
 

COORDINATION OF SUPPLY CHAIN INVENTORY SYSTEMS 

WITH PRIVATE INFORMATION 

 

 
A Dissertation 

by 

CHI-LEUNG CHU 

 

 
 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

 

 

December 2006 

 

 

 

 

Major Subject: Industrial Engineering 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4271822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


COORDINATION OF SUPPLY CHAIN INVENTORY SYSTEMS 

WITH PRIVATE INFORMATION 

 

A Dissertation 

by 

CHI-LEUNG CHU 

 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

Approved by: 

Chair of Committee, V. Jorge Leon 
Committee Members, Brett A. Peters  

César O. Malavé 
Sheng-Jen “Tony” Hsieh 

Head of Department, Brett A. Peters 
 

December 2006 

 

Major Subject: Industrial Engineering 

 
 



 

 

iii

ABSTRACT 
 

Coordination of Supply Chain Inventory Systems  

with Private Information. (December 2006) 

Chi-Leung Chu, B.B.A., The Chinese University of Hong Kong; 

M.B.A., University of New Mexico; 

M.S., Case Western Reserve University 

Chair of Advisory Committee: Dr. V. Jorge Leon 

 

This dissertation considers the problems of coordinating different supply chain 

inventory systems with private information under deterministic settings. These systems 

studied are characterized by the following properties: (a) each facility in the system has 

self decision-making authority, (b) cost parameters of each facility are regarded as 

private information that no other facilities in the system have access to, and (c) partial 

information is shared among the facilities. Because of the above properties, the existing 

approaches for systems with global information may not be applicable. Thus, new 

approaches for coordinating supply chain inventory systems with private information are 

needed. 

 This dissertation first studies two two-echelon distribution inventory systems. 

Heuristics for finding the replenishment policy of each facility are developed under 

global information environment. In turn, the heuristics are modified to solve the 

problems with private information. An important characteristic of the heuristics 

developed for the private information environment is that they provide the same 

solutions as their global information counterpart.  

Then, more complex multi-echelon serial and assembly supply chain inventory 

systems with private information are studied. The solution approach decomposes the 

problem into separate subproblems such that the private information is divided as 

required. Global optimality is sought with an iterative procedure in which the 

subproblems negotiate the material flows between facilities.  At the core of the solution 
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procedure is a node-model that represents a facility and its corresponding private 

information. Using the node-model as a building block, other supply chains can be 

formed by linking the node-models according to the product and information flows. By 

computational experiments, the effect of the private information on the performance of 

the supply chain is tested by comparing the proposed approach against existing 

heuristics that utilize global information. Experimental results show that the proposed 

approach provides comparable results as those of the existing heuristics with global 

information. 
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CHAPTER I  
INTRODUCTION 

1  

 In the past two decades, fierce competition in the global market and rapid 

development in technologies have been continuously redefining the logistics practices. 

These new practices pose new challenges and opportunities to the researchers in both 

industry and academia. In response to these new practices, an increased focus has been 

placed on supply chain management.  

 Supply chain management is defined as ‘the systematic, strategic coordination of 

the traditional business functions and the tactics across these business functions within a 

particular company and across businesses within the supply chain, for the purposes of 

improving the long-term performance of the individual companies and the supply chain 

as a whole’ (Mentzer et al., 2001). One of the main areas of the supply chain 

management is inventory management. According to Statistical Abstract of the United 

States (2005), the annual investment in inventories was US$341 billion, which 

represented more than 10 percent of the total sales in the United States (US$3,338.4 

billion) in 2004. Also, inventory represents thirty-five percent of the total logistics costs 

on average (Coyle et al., 2002). Because of the massive investment in inventory, proper 

inventory management makes good economic sense. 

 Coordinating the inventory systems in a supply chain, however, can be 

challenging. Supply chains in today’s highly competitive and time-sensitive business 

environments are dynamic systems where alliances among companies are continuously 

redefined to rapidly satisfy market needs. Although the full information exchange is 

technically feasible, often the participants in the supply chain will be reluctant to freely 

share private cost information, and to let a third party dictate their inventory policies. An 

obvious example is a supply chain with competing retailers at the lower echelon. The 
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prevalence of private information in a supply chain presents a monumental challenge to 

most existing approaches for supply chain inventory coordination where complete 

information sharing and existence of a centralized decision authority is assumed.  

 Based on the distribution of modeling information, we categorize supply chain 

inventory systems into two categories, namely, systems with global information and 

systems with private information. A supply chain inventory system with global 

information is characterized by a single decision-maker that has access to all the 

information of the system, and specifies the inventory policies for all the participating 

facilities. Systems with private information, on the other hand, are supply chain 

inventory system in which each facility possesses private modeling information that no 

other facilities in the system have access to, and each facility is responsible for 

specifying his/her own inventory policy.  

 Traditionally, researchers focus on supply chain inventory system with global 

information. While there are studies that considered coordination issues in supply chain 

inventory systems assuming autonomous facilities, i.e., there is no single decision-maker 

who can dictate the decisions for all the participating facilities; most of these studies do 

not deal explicitly with private information, such as the objective function and various 

cost parameters, of each facility in the system. Instead, private information is assumed to 

be available as needed, or that it can be estimated by other facilities.  

In this research, we study the supply chain inventory systems with private 

information where the objective is to find the inventory policy for each facility in the 

system such that the ordering and inventory-related cost of the entire system is 

minimized. Specifically, we study two-echelon distribution inventory systems, and 

multi-echelon serial and assembly systems with private information. This study is 

different from the previous studies in that we assume the following information is 

private to each facility: (a) facility’s objective function, (b) facility’s setup/ordering cost, 

and (c) facility’s inventory holding cost. Furthermore, facilities are responsible for 

specifying their own inventory policies; however, they will collaborate with the others to 

achieve a minimal system cost. The goal of this study is to develop theoretical 
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understanding and coordination methodologies for coordinating supply chain inventory 

systems with private information. 

1.1. Research objectives 

The main objectives in this research are:  

(a) To develop coordination methodologies for supply chains characterized by 

private information, a characteristic which is becoming more prevalent in current 

supply chain systems; and  

(b)  To investigate the effect of private information on the performance of supply 

chains when comparing to their counterparts with global information. 

In order to achieve these objectives, we first study simple two-echelon supply 

chains, followed by the study of more complex multi-echelon serial and assembly supply 

chain configurations. 

1.2. Problem statement 

This research investigates the coordination of deterministic supply chain 

inventory systems with private information. The system with private information has the 

following characteristics: 

(a) Each facility in the system has self decision-making authority. 

(b) No single facility has complete information about the whole system.  Objective 

function and the corresponding parameters of each facility is private information. 

(c) Partial information is shared among the facilities in order to achieve close-to-

optimal solutions. 

 Because of the above characteristics, the existing approaches for system with 

global information may not be applicable. 

 A general supply chain inventory system can be represented as a directed graph, 

( )ANG , , where each node Ni ∈  is associated with a facility, and the arc ( ) Aji ∈,  

represents a flow of product/information from node (facility) i to j. Fig. 1.1 shows an 

example of supply chain inventory system depicted as a directed graph. 
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Fig. 1.1. Graph representation of a supply chain. 

 

Each facility in the supply chain is represented by the model shown in Fig. 1.2, 

which is termed node-model in this study. The node-model consists of a production 

subsystem, a raw-material inventory subsystem, and a finished-goods inventory 

subsystem.  A facility is responsible to specify three schedules: a delivery schedule, a 

production schedule, and order schedules.  The delivery schedule is negotiated with the 

downstream facility (the customer), while the order schedules are negotiated with the 

upstream facilities (the suppliers).  The production schedule takes into account both the 

delivery schedule and order schedules, such that the customer demands are met, and 

there is no shortage of raw materials. The work-in-process inventory subsystem is 

associated with the production subsystem.  

Product Flow Information FlowProduct Flow Information Flow
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Fig. 1.2. Node model of facility i. 

 

 There are three salient features of the node-model in Fig. 1.2. First, it represents a 

general type of manufacturing organization, but can also represent a pure warehouse or 

retailer by simply deleting the appropriate model components. Second, it explicitly 

models the raw-material inventory, work-in-process inventory, and finished-goods 

inventory separately. Third, it can be used as an elemental building block to model 

complex supply chain configurations. 

 Using the proposed node-model, this research attempts to develop an 

interaction/negotiation framework in which critical system information can be recovered 

through negotiation among the interacting facilities. 

1.2.1. Two-echelon distribution inventory systems with private information 

Single-warehouse multi-buyers system (SWMB) is a simple form of supply chain 

inventory system where multiple facilities (buyers) draw required material from a single 

supplier to satisfy their given individual demands without shortage or backlogging. The 

supplier in turn places orders to an outside supplier to fill the orders of the buyers. It is 
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assumed that the objective function and setup and inventory holding cost parameters of 

each facility are regarded as private information that no other facilities in the system 

have access to. Moreover, each facility is responsible to specify its own replenishment 

policy for a given demand. The objective is to find a replenishment policy for each 

facility in the system such that the total average ordering and inventory-related cost of 

the entire system is minimized under this restricted information environment. 

A variant of SWMB is single-vendor multi-buyers system (SVMB). SVMB 

differs from SWMB in that the supplier is a manufacturer, which faced a finite 

production rate, instead of a mere warehouse, which can be viewed as having infinite 

production rate. Because of the constraint on the production rate, the coordination of 

SVMB is generally more difficult than that of SWMB. 

 

 

Fig. 1.3. Two-echelon distribution inventory systems. 

 

Fig. 1.3 shows the two-echelon distribution inventory systems in this study. Two-

echelon distribution inventory systems are considered because the problems have special 

mathematical structures that allow decomposition with regard to each facility. Further, a 

facility can either take the form of a warehouse or a manufacturer in a multi-echelon 

supply chain inventory system; and a two-echelon distribution inventory system with 

only one buyer is a special case of multi-echelon serial inventory system.  Thus, 

(a) Single-Warehouse Multi-Buyers System (b) Single-Vendor Multi-Buyers System 

Warehouse 

Buyer 1 Buyer 2 Buyer n 

Vendor 

Buyer 1 Buyer 2 Buyer n 
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studying two-echelon inventory systems will provide valuable insights when studying 

the serial and assembly inventory systems. 

Two-echelon distribution systems are not uncommon. Most major retail chains 

utilize a distribution center as a warehouse to deliver products to the retail stores 

(Nahmias, 1997). An example of SVMB appears in the carpet and rug industry where 

Chesterton Carpet Mills, Inc. manufactures and supplies carpet to seven wholesalers 

(Kerin and Peterson, 2001).  

1.2.2. Serial and assembly inventory systems with private information 

Multi-echelon serial system is the simplest multi-echelon configuration where 

each facility except the first and the last has exactly one predecessor and one successor. 

Assembly system is an extension to serial system in which each intermediate facility has 

multiple predecessors but a single successor. In these supply chain inventory systems, 

each facility only produces single product. Time-dependent demands of the end product 

are assumed to be known over a finite horizon and must be met without backlogging. All 

lead times are assumed to be constant and, without loss of generality, are assumed to be 

zero. The coordination criterion is to minimize the total setup/ordering and inventory-

related cost of the entire system over the finite horizon. These systems are shown in Fig. 

1.4. 

 

 
Fig. 1.4. Multi-echelon serial and assembly inventory systems. 

(a) Multi-Echelon Serial System 

(b) An Multi-Echelon Assembly System
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These systems are considered because of their simple configurations. An 

example of serial system is a European printer manufacturer who assembled the printer 

motherboards in Europe, which are then shipped to Asia where they are integrated with 

the main printer housings (Simchi-Levi et al. 2004). Example of assembly system is 

Dell’s business model where Dell’s suppliers hold stock of components near Dell’s 

assembly factory (de Kok and Graves, 2003). We believe that studying these systems 

can be a stepping-stone toward more complex general multi-echelon configurations.  

1.3. Literature review 

Modern inventory theory began with the derivation of the EOQ formula by 

Harris (1913). Since then, a significant amount of research has been done in the area of 

coordinating supply chain inventory systems in which many of these studies are 

extensions of Harris’ basic EOQ model. Traditionally, this type of research focuses on 

supply chain inventory system with global information, i.e., they assumed that there is a 

single decision-maker who has access to all the relevant information for formulating the 

model and has the authority to force all the facilities to comply with his decision. 

Recently, there is a shift of focus from this centralized decision making paradigm to 

decentralized decision making paradigm. This shift of interest is partly due to the fact 

that typical supply chain composes of companies that are mostly independent to each 

other, and some basic modeling information is not readily shared among the facilities. 

As a result, the traditional approaches for system with global information may not be 

applicable. In this section, we offer a review of research conducted in the area of 

coordinating supply chain inventory systems.  

1.3.1. Single-warehouse multi-buyers system 

 The SWMB problem has been studied thoroughly in the past. It is well known 

that the optimal policies, even with complete information, can be very complex (Graves 

and Schwarz 1977). Before the paper by Roundy (1985), most researchers attacked this 

problem by restricting themselves to special policies such as nested policy and stationary 

policy (Schwarz 1973, Schwarz and Schrage 1975, Graves and Schwarz 1977, and 
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Maxwell and Muckstadt 1985). A policy is stationary if the order intervals are constant 

for each facility. A policy is nested if all the facilities in the system share the same order 

interval. However, Roundy (1985) showed that nested policies may performed poorly as 

the effectiveness of an optimal nested policy can be arbitrarily small, where 

effectiveness is defined as the ratio of the optimal value and the heuristic value of the 

objective function. To overcome this drawback, Roundy (1985) introduced two types of 

policies, namely, the integer-ratio policy and power-of-two policy. An integer-ratio 

policy is a stationary policy in which the order interval of each facility in the system is 

an integer multiple of a base planning period. The power-of-two policy is a subset of 

integer-ratio policy that each facility orders at a power-of-two multiple of a base 

planning period. He presented a heuristic that finds an integer-ratio policy with 94% 

effectiveness. He also proposed a heuristic for finding a power-of-two policy with 98% 

effectiveness. The complexity of both heuristics are O(n log n), where n is the total 

number of buyers. Though the latter heuristic yields a policy with higher effectiveness, 

the former one provides the user with the freedom in choosing the base planning period. 

Nonetheless, the latter heuristic is the best approach currently available for SWMB 

system (Bramel and Simchi-Levi 1997). 

 Later, Lu and Posner (1994) revisited this problem considering integer-ratio 

policies. Taking advantage of the existing linear time method for finding the median, 

they solved the continuous relaxation of SWMB problem in O(n). Based on this result, 

they proposed two heuristics with error bounds approach the one of Roundy’s algorithm. 

The first heuristic explicitly evaluates a pre-defined number of points. They showed that 

as the number of points approaches infinitely, the error bound approaches 2.014% and 

the complexity of this heuristic is O(n). The second heuristic finds a solution with error 

within ε , for any 0>ε , at the expense of longer running time, )log( εnnO . 

 Wang (1995) studied the single-warehouse multiple identical buyers system from 

the warehouse’s perspective and suggested coordinating the system using quantity 

discount and franchise fees. Weng and Wu (2000) studied the same problem with 

heterogeneous buyers.  Assuming that the buyer’s behavior is captured by the classical 
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EOQ model and that the parameters can be estimated by the warehouse, they proposed 

quantity discount by percentage increases instead of the traditional quantity discount by 

unit increase, and showed that their proposed policy is more efficient for systems with 

many different buyers. Chen et al. (2000) integrated the pricing decisions and 

replenishment strategies for the SWMB system where demand of each buyer is a general 

decreasing function of the retail price. Treating the warehouse as a Stackelberg game 

leader, they presented a heuristic in determining the wholesale price and replenishment 

strategies. Abdul-Jalbar et al. (2003) studied the SWMB system with integer-ratio 

policies assuming partial information sharing. After the buyers determine their optimal 

replenishment policies, the warehouse determines the planning period, clusters the 

buyers’ replenishment periods, and calculates the demand for each interval within the 

planning period. By doing so, the warehouse’s problem is transformed to a dynamic-lot-

size problem and can be solved by the algorithm in Wagelmans et al. (1992). Jin and Wu 

(2002) studied the two-suppliers-single-buyer system. Assuming the participants’ costs 

are private information and each supplier’s cost is known probabilistically, they 

investigate different types of auctions as a means for coordination. 

1.3.2. Single-vendor multi-buyers system 

 The literature on SVMB can be summarized into two major categories. The 

research in the first category studies this problem from the vendor’s point of view and 

proposes models using quantity discount to maximize the vendor’s profit. Assuming that 

the vendor has complete information on the buyer’s cost function but has no authority on 

buyer’s decision, Monahan (1984) analyzed the single-vendor single-buyer system as a 

Stackelberg game where the vendor is the game leader. The objective is to maximize the 

total profit of the system. Assuming lot-for-lot production, he showed that quantity 

discount is effective in coordinating the system. Lee and Rosenblatt (1986) generalized 

Monahan’s model by relaxing the lot-for-lot production assumption. Parlar and Wang 

(1995) extended Lee and Rosenblatt (1986) model to a situation where the vendor does 

not have complete information on the buyer’s cost parameters but knows the buyer’s 

inventory holding costs. They proposed a quantity-discount schedule in which there is a 
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unique per unit price for each quantity the buyer might choose. Later, Corbett and de 

Groote (2000) generalized the model to the case where the vendor does not have access 

to the cost information of the buyer but knows the holding cost probability distribution 

of the buyer. Wang (1995) studies the single-vendor multiple identical buyers system 

and suggested coordinating the system using quantity discount and franchise fees. 

Studying both the case when the supplier has complete information of the system and the 

case when the supplier does not have access to any buyer’s cost information, Chen et al. 

(2001) generalized Wang’s (1995) model to heterogeneous buyers. Considering lot-for-

lot policy, Viswanathan and Piplani (2001) studied the case where a vendor only offers 

discount to buyers if the buyers place their order at vendor specified time. 

 Research in the second category studies the integrated model where the objective 

is to minimize the total average cost of the system. Banerjee (1986) examined the single-

vendor single-buyer case and presented a ‘lot-for-lot’ model in which the vendor 

produces each buyer shipment as a separate batch. Goyal (1988) generalized Banerjee’s 

model by relaxing the ‘lot-for-lot’ policy. Lu (1995) studied the problem with an 

additional constraint of the maximum cost that the buyer is prepared to incur. Assuming 

equal delivery quantity at each replenishment period, he provided an optimal solution for 

single-vendor single-buyer case. Later, Goyal (1995) presented an alternative policy in 

which successive shipments within a production batch increases by a factor equal to the 

production rate divided by the demand rate. Instead of using a fixed increasing factor, 

Hill (1997) generalized Goyal’s (1995) policy such that the increasing factor is a 

decision variable. Goyal and Nebebe (2000) then proposed a new type of policy that 

ensures a quick delivery for the first shipment to the buyer. Under this policy, the first 

replenishment will be of small size, followed by (k-1) equal sized replenishment, where 

k is the number of replenishments of a production batch at the vendor. Banerjee and 

Burton (1994) studied the single-vendor multi-buyers system. In the situation where 

there is no coordination between the vendor and the buyers, each facility will operate 

according to his/her optimal policy. They showed that the total average cost of the 

system would be substantially lower through coordinated inventory control and 
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presented an EOQ-type solution for the system for finding integer-ratio replenishment 

policies. 

1.3.3. Serial and assembly system 

 Studies on dynamic lot-sizing problem of supply chain inventory system with 

global information can be traced back to 1960’s. Zangwill (1969) is the first to solve the 

multi-echelon serial system by dynamic programming. Love (1972) solved the same 

problem by dynamic programming which takes advantage of the nested structure of the 

optimal solution. Veinott (1969) and Crowston and Wagner (1973) considered general 

multi-echelon supply chain system and solved the problems by dynamic programming. 

Unfortunately, the computation efforts of these dynamic programming algorithms 

increase exponentially with the problem size.  

 When considering multi-echelon assembly system, Afentakis, Gavish, and 

Karmarkar (1984) proposed a Lagrangian relaxation approach that decomposes the 

problem into a set of single-echelon problems which can be solved by Wager-Whitin 

algorithm (Wager and Whitin 1957). Later, Afentakis and Gavish (1986) extended the 

approach of Afentakis, Gavish, and Karmarker (1984) to more general assembly 

systems. Kuik and Salomon (1990) suggested a solution approach for a general multi-

echelon supply chain inventory problem based on simulated annealing. Later, Salomon 

(1991) proposed a simple decomposition heuristic for the multi-echelon supply chain 

system in which the upper bound is obtained by modifying the balance equation. 

 Due to the complexity of the multi-level supply chain inventory system, different 

hierarchical heuristics that sequentially consider the facility from the bottom to the top of 

the supply chain, which are termed single-pass approaches, were also developed. New 

(1974) studied the performance of applying single-item lot sizing method to multi-

echelon supply chain systems. Blackburn and Miller (1982) identified the potential 

errors in applying the single-pass heuristics and developed series of simple heuristics to 

modify the setup and holding costs of the problems before applying the single-item 

algorithm to each facility. Grave (1981) suggested an iterative approach that improved 

on the single pass solution for multi-echelon supply chain system. 
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 Billington et al. (1986) studied the multi-echelon capacitated lot sizing problem 

with a single bottleneck and proposed a branch and bound algorithm for solving the 

problem. Maes and Van Wassenhove (1986) developed a so-called ABC heuristic for 

single-echelon capacitated lot sizing problem, and later extended it to multi-echelon 

serial system (Maes and Van Wassenhove, 1991). Tempelmeier and Derstroff (1996) 

studied the general multi-echelon supply chain structure and presented an effective 

Lagrangian relaxation heuristic which decomposed the problem into a set of 

uncapacitated single-item lot sizing problems. 

 Recently, the studies of serial and assembly supply chain systems are mainly 

focused on stochastic models. Researchers have been developed different supply chain 

contracts with different incentives to coordinate the supply chain inventory systems. 

When considering two-echelon serial system, Lee and Whang (1999) proposed 

coordinating the system with incentive scheme that is characterized by transfer pricing, 

consignment, backlog penalty, and shortage reimbursement. Proteus (2000) considered 

the same problem and proposed using responsibility token, which is in essence a 

reimbursement scheme, as the coordination mechanism. Cachon and Zipkin (1999) 

studied two-echelon serial system and proposed using an array of transfer payment 

contracts that are based on local information for channel coordination.  

1.4. Organization of this dissertation 

This dissertation is organized as follows. In Chapter II, the single-warehouse 

multi-buyers system with private information is studied and an interaction/negotiation 

approach is proposed. In Chapter III, the proposed approach for coordinating single-

warehouse multi-buyers system with private information is extended to single-vendor 

multi-buyers systems. In Chapter IV, we address the coordination problems of serial and 

assembly systems and a Lagrangian-based decomposition framework is proposed. 

Finally, Chapter V presents conclusion of this study and future research directions.  
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CHAPTER II  
SINGLE-WAREHOUSE MULTI-BUYERS SYSTEM 

2  

2.1. Introduction 

In this chapter, the problem of coordinating the single-warehouse multiple-

buyers (SWMB) system with private information is studied. The SWMB is a simple 

form of supply chain network where multiple facilities (buyers) draw required material 

from a single warehouse to satisfy their given individual demands. The warehouse in 

turn places orders to an outside supplier to fill the orders of the buyers. Specifically, we 

consider the SWMB system where the following information is private to each facility: 

(i) facility’s objective function, (ii) facility’s setup cost, and (iii) facility’s inventory 

holding cost. Furthermore, we consider the case in which no facility has authority to 

make decision for other facilities in the system besides him/her, and each facility will 

collaborate with the others to achieve a minimal system cost. The objective is to find a 

policy that minimizes the total average ordering and inventory-related cost of the 

SWMB system under this restricted information environment. 

Consider the simplest case of SWMB as follows: a fixed charge is incurred 

whenever the warehouse places an order. Similarly, a facility-dependent setup cost for 

each buyer is charged for each order placed. Also, there is a facility-dependent holding 

cost for inventory at each facility in the system. Even under a global information 

environment where there is a decision maker who possesses all the information about the 

system, there is no known polynomial method for solving this SWMB problem. The 

power-of-two approximation of Roundy (1985) is the best heuristic currently available. 

In the private information case under consideration in this study, Roundy’s method or 

any other heuristics developed for global information environment will not be 

applicable.  
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The objective of this chapter is to develop a solution approach to address the 

SWMB system where the cost structure and parameters are considered private 

information of the corresponding facility and no other facilities have access to these 

pieces of information. We assume there is a fixed base planning period ( BT ), and that all 

the order intervals are power-of-two multiples of BT . With this additional assumption, a 

new method for solving the SWMB system with global information is developed. In 

turn, we propose an interaction model for the case with private information based on the 

new method such that both models will produce the same solutions. Both models are 

applicable to SWMB systems where the cost function of each facility is convex. The 

remainder of this chapter is organized as follows. In Section 2.2, solution procedure 

developed by Roundy (1985) is reviewed. Section 2.3 presents a new heuristic for 

solving the SWMB problem under global information environment. Section 2.4 contains 

the derivation and description of an interaction model for the SWMB system with 

private information. Finally, Section 2.5 presents some concluding remarks. 

2.2. Roundy’s algorithm 

 We now describe in more detail the solution procedure presented by Roundy 

(1985) since it motivated the methodologies developed in this study. For convenience, 

we term this solution procedure as Roundy’s algorithm. We assume that no shortage or 

backlogging is allowed. Without loss of generality, replenishment is assumed to be 

instantaneous. Furthermore, the base planning period, BT , is assumed to be fixed and 

that only power-of-two policies are employed. In other words, the order interval of each 

facility is a power-of-two multiple of BT . Assuming an agree-upon base planning period 

is more of a practical reason than an academic one. For example, delivery may service 

every morning. Therefore, a natural choice of BT  is 1 day. On the other hand, if BT  is not 

predefined but is treated as a decision variable, the “optimal” BT  may not be in accord 

with the actual delivery service practice, which renders the “optimal” policy inoperable. 

