
 
 

SIMULTANEOUS PROCESS AND MOLECULAR 

DESIGN/SELECTION THROUGH PROPERTY INTEGRATION 

 

A Dissertation 

by 

XIAOYUN QIN 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 
 

 

 

 

December 2006 

 

 

 

Major Subject:  Chemical Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4271845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

SIMULTANEOUS PROCESS AND MOLECULAR 

DESIGN/SELECTION THROUGH PROPERTY INTEGRATION 

 
 

A Dissertation 

by 

XIAOYUN QIN 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 
 

 

 

Approved by: 
 
Chair of Committee, Mahmoud M. El-Halwagi 
Committee Members, M. Sam Mannan 
   John T. Baldwin 
   Bruce McCarl 
Head of Department, Nagamangala K. Anand 
 

 
 
 

December 2006 

 

Major Subject:  Chemical Engineering 



 iii 

ABSTRACT 

 
Simultaneous Process and Molecular Design/Selection  

Through Property Integration. (December 2006) 

Xiaoyun Qin, B.S., Nanjing University of Science and Technology; 

M.S., Chinese Academy of Forestry Science 

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi 

 

The overall purpose of this work is to develop systematic methodology for the 

simultaneous design and selection of processes and molecules (materials). A property-

based approach is used to develop an interface between process and molecular 

design/selection. In particular, we focus on the problem of designing/selecting materials 

that are used in the context of a recycle/reuse system of process streams and for energy 

applications. Fresh and recycled resources (e.g., process streams, biomass, solvents, etc.) 

are integrated with the process to satisfy property-based constraints for the process units 

and to optimize the usage of the resources and the design of the process. For molecular 

design, property operators for mixing streams and group contribution methods (GCM) 

are used to consistently represent process sources, sinks, and different functional groups 

on the same property-base.  For material selection, property based criteria (e.g., heat rate, 

high heating value, etc.) are used to bridge the process with material. This consistent 

representation enables the definition of the optimization problem formulation for product 

design while taking into consideration the recycle/reuse of process streams. In particular, 

this dissertation addresses four integrated topics. First, a new graphical approach for 

material targeting and substitution is presented. This graphical approach offers initial 

solutions and valuable insights that can be effectively used for conceptual design and for 

initializing mathematical programming techniques. Second, a mathematical optimization 

approach is developed along with a decomposition-based global solution procedure for 

material targeting and substitution using property integration. Third, an implementation 

approach is developed to synthesize the details of a recycle/reuse process network design 
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based on the targets identified through the graphical and/or the mathematical approaches. 

Finally, property integration techniques are extended to a broader scope which deals with 

the lifecycle analysis of biomass utilization for energy generation. A generic model is 

developed to optimize the types and quantities of the feedstocks used to optimize power 

generation with biomass-fossil fuel co-fed system. Important issues of biomass growth, 

harvesting, transportation, processing, and disposal are included. Property-based tracking 

and constraints are included in the analysis. Also, the issues associated with greenhouse 

gas (GHG) emissions are incorporated in the analysis. Case studies are solved throughout 

the dissertation to demonstrate the applicability of the developed procedures. 
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CHAPTER I 

INTRODUCTION 
 

Processing operations feature the use of enormous amounts of material resources. 

Consequently, process design received extensive studies over the last two decades in 

order to develop cost-effective and pollution-mitigated processes. Material (molecular) 

design and selection are important activities in optimizing the performance of processing 

facilities. Hence, they have become one of the most important considerations associated 

with process design. Conventional chemical processes are chemo-centric and component 

dependent. However, in assessing the performance of a material utility (e.g., a solvent), 

one should not only rely on its chemical constituents, but rather on their characteristics 

and effectiveness for the particular system. These characteristics involve a wide variety 

of properties such as equilibrium distribution coefficient, critical point, volatility, 

solubility, density, GHG (greenhouse gas) equivalence, heat of combustion, etc. Since 

properties form the basis and constraints of the performance of many units, they can be 

primarily considered in order to select material, design and optimize a process system. 

Several papers have addressed the problem of property-based process design using 

graphical tools that guided the synthesis and analysis tasks (Shelley and El-Halwagi, 

2000; El-Halwagi et al., 2004; Kazantzi and El-Halwagi, 2005). Moreover, algebraic 

techniques were developed and employed for property-based integration of systems with 

more than three properties of interest (Qin et al., 2004). These process design 

methodologies have been developed through commitment to the available process and 

external resources which were selected through material screening. Screening of 

commonly used and already known products is the prevailing way to select materials for 

process operation to achieve better process design. This method mainly includes two 

aspects: determining existing materials that should be used for particular applications 

and allocating the selected materials to process units to acquire optimal process 

This dissertation follows the style and format of Chemical Engineering Science.   
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objectives. Notwithstanding its great impact on process optimization, there are certain 

limitations with this method. For a given application, there are typically numerous 

potential candidate materials leading to a selection task that is tedious and expensive.  In 

addition, streams may be mixed in an infinite number of ways, thus increasing the 

dimensionality of the problem. For each combination of process streams, there is an 

optimum material utility to be mixed with these streams. Considering all blending 

possibilities, there are numerous material utilities to be screened before an optimum 

selection is made. Additionally, screening among existing material could hinder the 

identification of new material structures and/or material blends that could achieve a 

better performance of the system, i.e. selection of existing materials can lead to sub-

optimal solutions. Therefore, material selection needs to be considered as a task of 

selecting a set of properties to target a process performance, and has to be addressed 

simultaneously through synthesis at the material- and systems- level. Thus, there is a 

need for incorporating proper design criteria and constraints into molecular design and 

selection. This has to be done while systematically identifying the optimum set of 

properties and consequently the optimum material (molecular) structures or mixtures. 

Eden et al., (2002, 2004) and Gani and Pistikopoulos, (2002) employed property models 

to address simultaneous process and product design problems. However, they only 

considered screening solvent molecules and not generating them. Furthermore, their 

analysis was limited to individual-unit performance rather than the network system 

operation in the chemical process. It is important to examine synthesis aspects at the 

molecular levels and carry out molecular design at the same time while observing the 

process system characteristics and performing process design. This will provide useful 

information about all important features and interactions between process and molecular 

design. Another important issue in process and material (molecular) design is the need to 

accurately estimate properties of molecules before conducting expensive experimental 

activities. In addition, it is not always possible to find experimental data in literature that 

are needed for identifying potentially new molecules. This literature gap suggests the use 

of theoretical and computational approaches for property estimation. Based on this 
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consideration, the group contribution method (GCM) is widely applied in molecular 

design area, which is also adopted in this work.  These limitations will be addressed by 

this work. The overall objective is to develop systematic and generally applicable 

procedures for conserving natural resources used in industry. Specifically, process 

design, molecular (material) design/selection, and scheduling techniques will be 

developed and used to address the following four integrated topics: 

1. A graphical targeting approach for simultaneous molecular and process 

design: This problem focuses on material recycle/reuse with property 

constraints. In addition to the process sources, fresh streams may be 

purchased and used in process units. Molecular design is used to screen 

potential fresh streams. This graphical approach offers initial solutions and 

valuable insights that can be effectively used for conceptual design and for 

initializing mathematical programming techniques.  

2. A mathematical programming approach is developed to address the similar 

but more complicated problem mentioned under the graphical approach. An 

optimization formulation is developed to embed potential solutions and to 

select the optimum one. A decomposition approach is used for the global 

solution procedure for material targeting and substitution using property 

integration.  

3. A network synthesis implementation approach is developed to synthesize the 

details of a recycle/reuse process network design based on the targets 

identified through the graphical and/or the mathematical approaches.  

4. A holistic approach is developed to analyze biomass-to-energy systems. The 

property integration techniques are extended to a broader scope which deals 

with the lifecycle analysis of biomass utilization for energy generation. A 

generic model is developed to optimize the types and quantities of the 

feedstocks used to optimize power generation with biomass-fossil fuel co-fed 

feedstocks. Important issues of biomass growth, harvesting, transportation, 

processing, and disposal are included. Property-based tracking and constraints 
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are included in the analysis. Also, the issues associated with greenhouse gas 

(GHG) emissions are incorporated in the analysis.  
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CHAPTER II 

SIMULTANEOUS PROCESS AND MOLECULAR DESIGN 

THROUGH PROPERTY INTEGRATION – A GRAPHICAL 

APPROACH 
 

2.1 Introduction 

Molecular design and selection are important activities in optimizing the 

performance of processing facilities. Numerous contributions have been made in this 

field. In spite of their great achievements, they have a common limitation: the targeted 

properties for the molecules are pre-set based on specific requirements of a certain unit. 

In so doing, conventional molecular design fails to account for the important input 

resulting from integrating the process. On the other hand, conventional process design is 

based on the using of existing materials without considering synthesizing new molecules 

which could lead to suboptimal process design. So it is very desirable for simultaneous 

process and molecular design.  

The objective of simultaneously designing integrated processes and molecules 

can be greatly facilitated by invoking the recently developed area of property integration 

and componentless design.  Property integration is a “functionality-based, holistic 

approach to the allocation and manipulation of streams and processing units, which is 

based on the tracking, adjustment, assignment, and matching of functionalities 

throughout the process” (El-Halwagi et al., 2004).  Since properties (or functionalities) 

are critical factors in determining performance of many processing units, process design 

techniques should keep track of the important properties throughout the process. Recent 

work done by Shelley and El-Halwagi (2000) has shown that it is possible to tailor 

conserved quantities, called clusters that act as surrogate properties and enable the 

conserved tracking of functionalities instead of components. With the property-

integration framework posing the process design problem in the property domain, there 

is a natural interface with molecular design which driven by targeted properties. 



 6 

This chapter introduces a new, process-centered molecular design graphical 

approach for material substitution through property-based integration and GCM. In this 

procedure, the process is first optimized using property integration techniques. This 

optimization leads to obtaining process information that are primarily considered in 

identifying a set of potential candidate molecules with desired properties and selecting 

the best molecules among this set. Two process-based attainable regions are obtained by 

considering certain process objectives and constraints characterizing the process: the 

improvement region and the feasibility region for molecular design of all candidate 

molecules with the desired properties. In this particular work, the solvent molecules are 

chosen to support the recycle/reuse of process streams so as to reduce the waste 

discharge to a certain desirable extent. Several molecular groups that are of particular 

utility for a given process (they provide either the required chemistry for the specific 

performance or the physical characteristics necessary for a certain process task) were 

considered and graphically represented as unit vectors. The number of occurrences of the 

groups in the molecule dictates the magnitude of the vector. Through the new 

“molecular” pinch approach developed in this paper, both the process design and the 

molecular design problems are represented on the same consistent basis and are solved 

without iterations. 

 

2.2 Selective Literature Review 

In this section, two relevant literature topics are reviewed: group contribution 

methods (GCMs) and property-based material-recovery pinch analysis. Both topics are 

key building blocks for the new approach to be developed in this chapter. 

 

2.2.1 Group Contribution Methods 

Group contribution methods have been widely used for the quick estimation of 

properties of pure compounds alone or in conjunction with other computational methods 

to obtain more accurate predictions of properties (Horvath, 1992; Jensen, 1999; Achenie, 

et al, 2003). The group contribution method for solvent design was first introduced by 
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Gani and Brignole (1983), whereas many other methodologies for solvent design (Odele 

and S. Macchietto, 1993; Pretel et al., 1994; Pistikopoulos and Stefanis, 1998; 

Giovanoglou et al., 2003; Marcoulaki and Kokossis, 2000) with various applications, 

polymer design (Derringer and Markham, 1985; Vaidyanathan and El-Halwagi, 1994; 

Venkatasubramanian et al., 1994), refrigerant design (Joback and Stephanopoulos, 1989; 

Sahinidis et al., 2003; Lehmann and Maranas, 2004) and the design of environmentally 

benign species (Hostrup et al., 1999; Buxton et al., 1999) were later found in literature.  

In all these methodologies, the approaches were driven by formulating and globally 

solving an optimization-based problem with different optimization methods.  

The basic model used in GCM is the one presented by Constantinou and Gani (1994). If 

Cg is the contribution of the first order group of type g, which occurs Ng times in a 

compound, and φ (p) is a simple function of the property p, the property estimation 

model takes the form of Eq. 2.1. 

g
g

g CNp �=)(φ                 (2.1) 

The selection of the function φ (p) depends on the following factors: (1) The 

function must be additive in the contributions of Cg ; (2) it has to demonstrate the best 

possible fit of the experimental data; and (3) the expressions should be able to provide 

sufficient extrapolating behavior and, therefore, a wide range of applicability. 

 

2.2.2 Property-Based Graphical Approach for Waste Reduction 

Recently, Kazantzi and El-Halwagi (2005) introduced a property-based material-

recovery pinch analysis and rigorous visualization technique for a process with a given 

number of process sinks and sources. Process sinks require certain flowrate values and 

impose certain property constraints for their acceptable feed. Each process source has a 

given flowrate and property value. Kazantzi and El-Halwagi assumed the pre-selection 

of a single fresh resource with a known property value. The objective was to develop a 

non-iterative graphical procedure to determine the target for minimum usage of the 
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fresh, maximum material reuse, and minimum discharge to waste. Consider the property 

resulting by mixing several sources (Shelley and El-Halwagi, 2000): 

)(*)(*
_

i

N

i
i pFpF

sources

ψψ �=            (2.2)  

where )( ipψ  is the property mixing operator and F  is the total flowrate of the mixture 

which is given by: 

�=
sourcesN

i
iFF             (2.3) 

Two different categories of fresh feed were considered; in the first one the fresh 

property corresponds to the minimum property operator value with respect to the process 

sources, i.e.  

i
Fresh ψψ ≤            (2.4a) 

whereas the second one deals with fresh that has property operator larger than those of 

the process sources, i.e. 

i
Fresh ψψ ≥            (2.4b) 

For the first case, the sink constraints on properties take the following form: 
max j

in
j

Fresh ψψψ ≤≤           (2.5a) 

whereas for the second case the maximum acceptable feed operator to sink j is limited by 

the fresh operator, i.e: 
Freshin

jj ψψψ ≤≤  min           (2.5b) 

The targeting procedure, which is described in detail by Kazantzi and El-Halwagi 

(2005) involves the following steps. First the maximum value of property operator 
max
jψ for each sink is calculated based on its acceptable range of property (property 

constraints). Then, a composite curve for the sinks is constructed by plotting the 

maximum admissible property loads ( max* jjG ψ ) versus their flowrate jG  in ascending 

order of max
jψ and using superposition (Figure 2.1). Similarly, a source composite curve 

is constructed in ascending order of property operators. For a pre-selected fresh source 
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with a given property operator ( Freshψ ), the source composite curve is slid on the fresh 

line until the two composites touch at the pinch point with the source composite 

completely below the sink composite in the overlapped region. The pinch analysis 

determines the targets for minimum consumption of fresh resource (Fr1) and the 

minimum discharge of the waste (W) as shown by the pinch diagram (Figure 2.1).  

 

 

 
Figure 2.1 Property-based material-recovery pinch diagram (Kazantzi and El-Halwagi, 

2005) 

 

2.3 Problem Statement  

The general problem statement considered in this chapter is stated as follows: 

Sink 

Composite 
Source 

Composite 

Minimum 

Fresh 

Maximum 

Recycle 

Minimum 

Waste 

Source 

or Sink 

Property 

Load 

Flowrate 

Property-Based 

Material-Recovery 
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Given is a process with a number, NSinks, of processing units (or sinks), which 

accept streams with certain flowrates, jG , and property values that need to satisfy the 

following constraints: 
u
jj

l
j ppp ≤≤ sink  , j=1, 2,…, NSinks        (2.6) 

where, sink
jp  is the  property of a stream entering sink j. The feed to each sink may 

involve one or more streams (sources) that satisfy the property-based requirements given 

by inequality constraint (2.6). These streams may be process streams and/or external 

(fresh) sources. A number, NSources, of process streams are available for recycle. Each 

process source has a given flowrate, iF , and property value, source
ip .  The fresh (external) 

sources are unknown and are to be selected or synthesized from a combination of N 

functional groups. Each functional group, g, has a known property contribution gC . 

Unused process sources are discharged as wastes. The current discharge of the process is 

referred to as Wo. In order to optimize the use of process sources and reduce 

environmental impact, the objective is to reduce the waste discharge to a targeted level 

(WT).  To reach this objective, it is desired to develop a systematic procedure that 

determines the following: 

• What materials should be selected as fresh sources to achieve the target of 

waste discharge? These materials are to be synthesized from the given 

functional groups. 

• Allocation of process sources to sinks (what flowrate of each source should 

be directed to each sink? Any segregation or mixing?) 

Because of the strong interaction between the process design (source recycle, source-

sink allocation, waste discharge) and the molecular design and allocation problems, it is 

critically important to develop a systematic approach which can consistently and 

simultaneously address both the process and the (material) molecular aspects of the 

problem. 

The problem can be schematically represented as Figure 2.2. 
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Figure 2.2 Schematic representation of the stated problem 

 

2.4 Graphical Design Approach for the Stated Problem 

In order to simultaneously consider the process and molecular design problems, 

we initiate the design from process targeting. It is possible to determine the feasibility 

region for the molecular design problem through insights from the process design 

problem. In our specific problem, we propose a new procedure based on the following 

elements: 

1. For the given target of waste discharge (WT), use the property-based material-

recovery pinch analysis to (a) determine optimal allocation of process sources 

to sinks and (b) to derive the boundaries of the feasibility region for the 

molecular design problem. These boundaries of the feasibility region will 

define the attainable region for the candidate molecules through targeting and 

without infringing upon the degrees of freedom for the process or molecular 

design problems. 
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2. Exploit additive similarities between property-based mixing rules for streams 

and functional groups (although the property operators may be different) to 

represent process streams, sinks, and functional groups on the same pinch 

diagram. Use molecular design techniques to generate molecules (fresh 

sources) that are synthesized from the given functional groups while lying 

within the attainable region for the candidate molecules. This can be done 

through the new concept of a molecular pinch diagram. 

3. Use the common representation of the property-based material-recovery 

pinch diagram (for process sources and sinks) and the molecular pinch 

diagram (for functional groups and fresh molecules) to determine the 

allocation of process and fresh sources to the sinks. 

