of 

caspase activity by fluorescence cytometry (Figure 3.2C and inset) in adherent 

populations of co-cultured PC12 cells revealed no differences in rhodamine 110 

fluorescence between control and Mn-treated cells. PC12 cells co-cultured with 

astrocytes in the presence of TNF-α/IFN-γ displayed a similar lack of change in either 

cell morphology or caspase activity (Figure 3.2D), but the addition of both Mn and TNF-

α/IFN-γ resulted in widespread activation of caspases and a loss of differentiated 

neuronal morphology (Figure 3.2E, F). Quantitation of rhodamine 110 fluorescence 

(Figure 3.2F) revealed a significant increase in the number of neurons with activated 

intracellular caspases. Overexpression of mtIκBα in astrocytes 24 hrs prior to incubation 

 



 80

with neurons completely blocked Mn- and cytokine-induced activation of caspases in co-

cultured PC12 cells and prevented loss of differentiated morphology (Figure 3.2G). 

Caspase activity was still increased upon exposure to Mn and TNF-α/IFN-γ in PC12 

cells co-incubated with astrocytes expressing control vector and differentiated 

morphology was lost (Figure 3.2H, I). 

NF-κB-dependent NOS2 Expression in Astrocyte Mediates DNA Fragmentation and 

Nuclear Condensation in Co-cultured PC12 cells Exposed to Mn and Cytokines 

To determine if the observed increases in caspase activity in co-cultured PC12 

cells resulted in apoptosis, cells were assessed for DNA fragmentation by TUNEL and 

for nuclear morphology by Hoechst 3322 at 1 – 3 days following exposure to Mn and 

TNF-α/IFN-γ in the presence of astrocytes (Figure 3.3). The number of TUNEL-positive 

cells was increased over control in co-cultured PC12 cells exposed to Mn and TNF-

α/IFN-γ as early as 24 hrs after exposure, peaking at 72 hrs at approximately 12% of 

cells (Figure 3.3A). Exposure to Mn or TNF-α/IFN-γ individually did not result in a 

significant increase in TUNEL-positive cells (data not shown). The observed increase in 

TUNEL staining was completely prevented by overexpression of mtIκBα in astrocytes 

prior to incubation with PC12 cells, but not by control vector (Figure 3.3B). Similarly, 

overexpression of mtIκBα in astrocytes prevented nuclear fragmentation in co-cultured 

PC12 cells exposed to Mn and TNF-α/IFN-γ, as determined by live-cell fluorescence 

microscopic analysis of Hoechst-stained cells (Figure 3.3C). 
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Figure 3.2. Caspase Activation in Co-cultured PC12 cells Exposed to Mn and Cytokines 
Requires Functional NF-κB in Astrocytes. Caspase activity in co-cultured PC12 cells was assessed by 
imaging the fluorescence of rhodamine 110 (bis-L-aspartic acid) following exposure to A, saline control, B, 
50µM MnCl2, D, 10 pg/ml TNF-α  + 1 ng/ml IFN-γ, and E, 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml 
IFN-γ. C,F,Quantitation of caspase activity by fluorescence cytometry. G-I, Caspase activity in co-
cultured neurons exposed to 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFN-γ in the presence of astrocytes 
expressing mutant IκBα G, or control vector H.  * Denotes significant difference from paired treatment 
(p<0.05). 
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Figure 3.3. NF-κB-dependent NOS2 Expression in Astrocyte Mediates DNA Fragmentation 
and Nuclear Condensation in Co-cultured PC12 Cells Exposed to Mn and Cytokines. A, Quantitation 
of TUNEL-positive neurons following 1 – 3 days exposure in co-culture to saline control or 50µM MnCl2 
+ TNF-α (10pg/ml) + IFN-γ (1ng/ml). B, Quantitation of TUNEL-positive neurons following 3 days 
exposure in co-culture to Mn and TNF-α/IFN-γ in the presence of astrocytes expressing mutant IκBα or 
control vector. C, Morphology of Hoechst-stained nuclei in neurons following 3 days exposure in co-
culture to Mn and TNF-α/IFN-γ in the presence of astrocytes expressing mutant IκBα or control vector. 
Field = 40 µm. *Denotes significant difference from control (p<0.05). 
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Inhibition of NOS2 Enzyme Activity Prevents Astrocyte-mediated Neuronal Apoptosis 

Following Exposure to Mn and Cytokines 

The role of NOS2 in astrocyte-mediated neuronal apoptosis was examined by 

exposing co-cultured astrocytes and PC12 cells to Mn and TNF-α/IFN-γ in the presence 

of AMT, a highly selective inhibitor of NOS2 enzyme activity (ki=4.2 nM for the murine 

isoform) (Nakane et al., 1995). Following 24 hrs exposure to Mn and TNF-α/IFN-γ, 

caspase activation in co-cultured neurons was completely blocked by 25 nM AMT 

(Figure 3.4A). AMT also decreased, but did not completely prevent, TUNEL-positive 

cells in co-cultured PC12 cells exposed to Mn and TNF-α/IFN-γ for 3 days in the 

presence of astrocytes (Figure 3.4B) and prevented nuclear condensation and 

fragmentation in co-cultured neurons (Figure 3.4C). 

Exogenous NO is Required to Induce Neuronal Apoptosis by Mn and Cytokines in the 

Absence of Astrocytes 

The requirement for astroglial-derived NO in neuronal apoptosis was assessed by 

exposing PC12 cells to Mn and TNF-α/IFN-γ in the absence of astrocytes and 

determining the relative changes in caspase activity and apoptosis (Figure 3.5). PC12 

cells exposed to both Mn and TNF-α/IFN-γ for 24 hrs in the absence of astrocytes 

displayed no measurable change in caspase activity, as determined by analysis of 

rhodamine 110 fluorescence intensity (Figure 3.5A). However, combined exposure to 

Mn and TNF-α/IFN-γ in the presence of the NO donor, 10 µM SNAP, resulted in 

caspase activation (Figure 3.5B), increased TUNEL staining (Figure 3.5C), and 

apoptotic fragmentation of nuclei (Figure 3.5D) in PC12 cells. Exposure to 10 µM 
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SNAP alone did not elicit any apoptotic changes in PC12 cells (Figure 3.5B-D), nor did 

exposure to Mn or TNF-α/IFN-γ individually (data not shown). 

 

 
Figure 3.4. Inhibition of NOS2 Enzyme Activity Prevents Astrocyte-mediated Neuronal 
Apoptosis Following Exposure to Mn and Cytokines. Caspase activity and apoptosis was examined in 
co-cultured PC12 cells exposed to Mn and TNF-α/IFN-γ for 3 days in the absence or presence of the 
NOS2 inhibitor AMT. A, Relative caspase activity in co-cultured PC12 cells exposed to 50µM MnCl2  + 
10pg/ml TNF-α  + 1ng/ml IFN-γ in the absence or presence of 25 nM AMT. B, Percent TUNEL-positive 
cells after the same treatment as in A. C, Representative Hoechst images of nuclear morphology from B. 
*Denotes significant difference from Mn + TNF-α/IFN-γ treatment group (p<0.05). **Denotes significant 
difference from 25 nM AMT alone (p<0.01).  
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Figure 3.5. Exogenous NO is Required to Induce Neuronal Apoptosis by Mn and Cytokines in 
the Absence of Astrocytes. Caspase activation was determined in PC12 cells exposed to 50µM MnCl2  + 
10pg/ml TNF-α  + 1ng/ml IFN-γ for 24 hrs in the absence A or presence B of the NO donor, 10 µM SNAP. 
Percent TUNEL-positive cells C and nuclear morphology D in PC12 cells exposed to saline control, 50µM 
MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFN-γ, 10 µM SNAP, or 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml 
IFN-γ + 10 µM SNAP for 24 hrs. Field = 40 µm. *Denotes significant difference from AMT group 
(p<0.05). 

 

 

Discussion 

Astrocytes protect neurons from toxic and ischemic injury by increasing 

metabolic activity and production of growth and trophic factors. Activation of astrocytes 

by microglial-derived cytokines such as IL-1β, TNF-α, and IFN-γ promotes adaptive 
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changes designed to maintain ionic homeostasis within the CNS and to preserve the 

essential function of the BBB (Liberto et al., 2004). However, more severe injury 

promotes anisomorphic activation of astrocytes that can exacerbate neuronal dysfunction 

through enhanced production of inflammatory mediators such as NO, TNF-α, 

arachidonic acid metabolites, and ROS, resulting in formation of a limiting astrogliotic 

scar around the site of injury (Liberto et al., 2004). It is therefore of interest to 

understand the mechanism of action of compounds that diminish the trophic capacity 

and adaptive responses of activated astrocytes, leading to an activated phenotype that 

promotes neuronal injury. Mn in excess may function as such a compound by interfering 

with critical metabolic and trophic functions of astrocytes; Mn decreases uptake of 

glutamate (Hazell and Norenberg, 1997) and expression of the glutamate transporters 

GLAST and GLT-1 (Erikson and Aschner, 2002) in cultured astrocytes, disrupts 

mitochondrial calcium buffering (Gunter and Pfeiffer, 1990), and promotes cytokine-

mediated expression of NOS2 (Spranger et al., 1998; Barhoumi et al., 2004). 

The present studies demonstrate that Mn dramatically potentiates induction of 

NOS2 and production of NO in cultured astrocytes exposed to modest concentrations of 

the inflammatory cytokines TNF-α and IFN-γ. NF-κB is a central regulator of NOS2 

transcriptional activation (Xie et al., 1994) and, accordingly, overexpression of a 

dominant-negative ‘super repressor’ of NF-κB blocked the expression of NOS2 in 

astrocytes exposed to Mn or cytokines singly but did not completely block the 

potentiating effect of combined exposure (Figure 3.1). This phenomenon could be 

explained through other transcription factors that activate the promoter of NOS2 in 
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addition to NF-κB, such as Elk-1 and AP-1 (Xie and Nathan, 1993). Elk-1 is activated 

via the ERK pathway, which is potently stimulated by Mn (Walowitz and Roth, 1999; 

Ivins et al., 2000), and activation of AP-1 is promoted by ROS, which are increased in 

glial cells by Mn through disruption of mitochondrial calcium (Barhoumi et al., 2004). 

However, analysis of steady-state production of NO in astrocytes by real-time imaging 

revealed that inhibition of NF-κB decreased Mn- and cytokine-induced NO to levels 

only slightly above control (Figure 3.1C). This is consistent with other studies describing 

NF-κB as the principal transcription factor involved in inflammatory activation of NOS2 

(Xie and Nathan, 1993; Xie et al., 1994). Although NOS2 protein levels did not appear 

to be strongly potentiated by combined exposure to Mn and TNFα/IFN-γ, compared to 

individual exposure (Figure 3.1B), steady-state production of NO was greatly enhanced 

(Figure 3.1C). This observation could be explained in part by the availability of co-

factors, such as, BH4 which are required for synthesis of NO, and have been shown to be 

coordinately upregulated with NOS2 (Linscheid et al., 2003).  

The potentiation of cytokine-induced NOS2 expression in astrocytes by Mn 

elicits apoptotic changes in co-cultured PC12 cells. Only combined exposure to Mn and 

TNF-α/IFN-γ was sufficient to increase activation of caspases, fragmentation of DNA, 

and nuclear condensation in co-cultured PC12 cells (Figure 3.2 and Figure 3.3). 

Individual exposure to these compounds did not elicit any apoptotic changes in co-

cultured neurons. Overexpression of mtIκBα in astrocytes prevented all indices of 

apoptosis in co-cultured neurons for up to three days following combined exposure to 

Mn and TNF-α/IFN-γ, indicating that NF-κB-dependent gene expression in astrocytes is 
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required for neuronal apoptosis in this system. Pharmacologic inhibition of NOS2 with 

25 nM AMT blocked activation of caspases in co-cultured neurons (Figure 3.4A) but did 

not completely prevent Mn- and cytokine-induced apoptosis (Figure 3.4B). These data 

suggest that NO is responsible for most, but not all, of the observed apoptotic changes in 

co-cultured neurons. This observation is not surprising, considering that numerous other 

inflammatory mediators are regulated by NF-κB, including prostaglandin E2 and 

cytokines such as IL-1β, that likely contribute to astrocyte-mediated injury. 