Consider the following notations: 
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n : Number of buyers 

 0K : Setup cost at the warehouse 

 iK : Setup cost at buyer i, ni ,,1K=  

 ih0 : Unit holding cost of item for buyer i at the warehouse, ni ,,1K=  

 ih : Unit holding cost at buyer i, ni ,,1K=  

 iD : Constant demand rate at buyer i, ni ,,1K=  

 BT : Base planning period 

 0T : Order interval at the warehouse (decision variable) 

 iT : Order interval at buyer i, ni ,,1K=  (decision variables) 

 Γ : System order policy, { }nTTT ,,, 10 K=Γ  

 ( )Γc : Total average cost of the system 

 ( )Γ0c : Total average cost of the warehouse 

 ( )ii Tc : Total average cost of buyer i, ni ,,1K=  

 ( )ii Tg : Total average cost attributable to buyer i when iTT >0 , ni ,,1K=  

 iτ ′ : Optimal solution that minimizes ( )ii Tc , ni ,,1K=  

 iτ : Optimal solution that minimizes ( )ii Tg , ni ,,1K=  

 it′  : Power-of-two solution that minimizes ( )ii Tc , ni ,,1K=  

 it : Power-of-two solution that minimizes ( )ii Tg , ni ,,1K=  

 ( )ji ΓΓ∆ , : Changes in total average cost of the system if iΓ  is used instead of 
jΓ , ( ) ( ) ( )jiji cc Γ−Γ=ΓΓ∆ ,  

 When determining the total average cost of the system, if iTT ≤0 , then the 

warehouse orders for buyer i at the same time when buyer i orders. Thus, the burden of 

inventory holding falls solely on buyer i; and  

iii
i

i
ii TDh

T
K

Tc
2
1)( += .   (2.1) 
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On the other hand, if iTT >0 , the warehouse orders iDT0  for buyer i every 0T . Both the 

warehouse and buyer i carry inventories in this case. Thus, the average total cost 

attributable to buyer i when iTT >0  is  

( ) )(
2
1)(

2
1

2
1)( 0000 ii

i
iiii

i
iii

i

i
ii TTDhTcTTDhTDh

T
K

Tg −+=−++= . (2.2) 

As a result, for any T0 and Ti, the total average cost attributable to buyer i, ),( 0 ii TTf , is  
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It follows that the SWMB problem can be express as follows.  
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 Consider the relaxed problem when (2.5) and (2.6) are removed, i.e., when 

power-of-two assumption is relaxed. Notice that, by definition, iτ ′  is the optimal 

solution to )( ii Tc , and iτ  is the optimal solution to )( ii Tg , it is easy to verify that 

ii ττ ≤′ . Both )(Γc and ),( 0 ii TTf  are convex in 0T , and the optimal solution to the 

relaxed problem, given 0T , is 
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 As illustrated in Fig. 2.1, Roundy’s algorithm starts by assuming 0T  falls within 

the leftmost interval, I1. After finding the optimal iT  based on (2.8) for all buyer i, 

optimal 0T  can be calculated by solving the relaxed problem (2.4). This procedure is 

repeated by successively assuming 0T  falls within each interval on the right until the 

calculated optimal 0T  falls within the same interval, in which the optimal solution is 

found and the optimal power-of-two policy is obtained by rounding the solution to 

power-of-two multiple of BT . Assuming a fixed BT , this approach generates a power-of-

two policy with 94% effectiveness in O(n log n) operations. 

 

 

Fig. 2.1. Roundy's algorithm. 

 

2.3. SWMB with global information (SWMB-GI)  

 This section presents an alternate method, termed SWMB-GI, for solving the 

SWMB system with global information. A feature of SWMB-GI is that it will lead to the 

development of an interaction model applicable to environments characterized by partial 

information sharing in Section 2.4. 

2.3.1. Heuristic development  

 Distinct to Roundy’s algorithm, the proposed method considers only feasible 

power-of two policies (of BT ). Instead of successively checking whether the optimal 0T  
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falls within a certain interval, the proposed method takes advantage of the property that 

)(Γc  is convex in 0T  and monitors the slope of the total average cost by varying 0T . 

Starts by letting 0T  be a power-of-two policy, the proposed method finds the 

corresponding optimal power-of-two policy, iT , for each buyer i, ni ,,1K= , and 

calculates the corresponding total average cost of the system; and then successively 

increases 0T  to the next power-of-two period until the total average cost of the system 

increases at which point the optimal power-of-two policy is found; as illustrated in Fig. 

2.2.  

 

 

Fig. 2.2. Proposed solution approach. 

 

 Since the proposed method only considers power-of-two policies, the optimal 

power-of-two solution, it′  and it , are used instead of iτ ′ and iτ . By definition, B
k

i Tt i2=′  

and B
m

i Tt i2=  are the optimal power-of-two solutions to ( )ii Tc  and ( )ii Tg , 

respectively. To obtain it′  and it , we need to round iτ ′ and iτ  to the power-of-two 

multiple of BT .  The logic of the rounding procedure is as follows. Since ( )ii Tc  is 

convex, if B
k
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condition: 2222 1 ii k
Bi

k T ≤′≤− τ . Similarly, mi must satisfy the condition 

that 2222 1 ii m
Bi

m T ≤≤− τ . For details of this rounding procedure, please refer to 

Roundy (1985). 

 

Proposition 2.1: For a given 0T , the optimal power-of-two policy is given by 

⎪
⎩

⎪
⎨

⎧

<
≤≤′

′<′

=

0

00

0

if
if
if

Ttt
tTtT

tTt
T

ii

ii

ii

i .  (2.9) 

Proof: As shown in (2.3), the total average cost attributable to buyer i is  
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Since both ( )ii Tc  and ( )ii Tg  are convex in iT , they intersect at a single point iTT =0 . 

Also, they are piecewise convex in B
m

i TT 2= . For any given 0T , buyer i must belong to 

either one of the following three sets: { }itTiTG ′<= 00 :)( , { }ii tTtiTE ≤≤′= 00 :)(  , and 

{ }00 :)( TtiTL i <= .  

Case 1: )( 0TGi ∈  

 In this case, ( )ii tc ′  is on the feasible solution frontier and ( ) ( )iiii Tgtc <′  for 

0TTi < . Thus, the optimal iT  is it′ . Fig. 2.3 shows the average total cost functions in this 

case. 
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Fig. 2.3. Average total cost of buyer i when itT ′≤0 . 
 

Case 2: )( 0TEi ∈  

 In this case, ( )ii Tg  is decreasing in the region of itT ≤< 00  and ( )ii Tc  is 

increasing in the region of ∞<≤′ 0Tti , the optimal iT  is the intersection point of ( )ii Tg  

and ( )ii Tc , i.e., 0T . Fig. 2.4 exemplifies this case.  

 

 

Fig. 2.4. Average total cost of buyer i when ii tTt <≤′ 0 . 
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Case 3: )( 0TLi ∈  

 

Fig. 2.5. Average total cost of buyer i when 0Tti < . 

As shown in Fig. 2.5, ( )ii tg  is on the feasible solution frontier and 

( ) ( ) ( ),0 iiiii TcTgtg ≤<  for 0TTi ≥ . Thus, the optimal solution in this case is ti. Q.E.D.  

 

 Based on Proposition 2.1, and the fact that )(Γc  is convex in 0T , we propose an 

iterative heuristic that monitors the changes in total average cost if policy iΓ  is used 

instead of policy jΓ , i.e., ( ) ( ) ( )jiji cc Γ−Γ=ΓΓ∆ , . Define tmin { }niti ,,1:min L=′=  and 

tmax { }niti ,,1:max L== , the heuristic for SWMB system with global information 

(SWMB-GI) that exploits Proposition 2.1 is summarized as follows. 

 

SWMB-GI Heuristic 

Step 0: Calculate ti' and ti for ni ,,1K= . Find tmin { }niti ,,1:min L=′=  and 

tmax= { }niti ,,1:max L= . Let 0=j , =0T  tmin, { }φ=Γ0 , and ( ) ∞=Γ0c .  

Step 1: Choose iT  according to condition (2.9). 

 Let { }n
j TTT ,,, 10 K=Γ  and calculate ( )jc Γ  using (2.4).  
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If ( ) 0, 1 <ΓΓ∆ −jj , go to step 2.  

Otherwise, stop, and the best power-of-two policy is 1* −Γ=Γ j . 

Step 2: If <0T tmax, set 1+= jj , 00 2TT =  and go to step 1. 

If =0T tmax, it means that the optimal 0T  falls in the region [tmax, ∞]. Since for any 

>0T tmax, the optimal iT , for all i, remains the same. Therefore, given the optimal 

iT , for all i, 0T  can be found by first minimizing (2.4) with respect to 0T  and 

then rounding the solution such that B
k

BB
k TkTTT 2222 0

1 ≤=≤− . 

 

In SWMB-GI, we start searching 0T  from tmin in step 0. It is because, for any 

<0T tmin, a policy developed according to condition (2.9) will have a higher average total 

cost than a policy with =0T tmin since the only difference in average total cost of these 

two policies is the setup cost of the warehouse. Also, because )(Γc  is convex in 0T , the 

optimal power-of-two policy can be found by successively increasing 0T  until )(Γc  

starts to increase, i.e, ( ) 0, 1 >ΓΓ∆ −jj . The effectiveness of SWMB-GI is given in 

Theorem 2.1. 

 

Theorem 2.1:  The power-of-two policy obtained from the proposed heuristic, Γ*, has 

94% effectiveness. 

Proof: Since (2.4) is convex, the heuristic stops when the average total cost increases. 

Since the policy obtained at each iteration is an optimal power-of-two policy with 

respect to 0T , by Proposition 2.1, Γ* is the optimal power-of-two policy for given BT . 

Note that Roundy (1985) proves that a power-of-two policy obtained from his approach 

has 94% effectiveness for a fixed BT . Therefore, as the optimal power-of-two policy, Γ* 

will not perform worse than that of Roundy’s algorithm and thus has 94% effectiveness. 

Q.E.D. 
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 Note that the maximum number of points needed to be examined in our proposed 

method is m = ln(tmax - tmin). Since each step can be finished in linear time, therefore, the 

complexity of the proposed heuristic is O(m). 

2.3.2. Numerical example 

 To illustrate the method, we consider a simple example of SWMB system with 

the parameters as shown in Table 2.1. 

 

Table 2.1 
Parameters of the numerical example 
 Warehouse  Buyer 1 Buyer 2 Buyer 3 

K0/order $500 Ki/order $100 $300 $600 

h0
i/unit/year 

(i=1,2,3) 
$2 hi/unit/year $4 $4 $3 

  Di/year 4000 6000 4000 

 

Let 1=BT  month. 

Initialization 

Step 0: { } { }79.3 ,89.1 ,34.1,, 321 =′′′=′ ττττ months, and { } { }4 ,2 ,1,, 321 =′′′=′ tttt months. 

{ } { }57.6 ,68.2 ,90.1,, 321 == ττττ months, and { } { }8 ,2 ,2,, 321 == tttt months. 

tmin = 1 months, tmax = 8 months, 10 =T  months, and ( ) ∞=Γ0c  

Iteration 1 

Step 1: { } { }4 ,2 ,1 ,1,,, 3210
1 ==Γ TTTT , ( ) 467,151 =Γc , and ( ) 0, 01 <ΓΓ∆ . 

Step 2: Set 20 =T  months. 

Iteration 2 

Step 1: { }4 ,2 ,2 ,22 =Γ , ( ) 533,122 =Γc , and ( ) 02934, 12 <−=ΓΓ∆ . 

Step 2: Set 40 =T months. 
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Iteration 3 

Step 1: { }4 ,2 ,2 ,43 =Γ , ( ) 700,123 =Γc , and ( ) 0167, 23 ≥=ΓΓ∆ . Since ( ) 0, 23 ≥ΓΓ∆ , 

the optimal policy is { }4 ,2 ,2 ,22 =Γ , i.e., 20 =T month, 21 =T month, 

22 =T month, and 43 =T  month, with average total cost, $12,533. 

2.4. Heuristic for SWMB with private information (SWMB-PI) 

In this section, we study the SWMB system with private information. First we 

restate the SWMB under private information problem; second, a solution procedure 

which finds the same solution as that of SWMB-GI is developed, and finally a numerical 

example is presented. 

2.4.1. Problem description and heuristic development 

 The SWMB system with private information has the following characteristics: 

(a) each facility in the system has self decision-making authority, 

(b) no single facility has complete information about the whole system, and 

(c) partial information is shared among the facilities in order to achieve close-to-

optimal solutions. 

Specifically, the following information is considered private for the problem under 

consideration: 

(a) The exact form of the objective function of each facility is private information; 

and the only assumption imposed on )(Γc  and ),( 0 ii TTf  is that of convexity. 

(b)  Each facility only views its local objective coefficients. 

 To employ Roundy’s algorithm, one needs to know the exact objective function 

and cost parameters of the warehouse and those of every buyer in order to calculate iτ ′ , 

iτ , and 0T . Therefore, Roundy’s algorithm is not applicable to the private information 

environment considered here. Next, the problem is analyzed to uncover relevant 

structural properties that are helpful in developing an interaction model based on 

SWMB-GI. 



 

 

26

 Note that our analysis in Section 2.3 is developed on the fact that )(Γc  and 

),( 0 ii TTf are convex. In other words, the results obtained in Section 2.3 are applicable to 

the SWMB systems where )(Γc  and ),( 0 ii TTf  are convex, ni ,,1K= . To develop an 

interaction model for SWMB system with private information, we assume that the 

average total cost of the warehouse is convex in 0T  and that of buyer i is convex in iT , 

ni ,,1K= . Also, warehouse’s inventory holding cost attributable to buyer i, ( )ii TH  is 

convex in iT  for given 0T . These assumptions guarantee )(Γc and ),( 0 ii TTf  are all 

convex. For example, buyer i may have a unit holding cost schedule as follows: $2/unit 

for 0-100 units, and $3/unit for 101-200 units. In this case, )(Γc  and ),( 0 ii TTf  are 

convex and thus the analysis in Section 2.3 is still valid. 

 Consider a simple interactive process in which the warehouse and the buyers 

negotiate on the replenishment policies, iT , ni ,,1K= . The negotiation process starts 

with buyer i proposing it ′  and iD  to the warehouse, ni ,,1K= ; and the warehouse 

determines a power-of-two replenishment period, 0T  with respect to buyers’ proposed 

replenishment policies. Then, the warehouse successively modifies 0T  to the next 

power-of-two period, finds the corresponding optimal power-of-two policy iT  and 

proposes it to buyer i; buyer i in turn proposes a compensation amount required from the 

warehouse should (s)he use the compromised iT  instead of it ′ ; and the negotiation 

repeats until a compromised policy is obtained. 

 It is interesting that the above negotiation process is similar to SWMB-GI. 

Specifically, after initialization, SWMB-GI also successively increases 0T  and 

determines the corresponding iT  for buyer i, ni ,,1K= , at each iteration until the best 

policy is obtained. We will show that SWMB-GI can be adapted to simulate the above 

negotiation process.  

 To apply SWMB-GI in this limited information environment, two main 

ingredients are missing: (i) the changes in total average cost of the system as 0T  
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increases; and (ii) optimal iT  for buyer i given 0T , ni ,,1K= . Though it and ( )ii Tc  are 

unknown to other facilities except buyer i, and no facility has knowledge on )(Γc , (i) 

and (ii) can be determined with partial information sharing by the warehouse. We first 

show how to determine (i). 

 In the negotiation process mentioned earlier, buyer i will ask for compensation if 

(s)he uses iT , instead of it ′ , as the replenishment policy. We define the compensation 

requested by buyer i, ( )ii Tcomp , as follows. 

( ) ( ) ( )'
iiiiii tcTcTcomp −=   (2.11) 

Thus, ( )ii Tcomp  is simply the difference in the total average cost of buyer i when iT  is 

used instead of the optimal power-of-two solution, it ′ . In other words, it is the minimum 

compensation for buyer i so that (s)he considers both policies (replenishes at iT  and it ′ ) 

as indifferent. We assume that all the facilities are willing to disclose this piece of 

information honestly. Using ( )ii Tcomp , the difference in total average cost of any two 

policies, 1Γ  and 2Γ , can be restated as follows. 

( )21 , ΓΓ∆  )()( 21 Γ−Γ= cc  

 ⎟
⎠
⎞⎜

⎝
⎛ ∑+Γ−⎟

⎠
⎞⎜

⎝
⎛ ∑+Γ=

==

n

i
ii

n

i
ii TccTcc

1

22
0

1

11
0 )()()()(  

 ( ) ( ) ( ){ }∑ −−−+Γ−Γ=
=

n

i
iiiiiiii tcTctcTccc

1

'2'12
0

1
0 )()()()()()(  

 ( ) ( )∑ −+Γ−Γ=
=

n

i
ii TcompTcompcc

1

212
0

1
0 )()()()(  (2.12) 

 
 Therefore, with the additional piece of information on ( )⋅icomp , the warehouse is 

now in the position to determine the differences in total average cost of any two policies. 

 Next, we show how the warehouse determines iT , ni ,,1K= , for given 0T . 

Given 0T , buyer i must belong to one of the following three sets: { }itTiTG ′<= 00 :)( , 

{ }ii tTtiTE ≤≤′= 00 :)( , and { }00 :)( TtiTL i <= . Since buyer i will request to order 

according to his/her optimal power-of-two policy initially, it′  is known to the warehouse. 
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However, there is no facility in the system possesses the information on ti, and one may 

think that no facility in the system is able to determine whether buyer i belongs to )( 0TE  

or )( 0TL  if 0Tti <′ . As mentioned in Section 2.3, 0T  will not be smaller than 

tmin { }niti ,,1:min L=′= . At the beginning of the negotiation, if the warehouse starts by 

setting =0T tmin, all the buyers can be grouped into )( 0TG  and )( 0TE ; and { }φ=)( 0TL . 

Thus, given =0T tmin, the optimal solution is simply it′ , ni ,,1K=  accordingly to 

Proposition 2.1. Define ( )0TTi  as the optimal iT  given 0T . As the warehouse 

successively increases 0T , optimal iT  and classification of buyer i can be determined 

according to the following proposition. 

 

Proposition 2.2: For a given 0T ,  

(a) The optimal power-of-two policy is given by 
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(b) After finding iT  by (2.13), classification of buyer i can be determined by the 

following rule: 
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  (2.14) 

Proof: To prove Proposition 2.2, we consider three cases, namely, )2( 0TGi ∈ , 

)2( 0TEi ∈ , and )2( 0TLi ∈  given 0T . 
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Case 1: )2( 0TGi ∈  

 Since only power-of-two policy is considered, for any given 0T , if )2( 0TGi ∈ , 

it ′  is either larger than 0T  or equal to 0T . Either case, the optimal Ti is still it ′ . In the 

former case, 0TTi >  and )( 0TGi ∈ ; in the latter case, 0TTi =  and )( 0TEi ∈ .  

Case 2: )2( 0TEi ∈  

If )2( 0TEi ∈ , we have two subcases: (i) )( 0TEi ∈ , i.e, ii tTt ≤<′ 0 , and (ii) 

)( 0TLi ∈ , i.e., 0Tti < . Fig. 2.6 shows the average total cost attributable to buyer i for a 

given 0T  for the two sub-cases.  

 
 
 

(i) ii tTt ≤< 0
'  (ii) 0Tti <  

Fig. 2.6. Cases when )2( 0TEi ∈ . 

 

 Since { })(),(max),( 0 iiiiii TgTcTTf = , the solution frontier to the left of 0T  is 

formed by ( )ii Tg  in both subcases as illustrated in Fig. 2.6. Recall that both the 

warehouse’s inventory holding cost attributable to buyer i, ( )ii TH , and the total average 

cost of buyer i are convex, so is the total average cost attributable to buyer i, ( )ii Tg .  

 In subcase (i), itT ≤0 . Thus, ( )⋅ig  decreases as 0T  increases from 20T . Define 

( ) ( ) ( )22, 0000 TgTgTT iii −=∆  as changes in total average cost attributable to buyer i if 
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0T  is used instead of 20T  as the replenishment policy for buyer i. Then, 

( ) 02, 00 ≤∆ TTi  in this case. 

  In subcase (ii), )2( 0TEi ∈  and )( 0TLi ∈ . Since only power-of-two policies are 

considered, it must be that 20Tti =  and ( )⋅ig  is increasing to the left of 20Tti = , i.e., 

( ) 02, 00 >∆ TTi . Therefore, it is suffice to check changes in ( )ii Tg  to determine buyer i 

as )( 0TEi ∈  or )( 0TLi ∈ . 

 Since ( )ii Tcomp  is assumed to be shared between buyer i and the warehouse, and 

( )ii TH  is known to the warehouse, ( )2, 00 TTi∆  can be calculated as follows. 

( )2, 00 TTi∆  ( ) ( )200 TgTg ii −=  
  ( ) ( )( ) ( ) ( )( )22 0000 THTcTHTc iiii +−+=  
  ( ) ( )( ) ( ) ( )( )22 0000 THTHTcTc iiii −+−=  
  ( ) ( )( ) ( ) ( )( ) ( ) ( )( )22 00

'
0

'
0 THTHtcTctcTc iiiiiiii −+−−−=  

  ( ) ( )( ) ( ) ( )( )22 0000 THTHTcompTcomp iiii −+−=  (2.15) 

 Therefore, if the warehouse has the information on the compensation amount of 

each buyer, (s)he will be able to determine ( )2, 00 TTi∆ . In summary, if 

0)2,( 00 ≤∆ TTi , it must be that )( 0TEi ∈  and the optimal solution is 0TTi = ; 

otherwise, )( 0TLi ∈  and the optimal solution is 20TtT ii == . 

Case 3: )2( 0TLi ∈  

 In this case, 00 2 TTti << . According to Proposition 2.1, the optimal solution is 

still ti, which is ( )20TTi . Since ( ) 00 2 TTTt ii <= , )( 0TLi ∈ .  Q.E.D. 

 

 Before presenting the procedure for solving SWMB-PI, we illustrate the 

information and material flow of the proposed model in Fig. 2.7. Specifically, iD  and it ′  

are passed from buyer i to the warehouse at the beginning of the negotiation. Then, at 

each iteration, the warehouse increases 0T  and proposes iT  to buyer i; and buyer i in turn 

passes information on ( )ii Tcomp  to the warehouse and the negotiation process repeats. 
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 Fig. 2.7. Information and material flow. 

 

 Based on the previous discussion, an interaction model, termed SWMB-PI, for 

the SWMB system with private information is presented as follows.  

 

SWMB-PI Heuristic 

Step 0: Initialization 

Buyer i, ni ,,1K= : 

Calculate it ′ , and submit it, as well as iD , to the warehouse. 

Warehouse: 

(a) Find tmin { }niti ,,1:min L=′= , set =0T  tmin, and 1=j . 

(b) Initialize: 

(i) ( ) { },,,1:20 niiTG K== { }φ=)2( 0TE , and { }φ=)2( 0TL . 

(ii) { }φ=Γ0 , ( ) ∞=Γ0
0c , and ( ) 020 =Tcompi , ni ,,1K= . 

Step 1: Negotiation 

Warehouse: 

(a) Choose iT  for buyer i, ni ,,1K= , as follows: 

Warehouse: 
c0(•)

Buyer 1: 
c1(•)

T1

D1
t1'

comp1(T1)

Buyer i: 
ci(•)

Buyer n: 
cn(•)

Ti Di
ti'
compi(Ti)

Tn
Dn

tn'
compn(Tn)

* The buyers are willing to let the warehouse know that their cost functions are convex.  Also, 
there is an agree-on based planning period, TB.

Product Flow

Information Flow

Warehouse: 
c0(•)

Buyer 1: 
c1(•)

T1

D1
t1'

comp1(T1)

Buyer i: 
ci(•)

Buyer n: 
cn(•)

Ti Di
ti'
compi(Ti)

Tn
Dn

tn'
compn(Tn)

* The buyers are willing to let the warehouse know that their cost functions are convex.  Also, 
there is an agree-on based planning period, TB.

Product Flow

Information Flow
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 (b) Propose the chosen Ti to buyer i, ( ) ( )22 00 TETGi ∪∈ . 

Buyer i, ( ) ( )22 00 TETGi ∪∈ : 

  Calculate ( )ii Tcomp  as in (2.11) and submit it to the warehouse. 

Step 2: Updating 

 Warehouse: 

(a) For each buyer i, ( ) 20TEi ∈ , calculate )2,( 00 TTi∆ as in (2.15) and 

update iT  according to condition (2.13). Set { }n
j TTT ,,, 10 K=Γ . 

(b) Calculate ( )1, −ΓΓ∆ jj  using (2.12).  

(c) If ( ) 0, 1 <ΓΓ∆ −jj , update ( )0TG , ( )0TE , and ( )0TL  according to 

(2.14). Set 1+= jj , 00 2TT =  and go to Step 1.  

Otherwise, stop the negotiation process, and the best power-of-two 

policy is 1−Γ j , and the warehouse announces the corresponding 

optimal power-of-two policy, iT , to buyer i, ni ,,1K= . 

2.4.2. Discussion 

 First, the reader should notice that the warehouse proposes iT  to buyer i 

according to (2.16) but not (2.13) of Proposition 2.2 in Step 1 of SWMB-PI. The reason 

is that if ( ) 20TEi ∈ , the optimal iT  will be either 0T  or 20T . As shown previously, 

the optimal iT  can be determined if the warehouse knows ( ) 0Tcompi and ( ) 20Tcompi . 