Figure 2.3 is a schematic representation of the devised approach for the 

interaction of the process design (source-sink allocation) and the material design 

(molecular design and allocation) through the common interface of the attainable region 

for candidate molecules obtained by targeting the process design problem. 

 

 
Figure 2.3 Property-based process and molecular design approach 
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2.5 Details of the Graphical Design Approach 

The first step in the design procedure is to determine targets for the allocation of 

process sources and for the properties of the fresh molecules to be synthesized. Consider 

a system characterized by a single key property with the conditions described by Eqs. 

(2.5a) and (2.6a).  For a given extent of waste discharge, WT, a vertical line is drawn 

with a horizontal distance of WT from the end of the sink composite curve.  The source 

composite curve is constructed using superposition of all recyclable process sources. The 

source composite curve is slid on the vertical line until it touches the sink composite 

curve while lying below it. As a result, the maximum slope of the fresh molecule as well 

as the feasibility region for the molecular design problem is determined as shown by 

Figure 2.4 (process part). 

  

 
Figure 2.4 Group-contribution molecular pinch diagram  
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This feasibility region is determined as a target and incorporates the optimal 

recycle strategies for process sources to process sinks without infringing on the degrees 

of freedom for the molecular design problem. This is a key accomplishment towards the 

integration of process and molecular design. The feasibility region can be expressed as: 
maxfreshfresh ψψ ≤             (2.7) 

It can also be shown that to maximize the slope of the fresh molecule that defines 

the feasibility region for molecular design, maxfreshψ , it is favored that to discharge the 

waste in the sequence from process source with higher property operator source
Hψ  to those 

with lower property operators source
Lψ (subscripts H and L denote the stream with higher 

and lower property operator). Otherwise, it may lead a smaller feasibility region for the 

candidate fresh molecules and not the maximum one. 

Since the fresh source is only involved in the subsystem below the process pinch 

point (the closed system), we focus on this subsystem to justify the above statement.  Let 
fresh

Hψ and HFr  be the property operator and the flowrate of the fresh resulting from 

discharging the process source H respectively, and fresh
Lψ and LFr the property operator 

and flowrate of the fresh resulting from discharging process source L respectively. For 

this closed system, total load of the process sources and the fresh is equal to the total 

load required by the sinks: 

��
=

−

=

=++
ystemsofclosedsj

jj
source
LL

n

i

source
ii

fresh
HH GFFFr

sink

sink
1

1

ψψψψ                 (2.8) 

where source
iF and source

iψ  are the flowrates and property operators of any process source 

below the pinch point except for process source L (i=1,…,n-1). Eq. (2.8) holds for the 

case of discharging the process source with the higher property operator. 

For this closed system, instead of using process source with lower property 

operator, we use same amount of process source with higher property operator 

( LH FF = ), i.e. discharge any the process source L, then there is: 

��
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source
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source
ii

fresh
LL GFFFr

sink

sink
1

1

ψψψψ                           (2.9) 
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The right hand sides of Eq. (2.8) and (2.9) are equal and thus: 
source
HH

fresh
LL

source
LL

fresh
HH FFrFFr ψψψψ +=+                                            (2.10) 

At a given extent of targeted waste discharge, WT, since HL FF = , we have LH FrFr = .  

Thus, Eq. (2.10) becomes: 

)()( source
L

source
HH

fresh
L

fresh
HH FFr ψψψψ −=−                     (2.11) 

Because source
L

source
H ψψ ≥ , Eq. (2.11) gives:  

source
L

fresh
H ψψ ≥            (2.12) 

which means that discharging the process source with the higher property operator yields 

higher slope for the fresh representing higher feasibility region for the design of new 

candidate molecules. Therefore, discharging process source from the one with the 

highest property operator will guarantee to get maximum feasibility property region.  

Since the stream mixing operator (ψ ) may differ from the GCM operator (φ ), 

Eq. (2.7) is transformed to the property domain by inverting the property operator: 
1maxmax ][ −=≤ freshfreshfresh pp ψ         (2.13) 

Where [ ]-1 is the inverse of the function. Eq. (2.13) is the case when the property 

operator is monotonically increasing as function of the property values. If the property 

operator is monotonically decreasing as a function of the property values, then the less 

than or equal sign should be substituted with a greater than or equal sign and the 

maximum superscript should be substituted with a minimum superscript. Next, the 

property constraint is transformed to a GCM constraint using the functional form of the 

GCM expression: 
maxfreshfresh φφ ≤           (2.14) 

Combining Eqs. (2.1) and (2.14), we get 
maxfresh

g
g

gCN φ≤�           (2.15) 

The left-hand side of inequality (2.15) enjoys an additive attribute: it can be 

graphically represented through superposition of the contributions of the functional 

groups. This new representation is referred to as the group-contribution molecular pinch 
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diagram and can be shown in the molecule design part of Figure 2.4.  To construct this 

diagram, a vertical scale (on the right-hand side of the diagram) is developed for the 

group-contribution load (φ ). The horizontal axis represents the number (or ratio of 

numbers) of the functional groups existing in the molecule to be synthesized. Next, each 

functional group is represented by a vector whose slope is the group contribution to the 

property gC . Linear superposition is used to add the group contributions. To insure 

soundness of the molecule, structural feasibility rules for combining functional groups 

are followed (e.g., Vaidyanathan and El-Halwagi, 1994, 1996; Gani and Constantinou, 

1996). Additionally, there may be a constraint imposed on the maximum number of 

functional groups in the molecule or the maximum allowable molecular weight of the 

molecule. Search is limited to molecules lying within the feasibility region described by 

inequality (2.14). 

Therefore, the group contribution molecular pinch diagram is used to directly 

identify feasible functional groups of a molecule that meets certain process objectives, 

and limits the search space for this identification. 

In the case described by equation (2.5b) and (2.6b), following the 

aforementioned procedure, one can construct the combined process and molecular pinch 

diagram shown as Figure 2.5, from which, a simultaneous process and molecule design 

was also achieved. 
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Figure 2.5 Process and molecular design for the case of Eq. (2.4b) and (2.5b) 

 

To show the validation of the introduced approach, a case study of acid gas 

removal process is addressed in the following section. 

  

2.6 Case Study 

A gas purification facility is considered in this case study. It employs three 

operating units Unit 1 (U1), Unit 2 (U2) and Unit 3 (U3) to purify a gas mixture that 

contains significant amounts of acidic gases.  In an existing gas treatment facility, two 

process sources diethylene glycol (DEG) (S1) and monoethanolamine (MEA) (S2) are 

used with a fresh stream of methyldiethanolamine (MDEA) (F1) to make up the solvent 

loss (Kohl and Nielsen, 1997).   

Operating experience in gas treatment facilities show that the ideal heat of 

vaporization required for the solvent mixture (which can be obtained by a simple linear 

mixing rule � ∗= ii HvxHv ) should be higher than 75kJ/mole for Unit 1, 80kJ/mole for 
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Unit 2, and 70kJ/mole for Unit 3.  It has been found that below this range, solvent loss is 

appreciable.  The available molar flowrates for S1 and S2 in the existing facility are 

180kmole/month and 160kmole/month respectively.  In order to minimize solvent use 

and the discharge of process source for treatment, the plant has been integrated with the 

solution being a solvent mixture of 130kmole/month MDEA, 180kmole/month DEG and 

120 kmole/month MEA for gas purification, and an additional 40kmole/month MEA 

(process source) that is to be sent for treatment without being used in this process (Table 

2.1 provides the specific data for this system).  This result can be observed from the 

pinch analysis illustrated as the dashed lines in Figure 2.6. 

 

Table 2.1 Case study data 

 

 

The problem in the case study is how to eliminate the discharge of MEA sent for 

treatment without being used in this process, i.e. WT=0. To solve this problem, it is 

necessary to either find or design new solvents that can substitute MDEA in the process.  

The new solvent needs to have properties that are similar to MDEA, in order to meet 

process requirements.  As a result, solvents that are homologous to MDEA are preferred,  

which means that molecules with the basic structure of MDEA, and the addition of a 

Process Data 
Source1 

(DEG) 

Source 2 

(MEA) 

Fresh 1 

(MDEA) 

Sink 1 

(U1) 

Sink 2 

(U2) 

Sink 3 

(U3) 

Flowrate 

(kmole/month) 
180 160 130 150 150 130 

Hv (kJ/mole) 77.3 56.9 89.3 �75 �80 �70 

Adjustable Parameters and Constants: Hv0 = 11.7 kJ/mole 

�=−=
g

group
gg HvNHvHvHv 0)(φ  

Group contribution of N(CH3)  and CH2 are 9.5 and 4.9 respectively.  
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specified number of the two free bond intermediate groups –CH2– and –N(CH3) – 

present in MDEA should be examined. The two primary objectives of the case study are:  

1. To identify the feasible property values (Hv) of new solvents designed to 

eliminate the direct discharge of MEA.  

2. To find or design feasible solvent molecules based on Group Contribution 

Method (GCM) that satisfy the first objective. 

 

 
Figure 2.6 Pinch analysis for identifying feasible regions of possible solvents 

 

Upon the developed approach, to achieve the targets described earlier in the case 

study, we first construct the sink composite curve of U1, U2, and U3 and source 

composite curve of S1 and S2; then move the source composite curve down along the 

vertical line which represent zero waste discharge until it touches the sink composite 

curve; connect the origin point and the head point of S1 to form the new fresh source 

whose slope found with a value of 103.8kJ/mole represents the minimum heat of 

vaporization for all feasible freshes. If without any other constraints, all sources with 

slopes larger than this value are feasible new fresh sources and yield zero waste 

WT=0 
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discharge. However, solvents with property (Hv) close to that of the first feasible 

solvent, Fr2, are preferred, since they render the system less disturbed. The graphical 

solution is shown in Figure 2.7.   

Once the first process-based feasible solvent has been identified, the feasibility of 

designing this solvent molecule is explored.  A novel approach is employed, which maps 

the feasible property of the solvent molecules in a molecular design diagram.  This 

procedure uses the heat of vaporization relationship (Hv-Hv0 = Group contribution), 

which is based on the Group Contribution Method (Marrero J. and Gani R., 2001).  

Through this approach, the preferred feasible group can be found as discussed in the 

previous section, and the corresponding new solvent that completely eliminates MEA 

discharge can also be identified.  For simplicity, the groups in MDEA are considered as 

existing molecular groups that are to be incorporated in the molecular search (Figure 

2.7).  From group vector addition, it can be identified that the preferred new solvents 

should be structured from the previous homologue (MDEA) with the addition of the 

obtained feasible groups shown below: 

 MDEA+2N(CH3), MDEA+1N(CH3)+1CH2 and MDEA+3CH2, which can 

completely eliminate the excess process source discharge. In addition, it is observed 

from the group contribution molecular pinch diagram (Figure2.7) that MDEA + CH2, 

MDEA+2CH2 and MDEA+1N(CH3) are candidates that partially reduce MEA 

discharge. 
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Figure 2.7 Group-contribution molecular diagram for the identification of new molecules 

  

The solvents discussed above, are the preferred new solvents that satisfy the 

objectives of the case study.  However, a further evaluation of the relative advantages in 

the synthesis of these candidate solvent molecules is required, before they can be 

produced and used for the process. 

Consequently, based on the process and molecular design graphical approach 

developed for the current case study, one of the optimal solutions and configurations of 

the material usage are generated and shown in Figure 2.8 (values in parenthesis are the 

integrated configuration for the old system using MDEA).  
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Figure 2.8 One of the optimal configuration of the gas purification system 

 

2.7 Conclusions 

In this chapter, a new property-based pinch approach to integrate process and 

molecular design has been introduced. A visualization technique, in which properties 

were used to represent process and material characteristics, was first developed and 

different categories for fresh material properties were explored. Process requirements 

and objectives, as well as molecular group properties were interrelated and integrated to 

simultaneously target process and material design. The new methodology employs 

property integration tools, along with group contribution methods (GCM) to map the 

system from the process- level to the molecule- and molecular group- levels, and vice 

versa. As a result, the current procedure defines a general framework for generating a set 

of candidate materials that meet the process objective, and can be next evaluated through 

various performance criteria. It also provides a starting point for addressing problems in 
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integrated process and material design/selection, in which important interrelated features 

are simultaneously taken into consideration. 
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CHAPTER III 

SIMULTANEOUS PROCESS AND MOLECULAR DESIGN 

THROUGH PROPERTY INTEGRATION – A GLOBAL 

OPTIMIZATION APPROACH 
 

3.1 Introduction 

Notwithstanding the intuitive and illustrative effect of the graphical approach for 

simultaneous process and material design, it has limitations pertaining to the number of 

properties it can handle and the impracticality for a large number of streams. To 

overcome these limitations, a mathematical programming formulation is warranted to 

address the simultaneous process and material (molecule) design problem. 

So far, based on GCM numerous contributions have been made in the field of 

computer-aided molecular design (CAMD). A recent survey of the CAMD field is given 

by Achenie et al. (2003). The new GCM proposed by Constantinou and Gani (1994) 

showed that improved accuracy can be achieved by using more structural information 

for the molecules. This method performs the estimation at two levels: the basic level 

uses contributions from first-order simple groups, while the second level takes into 

consideration the proximity effects by using a set of second order groups having first 

order groups as building blocks. Next, this new method was extended to include third 

order groups, thus being capable of describing more complex species such as large 

polycyclic compounds, and improve the accuracy of the predictions (Marrero and Gani, 

2001). Their basic property estimation model takes the form of Eq. (3.1) 

�� � ++=
'''

,''''''
'''

' ''
,''''

''
' 332211)(

g
kgg

g g
kggkgk CNzCNzCNpφ                                        (3.1) 

where kgC ,'1 , kgC ,''2 , and kgC ,'''3 are property k related contributions of first-order group 

g’, second-order group g’’ and third-order group g’’’ respectively; '1gN , ''2 gN , and 

'''3gN are their corresponding occurrence in the molecule; z’’ and z’’’ are binary weight 

factors.  
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Based on various group contribution models, CAMD is widely used for 

designing molecules with different applications, such as design of solvent, polymer, 

refrigerant and environmentally benign species, but most of the design only use first 

order groups. The use of second- and third-order groups poses much complexity in 

CAMD models.  

The CAMD models are typically formulated as mixed integer nonlinear 

programming (MINLP) problems.  Much attention has been given to developing solution 

approaches to the MINLPs. These approaches include enumeration techniques, gradient-

based optimization algorithms, stochastic search methods, and several global 

optimization algorithms. A brief review can be found in Karunanithi et al. (2005) in 

which a decomposition-based methodology were introduced.  

This chapter introduces a new process-centered molecular design mathematical 

approach for material substitution through property-based integration and GCM. In this 

procedure, the process is first targeted using global optimization techniques. This 

optimization leads to obtaining process information that are primarily considered in 

identifying a set of potential candidate molecules with desired properties and selecting 

the best molecules among this set. To design the molecules, several groups that are of 

particular utility for a given process (they provide either the required chemical function 

for the specific performance or the physical characteristics for a certain process task) as 

well as some generic groups were selected for configure molecular structures. Both 

lower level group contribution and high level group contribution are considered in the 

same model. Through this work, the process design and the molecular design problems 

are simultaneously addressed with the global optimization method. 

 

3.2 Problem Statement 

The general problem statement is very similar to that of Chapter II. The main 

difference is that there are Np governing properties other than only one involving in this 

problem. Therefore, the kth property constraint of sink j is expressed as: 
u

kjkjkj ppp sink
,

sink
,

sinkl
, ≤≤  , j = 1, 2,…, Nsinks and k=1, 2,…, Np                    (3.2) 
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where, sink
,kjp  is the property k of a stream entering sink j, and the superscript of l and u 

represent the lower and upper limit respectively. The feed to each sink may involve one 

or more streams (sources) that satisfy the flowrate constraints and property-based 

requirements given by inequality (3.2). These streams may be process streams and/or 

fresh sources. A number, NSources, of process streams are available for recycle. Each 

process source, i, has a given flowrate, iF , and property values, source
kip , .  The fresh 

(external) source, f, is unknown and is to be synthesized from a combination of N 

functional groups. Each functional group, g’, has the known property 

contributions kgC ,'1 . Property contributions of second order groups and third order 

groups which may occur in synthesized molecules are also given, i.e. kgC ,''2  and kgC ,'''3 .  

 The mixing rule for the kth property is described by: 

)(*)(*
,

_
source

k

N

i
ikk ki

sources

pFpF ψψ �=              (3.3) 

where )( ,
source

kik pψ  is the property mixing operator for the kth property, i is the source 

index, and F  is the total flowrate of the mixture. 

The objectives of this problem are similar to those mentioned in Chapter II. In 

particular, the mathematical optimization procedure should determine the following: 

• What materials should be selected as fresh sources to achieve the target of 

waste discharge? These materials are to be synthesized from the given 

functional groups. 

• Which material (molecule) and/or a set of molecules are optimal among 

multiple candidates? 

• Allocation of process sources to sinks (what flowrate of each source should 

be directed to each sink? Any segregation or mixing?) 

 

3.3 Design Approach 

Because of the strong interaction between the process design problem (source 

recycle, source-sink allocation, waste discharge) and the molecular design problem, the 
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mathematical approach should provide a framework for interfacing the two problems 

and for handling multiple properties.  The mathematical programming model for the 

entire problem is an MINLP. To solve this model and get global optimal solution, the 

stated problem is decomposed into several subproblems generating a new “looping” 

problem formulation. The basic idea is to create an iterative loop which involves the 

global solution of interconnected subproblems. The solution results are passed from one 

subproblem to the next until convergence is achieved. First, process considerations and 

integration opportunities are transformed into property-based constraints which form a 

feasibility region for molecular design. This is essentially a targeting step which 

generates an “attainable region” for the molecular design problem based on 

incorporating all relevant process constraints. Based on the identified property-based 

attainable region for feasible molecules, a CAMD is formulated and solved to synthesize 

a set of candidate molecules. Finally, the process design task of assigning sources to 

sinks is solved using the synthesized candidates. Once the loop is completed, the 

solution results provide sufficient details on the process and molecular design problems. 