In the absence of astrocytes, combined exposure to Mn and TNF-α/IFN-γ fails to 

induce apoptosis in co-cultured neurons. However, the apoptotic phenotype was 

recovered in PC12 cells exposed to Mn and TNF-α/IFN-γ in the absence of astrocytes by 

the addition of low concentrations of the NO donor SNAP (Figure 3.5), indicating that 

astrocyte-derived NO is both necessary and sufficient to induce apoptosis in co-cultured 

neurons. Although the expression of NOS2 has been reported in undifferentiated PC12 

cells (Chung et al., 1999), the primary involvement of astrocyte-specific NOS2 in Mn- 

and cytokine-dependent apoptosis is demonstrated by the requirement for NF-κB-

dependent gene expression in astrocytes (Figure 3.2 and Figure 3.3), as well as the 

effectiveness of NOS2 inhibition in preventing neuronal apoptosis (Figure 3.). 

Moreover, apoptosis in the absence of astrocytes is only recovered through the addition 

of NO (Figure 3.5), precluding the involvement of neuronally-derived NO in the 

observed apoptotic changes. It has been previously reported that NO donors can induce 

apoptosis in undifferentiated PC12 cells at relatively high concentrations (~100 µM) 

(Yuyama et al., 2003), but in the present studies no significant degree of caspase 
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activation was detected in differentiated PC12 cells at the low concentrations of SNAP 

utilized (10 µM; Figure 3.5). 

Collectively, these data demonstrate that Mn potentiates cytokine-induced 

expression of NOS2 in astrocytes by an NF-κB-dependent mechanism and that 

subsequent overproduction of NO results in apoptosis of co-cultured neurons. This is, to 

our knowledge, the first report of a specific transcription factor in astrocytes that has 

been shown to mediate NO-dependent neuronal apoptosis following exposure to Mn. 

Related studies from our laboratory in C6 glioma cells indicated that the upstream 

signaling events by which Mn exerts this effect on NF-κB-dependent expression of 

NOS2 appear to involve both direct stimulatory effects on cytokine-mediated stimulation 

of IκBα phosphorylation as well as enhancement of mitochondrial-derived ROS 

(Barhoumi et al., 2004). Unraveling these complex and convergent signaling events in 

primary astrocytes will provide additional insight into the role of astrocyte-derived NO 

in the neurotoxicity of Mn. 
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CHAPTER IV 

1,1-BIS(3'-INDOLYL)-1-(P-TRIFLUOROMETHYLPHENYL) 

ETHANE INHIBITS ASTROCYTE-MEDIATED NEURONAL 

APOPTOSIS  AFTER MN EXPOSURE 

 
Overview 

Astrocytosis is thought to play an important role in neuronal injury induced by 

excessive Mn exposure which results in a clinical movement disorder, termed 

manganism that shares certain neurogical features with PD. Previous studies 

demonstrated that astrocyte-derived NO mediates apoptosis in differentiated PC12 cells 

after exposure to Mn and pro-inflammatory cytokines by a mechanism requiring 

activation of NF-κB. In this study, we postulated that activation of NF-κB in this system 

is regulated by the orphan nuclear receptor PPARγ. To test this hypothesis, co-cultured 

astrocytes and PC12 cells differentiated with NGF were exposed to Mn and TNFα plus 

IFN-γ in the presence of novel pharmacologic ligands of PPARγ, DIM-C-pPhCF3. 

Apoptosis of co-cultured neuronal cells was dramatically attenuated by DIM-C-pPhCF3, 

whereas the addition of PPARγ antagonist GW9622 resulted in an increase in neuronal 

cell death. Apoptosis in co-cultured neuronal cells was correlated with PPARγ-

dependent NOS2 expression in astrocytes. It is concluded from this study that PPARγ is 

involved in the regulation of NOS2 expression in astrocytes and that agonists of PPARγ 

may represent a potential therapeutic modality for Mn neurotoxicity. 

 



 91

Introduction  

Our previous data demonstrated that Mn potentiated cytokine-induced expression 

of NOS2 in astrocytes by an NF-κB-dependent mechanism and that subsequent 

overproduction of NO resulted in apoptosis of co-cultured PC12 cells. Presumably, 

treatments that inhibit the NF-κB-dependent NOS2 expression in astrocytes may be 

effective at diminishing the severity of Mn neurotoxicity.  

Recent studies suggest that multiple coactivators play a critical role in NF-κB-

dependent transcription: the p65 component of NF-κB binds to the coactivator CBP 

(cyclic AMP response element binding protein [CREB]-binding protein) and its 

structural homolog p300 (Gerritsen et al., 1997); p50 interacts with steroid receptor-

coactivator-1 (SRC-1) or nuclear receptor coactivator-1 (NCoA-1) from the p160 family 

(Na et al., 1998). SRC-1/NCoA-1 also interacts with CBP through two helical domains 

that contain the core LXXLL consensus sequence (Torchia et al., 1997). The co-activator 

complex used by p50-p65 closely resembles that used by PPARγ (Sheppard et al., 1999), 

a member of the nuclear hormone receptor superfamily that activates target gene 

transcription in a ligand-dependent manner. CBP and p300 are recruited to PPARγ 

through bridging factors that include SRC-1, although CBP and p300 also contain an N-

terminal LXXLL domain that can interact directly with PPARγ (Schulman et al., 1998). 

The SRC-1 class of co-activators interacts with nuclear receptors through a conserved 

region with the consensus sequence LXXLL (Torchia et al., 1997). Liganded PPARγ has 

been shown to inhibit transcription of genes induced by IFN-γ and/or LPS, including the 

nos2 gene. This inhibition is considered transrepression because it does not appear to 
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involve direct binding to the nos2 promoter but may be achieved partially through 

antagonizing the activities of NF-κB (Li et al., 2000). It has been suggested that 

competition for limiting amounts of general coactivators CBP/p300 and SRC-1 

represents a mechanism for transrepression of  NF-κB by PPARγ (Kamei et al., 1996; Li 

et al., 2000). Mutations that cause significantly weakened interactions between PPARγ 

and the SRC-1/CBP coactivators result in coordinate loss of transrepression activities, 

which suggest that PPARγ-dependent transrepression of the nos2 promoter involves the 

targeting of CBP–SRC-1 coactivator complexes (Li et al., 2000).  PPARγ positively 

regulates gene expression by binding to response elements in target genes as a 

heterodimer with retinoid X receptors (RXRs) (Kliewer et al., 1992). When either the 

PPARγ or RXR components of the heterodimer are bound by agonists, the respective 

ligand binding domains (LBDs) undergo a conformational change and recruit 

coactivators (Torchia et al., 1997) which may inhibit p50-p65 induced nos2 gene 

transcription.   

These studies support the potential of PPARγ agonists in the treatment of NF-κB 

dependent inflammatory diseases. Currently, thiazolidinediones (TZDs), including 

rosiglitazone, ciglitazone, and pioglitazone, a class of synthetic PPARγ agonists are 

currently being used in the treatment of type-II diabetes and are also found effective in 

inhibiting the onset and duration of EAE, an animal model of multiple sclerosis (MS) 

(Feinstein et al., 2002). The expression of PPARγ in astrocytes makes these cells 

potential targets for the anti-inflammatory actions of TZDs (Cristiano et al., 2001). 

Another study also demonstrated that TZDs inhibited the production of NO and pro-
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inflammatory cytokines and chemokines from stimulated mouse astrocytes (Storer et al., 

2005).  

In this study we evaluate a new class of PPARγ agonist, DIM-C-pPhCF3, as a 

potential treatment of Mn neurotoxicity. Diindolylmethane (DIM) is a metabolite of 

indole-3-carbinol, a phytochemical that contributes to the anticarcinogenic activity of 

cruciferous vegetables (Murillo and Mehta, 2001). DIM-C-pPhCF3 is one of the DIMs 

containing substituted phenyl groups at the methylene carbon (C-substituted DIMs) 

which has been reported to induce PPARγ dependent transactivation and PPARγ-

coactivator interactions in MCF-7 cells (Qin et al., 2004). So far, this is the first study to 

apply this chemical in the treatment of Mn neurotoxicity.  

Materials and Methods 

Materials 

PC12 cells were obtained from the American Type Culture Collection 

(Manassas, Virginia, Catalog number CRL-1721). C57B1/6 mice were obtained from 

The Jackson Laboratory (Bar Harbor, ME). Cell culture media, fetal bovine serum, 

antibiotics, and laminin were purchased from Sigma-Aldrich (St. Louis, MO). Co-

culture 6-well companion plates and inserts were from BD Biosciences (Bedford, MA). 

Polyvinylpyrolidine membranes (Hybond-N), ECL reagents were purchased from 

Amersham Biosciences (Piscataway, NJ). Polyclonal antibodies against mouse NOS2 

and horseradish peroxidase-conjugated anti-rabbit IgG were obtained from BD 

Pharmingen (San Diego, CA). Monoclonal antibody to β-actin was obtained from Sigma 

(St. Louis, MO). Monoclonal antibody to PPARγ was obtained from Santa Cruz 
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Biotechnology (Santa Cruz, CA). Prolong Antifade kit, cell permeant pan-caspase 

substrate rhodamine 110 bis-(L-aspartic acid amide), Hoechst 3342 were purchased from 

Molecular Probes (Eugene, Oregon). Terminal Transferase Recombinants and 

Complete™ protease inhibitor cocktails were from Roche Molecular Biochemicals 

(Indianapolis, IN). DIM-C-pPhCF3 and GW9622 were provided by Dr. Stephen Safe 

(Texas A&M University). 

Cell Culture 

  PC12 cells were maintained in Dulbecco’s modified Eagle’s medium/Ham’s F12 

50/50 mix (DMEM/F12) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS), 50 units/ml penicillin, 50 ng/ml streptomycin, and 100 ng/ml neomycin (PSN) in 

a humidified atmosphere at 37 °C, 5% CO2. Primary astrocytes were isolated from the 

cortex of day 1 postnatal C57B1/6 mice essentially as described (Aschner et al., 1992), 

except that the number of extractions was reduced by half to accommodate the lower 

yield of cortical tissue from mice as compared to rats. Astrocyte cultures were 

maintained at 37 °C, 5% CO2 in Minimal Essential Medium (MEM) supplemented with 

Earle’s salts, 10% FBS, and PSN, and grown 18 days to maturity prior to experiments. In 

our laboratory, this method routinely yields cultures consisting of 95-98% astrocytes, 

based upon immunofluorescence staining for GFAP. 

Astrocyte-neuron Co-culture 

 Confluent PC12 cells were detached with 0.5 mM EDTA and subcultured onto 

laminin-coated (5 µg/ml) 22 mm round glass coverslips in 6-well plates at 3×105/well, 

then differentiated with NGF (50 ng/ml) for 5 days prior to experiments. Astrocytes 
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were detached with 0.25% Trypsin/0.5mM EDTA and plated on permeable cell culture 

inserts (0.45 µm pore size) at 2×104/well in DMEM/F12 medium containing 10% FBS 

and PSN 3 days before co-culture with PC12 cells. Upon treatment, PC12 cells and 

astrocytes were washed with phosphate-buffered saline (PBS, pH 7.4), the culture 

medium was changed to DMEM/F12 containing 10% FBS without phenol red or PSN. 

PC12 cells were treated in co-culture with astrocytes for 1–3 days with physiologic 

saline, 50µM MnCl2, TNF-α (10 µg/ml)/IFN-γ (1 ng/ml), or 50µM MnCl2 + TNF-

α/IFN-γ. Astrocytes were removed at the conclusion of treatment and neuronal cells 

were examined for indices of apoptosis as described below. 

Western Blot Analysis  

NOS2 protein level was determined in astrocytes after 24 hrs exposure to Mn and 

TNF-α/IFN-γ with 1µM DIM-C-pPhCF3 or 10µM GW9622 in DMEM/F12 culture 

medium containing 10% fetal bovine serum without phenol red or antibiotics. PPARγ 

expression was detected in untreated NGF differentiated PC12 cells and primary 

astrocytes. Total protein was harvested in RIPA buffer (50 mM HEPES, pH 7.4, 500 

mM NaCl, 1.5 mM MnCl2, 1 mM EGTA, 10% glycerol, 1% Triton X-100) containing 

0.2 mM sodium orthovanadate and Complete™ protease inhibitor cocktail. Cells isolates 

were then incubated on ice for 1 h and debris pelleted by centrifugation at 10,000 × g for 

10 min at 4°C to yield a supernatant designated as total cellular protein. 50 µg of total 

protein was resolved by 10% SDS-PAGE and transferred to polyvinylpyrolidine 

membranes. Primary polyclonal antibody for NOS2 was used at 1:500 dilution. Primary 

monoclonal antibody to PPARγ was used at 1:1000 dilution. Blots were visualized by 
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ECL with a horseradish peroxidase-conjugated secondary antibody at 1:1000 dilution. 