Since the warehouse already knows ( ) 20Tcompi from the previous negotiation, (s)he 

needs to get ( ) 0Tcompi by proposing 0T  to buyer i. After obtaining this piece of 

information, the optimal policy, given 0T , is then derived according to (2.13) in Step 2. 
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 Furthermore, the negotiation process excludes buyer i, ( ) 20TLi ∈ . As discussed 

previously, the optimal solution iT  for ( ) 20TLi ∈ is ti, and will not change as 0T  

increases. Thus, there is no need for the warehouse to further negotiate with buyer i in 

this group. 

 At first glance, it seems that there involves many iterations before an optimal 

power-of-two policy is settled. Theoretically, there are infinite potential candidates for 

0T . Since only power-of-two policies are considered, the number of 0T  needed to be 

examined is very small. For example, if 1=BT  minute, only 20 points are needed to 

cover a year’s interval. 

 One may think that, through negotiation, the warehouse will be able to calculate 

the cost parameters of buyer i, ni ,,1K= . Recall that, by assumption, the forms of the 

objective functions, in addition to the cost parameters, of the buyers are unknown to the 

warehouse. Without complete knowledge on the form of the cost function of buyer i, the 

warehouse will not even know all the cost parameters, not to mention calculating them. 

 Also, the above model works exactly the same as the method proposed in Section 

2.3. Thus, there is no loss of performance quality when using SWMB-PI instead of 

SWMB-GI. When the cost functions and model parameters are the same as described in 

Roundy (1985), the policy found using SWMB-PI will also have 94% effectiveness. 

 Finally, for further research, SWMB-PI may be expanded to include buyer’s 

willingness to cooperate. Recall that one of the crucial pieces of information of 

SWMB-PI is ( ) ii Tcomp . In a boarder sense, it can be viewed as the compensation buyer 

i requested to stay cooperation with the warehouse. Thus, buyer i can reflect his/her 

willingness to cooperate by adding an extra penalty term to the compensation term. For 

example, if it is buyer i is only willing to reorder at interval smaller than a certain 

interval T, then for any TTi >  proposed by the warehouse, (s)he can submit a very large 

number as the compensation term. 
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2.4.3. Numerical example 

 Here, we illustrate the model using the same example in 2.3.2. Let 1=BT  month. 

Step 0: Initialization 

 Buyer 1: Submit 000,4 ,1 11 ==′ Dt  to the warehouse. 

 Buyer 2: Submit 000,6 ,2 22 ==′ Dt to the warehouse. 

 Buyer 3: Submit 000,4 ,4 33 ==′ Dt to the warehouse. 

 Warehouse: (a) Set =0T  tmin 1=  months, and 1=j . 

(b) Initialize: 

  (i) ( ) { },3,2,120 =TG { }φ=)2( 0TE , and { }φ=)2( 0TL . 

  (ii) { }φ=Γ0 , ( ) ∞=Γ0
0c , and ( ) 020 =Tcompi , 3,2,1=i . 

Iteration 1 

Step 1: Negotiation 

Warehouse:  Propose 4 ,2 ,1 321 === TTT  to buyers 1, 2, and 3, respectively. 

Buyer i: Compute ( ) 0=ii Tcomp  and submit to the warehouse, 3,2,1=i . 

Step 2: Updating 

Warehouse: Since { }φ=)2( 0TE , set { } { }4 ,2 ,1 ,1,,, 3210
1 ==Γ TTTT .  

 Calculate ( ) 0, 01 <−∞=ΓΓ∆ . Update ( ) { }3,20 =TG , ( ) { }10 =TE , 

and { }φ=)( 0TL . Set 2=j , 22 00 == TT . 

Iteration 2 

Step 1: Negotiation 

Warehouse:  Propose 4,2,2 321 === TTT  to buyer 1,2, and 3, respectively. 

Buyer 1: Compute ( ) 6621 =comp  and submit to the warehouse. 

Buyer 2: Compute ( ) 022 =comp and submit to the warehouse. 

Buyer 3: Computer ( ) 043 =comp  and submit to the warehouse. 
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Step 2: Updating 

Warehouse: (a) Since buyer 1 belongs to )2( 0TE , calculate ( )2, 001 TT∆  as 

in (2.15): 

 ( )2, 001 TT∆
 ( ) ( )( ) ( ) ( )( )22 01010101 THTHTcompTcomp −+−=  

  ( ) ( )( )( )( )12
1

12
2

2
1 400020066 −−+−=  

  0267 <−=  

 According to (2.13), the optimal policy is 201 == TT . Thus, 

set { }4 ,2 ,2 ,22 =Γ . 

(b) Calculate ( )12 ,ΓΓ∆  using (2.12), i.e.,  

 ( )12 ,ΓΓ∆  ( ) ( )∑ −+Γ−Γ=
=

n

i
iiii TcompTcompcc

1

121
0

2
0 )()()()(  

   ( ) ( ))00()00()066(12/2
500

12/4
500 −+−+−+−=  

   02934 <−= . 

(c) Update ( ) { }30 =TG , ( ) { }2,10 =TE , and { }φ=)( 0TL . Set 

3=j , 82 00 == TT . 

Iteration 3 

Step 1: Negotiation 

Warehouse:  Propose 4,4,4 321 === TTT  to buyer 1, 2, and 3, respectively. 

Buyer 1: Compute ( ) 110041 =comp  and submit to the warehouse. 

Buyer 2: Compute ( ) 110042 =comp and submit to the warehouse. 

Buyer 3: Computer ( ) 043 =comp  and submit to the warehouse. 

Step 2: Updating 

Warehouse: (a) Both buyers 1 and 2 belong to )2( 0TE . 

(i) Buyer 1: ( ) 03672, 001 >=∆ TT . According to (2.13), the 

optimal policy is 2201 == TT  .  
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(ii) Buyer 2: ( ) 01002, 002 >=∆ TT . Thus, optimal policy is 

2202 == TT . 

(iii)Set { }4 ,2 ,2 ,43 =Γ . 

(b) ( )( ) 167,360004000)2()( 12
2

12
4

2
1

12/4
5003

0 =−++=Γc  

000,3)( 12/2
5002

0 ==Γc  

Since ,3,2,1,23 == iTT ii  thus ( ) 0)()(
1

23 =∑ −
=

n

i
iiii TcompTcomp . 

( )23 ,ΓΓ∆  ( ) ( )∑ −+Γ−Γ=
=

n

i
iiii TcompTcompcc

1

232
0

3
0 )()()()(  

   ( ) ( ))00()00()6666(3000167,3 −+−+−+−=  

   0167 >= . 

The average total cost is increasing. Thus, the optimal power-

of-two policy is { }4 ,2 ,2 ,22 =Γ , which is the same as the 

solution obtained in Section 2.3.2. 

2.5. Conclusion 

 In this chapter, we consider the problem of coordinating SWMB system where 

the objective is to find a replenishment policy for each facility such that the total average 

ordering and inventory-related cost of the system is minimized. This problem has been 

studied thoroughly in the past under the global information environment. This study is 

different from the previous studies in that we consider the SWMB system in which there 

is no single facility that has complete information about the whole system and each 

facility has self decision-making authority. Specifically, the objective function and cost 

parameters of each facility are regarded as private information that no other facilities in 

the system have access to. 

In this study, we approach the problem by first modeling the problem under 

centralized decision-making paradigm and develop heuristic for solving the problem. 

Then, the proposed heuristic is modified for SWMB system with private information. As 
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a result, two heuristics for finding power-of-two policies are developed. The first 

heuristic, termed SWMB-GI, is developed assuming complete information access. The 

effectiveness of SWMB-GI is 94% and the complexity is O(m) where m=ln(tmax-tmin).  

 The second procedure, termed SWMB-PI, exploits relevant properties of the 

problem and solves the problem through negotiation and partial information sharing such 

that there is no performance loss for the system when SWMB-PI is used instead of 

SWMB-GI. In a system where all the model parameters are the same as the one studied 

in Section 2.3, SWMB-PI will find a power-of-two policy with 94% effectiveness.  

An important result of this study is that we demonstrate that knowledge of the 

system can be partially recovered through negotiation and partial information sharing. In 

next section, we will extend our knowledge on SWMB system to the single-vendor 

multi-buyers system with private information. 
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CHAPTER III  
SINGLE-VENDOR MULTI-BUYERS SYSTEM 

3  

3.1. Introduction 

 In this chapter, we study the problem of coordinating the single-vendor multiple-

buyer (SVMB) inventory system. In a SVMB system, a single vendor receives the order 

from multiple buyers and produces batches of product at a constant rate to satisfy the 

buyers’ demands without backlogging. The objective is to find a production schedule for 

the vendor and replenishment policies for the buyers that minimize the long-run total 

average setup/ordering and inventory-related cost of the system. The SVMB inventory 

system is studied under two scenarios, namely, SVMB with global information and 

SVMB with private information. In the former case, there is a single decision-maker 

who has all the information about the system. In the latter case, no facility has complete 

access to the information of the model parameters. Specifically, the following 

information is private to each facility: (a) facility’s objective function, (b) facility’s 

setup/ordering cost, and (c) facility’s inventory holding cost. Furthermore, facilities are 

responsible for specifying their own inventory policies; however, they will collaborate 

with the others to achieve a minimal system cost.  

 To develop solution approaches for coordinating SVMB inventory system, we 

consider two nested and stationary policies. The first policy is proposed by Banerjee and 

Burton (1994) and assumes that all the buyers must replenish simultaneously. While 

Banerjee and Burton (1994) considered integer-ratio policies, this chapter considers only 

power-of-two polices. This policy is termed “common replenishment period policy” 

(CRPP) in this chapter. The second policy is an extension of CRPP that allows buyers to 

replenish asynchronously. This policy is termed “asynchronous replenishment period 

policy” (ARPP) in this chapter.  
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 Assuming that there is a fixed base-planning period ( BT ), and that all the order 

intervals are power-of-two multiples of BT , two heuristics are developed for finding 

CRPP and ARPP for the global information case. In turn, the proposed heuristics are 

modified for the SVMB inventory with private information. The remainder of this 

chapter is organized as follows. The problem is described in Section 3.2. In Section 3.3, 

we analyze the SVMB system under global information environment and present 

heuristics for finding CRPP and ARPP. Next, two interaction models for SVMB 

inventory system coordination with private information are presented in Section 3.4. 

Then, computational results are given in Section 3.5, followed by conclusion in Section 

3.6. 

3.2. Problem description 

 The following notation is used throughout the chapter: 

 n: Number of buyers 

 P: Constant production rate at the vendor 

 iD : Constant demand rate at buyer i, ni ,,1K=  

 BT : Base planning period 

 ST : Decision variable: production start time 

 0T : Decision variable: production cycle for the vendor 

 RT : Decision variable: common replenishment interval for buyers 

 iT : Decision variable: replenishment interval for buyer i, ni ,,1K=  

 Γ : Policy, { }nS TTTT ,,,, 10 K=Γ  

 ( )Γ0K : Setup cost function of the vendor 

 ( )Γ0H : Inventory holding cost function of the vendor 

 ( )ii TK : Setup cost function of buyer i, ni ,,1K=  

 ( )ii TH : Inventory holding cost function of buyer i, ni ,,1K=  

 ( )Γ0c : Cost function of the vendor, ( ) ( ) ( )Γ+Γ=Γ 000 HKc  
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 ( )ii Tc : Cost function of buyer i, ( ) ( ) ( )iiiiii THTKTc += , ni ,,1K=  

 ( )Γc : Cost function of the system, i.e., ( ) ( ) ( )∑+Γ=Γ =
n
i ii Tccc 10 . 

 ( )ji ΓΓ∆ , : Changes in total average cost of the system if iΓ  is used instead of 
jΓ , ( ) ( ) ( )jiji cc Γ−Γ=ΓΓ∆ ,  

 iτ : Optimal solution that minimizes ( )ii Tc , ni ,,1K=  

 ti: Power-of-two solution that minimizes ( )ii Tc  , ni ,,1K=  

 

 The SVMB is an inventory system where a single vendor is the sole supplier of n 

buyers. The buyers are retailer-type facilities that do not involve production. Each buyer 

i faces an external demand, iD , that must be met without shortage or backlogging. The 

vendor receives orders from each buyer and produces the product in batches. The 

vendor’s production rate, P, and the buyer i’s demand rate iD , ni ,,1K= , are assumed 

to be given and constant, and ∑≥ =
n
i iDP 1 . The replenishment at each buyer is assumed 

to be instantaneous. The objective is to find a policy, Γ , that minimizes the total average 

setup/ordering and inventory-related cost of the system, )(Γc . 

 

Fig. 3.1. Inventory level at the vendor under CRPP. 

 

 TR T0=2kTB 

Inventory 

TS 
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 Similar to other studies (Banerjee 1986, Goyal 1988, Banerjee and Burton 1994, 

Goyal 1995, Hill 1997, and Goyal and Nebebe 2000), the vendor is assumed to begin 

production at time ( )PDTT n
i iRS ∑−= =11  such that the vendor will have no inventory at 

time RT  (Fig. 3.1). The rationale of this assumption is that, for any given RT  and 0T , the 

inventory level of the vendor will be higher if (s)he starts the production at STT < . 

Therefore, (s)he will be better off to start the production at ST . 

 To coordinate the SVMB inventory system, we have the following additional 

assumptions:  

(a) The total average cost of the vendor is convex in 0T  and iT  and that of buyer i is 

convex in iT , ni ,,1K= .   

(b)  Only power-of-two policies with a fixed base planning period, TB, are 

considered. 

(c) A maximum replenishment period, maxT , is given. 

 Assumption (a) guarantees ( )Γc  is convex. Assumption (b) states that the 

replenishment policy of each facility is a power-of-two multiple of TB. Assumption (c) 

states that no buyer should have replenishment period longer than maxT , which is 

reasonable in practice because it is rare for a buyer to have an extremely long 

replenishment period such as 2 years.  

 To determine the average inventory holding cost for the vendor, ( )Γ0H , and that 

of buyer i, ( )ii TH , ni ,,1K= , we need to obtain the average inventory level of each 

facility in the system. Hill (1997) described a simple method to determine the average 

inventory level of the vendor and the system for single-vendor single-buyer system. His 

approach is extended here to the single-vendor multi-buyers case as follows. 
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Fig. 3.2. Total system inventory. 

 
 Fig. 3.2 presents the total system inventory versus time for an arbitrary policy, 

Γ . The total inventory in the system is minimum at ST , where the vendor has no on-

hand inventory, and buyer i, ni ,,1K= , has inventory just enough to satisfy the demand 

until the next replenishment. Therefore, the inventory level at buyer i at ST  is 

( ) iSi DTT − , and the inventory level of the system is ( )∑ −=
n
i iSi DTT1 . Once the 

production batch starts at the vendor, the production will continue until the total units 

produced equal to the total demands of all the buyers for the interval of 0T . The 

production period is thus ( )PDT n
i i∑ =10 . Since the total inventory in the system increases 

at a rate of ∑− =
n
i iDP 1 during the production period, it follows that the height of the 

upper triangle in Fig. 3.2 is ( )( )∑−∑ ==
n
i i

n
i i DPPDT 110 . Using this model the average 

inventory of the system, SysI ,  is 

 ( ) ( )∑ −+∑−∑= ===
n
i iSi

n
i i

n
i iSys DTTPDDTI 1110 1

2
1 . (3.1) 

Since buyer i is assumed to be retailer-type facility with no production, the average 

inventory of buyer i, iI , ni ,,1K=  is 

  iii DTI
2
1

= . (3.2) 
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It follows that the average inventory of the vendor, vI , is  

 vI  ∑ =
−=

n

i iSys II
1

 

  ( ) ( )∑ ∑−−+∑−∑= = ===
n
i

n
i iiiSi

n
i i

n
i i DTDTTPDDT 1 1110 2

11
2
1  

  ( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+∑−∑= ===

n
i iS

in
i i

n
i i DT

T
PDDT 1110 2

1
2
1 . (3.3) 

 

 Once the average inventory levels of all facilities are calculated as shown above, 

the corresponding average inventory holding cost can be determined.  

3.3. SVMB with global information 

 The SVMB system with global information is characterized by a single decision 

maker that has access to all the model information, and has the authority to specify the 

inventory policies for all the facilities in the system. In this section, a search method for 

finding a CRPP for SVMB system with global information is proposed.  Then, by 

relaxing the common replenishment assumption, we extend our solution approach to 

finding an ARPP. The solution methodologies are carefully designed such that they can 

be used as a stepping-stone for the development of an interaction model applicable to 

SVMB inventory system with private information. 

3.3.1. CRPP with global information 

 To find a CRPP, there are only two variables needed to be determined, namely, 

0T  and RT . Due to convexity of ( )Γc , the optimal 0T  for given RT  can be found by 

successively increasing 0T  until the total average cost of the system increases. Initially 

setting 0T  equal to RT , the proposed heuristic calculates the corresponding total average 

cost of the system, )(Γc ; and then successively increases 0T  to the next power-of-two 

period until )(Γc  increases.  At this point, the optimal 0T  for a given RT  is found. In 

turn, RT  is successively increased to the next power-of-two period and the procedure of 

finding the optimal 0T  is repeated. Since there are only finite possible values for RT , the 
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optimal policy can be found by repeating the same procedures for all possible RT .  The 

reader should note that the policy found in each step is a feasible power-of-two policy.

 Defining ( )RTΓ  as the least total average cost policy given TR and OPTΓ  as the 

least total average cost policy found, the heuristic for finding the optimal CRPP for 

SVMB system with global information (CRPP-GI) is presented as follows. 

 

CRPP-GI Heuristic 

Step 0: Initialization 

Set { }niTT iS
OPT ,,0:, L=∞=∞==Γ , and BR TT = . 

Step 1: Find optimal T0 given TR 

1.0 Set RTT =0 , ( )PDTT n
i iRS ∑−= =11 , { }iTTT iS ∀∞==Γ :,, 0

0 , ( ) ∞=Γ0c , 

( ) 0Γ=Γ RT , and 1=k . 

1.1 Set { }niTTTT RiS
k ,,1:,, 0 L===Γ . Calculate ( )1, −ΓΓ∆ kk . 

1.2 If ( ) 0, 1 <ΓΓ∆ −kk , the total average cost is decreasing. Set 00 2TT = , 

1+= kk  and go to Step 1.1. 

 Otherwise, the total average cost ceases to decrease and optimal T0 is 

found for current TR. Set ( ) 1−Γ=Γ k
RT  and go to Step 2. 

Step 2: Updating 

2.1 Calculate ( )( )OPT
RT ΓΓ∆ , . 

2.2 If ( )( ) 0, <ΓΓ∆ OPT
RT , update ( )R

OPT TΓ=Γ , set RR TT 2=  and continue to 

Step 2.3. 

Otherwise, the total average cost ceases to decrease as TR increase. The 

optimal policy is OPTΓ  and STOP. 

2.3 If maxTTR > , the optimal policy is OPTΓ  and STOP. 

Otherwise, go to Step 1. 
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 The reader should note that the heuristic can be sped up by taking advantage of 

the convexity property of ( )Γc . Let ( )RTT0  be the optimal 0T  given RT . For every given 

RT  in Step 1, the search for the optimal 0T  can be started from ( )200 RTTT =  instead of  

RTT =0  because ( )Γc  is convex in both 0T  and RT . However, since there are not many 

possible RT  points, time-savings in implementing this modification will not be 

significant. Thus, we presented CRPP-GI in a straightforward manner as above. 

3.3.2. ARPP with global information  

 In this section we show that an ARPP can be obtained by relaxing the common 

replenishment assumption for any given CRPP. As it will become evident later in this 

chapter, the benefits of relaxing the common replenishment assumption are that: (a) the 

total average cost of the system is less than or equal to that of CPRR; and (b) each 

buyer’s demand is satisfied using a replenishment policy that is as close to his/her 

individual optimal replenishment policy as possible. 

 Since power-of-two policies are considered, the individual optimal replenishment 

period for buyer i, iτ , must be rounded to power-of-two multiple of TB, i.e., B
m

i Tt i2=  

where mi satisfies the following condition: 2222 1 ii m
Bi

m T ≤≤− τ . For details of the 

power-of-two rounding procedure, please refer to Roundy (1985). For any given CRPP 

(i.e., given 0T  and RT ), buyer i must belong to either one of the following three sets: 

{ }RiR TtiTE == :)( , { }RiR TtiTL <= :)( , and { }RiR TtiTG >= :)( .  

Case 1: )( RTEi ∈  

 In this case, buyer i is served according to his/her optimal power-of-two policy 

by replenishing at TR.  

Case 2: )( RTLi ∈  

 Assume that buyer i, )( RTLi ∈ , replenishes according to his/her optimal 

replenishment solution, it , instead of RT . In this case, buyer i clearly will incur lower 

total average cost. Furthermore, the vendor will have less average on-hand inventory as 
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vendor delivers more frequently. So, the vendor will incur lower inventory holding cost 

while the setup cost remains the same for given 0T  and will lead to lower ( )Γ0c . It is 

easy to verify from (3.3) that the changes in average inventory of the vendor is 

( ) 2iRi DTt −  should buyer i replenish at it  instead of RT . Thus, the vendor, the buyer i, 

)( RTLi ∈ , and the system will be beneficial if buyer i replenishes at it instead of RT .  

Fig. 3.3 showed the inventory level versus time at the vendor if buyer i 

replenishes at ti instead of RT  (the solid line). Also presented is the inventory level 

against time at the vendor under the original CRPP (the dash line). 

 

Fig. 3.3. Inventory at the vendor. 

 

 Since ( )Γc  decreases if buyer i replenishes at Ri Tt < , it is beneficial to replenish 

all buyers in )( RTL  according to their corresponding optimal replenishment policies. In 

general, however, the vendor may not have enough on-hand inventory to satisfy the 

demands of all the buyers in )( RTL at time T , RTT < . Firstly, since ST  is fixed, at any 

time T , STT < , the vendor obviously does not have any on-hand inventory because the 

production has not started yet. Secondly, at any time T , RS TTT << , the total units 

produced by vendor is ( )PTT S− . If the total demands for all the buyers who request to 

TimeTR T0=2kTR 

Inventory 

TS ti 
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replenish at time T  is larger than ( )PTT S− , the vendor will not be able to satisfy all the 

demands. Therefore, some buyers in )( RTL have to replenish at a time greater than it . 

 For any T  such that Ri TTt ≤≤ , the vendor and the buyer i, )( RTLi ∈ , will incur 

less average cost if buyer i replenishes at T instead of RT . Therefore, we should try to 

replenish the buyers as close to their optimal replenishment policies as possible. Since 

BT  is predetermined and the replenishment period must be power-of-two multiple of BT , 

there are finite possible “replenishment time slots” between ST  and RT . Thus, we can 

restate the problem as to assign the buyers to different “replenishment time slots” such 

that the total decrease in the total average cost of the system is maximized. Regarding 

each time-slot as a knapsack and the available on-hand inventory at the vendor as the 

capacity of the knapsack, we propose a myopic approximation strategy that solves a “0-

1” knapsack problem for each “replenishment time slot”, B
m T2  where RB

m
S TTT << 2 , 

for finding the replenishment policies for the buyers in )( RTL . 

 Before presenting the “0-1” knapsack problem, we define the following 

additional notation. 

 ( )21
,0 , iii TTc∆ : Changes in total average cost of the vendor if 1

iT  is used instead 

of 2
iT  as buyer i’s replenishment policy 

 ( )21 , iii TTc∆ : Changes in total average cost of buyer i if 1
iT  is used instead of 

2
iT  as buyer i’s replenishment policy 

 ( )21
, , iiiTotal TTc∆ : Changes in total average cost of the system if 1

iT  is used instead 

of 2
iT  as buyer i’s replenishment policy, 

( ) ( ) ( )2121
,0

21
, ,,, iiiiiiiiiTotal TTcTTcTTc ∆+∆=∆  

 ( )mA 2 : Set of buyers who are assigned to the replenishment time slot 

B
mT2  
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 A : Set of buyers who have not been assigned to any replenishment 

time slot 

 B :  Set of buyers who are eligible to be assigned to the current 

replenishment time slot, B
mT2 , { }B

m
i TtAiiB 2 and : ≤∈=  

 ( )m
BI 2 : Available inventory at the vendor for buyers in set B  for 

replenishment time slot m2  

 ix :  0-1 variable in which 1=ix  if buyer i is assigned to the current 

replenishment time slot; 0=ix , otherwise. 

 

 The “0-1” knapsack problem that assign buyers to a given replenishment time 

slot, B
mT2 , is formulated as follows: 

(KP) min ( ) ( ) ( ){ }∑ ∆+∆=∑ ∆
∈∈ Bi

iRB
m

iRB
m

i
Bi

iRB
m

iTotal xTTcTTcxTTc  ,2,2 ,2 ,0,  (3.4) 

 s.t. ( ) ( )∑ ≤
∈Bi

m
BiiB

m IxDT 2 2   (3.5) 

  { }1,0∈ix  (3.6) 

Since ( ) 0 ,2, ≤∑ ∆
∈Bi

iRB
m

iTotal xTTc , objective function (3.4) states the changes in total 

average cost of the system is minimized. Constraint (3.5) guarantees that the vendor 

must have sufficient on-hand inventory to satisfy the demands of the buyers who use 

B
m T2  as the replenishment policy. 

 At time B
m T2 , the total production quantities are ( )SB

m TTP −2 , and the number 

of units that are required to satisfy the demands for the buyers who have been assigned 

to replenishment time slot, B
m TT 2< , are ∑ ∑−

= ∈
1

)2(2 m
sk Ai iB

m
k DT , where s is the smallest 

integer such that SB
s TT >2 . It follows that  

 ( ) ( ) ∑ ∑−−= −
= ∈

1
)2(222 m

sk Ai iB
m

SB
mm

B k DTTTPI .   (3.7) 

 The myopic approximation strategy for finding the replenishment policy for 

buyer i, )( RTLi ∈ , is to solve (KP) successively for each replenishment time slot. 
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Though (KP) is known to be NP-hard, it has been studied extensively in the past and 

different solution approaches can be found in the literature. To find the exact solution, 

dynamic programming approaches (Bellman 1957, Toth 1980) and branch-and-bound 

algorithms (Nauss 1976, Fayard and Plateau 1982, Martello and Toth 1990, etc.) are 

developed. Besides, there are several fast approximation algorithms available (Dantzig 

1957, Ibarra and Kim 1975, Sahni 1975, Pisigner 1997).  In the experiments provided in 

later section, a simple O(n) approximation algorithm (algorithm L) proposed by Sahni 

(1975) yielded good results for this application. 