The loop at the core of the overall solution approach is illustrated by Figure 3.1. If no 

feasible solution is found, a new loop should be initiated by either relaxing previous 

process constraints or modifying process objectives. The looping is repeated until a 

feasible solution is found. In the case of multiple new molecular candidates, the cost 

criterion can be used to identify the global optimal new molecule or molecular set. 

Finally process design based on the global optimal new molecule or molecular set is 

optimized. The flowchart of the overall design approach is represented by Figure 3.2.  
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Figure 3.1 Schematic representation of the single loop of solution  
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Figure 3.2 Overall design flowchart 

 

The details of the various steps in the proposed approach are described in the 

following sections. 
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3.3.1 Process Targeting: Identifying the Feasibility Property Region for 

Molecular Design 

The first step of the design procedure is to identify the property-based feasibility 

(or attainable) region for molecular design. This targeting is to be performed ahead of 

detailing the process or molecular design problems. The idea is to identify property-

based bounds that capture the process constraints without committing to the selection of 

a process or a molecular solution.  For each property, k, two optimization problems are 

solved: one for identifying the lower bound for the property and one for the upper 

bound. The mathematical formulation is given by: 
fresh

kpor =maxmin                                                                                                (3.4) 

Subject to  

Flowrate balance  
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N

j
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,
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              i=1, 2, ..., Nsources                                                     (3.5) 

�
=

=
sinks

1
,

N

j
jff FrFr                                                                                                        (3.6) 

�
=

+=
sourcesN

i
jfj FrfG

1
,ji,               j=1, 2, … , Nsinks                                                       (3.7)  

T

N

i
wastei WfW

sources

≤= �
=1
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Property k constraints for process sink j: 
sinku
,

sink
kj,

sinkl
, kjkj ppp ≤≤   j=1, 2, …, Nsinks;                                                    (3.9) 

Where  

),,...,,...,,,,...,,...,( ,,,,1,,ji,j1,
sink
,

fresh
kf

source
kN

source
ki

source
kjfjNkj ppppFrffffp

sourcessources
=             (3.10) 

fi,j is the flowrate of source i flowing into mixture for sink j, fi,waste is the flowrate of 

source i discharged as waste, Fr is the fresh flowrate, W is the total flowrate of 

discharged waste. fi,j can be further expressed in the function of xi,j, the allocation 

fraction of source i entering sink j as follows: 
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ijiji Fxf ,, =                                                                                                           (3.11) 

By introducing the mixing rule in form of Eq. (3.3), the property-based model 

can be converted to property operator-based model, with the objective function change 

to  

)(maxmin fresh
kk por ψ=                                                                                        (3.12) 

and property constraints converted to  property operator constraints, i.e. 

For the case ψ  monotonically increases with p increasing (category A of 

property operators), there is  
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For the case ψ  monotonically increases with p decreasing (category B of 

property operators), there is 
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                                   (3.13b) 

Although the nonlinearity of the property operator-based process targeting model 

is greatly reduced, it is still a nonlinear programming model because of the existence of 

bilinear terms )(,
fresh

kkjf pFr ψ  which in general is not globally solvable. However, 

following demonstration shows that the objective function )( fresh
kk pψ , which is also 

variable in the model, is confined in closed intervals. Additionally, since all other 

variables are confined obviously, global optimization technique based on interval 

analysis can be employed for pursuing global optimal solutions. 

Taking summation of inequality (3.13a) over the process sinks for property k, we 

have 
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Furthermore, 
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and 
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Therefore, inequality (3.15) turns to 
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By adding )( fresh
kkf pFr ψ , inequality (3.18) becomes 
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Combining inequality (3.19) and inequality (3.14), we have   
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i.e. 
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Similarly, we can get the closed interval for category B of property operator, i.e. 
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where maxsource
kψ and minsource

kψ are maximum and minimum of k property operator among 

process sources, and 1−ψ is the inverse function of functionψ . 

With the identification of the interval bounding the value of objective function, it 

is possible to use the interval-based technique of Vaiydanathan and El-Halwagi (1998) 

to identify the global minimum. This technique involves several methods such as the 

discretization procedure for performing shifted partitioning around local optima (feasible 

point in our case). This procedure is intended to accelerate the identification of the 

global optimum with the help of a local optimizer. To find both the global maximum and 

the global minimum, two direction searches need to be carried out. To partition 

subintervals containing feasible value of )( fresh
kk pψ , the bisection method is used here 

because of its simple implementation.  

After getting the global minimum and maximum values of each property 

operator, the next step is to convert the property operator feasibility range to raw 

property feasibility range with the inverse relation: 
1maxmax ][ −= k

fresh
kp ψ  and 1minmin ][ −= k

fresh
kp ψ  for category A of monotonically increasing 

property operators;                                                                              (3.22a) 
1maxmin ][ −= k

fresh
kp ψ  and 1minmax ][ −= k

fresh
kp ψ  for category B of monotonically decreasing 

property operators.                                                                          (3.22b) 

It is worth noting that the range ],[ maxmin fresh
k

fresh
k pp does not have to be exact. 

Overestimation of the boundaries of the feasibility region (BFR) is allowable. The 

overestimated is referred to as the quasi-boundaries of the feasibility region (QBFR). 

Clearly, the tighter the QBFR, the less the computations needed for the global solution.  
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3.3.2 Molecular Design 

For effective solution, the molecular design problem is decomposed into two 

steps. First, finding the first order groups (block building groups) and their occurrence as 

well as the occurrence of second order groups and third order groups, which satisfying 

the constraints of QBFR. We name this step “feasible group set identification”. Second, 

“molecule structure configuration”. In this step molecules are configured based on the 

‘feasible group set’ as well as some restrictions from the viewpoint of chemistry and 

chemical process.  

Process requirements and molecular characteristics are used to narrow down the 

type and number of candidate functional groups. As mentioned before, the GCM may 

involve the use of first-, second-, and third-order groups. We propose to initially pre-

screen the first-order groups. The pre-selected first-order groups as well as the generic 

first-order groups will form the set of candidates serving as the building blocks of the 

molecules. By inspection of the selected first-order groups, second- and third-order 

groups may be screened out from database.   

We start the modeling with the consideration of process requirements for certain 

functional groups. For example, when designing a solvent for acid gas removal, the 

amino group may be required for the purpose of providing the necessary alkalinity in 

water solutions. However, too many occurrences of the amino group in the molecule 

may cause a corrosion problem. Therefore, a constraint is imposed on the number of 

occurrence of this specific group. In general, such constraints are described as follows: 

max
','

min
' 111 g

l
lgg NNN ≤≤�          (3.23) 

where l is the position of first order group g’ in the molecule, and min
'1gN and max

'1gN are 

the minimum and maximum number of occurrences of group g’, and lgN ,'1  is a binary 

variable. 

Although a molecule may be designed based on first-order groups only, the use 

of second- and third-order groups help in developing appropriate constraints for 

structural feasibility and provide more accuracy in predicting the molecular properties. 
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Since second- and third-order group are constructed based on first-order groups, the 

following constraints can be added to limit the search space: 

�≤
l

lgggg NaNb ,'''''' 1121                                                                                      (3.24) 

for individual second order group g’’ with the first order group g’ in its structure, and  

�� ≤
l

lgg
g

gg NaNb ,''
''

'''' 1222                                                                                 (3.25) 

for second order groups which share same first order group g’ in their structures;  

Similarly for third order group we have 

�≤
l

lgggg NaNb ,'''''''' 1333            (3.26) 

and  

�� ≤
l

lgg
g

gg NaNb ,''
'''

'''''' 1434                        (3.27) 

where a1, b1, a2, b2, a3, b3, a4and b4 are coefficient need to be carefully explored. 

After setting up the first two sets of constraints, we come to the third set of constraints 

)(332211)( max
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min fresh
k

g
kgg

g
kgg

g l
kglg

fresh pCNCNCNp
k

φφ ≤++≤ ����   (3.28) 

This constraint is based on the targeted boundaries of the feasibility region (QBFRfresh).  

The fourth set of constraints of our CAMD model is  

� =
'

,' 11
g

lgN  for all l,           (3.29) 

where lgN ,'1  is a binary variable. Eq. (3.29) insures that one position only can be 

occupied by one group.  

To make sure that a molecule has no free bonds, the octet rule of structural 

feasibility is used: 

dN
g l

glg 2)2(1
'

',' =−�� υ                     (3.30) 
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Where 'gυ is the valency of the first order group g’ and d is 1, 0, -1 or -2 for acyclic, 

monocyclic, bicyclic and tricyclic compounds respectively.  

The resulting formulation is a mixed-integer linear program (MILP) which can 

be globally solved to determine the molecular design including the type and number of 

selected functional groups.  

 

3.3.3 Process Design 

This section involves two tasks: final validity verification of the designed 

molecule and process optimization. 

1. Validation of Molecular Feasibility 

As pointed early, the quasi-boundaries of the feasibility region (QBFR) is an 

overestimation of the actual property-based feasibility region. Therefore, some of the 

designed molecules may be located in the overestimated part. Therefore, it is important 

to check on the feasibility of the designed molecule with respect to the actual feasibility 

region.  This can be achieved by checking the feasibility of all the constraints in the 

aforementioned process targeting model. If all the constraints are satisfied, then the valid 

solution has been identified. Otherwise, if a single constraint is violated then no feasible 

solution has been identified. In this case, there is a need to iterate by relaxing the original 

process constraints. The process is repeated until a feasible solution is found. 

2. Identification of Optimal Molecule or Molecular Set and Corresponding 

Optimal Process Design  

The identified feasible molecules can fulfill the process requirement of reducing 

the waste discharge from T0 to no more than WT, while satisfying all process constraints. 

Next, the optimal molecule should be selected from the identified list based on economic 

issues. The cost of new fresh source (feasible molecules) (Cfresh), the cost of waste 

discharge (process source discharged as waste) (Csource) and the cost of piping and fitting 

(Cpiping) are the main operating costs of the recycle/reuse network design in 

consideration. As we stated before, process design will accept individual feasible 
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molecule candidate as well as the molecular sets which are the combinations of valid 

individual candidates. So the overall cost can be expressed as: 
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The model to select the optimal molecule or molecular set is expressed as follows: 
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subject to:  
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or 
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With the known properties of all given fresh candidates, this is a linear 

programming model and global minimum of C is guaranteed. The molecule or a set of 

molecules with the minimum total cost while satisfying process constraints is selected. 

The solution also identifies the optimal flowrate of the fresh and the recycle 

configuration. 
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3.4 Case Study 

Let us consider an acid gas removal process (e.g., Kohl and Nielsen, 1997). It 

involves five units (sink1 to sink5: U1 to U5) to purify a gaseous mixture that contains 

significant amounts of acid gases (primarily CO2 and H2S).  Currently, the process has 

four process sources:  methyldiethanolamine “MDEA” (S1), Monoethanolamine “MEA” 

(S2), Diethanolamine “DEA” (S3), and Diglycolamine “DGA” (S4). These four sources 

are considered to be used along with a fresh stream (Fr) to make up the solvent losses.  

The objective of this case study is to design/select an acyclic amine molecule, 

which can be mixed with process sources to meet the property criteria of makeup 

solvents for each process unit. It is also desired to determine the process design aspects 

of the solution such as flowrate of the solvent and allocation from sources to sinks. 

For solvent makeup, the following three properties are considered: heat of 

vaporization (Hv), heat of fusion (Hfus), and critical temperature (Tc). The acceptable 

property ranges of the makeup solvents as well as their flowrates for each process unit 

are listed in Table 3.1. Additionally, two thermal constraints are imposed on the 

synthesized molecule. It must have a melting point (Tm) less than or equal to 293.15 K 

and a boiling point (Tb) greater than or equal to 480 K (to prevent excessive solvent 

losses via vaporization). To insure water solubility and to reduce vapor pressure, the 

amine must have two or more –OH groups. To limit the extent of corrosion, only one 

amino group is allowed to be in the amine (N in the amino group either connect with H 

or C). Finally, to limit detrimental effects of direct exposure to the solvent, tertiary 

amines are ruled out in this case study.  The properties and flowrate of each process 

stream are also given.  The mixing rules of all three properties are taken to be linear 

relations.  
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Table 3.1  Data for case study 

Source and sink 
Tc 

(K) 

Hv 

(kJ/mol) 

Hfus 

(kJ/mole) 

Flowrate 

(kmol/month) 

S1 (MDEA) 678 95.0 23.0 60 

S2 (MEA) 670 64.0 18.4 90 

S3 (DEA) 715 85.0 22.1 70 

S4 (DGA) 699 82.0 21.7 60 

U1 [685, 705] [67.5, 80.0] [15.0, 19.0] 200 

U2 [690, 705] [67.5,82.5] [15.0, 19.5] 210 

U3 [690, 710] [70.0, 82.5] [16.0, 19.5] 230 

U4 [695, 710] [70.0, 85.0] [16.0, 20.0] 190 

U5 [695, 715] [72.5, 85.0] [17.0, 20.0] 170 

 

 

A key criterion for a useful GCM is the proper balance between accuracy and 

computation intensity.  Towards this end, several GCM methods may be employed. In 

this case study, we use the GCM of Marrero and Gani (2004) since it has been shown to 

provide reliable estimations of various molecules with a reasonable computational 

requirement.   

In this work, the commercial optimization software Hyper LINGO release 8.0 (9 

May 03) Copyright© 2003 was used to solve our established model.  

Following the developed design approach, we provide case study solution in 

three major steps. 

1. Process targeting to identify the QBFR 

First, the process targeting model is formulated to determine the QBFR. 

Although the property targeting model is a nonlinear programming, the global optimum 

solution may be determined using the global solver of LINGO. The targeted QBFR is 

listed in Table 3.2. 
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Table 3.2 Targeted QBFR for molecular design 

 Tc (k) Hv (kJ/mole) Hfus (kJ/mole) 

minimum 691.34 65.375 13.720 

maximum 716.43 84.125 20.410 

 

 

However, if a nonlinear variable is beyond the default limit of LINGO, the 

introduced global optimization approach based on interval analysis can be employed. To 

illustrate this method, we take Hv as an example. From the given data in Table 3.1, we 

have Hv
sourcemax =95kJ/mole; Hv

sourcemin =64kJ/mole. From formula (3.21a), we 

have ]250.90,444.59[∈fresh
vH , where fresh

vH is the Hv of fresh (new molecule). Starting 

with the half point, using bisection method to partition fresh
vH value, then checking its 

feasibility (table 3.3), we obtain the same global optima identified by LINGO. 

 

Table 3.3 Global optimal minimum and maximum value based on interval analysis 

Hvl 

  bottom 

Hvl  

top 

   Half 

  point 

Feasibility 

check 

   Hvu 

  bottom 

   Hvu  

top 

  Half 

  point 

Feasibility 

check 

59.444 90.250 74.847 Yes 59.444 90.250 74.847 Yes 

59.444 74.847 67.146 Yes 74.847 90.250 82.549 Yes 

59.444 67.146 63.295 No 82.549 90.250 86.399 No 

63.295 67.146 65.220 No 82.549 86.399 84.474 No 

65.220 67.146 66.183 Yes 82.549 84.474 83.511 Yes 

65.220 66.183 65.702 Yes 83.511 84.474 83.993 Yes 

65.220 65.702 65.461 Yes 83.993 84.474 84.233 No 

65.220 65.461 65.341 No 83.993 84.233 84.113 Yes 

65.341 65.461 65.401 Yes 84.113 84.233 84.173 No 

65.341 65.401 65.371 No 84.113 84.173 84.143 No 

65.371 65.401 65.386 Yes 84.113 84.143 84.128 No 

65.371 65.386 65.378 Yes 84.113 84.128 84.120 Yes 

65.371 65.378 65.375 Yes 84.120 84.128 84.124 Yes 
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2. Molecular design 

Based on the problem data and constraints, 15 first-order groups are pre-selected 

from the group table in Marrero and Gani (2004). Furthermore, nine second-order 

groups and four third-order groups were screened out. The results are listed in Table 3.4. 

 

Table 3.4 Numbered preselected groups 

1st Order Group  2nd Order group 

Group No. Group No.  Group No. 

CH3 1 CHNH2 9  (CH3)2CH 21 

CH2 2 CH3NH 10  (CH3)3C 22 

CH 3 CH2NH- 11  CH(CH3)CH(CH3) 23 

OH 4 CHNH 12  CH(CH3)C(CH3)2 24 

CH3-O- 5 C 13  C(CH3)2C(CH3)2 25 

CH2-O- 6 C-O- 14  CHOH 26 

CH-O- 7 -OCH2CH2OH 15  COH 27 

CH2NH2 8 ge (Empty group) 16  CHm(OH)CHn(OH) (m,n, 0..2) 28 

     CHm(OH)CHn(NHp) (m,n,p, 0..2) 29 

  

                          3rd Order Group                                                 No. 

NH2(CHn)mOH  (m>2, n in 0..2) 31 

HO(CHn)mOH   (m>2, n in 0..2) 32 

HO(CHp)k-O-(CHn)mOH (m,k>0, p,n in 0..2) 33 

HO(CHp)k-NHx-(CHn)m-OH (m,k>0, p,n,x in 0..2) 34 

 

 

The corresponding functions of left hand side expressions of Eq. (3.1) are  

)/exp()( 01 mmm TTT =φ            (3.35) 

)/exp()( 02 bbb TTT =φ          (3.36) 

)/exp()( 03 ccc TTT =φ          (3.37) 
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04 )( vvv HHH −=φ           (3.38) 

05 )( fusfusfus HHH −=φ          (3.39) 

where Tm0, Tb0, Tc0, Hv0 and Hfus0 are constants with the values of 147.450K, 222.543K, 

231.239K, 11.733kJ/mol and -2.806kJ/mol respectively. Based on these functions, the 

converted QBFR values for Eq. (3.1) are listed in table 3.5. 

 

Table 3.5 QBFR conversion for group contribution function 

 )(1 mTφ  )(2 bTφ  )(3 cTφ  )(4 vHφ  )(5 fusHφ  

Minimum - 8.64 19.88 72.392 22.006 

Maximum 7.30 - 22.16 53.642 16.520 

 

 

Since, multiple solutions (feasible group sets) can be found, integer cuts are used 

to generate all feasible molecules. Each time a solution is found, an integer cut is added 

to restrict the solution from generating the solution again. The process is continued until 

no feasible solution is found which indicates that all integer solutions have been 

identified. Following the proposed procedure, one feasible molecule was identified. Its 

molecular structure is given by: C4H11NO2. It is worth noting that two isomers may be 

generated for the molecules. Both isomers are given by Fig. 3.3.  The two isomers may 

be named as N-Methyl-2,3-dihydroxyethylamine and N-Ethyl-1,2-dihydroxyethylamine 

respectively. 
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Figure 3.3 Structures of synthesized isomers. 