Blots were stripped and reprobed with a monoclonal antibody to β-actin at 1:1000 

dilution to control for the amount of protein loaded.  

Caspase Acitvation and Fluorescence Imaging 

Activation of caspases was detected using the cell permeant pan-caspase 

substrate rhodamine 110 bis-(L-aspartic acid amide). Cleavage of the aspartate amide by 

active caspases results in a highly fluorescent product that is readily visualized by 

fluorescence microscopy. Cellular and nuclear morphology were examined by DIC 

imaging and staining with Hoechst 3342, respectively. Following 24 hrs co-culture in the 

presence of Mn and/or TNF-α/IFN-γ, astrocytes were removed and PC12 cells loaded 

with 10µM rhodamine 110 bis-(L-aspartic acid amide) and 10 µM Hoechst 3342 for 20 

min at 37 °C in incubation medium (phenol red-free DMEM/F12 plus 2 mM L-

glutamine and 25 mM HEPES, pH 7.4). Following incubation, cells were placed into 

fresh incubation medium and examined by wide field fluorescence microscopy for 

activation of caspases. Images of rhodamine 110 bis-(L-aspartic acid amide) and 

Hoechst 3342 fluorescence were acquired sequentially at 490 nm excitation /520 nm 

emission  and 380 nm excitation/400 nm emission, respectively, with Nomarski 

differential interference contrast images using a Zeiss Axiovert 200M microscope 

equipped with an ORCA-ER cooled, interline charge-coupled device camera 

(Hamamatsu Photonics, Hamamatsu City, Japan). Acquisition and analysis of images 

was performed using Slidebook software (v. 4.1, Intelligent Imaging Innovations, 
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Denver, CO). Fluorescence intensities were quantified as the mean intensity per cell and 

population means were then compared using the statistical methods described below. 

TUNEL and Determination of Nuclear Condensation  

PC12 cells were co-cultured and treated as described above and fixed with 4% 

paraformaldehyde. Fixed cells were permeabilized with 0.1% Triton X-100 and 

incubated in equilibration buffer (1X Tris EDTA, pH7.4, 5X terminal transferase buffer, 

25mM CoCl2) and TUNEL reaction buffer (1X Tris EDTA, pH7.4, 5X terminal 

transferase buffer, 25mM CoCl2, 1 mM Alexafluor 488 dUTP, 1mM dATP) for 30 min 

at 37 °C, then soaked in 1X SSC (150mM NaCl,15mM sodium citrate) for 15 min to 

stop the reaction. Hoechst 3342 (0.5 µM) was added to the final 10 min of the wash. 

Cover slips were mounted onto slides using Prolong Antifade reagent mounting medium. 

TUNEL-positive nuclei were detected by fluorescence imaging at 490 nm excitation/520 

nm emission as described above using a 10X PlanApochromat air objective and 

quantified by counting a minimum of 800 – 1000 cells per treatment group from at least 

3 independent experiments. Images of nuclear morphology were collected at 380 nm 

excitation/400 nm emission using a 60X 1.45 N/A PlanAprochromat oil immersion 

objective. 

Statistical Analysis 

 Differences between two treatments were analyzed using a two-tailed t-test at 

p<0.05, while differences between multiple treatments were evaluated by one-way 

ANOVA followed by Tukey’s test for multiple comparisons using a significance value 

 



 98

of p<0.05. Analyses were performed using Prism software (Graphpad Software, Inc, 

v4.0a). 

Results 

PPARγ-dependent Neuronal Death in Neuron-astrocyte Co-culture System 

 Our caspase study showed that co-cultured NGF differentiated PC12 cells 

underwent apoptosis in the presence of 50 µM MnCl2  + 10 pg/ml TNF-α  and 1 ng/ml 

IFNγ within 24hrs and 1 µM PPARγ agonist DIM-C-pPhCF3 efficiently inhibited it, 

however, 10µM PPARγ antagonist GW9622 did not exacerbate it (Figure 4.1A). Our 

further experiments of nuclear staining for propidium iodide showed that GW9622 

induced necrosis in stead of apoptosis in co-cultured PC12 cells after Mn and cytokines 

exposure (Figure 4.1B, C). Quantitation of TUNEL-positive co-cultured differentiated 

PC12 cells after 3 days exposure to 50µM MnCl2  + 10 pg/ml TNF-α  + 1ng/ml IFNγ in 

the presence of 1 µM DIM-C-pPhCF3 or 10µM GW9622 showed that DIM-C-pPhCF3 

protected PC12 cells from apoptotic cell death and GW9622 exacerbated it (Figure 4.2).  

PPARγ Expression in Differentiated PC12 Cells and Primary Astrocytes 

Both PC12 cells differentiated with NGF (50 ng/ml) for 5 days and primary 

astrocytes expressed PPARγ as shown by western blot (Figure 4.3). Expression of 

PPARγ was greater in differentiated PC12 cells than in primary astrocytes.  
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Figure 4.1. Caspase Activity in Differentiated PC12 cells Co-cultured with Astrocytes in the 
Absence or Presence of PPARγ Ligands. Differentiated PC12 cells were co-cultured with astrocytes and 
treated with 50 µM MnCl2 and TNFα/IFNγ in the absence or presence of DIM-C-pPhCF3 (1 µM) or 
GW9622 (10 µM) for 24hrs and examined for the extent of apoptosis and necrosis by live-cell 
fluorescence imaging C. Apoptosis was quantified as the number of caspase-positive cells relative to 
control A; necrosis was quantified by the number of cells with positive nuclear staining for propidium 
iodide relative to control B. 
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Figure 4.2. Quantitation of TUNEL-positive Co-cultured PC12 Cells After 3 Days Exposure to 
Mn and TNF-α/IFN-γ in the Presence of PPARγ Agonist or PPARγ Antagonist. NGF differentiated 
PC12 cells were co-cultured with primary astrocytes and treated with saline control, 50µM MnCl2  + 
10pg/ml TNF-α  + 1ng/ml IFNγ, 1µM PPARγ agonist DIM-C-pPhCF3, 10µM PPARγ antagonist GW9622, 
50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFNγ with 1µM DIM-C-pPhCF3 or 10µM GW9622 for 3 days. 
DNA fragmentation and nuclear condensation of co-cultured PC12 cells were determined by TUNEL and 
Hoechst 3342 staining. TUNEL-positive nuclei were detected by fluorescence imaging and quantified by 
counting a minimum of 800-1000 cells per treatment group from at least 3 independent experiments. 
*p<0.001, compared with control; **p<0.01, compared with Mn + IFN/TNF; ***p<0.001, compared with 
Mn + IFN/TNF. 

 
 
 

 

Figure 4.3. PPARγ Expression in NGF Differentiated PC12 Cells and Primary Astrocytes. 
PC12 cells were differentiated with NGF (50 ng/ml) for 5 days, primary astrocytes were maintained in 
Minimal Essential Medium (MEM) supplemented with Earle’s salts, 10% FBS, and PSN, and grown 18 
days to maturity prior to experiments. 50 µg of total protein was loaded on a 7.5% polyacrylamide gel and 
transferred to polyvinylpyrolidine membranes. Primary monoclonal antibody to PPARγ was used at 
1:1000 dilution. Blots were stripped and reprobed with a monoclonal antibody to β-actin at 1:1000 dilution 
to control for the amount of protein loaded. The data are representatives for three independent experiments.  
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PPARγ-dependent NOS2 Expression 

Exposure to 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFNγ for 24 hrs resulted 

in NOS2 expression in primary murine cortical astrocytes. This induction was abrogated 

by 1µM DIM-C-pPhCF3 and enhanced by 10µM GW9622, as indicated by the 

immunoblot studies in Figure 4.4.  

 

 

Figure 4.4. PPARγ-dependent NOS2 Expression. Primary astrocytes were exposed for 24 hrs to 
saline control, 50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFNγ, 50µM MnCl2  + 10pg/ml TNF-α  + 
1ng/ml IFNγ with 1µM DIM-C-pPhCF3 or 10µM GW9622. 50 µg of total protein was loaded on a 7.5% 
polyacrylamide gel and transferred to polyvinylpyrolidine membranes. Primary polyclonal antibody for 
NOS2 was used at 1:500 dilution. Blots were stripped and reprobed with a monoclonal antibody to β-actin 
at 1:1000 dilution to control for the amount of protein loaded. The data are representatives for three 
independent experiments. 

 
Effects of PPARγ Agonist on Apoptosis of Neurons in Neuronal Culture  

NGF differentiated PC12 cells did not undergo apoptosis in the presence of 

50µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFNγ or 10 µM NO donor SNAP alone for 1 

day. However, with the combination of 10 µM SNAP and 50µM MnCl2  + 10pg/ml 

TNF-α  + 1ng/ml IFNγ, the caspase activity and TUNEL-positive cells significantly 

increased (Figure 4.5). Quantitation of relative caspase activity and TUNEL-positive 

cells after 1 day exposure to 10 µM SNAP + 50 µM MnCl2  + 10 pg/ml TNF-α  + 1 
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ng/ml IFNγ in the presence of 1µM DIM-C-pPhCF3 showed that DIM-C-pPhCF3 did not 

protect PC12 cells from apoptosis (Figure 4.5A, B). Also, the PPARγ antagonist, 

GW9622, did not enhance SNAP-and Mn-induced apoptosis in differentiated PC12 

neuronal cells in the absence of astrocytes (Figure 4.5A). 

 

 

Figure 4.5. Quantitation of Relative Caspase Activity and TUNEL-positive PC12 Cells After 1 
Day Treatment. NGF differentiated PC12 cells were treated with saline control, 50 µM MnCl2  + 10 
pg/ml TNF-α + 1ng/ml IFNγ, 10 µM SNAP, 10 µM SNAP + 50µM MnCl2  + 10 pg/ml TNF-α + 1ng/ml 
IFNγ, 1µM DIM-C-pPhCF3, 50 µM MnCl2  + 10pg/ml TNF-α  + 1ng/ml IFNγ + 10 µM SNAP with 1µM 
DIM-C-pPhCF3 for 1 day. Caspase activity was detected using the cell permeant pan-caspase substrate 
rhodamine 110 bis-(L-aspartic acid amide) A, DNA fragmentation and nuclear condensation of PC12 cells 
were determined by TUNEL and Hoechst 3342 staining B. Caspase activation and TUNEL-positive nuclei 
were detected by fluorescence imaging and quantified by counting a minimum of 800-1000 cells per 
treatment group from at least 3 independent experiments. *p<0.001, compared with control; **p<0.01, 
compared with control. 
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Discussion 

Our previous data showed that astrocytes mediated the apoptosis of PC12 cells 

through NF-κB-dependent NOS2 expression and subsequent NO production after 

exposed to Mn and pro-inflammatory cytokines and the number of TUNEL-positive co-

cultured PC12 cells was increased over control as early as 24hrs after exposure, peaking 

at 72hrs. In the present studies, DIM-C-pPhCF3, a novel pharmacologic agonist of 

PPARγ, protected differentiated PC12 cells from astrocyte-induced apoptosis following 

exposure to Mn and TNFα/IFNγ (Figure 4.1 and Figure 4.2). Although PC12 cells also 

express PPARγ (Figure 4.3), this effect appeared to be specific to astrocytes, because no 

protection against apoptosis was conferred by DIM-C-pPhCF3 in PC12 cells upon 

exposure to Mn, TNFα/IFNγ, and the NO donor SNAP in the absence of astrocytes 

(Figure 4.5). Moreover, the PPARγ antagonist, GW9622, did not exacerbate the extent 

of apoptosis in PC12 cells in the absence of astrocytes (Figure 4.5A). Thus, it is likely 

that the PPARγ-dependent increase in TUNEL-positive co-cultured PC12 cells after Mn 

and cytokines exposure (as shown in Figure 4.2) is caused by PPARγ-dependent NOS2 

expression (Figure 4.4) and subsequent NO production (data not shown) in astrocytes 

rather than by the PPARγ dependent survival mechanisms in PC12 cells. 