 Given RT , the replenishment policy for buyer i, )( RTLi ∈∀ , is determined by the 

following heuristic. 

 

Knapsack Heuristic (KH) 

Step 0: Let B
s T2  be the first power-of-two replenishment period after the production 

batch starts, i.e., B
s

SB
s TTT 22 1 <<− . 

0.1: Initialize ( )RTLA = . 

0.2: For sm =  to BR TT , initialize ( ) φ=mA 2 . 

0.3: Let sm = . 

Step 1: Update { }B
m

i TtAiiB 2 and : ≤∈=  and calculate ( )m
BI 2  as in (3.7). 

Step 2: For each Bi ∈ , calculate  

( ) ( ) ( )RB
m

iRB
m

iRB
m

iTotal TTcTTcTTc ,2,2,2 ,0, ∆+∆=∆ . 

Step 3: Solve (KP) to find the set of buyers to be replenished at every B
m T2 . 

Step 4: Update ( ) { }1 and :2 =∈= i
m xBiiA  and ( )mAAA 2−= . 

Step 5: Set ( )m
B

m
i AiTT 2,2 ∈∀= , and 1+= mm . 

Step 6: If RB
m TT <2 , go to Step 1. Otherwise, set AiTT Ri ∈∀= , , and STOP. 

 

 

 



 

 

50

Case 3: )( RTGi ∈  

 

 

Fig. 3.4. Average cost function of two different buyers. 

 

 Consider two buyers in )( RTG with different average cost functions as shown in 

Fig. 3.4. Given 0T  and RT , ( )11 Tc  is at its minimum if buyer 1 replenishes at 11 tT = . On 

the other hand, buyer 2’s replenishment policy is constrained by 0T  because only nested 

policies are considered. Nonetheless, buyer 2 will incur lower average cost if (s)he 

replenishes at 02 TT =  because ( )22 Tc  is convex in 2T . Thus, buyers in )( RTG  will 

benefit from replenishing less often.  

 However, a buyer’s improvement in average cost is at the expense of the vendor 

because of the increase in on-hand inventory at the vendor. If buyer i replenishes at 

Ri TT >  instead of RT , it is easy to verify from (3.1) to (3.3) that the changes in average 

inventory of the system and that of the vendor are ( ) 0>− iRi DTT  and 

( ) 02 >− iRi DTT , respectively. Therefore, the system will improve only if the 

additional holding cost incurred at the vendor is smaller than the savings of buyer i. 

Since ( )Γc  is convex in iT  and there are finite number of possible iT  between RT  and 

0T , we can find the optimal power-of-two policy for buyer i, given RT  and 0T , by first 

t1 t2 TimeT0

)( 22 Tc

)( 11 Tc
C

os
t

TR t1 t2 TimeT0

)( 22 Tc

)( 11 Tc
C

os
t

t1 t2 TimeT0

)( 22 Tc

)( 11 Tc
C

os
t

TR
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setting Ri TT 2=  and successively increasing iT  to the next power-of-two period until the 

changes in total average cost of the system starts to increase, i.e., ( ) 02,, >∆ iiiTotal TTc . 

The heuristic to determine iT  for buyer i is as follows. 

 

Replenishment Heuristic (RH) 

Step 0: Initialize Ri TT 2= .  

Step 1: If 0TTi ≥ , set 0TTi = . STOP. Otherwise, continue to Step 2. 

Step 2: Calculate ( )2,, iiiTotal TTc∆ .  

Step 3: If ( ) 02,, >∆ iiiTotal TTc , the total average cost is increasing. Set 2TTi = . STOP. 

Otherwise, set ii TT 2= and go to Step 1. 

 

 From the analysis of the three cases above, an ARPP can be found for any given 

RT  and 0T . Similar to CRPP-GI, for given RT , the optimal 0T  can be found as follows. 

Start with RTT =0  and assign each buyer to one of the three sets, namely, )( RTE , )( RTL , 

and )( RTG , find the corresponding replenishment policy for each buyer. Then 

successively increase 0T  to the next power-of-two period and determine the 

replenishment policy for each buyer until the total average cost increases.  At this point, 

the optimal 0T  for given RT  is found. The procedure is repeated for all possible RT .  

 Though the replenishment policies for buyers in )( RTE  and )( RTL  are not 

affected by 0T , it is not the case for the buyers in )( RTG . Defining ( )Ri TTT ,0  as the 

optimal replenishment policy for buyer i given 0T  and RT , if ( ) 00 , TTTT Ri < , the optimal 

solution for buyer i given RT  will not change as 0T  increases due to the convexity of 

( )Γc . Thus, only buyer i, ( ){ }00 ,: TTTTii Ri <∉ , may change his/her replenishment 

policy as 0T  increases. For easy reference for this group of buyers in the proposed 

heuristic, we define the set ( ) ( ) ( ){ }000 ,:, TTTTiTGTTG RiRR <−= , which is the set of 
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buyers whose optimal policies have not been determined yet given 0T  and RT . The 

proposed heuristic for finding an ARPP that coordinate the SVMB system with global 

information, termed ARPP-GI, is presented as follows. 

 

ARPP-GI Heuristic 

Step 0: Initialization 

For each buyer i, calculate ti. Set { }niTT iS
OPT ,,0:, L=∞=∞==Γ , and 

BR TT = .  

Step 1: Find optimal T0 given TR 

1.0 Initialize sets )( RTE , )( RTL , and )( RTG , and set ( )PDTT n
i iRS ∑−= =11 , 

and RTT =0 . 

1.1 )( RTEi ∈∀ , set Ri TT = . 

1.2 )( RTLi ∈∀ , set iT  by Procedure KH.  

1.3 )( RTGi ∈∀ , set Ri TT = , { }niTTT iS ,,1:,, 0
0 K==Γ , ( ) 0Γ=Γ RT , 

( ) ∞=Γ0c , ( ) ( )RR TGTTG =,20 , and 1=k . 

1.4 ( )RTTGi ,20∈∀  

1.4.1 Set iT  by Procedure RH. 

1.4.2 ( ) ( )RR TTGTGi ,20−∈∀ , set ( )Rii TTTT ,20= . 

1.4.3 Update ( ) ( ) ( ){ }000 ,:, TTTTiTGTTG RiRR <−= . 

1.4.4 Update kΓ  and calculate ( )1, −ΓΓ∆ kk . 

1.4.5 If ( ) 0, 1 <ΓΓ∆ −kk , the total average cost is decreasing. Set 

00 2TT = , 1+= kk  and go to Step 1.4. 

Otherwise, the total average cost ceases to decrease and optimal 

0T  is found for current RT . Set ( ) 1−Γ=Γ k
RT  and go to Step 2. 

Step 2: Updating 

2.1 Calculate ( )( )OPT
RT ΓΓ∆ , . 
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2.2 If ( )( ) 0, <ΓΓ∆ OPT
RT , update ( )R

OPT TΓ=Γ  and set RR TT 2= .  

2.3 If maxTTR > , the optimal policy is OPTΓ  and STOP. 

Otherwise, go to Step 1. 

 

 The reader should note that RH is presented in general for any given RT  and 0T  

such that it starts searching the optimal iT  by setting Ri TT 2=  and increasing iT  

successively. In other words, RH is designed to find the optimal iT  for buyer i, 

( )RTGi ∈  for any given CRPP. However, when RH is applied in Step 1.4 of ARPP-GI, 

only the replenishment policy for buyer i, ( )RTTGi ,20∈  is needed to determine. Since 

( )Γc  is convex, the optimal replenishment policy for buyer i, ( )RTTGi ,20∈ , must be 

20TTi ≥ . It follows that there are only two possible replenishment time slots for iT , 

namely, 20T  and 0T . Thus, the procedure can be sped up by setting 0TTi =  at step 0 of 

RH when calling RH from ARPP-GI and perform one iteration to determine the optimal 

replenishment policy for buyer i. 

3.4. SVMB with private information 

In this section, we study the SVMB system with private information.  First we 

restate the SVMB under private information problem and present essential 

characteristics of the problem.  

3.4.1. Problem description and analysis 

 The SVMB system with private information has the following characteristics: 

(a) Each facility in the system has self decision-making authority. 

(b) No single facility has complete information about the whole system. 

(c) Objective function and the corresponding parameters of each facility is private 

information. 

(d) Partial information is shared among the facilities in order to achieve close-to-

optimal solutions. 
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(e) All facilities agree on the use of power-of-two policy with regard to a fixed base-

planning period, BT . 

(f) All facilities agree on a maximum replenishment period, maxT . 

 Consider a simple interactive process in which the vendor and the buyers 

negotiate on the replenishment policies, iT , ni ,,1K= . The negotiation process starts 

with buyer i, ni ,,1K= , proposing it  and iD  to the vendor; and the vendor determines a 

power-of-two production cycle, 0T . Then, the vendor successively modifies 0T  to the 

next power-of-two period, finds the corresponding power-of-two replenishment period 

iT  and proposes it to buyer i; buyer i in turn proposes a compensation amount required 

from the vendor should (s)he use the compromised iT  instead of it ; and the negotiation 

repeats until a compromised policy is obtained. 

 This negotiation process is similar to CRPP-GI and ARPP-GI in that they all 

successively increase 0T  and determine the corresponding iT  for buyer i, ni ,,1K=  at 

each iteration until the best policy is obtained. However, direct applications of CRPP-GI 

and ARPP-GI in this limited information environment is not possible because no facility 

in the system has complete knowledge on ( )Γc  and the changes in total average cost of 

the system when different policies are used. 

 In the negotiation process mentioned earlier, buyer i will ask for compensation 

during each round of the negotiation to make it attractive for him/her to move away from 

it . As discussed in Chapter II, compi(Ti), which is the difference in the total average cost 

of buyer i when iT  is used instead of his/her local optimal power-of-two solution it , can 

be used as the compensation for buyer i. Mathematically, 

 ( ) ( ) ( )iiiiii tcTcTcomp −= .  (3.8) 

This compensation can also be viewed as the minimum compensation for buyer i so that 

(s)he considers both policies (replenishes at iT  and it ) as indifferent. Assuming that all 

the facilities are willing to disclose this piece of information honestly, the difference in 

total average cost of any two policies, Γ1 and Γ2, can be restated as follows. 
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( )21 ,ΓΓ∆ )()( 21 Γ−Γ= cc ( ) ( )∑ −+Γ−Γ=
=

n

i
ii TcompTcompcc

1

212
0

1
0 )()()()(  (3.9) 

.  
 Note that )(0 Γc  is known to the vendor as it is regarded as his/her private 

information. With the additional piece of information on compi(Ti) for all i, the vendor is 

in the position to calculate ( )21,ΓΓ∆  as in (3.9). 

 
 

 Fig. 3.5. Information and material flow of the system. 

  

Next, CRPP-GI and ARPP-GI are adapted to implement the negotiation process 

with the additional piece of information on compi(Ti). The information and material flow 

of the negotiation process is illustrated in Fig. 3.5. Specifically, buyer i determines 

his/her optimal replenishment policy, it , and submits a request of replenishing every it  

at rate of iD  to the vendor at the beginning of the negotiation. At each iteration, the 

vendor first determines RT  and ( )PDTT n
i iRS ∑−= =11 , and finds the optimal 0T  by 

successively increasing it. Then, (s)he proposes iT  to buyer i; and buyer i in turn 

calculates ( ) ( ) ( )iiiiii tcTcTcomp −=  and passes ( )ii Tcomp  to the vendor; and the 

negotiation process repeats. 

Vendor: 
c0(٠)

Buyer 1: 
c1(٠)

T1

D1
t1

comp1(T1)

Buyer i: 
ci(٠)

Buyer n: 
cn(٠)

Ti Di
ti
compi(Ti)

Tn
Dn

tn
compn(Tn)

* The buyers are willing to let the vendor know that their cost functions are convex.  Also, there is 
an agree-on based planning period, TB.

Product Flow

Information Flow

Vendor: 
c0(٠)

Buyer 1: 
c1(٠)

T1

D1
t1

comp1(T1)

Buyer i: 
ci(٠)

Buyer n: 
cn(٠)

Ti Di
ti
compi(Ti)

Tn
Dn

tn
compn(Tn)

* The buyers are willing to let the vendor know that their cost functions are convex.  Also, there is 
an agree-on based planning period, TB.

Product Flow

Information Flow
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3.4.2. CRPP with private information 

 To find CRPP with private information, we must be able to determine ( )21,ΓΓ∆  

for any two policies, 1Γ  and 2Γ , if CRPP-GI is adopted. As discussed earlier, if buyer i 

provides the information on compi(Ti), then the vendor can evaluate ( )21 ,ΓΓ∆ . Using the 

negotiation process mentioning in Section 3.4.1 where information is exchanged as 

shown in Fig. 3.5, CRPP-GI can be modified to accommodate this limited information 

environment. The procedure, termed CRPP-PI, is presented as follows. 

 

CRPP-PI Heuristic 

Step 0: Initialization 

Buyer i, i∀ : Calculate it and submit it, as well as iD , to the vendor. 

Vendor: Set { }niTT iS
OPT ,,0:, L=∞=∞==Γ , and BR TT = . 

Step 1: Negotiation  

Vendor: 1.1 Set   ( )PDTT n
i iRS ∑−= =11 . 

Initialize RTT =0 , { }niTTT iS ,,1:,, 0
0 L=∞==Γ , ( ) 0Γ=Γ RT , 

( ) ∞=Γ0
0c ,  ( ) ∞=∞icomp , ni ,,1L= , and 1=k . 

 1.2 Propose Ri TT =  to buyer i. 

Buyer i, i∀ : Calculate ( )ii Tcomp  as in (3.8) and submit it to the vendor. 

Step 2: Find optimal 0T  given RT  (Vendor only) 

 2.1 Set { }niTTTT RiS
k ,,1:,. 0 L===Γ . Calculate ( )1, −ΓΓ∆ kk  as in 

(3.9). 

  2.2 If ( ) 0, 1 <ΓΓ∆ −kk , the total average cost is decreasing. Set 

00 2TT = , 1+= kk  and go to Step 2.1. 

   Otherwise, the total average cost ceases to decrease and optimal 

T0 is found for current TR. Sets ( ) 1−Γ=Γ k
RT  and go to Step 3. 
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Step 3: Updating (Vendor only) 

 3.1 Calculate ( )( )OPT
RT ΓΓ∆ ,  as in (3.9). 

 3.2 If ( )( ) 0, <ΓΓ∆ OPT
RT , update ( )R

OPT TΓ=Γ , set RR TT 2=  and 

continue to Step 3.3. 

  Otherwise, the total average cost ceases to decrease as TR 

increases. The optimal policy is OPTΓ  and STOP. 

 3.3 If maxTTR > , the optimal policy is OPTΓ and STOP. 

  Otherwise, continue the negotiation by going to Step 1. 

 Comparing CRPP-PI with CRPP-GI, one can observe that they are very similar 

except for how the vendor calculates ( )21 ,ΓΓ∆ . In CRPP-PI, ( )21 ,ΓΓ∆  is calculated in 

terms of ( )ii Tcomp  thus protecting information that is private to buyer i. So, if each 

buyer i discloses ( )ii Tcomp  honestly, CRPP-PI will generate the same result as that of 

CRPP-GI. Nonetheless, CRPP-PI may be affected by the quality of the information 

exchanged between the vendor and the buyers. 

3.4.3. ARPP with private information 

 This section discusses how the vendor determines iT  for each buyer i with 

private information during the negotiation process and presents ARPP-PI. 

 For given RT , 0T , the following three cases are considered: { }RiR TtiTE == :)( , 

{ }RiR TtiTL <= :)( , and { }RiR TtiTG >= :)( .   

Case 1: )( RTEi ∈  

 In this case, buyer i is served according to his/her optimal power-of-two policy 

by replenishing at RT .  
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Case 2: )( RTLi ∈  

 In this case, the replenishment policy for buyer i can be determined by KH. 

However, the implementation of KH requires the knowledge on ( )21
, , iiiTotal TTc∆  for any 

policies, 1
iT  and 2

iT . Similar to (3.9), it is easy to verify that  

 ( )21
, , iiiTotal TTc∆  ( ) ( )2121

,0 ,, iiiiii TTcTTc ∆+∆=  

  ( ) ( ) ( )( )2121
,0 , iiiiiii TcompTcompTTc −+∆=   (3.10) 

Thus, the vendor is able to determine ( )21
, , iiiTotal TTc∆  with the additional piece of 

information on ( )ii Tcomp  instead of the private information ci( iT ). Recall that ARPP-GI 

starts with BR TT =  and successively increases RT . Therefore, for given RT , the vendor 

already knows ( )Tcompi , where T is any power-of-two period such that RS TTT << . As 

a result, the vendor can implement KH to determine iT  by means of (3.10) without 

modification.  

Case 3: )( RTGi ∈  

 As discussed in Section 3.3.2, given RT , the optimal replenishment policies for 

the buyers who do not belong to the set ( ) ( ) ( ){ }000 ,:, TTTTiTGTTG RiRR <−=  are 

already specified. Therefore, only buyers who belong to ( )RTTG ,0  are required to 

participate in the negotiation process. Furthermore, the only piece of information 

required for finding the replenishment policy for buyer i in ( )RTTG ,0  given RT  and 0T  is 

( )21
, , iiiTotal TTc∆ , which can be determined as in (3.10) with the knowledge of ( )ii Tcomp . 

Therefore, the replenishment policy for buyer i can be found by the following procedure.  

 

Replenishment Heuristic (RH-PI) 

Step 1: Negotiation 

 Vendor: Set 0TTi =  and propose to buyer i. 

 Buyer i, i∀ : Calculate ( )ii Tcomp  as in (3.8) and submit it to the vendor. 
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Step 2: Vendor: Updating 

 2.1 Calculate ( )2,, iiiTotal TTc∆  as in (3.10). 

 2.2 If ( ) 02,, >∆ iiiTotal TTc , policy with iT  incurs larger total average 

cost. Thus, set 2ii TT = . 

 

 Based on the discussion above, an interaction model, termed ARPP-PI, for 

finding ARPP for the SVMB system with private information is as follows. 

 

ARPP-PI  

Step 0: Initialization 

Buyer i, i∀ : Calculate it  and submit it, as well as iD , to the vendor. 

Vendor: Set { }niTT iS
OPT ,,0:, L=∞=∞==Γ , and BR TT = . 

Step 1: Negotiation  

Vendor: Propose Ri TT = to buyer i. 

Buyer i, i∀ : Calculate ( )ii Tcomp  as in (3.8) and submit it to the vendor. 

Step 2: Find optimal 0T  given RT  

 Vendor: 2.0 Initialize sets )( RTE , )( RTL , and )( RTG , and set 

( )PDTT n
i iRS ∑−= =11  and RTT =0 . 

2.1 )( RTEi ∈∀ , set Ri TT = .  

2.2 )( RTLi ∈∀ , set iT  by Procedure KH. 

2.3 )( RTGi ∈∀ , set Ri TT = , { }niTTT iS ,,1:,, 0
0 K==Γ , ( ) 0Γ=Γ RT , 

( ) ∞=Γ0
0c , ( ) ( )RR TGTTG =,20 , and 1=k . 

2.4 ( )RTTGi ,20∈∀  

2.4.1 Propose 0TTi = . 

Buyer i, ( )RTTGi ,20∈ : 
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2.4.2 Calculate ( )ii Tcomp  as in (3.8) and submit it to the 

vendor. 

Vendor: 2.4.3 Set iT  by Procedure RH-PI. 

2.4.4 ( ) ( )RR TTGTGi ,20−∈∀ , set ( )Rii TTTT ,20= . 

2.4.5 Update ( ) ( ) ( ){ }000 ,:, TTTTiTGTTG RiRR <−= . 

2.4.6 Update kΓ  and calculate ( )1, −ΓΓ∆ kk  as in (3.9). 

2.4.7 ( ) 0, 1 <ΓΓ∆ −kk , the total average cost is decreasing. Set 

00 2TT = , 1+= kk and go to Step 2.4. 

Otherwise, the total average cost ceases to decrease and 

optimal 0T  is found for current RT . Set ( ) 1−Γ=Γ k
RT  and 

go to Step 3. 

Step 3: Vendor: Updating 

3.1 Calculate ( )( )OPT
RT ΓΓ∆ ,  as in (3.9). 

3.2 If ( )( ) 0, <ΓΓ∆ OPT
RT , update ( )R

OPT TΓ=Γ  and set RR TT 2= .  

3.3 If maxTTR > , the optimal policy is OPTΓ and STOP. 

Otherwise, continue the negotiation by going to Step 1. 

 

 The implementation of ARPP-PI is basically the same as that of ARPP-GI. 

However, the calculation of ( )21
, , iiiTotal TTc∆ , which is required for implementing RH-PI 

to find the replenishment policy for buyer i, ( )RTGi ∈ , and the calculation of ( )21 ,ΓΓ∆  

which is used in KH-PI and the negotiation and updating steps in ARPP-PI  are different 

from those of ARPP-GI. When global information is available, ( )21
, , iiiTotal TTc∆  and 

( )21 ,ΓΓ∆  can be calculated directly by using the cost functions of the corresponding 

facilities. Under private information environment, ( )21
, , iiiTotal TTc∆  and ( )21 ,ΓΓ∆  can 

only be calculated with the additional information, ( )ii Tcomp , which is provided by 
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buyer i to the vendor through negotiation. Thus, same as CRPP-PI, ARPP-PI may be 

affected by the quality of the information exchanged between the vendor and the buyers. 

If each buyer i discloses ( )ii Tcomp  honestly, ARPP-PI will generate the same result as 

that of ARPP-GI. 

3.5. Computational experiment 

 This section describes an experimental study on the performance of the heuristics 

proposed in this chapter. Since CRPP-PI and ARPP-PI work exactly the same as their 

counterparts under global information environment, it is sufficed to study CRPP-PI and 

ARPP-PI. 

 In this experiment, we study the performance of CRPP-PI and ARPP-PI against 

existing approach that utilizes global information. Specifically, the performance of the 

proposed heuristics is compared to that of the CRPP by Banerjee and Burton (1994). The 

performance improvement of ARPP-PI over CRPP-PI is also studied.  

 As Banerjee and Burton (1994) considered integer-ratio CRPP under global 

information environment, the performance of their policies must be at least as good as 

that of the power-of-two CRPP obtained by CRPP-PI. On the other hand, ARPP-PI 

provides a policy that must be at least as good as that of CRPP-PI. Therefore, ARPP-PI 

may outperform Banerjee and Burton’s CRPP. However, the improvement of an ARPP 

over CRPP is influenced by two factors: (1) degree of heterogeneity of the buyers, which 

is defined by the spread of the buyers’ optimal replenishment policies; and (2) vendor 

utilization, which is defined as PDn
i i∑ =1 . 

 First, if all the buyers have the same optimal replenishment policies, ARPP will 

reduce to power-of-two CRPP. Second, if 211 ≤∑ = PDn
i i , the production must start at 

ST , RSR TTT <≤2 , because only power-of-two policies are considered; buyers in the 

set )( RTL  are forced to replenish at RT  if 211 ≤∑ = PDn
i i . As vendor utilization, 

PDn
i i∑ =1 , increases, more buyers in the set )( RTL  can be replenished according to their 
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optimal policies and the improvement of ARPP over CRPP will increase. Therefore, we 

use these two factors for the experiment. 

 In this experiment, a single-vendor twenty-buyer system is considered. For 

convenience, all the facilities in the system are assumed to adopt the classical EOQ 

assumptions, and BT  is assumed to be one day. The vendor’s setup cost is generated 

randomly from a uniform distribution with minimum 50 and maximum 100, and his/her 

holding cost, 0h , is generated from a uniform distribution with minimum 1 and 

maximum 20. Demand rate of each buyer is generated independently from uniform 

distribution over [200,600]. To adapt the value-added concept as mentioned by Banerjee 

and Burton (1994), we assume ihhi ∀> ,0 . The holding cost of buyer i, ih , ni ,,1K= , is 

obtained from echelon holding cost ( ie ), which is defined as 0hhe ii −= . Once 0h  and 

ie  is generated, ih  can be calculated. Echelon holding costs are generated randomly 

from a uniform distribution with minimum 1 and maximum 20.  

 Three different degrees of heterogeneity of the buyers, namely, low, medium, 

and high, are considered. To generate different degree of heterogeneity of the buyers, we 

generate the optimal time between orders, iτ . Given iD , ih  and iτ , setup/ordering cost 

of buyer i, iK , ni ,,1K= , is computed based on EOQ model as follows (Salomon 

1991): 

 25.0 iiii DhK τ×××=  (3.11) 

From the vendor’s point of view, the degree of heterogeneity is determined by the spread 

of power-of-two policies of the buyers. The reader can verify that the optimal policy of 

buyer i is rounded to its corresponding power-of-two policy as follows. 
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Therefore, the goal of generating iτ  is to uniformly assign the buyers to each power-of-

two period according to (3.12). For low-degree of heterogeneity, buyers’ uncoordinated 

optimal power-of-two policies will be one of the first three power-of-two periods (1,2, 

and 4). Similarly, buyers’ uncoordinated optimal power-of-two polices will be one of the 

first five (from 1 to 16) and one of the seven (from 1 to 64) power-of-two periods for 

medium- and high-degree of heterogeneity, respectively. The following procedure is 

used to generate iτ  for low-degree of heterogeneity buyer.  

Step 1: Generate random number, R, from [0,3). 