(a) N-Methyl-2,3-dihydroxyethylamine 

(b) N-Ethyl-1,2-dihydroxyethylamine 

 

As we mentioned before, the QBFR is an overestimation of the actual feasibility 

region. Therefore, it is important to insure that the synthesized molecule satisfy the 

original set of constraints. By using Eq. (3.35) – (3.39), the group contribution values of 

these molecules are converted into the raw property values listed in Table 3.6.  These 

values are indeed feasible with respect to the original constraints of the problem. 
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Table 3.6 Properties of C4H11NO2 

Tm (K) Tb(K) Tc(K) Hv(kJ/mol) Hfus (kJ/mol) 
C4H11NO2 

292.92 518.10 698.81 79.76 18.56 

 

 

3. Process design 

Finally, the synthesized molecule is used in the optimization formulation for the 

source-sink allocation. No economic data were found for the synthesized molecule. 

Therefore, the objective function was selected to minimize the flowrate of the fresh 

solvent. The mathematical formulation is a linear program which can be solved globally 

to get the following solution. 

Frf,1=153.9814; Frf,2=85.38791; Frf,3=187.8055; Frf,4=122.8251; Frf,5=170.0000; 

f1,1 =20.63066; f1,4 =39.36934; f2,1 =25.38791; f2,2=64.61209; f3,3 =42.19445; 

f3,4=27.80555; f4,2=60.00000. The results are shown graphically using Figure 3.4. 
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Figure 3.4 Optimal source-sink allocation 
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3.5 Conclusions 

This chapter introduced a new property-based mathematical programming 

technique to integrate process and molecular design. This approach decomposed the 

process and molecular design tasks.  Feasibility-region targeting for molecular design is 

obtained by solving optimization programs based on the process constraints and a 

framework for recycling process sources to sinks. As a result, the boundaries of the 

feasibility region in the property domain are determined. Next, molecular design 

techniques are used to generate a set of candidate molecules. Group contribution 

methods are used to relate properties to structures. Initially, first-order groups are used to 

tighten the search space. Next, second- and third-order groups are used to provide more 

accurate estimates of the properties. The synthesized molecules are returned back to the 

process design problem where a linear program is globally solved to determined the 

minimum cost of the system, the type and flowrate of the fresh resources (external 

molecules), and the allocation of fresh and process sources to sinks. Various insights are 

used to accelerate the computational scheme and gear it towards the global solution. 



 46 

CHAPTER IV 

GENERAL IMPLEMENTATION APPROACH FOR DIRECT-

RECYCLE NETWORKS DESIGN WITH ONE DOMINANT 

PROPERTY 
 

4.1 Introduction 

In direct-recycle problems (such as the one addressed in Chapter II), the first step 

is typically to identify the target for minimum fresh usage, maximum recycle, and 

minimum waste discharge. It is worth noting that for a given target, there are normally 

multiple implementations (infinite in many cases) that can reach the target. Therefore, it 

is important to develop an approach for identifying the various implementations of a 

target. Considering the source-sink mapping representation intended to minimize the 

usage of fresh or valuable resources for the system with one dominant property, a special 

case of this problem is material recycle problems with one limiting component where the 

composition serves as the special case of property. 

In general, the targeting techniques are categorized into three groups of methods: 

graphical techniques (GT), algebraic techniques (AT), and mathematical programming 

techniques (MPT). The GT is mainly applied to systems with one dominant property. 

This case is encountered when satisfying the constraints for one (key or limiting) 

property implies the satisfaction of constraints for other properties. Another case is when 

multiple components are lumped into one property such as total organic carbon (TOC), 

biochemical oxygen demand (BOD), and the chemical oxygen demands (COD). El-

Halwagi and Manousiouthakis (1989) introduced a GT pinch analysis to the problem of 

synthesizing mass exchange networks (MENs) that seeks to transfer certain species from 

a set of rich streams to a set of lean streams. By extending the MEN pinch analysis to 

water networks, Wang and Smith (1994) proposed a graphical approach to effectively 

target minimum freshwater use and wastewater discharge. Following that work, several 

methods were proposed to locate the pinch points for recycle/reuse networks and to 

target minimum fresh usage ad minimum wastewater discharge. Examples include the 
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material recovery pinch analysis for targeting for recycle/ reuse networks developed by 

El-Halwagi et al (2003). This approach provides a non-iterative, systematic and 

graphical targeting technique. Other examples include the work of Aly et al. (2005) 

which used the load problem table for water network design, and the work of Vasilik and 

El-Halwagi (2005) which successfully extended the application of graphical techniques 

into property based system design. Generally, a GT gives the designers insights which 

allow engineers to incorporate many factors that are not easily incorporated into 

mathematical programs. However, so far a typical GT is essentially a targeting method 

to find the minimum fresh usage rather than an implementation method for network 

design. Normally, heuristic rules were used to generate one or more network 

configurations. On the other hand, MPTs offer the powerful capability to solve complex 

system with high number of unit operations (e.g., Savelski and Bagajewicz, 2000), 

including multicomponent systems (e.g., Alva-Argaez et al.,1999; Benko et al., 2000; 

and Dunn et al., 2001a, 2001b), and unsteady-state and batch systems (e.g., Wang and 

smith, 1995; Almato et al., 1997; and Zhou et al., 2001). Various methods for solving 

water network problems have been reviewed by Bagajewicz (2000). Notwithstanding the 

capability of MPTs, they give only one solution at a time. To get alternative solutions 

with various network implementations, the designer has to add some constraints 

(typically, integer cuts) to avoid repeating previous solution. Successive solutions 

generate alternate configurations. For systems with numerous (or infinite) solutions, the 

MPTs become cumbersome or even ineffective. Therefore, given the current limitations 

of GTs and MPTs, it is highly desirable to develop a systematic approach for identifying 

alternate configurations for recycle/reuse process network systems. In particular, we 

focus on systems with one dominant property with the objective of addressing the 

following questions: 

1. How many configurations are there for the direct recycle network system? 

2. Under what conditions does this system have unique versus infinite 

solutions? 
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3. If there are infinite solutions, are there any relations among them? If yes, 

what are those relations? 

 

4.2 Problem Statement 

Consider the material recycle problem described as follows: 

Given is a set of process sinks (units) which is designated by SINKS (U) = {j = 

1, 2, ..., n, ...Nsinks}. Each sink requires a feed with a given flow rate, Gj, and the value of 

a single targeted composition, zj, must satisfy the following constraint 

zj
sinkmin

� sink
jz � zj

sinkmax     SINKSj ∈                 (4.1) 

where zj
sinkmin and zj

sinkmax are given lower and upper bounds, respectively, on the 

admissible value of property of the feed entering unit j and sink
jz  is the actual value of the 

property entering unit j. 

Given also is the set SOURCES which is a set of streams or sources. The sources 

include fresh (or external) streams and process sources. A fresh (external) resource 

purchased or synthesized to supplement the use of process sources in sinks and a set of 

process sources that can be recycled/reused in process sinks were designated SOURCES 

(S) ={i = 1, 2, ..., m,…, NLAS, ..., Nsources}, with i=1 representing fresh resources. Each 

process source has a given flow rate, Fi, and a given property, zi.  

The objective is to develop a systematic procedure to: 

1. Derive the conditions that determine whether or not there are unique 

implementation(s) for the recycle-reuse network(s) that feature the minimum 

usage of fresh resource.  

2. For the case of infinite implementations, determine a parametric method to 

guide the assignment of sources to sinks 

 

4.3 Theoretical Analysis 

The analysis is based on setting up the algebraic equations that correspond to the 

optimum allocation of sources to sinks then identifying the mathematical conditions for 
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unique solutions. Next, an approach will be developed to describe the source-sink 

assignment in terms of parameters whose values can be bounded.  

 

4.3.1 Insights from Pinch Analysis 

In order to determine minimum fresh usage for recycle/reuse problems, El-

Halwagi et al. (2003) developed the material recovery pinch analysis. This is a non-

iterative graphical approach which determines the targets for minimum fresh usage, 

maximum recycle of process sources, and minimum waste discharge. These targets are 

determined without commitment to any network configuration. This pinch analysis 

utilizes two optimality criteria: the source prioritization rule and the sink maximization 

rule. The source prioritization rule implies that process sources must be used in 

ascending order of the impurity composition. The sink maximization rule indicates that 

when a fresh source is used in a sink, its composition must be set to the maximum.   

  After targeting the system, the next task is to configure the network system, 

primarily assigning sources to sinks. So far, this task has been carried out subjectively. 

Also, since there may be infinite feasible implementations, there is a need to determine 

whether or not there are unique solutions.  

In order to develop an implementation for the identified target, it is useful to 

identify the following insights from the pinch diagram (as shown by Fig. 4.1): 

1. The pinch diagram may be classified into two regions: one below the pinch 

and one above the pinch. It is worth noting that below the pinch, there is 

complete closure of balances for flowrates and for loads. In other words, 

below the pinch, the sum of flowrates of used sources equals the sum of 

flowrate demands of sinks. Also, below the pinch, the sum of impurity loads 

of used sources equals the sum of the maximum admissible loads of 

impurities of the sinks. Therefore, the region below the pinch will be referred 

to as a closed system. In some cases, there may be more than one pinch point. 

If there are multiple pinches, then the region between each two consecutive 

pinches will be referred to as a closed system. Above the pinch (or above the 
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highest pinch in case of multiple pinches), while there is balance for 

flowrates of sources and demands of sinks, there is no balance for the loads. 

In other words, above the pinch, the sum of impurity loads of used sources is 

less than the sum of the maximum admissible loads of impurities of the sinks. 

Therefore, the region above the pinch will be referred to as an open system.  
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Figure 4.1 Schematic representation for material recovery pinch analysis  

 

Next, we describe the abovementioned observations mathematically. 

2. For a closed system, 

a.   Total flow rate of sinks and sources are equal, i.e.  

        ��
==

=
1

11

m

i
i

n

j
j FG                                                                                       (4.2) 

 b.   Total property load of sinks and sources are equal, i.e. 



 51 

        ��
==

=
1

11

sink
m

i
ii

n

j

zFzG jj                                                                        (4.3) 

where n is the number of sinks involved in the closed system, and source m is the 

pinched source which was split into two substreams: one below the pinch (given an 

index m1) and one above the pinch (given an index m2),  

3. For an open system, 

a.   Equality of total flow rate of sinks and active sources 
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b.  Total property load of sinks (maximal capability) is larger than that of the 

total sources used 
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where NLAS is the last active (recycled/reused) source. This source is split into NLAS1 

(which is recycled/reused) and NLAS2 (which is discharged as waste). 

 

4.3.2 Analyzing the Set of Linear Algebraic Equations  

In this section, the set of equations corresponding to the pinch diagram and the 

optimality criteria will be analyzed for both a closed system and an open system.   

1. Analysis of a Closed System 

First, the recycle/reuse network is schematically described through a source-sink 

mapping representation as shown by Figure 4.1. Consider source i below the pinch. The 

source is split into n fractions. Each fraction (xi,j) is assigned to sink j. Based on the 

observations from the pinch diagram, the following flow and load balances may be 

written: 

�
=

=
1

1
,

m

i
jii xFG j                                           j=1, 2 ,…, n                  (4.6) 

where jix , is the fraction of source i flowing into sink j. 
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The load balance is written as follows: 

ii

m

i
jijj zFxzG �

=

=
1

1
,

sink                                  j=1, 2 , ... , n                           (4.7) 

By definition, the sum of fractions is one, i.e. 

1
1

, =�
=

n

j
jix                i=1, 2, … , m1                  (4.8) 

where 

 0�xi,j �1                                                                                          (4.9) 

The set of equations (4.7) - (4.9) are 2n + m1 linear equations which can be 

represented by the general form AX=B, The following representation is based on listing 

the load balance then the flow balance for each sink then listing the set of equations (4.8) 

for all the sources, i.e., 
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                                  (4.10) 

The general solution of this set of linear equations system and the rank of the 

matrix A can be determined by the Gaussian elimination methods. This method forms an 

augmented matrix and reduces it to a row canonical form (also known as the reduced 

row echelon form “RREF”). The procedure determines the number of non-zero rows in 
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the RREF, referred to as w. To have a solution, w must be less than or equal to the 

number of unknowns (which is given by m1n).  Therefore, we have the following two 

cases: 

a. If w < m1n, then the closed system will give a number equal to m1n-w 

parameteric families of solutions.  

b.  If w =m1n, then the closed system will have a unique solution.  

By recalling the insights from the pinch diagram given by Eqs. (4.2) and (4.3), 

we deduce that there are two linearly dependent equations in the aforementioned set of 

equations: AX=B. This observation can be mathematically shown by taking impurity 

load balances for example as follows: 

For the first n-1 sink, we have: 

sink
1

1
1, 1
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                                                                                   (4.11) 
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The summation of these first n-1 linear equations is  
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which can be rewritten as 
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Plugging Eq. (4.8) into Eq. (4.14), we have 
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Rearranging, Eq. (4.15) becomes 
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Put Eq. (4.3) into Eq. (4.16), it turns out Eq. (4.17) 
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which is the equation representing load balance of sink n in the system AX=B. Similarly, 

if n-2 sinks are taken into consideration, it is impossible to derive the equations 

expressing flow rate balance for sink n-1 and n. Therefore, among the n equations based 

on load balance, there is one linearly dependent equation. In another words, there are n-1 

linearly independent equations based on property load balance in AX=B. 

The same procedure can be used for identifying the other linearly dependent 

equation derived from the flow balance.  

The above analysis indicates that there are 2n+m1-2 linearly independent 

equations while the number of variables in this system is nm1.  

The condition for unique solution in the closed system is given by: 

2n+m1-2 = nm1                                                                                              (4.18a) 

Rearranging and simplifying this equation, we get: 

 (n-1)( m1-2) = 0                   (4.18b) 

Therefore, to have a unique solution of implementing the minimum fresh 

network, the following conditions must hold below the pinch: 

m1=2 and/or n= 1                   (4.18c) 

On the other hand, the condition for infinite solutions is given by: 

2n+m1-2 < nm1   

i.e.                                                                        

m1 > 2 while n>1                                                                                     (4.19) 

2. Parametric Characterization of Infinite Solutions 

In the case of having infinite solutions, it is useful to have a way of 

characterizing all possible implementations.  First, the degrees of freedom for the 

equations below the pinch are given by the difference between the number unknowns 

and the number of independent equations, i.e. 

Degrees of freedom = nm1 – 2n+m1-2 

                                 = (n-1)(m1-2)                   (4.20) 



 55 

Therefore, if the number of degrees of freedom are parametrically fixed, i.e., 

Nparameter=(n-1)(m1-2)                                                                             (4.21) 

then, the solution can be fully characterized. Hence,  

)2)(1(,)2)(1(2,21,1,1, 11 −−−−++++= mnjimnjijijiji PbPbPbax �                               (4.22)  

where 
jimnjijiji bbba

,)2)(1(,2,1,1 1
,,,, −−� are coefficient and P1, P2, …, P(n-1)(m1-2) are parameters 

which can be chosen from jix , where i is from 1 to m1 and j is from 1 to n. Each 

parameter will satisfy the physical constraints of inequality (4.8) and their values can be 

further confined through the relations of variables, because every variable jix , should 

also satisfy the inequality (4.8). For systems with one degree of freedom, the exact range 

for the values of the parameter can be easily solved (see example 4.1). On the other 

hand, if the system has several degrees of freedom, the range of the value of individual 

parameter can be determined by linear programming. However, because of the strong 

interaction among these parameters, when one or some parameters take certain values, 

the ranges of other parameters may be narrower than the individual range given by linear 

programming.  To address this problem, the lexicographical concept (i.e. choosing a 

priority sequence of the parameters) is invoked to build a tower structure used for 

parameter-value determination. For example, we choose a priority sequence of the 

parameters as P1, P2, …, P(n-1)(m1-2). Linear programming will give the maximum and 

minimum value of P1. Choosing one value for P1, the maximum and minimum value of 

P2 under this specific P1 value can be acquired.  The range of successive parameter is 

determined under the condition of the chosen previous parameter values. This procedure 

can be illustrated through a tower structure (named as Tower Model) in Figure 4.2. 
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Figure 4.2 Tower Model for parameter value determination 

 

3. Open System 

An open system is not as rigorous as the closed system, because of the inequality 

(4.5). This gives the designers some flexibility to configure the network.  However, it 

may approach the rigor of closed system when the last active source (mLAS) approaches 

the ending point of the sink composite. In this case, a guideline is desired to ensure 

appropriate design. Here, we introduce a proxy source mproxy for mLAS1 (the part of the 

last active source flow into sinks).  Source mproxy is formed by connecting the tail of mLAS 

(head of source mLAS-1) and the head of sink Nsinks as shown in Figure 4.3 (the closed 

system is omitted from this figure for simplification).  
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Figure 4.3 Schematic representation of an open system 

 

For the proxy source, there are the following equations 
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with  

1LASproxy mm zz >                                                                                            (4.25) 

With the proxy stream, a closed system is constructed. Applying the exact same 

procedure for the closed system developed above, one can get solutions of the proxy 

closed system. Designs based on the relations used for the proxy closed system are also 

applicable for the open system. The applicability is justified below. 

According to the problem statement, for every sink of the network system, it is 

required that  
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For a closed system, the corresponding formula is Eq. (4.6) whereas for an open 

system, the formula is  
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Using source mLAS1 instead of the proxy source to configure the open system, 

i.e. jmjm proxyLAS
xx ,,1

= , we have 
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which is 
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where both mproxy-1 and mLAS1-1 have the same meaning for indicating the number of 

sources involved in the system. 

Comparing inequalities (4.27) and (4.29), we notice that inequality (4.29) fully 

satisfy the constraints expressed by inequality (4.27). Therefore, designs based on the 

relations used for the proxy closed system are always applicable for the open system in 

which the last active source is used instead of proxy source. We name the solutions 

given by this method quasi-general solution of an open system. 