The PPARγ dependent expression of NOS2 in astrocytes (Figure 4.4) parallels 

the death of PC12 cells (Figure 4.2), supporting the role of NO in apoptosis of PC12 

cells after exposure to Mn and cytokines. Our previous data showed that NOS2 

expression in primary astrocytes after Mn and TNF-α/IFN-γ exposure was NF-κB 

dependent. The competition for the limiting amounts of general co-activators CBP/p300 

 



 104

and SRC-1 required for the activation of both NF-κB and PPARγ dependent 

transcription has been suggested to be a mechanism for transrepression of  NF-κB by 

PPARγ (Kamei et al., 1996; Li et al., 2000). Upon activation by agonists, PPARγ will 

recruit additional co-activator proteins (Torchia et al., 1997) that may inhibit p50-p65 

induced nos2 gene transcription.  PPARγ antagonists, on the other hand, will block the 

binding of co-activators with PPARγ, thus indirectly potentiating p50-p65 induced 

NOS2 expression. 

Research on the possible role of PPARγ in neuronal survival has not been fully 

considered yet. It has been previously reported that PC12 cells have no detectable 

PPARγ by western blot (Jung et al., 2003) and phosphorylation-dephosphorylation 

mechanisms could play a role in the NGF-induced PPARγ transcriptional activity. As 

15-deoxy-PGJ2 (PPARγ agonist, a naturally occurring ligand of PPARγ) did not induce 

PPARγ expression during neurite extension, activation of p38 MAP kinase in 

conjunction with AP-1 signal pathway was shown to be important in the promoting 

activity of 15-deoxy-PGJ2 on the differentiation of PC12 cells (Jung et al., 2003).  

However, another recent study detected a 60kDa PPARγ band in PC12 cells 

(Fuenzalida et al., 2005). NGF has been shown to increase the transcriptional activity of 

PPARγ dependent on tyrosine kinase (TrkA) activation in PC12 cells (Fuenzalida et al., 

2005). TrkA activation induces a rapid release and catabolism of arachidonic acid 

through the lipoxygenase pathway (Fink and Guroff, 1990), which is required for neurite 

outgrowth (Nakashima et al., 2003) and several eicosanoids, products of lipoxygenase 

action, are supposed to be PPARγ ligands (Nagy et al., 1998). These results suggest that 
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PPARγ might function as a novel target of the TrkA-mediated neuronal cell survival and 

differentiating pathway (Fuenzalida et al., 2005).  

The divergence of PPARγ expression in PC12 cells might be due to different 

experimental conditions, particularly the culture conditions, or to different sources or 

batches of PPARγ antibodies (Fuenzalida et al., 2005). Our data showed that PC12 cells 

differentiated with NGF for 5 days displayed a more intensive expression of PPARγ than 

primary astrocytes (Figure 4.3), however, PPARγ agonist DIM-C-pPhCF3 did not protect 

PC12 cells themselves from apoptosis after NO, Mn and cytokines exposure (Figure 

4.5). The reason for that is not known yet. One possibility is that PPARγ function 

(expression or activation) is not involved in the neurite extension in PC12 cells. As 

evidence for this, another synthetic PPARγ agonist troglitazone did not have promoting 

activity in the NGF-induced neurite extension (Satoh et al., 1999) and the PPARγ 

antagonist bisphenol A diglycidyl did not inhibit the promoting ability of 15-deoxy-

PGJ2 on the NGF-induced neurite extension (Jung et al., 2003). Another possibility is 

that Mn and cytokines treatment inhibit PPARγ expression in PC12 cells. As one of the 

study showed that IFNγ treatment of adipocytes resulted in decreased PPARγ expression 

which was mediated by inhibition of PPARγ synthesis and increased degradation (Floyd 

and Stephens, 2002). Further experiments are needed to verify these hypotheses.  

In summary, NOS2 expression in astrocytes is a major cause of cell death in co-

cultured PC12 cells after exposure to Mn and cytokines. The PPARγ agonist DIM-C-

pPhCF3 effectively suppresses induction of NOS2 in astrocytes may represent a potential 
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new therapeutic approach for limiting inflammatory injury caused by excessive 

production of NO in astrocytes.  
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH WORK 

 
General Conclusions 

The studies presented in this work demonstrate the establishment of a mouse 

model of manganism (Mn-induced parkinsonism) that recapitulates the early established 

stages of this clinical disorder, including alterations in locomotor activity and 

neurochemistry. Our study first reported the death of NOS1+ and ChAT+ interneurons 

and ENK+ projection neurons in the striatum and GP of mice subchronic exposed to Mn, 

suggesting the important role of interneurons in control of movement activity and the 

indirect dopaminergic pathway disrupted in this stage of the disease. This model 

implicates activation of astrocytes, with subsequent expression of NOS2 and production 

of NO, in the death of striatal-pallidal neurons. The regional distribution of injury 

proximal to the brain microvasculature also suggests that disruption of BBB function 

may be an important early event in the progression of injury following exposure to Mn. 

Our in vitro model of NGF differentiated PC12 cells co-cultured with primary 

astrocytes demonstrated that NOS2 expression and NO production in astrocytes 

correlated with the apoptosis of PC12 cells, as pharmacologic inhibition of NOS2 with 

AMT significantly reduced apoptosis of PC12 cells and the addition of low 

concentrations of the NO donor SNAP to PC12 cells cultured without astrocytes was 

sufficient to recover the apoptotic phenotype following exposure to Mn and TNF-α/IFN-

γ. Apoptosis in PC12 cells required the presence of astrocytes and was blocked by 
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overexpression of a phosphorylation-deficient mutant of IκBα (S32/36A) which 

prevented induction of NOS2 in astrocytes. It is therefore concluded that Mn- and 

cytokine-induced apoptosis in PC12 cells requires astrocyte-derived NO as well as NF-

κB-dependent expression of NOS2 in astrocytes. 

The next step of this research is try to find a practical way to prevent 

neurodegeneration caused by astrocytosis and NO production after Mn exposure. To this 

end, a new class of PPARγ agonist, DIM-C-pPhCF3 was used in the primary astrocyte 

and NGF differentiated PC12 cell co-culture system. DIM-C-pPhCF3 inhibited apoptosis 

of co-cultured PC12 cells and the NOS2 expression in the primary astrocytes after 

exposure to Mn and TNF-α/IFN-γ. Although both differentiated PC12 cell and primary 

astrocyte express PPARγ, DIM-C-pPhCF3 did not protect PC12 cells not co-cultured 

with astrocytes from apoptosis after Mn, TNF-α/IFN-γ and NO exposure. 

Thus, significant overall conclusions are: 

1. Mn induces selective loss of striatal-pallidal neurons through a mechanism involving 

astrocytosis and astrocyte-derived NO, implicating astrocytes as an important early 

target of Mn. 

2. Mn strongly potentiates cytokine-induced expression of NOS2 and production of NO 

in cultured astrocytes by signaling mechanisms that converge on the NF-κB pathway. 

3. Mn-induced production of NO in astrocytes is sufficient to induce neuronal apoptosis 

in vitro and requires NF-κB-dependent expression of NOS2. 
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4. PPARγ is an important regulator of NOS2 in astrocytes and can be pharmacologically 

modulated to mitigate NF-κB-dependent production of NO following exposure to Mn 

and pro-inflammatory cytokines. 

5. The PPARγ agonist, DIM-C-pPhCF3 may represent a new potential therapeutic 

intervention for limiting astrocyte-derived inflammatory mediators in manganism and 

related degenerative movement disorders of the basal ganglia. 

Future Research Work 

Our research raises the question of how Mn is transported across the BBB as we 

observed that the endothelial cells of blood vessels in the basal ganglia were disrupted 

after oral Mn overexposure. Astrocytes are implicated to have different characters in 

different brain regions (Gahring et al., 2004), it is reasonable to ask if BBB formed by 

astrocytes and endothelial cells of blood vessels differs in its sensitivity to Mn 

overexposure in different regions of brain which could account for the special 

vulnerability of the basal ganglia? Co-culture of primary endothelial cells and astrocytes 

from different brain regions may be helpful in answering these questions.  

Another unsolved issue related to Mn is the capacity of neurons and astrocytes in 

accumulating this metal.  Tholey et al. have done research in chick primary neuron and 

astrocyte cultures and conclude that Mn concentration in neurons is almost 3 times  more 

than in astrocytes (Tholey et al., 1988a; Tholey et al., 1988b). However, Wedler and 

Denman did another study in ovine brain and show that 80% of brain Mn is associated 

with GS (Wedler and Denman, 1984). According to previous research which showed 

that GS was mainly located in astrocytes (Martinez-Hernandez et al., 1977), it’s 
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reasonable to postulate that almost 80% brain Mn is located in astrocytes. Subsequent 

studies show that astrocytes possess a high affinity transport system for Mn and can 

accumulate  more than 50-fold greater concentration of Mn than the culture medium 

while neurons can not (Aschner et al., 1992).  The question of which cell type 

accumulates more Mn is still hard to answer based on the evidence mentioned above. 

First, the character of avian neurons and astrocytes may be different from those of 

mammals; second, the number of astrocytes are much more than the number of neurons 

in CNS; third, although Mn concentration in neurons is higher than that in astrocytes 

(Tholey et al., 1988a), the intracellular water volume is higher in astocytes than in 

neurons. So which cell type can accumulate more Mn still needs further investigation.  

Although it has long been considered that the level of astrocytic Mn could 

regulate GS activity (Wedler et al., 1994). Some studies showed that Mn has a complex 

effect on GS activity. In a narrow range of concentration (1–10 µM) in the presence of 

5mM Mg2+, Mn activates GS (Wedler and Denman, 1984), whereas further increases in 

Mn concentration have a negative effect on the enzyme activity, reaching a maximum 

inhibition at approximately 20 µM (Tholey et al., 1987). Boksha reported that in 

homogenates from human brain, the Mn2+ dependence of GS activity shows a maximum 

at ~0.6-1.0mM and a drastic decrease at higher Mn2+ concentrations (Boksha et al., 

2000). However, all these studies are carried out in the test tube, the GS activity 

measurement in vivo after Mn exposure has never been reported, and thus the 

physiological and pathological relevance of GS activity and Mn2+ concentrations in 

astrocytes or in certain area of brain is not known. Research on this subject will be very 
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helpful to answer the question of whether and how Mn is involved in excitotoxity. Also, 

the kinetic changes of MnSOD activity level after Mn exposure in vivo especially in 

NOS1+ interneurons have never been carefully carried out. As MnSOD has been 

reported to be the main reason for the NOS1+ interneurons relative resistance to NO and 

other pathological conditions (Gonzalez-Zulueta et al., 1998), research related to Mn and 

MnSOD will be very promising in understanding why NOS1+ interneurons are the most 

vulnerable type of neurons after Mn overexposure and may be helpful in developing 

potential preventive and therapeutic method of manganism.  

Several studies suggest that signal transduction pathways leading to nos2 gene 

induction after cytokines exposure seem to differ markedly from species to species and 

even between cells (Kleinert et al., 1996; Linn et al., 1997). Another recent study in 

human primary astrocytes show that different cytokines or different combination of 

cytokines exposure result in different signal transduction pathways leading to NOS2 

expression (Jana et al., 2005). So far, nobody has done the research work in human 

striatal astrocytes to verify the NF-κB dependent NOS2 expression after Mn 

overexposure, and further the effectiveness of PPARγ agonist in preventing NO induced 

striatal neurodegeneration.  

Some interesting questions related to NOS1+ interneurons based on our study 

are: 1) why are NOS1 interneurons the most vulnerable populations of neurons after Mn 

overexposure while they are relatively spared in most other neurodegenerative diseases 

such as Huntington’s and Alzheimer’s disease (Ferrante et al., 1985; Hyman et al., 

1992); and 2) what’s the function of NOS1+ interneurons in regulating DA 
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concentration in the striatum and their potential role in coordinating motor activity. To 

answer these questions a time course study of neurochemistry, behavior and 

neuropathology after Mn overexposure is necessary and also an in vitro primary striatal 

neuron and astrocyte co-culture experiments will be helpful to understand the 

mechanisms of Mn neurotoxicity. 

It is also necessary to identify the effects of Mn on neurotransmitter, especially 

DA,  metabolism, uptake, and efflux, given that Mn can both increase or decrease levels 

of striatal DA depending on its exposure time and dose (Autissier et al., 1982), 

representing up or down-regulation in the function of certain neurons that have 

succumbed to the effect of Mn. It should also be pointed out that other neurotransmitters 

such as GABA and glutamate are co-localized to the same brain areas and therefore may 

play active roles in Mn-induced neurotoxicity. 