Step 2: =days)(in  iτ
( )
( )
( )⎪

⎩

⎪
⎨

⎧

2.84,5.66Uniform
1.42,2.83Uniform
0.1,1.41Uniform

   
32 if
2R1 if
10 if

<≤
<≤
<≤

R

R
 (3.13) 

 where Unfiorm(a,b) denotes that a number is generated from a uniform 

distribution with minimum a and maximum b. 

Similarly, iτ  for medium- and high-degree of heterogeneity buyers are generated using 

the same procedure with different number of power-of-two periods. 

 Also, three vendor utilizations are considered: 0.4, 0.6 and 0.8. Since we consider 

three degree of heterogeneity of buyers and three vendor utilizations, there are 9 

different scenarios in total. For each scenario, 100 problems are generated using the 

stated parameters. These problems are solved using Banerjee and Burton’s method (BB), 

CRPP-PI and ARPP-PI. The 0-1 Knapsack problem of KH is solved using the 

approximation algorithm (algorithm L) proposed by Sahni (1975). We define BBc , CRPPc  
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and ARPPc  as the total average of cost of the policy generated by BB, CRPP-PI and 

ARPP-PI, respectively.  

 Two performance measures are used for comparing our proposed heuristics 

against BB, namely, efficiency of CRPP-PI over BB which is defined as 

( ) BBCRPPBBCRPP cccEff −×=100 , and efficiency of ARPP-PI over BB, 

( ) BBARPPBBARPP cccEff −×= 100  Table 3.1 presents the average performance measures, 

CRPPEff  and ARPPEff . 

 

Table 3.1 
Average performance measure  

Degree of Heterogeneity 
Low Medium High 

 

CRPPEff ARPPEff CRPPEff ARPPEff CRPPEff  ARPPEff

0.4 -1.9 0.8 -1.9 6.2 -1.7 11.5 
0.6 -2.1 3.15 -1.8 12.1 -1.6 20.8 Vendor 

Utilization 
0.8 -1.6 5.9 -1.5 16.9 -1.4 27.1 

 

 From the experiment, it is observed that the CRPPEff  is very stable at around 

-2%. In other words, CRPP-PI is not sensitive to both degree of heterogeneity and 

vendor utilization when comparing to BB.  

It is interesting to notice that the average efficiencies of ARPP-PI of all the 

scenarios are positive, i.e., ARPP-PI on average outperforms BB. As the degree of 

heterogeneity of the buyers increases, the improvement of using ARPP over CRPP 

increases significantly. Even for the scenarios where vendor utilization is 0.4, the 

ARPPEff  ranges from 0.8% to 11.5%.  Recall that when 5.01 ≤∑ = PDn
i i , the benefit of 

using ARPP is solely due to the buyers in the set )( RTG  as RSR TTT <<2 . In other 

words, RH-PI alone has significant impact on the total average cost if ARPP is used. For 

the scenarios where 6.01 =∑ = PDn
i i , ARPPEff  ranges from 3.15% to 20.8%. Finally, 

when 8.01 =∑ = PDn
i i , ARPP-PI outperforms BB by 5.9% to 27.1%. Similarly, for a 
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given degrees of heterogeneity of the buyers, as PDn
i i∑ =1  increases, the performance of 

using of ARPP-PI instead of BB prevails with increasing margins.  

 Though the performance improvement of using ARPP-PI over CRPP-PI can be 

inferred from Table 3.1, we present the performance improvement in Table 3.2 to 

demonstrate the benefits of using ARPP-PI over CRPP-PI. The performance measure is 

efficiency of using ARPP-PI over CRPP-PI, which is defined as 

( ) CRPPARPPCRPPAC cccEff −×= 100 . The average performance measure, ACEff , are 

presented in Table 3.2. 

 

Table 3.2 
Average efficiency of using ARPP-PI over CRPP-PI 

Degree of Heterogeneity  
Low Medium High 

0.4 2.7 7.9  12.9 
0.6 5.2 13.6  22.0 Vendor Utilization 
0.8 7.3 18.2 28.1 

 

 Similar to the results of ARPPEff , ACEff  increases significantly from 2.7% to 

12.9% in the case of 4.01 =∑ = PDn
i i , from 5.2% to 22.0% in the case of 

6.01 =∑ = PDn
i i , and from 7.3% to 28.1% in the case of 8.01 =∑ = PDn

i i  as degree of 

heterogeneity increases from low to high. Also, for given degree of heterogeneity of 

buyers, ACEff  increases as vendor utilization increases. In summary, ACEff  is positively 

related to both the degree of heterogeneity of the buyers and vendor utilization. 

 To further investigate the performance of ARPP-PI, we examined the minimum 

ARPPEff  and maximum ARPPEff  as presented in Table 3.3. Though ARPP-PI generates 

only power-of-two policies while BB considers integer-ratio policies, it is interesting to 

observe that ARPP-PI not only outperforms BB on average, but on every single case for 

medium- and high-degree of heterogeneity when vendor utilizations are 0.6 and 0.8.  

Even for the scenarios of low-degree of heterogeneity, ARPPEff  is -3% in the worst case 
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among test problems. These results demonstrated the advantage of using ARPP over 

CRPP. 

 

Table 3.3 
Minimum and maximum efficiency of ARPP-PI 

Degree of Heterogeneity 
Low Medium High 

 

Min Max Min Max Min Max 

0.4 -3.0 6.8 0.3 20.2 -1.0 29.4 
0.6 -1.2 6.9 4.2 21.9 7.5 40.6 Vendor 

Utilization 
0.8 1.0 9.2 7.3 26.9 14.9 41.0 

 

3.6. Conclusion 

 In this chapter, we consider the problem of coordinating the SVMB inventory 

system with private information where the objective is to find the replenishment policies 

for the buyers and the production schedule for the vendor such that the total average 

setup and inventory related cost of the system is minimized. This study is different from 

the previous studies in that we consider the SVMB system in which there is no single 

facility has complete information about the whole system and each facility has self 

decision-making authority.  Specifically, the objective function and cost parameters of 

each facility are regarded as private information that no other facilities in the system 

have access to.  

 Two different types of nested and stationary policies, namely, CPRR and ARPP, 

are considered for coordinating the inventory system. We first develop two heuristics, 

CRPP-GI and ARPP-GI, for finding CRPP and ARPP to coordinate the SVMB 

inventory system assuming complete information is available. Then, these heuristics are 

modified for finding the CRPP and ARPP for the SVMB system with private 

information. Computational experiments are conducted to compare the performance of 

CRPP-PI and ARPP-PI where the control variables are degree of heterogeneity of the 

buyers and the total demand to production ratio. The results show that there is a positive 



 

 

67

relationship between the percentage of improvement of using ARPP instead of CRPP 

and the two control factors.  

 An important result of this study is that we demonstrate that knowledge of the 

system can be recovered through negotiation and partial information sharing and it is 

possible to develop approach for system with private information such that there is no 

performance loss when comparing to its counterpart with global information.  We 

believe that it is promising to extend the framework of SVMB-PI to more complex 

supply chain networks. 
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CHAPTER IV  
MULTI-ECHELON SERIAL AND ASSEMBLY SYSTEMS 

4  

4.1. Introduction 

 In this chapter, we consider the multi-echelon uncapacitated dynamic lot-sizing 

problem where the following information is private to each facility: (a) facility’s 

objective function, (b) facility’s setup/ordering cost, and (c) facility’s inventory holding 

cost. Furthermore, each facility is responsible for specifying its own inventory policy. 

Also, it is assumed that facilities willingly collaborate with the others to achieve a 

minimal overall system cost. The objective of this chapter is to develop a scalable 

solution methodology to address the dynamic lot-sizing problem of serial and assembly 

supply chains with private information.  

Motivated by the research results from the studies of coordination with private 

information problems (Barbarosoğlu and Özgür 1999, Kutanoglu and Wu 1999, Ertogral 

and Wu 2000, Jeong and Leon 2002, Jeong and Leon 2003,  Jeong and Leon 2005) and 

the satisfactory results reported by using Lagrangian relaxation heuristics developed for 

coordinating supply chain inventory systems with global information (Afentakis and 

Gavish 1986, Afentakis, Gavish and Karmarkar 1984, Salomon 1991), we proposed a 

hierarchical Lagrangian-based decomposition methodology to coordinate supply chain 

inventory system with private information. A node-model that represents a facility in the 

supply chain is developed; and an interaction protocol for a supplier-buyer pair using the 

corresponding subproblems is proposed. By applying the interaction protocol of each 

supplier-buyer pair in the supply chain from downstream to upstream, a system-wide 

solution that is close to optimal is obtained. The remainder of the chapter is organized as 

follows. In Section 4.2, the mathematical model for serial/assembly inventory system is 

formulated. Interaction model for two-echelon serial inventory system is proposed in 

Section 4.3; followed by the development of interaction model for two-echelon assembly 
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inventory system in Section 4.4. Then these models are extended for the multi-echelon 

serial/assembly inventory systems in Section 4.5.  In Section 4.6, results on 

computational experiments are reported, followed by a conclusion in Section 4.7. 

4.2. Problem description and model formulation 

 The supply chain inventory systems with private information under study are 

characterized by the following properties:  

(a) Each facility in the system has self decision-making authority. 

(b) No single facility has complete information about the whole system. Specifically, 

objective function and the corresponding parameters of each facility is private 

information. 

(c) Partial information is shared among the facilities in order to achieve close-to-

optimal solutions. 

Two special supply chain inventory systems with private information are studied 

in this chapter, namely, a serial system, in which each facility has at most one 

predecessor and one successor; and an assembly system, in which each facility has 

multiple predecessors but at most one successor. 

Each facility in the supply chain is represented by the model shown in Fig. 4.1, 

which is termed node-model in this chapter. The node-model consists of a production 

subsystem, a raw-material inventory subsystem, and a finished-goods inventory 

subsystem.  A facility is responsible to specify three schedules: a delivery schedule, a 

production schedule, and order schedules.  The delivery schedule is obtained by 

negotiating with the downstream facility (the customer), while the order schedules are 

found through negotiations with the upstream facilities (the suppliers).  The production 

schedule takes into account the delivery schedule and order schedules such that the 

customer demands are met, and there is no shortage of raw materials. The work-in-

process inventory subsystem is associated with the production subsystem.  
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Fig. 4.1. Node-model of facility i. 

 

 The proposed node-model is the basis for the scalability of the coordination 

approach developed in this chapter. By linking the node-models according to the product 

and information flows associated with the supply chain under consideration, a supply 

chain inventory system can be represented as a directed graph, ( )ANG , , where each 

node Ni ∈  is associated with a facility (node-model), and the arc ( ) Aji ∈,   represents a 

flow of production/information from node (facility) i to j. Fig. 4.2 shows an example of 

assembly system depicted as a directed graph. 

 

 

Fig. 4.2. An example of assembly system. 
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 The following assumptions are made in this chapter: (i) each facility produces a 

single product; (ii) time-dependent demands of the end product are known over a finite 

horizon and must be met without backlogging; and (iii) products are produced in batches 

and production lead times are constant - thus, the total work-in-process for given 

demands over a finite horizon is constant and is disregarded in the model. Without loss 

of generality, production and delivery lead times are assumed to be zero. 

 The following notation is used in this chapter: 

n: Total number of facilities in the system. 

T : The number of planning periods. 

( )xS R
tji ,, : Ordering/setup cost of facility i for ordering x units of raw-material j 

from facility j at period t. 

( )yS F
ti, : Setup cost of facility i for producing y units of finished-goods i at 

period t. 

( )uH R
tji ,, :Holding cost of facility i for having u units of raw-material j ending 

inventory at period t. 

( )uH F
ti, : Holding cost of facility i for having u units of finished-goods i ending 

inventory at period t. 
R

tjiI ,, : Ending inventory of raw-material j at facility i at period t. 

F
tiI , : Ending inventory of finished-goods at facility i at period t. 

jim , : Number of raw-material j required to produce one unit of finished-

goods i at facility i. 

td : External demand of the end-product at period t. 

tjix ,, : Decision variable: Lot size of raw-material j transfers from facility j to 

facility i at period t. 

tiy , : Decision variable: Production quantities at facility i at period t. 
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)(iB : Set of indices of immediate predecessors of facility i. 

)(ia : Index of the immediate successor of facility i.  

 

 By numbering the facilities from the higher-tier to lower-tier in the supply chain 

in which facility i is labeled with an integer ( )iv  such that for arc ( )ji, , ( ) ( )jviv <  (Fig. 

4.2), the problem of coordinating the multi-echelon supply chain inventory system can 

be modeled as the following mixed-integer program. 

(SC) min ( ) ( )( )
( )

( ) ( )( )∑ ∑
⎭
⎬
⎫

⎩
⎨
⎧ ++∑ +

= = ∈

n

i

T

t

F
ti

F
titi

F
ti

iBi

R
tji

R
tjitji

R
tji IHySIHxS

1 1
,,,,,,,,,,,,  (4.1) 

 s.t. tiji
R

tjitji
R

tji ymIxI ,,,,,,1,, =−+−  ( ) TtiBjni ,,1;;,,1 KK =∈=  (4.2) 

 tiia
F
titi

F
ti xIyI ,),(,,1, =−+−  Ttni ,,1;,,1 KK ==  (4.3) 

 ttnn dx =+ ,,1  Tt ,,1K=  (4.4) 

 0,, ≥R
tjiI  ( ) TtiBjni ,,1;;,,1 KK =∈=  (4.5) 

 0, ≥F
tiI  Ttni ,,1;,,1 KK ==   (4.6) 

 0, ≥tiy   Ttni ,,1;,,1 KK ==   (4.7) 

 0,, ≥tjix    ( ) TtiBjni ,,1;;,,1 KK =∈=  (4.8) 

Private information constraints: 

  ( )⋅R
tjiS ,, , ( )⋅F

tiS , , ( )⋅R
tjiH ,, , ( )⋅F

tiH , , jim ,  and tiy ,  are private to facility i. (4.9) 

 The objective function (4.1) states that the total ordering/setup and inventory-

related cost is minimized. Constraint set (4.2) describes the mass-balance relation 

between ordering quantities, production, and end-of-period inventory of the raw material 

inventory subsystem; while constraint set (4.3) states the balance between production, 

delivery quantities, and end-of-period inventory of the finish-goods inventory 

subsystem. Constraint set (4.4) simply states the given external demand must be 

satisfied. Constraint sets (4.5) and (4.6) express that no backlogging is allowed. 

Constraint sets (4.7) and (4.8) are the non-negativity constraints. Constraint set (4.9) 

states that the setup/ordering cost functions, holding cost functions, raw-material 
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requirements for producing finished goods, and the production schedule are private to 

the corresponding facility.  

 Because of the private information constraint set (4.9), most existing approaches 

for supply chain inventory coordination that assume complete information sharing and 

the existence of a centralized decision authority will not be applicable. In this case, to 

coordinate the supply chain inventory with private information, it is necessary to 

decompose (SC) at the facility level such that the private information is divided as 

required. 

4.3. Two-echelon serial inventory system  

 Consider a two-echelon system with a single supplier and a single buyer. For 

convenience, the buyer is indexed as b, and the supplier is indexed as s. The general idea 

of the inventory coordination methodology is to first decompose (SC) into buyer and 

supplier subproblems in which the private information is separated according to the 

conditions in (4.9), and then use an interactive procedure where the buyer and the 

supplier negotiate on the best order/delivery policy. The methodologies developed in this 

chapter are aimed at finding globally optimal or close-to-optimal compromised 

order/delivery policies. 

Note that (SC) cannot be decomposed into buyer and supplier subproblems 

because (4.2) and (4.3) are the coupling constraints.  Specifically, the material transfers 

between facilities, tjix ,, , make these subproblems interdependent.  To decompose (SC), 

we create two auxiliary variables, termed negotiation variables: 

tsbr ,, : Negotiation variable: Buyer’s proposed order quantities of raw material 

for period t. 

tbsp ,, : Negotiation variable: Supplier’s proposed delivery quantities of raw 

material to the buyer for period t. 

Substituting tsbx ,,  with tsbr ,,  in (4.2) for the buyer, and tsbx ,,  with tbsp ,,  in (4.3) for the 

supplier, (SC) can be separated at the facility level and resulted in the following non-

coordinated subproblems of the buyer (NCB) and the supplier (NCS). 
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(NCB) min ( ) ( )( ) ( ) ( )( ){ }∑ +++=
=

T

t

F
tb

F
tbtb

F
tb

R
tsb

R
tsbtsb

R
tsbNCB IHySIHrSc

1
,,,,,,,,,,,,   (4.10) 

  tbsb
R

tsbtsb
R

tsb ymIrI ,,,,,,1,, =−+−   Tt ,...,1=  (4.11) 

s.t. (4.3)-(4.7) with bi = . 

(NCS) min  ( ) ( )( ) ( ) ( )( ){ }∑ +++=
=

−−−−

T

t

F
ts

F
tsts

F
ts

R
tss

R
tsstss

R
tssNCS IHySIHxSc

1
,,,,,1,,1,,1,,1,  (4.12) 

 s.t. tbs
F

tsts
F

ts pIyI ,,,,1, =−+−  Tt ,...,1=  (4.13) 

(4.2), (4.5)-(4.7) with si = . 

Now that the subproblems can be solved separately, it is possible to devise an 

interactive procedure where the buyer and the supplier negotiate on the ordering and 

delivery quantities that will minimize (4.1).  In the proposed procedure described later, 

in the kth iteration, each facility sends the other the desired quantities (from a local 

perspective) and a compensation term which will entice the other one to accept the 

proposed quantities. This procedure is illustrated in Fig. 4.3. 

 

 

Fig. 4.3. Interaction procedure. 

 

In general, tsbr ,,  and tbsp ,,  will be different during the negotiation, however, they 

must converge to the same value at the end of the procedure since they represent the 

same flow of material between the buyer and the supplier in period t; i.e. 

tsbtbstsb xpr ,,,,,, == .  In order to force tsbr ,,  and tbsp ,,  to converge, convenient redundant 

constraints are introduced, and relaxed with Lagrangian multipliers into the objective 

Supplier
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function.  These redundant constraints must capture the differences between tsbr ,,  and 

tbsp ,, .  Specifically, for the buyer the constraint set  

  0
1

,,
1

,, =∑−∑
==

t

bs

t

sb pr
τ

τ
τ

τ    Tt ,...,1=  (4.14) 

states that the cumulative order quantities proposed by the buyer and the cumulative 

delivery quantities proposed by the supplier must be the same.  Relaxing these 

constraints into the objective function with Lagrangian multipliers result in the penalty 

term 

   ( ) ( ) ( )kpkrk
t

bs

t

sb
R

tsb ∑−∑
== 1

,,
1

,,,,
τ

τ
τ

τµ    Tt ,...,1=  (4.15) 

This term serves as the buyer’s penalty of deviation in the cumulative order and delivery 

quantities proposed at iteration k of the interactive procedure, while ( )kR
tsb ,,µ  denotes the 

buyer’s unit cost of deviation in buyer’s proposed cumulative order quantities and the 

supplier’s proposed cumulative delivery quantities at iteration k.  Also, ( )kr tsb ,, , ( )kp tbs ,,  

denote tsbr ,,  and tbsp ,,  in iteration k of the interactive procedure.  Since a positive penalty 

should incur when there is any deviation in the buyer’s and supplier’s proposal, (4.14) is 

presented in absolute value. One should note that ( )kp tbs ,,  is known to the buyer at 

iteration k of the interaction process because the supplier proposed the delivery policy at 

each iteration first. 

 Similarly, for the supplier the redundant constraint set,   

  0
1

,,
1

,, =∑−∑
==

t

sb

t

bs rp
τ

τ
τ

τ    Tt ,...,1=  (4.16) 

is added to (SC), and 

   ( ) ( ) ( )∑ −∑−
= =

t t

sbbs
F

tbs krkpk
1 1

,,,,,, 1
τ τ

ττµ     Tt ,...,1=  (4.17) 

can be viewed as the supplier’s penalty function if a compromised order/delivery 

schedule is not found at iteration k, where ( )kF
tbs ,,µ  is the penalty cost for unit deviation 

of the buyer’s proposed cumulative order and the supplier’s proposed cumulative 
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delivery quantities.  In this case, ( )1,, −kr tsb  is the order quantities received from the 

buyer in the previous iteration. 

 The penalty function is enhanced by accounting for a special case in which (4.15) 

and (4.17) do not detect differences between tsbr ,,  and tbsp ,, . Consider a five-period 

problem where the buyer’s proposed order policy is 5 units per period, and the supplier’s 

proposed delivery policy is to deliver 15 units at period 1 and 10 units at period 4 at 

iteration k. In this example, (4.15) and (4.17) have positive values in periods 1, 2, and 4. 

Though the deviation in period delivery quantities and period order quantities of period 3 

and period 5 are considered in the penalty functions of periods 1 and 2 and period 4, 

(4.15) and (4.17) do not provide penalty for periods 3 and 5 because there is no deviation 

in the cumulative delivery and order quantities proposed at periods 3 and 5. As a result, 

periods 3 and 5 are more attractive to invite deviation in proposed period delivery 

quantities and proposed period order quantities than they should be in the next iteration. 

To consider this special case, we add the redundant constraint set, 0,,,, =− tbstsb pr , 

Tt ,...,1= , which states that the supplier’s proposed delivery quantities coincide with the 

buyer’s proposed order quantities in each period.  This will result in the additional 

penalty term  

  ( ) ( )( ) ( ) ( )kpkrkpkrU tbstsb
R

tsb
t

bs
t

sb ,,,,,,1 ,,1 ,, −∑=∑ == λτ ττ τ   (4.18)  

where, ( )kR
tsb ,,λ  can be viewed as the penalty for unit deviation of the buyer’s proposed 

order quantities and supplier’s proposed delivery quantities for period t; ( ) 1=⋅U  if 

condition in the parenthesis is true, and ( ) 0=⋅U otherwise. ( )⋅U  is needed to avoid 

double counting the penalties in time periods where (4.15) and (4.17) are already active. 

 Similarly for the supplier, the additional penalty function is  

  ( ) ( )( ) ( ) ( )11 ,,,,,,1 ,,1 ,, −−∑ −=∑ == krkpkrkpU tsbtbs
F

tbs
t

sb
t

bs λτ ττ τ  (4.19) 

where, ( )kF
tbs ,,λ  is viewed as the penalty for unit deviation of the proposed order and 

delivery quantities for period t. 
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 Finally, to guarantee that the delivery policy proposed by the supplier is feasible 

to the buyer during the negotiation procedure, the following constraints are added to 

(SC). 

  ∑≥∑
==

t

sb

t

bs rp
1

,,
1

,,
τ

τ
τ

τ    Tt ,...,1=  (4.20) 

  0,, ≥tsbr     Tt ,...,1=  (4.21) 

  0,, ≥tbsp     Tt ,...,1=  (4.22) 

 Based on the above discussion, (SC) is decomposed into the following buyer 

node-model (BN) and supplier node-model (SN). 

(BN) min 

( ) ( )

( ) ( )( )
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1
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µ

τ τ
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τ
τ

τ
τ

  (4.23) 

 s.t. (4.3)-(4.7) with bi = , (4.11) and  (4.21). 

(SN) min 

( ) ( )( )
( ) ( )∑

⎪
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⎬

⎫
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F
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bs

t t
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F
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ts
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tsts
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tss
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tsstss
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tss
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1

,,

1 1
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,1,,1,,1,,1,

λ
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τ
τ
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τ

τ τ
ττ  (4.24) 

 s.t. (4.2), (4.5)-(4.7) with si = , (4.13), (4.20) and (4.22). 

 Since tsbr ,,  and tbsp ,,  are shared information between the two facilities and other 

parameters of (BN) and (SN) are private to the buyer and the supplier, respectively, thus, 

the buyer and the supplier have all the information to solve their corresponding (BN) and 

(SN). Also, any solution to (BN) and (SN) with Ttpr tbstsb ,,1 ,,,,, K==  is feasible to the 

original problem (SC). 

Remark.  When developing the penalty functions for guiding the buyer and the 

supplier to reach a feasible solution, an obvious choice is to add and dualize the auxiliary 
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period-by-period deviation constraint ntpr tbstsb ,,1 ,0,,,, K==−  (period-by-period 

penalty). Through experiments, we found that the period-by-period penalty approach, 

while providing comparable performance as the proposed cumulative penalty approach 

for the two-echelon cases, its performance degraded quicker than our approach as the 

number of echelon increases. Our conjecture is that the cumulative deviation 

ntpr t
sb

t
sb ,,1  ,1 ,,1 ,, K=∑−∑ == τ ττ τ  utilizes information from period 1 to period t, while the 

period-by-period deviation only employs information of the current period. Thus, the 

proposed cumulative penalty approach has more look-ahead capability than the period-

by-period approach. Since the solution domains of the facilities at the higher-tiers are 

affected by the facility at the lower-tier, the effect of the solution of last echelon buyer 

ripples up through the supply chain. Because of the proposed cumulative penalty 

approach provides more stable performance than the period-by-period penalty approach, 

we use the proposed cumulative penalty functions in this study. 

4.3.1. Compensation determination 

 To find a compromised solution, we assume that the buyer will request for a 

compensation if an order policy other than the desired order policy is used, and the 

supplier will propose the compensation (s)he is willing to pay if a delivery policy other 

than the one according to the buyer’s order policy during the interactive procedure. 

When studying two-echelon inventory systems in Chapters II and III, we suggest that the 

compensation provided by the supplier should be large enough for the buyer to consider 

his/her reference policy and the supplier’s proposed policy as indifferent. In this section, 

we extend this idea to determine the compensation requested by the buyer b, ( )kcompb , 

and the compensation proposed by the supplier s, ( )kcomps , at iteration k during the 

interaction.  