In summary, the implementation for a recycle/reuse network design can be 

carried out using the following procedure: 

(1) Develop a material recovery pinch analysis for the whole recycle/reuse 

network; divide the network into closed systems and an open system. 

(2) Formulate linear algebraic equations for closed systems 

(3) Identify the general solutions for closed systems through RREF of the 

augmented matrix formed upon the linear algebraic equations. 

(4) Determine the ranges of the parameters in the general solution 

(5) Design the closed systems with the solutions attained from step 2 and 3. 
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(6) Design the open system. If it is very relaxed system, design the open system 

by simple inspection; if it is very complex and/or it approaches the closed 

system, use the method for proxy closed system, which is very similar to 

closed system design, to get the quasi-general solutions. 

(7) Integrate the closed systems and open system into a whole network.   

 

4.4 Case Study 

To show the significance of this approach, we address two case studies from 

literature. 

 

4.4.1     Example 4.1: Water Minimization  

 This case study is taken from Sorin and Bedard (1999). El-Halwagi et al. (2003) 

and Aly et al. (2005) restudied it by pinch analysis approaches. The data for the problem 

are shown in Table 4.1.  

 

Table 4.1 Data for example 4.1 

Sink (S) Flow (tonne/h) Maximum inlet impurity (ppm) Load (kg/h) 

1 120 0 0 

2 80 50 4 

3 80 50 4 

4 140 140 19.6 

5 80 170 13.6 

6 195 240 46.8 

Source (D) Flow (tonne/h) Impurity (ppm) Load (kg/h) 

Fresh ? 0 0 

1 120 100 12 

2 80 140 11.2 

3 - - - 

4 140 180 25.2 

5 80 230 18.4 

6 195 250 48.75 
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The pinch analysis shows that this system has three closed systems and one open 

system (Figure 4.1).  

In the first closed system, because sink 1 can only accept fresh water, no recycled 

source is accepted. The demand of the fresh water is 120 tonne/h.  

The second closed system includes two sources: fresh water with Ffresh= 80 

tonne/h and S11 with F11=80 tonne/h ( S1 was split into two parts S11 and S12. In the case 

study, the first digit of the two digit subscript denotes original stream number and the 

second digit denotes substream number from stream splitting) and two sinks: D2 and D3. 

According to the develop procedure and conditions, the linear equation system is 
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The augmented matrix is formed and reduced RREF: 
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Consequently, there is unique solution for the first closed system which is given by 

)5.0,5.0,5.0,5.0(),,,( 3,112,113,2, =xxxx freshfresh . 

Next, we move to the third closed system which includes three sources S12, S2, 

and S41 (S4 was split into two parts S41 and S42) with flow rates of 40, 80, and 100 

tonnes/h respectively, and two sinks D4 and D5.  

According to Eq. (4.20), the solution for this closed system has one parametric 

family of solutions. The linear equations for this system are 
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The RREF for the corresponding augmented matrix is 
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Taking 5,41x as the parameter, then  

5,414,41 1 xx −=  

5,415,2 5.275.1 xx −=  

75.05.2 5,414,2 −= xx  

5.15.2 5,415,12 −= xx  

5,414,12 5.25.2 xx −=  

Applying physical constraints, i.e. 10 , ≤≤ jix to this solution, we have 

10 5,41 ≤≤ x  

7.03.0 5,41 ≤≤ x  

7.05.0 5,41 ≤≤ x  

16.0 5,41 ≤≤ x  

16.0 5,41 ≤≤ x  

Hence, the range for parameter 5,41x is [0.6, 0.7].  
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In summary, for this example, the following guidelines must be used in designing 

the network:  

Ffresh=120 tonne/h for D1, 

Ffresh=80 tonne/h for D2 and D3 with each one have 50%, 

F1 = 80 tonne/h for D2 and D3 with each one have 50%, 

F1, F2, and F4 for D4 and D5 based on the relations of 

)1(100 5,414,41 xf −=  

)5.275.1(80 5,415,2 xf −=  

)75.05.2(80 5,414,2 −= xf  

)5.15.2(40 5,415,12 −= xf  

)5.25.2(40 5,414,12 xf −=  

where 0.6� 5,41x �0.7.  

The general network configuration is illustrated in Figure 4.5. 
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Figure 4.4 General network configuration for example 4.1 
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When the value of x41,5 is selected to be 0.7, the solution configurations match 

those given by Sorin and Bedard (1999) and Aly et al. (2005) . 

 

4.4.2 Example 4.2: Water Recycle 

This example is taken from Polley and Polley (2000). It was also restudied by El-

Halwagi et al. (2004) and Aly et al. (2005). The source and sink data are shown in Table 

4.2.  

 

Table 4.2 Process information for example 4.2 

 

 

The pinch analysis (Figure 4.5) shows that this network has one closed system 

and one open system. The closed system consists of four sources: fresh water, S1, S2, and 

S3 with the flow rate of 70, 50, 100, and 10 tonne/h respectively, and three sinks D1, D2 

and D3.  

Sink (U) Flow (tonne/h) Maximum inlet impurity (ppm) Load (kg/h) 

1 50 20 1 

2 100 50 5 

3 80 100 8 

4 70 200 14 

Source (S) Flow (tonne/h) Impurity (ppm) Load (kg/h) 

Fresh Fresh water 0 0 

1 50 50 2.5 

2 100 100 10 

3 70 150 10.5 

4 60 250 15 
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Figure 4.5 Pinch diagram of example 4.2 

 

According to Eq. (4.20), this closed system should have four parametric family 

of solutions. The linear equations are formed as  
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and the RREF of the augmented matrix is shown as   
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Taking 2,31x , 3,31x , 2,freshx , and 3,freshx  as the parameters, the general solutions have  the 

following relations: 

3,2,1, 1 freshfreshfresh xxx −−=  

3,312,311,31 1 xxx −−=  

3,313,3,2 2.07.08.0 xxx fresh −+=  

2,312,2,2 2.07.0 xxx fresh −=  

)(2.0)(7.02.0 3,312,313,2,1,2 xxxxx freshfresh +++−=   

3,313,3,1 2.08.2 xxx fresh +−=  

2,312,2,1 2.08.22 xxx fresh +−=  

)(2.0)(8.21 3,312,312,2,1,1 xxxxx freshfresh +−++−=  

All the variables and parameters are subject to the physical constraints, i.e. 

0� jix , �1. These simple linear functions can be easily solved by linear programming. The 

range for individual parameter of these parameters are given by 

5/14� 2,freshx �4/7, 

0� 3,freshx �1/14, 
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0� 2,31x �1,  

and 0� 3,31x �1.  

To address the interaction among these parameters, Tower Model is used for 

parameter-value determination. For illustration, we chose the mean value of the 

minimum and maximum value of the parameters as the preference (see Figure 4.6).  

 

 
  

Figure 4.6 Tower Model for example 4.2  

 

The corresponding network configuration is illustrated in Figure 4.7.    
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Figure 4.7 Network configuration for example 4.2 corresponding to the Tower Model 

with mean value 

 

The configuration of the closed system can be developed to feature eight 

pipelines similar to the solution give by Aly et al.  One can also get various 

configurations with 7 pipelines for this network system, such as ( 1,freshx , 2,freshx , 1,1x , 2,1x  , 

2,2x , 3,2x , 2,31x )=(3/7, 4/7, 2/5, 3/5, 1/5,  4/5, 1), and ( 1,freshx , 2,freshx , 2,1x , 1,2x , 2,2x , 3,2x , 

2,31x )=(4/7, 3/7, 1, 1/10, 1/10, 4/5, 1) by choosing ( 2,freshx , 3,freshx , 2,31x , 3,31x )=(4/7, 0, 1, 

0) and ( 2,freshx , 3,freshx , 2,31x , 3,31x )=(3/7, 0, 1, 0) respectively. 

 

4.5 Conclusions 

This work has developed a systematic implementation approach for process 

network design to achieve minimum fresh source usage and maximum process source 

recycle/reuse. Based on analyzing the set of equations, it has been shown that a closed 

system has a unique solution when there are two sources or one sink. Otherwise, it has 

infinite solutions. The degrees of freedom for the system needed to transform infinite 
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solutions into a unique solution is given by (n-1)(m-2) where n and m are the numbers of 

sinks and sources involved in the closed system. A bounding technique was used to 

determine the values of the parameters if necessary. Comparisons with published case 

studies confirm the validity and usefulness of the developed approach. 
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CHAPTER V 

SYNTHESIS, ANALYSIS AND OPTIMIZATION  

OF BIOMASS-TO-ENERGY SYSTEM 
 

5.1 Introduction 

Greenhouse gases (GHGs) from energy-related activities accounted for 86 

percent of total U.S. anthropogenic GHG emissions on a carbon equivalent basis in 

2004. Of the energy-related emissions, GHGs from fossil fuel combustion are the major 

portion, 5656.6 Tg CO2 Equivalent (CO2-Eq.). More specifically, coal related GHG 

emissions, 2028 Tg CO2-Eq., were 35.8 percent of total fossil fuel emissions. Overall, 

total U.S. GHG emissions have risen by 15.8 percent from 1990 to 2004 (USEPA 2006). 

Trends show that in the near term GHG emissions will continue to rise, potentially 

increasing global warming. The Intergovernmental Panel on Climate Change (IPCC) 

indicates that continued emissions could lead to a temperature increase of between 1.4°C 

to 5.8°C over the period 1990 to 2100, projecting a decadal increase of between 0.15°C 

and 0.35°C. This estimated maximum average temperature increase is above the 

estimated rate that the environment can withstand without damage (0.1°C per decade).  

The IPCC and others suggest that CO2 emissions should be decreased (Watson and 

Albritton 2002). 

Several policies and energy consumption related actions have been proposed to 

limit net GHG emissions. A key example is the Kyoto Protocol. In the US, despite 

rejecting ratification of the Kyoto protocol, the “Clear Skies Initiative”, announced by 

President Bush, calls for an 18% reduction in the intensity of GHG emissions per unit 

gross domestic product (Winters 2002). One mechanism that can be used to mitigate 

GHG emissions is substitution of less emission intensive alternative fuels for fossil fuels.  

One such source is biomass. When biomass is used in place of fossil fuel, net carbon 

emissions decrease because carbon is withdrawn from the atmosphere via photosynthesis 

during feedstock growth and GHG emissions are avoided from normal routes of biomass 

disposal (Mann and Spath 2001).     
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Biomass conversion into forms of energy is receiving increasing attention largely 

because of environmental, energy supply and agricultural market condition concerns 

(McCarl and Schneider 2001). In general, biomass can be divided into three categories: 

crop and wood residues, industrial waste or byproducts, and energy crops.  

Researchers at Princeton University showed that half of the total U.S. crop and 

wood residues could be economically used as fuel. Among the estimated 5 exajoules of  

recoverable residues per year, one third are made up of agricultural residues and two 

thirds composed of forestry products and industry residues (60% of which are mill 

residues). Urban wood and paper waste, another important source of biomass, are 

recoverable in the amount of 0.56EJ per year (USDOE and EPRI 1997). 

There are numerous examples in the agriculture and the pulp and paper industries 

that illustrate the feasible size of sustainable commercial biomass operations. Over fifty 

pulp and paper mills in the U.S. use byproducts and waste for internal power and heat 

generation. U.S. sugar mills have a processing capacity over 1.3 million tons of cane per 

year. Most of bagasse produced from these plants is used to supply internal energy 

(USDOE and EPRI 1997).   

The price and supply of residues and byproducts can be volatile, so development 

of dedicated supplies for power generation is believed the best way to ensure a relatively 

stable price. Although no large scale dedicated feedstock supply systems designed solely 

for use by biomass power plants exists in the U.S. today, a number of commercial 

demonstration programs have been launched by the U.S.  

Potential energy crops such as switchgrass, willow, poplar and alfalfa are 

receiving extensive study from their economical, energy and environmental potential 

(USDOE and EPRI 1997).   

At present, the cost difference between using biomass versus coal as a power 

plant feedstock is generally not enough to cover the capital cost of plant conversion and 

still generate adequate profit. This cost disadvantage is preventing the adoption of 

biomass as an energy feedstock.  To overcome this disadvantage, appropriate research 

for biomass production and processing enhancement as well as policies to promote 
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environmentally sound emission practices and biomass feedstock use should be 

conducted. 

Several types of policy options are currently being considered that could promote 

biomass as an energy feedstock. One of those involves the use of markets for GHG 

emission credits as a vehicle for reducing GHG emissions as manifest in the Kyoto 

Protocol.  Such a market would improve biomass competitiveness because biomass has a 

large GHG offset relative to coal use.  This would, in effect, create subsidies for biomass 

production and use and should enhance biomass penetration in energy feedstock market. 

To facilitate biomass market penetration, several biomass-to-electricity 

techniques have been demonstrated. One technology is biomass gasification and 

subsequent electricity generation in combustion-turbine or combined-cycle plants. High 

thermal efficiency, high performance in a wide range of power plant size, and the 

increased fuel flexibility make this mode very attractive. However, cleanup biogas is 

needed to prevent damage to the turbine. Also, the capital and maintenance expense of a 

new boiler and a gasification/combined-cycle system can be excessive.  Another 

technology is direct combustion of biomass that requires much lower capital and 

maintenance expenditures. Currently the supply of biomass as a sole source of large 

capacity power plant feedstock is not reliable or economical. The biomass also has some 

technical problems and considerations such as (Sami et al. 2001): 

• The high moisture and ash contents in biomass fuel can cause ignition and  

combustion problems in power plants;  

• The low melting point of the dissolved ash can cause fouling and slagging 

problems;  

• The low heating value of biomass accompanied with flame instability causes 

burning problem;  

• The comparatively large bulk volume of biomass causes feeding problems; 

and 

• The relatively lower heat rate decreases the electricity productivity. 
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Recent studies have proven that co-firing biomass and coal mitigates these 

problems. Most co-firing studies have been conducted with biomass percentage of less 

than 20% by mass of the total fuel. Within this range, the problems incurred when using 

biomass as a sole fuel are not significant and there are some benefits. The synergetic 

effects of co-firing on emission reduction of SO2 and NOx are quite effective (Tillman 

2000). Also, co-firing can improve the heat rate of co-fired biomass. When the heat input 

of biomass is in the range of 7-10% of the total heat input, the overall boiler efficiency 

only drops 0.3-1.0 percent compared to a coal fired boiler with an 85-90% efficiency. 

While there is a large difference between burning biomass alone and burning coal alone, 

the efficiency of biomass in co-firing is relatively high (Hughes 2000).  

These biomass combustion issues have been receiving extensive theoretical and 

experimental research. However, the issue of process optimization of the biomass-to-

energy system has received little attention. Biomass-to-energy is a very complex system 

that includes many factors, such as biomass supply and power plant operation. An 

optimized system can greatly reduce energy cost and facilitate biomass usage. Different 

biomasses have different supply considerations. Biomass supply can be year round or 

seasonal, such as bagasse from the seasonal sugarcane crush or the summer or fall 

harvest of switchgrass. To use biomass for co-firing, biomass storage and supply 

management is necessary. Selecting biomasses and coordinating their supply and storage 

are key reducing costs. Other factors, such as transport costs, the co-firing ratio, and 

power plant maintenance scheduling can reduce biomass costs potentially spurring 

increased biomass use. A comprehensive model, that optimizes power plant feedstock 

(biomass and fossil fuel) selection and allocation while maximizing power generation 

industry profits in light of governmental regulations and laws for GHG mitigation, is 

highly desirable. 

The objective of this chapter is to build a framework to synthesize, analyze and 

optimize the biomass-to-energy (power) system.    
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5.2 Problem Statement 

A given power generation process has a number of power generators previously 

designated for coal firing only gen1, gen2,…, genN, with their effective power 

generation capacities of CAP1, CAP2, …, CAPN, thermal efficiencies (coal burning only) 

of 1η , 2η , …, nη , and mandatory maintenance times. 

A given number of biomass resources (Nbiomass) exist with their specific 

characteristics including high heating value (HHV) and composition of ultimate 

chemical analysis ( e.g. carbon content (C %), hydrogen content (H %), etc). Each kind 

of biomass has its own supply process that could include crop establishment, crop 

growing, harvest (collection), processing, transportation, and supply time. 

Biomass GHG mitigating effects should be accounted for in the power generation 

system. To reflect an economic value for these mitigating effects, a GHG discharge 

permit price (GHG price) is introduced. 

The overall objective is to minimize the cost of a power generation system fed 

with both biomass and coal. More specifically, the following questions should be 

answered: 

• How competitive are the various biomasses as alternative fuels to coal?    

• What is the optimal annual biomass supply for a power generation system? 

• What is the optimal annual allocation of feedstocks (biomasses and coal) for 

each generator in the system? 

• What is the optimal maintenance schedule for each generator? 

To answer these questions, several factors need to be taken into account.  Cost of 

biomasses with no markets, such as energy crops or forest logging residues, should be 

determined from their supply processes.  Different transport technology should be 

considered because GHG emissions and biomass cost are affected by transport distance 

and road conditions.  Costs of biomass storage and power plant retrofitting for co-firing 

must be included in energy costing.  Biomass supply time and generator maintenance 

scheduling will affect the storage and consumption of biomass.  The co-firing ratio alters 

the power plant thermal efficiency and determines power plant retrofitting cost. 
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5.3 Problem Solving Techniques  

The problem solving techniques used in this paper include process synthesis, 

analysis and optimization.  

 

5.3.1 Process Synthesis 

“Process synthesis is concerned with the activities in which the various process 

elements are integrated to provide an improved process flowsheet” (EL-Halwagi 1997). 

The biomass-to-energy system has many activities and interactive factors. The following 

steps are used to guide the synthesis of the biomass-to-energy process: 

• Define the boundary of the process. A proper boundary should facilitate the 

problem solving without losing the generality of the problem. 

• Determine the major activities of the process. The connection of the major 

activities should give a complete structure of the process. Very small or 

insignificant activities may be ignored for easing problem solving. 

• Identify the operations and their alternatives that constitute the above 

activities. This step will identify opportunities for the process optimization. If 

one operation is qualitatively advantageous over all alternatives, this 

operation can be selected without proceeding through process analysis.   