In addition, it is still interesting to further investigate whether the toxicity of Mn 

is secondary to disturbances in Fe metabolism. Both Mn and Fe share similarities in their 

chemistry and biochemistry, so it is reasonable to postulate that the mechanisms 

underlying Mn distribution are dependent on Fe homeostasis (Aschner 2000). 
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APPENDIX A 

EXPERIMENTAL PROTOCOLS 

 
A-1 Western Blot 

References:  Modified from Molecular Cloning and Dr Tjalkens’ protocol 
 

Sample Collection 
Preparations: 
 

 Prepare and label 15ml tubes and 4 sets of 1.7ml tubes. 
 Set heat block to 100°C. 
 Prepare 25ml 2%SDS with 1 cocktail tablet of protease inhibitor & 125ul 

0.2M sodium orthovanadate (protein phosphotyrosal-phosphatases inhobitor). 
 Warm up PBS, medium with FBS and 0.25%Trypsin plus EDTA. 

Steps: 
1. Decant medium from the culture dishes and rinse plate rapidly with PBS.  
2. Aspirate excess PBS. 
3. Add 1ml 0.25%Trypsin plus EDTA to each 60mm2 plate for 10min.   
4. Add 1ml medium with FBS to collect the cells in tubes. 
5. Centrifuge the tubes at 1500 rpm (500g) 5 min. 
6. Aspirate the medium. 
7. Wash with PBS. 
8. Centrifuge the tubes at 1500rpm (500g) 5min. 
9. Add 50ul PBS to each tube and mix well then transfer the samples to 

1.7ml tubes. 
10. Add 200ul boiling 2%SDS with protease inhibitor (1 tablet/25ml) and 

1mM sodium orthovanadate (125ul 0.2M sodium orthovanadate/25ml) to 
each sample pellet. Boil the sample mix for additional 5 min. 

11. To reduce viscosity, the sample may be sonicated briefly at room 
temperature. 

12. Centrifuge the sample for 10,000rpm 10 min,  
13. Put the supernatant in another set of 1.7ml tube. 
14. Aliquot the samples and store them in -80°C. 
 

Detect Protein Concentration by BCA Method 
 

1. Dilute an aliquot of the sample to 10 fold (5ul in 45ul ddH2O)  
2. Make standard protein. 
3. Add 10ul each standard protein and the diluted sample in duplicates into a 96 

well plate. 
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4. Make the BCA protein assay reagent A and B (1:50) master mix (from PIERCE). 
5. Add 200ul BCA protein assay reagent A and B (1:50) master mix to each well. 
6. Incubate the plate at 37°C for 30 min. 
7. Set up the plate reader and collect the data. 

 
Pouring Gels 

 
1. Spray glass plates with ethanol and wipe surfaces clean. 
2. Add spacers between the glass plates and insert the plates into the gel apparatus 

(large plate against the plastic holder). 
3. Tighten the screws after checking to see that the glass plates and the spacers are 

flush on the bottom. 
4. Place a piece of parafilm on the foam pad and then set the glass plates on top of 

this. 
5. Insert the combs into the plates and mark a line below the bottom of the combs to 

mark the amount of gel needed. 
6. Prepare the separating gel solution from the table below.  For the mini gels, 10 

ml / gel. 
7. Add the APS and the TEMED last. 
8. Pour the gel using a Pasteur pipet.  Try to keep bubbles out of the gel.  Once the 

gel is poured, add ddH2O or Ethanol.  This allows for a smooth straight line to 
form at the top of the separating gel.  This can be stored at 4°C overnight.  Add 
water to the top of the gels and cover with saran wrap. 

9. Prepare the stacking gel solution from the table below.   
10. After the separating gel has set up (> 30 minutes), remove the water or ethanol 

from the top of the separating gel by turning the apparatus upside down.  Wash 
with 1.5mM Tris-HCl.  Using a paper towel, remove any excess liquid that 
remains in the area where the stacking gel will be poured. 

11. Place the combs in the gel apparatus and pour the stacking gel.  Avoid air 
bubbles at the bottoms of the combs.  

12. Once the top of the glass plates is reached, pull the comb forward and push them 
down into the gel so that the tops of the wells are not in contact with air.  This 
keeps the wells from shrinking as the gel sets up. 
 

Sample Preparation 
 

1. Determine the volume of sample needed to load the amount of protein desired 
(10-100ug total protein).  This volume should be kept under 20ul if possible. (the 
volume = the amount of total protein/ protein concentration).  

2. Add 5x loading dye (1/4 sample volume) to each sample. 
3. Boil the sample mix for 3-5min, then put them on ice.  
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Running the Gel 
 

1. Prepare the running buffer. Set up running apparatus. Add running buffer to the 
middle of the apparatus to check for leaking. Place the apparatus into the running 
chamber and fill the chamber with the remaining running buffer. Remove air 
bubbles from the bottom of the plates after the running buffer has been added.  

2. Carefully remove the combs from the stacking gel.  Aspirate out any liquid 
remaining in the wells or add buffer and rinse the wells.  This removes any 
unpolymerized acrylamide.  

3. Load the samples using gel loading tips (10ul/time). Avoid mixing the samples or 
moving the chamber once the samples have been loaded.  

4. Run the stacking gel at 60V (40 min), 7.5% Gel at 100V (2h), keep the amps 
below 100.  The slower the gel runs the more compact the banding patterns will 
be. Allow the dye front to run off of the gel. (150 min)  

 
Transferring the Gel 

 
1. Prepare the transfer buffer. Cut the membrane and the filter paper to the 

appropriate size (7cm x 9cm). Dip the membrane in 100% methanol and 
Whatman filter paper in the transfer buffer for 1h. 

2. Stop the gel and remove the gel apparatus from the running chamber.  Clean the 
chamber thoroughly to remove any residual SDS. 

3. Remove the glass plates from the holders.  Pry the glass plates apart using the 
spacer.   

4. Remove the gel from the glass and place the gel in transfer buffer and allow to 
equilibrate for at least 20 minutes. 

5. Place the transfer chamber in an ice bucket surrounded by ice.  Place a stirring 
bar in the apparatus and get the running buffer cold. 

6. Assemble the transferring apparatus in the following manner.  Important not to 
let the gel or the membranes dry out at any point from now on during the 
procedure. 
 

Black plastic  Sponge  Filter Paper  Gel  Membrane  　 　 　 　 　
Filter Paper  Sponge  White Plastic　 　  

 
7. When placing the membrane on the gel, roll over the top with a pipet to remove 

any air bubbles that are present.  This should also be done when placing the filter 
paper.  Remember to keep the sandwich wet at all times. 

8. Close the transfer sandwich and place in the transfer chamber.  The black plastic 
should be on the same side as the black plastic of the transfer apparatus.  
The proteins will run from the black to the red. 

9. Transfer the proteins at 350mA for 2-3h (for protein smaller than 120kDa) or  at 
350mA for 4-5h (for protein larger than 120kDa) or 60mA 60V overnight (16h) 
@4°C. Keep the ice unmelted.  
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10. When the transfer is done, remove the sandwich from the transfer apparatus.  
Open so that the membrane is still on top of the gel and cut around the gel so that 
the membrane is the same size as the gel. 

11. Wash the membrane in TBS-T for 10 minutes. 
12. Block the background with 5% nonfat dry milk in TBS-T for at least 1 hour.  

This can be placed in the refrigerator overnight. 
 

Blotting the Membrane 
 

1. The primary antibody should be diluted in TBS-T with 5% nonfat dry milk.  Use 
10ml per membrane.  The primary antibody can be freezer thawed. 

2. Remove the membrane from the blocking solution and wash for 15 minutes in 
TBS-T.  Wash 2 x 5 minutes after the 15-minute wash.  

3. Prepare the seal-a-meal bags to the proper size or a box for the primary antibody.  
4. Place the membrane in primary Ab on the shaker and shake for 1-3 hours @ RT 

or @4°C overnight. 
5. Wash the membrane 3 x 10-15 minutes.  The wash steps are essential for   

reducing the background levels on the blots.  
6. Prepare the secondary antibody in TBS-T with 5% nonfat dry milk.  Again the 

dilution of this antibody depends upon which antibody is being used. 
7. Incubate the secondary antibody for one hour at room temperature. 
8. Wash the membrane in TBS-T 3 x 10-15 minutes.  
9. Prepare the ECL reagents.  1:40 (50ul:2ml). 
10. Place the membrane in the ECL solution for approximately 30 seconds. 
11. Remove the membrane and wrap the membrane in saran wrap.  Rub the    

membrane with a Kimwipe to remove excess ECL reagents.  This should be done 
on the outside of the saran wrap. 

12. Place the membrane in the film cassette. 
13. Expose and develop the film.  Different times should be used to determine the 

proper exposure.  
 

Stripping the Membrane 
 

1. Submerge the membrane in stripping solution. 
2. Incubate at 50°C for 30 minutes with occasional agitation. 
3. Wash the membrane 2 x 10-15 minutes in TBS-T.  Use large volumes of wash 

buffer. 
4. After the wash block and probe the membrane as described above. 

 
 
 
Materials: 
 
1. Acrylamide: (40% stock) 
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- 37.5:1  
- Store at 4°C 
 

2. 1.5 M Tris-HCl: pH 8.8 
- 54.45 g Tris-base 
- Adjust pH 
- 300 ml H2O 
- Store at 4°C 

3. 0.5 M Tris-HCl pH 6.8 
- 6.0 g Tris-base 
- Adjust pH 
- 100 ml H2O 
- Store at 4°C  

4. 10% (w/v) SDS 
- 10 g SDS 
- 100 ml H2O 

5. 10% Ammonium Persulfate (APS) 
-     0.1g APS 
- 1 ml H2O 

6. Transfer Buffer 
- 200 ml – 5xRunning Buffer 
- 200 ml - Methanol (20%) 
- H2O to 1 liter 

7. 10x Tris-Buffered Saline (TBS): [4L] 
-     24.2 g Tris Base (20 mM)        [96.8g] 

      -     8.8 g NaCl (150 mM)               [35 g] 
      -     pH to 8.0 with HCl 
      -     1000 ml H2O                [to 4L] 
8. TBS-T 

- 1 x TBS 
- 0.2 % Tween-20 

9. Stripping Buffer 1000ml ? but good 
- 62.5 mM Tris-HCl pH 6.7                            [7.571g] 
- 2% Sodium dodecyly sulfate                        [20g] 
- 

      Stripping Buffer 1000ml , Correct 
100 mM 2-mercaptoethanol (14.3 M stock) [6.9 ul] 

      -     100mM 2-mercaptoethanol (14.3M Stock)  [7ml] 
      -     2% SDS                                                        [20g] 
      -     62.5mM Tris-HCl pH6.7 (FW:157.6)          [9.85g] 
10. 5x Running Buffer with SDS 

- Tris Base   45g 
- Glycine      216.05g 
- SDS           15g 
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- ddH2O        3000ml 
11. Lysis Buffer   (500ml) 
      -     Hepes[50mM]      5.957g 
      -     NaCl [500mM]    14.61g 
      -     MgCl2[1.5mM]    0.0714g 
      -     EDTA[1mM]        0.1902g 
      -     10%Glycerol        50ml 
      -     1%Triton-100       5ml 
      -     pH 7.5, store @ 4°C 
12. Ripa Buffer                                 
      -     1xPBS                                                           500ml 
      -     1% NonidetP-40 (Amaresco)( Turgital)       5ml 
      -     0.5% Sodium deoxycholate (FW:414.6)      2.5g 
      -     0.1%SDS                                                      0.5g 
      -     Store @ 4°C for 1 year 
13. 2xSDS Gel-loading buffer 

-     100mM Tris-HCl (pH6.8) 
-      4%(w/v) SDS 
-      0.2%(w/v) bromophenol blue 
-      20% glycerol 
-      200mM B-mercaptoethanol 

      -      Aliquot and Freeze @ -20°C 
14.  5x SDS Gel-loading buffer                      50ml 

-      250mM Tris-HCl (pH6.8)                   25ml 500mM Tris-HCl (pH6.8) 
                                                                    or 1.97g in 25ml H2O adjust pH 
-      10%(w/v) SDS                                    5g 
-      50% glycerol                                       25ml 
-      0.5%(w/v) bromophenol blue              0.25g 

      -      500mM β-mercaptoethanol                 1.8ul /50ul   (Add before use) 
      -      Aliquot and Freeze @ -20°C 
15. 0.2M Sodium Orthovanadate Stock 

-     0.3678g sodium orthovanadate  
-     10ml PBS.  
-     Store at room temperature. 
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A-2 Isolation of Neonatal Mouse Cortical Astrocytes  
for Primary Cultures  

 
Reference:  Contributed by Jeffrey W. Allen, Lysette A. Mutkus, and Michael Aschner 
Current Protocols in Toxicology (2000) 12.4.1-12.4.15 
 
Materials: 
 