 To determine ( )kcompb  and ( )kcomps , reference policies of the buyer and the 

supplier are needed. The optimal order quantities, *
,, tsbr , Tt ,,1K= , obtained by solving 

the non-coordinated problem (NCB) can be served as the reference policy for the buyer. 
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Upon receiving *
,, tsbr , Tt ,,1K= , from the buyer, the supplier determines his/her optimal 

order policy by solving the non-coordinated problem (NCS) with *
,,,, tsbtbs rp = , 

Tt ,,1K= . The resulting order and delivery policies can be served as the reference 

policies for the supplier.  

Let *
NCBc  be the objective value of (NCB) with respect to the buyer’s reference 

policy and *
NCSc  be the objective value of (NCS)  with respect to the supplier’s reference 

policy. Also define ( )kg BN  and ( )kgSN  as the objective values of (BN) and (SN) at 

iteration k, respectively; the compensation requested by the buyer, ( )kcompb  is   

 ( ) ( ) *
NCBBNb ckgkcomp −= . (4.25) 

And the compensation the supplier is willing to pay, ( )kcomps  is  

 ( ) ( )kgckcomp SNNCSs −= * . (4.26) 

It is clear that if the buyer’s proposed order policy coincides with the supplier’s 

proposed delivery policy, ( )kcompb  is simply the difference in total cost of the buyer if 

the proposed order policy is used instead of buyer’s noncoordinated optimal order 

policy. In other words, it is the minimum compensation for buyer i so that (s)he 

considers both policies as indifferent. Similarly, ( )kcomps  is the difference in total cost 

of the supplier if the proposed delivery policy is used instead of delivering according to 

the buyer’s non-coordinated optimal order policy. Thus, it is the maximum 

compensation (s)he is willing to pay to consider both policies indifference. 

4.3.2. Lagrangian multipliers updates 

 Restating the above interaction procedure in the Lagrangian-based heuristic 

context, the interactive procedure starts with the initialization process that finds the 

reference solutions for the buyer and the supplier by solving (NCB) and (NCS) with 

Ttrp tsbtbs ,,1 ,*
,,,, K== , respectively. After the initialization, in each iteration k, the 

supplier solves (SN) with respect to the buyer’s proposed order policy. (S)he then 
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updates the Lagrangian multipliers and proposes a delivery policy and ( )kcomps  to the 

buyer. In turn, the buyer solves (BN), updates the corresponding Lagrangian multipliers, 

and proposes an order policy and ( )kcompb  to the supplier, and the interactive procedure 

repeats until a compromised order policy is obtained.  

 In each iteration of the above interactive procedure, the Lagrangian multipliers 

are updated using subgradient optimization. Let w(k) be a positive scale step size used in 

iteration k, θ  be a user-defined scalar, UB and LB be the upper- and lower-bound 

solutions of the system. Then, 

( ) ( ) ( )kpkrwkk
t t

bssb
R

tsb
R

tsb ∑ ∑−+=+
= =1 1

,,,,,,,, )(1
τ τ

ττµµ   (4.27) 
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⎧ −⎟
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= =
kpkrkpkrUwkk tbstsb

t t

bssb
R

tsb
R

tsb ,,,,
1 1

,,,,,,,, )(1
τ τ

ττλλ  (4.28) 
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==
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 To determine w(k) in (4.31), the upper- and lower-bound solutions of the system 

are required. Note that in the private information environment, the supplier and the buyer 

only know their corresponding upper- and lower-bound solutions, and not the overall 

system upper- and lower-bound solutions. Therefore, an alternate method to calculate 

w(k) is derived here. 
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 Since the solution of (NCB) and that of (NCS) by setting Ttrp tsbtbs ,,1 ,*
,,,, K==  

is also feasible to (SC), thus **
NCSNCB ccUB +=  is an upper bound. Also, solving (BN) and 

(SN) in iteration k provides the lower bound for the problem; i.e. ( ) ( )kgkgLB NSNB += . 

It follows that  

 LBUB −  ( ) ( ) ( )( )kgkgcc NSNBNCSNCB +−+= **  
 ( )( ) ( )( )**

NCBBNSNNCS ckgkgc −−−=  
 ( ) ( )kcompkcomp bs −=   (4.33) 

Thus, (4.31) can be restated as 

 ( ) ( ) ( ) ( )( )
∑

−
=

∑
−

=
==

T
t t

bs
T
t t G

kcompkcomp
G

LBUBkw
11

θθ   (4.34) 

Since ( )kcompb  and ( )kcomps  are known to both the buyer and the supplier, w(k)  can 

now be calculated without private information using (4.34). 

4.3.3. Solution procedure 

 In the kth iteration, let ( ) ( ){ }TtkrkR tsbsb ,,1,,,, K==  be the order policy proposed 

by buyer b to supplier s and ( ) ( ){ }TtkpkP tbsbs ,,1,,,, K==  be the delivery policy 

proposed by supplier s to buyer b. Assuming that all the facilities exchange information 

honestly, the interactive model for two-echelon serial system for buyer b and supplier s, 

SIM(b,s), is stated as follows. 

 

SIM(b,s) 

Step 0: Initialization 

 Buyer:  

(a) Initialize 0)0(,, =R
tsbλ , ( ) 00,, =R

tsbµ , Tt ,,1K= .  

(b) Determine the proposed order policy, ( )0,sbR , and *
NCBc  by solving 

(NCB), and submit ( )0,sbR  to the supplier. Set 1=bk . 
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 Supplier: 

(c) Initialize 0)0(,, =F
tbsλ , ( ) 00,, =F

tbsµ , Tt ,,1K= .  

(d) Solve (NCS) with respect to ( )0,sbR  to obtain *
NCSc . Set 1=sk . 

Step 1: Negotiation 

 Supplier: 

(e) Given ( )1, −ssb kR , solve (SN) to obtain ( )sbs kP , .  

(f) Determine ( )ss kcomp  as in (4.26).   

(g) If ( ) ( )1,, −= ssbsbs kRkP  a compromised solution is found. Inform the 

buyer and stop. 

(h) Otherwise, propose ( )sbs kP ,  and ( )ss kcomp  to the buyer. Set 1+= ss kk . 

 Buyer: 

(i) Given ( )bbs kP ,  and ( )bs kcomp , solve (BN) to obtain ( )bsb kR , . 

(j) Determine ( )bb kcomp  as in (4.25). 

(k) If ( ) ( )bbsbsb kPkR ,, = , a compromised solution is found. Inform the 

supplier and stop. 

(l) Otherwise, propose ( )bsb kR ,  and ( )bb kcomp  to the supplier. Set 

1+= bb kk . 

(m)  If iteration limit is exceeded, go to Step 3. Otherwise, go to Step 2. 

Step 2: Update Lagrangian multipliers 

Supplier: 

(n) Update ( )s
F

tbs k,,µ  and )(,, s
F

tbs kλ  as in (4.29) and (4.30). 

 Buyer: 

(o) Update )(,, b
R

tsb kµ  and )(,, b
R

tsb kλ  as in (4.27) and (4.28). 

(p) Go to Step 1. 
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Step 3: Restore feasibility 

 Buyer: 

(q) Use ( )1, −bsb kR  as the lot sizing policy and propose to the supplier.  

 Supplier: 

(r) Set ( ) Ttkrp stsbtsb ,,1 ,1,,,, K=−= . Solve (NCS) and stop.  

 

Since orders are originated from the buyer, if a compromised policy is not found 

after reaching the pre-specified iteration limit, preference is given to the buyer and the 

buyer’s last proposed order policy is used as the order/delivery policy as in Step 3. 

In order to provide more specifics about how to solve the subproblems (SN), 

(BN), (NCB) and (NCS) in the procedure SIM(b,s), it is necessary to further specify the 

components of the objective function; i.e., ( )xS R
tji ,, , ( )yS F

ti, , ( )uH R
tji ,, , and ( )uH F

ti, .  

Solution procedures for common forms of these components are described in the 

following sections. 

4.3.4. Procedure for cases with concave cost functions 

 In this section, we consider the special case in which the ordering/setup cost 

functions are concave on [ )∞,0  for all i and t; and the inventory holding cost functions 

are linear on [ )∞,0  and are nondecreasing from upstream to downstream facilities. With 

these concavity assumptions, Veinott (1969) showed that there is at least one optimal 

solution for the multi-echelon assembly system that must satisfy the zero inventory 

property. Love (1972) proved the nested property of an optimal policy for serial system. 

The nested property states that if facility i orders/produces in period t, all facilities 

downstream of i must order/produce. The nested property for assembly system is later 

proved by Crowston and Wagner (1973). This study considers nested policies that satisfy 

the zero inventory property for solving (BN) and (SN). Next, dynamic programming 

heuristics and fast Silver-Meal-based heuristics are proposed for solving the buyer 

subproblem (BN) and the supplier subproblem (SN). 
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4.3.4.1. Dynamic programming heuristics  

 Let’s start by defining the necessary additional notation:. 

( )tF : Minimum total cost from period t to T.  

( )utC R , : Total cost of the raw-material inventory subsystem of ordering at 

period t to meet requirements through period u-1. 

( )kF F
ut , : Minimum total cost of the finished-goods inventory subsystem from 

period k to u-1 if the facility orders raw material at period t and 

produces at period k to meet requirements through period u-1. 

( )utR , : Buyer’s total proposed order quantities from period t to u-1, 

( ) ∑= −
=
1

,,, u
tm msbrutR . 

( )utP , : Supplier’s total proposed delivery quantities from period t to u-1, 

( ) ∑= −
=
1

,,, u
tm mbsputP . 

 

Buyer Subproblem (BN) 

 Given that only nested policies that satisfy zero inventory property are 

considered, (BN) can be solved by the following recursive equations. 

 ( ) 01 =+TF  

 ( ) ( ) ( ) ( ){ }uttFutCuFtF F
ut

R <++= :,min ,    (4.35) 

When ordering raw material at period t to meet requirements through period u-1, the 

total quantities of the raw material ordered is ∑ −
=

1
,,

u
tv vbsb ym and the total inventory holding 

cost is ( )∑∑ −
= +

−
=

2
1,,

2
,,

u
vk kbsb

u
tv

R
vsb ymH . Also, the cumulative proposed order quantities from 

period 1 to period t-1 is  ∑ −
=
1
1 ,,

t
k kbsb ym Thus,  
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( ) ( )

( ) ( ) ( )1,,1,,1,,

1

1
,,

1

1
,,
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,,

2 2

1,,,,

1

,,,,
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−

=

−

=

−
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−
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−
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⎠
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⎠
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⎝
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⎠
⎞⎜

⎝
⎛ ∑+⎟

⎠
⎞⎜

⎝
⎛ ∑=

ubsusbusb

t

k
kbsb

t

k
kbsb

u

tv
vsb

u

tv

u

vk
kbsb

R
vsb

u

tv
vbsb

R
tsb

R

pruPutRymU

vPvtRym

ymHymSutC

λ

µ   (4.36) 

Also, total production from period v to u-1 is ∑ −
=
1u
vk kd and total holding cost for the 

finished goods from period t to period u-1 is ( )∑ ∑−
=

−
= +

2 2
1,

u
tv

u
vk k

F
vb dH . Therefore, ( )tF F

ut ,  can 

be found by the Wagner-Whitin algorithm (Wagner and Whitin 1958) with the following 

recursive equations. 

 ( ) 0, =uF F
ut  

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ <∑ ⎟

⎠
⎞⎜

⎝
⎛ ∑+⎟

⎠
⎞⎜

⎝
⎛ ∑+=

−

=

−

=
+

−

=
jvdHdSjFvF

u

tv

u

vk
k

F
vb

u

vk
k

F
vb

F
ut

F
ut :min

2 2

1,

1

,,,  (4.37) 

 For given t and u, it takes ( )( )2tuO −  time to compute ( )tF F
ut , . Since there are 

( )2TO  operations for the recursive equation (4.35), the computational complexity is 

( )4TO . 

 

Numerical Example 

 To illustrate the dynamic programming heuristic for solving the buyer 

subproblem, we consider a simple three-period example with the parameters shown in 

Table 4.1. 

 

Table 4.1  
Parameters for the buyer subproblem of two-echelon serial system 
 Raw-material inventory 

subsystem 
Finished-goods inventory 

subsystem 
Setup cost/order $400 ( )RK  $200 ( )FK  
Unit holding cost $2 ( )Rh  $5 ( )Fh  
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{ } { }350 ,460 ,200,, 321 == dddD  

{ } { }0 ,0 ,1010,, 2,,2,,1,, ==Ρ bsbsbs ppp  

{ } { }0 ,22.0 ,55.0,, 3,,2,,1,, ==Μ sbsbsb µµµ  

{ } { }22.0 ,0 ,0,, 3,,2,,1,, ==Λ sbsbsb λλλ  

Then, 

(a) ( ) 04 =F  

(b) ( ) ( ) ( ) ( )34,343 4,3
FR FCFF ++=  

 (i) ( ) ( ) 4773504,3 3,, =+= sb
RR KC λ  

(ii) ( ) 044,3 =FF  

 (iii) ( ) ( ){ } 2004min3 4,34,3 =+= FFF KFF  

( ) 67720047703 =++=F  

(c) ( )
( ) ( ) ( )
( ) ( ) ( )⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
=

23,23

24,24
min2

3,2

4,2

FR

FR

FCF

FCF
F  

 (i) ( ) ( ) ( ) 11008103504,2 2,, =++= sb
RRR hKC λ  

(ii) ( ) 044,2 =FF  

 (iii) ( ) 200200034,2 =+=FF  

(iv) ( )
( )
( )

490
490
1950

min
2003

)5(3502004
min2

4,2

4,2
4,2 =

⎭
⎬
⎫

⎩
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

++
=

F

F
F

F

F
F  

(v) ( ) ( ) 4773503,2 2,, =+= sb
RR KC µ  

(vi) ( ) 033,2 =FF  

 (vii) ( ) 200200023,2 =+=FF  

( ) 1354
1354
1590

min
200477677

49011000
min2 =

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

++
++

=F  
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(d) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )⎪⎪⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

++

++

++

=

12,12

13,13

14,14

min1

2,1

3,1

4,1

FR

FR

FR

FCF

FCF

FCF

F  

(i) ( ) ( ) ( ) 27203503504604,1 =+++= RRRR hhKC  

(ii) ( ) 044,1 =FF  

 (iii) ( ) 200200034,1 =+=FF  

(iv) ( )
( )
( )

400
400
1950

min
2003

)5(3502004
min2

4,1

4,1
4,1 =

⎭
⎬
⎫

⎩
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

++
=

F

F
F

F

F
F  

(v) ( )14,1
FF  

( ) ( )
( )
( ) ⎪

⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

++

++++

=

2002

)5(4602003

)5(350)5(3504602004

min

4,1

4,1

4,1

F

F

F

F

F

F

 

  400
400
2700
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min =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=  

(vi) ( ) ( ) ( ) ( ) 13703503503503,1 2,,1,, =+++= sbsb
RRR hKC µµ  

(vii)  ( ) 033,1 =FF  

 (viii) ( ) 200200023,1 =+=FF  

(ix) ( )
( )
( )

400
400
2500

min
2002

)5(4602003
min1

3,1

3,1
3,1 =

⎭
⎬
⎫

⎩
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

++
=

F

F
F

F

F
F  

(x) ( ) ( ) 8463504602,1 1,, =++= sb
RR KC µ  

(xi) ( ) 022,1 =FF  

 (xii) ( ) 20012,1 =FF  

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++
++

++
=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

++

++

++

=
*

2,1

3,1

4,1

2400
2447
3120

min
2008461354
4001370677

40027200
min

12,12

13,13

14,14

min1
FR

FR

FR

FCF

FCF

FCF

F  
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Thus, the production schedule is { }350 ,460 ,200  and the proposed order policy is also 

{ } { }350 ,460 ,200,, 321 == dddD . 

 

Supplier Subproblem (SN) 

 Similar to (BN), (SN) can be solved by the following recursive equations. 

 ( ) 01 =+TF  

 ( ) ( ) ( ) ( ){ }uttFutCuFtF R
ut

R <++= :,min ,    (4.38) 

 In (4.38), ( )utC R ,  is simply the sum of ordering cost at period t and the holding 

cost from period t to u-1, ( ) ( ) ( )∑ ∑+∑= −
=

−
= +−−

−
=−−

2 2
1,1,,1,

1
,1,,1,, u

tv
u

vk ksss
R

vss
u

tv vsss
R

tss
R ymHymSutC .  

To find ( )tF P
ut , , we need to determine both the production and delivery policies. 

We define the following additional notations for developing the recursive equations for 

obtaining ( )tF P
ut , . 

( )kG jv, : Minimum total inventory holding and penalty cost of the finished- 

goods inventory subsystem from period k to j-1 if the supplier 

produces at period v to meet buyer’s proposed requirements through 

period j-1. 

( )lkg jv ,, : Total inventory holding and penalty cost of the finished-goods 

inventory subsystem from period k to l-1 if the supplier produces at 

period v to meet the buyer’s proposed requirements through period j-1 

and delivers at period k to meet requirements from period k through 

l-1. 

Then, ( )tF F
ut ,  can be found by the following recursive equations. 

 ( ) 0, =uF F
ut  

 ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ <+⎟

⎠
⎞⎜

⎝
⎛ ∑+=

−

=
jvvGrSjFvF jv

u

vk
ksb

F
vs

F
ut

F
ut :min ,

1

,,,,,  (4.39) 
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In (4.39), ( )vG jv,  is used to determine the delivery policy and can be found using the 

following recursive equations. 

 ( ) 0, =jG jv  

 ( ) ( ) ( ){ }lklkglGkG jvjvjv <+= :,min ,,,  (4.40) 

If the supplier produces at period v to meet buyer’s proposed requirements 

through period j-1, the total units produced are ∑ −
=
1

,,
j

vq qsbr . If the supplier delivers at 

period k to satisfy requirements from period k to l-1, there will be ∑ −
=
1

,,
j

lq qsbr units 

remained in the finished-goods inventory. Since there will be no delivery from period 

k+1 to l-1 due to zero inventory property, the total inventory holding cost of finished 

goods from period k to l-1 is ( )∑ ∑−
=

−
=

1 1
,,,

l
km

j
lq qsb

F
ms rH . Also, the cumulative proposed 

delivery quantities from period 1 to period k is R(1,k). Thus, ( )lkg jv ,,  is calculated as 

follows. 

 
( ) ( ) ( )( )

( ) ( )( ) ( )1,,1,,1,

1

,

1 1

,,,,

1,1,

,,,

−−−

−

=

−

=

−

=

−−=−+

∑ −+∑ ⎟
⎠
⎞

⎜
⎝
⎛ ∑=

lsblbsls

l

km
ms

l

km

j

lq
qsb

F
msjv

rplkRlkPU

mkRmkPrHlkg

λ

µ
 (4.41) 

 Given v and j, it takes ( )( )2vjO −  time to compute ( )vG jv, ; and given t and u, 

there are ( )( )2tuO −  operations to compute ( )tF F
ut , . Since there are ( )2TO  operations for 

the recursive equation (4.39), hence, the computational complexity is ( )6TO . 

 

Numerical Example 

 We demonstrate the dynamic programming heuristic for solving the supplier 

problem by presenting a portion of the heuristic using a simple three-period example 

with the parameters shown in Table 4.2. 
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Table 4.2  
Parameters for the supplier subproblem of two-echelon serial system 
  Raw-material inventory 

subsystem 
Finished-goods inventory 

subsystem 
Setup cost/order $400 ( )RK  $200 ( )FK  
Unit holding cost $1 ( )Rh  $1.5 ( )Fh  
 
 

{ } { }350 ,460 ,200,, 3,,2,,1,, == sbsbsb rrrR  

{ } { }0 ,22.0 ,55.0,, 3,,2,,1,, ==Μ bsbsbs µµµ  

{ } { }22.0 ,0 ,0,, 3,,2,,1,, ==Λ bsbsbs λλλ  

(a) ( ) 04 =F  

(b) ( ) ( ) ( ) ( )34,343 4,3
FR FCFF ++=  

 (i) ( ) 4004,3 == RR KC  

(ii) ( ) 20034,3 == RF KF  

( ) 60020040003 =++=F  

(c) ( )
( ) ( ) ( )
( ) ( ) ( )⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
=

23,23

24,24
min2

3,2

4,2

FR

FR

FCF

FCF
F  

 (i) ( ) ( ) 7503504,2 =+= RRR hKC  

(ii) ( ) 044,2 =FF  

 (iii) ( ) 200200034,2 =+=FF  

(iv) ( )
( ) ( )
( ) ( )⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
=

22003

22004
min2

3,24,2

4,24,2
4,2 GF

GF
F

F

F
F  

• ( ) 044,2 =G  

• ( ) ( ) 04,303 4,24,2 =+= gG  

• ( )
( ) ( )
( ) ( )⎭

⎬
⎫

⎩
⎨
⎧

+

+
=

3,23
4,24

min2
4,24,2

4,24,2
4,2 gG

gG
G  
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o ( ) ( ) ( ) 1543503504,2 3,,2,,4,2 =+= sbsbg λµ  

o ( ) 03,24,2 =g  

• ( ) { } 00,154min24,2 ==G  

• ( ) ( ) 04,302 4,23,2 =+= gG  

• ( )
( ) ( )
( ) ( )

200
200200

02000
min

22003

22004
min2

3,24,2

4,24,2
4,2 =

⎭
⎬
⎫

⎩
⎨
⎧

+
++

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
=

GF

GF
F

F

F
F  

( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )⎭

⎬
⎫

⎩
⎨
⎧

++

=++
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
=

23,23
9502007500

min
23,23

24,24
min2

3,23,2

4,2
FRFR

FR

FCFFCF

FCF
F  

 
 If the heuristic continues, it will terminate at ( ) 12001 =F . The optimal order 

schedule is { }0 ,0 ,1010 , i.e., an order of 1010 units is placed at period 1. Coincidentally, 

the optimal production schedule and the proposed delivery schedule are also { }0 ,0 ,1010 . 

4.3.4.2. Silver-Meal-based heuristics 

 Because of the computational complexity, the dynamic programming heuristics 

may not be efficient for problem with long planning horizon. A fast single-pass heuristic 

based on Silver-Meal heuristic that sequentially determines the policy of the finished-

goods inventory subsystem and the policy of the raw-material inventory subsystem is 

proposed. In developing the single-pass heuristic, we use the cost modification method 

proposed by New (1974) in which the echelon holding cost is used for the finished-

goods inventory subsystem. The holding cost of the raw material inventory subsystem is 

not modified as the facility does not have access to the cost parameters of his/her 

supplier. 

 

Buyer Subproblem (BN) 

 Since the raw material inventory subsystem and the finished-goods inventory 

subsystem are considered separately, the production policy of the finished goods 

inventory subsystem can be determined using the traditional Silver-Meal heuristic. Once 
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the production policy is determined, we proposed finding the ordering policy of the raw 

material inventory subsystem as follows. Define ( )utC ,  as the average cost of the raw 

material subsystem if an order is placed at period t to meet requirements through period 

u with respect to (BN). Then, per period average cost can be calculated as 

( ) ( ) ( )

( ) ( ) ( )⎪⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−⎟
⎠
⎞⎜

⎝
⎛ =+∑+

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −+∑∑+

⎟
⎠
⎞

⎜
⎝
⎛ ∑ ⎟

⎠
⎞⎜

⎝
⎛ ∑+⎟

⎠
⎞⎜

⎝
⎛ ∑

+−
=

−

=

−

==

−

=

−

=
+

=

ubsusbusb

t

k
kbsb

t

k
kbsb

u

tv
vsb

u

tv

u

vk
kbsb

R
vsb

u

tv
vbsb

R
tsb

pruPutRymU

vPvtRym

ymHymS

tu
utC

,,,,,,

1

1
,,

1

1
,,,,

1 1

1,,,,,,,,

,1,

,1,
1

1,

λ

µ ,  (4.42) 

and the usual Silver-Meal heuristic can be applied directly. 

Numerical Example 

Using the same example for the buyer subproblem and assuming the production 

policy is { }250 ,460 ,200 , the Silver-Meal-based heuristic is demonstrated as follows. 

(a) ( ) 4001,1 =C  

(b) ( ) ( ) ( ) ( ){ } ( )1,17953503504605.02,1 2,,1,, ChKC sbsb
RR >=+++×= µµ  

(c) ( ) 4002,2 =C  

(d) ( ) ( ) ( ){ } ( )2,26393503505.03,2 2,, ChKC sb
RR >=++×= λ . 

Therefore, the proposed order policy is { }250 ,460 ,200 . 

 

Supplier Subproblem (SN) 

 When interacting with the buyer, the supplier incurs no penalty of raw material 

inventory. For the finished-goods inventory subsystem, the supplier needs to determine 

both the production policy and the delivery policy. At any period u, the requirement of 

period u can be satisfied by delivering the required amount at any period k, uk ≤ . To 

simplify the decision rule, we assume that the requirement of period u is satisfied either 

by delivering at period u or at period k, where period k is the last period that a delivery is 

scheduled. Define  
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( )utC , : The average cost of the finished-goods inventory subsystem if the 

supplier produces at period t to meet requirements through period u 

with respect to (SN). 

( )kutF ,, : The total cost of the finished-goods inventory subsystem if the 

supplier produces at period t to meet requirements through period u 

and the requirements of period u is satisfied by the delivery at 

period k. 
F

tse , : Unit echelon holding of supplier s’s finished goods inventory at 

period t. 

 Given ( )1, −utC , ( )kutF ,,  can be determined by adjusting the setup, inventory 

holding, and penalty cost as follows. 

( ) ( ) ( )

( )
( ) ( )

( ) ( )( ) ( )usbubsubs

usbubsubs

u

kv
usbvbs

k

tv

F
vsubs

u

tv
vsb

F
ts

u

tv
vsb

F
ts

rputRutPU

rpkuU

rer

rSrSutCtukutF

,,,,,,

1,,1,,1,,

1

,,,,

1

,,,

,,,

1

,,,

,,

1

1,,,

−=+

−>−−

⎟
⎠
⎞⎜

⎝
⎛ ∑+⎟

⎠
⎞⎜

⎝
⎛ ∑+

⎟
⎠
⎞⎜

⎝
⎛ ∑+⎟

⎠
⎞⎜

⎝
⎛ ∑−−−=

−−−

−

=

−

=

=

−

=

λ

λ

µ   (4.43) 

Equation (4.43) is derived based on the following observations.  