• Determine and quantify elements of each operation. These elements may 

include equipment used and various operating conditions and characteristics. 

This will provide the detailed parameters and data for process analysis and 

process optimization. 

• Generate the complete process by integrate all the elements  

 

5.3.2 Process Analysis 

Once the process is synthesized, a process analysis technique is used to predict or 

depict detailed process characteristics and performance. Process analysis techniques 

include mathematical models, empirical correlations, and computer-aided process 
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simulation tools. Figure 5.1 illustrates the process analysis algorithm used for this 

research.  

 

 
 

Figure 5.1 Process analysis flow diagram 

 

In process analysis, relationships can be generated as the function of key 

variables only with all other variables taking typical values. If necessary, subproblem 
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optimization may be used. Subproblem optimization can mitigate the complexity of the 

overall problem. 

 

5.3.3 Process Optimization 

Process optimization is a process to select the best solution among the set of 

candidate solutions each comprising a best set of alternative operations. An objective 

function is quantified to measure the desirability of each problem solution. Having 

expressed GHG emission reductions from biomasses as an economic value, the GHG 

price, the objective function can be stated as a cost function of the biomass-to-energy 

system. Constraints on the objective function were developed based on the process 

analysis and expressed as equalities and inequalities including an energy balance.  

Optimization software like LINGO® or GAMS® can solve relatively complex 

mixed integer nonlinear programming (MINLP). Based on interval analysis, some 

MINLP systems, such as a dual-feedstock system, can be effectively solved to acquire 

global optimization by algebraic methods using a computer spreadsheet such as Excel®. 

Also, algebraic analysis can be used to help to understand the global optimal solution 

given by LINGO® for complex systems, such as a multi-feedstock system. These tools 

were used in this study of the biomass-to-energy system model. 

 

5.4 Problem Solving 

  

5.4.1 Definition of Process Boundary and Process Activities 

GHG emissions and cost are two primary elements of the biomass-to-energy 

system. In quantifying and analyzing the environmental and cost aspects of the biomass-

to-energy system, the process boundary should be defined as broad as possible. 

However, a broad boundary will lead to the inclusion of almost every industrial process 

because all industrial operations work within a complex network. This is impractical. 

Therefore, two rules will be applied in the definition of the process boundary and 

process activities (Kadam 2000).  
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Rule 1: The constituents and ancillary materials whose impacts are estimated to 

be negligible should be excluded from the system.  

Rule 2: Activities functionally equivalent in products or facilities, materials 

shared by the compared products, and activities for which allocating shared products is 

difficult should be excluded from the system. 

Based on these rules, the process boundary for different feedstocks and power 

plants are defined as follows. 

For the coal feedstock, coal costs are taken directly from the market.  GHG 

emissions are evaluated for all major activities such as material and energy consumption 

during coal mining, mining gas recovery and emission, coal combustion, postmining 

activities and process related transportation. 

For the residue feedstock, such as logging residue, the cost and GHG emissions 

are evaluated for the processing cycle including collection, processing, combustion, 

transportation and storage. 

For the byproduct feedstock, such as bagasse, cost is contingent on process plant 

and storage, and GHG emissions are evaluated for combustion and landfilling. 

For the energy crop feedstock, such as switchgrass, lifecycle analysis is used to 

evaluate both cost and GHG emissions. The boundary covers activities such as seeding, 

growing, harvesting, processing, transportation, combustion and storage. 

For the power plant, maintenance and retrofitting costs are included in the 

system. Variation of power plant thermal efficiency for various co-firing rates was also 

included.  

 

5.4.2 Identification of Operations and Alternatives for Process Activities 

In each process activity, many operation alternatives can be identified. Activities 

are linked in the process. One activity may be restricted by the preceding activity and 

affect the following activity. Figure 5.2 is an example of switchgrass harvesting and 

transport alternative activities which illustrates this point (Qin et al. 2006). 
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Figure 5.2 Operation alternatives of switchgrass harvesting and transportation 

 

Operational elements were also determined. For example, if the transport method 

is by truck, then the truck type (heavy duty or light duty), fuel type (gasoline or diesel), 

payload capacity, and other elements were determined. These elements may be obvious 

upon observation of current practices. If not, the elements can be determined by process 

analysis and optimization. 

Data processing and computation is conducted in a sequence of elements, 

operations, activities, and processes in an onion model (Figure 5.3), which is the reverse 

order of process synthesis.   
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Figure 5.3 Onion model for data processing 
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5.4.3 Identification of Base Variables  

The whole system involves of thousands of variables. The majority of them can 

be assigned with typical values and become parameters rather than variables. Some 

variables are a function of other variables. Base variables are not a function of other 

variables. For example, the acreage of planted crop can be regarded as a base variable 

because from it the biomass field transport distance, the amount of the crop harvested 

and used for power generation can be calculated and, thus, GHG emissions from per unit 

energy crops can be derived. 

 

5.4.4 Process Optimization  

1. Objective Function 

The objective is to minimize the cost of power generation. Within this cost 

minimization, the best alternative processes will be determined. The cost minimizing 

objective function of this system can be expressed with four elemental costs, feedstock 

cost, GHG price cost, plant retrofitting cost, and storage cost, and specified as: 

Min =f( feedstock cost, GHG price cost, plant retrofitting cost, storage cost)      (5.1) 

2. Constraints and Correlations 

The constraints and correlations for this problem include following aspects. 

a.   Energy balance 

)*(*
1

,,,, �
=

=
feedN

k
kjikjiji mHHVCAP η         for generator i in month j                                 (5.2) 

Where Pi,j is the power generated by generator i in month j, mi,j,k is the consumption of 

feedstock k by generator i in month j, Nfeed is the total number of feedstocks, ji,η is 

thermal efficiency of generator i in month j, and Nfeed is the number of different 

feedstocks. 

b.   Mass balance 
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where mi,k,  is annual consumption of feedstock k in generator i, kjim ,,  is the monthly 

consumption of feedstock k in generator i in month j, mj,k, is the monthly consumption of 

feedstock k in month j for all generators, mk is the annual consumption of feedstock k in 

all generators, and genN  is the number of generators.  

c.   Energy efficiency  

 Co-firing biomass with coal can improve the heat rate of co-fired biomass. In 

general energy efficiency can be expressed as the function of energy efficiency of 

burning coal alone and the biomass co-firing ratio,  

),( ,,,, jicofiringcoaliji Rf ηη =                                                                                       (5.4) 

Where ji,η  is the energy efficiency of generator i in month j, coali,η  is the energy 

efficiency of generator i burning coal only, and  Rcofiring,i,j is the co-firing ratio expressed 

in mass base as 
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and in thermal base as 
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where Nbiomass the number of biomass involved in the cofiring system, and mi,j,coal is the 

coal consumption of generator i in month j.  

d.   Storage  
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where Stj,k and Rdj,k is the storage and residual of feedstock k in month j, and Suj,k is the 

supply of feedstock k in month j. 
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e.   Retrofitting cost 

Cost of power plant retrofitting is a function of co-firing ratio. The cost of power 

plant retrofitting should be expressed as the function of maximum co-firing ratio 

(Rcofiring,max,i) because retrofitting is a long term decision. 

Cretrofitting,i=f(Rcofiring,max,i)                                                                                    (5.8) 

where Rcofiring,max,i=Max{Rcofiring, i,j} 

f.   GHG emissions 

 Biomass combustion affects GHG emissions in three ways. The first is from 

feedstock preparation such as fertilizer used to grow energy crops and fossil fuels use in 

supplying the biomass. The second is from combustion during power generation which 

is a function of the carbon content of the feedstock and the amount of feedstock 

combusted. The third is from GHG mitigation, such as photosynthesis, soil CO2 

sequestration, or, reduced landfilling (reduced CO2 and CH4 emissions). The net GHG 

emissions effect is expressed as, 

kmitiGHGkcombGHGkprepGHGkGHG EEEE ,,, −+=                                                             (5.9) 

where kGHGE , kprepGHGE , , kcombGHGE , , and kmitiGHGE , are net GHG emissions, GHG 

emissions from preparation, GHG emissions from combustion, and GHG emissions from 

mitigation of biomass k respectively. 

 

5.5. Case Study 

This case study is for a biomass-to-power generation system with three power 

generators. The operating calendar for the system is 30 days per month and 12 month per 

year with a 15-day mandatory maintenance for each generator occurring in different 

months. The specifications are listed in Table 5.1. 
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Table 5.1 Specifications of the power generation system 

 Effective operating 

capacity (MW) 

Thermal efficiency 

(coal burning alone) 

Maintenance time 

(days) 

Generator 1 200 0.3413 15 

Generator 2 150 0.3413 15 

Generator 3 100 0.3413 15 

 

 

Three types of biomass, bagasse (a sugar cane processing byproduct), 

switchgrass (an energy crop), and forest logging residue are considered as potential 

feedstocks. The specifications of all feedstocks are shown in Table 5.2. 

 

Table 5.2 Specifications of feedstocks for power generation 

 Coal Bagasse Switchgrass Logging residue 

HHV (kJ/kg) 23552.12 14141.79 15591.00 20307.34 

Thermal efficiency 0.3413 0.1846 0.2069 0.24 

Ash % 8.64 2.76 4.61 0.63 

C% 57.49 33.78 42.04 46.85 

H2O% 10.80 25.37 11.99 7.30 

Cellulose% N/A 50.0 (bone dry) 37.1 (bone dry) N/A 

Hemicellulose% N/A 27.9 (bone dry) 32.1 (bone dry) N/A 
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It is assumed the sugar cane plant is next to the power plant. Therefore, bagasse 

supply costs and GHG emissions are not significant. Logging residue is assumed to be 

collected from a 40 year rotational forest with even annual timber harvest and 25 

highway miles away from the closest processing point to the power plant. The 

switchgrass collection points are assumed to be an average of 15 highway miles away 

from the power plant. The GHG emission discharge permit price is assumed to be 

$30/tonne CO2-Eq. Storage costs for all biomass feedstocks are assumed $1/tonne. To 

reduce the disturbance to power plant operation, it was assumed each generator has a 

uniform annual co-firing ratio. 

 

5.5.1. Feedstock and Power Plant Analysis 

1. Coal 

The average 2004 delivered coal price for electric utility plants was $27.30/ton, 

i.e. $30.10/tonne (EIA 2006).  Coal delivery is upon request, so no storage cost for coal 

was used in the analysis. 

The GHG emissions associated with burning coal was determined from lifecycle 

analysis of coal including fuel and material consumption during coal mining, mining gas 

emissions and recovery, postmining activities, transportation, and coal combustion. The 

boundary of coal analysis was illustrated by Figure 5.4. Lifecycle coal GHG emissions 

are 2225.5471 kg CO2-Eq. /tonne coal. 
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Figure 5. 4 Boundary of coal lifecycle analysis 

 

2. Bagasse 

The supply of bagasse is assumed to be 21,649 tonne/month from October to 

May (240 days).  The annual weighted-average moisture is 34% on oven dry basis, i.e. 

25.37%  on a wet basis (Kadam 2000). The price is assumed to be $20/tonne. Storage is 

required for year round bagasse use. 

The primary GHG mitigation mechanism of biomass is CO2 intake through 

photosynthesis during plant growth. 1237.7351 kg of CO2/tonne of bagasse is taken in 

during sugarcane growth. Because sugarcane is grown for purposes other than bagasse 

production, a reduction in CO2 emissions from plant growth should not be considered 

for bagasse power generation use (Mann and Spath 2001). Instead, the reduced GHG 
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emissions from not disposing of bagasse in a landfill should be used to determine 

bagasse GHG mitigation. The degradation mechanism is illustrated in Figure 5.5. This 

GHG mitigation is 1.36 tonne CO2-Eq./tonne of bagasse resulting in a net GHG emission 

of -107.4106 kg CO2-Eq/tonne of bagasse.  
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Figure 5.5 The degradation mechanism of bagasse in a landfill  

  

3. Switchgrass 

Switchgrass is one of the most promising energy crops. In this case study, 

harvesting switchgrass is assumed once a year in September. The cost and GHG 

emissions evaluation of switchgrass is based on (Qin et al. 2006). Figure 5.6 shows the 

boundary and activities of switchgrass supply. The optimal combination of activities, 

establishing switchgrass on cropped land, harvesting loose for chopping, and 
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transporting after compression into modules is taken from Qin et al. (2006). In this 

study, switchgrass transportation is divided into growing area and highway 

transportation. Highway transport distances are assumed to be known. Field 

transportation distances will vary with the growing area size determined by annual 

switchgrass use. To minimize the field transportation distances, hence reduce cost and 

GHG emissions, the geographic shape of the growing area was optimized and the 

relationship between field transportation distances and growing area established. 

 

 
Figure 5.6 Boundary and activities of switchgrass supply (Qin, et al. 2006) 

 

Assume the growing area is a rectangle which is expandable along two 

dimensions with a highway connecting to the growing area at one corner of the 

rectangle. The field transportation vehicles are assumed to go through the growing area 

in grid mode. The situation is schematically illustrated in Figure 5.7. 
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Figure 5.7 Schematic illustration of switchgrass growing area and field transportation 

  

Minimizing the field transportation distance (Lin_land) requires determining the 

growing area shape. Assume the required area is A, and the side lengths of the rectangle 

are a and b, then we have following relations: 

� �
+=+=

b a

landin

ba
dxdyyx

ab
L

0 0_ 2
)(

1
                                                                       (5.10) 

Hence, the optimization model in parameter can be written as 

2
min _

ba
L landin

+==                                                                                                 (5.11) 

s.t. 

ab=A                      (5.12) 

The global optimal solution is 

AbaL landin ===_                                                                                                 (5.13) 

Furthermore,  

swsw YmA /=                                                                                                               (5.14) 
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where msw is the annual switchgrass consumption and Ysw is the swithgrass yield in unit 

of mass per unit area.  

Thus, the minimum field transportation distance is 

 2/1
_ )/( swswlandin YmL =                                                                                                 (5.15) 

With values from Qin et al. (2006), GHG emissions as the function of field 

transportation distance (Lin_land) and highway transportation distance (Lhighway) were 

simulated (see Figure 5.8a and 5.8b.).   
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Figure  5.8a Correlation of GHG emissions of switchgrass supply with field 

transportation distance 
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GHG Emission of Switchgrass Vs Highway Distance
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Figure  5.8b Correlation of GHG emissions of switchgrass supply with highway 

transportation distance 

 

The net lifecycle GHG emissions of switchgrass used as a function of transport 

distance was expressed as 

2923.43104.00346.1 ,,_, ++= swhighwayswlandinswGHG LLE                                            (5.16) 

Similarly, the cost function of switchgrass supply was expressed as 

Csw =0.7353Lin_land,sw+0.2206Lhighway,sw+32.49                                                      (5.17) 

4. Logging Residue  

Logging residues are left in the forest after timber harvest. CO2 intake during 

photosynthesis in the forest is already occurring, therefore, there is no GHG mitigation 

effect from this process. However, the avoided GHG emissions from ongoing logging 

residue decomposition are the GHG mitigation effects. Assuming 90% of the carbon in 

logging residue is aerobically decomposed to CO2 and 10% of  the carbon is 

anaerobically decomposed to CH4 (Mann and Spath 2001), the total GHG mitigation is 

2985.1369 kg CO2-Eq./tonne of logging residue. The price of logging residue in the 
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forest is assumed to be $2/ton (50% moisture oven dry basis), the price paid to forest 

landowners for stumpage (USDA 2004). The overall GHG emissions and cost of 

delivered logging residue are calculated from a modified processing model from 

FoRTSv4 (USDA 2005). The optimal combination of operations, loading with 

knuckleboom loader, forest transport with RO container, processing with disk chipper, 

and highway transport with 120 yard chip van, was used in this study.  

In order to establish the GHG emissions and cost for logging residue, the shape-

distance logic used for switchgrass was applied. It is assumed that the 40 year rotational 

forest is harvested in 5 mile by 5 mile squares arranged in a rectangular shape. The 

schematic layout of the forest is illustrated in Figure 5.9, in which the period on the grid 

represents the wood chipping location for each year. It is further assumed that the power 

plant to forest (point O) distance is 30 miles by highway. Thus, the average highway 

distance would be 57.5 miles.  

 

�
 

Figure 5.9 Schematic layout of 40 year rotational forest 

 

With these assumptions and taking values for other variables from FoRTSv4, the 

net processing cycle GHG emissions (EGHG,logging) and cost of delivered logging residue 

(Clogging) can be expressed as functions of transport distance as follows: 
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9806.1237586.0446.13 logging,logging,_logging, −+= highwaywoodinGHG LLE                   (5.18) 

946.9225.0337.5 logging,logging,_logging ++= highwaywoodin LLC                                  (5.19) 

5. Power Plant 

Co-firing can effectively increase the thermal efficiency of biomass. However, 

the overall power plant thermal efficiency decreases with the increase of biomass co-

firing ratio. The empirical boiler efficiency loss of biomass co-firing can be expressed by 

the following formula (Plasynski et al. 1999) 

000044.00005.045.0 2 −+= biomassbiomassloss RRη                                                       (5.20) 

where Rbiomass is biomass co-firing ratio on a mass basis. 

If the mechanical efficiency is 0.3969 and coal only fired boiler efficiency is 

0.86, the overall thermal efficiency is 0.3413. The power plant thermal efficiency of 

biomass co-firing can be expressed as 

)0005.045.0860044.0(3969.0 2
biomassbiomasscofiring RR −−=η                                    (5.21)  

To co-fire, a facility will need to be retrofitted. Cost of retrofitting is in a order of 

$50-$100/Kw for biomass for blending feed and $175-$200/kW for biomass for 

separated feed (Hughes 2000). If a 10-year straight line depreciation method without 

salvage value is assumed, then the average annual retrofitting cost of i generator 

(Cretrofitting,i) can be expressed as 

10/*200* max,,_, icofiringthiingretrofitti RCAPC =                                                                (5.22) 

where Rth_cofiring,max,i is the maximum biomass co-firing ratio on a thermal basis for 

generator i, which can be calculated from Eq. (5.6),and a $200/kW retrofitting cost was 

used. 