1. 1-day old C57Bl/6J pups from pathogen free time dated pregnant dams. 
2. 70% (v/v) ethanol 
3. Complete S-MEM (see recipe) 
4. MEM medium with 2x Pen/Strep/Neomycin 
5. Astrocyte growth medium (from Invitrogen, cat.# 11095-080) (MEM medium with 

10%FBS and 1X PSN) 
6. 8000 U/ml DNAse I solution (see recipe) 
7. 0.08 (w/v) trypan blue staining solution: 1:4 (v/v) 0.4% trypan blue (Life 

Technologies) in PBS  
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 7.  Dissecting tools sterile: 
 Mayo scissors, 7in. (17.8-mm) length, 50-mm curved blade 
 Fine-angled micro-dissecting scissors, 4-inch length, 25-mm blade 
 Curved forceps, 4-inch length, full curve, 0.8-mm tip width 
 Curved forceps, 4-inch length, full curve, 0.4-mm tip width 

Dumont forceps, pattern no. 5, 110-mm length, 0.1x0.06-mm tip 
8.   Sterile gauze pads 
9. Dissecting microscope or 4x to 8x lighted magnifying lamp 
10. 50-ml conical polypropylene tubes, sterile 
11. 9-inch Pasteur Pipets 

Cotton plugged and sterile 
Cotton plugged, fire polished, Sigmacote treated  

12. 50-ml beaker and 25-mm stir bar, sterile (cover with foil prior to autoclaving) 
13. 10-ml glass serological  pipets, cotton  plugged and Sigmacote treated 
14. Laminar flow hood 
15. 15-ml conical polystyrene centrifuge tubes, sterile 
16. Low-speed centrifuge with a swinging bucket rotor and adapters for 50-ml conical 

tubes 
17. Inverted phase-contrast microscope 
18. Tissue culture plates of desired size for culturing astrocytes 
19. Coated 18x18-mm coverslips 
20. Vacuum source 
21. Additional reagents and equipment for counting cells with a hemacytometer 
 
Methods: 
 
1. Gently hold pup with thumb and forefinger around thorax and rinse head and neck of 

pup with 70% ethanol. 
2. Using 7-inch curved Mayo Scissors, decapitate a pup and place the head on a sterile 

gauze pad. Place body in a plastic bag for disposal. 
3. Secure the head by holding down the snout. With fine-angled micro-dissecting 

scissors, cut the skin along the midline from base of the skull to the eyes. Use 0.8-
mm forceps to separate the skin and expose the skull as necessary. 

4. With 0.8-mm tip curved forceps, sever the olfactory bulbs at the anterior end of the 
brain and the spinal cord at the posterior end Sever the cerebellum 

5. Gently slip the two sides of 0.4-mm tip curved forceps under the cortices on either 
side of the brain so that the forceps are straddling the brain. 

6. Gently move forceps from side to side and, with a slight back angle, pull up the 
cortices.  

This will separate the cortices from the rest of the brain, which remains in the 

head, but care should be taken not to separate the cortices from each other. 
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7. Place the cortices in a 35-mm petri dish containing MEM with 2xPSN or S-MEM 
under a dissecting microscope with the dorsal side up and the anterior (rostral) side 
facing away. 

8. Unfold the cortices and remove any extraneous tissue. 
9. With Dumont forceps, gently tease away the meningial coverings on the cortical 

surface. 
10. Flip the cortices up and slightly back to expose the underside of the tissue. 
11. Gently remove the darker hippocampal crescents with the curved 0.4-mm forceps.  
12. Remove any remaining meninges with Dumont forceps.  

The total time spent removing meninges should be ~10 min. per brain. 

 
13. Place cortices in a sterile 50-ml conical polypropylene tube containing 10 ml of 

MEM with 2x PSN on ice.  
14. Repeat steps 1 to 14 with the remaining pups, placing all cortices in a single 50-ml 

tube on ice. 
15. Carefully remove as much MEM with 2xPSN as possible with a sterile, cotton-

plugged 9-in. Pasteur pipet, taking care to retain all of the cortices. 
16. Add 12 ml pre-warmed (37°C) dissociation medium to a 50-ml beaker with stir bar 

and carefully pour cortices into the beaker. Gently triturate the cortices four or five 
ties using a Sigmacote treated 10-ml glass serological pipet. 

17. Stir 10 min. at low speed (60 rpm) on a stir plate in a laminar flow hood. 
18. While this is stirring, prepare two 15-ml conical polystyrene centrifuge tubes for 

each two extractions to be performed. Add 5-ml room temperature astrocyte growth 
medium to each tube. Also thaw DNase I solution and place it on ice. 

19. After 10 min of gentle stirring, remove the beaker from the stir plate and place at a 
45-degree angle for 2 to 3 min to allow the nondissociated tissue to collect at the 
bottom of the beaker. 

Resting the edge of the beaker on a lid from a culture dish works well. 

 
20. Carefully aspirate 10 ml dissociated cells with a Sigmacote-treated 10-ml glass 

serological pipet. 
Take care not to remove the undissociated tissue pieces. 

21. Place 5-ml suspension into each of the first two 15-ml centrifuge tubes containing 
astrocyte growth medium. Invert the mixture two to three times to mix and then 
allow tubes to sit undisturbed during the continuing extractions. 
The serum in the growth medium acts to inhibit dispase and prevents overdigestion of the dissociated 
cells. 
During this time, undissociated tissue will settle to the bottom of the15-ml tube. This undissociated 
tissue will be placed back into the 50-ml beaker for further dissociation dissociation during the final 
two extractions. 
 

22. Add another 10 ml pre-warmed dissociation medium to the 50-ml beaker and add 75 
ul of 8000 U/ml DNase I solution. Continue to stir for another 10 min. 
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The removal of dissociated cells and replacement with 10-ml dissociation medium is called an 
extraction. 
DNase I is added after the first extraction to prevent the genomic CAN released by damaged cells 
from making the dissociation medium too viscous during the on-going digestion. Note that it is 
added only after the first and is not added again.  
DNAse I from pancreas is vulnerable to inactivation by physical damage. Mix all DNase I 
solutions carefully and do not vortex. 
 

23. Place the 50-ml beaker at an angle for 2-3 min, remove 10 ml dissociated cells, and 
place 5-ml aliquots into a second pair of 15-ml tubes containing astrocyte growth 
medium. 

24. Repeat extractions until there is only fibrous tissue remaining in the 50-ml beaker. 
25. To remove undissociated tissue from the 15-ml tubes, insert a sterile, fire-polished, 

cotton-plugged, Sigmacote treated 9-in. Pasteur pipet to the bottom of the tube and 
carefully aspirate the undissociated tissue. Place this tissue back into the 50-ml 
beaker and perform tow final extractions.  

This is done only during the final two extractions because serum carried over from the completed 
extractions can inactivate the dispase. 
 

 
 
26. Pool dissociated cells and medium from the 15-ml centrifuge tubes into 50-ml 

conical tubes (one 50-ml tube for each five 15-ml tubes). Centrifuge 10 min at 1000-
x g, 4C, in a swinging bucket rotor to pellet the suspended cells. 

Centrifugation at room temperature is acceptable if necessary.  
If astrocytes are to be seeded on coverslips, the coverslips should have been incubating overnight 
in poly D lysine up until this point.  

 
27. Carefully aspirate medium from the cell pellets.  
28. Resuspend in 5-20 ml astrocyte growth medium depending on pellet size. Gently 

pipet with a Sigmacote treated 10-ml tubes on ice. 

 



 153

29. Allow cells to sit for an additional 5-min and remove any sediment tissue as above
Discard this undissociated tissue. 

. 

31. with 100ul of 0.08% trypan blue staining solution. 
in. 

32. Det  
phase-contrast microscope. 

th medium to the final volume of cell stock.  

30. Pool the suspended cells into 50-ml tubes on ice. 
 Gently mix 100ul-cell suspension 
Allow the cells to take up the trypan blue for 2-5 m

Trypan blue is sued to determine cell viability. Intact cells are able to exclude trypan blue while 
dead or damaged cells retain the dye. 
 
ermine total cell number and cell viability with a  hemacytometer and an inverted

33. Look at the correct cell density in the table above to determine what volume to plate 
the cells. Add Astrocyte grow

34. Incubate cells in a 37°C, 95% air/5% CO2, and 95% relative humidity incubator. 

 
 

35. At 18 to 24h after plating, remove old growth medium with a sterile 5 in. Pasteur 
pipet attached to a vacuum source, and add fresh medium to the volumes as listed in 

ove the lid of the culture plates. Instead, use one 
 

36. Cha
 

Table 12.42 using a large disposable pipet. 
This is vital in minimizing neuronal, microglial, and oligodendrocyte contamination of cultures. 
When changing medium, do not completely rem
hand to hold the plate at a slight angle toward you and raise the lid ~45 degree. Change the
Pasteur pipet frequently and any time it may have touched anything other than the inside of the 
culture dishes. A pipet contaminated during medium changes can easily infect the entire culture if 
it is not changed. 
nge medium twice per week (e.g., on Tuesday and Friday). 

Note: For mouse brain, the dissociation medium is MEM with 2x PSN and 1.5U/ml 
ispase. d
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A-3 Co-culture PC12 Cells and Primary Astrocytes  
 

Preparations: 
 

 Wash cover glasses with 70% ethanol. Wipe them dry and have them autoclaved. 
 Laminin Stock Solution (100ug/ml): Put 1ml (1mg/ml) laminin stock solution 

(from Sigma L2020) in 9ml sterilized PBS. Aliquot in 10 1.7ml tubes. Store at -
80°C. 

 NGF Stock Solution (50ug/ml with 2% BSA): Put 0.1g BSA (standard protein) in 
5ml ddH2O, vortex to mix, then sterilize it with a filter (2% BSA). Resolve NGF 
100ug (from Calbiochem B49675) in 2ml such sterilized 2% BSA (50ug/ml). 
Aliquot it and store at -80°C. 

 DMEM-F12 without phenored: Put a bottle of medium in 900ml ddH2O, rinse 
the bottle twice. Add 1.2g sodium bicarbanate into the medium. Adjust pH to 7.0 
(0.1-0.3 lower than expected PH: 7.2-7.4), add ddH2O to 1000ml. Filter it in two 
bottles. 

Steps: 
1. Six days before co-culture:  

a. Place the cover glasses in the 6 well-plate.  
b. Coat the cover glasses in 6 well-plate with 1ml 5ug/ml laminin 

(1ml 100ug/ml stock solution in 19ml PBS) overnight.   
2. Five days before co-culture:  

a. Aspirate laminin and wash with PBS.  
b. Plate 300,000 PC12 cells per well with 3ml DMEM-F12 with 

10% FBS medium.  
c. Put 3ul 50ug/ml NGF (final concentration: 50ng/ml) into each 

well, grow for 5 days. 
3. Three days before co-culture: Plate 20,000 astrocytes onto the inserts 

placed in a 10cm2 plate with 5ml DMEM-F12 with 10% FBS medium.  
4. One day before co-culture: Infect the astrocytes with adenovirus as 

follows: 
 

Vector Stock Solution Final Concentration 
mtIκB 7x106 particles/ml 0.86ul/ml   

(2.58ul/3ml) 
GFP control vector 5.4x106 particles/ml 1.1ul/ml     

(3.3ul/3ml) 
 
5. On the day of co-culture:  

a. Wash PC12 cell with PBS.  
b. Put 3ml 10% FBS DMEM-F12 without phenored and PSN 

medium into each plate.  
c. Treat the cells.  
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d. Wa -culture 
plate. 

 

 

 
 

 

 

 

 
 

 

sh primary astrocyte with PBS, directly put the inserts onto the co
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A-4 Dopamine and GABA Assay by HPLC 
 
References:  Thomas H. Champney, William nneman and Myesha A. Nichols. γ-

Aminobutyric acid, catecholam e and indoleamine determinations from 
the same brain region by high-performance liquid chromatography with 
electrochemical detection. Journal of Chromatography, 579(1992) 334-339 

 
Instrument:

 H. Ha
in

  high-performance liquid chrom aphy (HPLC) (LC4B, Bioanalytical 
Systems) with electrochemical detection (ED) 

 
Tissue sample 

1. The samples are taken out of freezer, and add 100ul 200ng/ml EPN (in PCA) to each 
sample. (20ng EPN/ sample, amine internal standard) 

2. Sonicate the sample for 2-3 seconds. 
3. Draw 10ul for protein assay, dilute by two folds. 
4. Centrifuge the sample at 13,000g for 1 m n. 
5. Wash syringe with 0.1 M parchloric acid ( PCA) 
6. Draw 25ul supernatant of the sample without bubbles. 
7. Put the button on Load position, then push the sample into the loop. 
8. Push the button to Inject position and start recording at the same time. 
9. Pull chart marker up 
10. Set 11 min. 
Note:

atogr

 

i

    1. LCEC Analyzer pressure should always in the middle (2500). 
             2. Double mark your data. 
             3. Don’t forget to take protein samp
 
Medium Sample  
 
1. 950ul of the sample is transferred to tubes containing 90ul of 0.4 M perchloric acid. 
2. Put the button on Load position, then push 20ul of the standards or samples into the 

chromatography (HPLC) system loop. 
3. Push the button to Inject position and start recording at the same time. 
4. Pull chart marker up 
5. Set 11 mins. 
 