(a)  Setup cost must be recalculated. 

(b) If the supplier decides to produce the requested quantities of period u at period t 

and deliver at period k,  

 (i) the finished-goods inventory will increased by ubsr ,,  from period t to k-1. 

Thus, the increase in echelon holding cost is ( )∑ −
=

1
,,,

k
tv

F
vsubs er ;  

 (ii) the cumulative proposed delivery quantities will be increased by ubsr ,,  from 

period k to u-1, where the cumulative proposed delivery quantities and 

cumulative requested quantities will be the same at period u.  

(c) If requirement of period u-1 is not satisfied by a new batch, a penalty 

( )1,,1,,1,, −−− − usbubsubs rpλ  is incurred. In this case, if the requirement of period u is 
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satisfying by a new delivery at u, this penalty cost should not be adjusted. 

However, if the requirement of period u is combined to previous delivery k, i.e., 

1>− ku , the cumulative proposed order and delivery quantities at period u-1 

will not be the same and the penalty ( )1,,1,,1,, −−− − usbubsubs rpλ  must be subtracted. 

Since the requirement of period u is satisfied either by delivering at period u or at period 

k, where period k is the last period that a delivery is scheduled, then 

 ( ) ( ) ( ){ }
1

,,,,,min,
+−

=
tu

uutFkutFutC  (4.44) 

And the usual Silver-Meal heuristic can be applied directly with the extra bookkeeping 

on k. 

 

Numerical Example 

The Silver-Meal-based heuristic for solving the supplier subproblem is illustrated 

using the same example shown in Section 4.3.4.1.  

(a) ( ) ( ) 2001,1,11,1 === RKFC  

(b) ( ) ( ){ } 2)2,2,1(),1,2,1min2,1 FFC =  

 (i) ( ) ( ) ( ) ( ) 5544604601,11,2,1 2,,1,, =++= bsbsCF µµ  

 (ii) ( ) ( ) ( ) 4304601,12,2,1 =+= F
seCF  

(c) ( ) ( ){ } ( )1,12152)2,2,1(),1,2,1min2,1 CFFC >==  

(d) ( ) 2002,2 =C  

(e) ( ) ( ) ( ){ } 23,3,2,2,3,2min3,2 FFC = . 

(i) ( ) ( ) ( ) 2773502,22,3,2 3,, =+= bsCF λ  

 (ii) ( ) ( ) ( ) 3753502,23,3,2 =+= F
seCF  

(f) ( ) ( ) ( ){ } ( ) ( )2,213822,3,223,3,2,2,3,2min3,2 CFFFC <=== . 

Thus, both the production policy and the proposed delivery policy are { }0 ,810 ,200 . 
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4.3.5. Numerical example of SIM(b,s) 

 In this section, we present a step-by-step illustration of SIM(b,s). A simple 

example of a two-echelon serial system is considered. Buyer and supplier subproblems 

are solved using the dynamic programming heuristics presented in Section 4.3.4.1. The 

parameters of the problem are summarized in Table 4.3.  

 
Table 4.3  
Parameters of the numerical example for two-echelon serial system 
 Supplier Buyer 
 Raw-material 

inventory 
subsystem 

Finished-goods 
inventory 
subsystem 

Raw-material 
inventory 
subsystem 

Finished-goods 
inventory 
subsystem 

Setup cost/order $211.2  $132 $171.6  $310.2 
Unit holding cost $0.32 $0.52 $0.78  $1.25 
 
 

Demand of the end-product is { } { }409 ,272 ,304 ,345,,, 4321 == ddddD . For 

convenience, we define ( ) ( ){ }4,,1,,, K==Μ tkk tsbb µ , ( ) ( ){ }4,,1,,, K==Λ tkk tsbb λ , 

( ) ( ){ }4,,1,,, K==Μ tkk tbss µ  and ( ) ( ){ }4,,1,,, K==Λ tkk tbss λ .  

Step 0: Initialization 

 Buyer: Set ( ) { }0 ,0 ,0 ,00 =Μb , ( ) { }0 ,0 ,0 ,00 =Λb . 

  Solve (NCB) and get ( ) { }409 ,0 ,574 ,3450, =sbR , 1785* =NCBc  

 Supplier: Set ( ) { }0 ,0 ,0 ,00 =Μ s  and ( ) { }0 ,0 ,0 ,00 =Λs . 

  Solve (NCS) to get 986* =NCSc . 

Iteration 1 

Step 1: Negotiation 

 Supplier: Solve (SN).  

  ( ) { }0 ,0 ,0 ,13301, =bsP , ( ) 3431 =NSg , ( ) 6433439861 =−=scomp . 

 Buyer: Solve (BN). 

  ( ) { }409 ,0 ,574 ,3451, =sbR , ( ) 17851 =NBg , ( ) 01 =bcomp . 
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Step 2: Update Lagrangian multipliers 

 Supplier: ( ) 0006.01 =w  

  ( ) { }24.0 ,0 ,24.0 ,24.01 =Μ s  and ( ) { }24.0 ,0 ,24.0 ,24.00 =Λs . 

 Buyer: ( ) 0006.01 =w  

  ( ) { }24.0 ,0 ,24.0 ,24.01 =Μb  and ( ) { }24.0 ,0 ,24.0 ,24.00 =Λb . 

Iteration 2 

 Supplier: Solve (SN).  

  ( ) { } ( )1094 ,0 ,574 ,3452 ,, sbbs RP == . Inform the buyer and stop. 

4.4. Two-echelon assembly inventory system 

 Two-echelon assembly inventory system is a more general case of the two-

echelon serial system in which there is a single buyer and multiple suppliers. 

 Similar to the analysis on two-echelon serial system, the buyer is indexed as b in 

this section for convenience. Applying the same modifications and decomposition 

procedure to (SC) as described previously will result in a buyer subproblem and ( )bB  

supplier subproblems. To facilitate asynchronous interaction in which the buyer can deal 

with each supplier separately, the production schedule of the buyer is assumed to be 

fixed. As a result, the buyer subproblem can be further decomposed into ( )bB  sub-

problems, one for each supplier. The subproblem of the buyer with respect to supplier s, 

(BN(s)) is as follows. 

(BN(s)) min ( )

( ) ( )
∑
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⎭
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 (4.45) 

 s.t. (4.3)-(4.7) with bi = , (4.11) and  (4.21). 

Similarly, the supply subproblem of supplier s, ( )bBs ∈  is  
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(SN(s)) min ( )

( ) ( )( )
( )

( ) ( )∑
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 s.t. tsks
R

tkstks
R

tks ymIxI ,,,,,,1,, =−+−  ( ) TtsBk ,,1; K=∈  (4.47) 

  (4.5)-(4.7) with si = , (4.13), (4.20) and (4.22). 

 As stated in the previous section, tsbr ,,  and tbsp ,,  are known by both parties. Also, 

all other parameters of (BN(s)) and (SN(s)) are private to the buyer and the supplier s, 

( )bBs ∈ , thus they have all the information to formulate their corresponding (BN(s)) 

and (SN(s)).  

 After the decomposition, the inventory coordination can be achieved by an 

interaction model similar to SIM. The interactive procedure starts with the initialization 

process that finds the reference solutions for the buyer and each supplier s, ( )bBs ∈ , 

assuming there is no coordination. In other words, the buyer first determines his/her 

optimal order quantities, *
,, tsbr , ( )bBs ∈  and Tt ,,1K= , based on the known external 

demand by solving his/her non-coordinated problem: 

(NCBA) min ( ) ( )( )
( )

( ) ( )( )∑
⎭
⎬
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⎨
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 s.t. (4.3)-(4.7) with bi = , and (4.11).  

Upon receiving the optimal order quantities, *
,, tsbr , Tt ,,1K= , from the buyer, supplier s, 

( )bBs ∈ , sets Ttrp tsbtbs ,,1,*
,,,, K==  and determines his/her optimal order policy by 

solving his/her non-coordinated problem: 

(NCS(s)) min ( )

( ) ( )( )
( )

( ) ( )( )
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 s.t. (4.2), (4.5)-(4.7) with si =  and (4.13). 
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Then the interactive procedure is repeated for each supplier s, ( )bBs ∈  as follows. At 

each iteration, supplier s solves (SN(s)) with respect to buyer’s proposed order policy. 

(S)he then updates the Lagrangian multipliers and proposes a delivery policy and the 

corresponding compensation (s)he is will to pay to the buyer. The buyer then solves 

(BN(s)), updates the corresponding Lagrangian multipliers, and proposes an order policy 

and the corresponding compensation requested to supplier s. This negotiation process 

repeats until a compromised order/delivery policy is obtained. 

4.4.1. Compensation determination 

 For ( )bBs ∈ , let ( )
*

sNCBAc  be the optimal objective value of (NCBA) with respect 

to supplier s and ( )
*

sNCSc  be the objective value of (NCS(s)) with respect to supplier s’s 

reference policy. Also, we define ( ) ( )kg sBN  and ( ) ( )kg sSN  as the objective value of 

(BN(s)) and that of (SN(s)) in iteration k, respectively. Furthermore, we define 

( )kcomp sb,  and ( )kcomp bs,  as the compensation requested that is submitted to supplier s 

by buyer b and the compensation revealed by supplier s to buyer b in iteration k during 

the negotiation, respectively. Using the approach mentioned in Section 4.3.1, we have 

 ( ) ( ) ( ) ( )
*

, sNCBAsBNsb ckgkcomp −=  (4.50) 

 ( ) ( ) ( ) ( )kgckcomp sSNsNCSbs −= *
,  (4.51) 

4.4.2. Lagrangian multipliers updates  

 During the negotiation between the buyer and supplier s, the Lagrangian 

multipliers )(,, kR
tsbµ , )(,, kR

tsbλ , )(,, kF
tbsµ , and )(,, kF

tbsλ  can be updated as in (4.27)-(4.30) 

in iteration k after the step size corresponding to supplier s, ( )kws , is determined. 

 Similar to the approach used for the two-echelon serial inventory system, ( )kws  

can be obtained by   

 ( ) ( ) ( ) ( )( )
∑

−
=

∑
−

=
==

T
t t

sbbs
T
t t

s G
kcompkcomp

G
LBUBgkw

1

,,

1

θ
 (4.52) 
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4.4.3. Solution procedure 

As stated in Section 4.3.3, preference are given to the buyer if a compromised 

policy is not reached after hitting the iteration limit, and the buyer’s last proposed order 

policy is used as the final order/delivery policy. Now, we are ready to state the 

interaction procedure for coordinating the two-echelon inventory system with buyer b 

and his/her supplier set B(b), AIM(b, B(b)), as follows. 

AIM(b, B(b)) 

Step 0: Initialization 

 Buyer:  

(a) Initialize 0)0(,, =R
tsbλ , ( ) 00,, =R

tsbµ , Tt ,,1K= .  

(b) Determine the proposed order policies, ( )0,sbR , ( )bBs ∈ , and *
NCBAc  by 

solving (NCBA). Repeat Step 1 for each supplier s, ( )bBs ∈ . 

Step 1: Negotiation between buyer b and supplier s 

 Step 1.1: Local initialization 

  Buyer: 

(c) Submit ( )0,sbR  to the supplier s. Set 1=bk . 

  Supplier s: 

(d) Initialize 0)0(,, =F
tbsλ , ( ) 00,, =F

tbsµ , Tt ,,1K= .  

(e) Solve (NCS(s)) to obtain ( )
*

sNCSc . Set 1=sk . 

Step 1.2: Negotiation 

 Supplier s: 

(f) Solve (SN(s)) to obtain ( )sbs kP , .  

(g) Determine ( )sbs kcomp ,  as in (4.51). 

(h) If ( ) ( )1,, −= ssbsbs kRkP , a compromised solution is found. Inform 

the buyer and go to Step 1.5. 

(i) Propose ( )sbs kP ,  and ( )sbs kcomp ,  to the buyer. Set 1+= ss kk . 
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 Buyer: 

(j) Solve (BN(s)) to obtain ( )bsb kR , . 

(k) Determine ( )bsb kcomp ,  as in (4.50). 

(l) If ( ) ( )bbsbsb kPkR ,, = , a compromised solution is found. Inform the 

supplier and go to Step 1.5. 

(m) Propose ( )bsb kR ,  and ( )bsb kcomp ,  to supplier s. Set 1+= bb kk . 

(n)  If iteration limit is exceeded, go to Step 1.4. Otherwise, go to 

Step 1.3. 

Step 1.3: Update Lagrangian multipliers  

 Supplier s: 

(o) Update ( )s
F

tbs k,,µ  and )(,, s
F

tbs kλ  as in (4.29) and (4.30). 

 Buyer: 

(p) Update )(,, b
R

tsb kµ  and )(,, b
R

tsb kλ  as in (4.27) and (4.28). 

(q) Go to Step 1.2. 

Step 1.4: Restore feasibility 

 Buyer: 

(r) Use ( )1, −bsb kR  as the lot sizing policy and propose to the 

supplier. 

 Supplier s: 

(s) ( ) Ttkrp stsbtsb ,,1,1,,,, K=−= . Solve (NCS(s)). 

Step 1.5: Buyer continues to next supplier, go to Step 1. 

 
In order to provide more specifics about how to solve the subproblems (NCBA), 

(NCS(s)), (BN(s)), and (SN(s)) in the procedure AIM(b,B(b)), it is necessary to further 

specify the components of the objective function; i.e., ( )xS R
tji ,, ( )yS F

ti, ( )uH R
tji ,, ( )uH F

ti, .  

Solution procedures for common forms of these components are described in the 

following sections. 
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4.4.4. Procedure for cases with concave cost functions 

 Similar to Section 4.3.4, we consider the same special case in which the 

ordering/setup cost functions are concave on [ )∞,0  for all i and t; and the inventory 

holding cost functions are linear on [ )∞,0  and are nondecreasing from upstream to 

downstream facilities. We consider nested policies that satisfy the zero inventory 

property for solving (BN(s)) and (SN(s)). Recall that the Silver-Meal-based heuristics 

developed in the previous section are one-pass heuristics which consider the finished-

goods inventory subsystem and raw-material inventory subsystem sequentially, they can 

be applied to (BN(s)) and (SN(s)) without modification. In this section, dynamic 

programming heuristics are developed for solving the buyer subproblem (BN(s)) and the 

supplier subproblem (SN(s)).  

4.4.4.1. Buyer subproblem 

Define ( )tF  as the minimum total cost from period t to T with respect to (BN(s)), 

and ( )utC R ,  as the total cost of the raw-material inventory subsystem of ordering at 

period t to meet requirements through period u-1 with respect to (BN(s)). Since (BN(s)) 

only considers the raw-material inventory subsystem, the problem can be solved by the 

recursive equations as follows. 

 ( ) 01 =+TF  
 ( ) ( ) ( ){ }ututCuFtF R <+= :,min     (4.53) 

where ( )utC R ,  is the same as in (4.36). 

 In this case, the computational complexity is ( )2TO . 

4.4.4.2. Supplier subproblem 

 (SN(s)) is more complicated than (BN(s)) for there are multiple raw-materials 

inventory subsystems supplying the single finished-goods inventory subsystem. To solve 

(SN(s)), the dynamic programming approach for assembly system proposed by 

Crowston and Wagner (1973) is adopted. For convenience, inventory subsystems of the 
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suppliers are numbered as 1 to k, where 1 to k-2 are the raw-material inventory 

subsystems, k-1 is the finished-goods inventory subsystem, and k is a dummy subsystem 

that is responsible for determining the delivery policy. Thus, the predecessor of the 

dummy unit k is the finished-goods inventory subsystem. Using the same notation as 

used in Crowston and Wagner (1973), let 

π : ordering/production/delivery policy, { }Ttt ,,1: K== ππ , where 1=tπ  

if there is an order/production/delivery at time t, 

( )πN : set of policy profiles that nest π , i.e., ( )ππ N∈'  if and only if 

0' ≥− tt ππ , Tt ,,1K= . 

( )πif : minimum total cost of inventory unit i and all the predecessors of i  

( )ib : set of immediate predecessors, in term of inventory units, of inventory 

unit i 

Additionally, we define ( )πic  as total cost of inventory unit i if policy π  is used. In 

other words, if ki = , ( )πic  is total penalty cost determined by the Lagrangian 

multipliers; otherwise, ( )πic  is the total ordering/setup and inventory holding cost of the 

inventory subsystem i. Crowston and Wagner (1973) showed that ( )πif  can be found 

by the following recursive equation. 

( ) ( ) ( ) ( ){ }
( )

∑ ∈+=
∈ ibm

mii Nfcf πππππ '' :min   (4.54) 

The worse case computational complexity is ( )kTO 2 . For details, please refer to 

Crowston and Wagner (1973).  

Numerical Example 

 A simple four-period problem for a supplier with two raw-material inventory 

systems is used to exemplify the dynamic programming heuristic. Parameters of the 

problem are shown in Table 4.4. 
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Table 4.4  
Parameters for the supplier subproblem of two-echelon assembly system 
 Supplier 
 Raw-material 

inventory subsystem 1 
Raw-material 

inventory subsystem 2 
Finished-goods 

inventory subsystem 
Setup cost/order $400 ( )1RK  $400 ( )2RK  $200 ( )FK  
Unit holding cost $2 ( )1Rh  $2 ( )2Rh  $5 ( )Fh  
Unit echelon 
holding cost $2 ( )1Re  $2 ( )2Re  $1 ( )Fe  

 
 

{ } { }350 ,460 ,200,, 3,,2,,1,, == sbsbsb rrrR  

{ } { }0 ,22.0 ,55.0,, 3,,2,,1,, ==Μ bsbsbs µµµ  

{ } { }22.0 ,0 ,0,, 3,,2,,1,, ==Λ bsbsbs λλλ  

For convenience, define { }0 ,0 ,10 =π , { }0 ,1 ,11 =π , { }1 ,0 ,12 =π  and { }1 ,1 ,13 =π . We 

illustrate the heuristic by showing the steps for finding the solution for 2π . 

(a) ( )24 πf  ( ) ( ) ( ){ }
( )

∑ ∈+=
∈ 4

2''24 :min
bm

m Nfc ππππ  

  ( ) ( ) ( ) ( ){ }2303
2,,1,, ,min460460 ππλµ ffbsbs ++=  

(b) ( )23 πf  ( ) ( ) ( ){ }
( )

∑ ∈+=
∈ 3

2''23 :min
bm

m Nfc ππππ  

  ( ) ( ){ } ( ) ( ){ }22022101 ,min,min2 ππππ ffffK F ++=  

 (i) ( )22 πf  8002 2 == RK . 

 (ii) ( )02 πf  ( ) ( ) 1800350350 222 =++= RRR eeK  

 (iii) ( )21 πf  8002 1 == RK . 

 (iv) ( )01 πf  ( ) ( ) 1800350350 111 =++= RRR eeK  

 ( )23 πf  ( ) ( ){ } ( ) ( ){ }22022101 ,min,min2 ππππ ffffK F ++=  

  { } { } 2000800 ,1800min800,1800min400 =++= . 

(c) ( )03 πf  ( ) ( ) ( ){ }
( )

∑ ∈+=
∈ 3

0''03 :min
bm

m Nfc ππππ  

  ( ) ( ) ( ) ( )0201350350 ππ ffeeK FFF ++++=  
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  450018001800350350200 =++++=  

(d) ( )24 πf  ( ) ( ) ( ) ( ){ }2303
2,,1,, ,min460460 ππλµ ffbsbs ++=  

  ( ) ( ) { } 22532000 ,4500min460046055.0 =++= . 

Thus, if the supplier decides to use delivery policy 2π , the optimal order policy and 

production policy are also 2π  in this example. 

4.4.5. Numerical example of AIM(b,B(b)) 

 To illustration AIM(b,B(b)), we consider a two-echelon assembly. Buyer and 

suppliers subproblems are solved using the dynamic programming heuristics presented 

in the previous section. The parameters of the problem are summarized in Table 4.5 and 

Table 4.6 .  

 

Table 4.5  
Buyer's parameters of the numerical example for two-echelon assembly system 
 Buyer 
 Raw-Material 

Inventory System 1 
Raw-Material 

Inventory System 2 
Finished-goods 

inventory system 
Setup Cost/order $171.6  $363  $310.2 
Unit holding cost $0.78  $0.42 $1.25 
 
 
Table 4.6  
Suppliers' parameters of the numerical example for two-echelon assembly system 
 Supplier 1 Supplier 2 
 Raw-Material 

Inventory 
System 

Finished-goods 
inventory 

system 

Raw-Material 
Inventory 
System 

Finished-goods 
inventory 

system 
Setup Cost/order $211.2  $132  $303.58  $363 
Unit holding cost $0.32 $0.52 $0.2 $0.3 
 
 
 Demand of the end product is { }409 ,272 ,304 ,345=D . 

Step 0: Initialization 

Buyer: Set ( ) { }0 ,0 ,0 ,00 =Μ b , ( ) { }0 ,0 ,0 ,00 =Λb . 

  Solve (NCBA). 
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( ) { }0 ,681 ,0 ,64901, =sbR , ( ) { }0 ,681 ,0 ,64902, =sbR . 

Step 1: Negotiation between buyer and supplier 1. 

 Step 1.1: Local initialization 

  Buyer: Submit ( )01,sbR , to the supplier 1. 

  Supplier 1: 

   Set ( ) { }0 ,0 ,0 ,001 =Μ s  and ( ) { }0 ,0 ,0 ,001 =Λ s . 

   Solve (NCS(s)) to get 686* =NCSc . 

 Iteration 1 

 Step 1.2: Negotiation 

  Supplier 1: Solve (SN(s)). ( ) { }0 ,0 ,0 ,13301,1 =bsP . 

   ( ) ( ) 34311 =sSNg , ( ) 3433436861,1 =−=bscomp . 

  Buyer: Solve (BN(s)). ( ) { }0 ,681 ,0 ,64911, =sbR . 

   ( ) ( ) 34311 =sBNg , ( ) 011, =sbcomp . 

 Step 1.3: Update Lagrangian multipliers 

  Supplier 1: ( ) 0007.011 =sw  

   ( ) { }0 ,0 ,5.0 ,5.011 =Μ s  and ( ) { }0 ,5.0 ,0 ,001 =Λ s . 

  Buyer: ( ) 0007.011 =sw  

   ( ) { }0 ,0 ,5.0 ,5.01 =Μ b  and ( ) { }0 ,5.0 ,0 ,00 =Λb . 

 Iteration 2 

 Step 1.2: Negotiation 

 Supplier 1: Solve (SN(s)). ( ) { } ( )10 ,681 ,0 ,6492 1,,1 sbbs RP == .  

  Inform the buyer. 

Step 1: Negotiation between buyer and supplier 2. 

 Step 1.1: Local initialization 

  Buyer: Submit ( )02,sbR , to the supplier 2. 

  Supplier 2: 
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   Set ( ) { }0 ,0 ,0 ,002 =Μ s  and ( ) { }0 ,0 ,0 ,002 =Λ s . 

   Solve (NCS(s)) to get 1453* =NCSc . 

 Iteration 1 

 Step 1.2: Negotiation 

  Supplier 2: Solve (SN(s)). ( ) { }0 ,0 ,0 ,13301,2 =bsP . 

   ( ) ( ) 72712 =sSNg , ( ) 72672714531,2 =−=bscomp . 

  Buyer: Solve (BN(s)). ( ) { }0 ,681 ,0 ,64912, =sbR . 

   ( ) ( ) 72612 =sBNg , ( ) 012, =sbcomp . 

 Step 1.3: Update Lagrangian multipliers 

  Supplier 2: ( ) 00026.012 =sw  

   ( ) { }0 ,0 ,18.0 ,18.012 =Μ s  and ( ) { }0 ,18.0 ,0 ,002 =Λ s . 

  Buyer: ( ) 0007.012 =sw  

   ( ) { }0 ,0 ,18.0 ,18.01 =Μ b  and ( ) { }0 ,18.0 ,0 ,00 =Λb . 

 Iteration 2 

 Step 1.2: Negotiation 

  Supplier 2: Solve (SN(s)). ( ) { }0 ,0 ,0 ,13302,2 =bsP . 

   ( ) ( ) 96922 =sSNg , ( ) 4842,2 =bscomp . 

  Buyer: Solve (BN(s)). ( ) { }0 ,681 ,0 ,64922, =sbR . 

   ( ) ( ) 96822 =sBNg , ( ) 24272696812, =−=sbcomp . 

 Step 1.3: Update Lagrangian multipliers 

  Supplier 2: ( ) { }0 ,0 ,24.0 ,24.012 =Μ s  and ( ) { }0 ,24.0 ,0 ,002 =Λ s . 

  Buyer: ( ) { }0 ,0 ,24.0 ,24.01 =Μ b  and ( ) { }0 ,24.0 ,0 ,00 =Λb . 

 (After several iterations, the negotiation between buyer and supplier 2 does not 

reach a compromised feasible solution. Therefore, Step 1.4 is invoked.) 

 Step 1.4: Restore feasibility 
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  Buyer: Use ( ) { }0 ,681 ,0 ,6492, =kR sb  as the order policy. 

  Supplier 2: Set ( ) ( ) { }0 ,681 ,0 ,6492,,2 == kRkP sbbs . Solve (NCS(s)). 

4.5. Extension to multi-echelon serial/assembly inventory system 

 To coordinate a general multi-echelon serial/assembly inventory system, we 

propose using a hierarchical approach that uses SIM(b,s) and AIM(b,B(b)) sequentially 

starting from the last echelon buyer to the top of the system. Recall that the facilities are 

numbered from the top to the bottom, the hierarchical Lagrangian-based heuristic, HLH, 

is as follows. 