 

5.5.2 Competitiveness of Biomass Feedstocks 

To determine the GHG prices for each co-firing ratio for each feedstock, the 

optimization model was solved with an objective function minimizing the GHG price. 

The relations and constraints were formed with Eq. (5.2) –Eq. (5.9) with specific 
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feedstock parameters and relations from Eq. (5.14) –Eq. (5.22).  The cost balance 

equation was included as 

� � +=+++ coalonlyGHGcoalonlycoalngretrofittistoragecofiringGHGcofiringfeedstocks CCCCCC ,,,,       (5.23)        

which links two cases, co-firing and coal firing alone, to determine GHG price.   

Although the model is a MINLP, with the global solver of LINGO, global 

optimal solution for each cofiring ratio can be acquired. The algebraic method can also 

be used in this situation. With each given annual biomass consumption, coal 

consumption and the co-firing ratio are defined. Minimizing total cost (hence, 

minimizing the GHG price) is minimizing storage cost.  Minimizing storage cost is a 

matter optimizing the generator maintenance schedule. For switchgrass, the harvest time 

is September, thus, by arranging the generator maintenance time in June for gen3, July 

for gen2 and August for gen1, the storage cost is minimized. For bagasse, the 

maintenance schedule should be July for gen3, August for gen2, and September for 

gen3. For logging residue, the maintenance schedule is insignificant because the supply 

is year around.  The procedure is illustrated in Figure 5.10. 

 

 

Figure 5.10 Flowchart of algebraic method for identifying minimum GHG price at each 

co-firing ratio 
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The relation of the global minimum GHG price to the biomass co-firing ratio for 

individual feedstocks is shown in Figure 5.11. 
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Figure 5.11 Relation of minimum GHG price and co-firing ratio for different biomass 

feedstocks 

 

If the GHG price is below $17/tonne CO2-Eq, no switchgrass will be used by the 

power generation system. Bagasse and logging residue only need an incentive CO2 price 

less than $5/tonne to be used by the system, and with less than $10/tonne CO2, all of 

them will be used up in this case study. One can also see that different reference for 

GHG emission calculation, i.e. avoided GHG emission and CO2 intake from 

photosynthesis will definitely affect the GHG price for co-firing logging residue and 

bagasse, with the effect for logging residue even more obvious.   
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5.5.3 Global Optimization of Dual Feedstock Cofiring System 

The GHG price of $30/tonne CO2-Eq. was set as a base to compare the global 

optimal solution for three dual feedstock co-firing systems, i.e. coal-bagasse, coal- 

logging residue and coal-switchgrass. The mathematical models for these three systems 

are very similar. The objective function is minimizing total cost.  Constraints and 

correlations are different only in cost and GHG emission functions for individual 

biomasses. Both LINGO and the algebraic method were used to solve these models 

globally, Figure 5.12. The generator maintenance schedules for co-firing coal-

switchgrass and coal-bagasse system are same as discussed earlier. Based on the analysis 

above, the coal-logging residue co-firing system would use all available logging 

residues. A uniform co-firing ratio will result in a monthly logging residue consumption 

of mwood/11.5 when all generators are in full operation, but, the supply, limited by the 

collection capacity, is only mwood/12. Thus, one generator would need to be scheduled 

for maintenance in the first month. There are six generator maintenance sequences, 1-2-

3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, and 3-2-1. By comparison, the scenarios for global 

minimum total cost of coal-logging residue co-firing system was identified. Figure 5.12 

schematically represents the algebraic method for the system  

 

 
Figure 5.12 Flowchart of algebraic method for identifying minimum total cost for dual 

feedstock co-firing system 
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Although the maintenance schedule for coal-switchgrass co-firing system is 

logically straight forward, because the growing area is unknown, it would need to be 

optimized along with total cost. Figure 5.13 shows the result calculated by the algebraic 

method which is identical to the global optimal solution given by LINGO. 
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Figure 5.13 Total cost versus switchgrass consumption (demand) for coal-switchgrass 

co-firing system 

 

The global optimal solutions for the three systems are summarized in Table 5.3. 
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Table 5.3 Summary of global optimization solutions for three co-firing systems at 

$30/tonne CO2-Eq 

 Coal-bagasse Coal-logging residue 
Coal-

Switchgrass 

Minimum total 

 cost ($/year) 
1.5618E08 1.5462E08 1.5942E08 

Annual demand 

(tonne/year) 
1.7319E05 1.0854E05 2.4715E05 

Optimal 

co-firing ratio 

9.92% 

(limited by supply) 

6.43% 

(limited by supply) 

14% 

(global optimal) 

Generator 

maintenance 

schedule 

gen1(Sep), 

gen2(Aug), 

G3(July) 

gen1(Jan),gen2(Sep),gen3(June) 

or  

gen1(Jan),gen2(May),gen3(Oct) 

gen1(Aug), 

gen2(July), 

gen3(June) 

 

 

5.5.4 Optimization of Multifeedstocks System 

The multifeedstock system is the incorporation of the three individual co-firing 

systems. The generator maintenance scheduling for individual co-firing systems is 

logically determinable, but, this can not be done for the multifeedstock system.  

Therefore, generator maintenance scheduling was included in the optimization. The 

global optimal solution is summarized in Table 5.4. 
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Table 5.4 Brief report of global optimal solution of multifeedstock system from LINGO 

under optimality tolerance of 1E-06 

 Generator 1 Generator 2 Generator 3 

Co-firing ratio 0.1986 0.1918 0.1836 

Efficiency 0.3342 0.3347 0.3352 

Retrofitting Cost ($) 518290 444146 324963 

Coal (tonne/month) 57322 42019 27493 

Bagasse (tonne/month) 14211 849 0 

Switchgrass (tonne/month) 0 5873 0 

Wood (tonne/month) 0 3252 6186 

Maintenance (month) September August February 

 

 

1. Discussion 1: Global Optimal Switchgrass Consumption 

Figure 5.14a, b, and c generated from analysis for individual power generator 

system may help in understanding the global optimal amount of switchgrass 

consumption results. Figure 5.14 shows that both increasing and decreasing switchgrass 

usage will increase the cost of the whole system. 
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Figure 5.14a Total cost versus switchgrass consumption for generator 1 

 

 

Cost vs Sw comsuption for generator 2

50880000

50890000

50900000

50910000

50920000

50930000

50940000

50950000

50960000

50970000

50980000

50990000

0 2000 4000 6000 8000 10000

Sw consumption (tonne/month)

To
ta

l C
os

t (
$/

yr
)

 
Figure 5.14b Total cost versus switchgrass consumption for generator 2  
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31800000

31900000

32000000

32100000

32200000

32300000

32400000

32500000

0 1000 2000 3000 4000 5000 6000 7000

Sw consumption (tonne/month)

T
o

ta
l C

o
st

 (
$/

yr
)

 
Figure 5.14c Total cost versus switchgrass consumption for generator 3  

 

2. Discussion 2: Uniform Annual Co-firing Ratio (Ryear) versus Uniform 

Monthly Co-firing Ratio (Rmonth) 

The constraint of a uniform annual co-firing ratio for each generator provides a 

constant feed of biomass for power generation. However, this constraint limits the 

flexibility of system configuration, and results in a higher total cost than allowing a 

uniform monthly co-firing ratio for each generator. Allowing a uniform monthly co-

firing ratio for the system results in a cost reduction of $289,140/year, even though the 

result for Rmonth system can not be claimed to be global optimal. Figure 5.15 shows the 

monthly consumption of coal (nest), bagasse (ball), switchgrass (dot) and logging 

residue (solid) for generator 1. The consumption of coal is relatively stable, whereas, 

consumptions of all other feedstocks fluctuate greatly month by month which may be 

harmful to system stability. 
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Figure 5.15 Monthly feedstock consumptions for generator 1 with uniform monthly co-

firing ratio 

  

5.6. Conclusions 

A generic model and approach for synthesizing, analyzing, and optimizing the 

biomass-to-power system was created. Process synthesis incorporated all major activities 

and identified alternative operations in the system boundary. Process analysis established 

the values and constraints for process parameters and variables and determined the 

correlations of cost and GHG emissions with biomass usage. Process optimization 

identified the optimal feedstock consumption and allocation, and power plant operation. 

Mathematic programming models were created as an open framework for biomass-to-

energy systems. Global optimal solutions of dual-feedstock co-firing systems were 

determined using both the global solver of LINGO® and the algebraic method. For the 

multifeedstock co-firing system, the global optimal solution was derived by LINGO. The 

optimal feedstock supplies, allocation to different generators, and the optimal generator 
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maintenance scheduling were identified. This work shows that bagasse and logging 

residue are more competitive than switchgrass as an alternative energy feedstock to coal. 

In our case study, no biomass is viable as a replacement for coal as a feedstock unless 

there is a realized value for the biomass GHG mitigating effect. Uniform monthly co-

firing ratio (Rmonth) system results in a cost reduction when comparing with uniform 

annual co-firing ratio (Ryear), but the latter is easier to operate. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

This work has systematically developed a holistic approach for simultaneous 

process and molecular (material) design/selection through property integration. For the 

problem with one dominant property, a new graphical approach for material targeting 

and substitution has been introduced. Property operators for mixing streams and GCM 

have been used to consistently represent process sources, sinks, and different functional 

groups on the same property-based pinch diagram.  Representation of the candidate 

molecules has been obtained by adding up their functional groups represented as 

property vectors on the pinch diagram. This graphical approach offers a starting point for 

new methodological approaches such as mathematical programming techniques for 

designing and optimizing property-oriented processes upon material information and 

process objectives. This is significant in designing new molecules or selecting existing 

molecules that are best suited for process utilization. Compared to earlier work, this 

research provides a simultaneous approach which balances process and molecular needs. 

To determine specific design realization for material-recovery networks, an 

implementation approach has been developed. This approach identifies the criteria for 

feasible implementation networks. Compared to earlier works, this work embeds all 

possible configurations and gives criteria for generating alternatives. 

For systems with multiple properties, a mathematical programming technique has 

been developed to address the simultaneous process and molecular design. A global 

solution procedure has been devised. This approach is based on decomposing the 

problem into a number of interconnected and tractable tasks. Each task is globally 

solvable.   

A particularly important application of the property integration methodology in 

the selection of biomass feedstocks for energy generation has been explored. The 

problem entails the screening of different feedstocks including fossil fuel and biomass. A 
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generic model has been developed to optimize the types and quantities of the feedstocks 

used to maximize the profit of the power generation industry while complying with the 

governmental regulations and laws. The devised tool also allows the determination of 

reasonable GHG discharge permit price. It also determines conditions fro which a certain 

biomass feedstock becomes economically competitive. For instance, in our case study, 

when bagasse co-firing with coal at co-firing ratio of 5%, baggase becomes competitive 

at  $4.92/tonne of GHG price; for logging residue and switchgrass at the same co-firing 

ratio, the GHG prices are $7.84 and $19.39/tonne GHG. 

 

6.2 Future Work 

The following topics are recommended for future research: 

• The recycle/reuse process network design is based on the condition of steady 

state. Future work can be extended into dynamic systems. 

• The devised approach has focused on continuous processes. There is a need 

to address batch systems. 

• This dissertation has focused on design problems. Future work can 

simultaneously address design and operation problems. 

•  The biomass-to-energy system is mainly focused on power generation with 

direct burning. In the future work, more process operations such as 

gasification and biological pathway manufacturing process can be 

incorporated into the system.  

• Biomass utilization in this work has been limited to energy generation. In the 

future, the more general issue of a bioerfinery can be addressed in a 

systematic manner. A biorefinery may involve multiple pathways to 

transform biomass into useful products (e.g., power, biofuel, chemicals, 

additives, etc.). 

• Instead of “nominal-case design” adopted in this work, it is recommended 

that design under uncertainty be considered. The objective is to generalize the 

techniques developed in this work by accounting for uncertainties in data 
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(feedstocks, economic, performance, etc.) as well as design and operating 

parameters. 
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APPENDIX A 

PROCESS TARGETING TO IDENTIFY THE QBFR LINGO CODE 
 

model: 
max=hvf; ! Maximize the value of heat vaporization of fresh source; 
sets: 
solvent/1,2,3,4/:Hv,F; !1 MDEA, 2 MEA, 3 DEA 4 DGA, F Source flowrate; 
unit/1,2,3,4,5/:HVl, !Lower bound of Hv; 
            Hvu, !Upper bound of Hv; 
            G; ! Sink flowrate; 
allocation(solvent,unit):x; 
allocationf(unit):xf; ! For fresh; 
endsets 
 
Fr=720; !Fresh solvent usage; 
! Property constraints for each operating unit; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hv(i))+Hvf*xf(j)*Fr<=Hvu(j)*G(
j)); 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hv(i))+Hvf*xf(j)*Fr>=Hvl(j)*G(
j)); 
! Flowrate balance for the sources and units; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i))+xf(j)*Fr=G(j));  
@for(solvent(i):@sum(unit(j):x(i,j)*F(i))=Us(i)); 
! Physical constraints; 
@for(solvent(i):@sum(unit(j):x(i,j))<=1); ! This is for the solvent; 
@for(allocation(i,j):x(i,j)<=1); 
@for(allocation(i,j):x(i,j)>=0); 
@sum(allocationf(j):xf(j))=1; ! This is for the fresh; 
@for(allocationf(j):xf(j)<=1); 
@for(allocationf(j):xf(j)>=0); 
 
data: 
Hv=95,64,85,82; 
F=60,90,70,60; 
Hvl=67.5,67.5,70,70,72.5; 
Hvu=80,82.5,82.5,85,85; 
G=200,210,230,190,170; 
enddata 
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APPENDIX B 

MOLECULAR DESIGN TO IDENTIFY FEASIBLE MOLECULES 

LINGO CODE 
 

DATA: 
N=20; ! A large number to remove the group number constraint; 
enddata 
 
sets: 
group /1..16/:covalence,Hv,Tc,Hfus,Tm,Tb; 
position /1..N/; 
pair (group,position):y;  
ndgroup/1..9/:Hv2, Tc2,Hfus2,Tm2,Tb2,N2; ! Second order groups; 
rdgroup/1..4/:Hv3,Tc3,Hfus3,Tm3,Tb3,N3; ! Third order groups; 
endsets 
 
@for(group(g):@for(position(l):@bin(y(g,l)))); ! Y(g,l) is g group in l position (in 
finding  the feasible group set section, the position is not the rigorous molecule structure position;) 
 
@for( ndgroup(s):@Gin(N2(s))); 
@for( rdgroup(t)|R#GE# 2:@Bin(N3(t))); 
@Gin(N3(1)); ! For N1,4

�3, and N1,4
� 2 case, use @Gin(N3(t))only; 

 
@For(position(l):@sum(group(g):y(g,l))=1); ! For every position, there is no more than 
one group; 
 
@sum(position(l):@sum(group(g):y(g,l)*(2-covalence(g))))=2; ! Octet rule for 
acyclic molecule; 
 
! Certain groups must have some occurrence  in the molecule; 
@sum(position(l):y(8,l))+@sum(position(l):y(9,l))+@sum(position(l):y(10
,l))+@sum(position(l):y(11,l))+@sum(position(l):y(12,l))=1; !For amino 
groups; 
 
@sum(position(l):y(4,l)+y(15,l))=2; ! For group OH; for N1,4

� 2 case, use >=2; for 
N1,4
�3 case, use >=3; 

 
! Constraints from 2ndgroup; 
@sum(position(l):y(1,l))>=2*N2(1)+3*N2(2); ! For 2ndgroup 21-22, CH3; 
@sum(position(l):y(1,l))>=N2(1)+1.05*N2(3); ! For the worst case -CH(CH3)-
CH(CH3)-CH(CH3)-CH(CH3)-... for N2(3); 
@sum(position(l):y(1,l))>=3*N2(2)+1.05*N2(3); ! For the reason same as above; 
@sum(position(l):y(1,l))>=N2(1)+1.75*N2(4); ! If there is only one N2(4), we have 
@sum(position(l):y(1,l))>=N2(1)+3*N2(4);  Instead, to be a little bit conservative, we consider  there 
may exist a worst case with three N2(4)connected consecutively, i.e.CH3-CH(CH3)C(CH3)2-
CH(CH3)C(CH3)2-CH(CH3)C(CH3)2-none carbon; 
@sum(position(l):y(1,l))>=2*N2(1)+2.4*N2(5); ! If there is only one N2(5), we have 
@sum(position(l):y(1,l))>=2*N2(1)+4*N2(5);!Instead, we consider  there may exist some worst case with 
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three N2(4)connected consecutively, i.e.-C(CH3)2C(CH3)2-C(CH3)2C(CH3)2-C(CH3)2C(CH3)2-none 
carbon; 
@sum(position(l):y(3,l)+y(7,l)+y(9,l)+y(12,l))>=N2(1)+N2(6); ! For 2ndgroup 
21,26, CH; 
@sum(position(l):y(13,l)+y(14,l))>=N2(2)+N2(7); !For 2ndgroup 22,27, C; 
@sum(position(l):y(3,l)+y(7,l)+y(9,l)+y(12,l))>=1.01*N2(3);  ! For 2ngroup 
21, CH;!for reason same as above; 
@sum(position(l):y(13,l)+y(14,l))>=0.6*N2(4);  ! For 2ndgroup 24, C; 
@sum(position(l):y(3,l)+y(7,l)+y(9,l)+y(12,l))>=0.6*N2(4);  ! For 2ndgroup 
21, CH; 
@sum(position(l):y(13,l)+y(14,l))>=1.2*N2(5);  ! For 2ndgroup 25, C; 
 
@sum(position(l):y(4,l))>=N2(6); ! For 2ndgroup 26, OH; 
@sum(position(l):y(4,l))>=N2(7); ! For 2ndgroup 27, OH; 
@sum(position(l):y(4,l))>=2*N2(8); ! For ndgroup 28, OH; @bin(N2(8)); ! for N1,4

�3, 
and N1,4

� 2 case, use @sum(position(l):y(4,l))>=1.1*N2(8) in case of special case 
CH(OH)CH(OH)CH(OH)...; 
@sum(position(l):y(4,l))>=N2(9); ! N2(9)<=2; for2 ndgroup 29,OH and N; 
 
! Constraints for 3rdgroup; 
@sum(position(l):y(4,l))>=2*N3(2); ! For 3rdgroup 32, OH; for N1,4