 

GABA Ass
 
1. Add 100ul 150ng/ml epinine (EPN) in PCA to each sample (two punches from 

striata)  
2. Sonicate the sample for 2-3 seconds. 
3. Take out 10ul for BCA protein assay. 

le back with you. 

ay of Tissue 

 



 160

4. Centrifuge the
. Take out 70ul for DA assay. 

g 

7. Votex we
8. Take 20u
. Add 20u  

1. Inject 20

Materials:

 sample at 13,000g for 1 min. 
5
6. Add 60ul 70%Ethonal with AVA (aminovaleric acid, 50ng/20ul) to the remainin

20ul sample(1/5th). (Total 80ul, 150ng AVA) 
ll. 
l (1/20th) into another 1.7ml tube. 
l derivitizing solution to each tube. (Final: 1/40th of the total sample,9

18.75ng AVA) 
10. Incubate 1 min. 

ul on HPLC. 1
 

 

, FW: 100.46) 

 
0.4M perchloric acid (PCA):  

 (density 1.7kg/L-   17.6 ml 67-71% perchloric acid
-   ddH2O to 500ml 

 



 161

A-5 Open Field Activity Chamber 

cross, click configure>animal activity 

n 1 min >Primary samples 15 or 20> File name> experiment 

>Set up test chamber. 
Click EXPERIMENT>Start all experiment 
Insert animals quickly 

ENT >insert subjects to begin experiment (screen turn 

imals when the screen turns red. 
i. Click EXPERIMENT > Remove Subjects to stop the experiment  

 
2. Data Retrieval VERSADAT>file>open>file generate digiprodata>1>generate     

C//DPR file>Copy to 
3. Data Analysis  

a. Excel DPR open, check where data begin, usually line 57, enter the number 
where data begins> delimited>next 

b. Move date, subject, and filename to appropriate position. 
c. Data>SORT>by cage 
d. Create new worksheet for each parameter 
e. Copy and transpose the data horizontally 
f. To Repeat: Record as a macro> Stop record. Erage>macro>macro   

 

 
Set Up and Data Collection 1. Computer 

a. Click VersaMax, if no blue 
monitor>two animals 

b. Double click Versa Map> EXPERIMENT>Set up all test chambers>Sample 
duratio
description. 

c. Click EXPERIMENT 
d. 
e. 
f. Click EXPERIM

green) 
ound noise. g. Turn on backgr

h. Remove the an
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A-6 Immunohistochemistry 
 

References: Modified from Dr Abbott’s protocol 
1. In
2. De-parafinize: 2xXylene, 2x100% etha

1
3. Antig

original level. Cool to room temperature. 
4. W
5. In peroxidases. 
6. M l TrisA+2gBSA) 
7. Q
8. Wash with 0.05M TBS 10 min.  
9. P
10. In
11. W h
12. Incubate with Biotin blocking solution for 15 min at room temperature.  

1  solution: Tris A/2% BSA(2ml) + 10% horse serum(200ul) 

15. D
1:400

16. P
17. Incubate the tissues with the primary Ab at 4°C overnight. ( or 1-2h @ RT)

cubate slides in 55°C oven for 15 min.  Then cool to room temperature. 
nol, 1x95% ethanol, 1x70% ethanol, 

xTBS, 5 min each.  
en retrieval: Boil in 0.01M sodium citrate buffer for 10 min. Add water to 

ash 3x5min with 0.05M TBS.  
cubate in 0.3%H O  for 30 min to remove endo2 2
ake TrisA/2%BSA. (100m
uick wash the slides with ddH2O  

ap pen around tissues.  
cubate with Avidin blocking solution for 15 min at room temperature.  
as  with 0.05M TBS 10 min.  

13. Wash with Tris A/2%BSA 3x5 min 
4. Block with blocking

for 1h. 
ilute primary Ab with Tris A/2% BSA(2ml):  GFAP 1:400 (2.5ul/ml), TH 

 (2.5ul/ml), N-Tyr 1:220 (4.5ul/ml). 
ap pen around tissues again. (10 min) 

 
18. W
19. R
20. W h
21. Add the secondary Ab [Anti-mouse IgG/ Anti-Rabbit IgG (H+L)] 1:200 (5ul/ml) 

in Tris A/2%BSA, incubate the tissues with the secondary Ab for 1h @ RT 
22. Make Avidin/Biotin Complex mix at least 1h before use ( one drop of each A & 

B in 2.5ml of 0.05M TBS) (need 5ml) 
23. Wash with Tris A/2%BSA 3x10 min. 
24. Rinse with 0.05M TBS.  
25. Incubate the tissues in Avidin/Biotin Complex mix for 1h @ RT shaking. 
26. Wash with 0.05M TBS 3x10 min.  
27. Stain with DAB solution. In 5ml ddH2O add 2 drops of  buffer stock solution, 4 

drops of DAB solution, 2 drops of H2O2 solution. (Mix after adding each 
solution.) 

28. Staining time varied from different Ab (watch under microscope for the first 
one): GFAP-1 min, TH-2 min, N-Tyr-3 min. 

29. Rinse with ddH2O. 
30. Dehydrate in 1x75%, 1x95%, 1x100% ethanol, 2xXylene, 5 min each. (25 min) 

ash with Tris A/2%BSA 3x5 min.  
inse with 0.05M TBS. 
as  with Tris A/2%BSA 2x5 min.  
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31. Put cover glass on with permount. 
 

Ma

 
 

terials: 
 
1. S
2. 95%
     
          -
3. 0.05M TRIS Buffer Saline             (4L) 
     
     
     
     n bring up to 1L.  
4. 1
     
     
5. 0
     
     
6. TRIS
     
          -
7. T
     
     
     
8. S

ample tissue on slides 
 ethanol 

     -     100% ethanol 190ml 
     H2O       10ml 

     -     6.6g Trizma HCl              (26.4g) 
     -     1.39g Trizma Base           (5.56g) 
     -     9g NaCl                            (36g) 
     -     900ml of ddH2O, pH to 7.6 the
0% Triton X 
     -     5 ml Triton X-100 
     -     45 ml dH O 2
.3% H O                                       (500ml) 2 2

     -     10ml 3% H2O2                  (50ml) 
     -     90ml methanol                  (450ml) 

 A  
     -     200ml TRIS Buffer 

     4 ml of 10% Triton X 
RIS B  

     -     200 ml TRIS Buffer 
     -     3 ml Goat Serum  
     -     4 ml of 10% Triton X 
econdary antibody:  Vector ABC Kit- 2 drops of Biotinylated Ab in 5ml Tris B. 

 
9. 0.1M
     
          -
     
 
10. ml 
TB
11.
          -
          -     2 drops of buffer stock solution. 
     
          -  

ery step. 

 Sodium Citrate Stock 
     -     29.41g sodium citrate 

     1000ml ddH O 2
     -     pH 6.0 

 Avidin/ Biotin complex: Vector ABC Kit- 2drops of each Avidin & Biotin in 5
S 
 DAB solution  

     In 5ml of ddH2O 

     -     4 drops of DAB solution. 
     2 drops of Hydrogen Peroxide solution.      
     mix well after ev
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Notes: When making the TRIS B the type of serum depends on what the antibody was   
made in. 
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A-7 TUNEL and Immunofluorescent Antibody Staining 

1. Label the slides.  
2. Heat oven to 55°C, incubate slides for 15 min.  Then cool to room temperature 

15 min. (30 min) 
3. De-parafinize: 2xXylene, 2x100% ethanol, 1x95% ethanol, 1x70% ethanol, 

1xTBS, 5 min each. (35 min) 
4. Antigen retrieval: Boil in 0.01M sodium citrate buffer 600ml for 10 min. Add 

water to original level. Cool to room temperature about 50 min.  (60 min) 
5. Wash 4x3 min with ddH2O. (15 min) 
6. Wash 1x3 min with PBS. 
7. Shake off PBS, circle the slides. 
8. Block in Equilibration buffer 10 min. 
9. In dark incubate in Reaction buffer or control buffer @ 37°C 45 min. 
10. Soak the slides in 1xSSC 15 min to stop the reaction. 
11. Wash 5x5 min in PBS. 
12.  Wash in Tris A 3x3 min. 
13.  Block 1h in room temperature with 10ml Tris A +2% Serum (200ul serum same 

as the 2nd Ab). 
14. 1st Ab overnight: 

a. rabbit nNOS: 1:200, (50ul/10ml Tris A+2% goat serum). 
b. rabbit Leumorphin: 1:50, (200ul/10ml Tris A+2% goat serum). 
c. rabbit Enkephalin: 1:300, (33.3ul/10ml Tris A+2% goat serum). 
d. goat ChAT: 1:150, (66.7ul/10ml Tris A+2% donkey serum). 

15. Wash in TrisA 4x10 min. 
16. 2nd Ab Alexafluor 568:  

a. goat anti rabbit 1:1000 (10ul) in Tris A+2% goat serum ( made at least 
half an hour before use). 

b. donkey anti goat 1:1000 (10ul) in Tris A+2% donkey serum ( made at 
least half an hour before use). 

17. Wash with Tris A 3x5 min. 
18. Mount with [DAPI] antifade 2 drops each slide. 
19. Seal the slides with clear nail polish until the slides dry. 

 
Materials:

 

 
 
 1xSSC pH 7.0 

─ 17.53g NaCl 
─ 8.82g sodium citrate. 
─ ddH2O 2000ml, pH 7.0 

 1xTE    pH 7.4 
-     10mM Tris-Cl (pH 7.4)  (0.5M Tris-Cl pH 7.4 10ml) 
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-     1mM EDTA (pH 8.0)     (0.5M EDTA pH 8.0 1ml) 
 
 
 
PB

  
TU

S  pH 7.2 
─ 16.0g NaCl. 
─ 0.4g KCl. 
─ 2.3g Na2HPO4 
─ 0.4g KH2PO4 
─ ddH2O 2000ml, pH 7.2 

NEL Buffers 
Equilib
 6 slides 8 slides 

raton Buffer 
2 slides 4 slides 

TE 512ul 1024ul 1536ul 2048ul 
5xTT buffer 160ul 320ul 960ul 640ul 
25m 192ul MCoCl2 48ul 96ul 144ul 
 
Nu
 

cleotide Mix 
2 slides 4 slides 6 slides 8 slides 

1m 3ul 4.5ul 6.0ul M dUTP 1.5ul 
1mM T dA P 3ul 6ul 9ul 12ul 
TE 25.5ul 51ul 76.5 102ul 

 
 

Rea
  4 slides 6 slides 8 slides 

ction Buffer 
2 slides

Equilibration Buffer 180ul 360ul 540ul 720ul 
Nucleotide Mix l 60ul 80ul 20ul 40u
TdT 4ul 8ul 12ul 16ul 
 
Con
 slides 8 slides 

trol Buffer 
2 slides 4 slides 6 

Equ 360ul ilibration Buffer 90ul 180ul 270ul 
Nucleotide Mix 10ul 20ul 30ul 40ul 
TE 2ul 4ul 6ul 8ul 
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A-8 Isolectin B4 Binding in Brain Slides 
 

 Reference: m
in Brain li

odified from the original protocol of Localization of Isolectin B4 Binding 
ry Cultures from Dr. W. Streit  and modified by J.F Bowyer 

NCTR 
 
1. 
2.  slides for 15 min.  Then cool to room temperature 

ize: 2xXylene, 2x100% ethanol, 1x95% ethanol, 1x70% ethanol, 
 each. (35 min). 

 NaPB t least 2-4h to remove any residual formalin. 
5. Incubate the slide in blocking solution 1h. 

-10 solectin B  blocking  and inc e slide at 
m e for 1h,  overnig

 wi 0 min in 0. aPB pH 7.4
in. 

in in 0.1M NaPB PH 7.4. 
t 5 min 
in X  and mount cover glass with permount. 