�3, and N1,4
� 2 case, 

the constraints become insignificant, i.e.>=Cn
2*N3(2); 

@sum(position(l):y(6,l)+y(7,l)+y(14,l)+y(15,l))>=N3(3); ! For rdgroup 33, O; 
@sum(position(l):y(4,l))>=2*N3(4); !For 3rdgroup 34, OH; for N1,4

�3, and N1,4
� 2 case, 

the constraints become insignificant >=Cn
2*N3(2); 

 
!constraint for some group can not coexist; 
0.5*N2(6)+N2(8)<=1; ! For OH; for N1,4

�3, and N1,4
� 2 case, it dosen’t valid; 

0.5*N2(7)+N2(8)<=1; ! For OH; N1,4
�3, and N1,4

� 2 case, it doesn’t valid; 
N2(8)+N3(2)+N3(3)+N3(4)<=1; ! For OH; for N1,4

�3, and N1,4
� 2 case, it doesn’t valid 

N2(8)+N2(9)<=2; ! For OH and N; for N1,4
�3, and N1,4

� 2 case, it doesn’t valid 
2*N2(8)+@sum(position(l):y(15,l))<=2; ! For N2(8) and Y(15,l) can not coexist; N1,4

�3, 
and N1,4

� 2 case, it doesn’t valid; 
 
! Constraints for Hv; 
Hv_molecule=@sum(position(l):@sum(group(g):y(g,l)*Hv(g)))+@sum(ndgroup(
s):Hv2(s)*N2(s))+@sum(rdgroup(t):Hv3(t)*N3(t)); 
 
@sum(position(l):@sum(group(g):y(g,l)*Hv(g)))+@sum(ndgroup(s):Hv2(s)*N2
(s))+@sum(rdgroup(t):Hv3(t)*N3(t))<=72.392;  
@sum(position(l):@sum(group(g):y(g,l)*Hv(g)))+@sum(ndgroup(s):Hv2(s)*N2
(s))+@sum(rdgroup(t):Hv3(t)*N3(t))>=53.642;  
 
! Constraints for Tc; 
Tc_molecule=@sum(position(l):@sum(group(g):y(g,l)*Tc(g)))+@sum(ndgroup(
s):Tc2(s)*N2(s))+@sum(rdgroup(t):Tc3(t)*N3(t)); 
 
@sum(position(l):@sum(group(g):y(g,l)*Tc(g)))+@sum(ndgroup(s):Tc2(s)*N2
(s))+@sum(rdgroup(t):Tc3(t)*N3(t))<=22.16; 
@sum(position(l):@sum(group(g):y(g,l)*Tc(g)))+@sum(ndgroup(s):Tc2(s)*N2
(s))+@sum(rdgroup(t):Tc3(t)*N3(t))>=19.88; 
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! Constraints for Hfus; 
Hfus_molecule=@sum(position(l):@sum(group(g):y(g,l)*Hfus(g)))+@sum(ndgr
oup(s):Hfus2(s)*N2(s))+@sum(rdgroup(t):Hfus3(r)*N3(t)); 
 
@sum(position(l):@sum(group(g):y(g,l)*Hfus(g)))+@sum(ndgroup(s):Hfus2(s
)*N2(s))+@sum(rdgroup(t):Hfus3(t)*N3(t))<=22.006; 
@sum(position(l):@sum(group(g):y(g,l)*Hfus(g)))+@sum(ndgroup(s):Hfus2(s
)*N2(s))+@sum(rdgroup(t):Hfus3(t)*N3(t))>=16.52; 
 
 
! Constraints for Tm; 
Tm_molecule=@sum(position(l):@sum(group(g):y(g,l)*Tm(g)))+@sum(ndgroup(
s):Tm2(s)*N2(s))+@sum(rdgroup(t):Tm3(t)*N3(t)); 
@sum(position(l):@sum(group(g):y(g,l)*Tm(g)))+@sum(ndgroup(s):Tm2(s)*N2
(s))+@sum(rdgroup(t):Tm3(t)*N3(t))<=7.3; 
 
! Constraints for Tb; 
Tb_molecule=@sum(position(l):@sum(group(g):y(g,l)*Tb(g)))+@sum(ndgroup(
s):Tb2(s)*N2(s))+@sum(rdgroup(t):Tb3(t)*N3(t)); 
@sum(position(l):@sum(group(g):y(g,l)*Tb(g)))+@sum(ndgroup(s):Tb2(s)*N2
(s))+@sum(rdgroup(t):Tb3(t)*N3(t))>=8.64; 
 
 
DATA: 
covalence=1,2,3,1,1,2,3,1,2,1,2,3,4,4,1,2; 
Tm=0.6953, 0.2515, -0.3730, 2.7888, 1.3643, 0.8733, 0.2461, 3.2742, 
30.8394, 2.4034, 1.7746, 1.7577, 0.0256, -0.4446, 2.3651, 0; 
Tb=0.8491, 0.7141, 0.2925, 2.5670, 1.7703, 1.3368, 0.8924, 2.7987, 
2.0948,  2.2514, 1.8750, 1.2317, -0.0671, 0.4983, 4.8721, 0;                                             
Tc=1.7506, 1.3327, 0.5960, 5.2188, 3.4393, 2.4217, 0.7889, 8.1745, 
4.2847, 4.5529, 3.2422, 2.0057, 0.0306, 0.2511, 10.4579,0;                                                      
Hv=0.217, 4.91, 7.962, 24.241, 5.783, 9.997, 14.62, 15.432, 16.048, 
11.831, 13.067, 14.048, 10.73, 13.85, 31.493, 0; 
Hfus=1.66, 2.639, 0.134, 4.786, 5.089, 4.891, 4.766, 13.482, 6.283,   
4.490, 7.711,   2.561, -1.232,  2.458,   8.454, 0;  
Tm2=0.1175, -0.1214, 0.2390, -0.3276, 3.3297, -0.3489, 0.3695,   
-0.0414, -0.5941;   
Tb2=-0.0035, 0.0072, 0.316, 0.3976, 0.4487, -0.2825, -0.5325, 0.8854, 
0.5082; 
Tc2=-0.0471, -0.1778, 0.5602, 0.8994, 1.5535, -0.6768, -1.5224, 1.9395, 
1.2342; 
Hv2=-0.399, -0.417, 0.532, 0.623, 5.086, -0.206, -1.579,    
-6.611, 0; 
Hfus2=0.396, 0.554, -1.766, 0.351, -1.089, -0.599, -0.459,    
-0.306, -0.041; 
Tm3= 0.7732, 0.6674, -0.1073, -0.0781;  
Tb3= 1.075, 0.7193, 1.1867, 0.2991; 
Tc3= 0.495, 0.1725, 6.6872, 0; 
Hv3= 4.171, 5.411, -8.651, 1.753; 
Hfus3=-4.840, -0.272, 1.661, 0.301;                                                   
Enddata 
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APPENDIX C 

PROCESS DESIGN LINGO CODE 
model: 
sets: 
solvent/1,2,3,4/:Hv,Tc,Hfus,F; ! 1 MDEA, 2 MEA, 3 DEA 4 DGA; 
unit/1,2,3,4,5/:HVl,Tcl,Hfusl, ! Lower bound; 
            Hvu,Tcu,Hfusu, ! Up bound; 
            G; !  Demand flowrate; 
allocation(solvent,unit):x; ! Allocation fraction of  process source m to sink n; 
allocationf(unit):xf; ! Allocation fraction of fresh (new molecule) to sink n; 
endsets 
! Properties of molecule to check; 
Tmf=292.9201; 
Tbf=518.0995; 
Tcf=698.8097; 
Hvf=79.76; 
Hfusf=18.563; 
Fr=720; 
 
! Property constraints for each operating unit; 
! Hv constraints for each unit; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hv(i))+Hvf*xf(j)*Fr<=Hvu(j)*G(
j)); 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hv(i))+Hvf*xf(j)*Fr>=Hvl(j)*G(
j));  
! Tc constraints for each unit; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Tc(i))+Tcf*xf(j)*Fr<=Tcu(j)*G(
j)); 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Tc(i))+Tcf*xf(j)*Fr>=Tcl(j)*G(
j)); 
! Hfus constraints for each unit; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hfus(i))+Hfusf*xf(j)*Fr<=Hfusu
(j)*G(j)); 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i)*Hfus(i))+Hfusf*xf(j)*Fr>=Hfusl
(j)*G(j));! 
Tmf<=293; 
Tbf>=480; 
! Flowrate balance for the sources and units; 
@for(unit(j):@sum(solvent(i):x(i,j)*F(i))+xf(j)*Fr=G(j)); ! This is equivalent 
to n equations; 
 
! Physical constraints; 
@for(solvent(i):@sum(unit(j):x(i,j))<=1); ! This is for the solvent; 
@for(allocation(i,j):x(i,j)<=1); 
@for(allocation(i,j):x(i,j)>=0); 
@sum(allocationf(j):xf(j))=1; ! This is for the fresh; 
@for(allocationf(j):xf(j)<=1); 
@for(allocationf(j):xf(j)>=0); 
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@for (used_solvent_unit(i,j):x(i,j)*F(i)=f(i,j)); ! Calculate the flowrate 
allocation of process source i to sink j; 
@for (unit(j):Fr*xf(j)=ffresh(j)); ! Calculate the flowrate allocation of fresh (new 
molecule) to sink j; 
 
data: 
Hv=95,64,85,82; 
Tc=678,670,715,699; 
Hfus=23,18.4,22.1,21.7; 
F=60,90,70,60; 
Hvl=67.5,67.5,70,70,72.5; 
Hvu=80,82.5,82.5,85,85; 
Tcl=685,690,690,695,695; 
Tcu=705,705,710,710,715; 
Hfusu=19,19.5,19.5,20,20; 
Hfusl=15,15,16,16,17; 
G=200,210,230,190,170; 
enddata 
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APPENDIX D 

OPTIMIZATION OF BIOMASS-TO-ENERGY SYSTEM LINGO 

CODE 
 
model: 
sets: 
generator/gen1,gen2,gen3/:capacity,efficiency,efficiency_coal,R_cofirin
g,R_th_cofiring,cost_modification;! i for generator; 
month/jan..dec/;!j for month; 
feedstock/coal,bagasse,sw,wood/:HHV, 
cost,GHG,GHG_year,cost_GHG_year,m_year,cost_year,cost_storage_feedstock
,cost_year_storage_feedstock; !k for feedstock, m_year is yearly 
feedstock demand in tonne; 
genfeed(generator,feedstock):m;!m is the monthly feedstock demand; 
genmon(generator, month):Y;!Y is a binary varialbe for maintenance; 
monfeed(month,feedstock):Residual_mon,supply_mon,demand_mon,storage_mon
,cost_mon_storage; 
endsets 
 
 
 
data: 
capacity=200000,150000,100000;!in KW; 
efficiency_coal=0.3413,0.3413,0.3413; 
HHV=23552120,14141790,15991000,20307340;!in kJ/tonne; 
cost_storage_feedstock=0,1,1,1;!in $/tonne/month; 
enddata 
@for(feedstock(k):@free(GHG)); 
@for(feedstock(k):@free(GHG_year)); 
@for(feedstock(k):@free(cost_GHG_year)); 
!@free(GHG_price); 
@free(total_GHG_year_cost); 
 
!coal; 
cost(1)=30.10;!in $/tonne coal; 
GHG(1)=2225.5471;! in CO2-Eq kg/tonne coal (LCA of GHG emission exclude 
post combustion control and ash transport); 
!HHV_coal=23552.12;!in kJ/kg coal; 
 
!Bagasse 
cost(2)=20;!in $/tonne bagasse; 
GHG(2)=-107.4106;!net GHG emission kg co2/tonne bagasse; 
!HHV_bagasse=14141.79; !in kJ/kg bagasse; 
@for(month(j)|j#LE#5 #or# j#GE#10:supply_mon(j,2)=21649);!in 
tonne/month bagasse; 
@for(month(j)|j#GT#5 #and# j#LT#10:supply_mon(j,2)=0);! from june to 
sep no bagasse supply; 
 
 
!switchgrass; 
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!HHV_sw=15991;!kJ/kg sw; 
Y_sw=5806;!yield of sw in tonne/mile2; 
L_sw_highway=15;!in miles; 
L_in_land^2-m_year(3)/Y_sw<=0;!1-way in miles,m_sw is the yearly demand 
for power generation; 
L_in_land^2-m_year(3)/Y_sw>=0;! convexiation for nolinear function; 
cost(3)=0.7353*L_in_land+0.2206*L_sw_highway+32.49;! in $/tonne 
switchgrass; 
GHG(3)=1.0346*L_in_land+0.3104*L_sw_highway+4.2923;! GHG effect before 
sw combustion in kg CO2-Eq/tonne; 
supply_mon(9,3)=m_year(3);!all sw were harvest in sep; 
@for(month(j)|j#NE#9:supply_mon(j,3)=0);!monthes other than sep no 
harvest; 
 
!Logging residue, Data based on 7.3% moisture in green (as received); 
!HHV_wood=20307.34;! in kJ/kg; 
M_wood_max=108540;!in tonne/year; 
Y_wood=4341.6;!in tonne/mile2; 
m_wood_load=3.96;!in tonne; 
L_wood_highway=47.50;!in mile; 
L_in_wood^2-m_year(4)/Y_wood<=0;!1-way in miles,m_year(wood)in tonne is 
the yearly demand for power generation; 
L_in_wood^2-m_year(4)/Y_wood>=0;!convexiation for nolinear function; 
price_log=3.066; !in $/tonne; 
cost(4)=5.337*L_in_wood+0.225*L_wood_highway+6.88+price_log;! in 
$/tonne logging residue; 
GHG(4)=13.446*L_in_wood+0.586*L_wood_highway-1237.9806;!net GHG 
emission after combustion, in kg co2-Eq /tonne logging residue 
including avoid CO2 emission; 
!!GHG(4)=-1100; 
@for(month(j):supply_mon(j,4)<=M_wood_max/12);!monthly supply of wood 
can not exceed the collection speed; 
!m_year(4)=@sum(month(j):supply_mon(j,4));!yearly demand of wood is the 
sumation of month supply; 
 
 
 
!combustion and power generation; 
@for(genmon(i,j): @bin(Y(i,j))); 
@sum(month(j):Y(1,j))=1; 
@sum(month(j):Y(2,j))=1; 
@sum(month(j):Y(3,j))=1; 
@for(month(j):@sum(genmon(i,j):Y(i,j))<=1); 
 
@for(genmon(i,j):capacity(i)*(30-
y(i,j)*15)*24*3600=efficiency(i)*@sum(feedstock(k):HHV(k)*m(i,k)*(1-
0.5*Y(i,j))));!1kwh=3600kJ, energy balance in month j; 
@for(generator(i):efficiency(i)=efficiency_coal(i)/0.86*(0.860044-
0.45*R_cofiring(i)^2-0.0005*R_cofiring(i)));!get the monthly thermal 
efficiency; 
@for(generator(i):R_cofiring(i)*@sum(feedstock(k):m(i,k))=@sum(feedstoc
k(k)|k#GE#2:m(i,k)));!get the monthly cofiring ratio; 
!@for(genmon(i,j):R_cofiring=0.06);! to get maximal cofiring ratio 
during a year; 
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!maximum thermal input; 
@for(generator(i):R_th_cofiring(i)*@sum(feedstock(k):HHv(k)*m(i,k))=@su
m(feedstock(k)|k#GE#2:HHV(k)*m(i,k)));!get the thermal cofiring ration 
of generator i in month j; 
@for(generator(i):cost_modification(i)=capacity(i)*R_th_cofiring(i)*200
/10);!the modification cost of each generator in ten year linear 
depriciation with 0 salvage; 
total_cost_modification=@sum(generator(i):cost_modification(i));!total 
yearly modification cost; 
 
 
!link the yearly demand to monthly consumption; 
@for(feedstock(k):m_year(k)=11.5*@sum(generator(i):m(i,k)));!yearly 
demand of feedstock k; 
@for(monfeed(j,k):demand_mon(j,k)=@sum(generator(i):m(i,k)*(1-
y(i,j)*0.5)));!in month j, demand of k ; 
@for(monfeed(j,k)|k#GE#2:residual_mon(j,k)=supply_mon(j,k)-
demand_mon(j,k)+residual_mon(@wrap(j-1,12),k));!in month j, the 
residual of feedstock 2 sw; 
!residual_mon(12,2)=0; 
@for(month(j):residual_mon(j,1)=0);! no storage for coal; 
@for(monfeed(j,k):storage_mon(j,k)=residual_mon(j,k));! in month j, the 
storage,i.e.residual of k in tonne; 
 
!storage cost; 
@for(monfeed(j,k):cost_mon_storage(j,k)=storage_mon(j,k)*cost_storage_f
eedstock(k));!in month j, the storage cost of k in $; 
@for(feedstock(k):cost_year_storage_feedstock(k)=@sum(monfeed(j,k):cost
_mon_storage(j,k)));!the storage cost of k in a year; 
total_cost_year_storage=@sum(feedstock(k):cost_year_storage_feedstock(k
));!the storage cost of all feedstocks in a year; 
 
 
!cost of GHG; 
GHG_price=0.03;! in $/kg; 
@for(feedstock(k):GHG_year(k)=GHG(k)*m_year(k));! yearly GHG emission 
from burning feedstock k; 
@for(feedstock(k):cost_GHG_year(k)=GHG_price*GHG_year(k));!yearly GHG 
cost for feedstock k; 
Total_cost_year_GHG=@sum(feedstock(k):cost_GHG_year(k));! yearly GHG 
cost of all feedstocks; 
 
!link cost to feedstock demand; 
@for(feedstock(k): cost_year(k)=m_year(k)*cost(k));!yearly cost of 
feedstock k; 
total_cost_year_feedstock=@sum(feedstock(k):cost_year(k)); !total 
yearly cost of all feedstocks; 
 
!total_cost_year_feedstock+Total_cost_year_GHG+total_cost_year_storage+
total_cost_modification=50225390.00+3705082000.00*GHG_price; 
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min=total_cost_year_feedstock+Total_cost_year_GHG+total_cost_year_stora
ge+total_cost_modification; 
 
!max=cost(2); 
!min=GHG_price; 
 
end 
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