Ma rials:

 S ces or Prima
   & D.L. Davies

Label the slides.  
Heat oven to 55°C, incubate
15 min.  

3. De-parafin
1xTBS, 5 min

4. Wash 4x with 0.1M  pH 7.4 a

6. Add 5
 te

ug/ml I 4 to the  solution ubate th
room

7. Wash
perat

th 3x1
ur then 4

1M N
°C ht. 

. 
8. DAB staining for 2 to 4 m
9. Wash with 3x10 m

0°C for 2010.  Dry a
11. Clear ylene

 
 

te  

brain has been removed after sacrifice and fixation, post fix in formalin 
less than 2 days before slicing.  Make sure brain slices (30 pm or less) have been 

 an  in PBS  (slices can be stored briefly in PBS 
g < 1% longed fixation in in 

the Isolectin B4 binding. 
 

 B4  is Lectin from Bandeiraea Simplicifolia (BS-l), Sigma L-5391. 
Isolectin B4 should be stored desicated at -20° .  It 

1 t  it is reus in 24 hr reparat ur 
owever ust che in your o boratory!

 
3. 0.1M sodium phosphate buffer (NaPB), pH 7.4 

a. 5.48g NaH2PO4, FW 137.99 
b. 22.72g Na2HPO4, FW 141.96 
c. 2000ml ddH2O, pH 7.4 

 

 
1. After the 

vibratome cut d stored  pH 7.4
containin  formalin for a week)!!  Pro  formalin will ru

2. Isolectin
C and prepared fresh before use

can be reused ime if ed with  of its p ion in o
hands.  H , this m ck out wn la  
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4. Blocking Solution ( 0.1% Triton X-100, 0.1mM CaCl , 0.1mM MnCl2 and 
0.1mM MgC

a. 0.004g MgCl2, FW 203.3 

M NaPB, pH 7.4 
 
 
Not

2
l2) 

b. 0.004g MnCl2, FW 197.9 
c. 0.004g CaCl2, FW 147 
d. 200ul Triton X-100 
e. 200ml 0.1

e: 
 

1. ith 

2.

 The blocking solution have a nasty habit of precipitating so filter the solution w
a filter if some ppt. occurs.  Excesive ppt. will diminish the effectiveness of the Rx 
solution. 

 Binding is best to perform on brain slices 30 pm thick in Falcon 24 well tissue 
culture dishes or 24 well baskets. 
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A-9 Hoechst & TUNEL Staining in Fixed Cells  
 

st  StainingHoech  
 

1. Wa
2. Fix with 4% paraformaldehyde 5 min. 
3. Permeabilize with 0.1%Triton X100 10 min. 

Wash with PBS 2x5 min  
5. Add Hoechst dye 10uM in PBS, incubate 10 min at room temperature in dark, 

6.
7. n slides with small drop of Prolong Antifade gel mount ( Molecular 

8. olish until the mounting medium has dried. 
9. After sealing, store the slide upright in a covered slide box at –20°C. 

 
TUNEL  Staining

sh the cells twice with PBS. 

4. 

covered with foil. 
 Wash with PBS 2x3 min. 
 Mount o

Probes) (mix 32 drops or 1ml Prolong mounting medium in one brown vial). 
 Do not  seal the edge with nail p

 
 

1. Wash the cells twice with PBS. 
2. Fix with 4% paraformaldehyde 5 min. 
3. Permeabilize with 0.1%Triton X100 10 min. 
4. Wash with PBS 3x5 min  
5. Block with equilibration buffer 10 min. 
6. Reaction buffer 30 min at 37°C 
7. Soak 1x SSC 15 min to stop the reaction 
8. Wash with PBS 3x5 min. 
9. Mount on slides with small drop of Prolong Antifade gel mount ( Molecular  

Probes) (mix 32 drops or 1ml Prolong mounting medium in one brown vial). 
10. Do not  seal the edge with nail polish until the mounting medium has dried. 
11. After sealing, store the slide upright in a covered slide box at –20°C. 

 
TUNEL and  Hoechst  Staining 

 
1. Wash the cells twice with PBS. 
2. Fix with 4% paraformaldehyde 5 min. 
3. Permeabilize with 0.1%Triton X100 10 min. 
4. Wash with PBS 3x5 min  
5. Block with equilibration buffer 10 min. 
6. Reaction buffer 30 min at 37°C 
7. Soak 1x SSC 15 min to stop the reaction 
8. Wash with PBS 3x5 min. 
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9. Add Hoechst dye 10uM in PBS, incubate 10 min at room temperature in dark, 
covered

10. Wash with PBS 2x3 min. 
11. Mount on slides with small drop of Prolong Antifade gel mount (Molecular  

Probes) (mix 32 drops or 1m edium in one brown vial). 
12. Do not seal the edge with nail polish until the mounting medium has dried. 

ght in a covered slide box at –20°C. 
 
Ma

 with foil. 

l Prolong mounting m

13. After sealing, store the slide upri

terials:  
 
TUNEL assay buffers: 
 
Equ
Com

ilibration Buffer: 
ponent 1x 

TE 32 ul 
5x Terminal Transferase buffer 10 ul 
25mM CoCl2 3 ul 
Total 45ul 
 
 
Nuc
Com x 

leotide Mix: 
ponent 1

TE 4.25 ul 
1 m 0.5 ul M dATP 
1 m 5 ul M Alexa 488 dUTP 0.2
Total 5 ul 
 
Rea
Com

ction Mix: 
ponent 1x 

Equilibration Buffer 45 ul 
Nucleotide Mix 5 ul 
TdT Enzyme [or TE for control] 1/0.5 ul 
Total 51 ul 
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APPENDIX B 

 

eagent Name Application 

USEFUL CHEMICALS AND REAGENTS 

 
Chemical R
rhodamine 110bis(L-aspartic acid amide Cell permeant pan-caspase substrate 
4-amino-5-methylamino-2',7
(DAF-FM diacetate) 

'-difluorofluorescein diacetate Nitric oxide fluorescent indicator 

GW 9662 The specific PPARγ antagonist 
1,1-Bis (3'-indolyl)-1-(p-trifluoromethylphenyl) methane 

3) 
The PPARγ agonist 

(DIM-C-pPhCF
S-Nitroso-N-Acetylpenicillamine (SNAP) NO donor 
(±)-2-Amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (A A highly selective inhibitor of murine 

NOS2 (ki = 4.2 nM) 
MT) 

Hoechst 3342 For nuclear staining 
Terminal deoxynucleotidyl transferase-mediated dUTP

iotin nick end-labeling (TUNEL) kit 
Detect DNA fragmentation -

b
 
 
Acrylamide  
 
 
Molecular 

a 
Molecular 
Weight 

C
Formul

hemical Properties on Applicati

C3H5NO 71.08 Liquid form is 40% 
(weight/volume) 
solution in 
specially deionized 
water. Odorless. 
Readily polymerizes if 
heated to melting point 

d to 
ultraviolet radiation. 

e production of high molecular weight 
polyacrylamides. Large quantities of 
polyacrylamide gel are produced on site for use as 

 grouting agent. 2) as flocculators (substances 
 the separation of suspended solids from 
s systems).  Smaller quantities of 

crylamides are used in cosmetic additives. 
t press fabrics. Electrophoresis, 

lar biology applications. Photographic 
ons. Adhesive manufacture.Food 

processing. 

For th

a 1)
that aid
aqueou
polya
Permanen
molecu
emulsi

or if expose

 
 
Tris-HCl 
 
 
Molecular 
Formula 

Molecular 
Weight 

Chemical Properties Application 

C4H11NO3 · 
HCl 

157.59 Transparent, colorless 
crystals.  Odorless.  
 Soluble in water. 

pH Buffer 

 



 172

 Stable under ordinary 
conditions of 
storage. 
 Burning may produce 

nitrogen oxides. 

use and 

carbon monoxide, 
carbon dioxide, 

 
Tween 20 ™ 

licat
 
Molecular Molecular Chemical Pro
Formula Weight 

perties App ion 

 1163.92  A surfactant and spreading agent 
 
 
Lauryl Sulfate (Sodium Dodecyl Sulfate) (SDS) 

 
ula Molecular Chemical Properties 

 

Molecular Form
Weight 

Application 

C12H25OSO3Na 288.38 
CH3(CH2)11OSOO3Na 

Flammable Solid! 
Fine, white or 
slightly yellow 
powder. Slight fatty 
odor. Solubility:  
10g/100g water 

An ionic detergent that is commonly found 
in household products such as shampoos. 
The molecule has a tail of 12 carbon 
atoms, attached to a sulfate group, giving 
the molecule the amphiphilic properties 
required of a detergent. 
In laboratories, SDS is commonly used in 

lectrophoresis (SDS-PAGE), where 
its detergent properties help keep the 

state. 

gel e

proteins being studied in a denatured 
 
 
Sodium Citrate 
 
 
Molecular 
Formula 

Molecular 
Weight 

ties Chemical Proper Application 

C6H5Na3O7
 

258.07 
 

White odorless crystals 
 

eep the 
from sticking together. Citrates and 

phosphates both have this property. 
2. It is also an anti-coagulant. 
3.  As a buffering agent, it helps maintain pH levels 
in soft drinks. 
4. As a sequestering agent, sodium citrate attaches 
to calcium ions in water, keeping them from 

ith detergents and soaps.  

1.Sodium citrate is used in ice cream to k
fat globules 

interfering w
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Ammonium Persulfate (
 
 
Molecular 
Formula 

Molecular 
Weight 

Application 

APS) 

Chemical Properties 

(NH4)2S2O8 228.19 
 

line 

(2M, H20): Complete, 
clear and colorless 
 

A high speed initiator used in polyacrylamide gel 
electrophoresis 

Off-white crystal
powder. Solubility  

 

 
Sodium Orthovanadate 

ormula Weight 
lication 

 
 
Molecular Molecular Chemical Properties App
F
Na3VO4 183.91 white to off-white 

t
r

atib
id

 

Sodium orthovanadate should be activated for 
a  protein phosphotyrosyl-
a

 
 

powder. S
temperatu

p

ore at room 
e. 

maxim
phosph

Incom
strong ox

le with  
 izing agents. 

l inhibition of
tases.  

 
 
Glycerol 
 
 
Molecular Formula Molecular 

Weight 
Chemical Properties Application 

C3H8O3
OH  

92.09 Viscous colourless or 
pale yellow liquid. 
Flammable. Stable. 
Incompatible with 
perchloric acid, lead 

 

id
strong acids, stro
bases.  
 

Widely used as a solvent; as a sweetener; in 
the manufacture of dynamite, cosmetics, 
liquid soaps, candy, liqueurs, inks, and 
lubricants; to keep fabrics pliable; as a 
component of antifreeze mixtures; as a 

e of nutrients for fermentation 
 in the production of antibiotics; 

CH2OHCHOHCH2
 

oxide, acetic
anhydride, 
nitrobenzene, 
chlorine, perox es, 

ng 

and in medicine.  
 
 

sourc
cultures
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Bromophenol Blue Sodium Salt 

a s n 

 
 
Molecular 
Formula 

Molecul
Weight 

r Chemical Propertie Applicatio

C19H9Br4O5SNa

 
 

 
pH
H  

.6 
(blue) .  
 Slightly soluble in 
water. Stable under 
ordinary conditions of 
use and storage. 
Incompatible with  

ing dye for acrylamide. Gel 
electrophoresis. 
 
 

 692 
 

Light pink to purple
crystalline powder. 
3.0 (yellow-green)-p
3.4 (green)-pH 4

 
pH indicator, indicating dye for histones, dental 
cleaning. Trac

 strong oxidizers 
 
 
 
 
 
2-Mercaptoethanol (Th
 

CAPTOETHANOL 
olecular Molecular 

Weight 
Chemical Properties Application 

ioglycol) 

R
M
Formula 
C2H6OS, 

SCH2CH2OH 
78.13 Clear liquid with 

disagreeable odor, is 
c

 and
xide. 

under o
conditi
water a
commo
solvent

It is a mild reducing agent that is ideal for 
cleaving disulfide bonds to thiols. It is used for 

 sy C heat stabilizers and as an 
erm duce corp protection 

u

H
produ
of hydr

as

ed by synthesis 
ogen sulphide 

the
Int

g
o

 ehtylene 
pH 5.2. Stable 
rdinary 
ons. Miscible in 
nd nearly all 
n organic 
s. 

prod
pham

nthesis of PV
ediate to pro

cts,dispersants, fibers, textiles,dyes, 
arceutical products. 
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