 

HLH 

For i=n down to 2, 

If facility i has single supplier, invoke SIM(i,i-1). 

Otherwise, if facility i has multiple suppliers, invoke AIM(i,B(i)). 

 
For example, consider the case where the example in Section 4.4.5 is extended 

such that one of the suppliers also has a single supplier as in Fig. 4.4. In this case, after 

the negotiation with the buyer, supplier 1 has a local optimal order policy. Then (s)he 

invokes a negotiation with supplier 3 by sending the order policy to supplier 3. As such, 

supplier 1 plays the role of a buyer and supplier 3 plays the role of a supplier and a 

feasible policy can be found by using SIM. 
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Fig. 4.4. Multi-echelon supply chain. 

4.6. Computational experiments 

 The performance of the proposed heuristic HLH is evaluated on a set of twelve 

serial/assembly systems. Specifically, we evaluate the followings. 

(a) The effectiveness of HLH with respect to the optimal solution. 

(b) The solution quality of HLH when comparing to existing heuristics. 

(c) The robustness of the solution of HLH if the facilities are not honest in 

exchanging information. 

(d) Convergence performance of the coordination approach for each supplier-buyer 

node-model pair. 

(e) The robustness of the solution of HLH when actual demands deviate from the 

original forecasted demands. 

4.6.1. Test problems 

 For evaluation purpose, we consider the systems in which the ordering/setup cost 

of each inventory subsystem are constant over time regardless of the ordering/production 

quantities; and the holding cost function of each inventory subsystem is linear with fixed 

unit holding cost. Define  

 R
jiK , : Setup/ordering cost of facility i for ordering from facility j. 

Supplier 1 Supplier 2

Supplier 3

Buyer

Supplier 1 Supplier 2

Supplier 3

Buyer
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R
jih , :  Unit holding cost of facility i for raw material j. 

F
iK : Production setup cost of facility i. 

F
ih : Unit holding cost of facility i for his/her finished goods inventory. 

Then,  

( )
⎪⎩

⎪
⎨
⎧

=
0

,
,,,,

R
if

tif
R

tif

K
xS  

otherwise

0 if ,, >tifx
 (4.55) 

( )
⎪⎩

⎪
⎨
⎧

=
0,,

F
f

tf
F

tf

K
yS  

otherwise

0 if ,, >tify
 (4.56) 

( ) R
tif

R
if

R
tif

R
tif IhIH ,,,,,,, =   (4.57) 

( ) F
tf

F
f

F
tf

F
tf IhIH ,,, =   (4.58) 

Moreover, echelon holding cost is assumed to be positive, which is simply consistent 

with the value-added concept. With these settings, the optimal solutions of the assembly 

systems tested can be found using the dynamic programming approach by Crowston and 

Wagner (1978). 

 Twelve different supply chain structures are considered, namely, serial/assembly 

systems with two-, three-, four-, and five-echelon with one-, two-, and three-in-tree 

structures, where the one-in-tree structure is a serial system. For all the test problems, the 

length of the planning horizon is twelve periods. The demand for the end-item in each 

period is generated randomly from a uniform distribution over [200,400]. Echelon 

holding cost are generated uniformly from [0.3,0.5]. Setup/Ordering cost of each 

inventory unit, K, is computed based on the EOQ formula as follows (Salomon 1991). 

 2)( Demand AverageCost  HoldingEchelon 5.0 TBOK ×××=  (4.59) 

where TBO is the time between ordering/production, and average demand is the average 

of the twelve-period demands generated. Thus, TBO is an approximation of the true time 

between ordering/production in a multi-echelon supply chain inventory system.  

 For each supply chain structure, four scenarios are considered in which the 

setup/ordering cost of each inventory unit is generated using different TBO, which 
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translates to 48 different problem sets. TBOs of scenarios 1 to 3 are the same for all the 

facilities and equals to two, three, and four, respectively. In scenario 4, TBOs are 

different for each inventory unit and are generated from uniform distribution from [2,4].  

This experiment design allows us to test the performance of HLH with various 

setup/ordering cost and holding cost combinations. 

 For each problem set, 100 test problems are randomly generated. The 

subproblems of HLH are solved using two heuristics, namely, dynamic programming 

heuristics proposed in Section 4.3.4.1 and Section 4.4.4 (HLH-DP), and Silver-Meal-

based heuristics developed in Section 4.3.4.2 (HLH-SM). For comparison, the test 

problems are solved using three single-pass heuristics. The first single-pass heuristic 

(SP-WW) finds the lot size of each inventory unit using Wagner-Whitin algorithm 

(Wagner-Whitin 1957). The second heuristic (SP-KCC) is proposed by Blackburn and 

Millen (1982) which uses modified setup cost and modified echelon holding cost to 

determine the lot size of each inventory unit using Wagner-Whitin algorithm. The third 

heuristic, SP-MS, is proposed by McLaren (1976) in which the setup/ordering cost is 

adjusted and the lot size of each inventory unit is determined using Wagner-Whitin 

algorithm. It should be noted that SP-KCC requires access of setup/ordering cost and 

echelon holding cost of facilities in other echelon, while SP-MS needs the information 

on setup/ordering cost of facilities in other echelon for cost modifications. These cost 

adjustments methods are briefly described in Appendix. 

 Also, to test the sensitivity of HLH with regards to untruthful behavior of the 

facilities, HLH-DP and HLH-SM are repeated for all the test problems assuming the 

suppliers will understate and the buyers will overstate the corresponding compensation 

by 10% (HLH-DP(10) and HLH-SM(10)); and by 20% (HLH-DP(20) and 

HLH-SM(20)). 

To assess the convergence performance, the number of iterations for the 

coordination approach for each supplier-buyer is recorded. Both HLH-DP and HLH-SM 

are tested using the two-echelon serial and assembly inventory problems of Scenario 4. 
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 To evaluate (e), ordering schedules of all the facilities are assumed to be fixed by 

contract after solving the problems by means of the tested heuristics. Thus, the impacts 

of the error in demand forecast are absorbed by the lowest echelon facility alone; and it 

is suffice to consider two echelon systems. To this end, the hundred two-echelon serial 

inventory problems of Scenario 4 are used. For each problem, thirty sets of actual 

demand of the end-item are generated after the ordering/production schedules are 

determined. Actual demand of end-item of each period is generated as 

( )t
Fore
t

Act
t dd ε±= 1 , where Act

td  is the actual demand of period t, Fore
td  is the forecasted 

demand of period t, and tε  is the variation parameter. Two cases are considered. In the 

first case, the parameter, tε , is generated from uniform distribution of [0,0.4]; while tε  

is generated randomly from uniform distribution of [0,0.8] in the second case.  

4.6.2. Results and analyses 

 To evaluate (a) to (c), the performance measure, 100)( ×−= OPTOPTH ZZZDev , 

is used; where OPTZ  is the optimal total cost and HZ  is the total cost obtained by the one 

of the heuristics, H, tested. In other words, the performance measure is simply the 

percentage deviation of the heuristic solution from the optimal solution. The average 

performance measures, Dev , and the corresponding sample standard deviation (in 

parenthesis) of the four scenarios are summarized in Table 4.7  to Table 4.10.  

From Table 4.7 to Table 4.9, the average performance measures, Dev , of 

SP-KCC are close to zero in all cases. It is because TBO of Scenarios 1 to 3 are constant 

in all the inventory units. It follows that that the setup/ordering cost to echelon holding 

cost ratios of all the facilities are the same. As a result, KCC method will generate a 

delivery/production policy for each inventory unit that is very close to the optimal 

solution. Consequently, SP-KCC is not considered for comparison in Scenario 1 to 3. 
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Table 4.7 
Average performance measure of scenario 1 (TBO=2) 

2-Echelon 3-Echelon 4-Echelon 5-Echelon   
No. of 
Predecessor 1 2 3 1 2 3 1 2 3 1 2 3 

HLH-DP 6(3) 8(3) 8(2) 14(3) 11(2) 11(1) 17(3) 13(1) 10(1) 20(3) 13(2) 10(1) 
HLH-DP(10) 6(3) 8(3) 8(2) 14(3)  12(2) 11(1) 18(3) 13(1) 10(1) 21(3) 13(2) 10(1) 
HLH-DP(20) 6(3) 8(3) 8(2) 14(3) 12(2) 11(1) 18(3) 14(1) 10(1) 21(3) 14(2) 10(1) 
HLH-SM 10(7) 13(8) 13(7) 12(7) 12(6) 12(6) 11(6) 11(5) 10(6) 10(5) 11(5) 9(6) 
HLH-SM(10) 10(7) 13(8) 13(7) 12(7) 12(6) 12(6) 11(6) 11(5) 10(6) 11(5) 11(5) 9(6) 
HLH-SM(20) 10(7) 13(8) 13(7) 12(7) 12(6) 12(6) 11(6) 11(5) 10(6) 11(5) 12(5) 10(6) 
SP-WW 18(3) 16(3) 16(2) 23(3) 19(2) 18(2) 25(3) 20(2) 17(2) 27(3) 20(2) 17(1) 
SP-KCC 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SP-MS 11(8) 11(5) 9(3) 17(5) 13(2) 9(2) 19(4) 13(1) 10(1) 22(4) 14(1) 10(1) 

*Each cell shows the average performance measures, Dev , and the corresponding sample standard deviation (shown in parentheses). 

 

Table 4.8 
Average performance measure of scenario 2 (TBO=3) 

2-Echelon 3-Echelon 4-Echelon 5-Echelon   
No. of 
Predecessor 1 2 3 1 2 3 1 2 3 1 2 3 

HLH-DP 4(2) 5(2) 6(2) 9(2) 12(3) 12(2) 14(4) 17(2) 15(2) 20(5) 19(2) 16(1) 
HLH-DP(10) 4(2) 6(2) 7(2) 9(2) 14(3) 12(2) 14(4) 17(2) 15(2) 20(5) 19(2) 16(1) 
HLH-DP(20) 4(2) 6(2) 7(2) 9(2) 14(3) 12(2) 14(4) 17(2) 16(2) 20(5) 19(2) 17(1) 
HLH-SM 12(4) 13(3) 15(3) 11(5) 14(4) 15(4) 9(4) 13(3) 14(2) 8(3) 13(4) 13(2) 
HLH-SM(10) 12(4) 13(3) 15(3) 11(5) 15(4) 15(4) 9(4) 13(3) 14(2) 8(3) 13(4) 13(2) 
HLH-SM(20) 12(4) 13(3) 15(3) 11(5) 15(4) 15(4) 9(4) 13(3) 15(2) 9(3) 13(4) 14(2) 
SP-WW 16(4) 18(3) 27(3) 25(6) 26(3) 24(3) 32(6) 30(3) 25(2) 43(6) 32(3) 26(2) 
SP-KCC 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SP-MS 8(5) 8(4) 8(3) 11(3) 13(2) 12(2) 15(5) 18(2) 15(2) 20(5) 20(2) 16(1) 
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Table 4.9 
Average performance measure of scenario 3 (TBO=4) 

2-Echelon 3-Echelon 4-Echelon 5-Echelon   
No. of 
Predecessor 1 2 3 1 2 3 1 2 3 1 2 3 

HLH-DP 5(2) 6(2) 6(2) 10(3) 11(2) 12(3) 15(4) 19(2) 15(2) 19(3) 22(2) 16(2) 
HLH-DP(10) 5(2) 6(2) 7(2) 10(3) 11(2) 12(3) 15(4) 19(2) 15(2) 19(3) 22(2) 16(2) 
HLH-DP(20) 5(2) 6(2) 7(2) 10(3) 11(2) 13(3) 15(4) 19(2) 16(2) 20(3) 22(2) 17(2) 
HLH-SM 11(9) 13(8) 15(9) 9(9) 12(9) 12(6) 11(6) 12(7) 12(8) 7(5) 13(8) 16(10) 
HLH-SM(10) 11(9) 13(8) 15(9) 9(9) 12(9) 12(6) 11(6) 12(7) 13(8) 7(5) 13(8) 17(10) 
HLH-SM(20) 11(9) 13(8) 16(9) 9(9) 12(9) 13(6) 11(6) 12(7) 13(8) 7(5) 14(8) 17(10) 
SP-WW 16(4) 18(3) 19(3) 24(5) 28(3) 27(3) 31(5) 35(3) 31(2) 37(7) 39(3) 31(3) 
SP-KCC 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SP-MS 9(6) 9(5) 8(3) 13(6) 13(3) 13(2) 17(4) 19(2) 16(1) 21(4) 23(2) 17(2) 

 

 

Table 4.10 
Average performance measure of  scenario 4 (TBO=2,3,or 4) 

2-Echelon 3-Echelon 4-Echelon 5-Echelon   
No. of 
Predecessor 1 2 3 1 2 3 1 2 3 1 2 3 

HLH-DP 3(3) 4(4) 5(6) 5(4) 8(3) 8(3) 9(5) 13(4) 12(2) 12(5) 16(3) 13(2) 
HLH-DP(10) 3(3) 4(4) 5(6) 5(4) 8(3) 9(3) 9(5) 13(4) 13(2) 12(5) 16(3) 14(2) 
HLH-DP(20) 3(3) 4(4) 6(6) 5(4) 8(3) 9(3) 9(5) 14(4) 13(2) 12(5) 16(3) 15(2) 
HLH-SM 12(9) 15(8) 15(9) 12(9) 14(6) 16(7) 23(9) 17(8) 17(7) 13(9) 16(5) 16(6) 
HLH-SM(10) 12(9) 15(8) 15(9) 12(9) 14(6) 16(7) 23(9) 18(8) 17(7) 13(9) 16(5) 16(6) 
HLH-SM(20) 12(9) 15(8) 15(9) 12(9) 15(6) 16(7) 23(9) 18(8) 18(7) 13(9) 17(5) 17(6) 
SP-WW 7(5) 9(5) 8(4) 12(6) 15(5) 14(4) 17(7) 20(5) 18(2) 21(8) 23(4) 18(2) 
SP-KCC 2(2) 1(2) 1(2) 5(5) 3(3) 2(2) 6(5) 4(3) 3(2) 9(7) 5(2) 4(2) 
SP-MS 9(13) 7(10) 5(8) 6(6) 7(5) 6(2) 9(5) 10(3) 8(2) 12(5) 12(2) 9(2) 
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4.6.2.1. HLH-DP 

 From the experiment, we observed that HLH-DP provides improvement over 

SP-WW. The average improvement of HLH-DP over SP-WW in term of Dev is in the 

neighborhood of eight percent for the systems with different number of echelons. 

Though it may be inferred from Table 4.7 to Table 4.10, the improvement of HLH-DP 

over SP-WW is shown in Table 4.11.  

 

Table 4.11 
Average percentage improvement of HLH-DP over SP-WW 

Predecessor 2-Echelon 3-Echelon 4-Echelon 5-Echelon Average 
1 8 9 9 10 9 
2 8 9 8 8 8 
3 7 8 7 7 7 

Average 8 8 8 8 8 
 
 
 When compared to SP-MS, HLH-DP outperforms SP-MS for two-echelon 

system and provides comparative performance as that of SP-MS in other systems for all 

scenarios.  When compared to SP-KCC in scenario 4, SP-KCC is found to perform 

extremely well in which Dev  is well below ten percent for all the problem sets. For the 

problem sets in this scenario, on average, HLH-DP is three percent, four percent, six 

percent, and seven percent higher in Dev  when comparing to SP-KCC for the two-, 

three-, four-, and five-echelon inventory systems. 

 Also noted from the experiment results is that the solution quality of HLH-DP is 

only slightly affected by the untruthful behavior of the facilities. Out of the 48 problem 

sets, HLH-DP(10) results in one percent higher in Dev  in nine problem sets and two 

percent higher in only one problem set. Similarly, HLH-DP(20) has higher Dev  in 

twenty out of 48 problem sets in which eighteen of them are one percent higher and two 

of them are two percent higher in Dev  when compare to HLH-DP where all the 

facilities are honest. 
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 To evaluate the convergent performance, number of iterations until the 

compromise solution is obtained are recorded for the two-echelon serial and assembly 

systems of scenario 4. As shown in Table 4.12, the average number of iterations of the 

interaction process between each pair of buyer and supplier is 20, 26, and 34 for the 

serial system, assembly system with 2 suppliers and assembly system with 3 suppliers, 

respectively. Running on a computer with a 1.7 GHz CPU, it takes on average 2.30 

millisecond CPU time per iteration for serial system and 143.77 millisecond CPU time 

per iteration for the assembly systems. The fast convergence of HLH-DP and its 

satisfactory performance with respect to the optimal solution suggest that HLH-DP is a 

promising approach in coordinating supply chain inventory system. 

 

Table 4.12 
Convergence performance of HLH-DP 

Number of Predecessors Average number of iterations 
1 20 
2 26 
3 34 

 

4.6.2.2. HLH-SM 

 From the experiments, we found that the average performance of HLH-SM is 

fairly stable for different problem sets. The Dev  ranges from six to sixteen percent for 

all the problem sets. While all other heuristics tested in this experiment exhibits positive 

relationships on the performance measure and the number of echelons, HLH-SM shows 

no such relationship. However, the sample standard deviations of HLH-SM for all of the 

problem sets are higher than those of other heuristics, suggesting that while stable on 

average, the quality of the individual solution obtained by HLH-SM varies quite a bit.  

 From the experiments, we found that HLH-SM performs worse than SP-WW in 

only five out of the 48 problem sets, while three of them are two-echelon inventory 

systems and the remaining two are three-echelon inventory systems. The reason is that 

HLH-SM employs Silver-Meal-based approach for solving the subproblems instead of 
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by dynamic programming heuristic. As a result, its performance may be worse than that 

of SP-WW, which uses dynamic programming approach for finding the 

ordering/production policy. Nonetheless, HLH-SM, on average, shows seven percent 

improvement over SP-WW. Table 4.13 presents the average percentage improvement of 

HLH-SM over SP-WW. 

 

Table 4.13 
Average percentage improvement of HLH-SM over SP-WW 

Predecessor 2-Echelon 3-Echelon 4-Echelon 5-Echelon Average 
1 2 8 12 17 10 
2 1 7 10 11 7 
3 0 5 7 7 5 

Average 1 7 10 12 7 
 
 
 When comparing to HLH-DP, HLH-SM is inferior to HLH-DP in the two-

echelon systems. Its performance is comparable to HLH-DP for the three-echelon 

systems, and it starts to provide better solutions than those of HLH-DP for four- and 

five-echelon systems. Intuitively, the reason that HLH-SM starts to gain advantage over 

HLH-DP as the number of echelon increases may be that HLH-SM tends to find policy 

with longer time between ordering/production than that of individual facility-based 

optimal policy. As a result, time between each order will be longer with larger quantity 

per order for facilities at the upper echelons, and causes the option of holding inventory 

at the higher echelon facility less attractive. In this case, some facilities at the upper 

echelon may benefit from this. As the number of echelons increases, the number of 

facilities that may benefit from the long ordering period will increase. Therefore, 

HLH-SM has advantage over HLH-DP as the number of echelons increases. Similar 

observations are found when comparing HLH-SM to SP-MS. 

 Furthermore, the experiment results suggest that the solution quality of HLH-SM 

is only slightly affected by the untruthful behavior of the facilities. HLH-SM(10) results 

in one percent higher in Dev  in five of the 48 problem sets. Similarly, HLH-SM(20) has 
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one percent higher in Dev  in seventeen problem sets when compare to HLH-SM where 

all the facilities are honest. 

 Table 4.14 summarized the results of the convergence performance of HLH-SM. 

It is found that the coordination approach converges rather fast with average number of 

iterations in the neighborhood of 55. Running on a computer with 1.7GHz CPU, the 

average CPU time per iteration is 0.59 milliseconds.  

When comparing this result to the HLH-DP counterpart, we found that HLH-SM, 

on average, requires more iterations to reach a compromised solution between the buyer 

and supplier. However, the Silver-Meal-based heuristics have much better time 

complexity than that of the dynamic programming heuristics at each iteration, which 

justifies the use of HLH-SM, especially for the problem with long planning horizon.  

 

Table 4.14 
Convergence performance of HLH-SM 

Number of Predecessors Average number of iterations 
1 56 
2 51 
3 54 

 

4.6.2.3. Demand forecast error 

 To test the robustness of our heuristic due to forecasting error in demand, the 

ordering/production policies obtained by HLH-DP, HLH-SM, SP-WW, SP-KCC, and 

SP-MS for the two-echelon serial inventory problems of scenario 4 are used. As stated 

previously, actual demand of period t are generated by ( )t
Fore
t

Act
t dd ε±= 1 . Two cases 

are considered. In the first case (Case 1), the parameter, tε  is generated from uniform 

distribution of [0,0.4]. In the second case (Case 2), tε  is generated randomly from 

uniform distribution of [0,0.8]. 

 The performance with respect to demand uncertainty is quantified by two 

performance measures. The first performance measure is service level, which is defined 

as the percentage of demands that are met from stock. Since the ordering policy is 
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assumed to be fixed by contract, the service level of the upstream supplier will be 100%. 

Thus, only the service level of the downstream facility is considered. The second 

performance measure compares the actual ordering/setup and inventory-related cost of 

the downstream facility. To this regard, 100)( ×−= −−
FE

DPHLH
FE

DPHLH
FE
H

FE ZZZDev  is 

employed as the second performance measure where FE
DPHLHZ −  is the actual cost incurred 

by the downstream facility when the policy generated by HLH-DP is used, and FE
HZ  is 

the actual cost of the downstream facility when the policy obtained by the one of the 

heuristics, H, is used. Table 4.15 summaries the results on mean service level and FEDev  

for the heuristics tested. 

 

Table 4.15 
Mean service level and mean cost deviation from HLH-DP 
Actual Demand 
Variation 0%-40% (Case 1) 0%-80% (Case 2) 

 
Mean Service 

Level FEDev  
Mean Service 

Level FEDev  
HLH-DP 96.02%  92.39%  
HLH-SM 96.19% 11.83% 92.73% 8.94% 
SP-WW 95.87% 3.12% 92.10% 4.09% 
SP-KCC 96.04% 3.30% 92.43% 2.63% 
SP-MS 96.01% 2.33% 92.37% 2.00% 

 
 
 From the experiment, we found that all the heuristics provide similar service 

levels. Also, the mean service levels of the heuristics tested are larger than 90%. In case 

1, the service levels range from 95.87% to 96.19; while in case 2, the service levels are 

in the neighborhood of 92%. It is interesting to observe from Table 4.15 that, on average, 

HLH-DP provides the lowest actual cost while HLH-SM has the highest actual cost for 

both cases 1 and 2. 

4.7. Conclusion 

 In this chapter, we study the problems of coordinating serial and assembly 

inventory systems with private information. The significance of this study is that we 
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assume that the objective function and cost parameters of each facility are regarded as 

private information that no other facilities in the system have access to; and high quality 

solution is obtained through series of negotiation. Here, negotiation protocols in which 

the suppler and buyer negotiate on the order schedule and the corresponding monetary 

compensation due to deviations from their corresponding noncoordinated optimal 

schedules are developed for two-echelon serial and assembly system.  Based on the 

proposed negotiation protocol, we develop a hierarchical Lagrangian-based 

decomposition methodology to coordinate a supply chain inventory system where the 

negotiations are sequentially invoked from the facility at the bottom to those at the top. 

The Lagrange multipliers are updated using the information obtained through 

negotiation. Computational results on 48 problem sets with 100 problems each showed 

that the performance of HLH is comparable to the existing single-pass heuristics that 

employ cost modification techniques. Also, the computational results showed that the 

untruthful behavior does not have significant effects on the solution quality of HLH. 

Finally, when testing the robustness of the heuristics due to forecasting error, we found 

that HLH-DP incurs the lowest actual cost while the service level of each heuristic is 

about the same.  
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CHAPTER V  
CONCLUSIONS AND FUTURE RESEARCH 

5  

5.1. Conclusions 

This dissertation investigates the coordination of supply chain inventory systems 

with private information; specifically, the single-warehouse multi-buyers system, single-

vendor multi-buyers system, serial system and assembly system with private 

information. The objectives of this research are: (a) to develop coordination 

methodologies for supply chains characterized by private information, and (b) to 

investigate the effect of private information on the performance of supply chains.  

 To achieve these objectives, different supply chain structures are studied and 

heuristics are developed with private information. 

 In Chapter II, a simple two-echelon distribution system, single-warehouse-multi-

buyers system, is studied. Specifically, we employed power-of-two inventory theory and 

developed an interaction/negotiation framework, SWMB-PI for coordinating the 

inventory system with private information. In addition, a heuristic, SWMB-GI, is 

developed for coordinating the system with global information. We demonstrate that 

critical system information can be recovered through negotiation with monetary 

compensation; and thus there is no loss in performance of SWMB-PI when compared to 

SWMB-GI. 

 In Chapter III, single-vendor multi-buyers system with private information is 

studied. Two power-of-two nested and stationary policies are developed. The first 

policy, termed common replenishment period policy (CRPP), assumes that all the buyers 

must replenish simultaneously. The second policy, termed asynchronous replenishment 

period policy (ARPP) is a more general case where the common replenishment 

assumption is relaxed. Heuristics for finding these policies with private information, 

namely CRPP-PI and ARPP-PI, are developed. In addition, this study provides another 
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example that that critical system information can be recovered through negotiation with 

monetary compensation; and thus it is viable, under private information environment, to 

develop heuristics that perform as good as heuristics for the global information 

environment. 

 Chapter IV addresses the problem of coordinating multi-echelon serial and 

assembly inventory systems. Using scalable node-model, a hierarchical Lagrangian-

based decomposition methodology where the negotiations are sequentially invoked from 

the facility at the bottom to those at the top is developed with private information. 

Furthermore, the effect of the private information on the performance of the supply 

chain is tested by computational experiments. When testing the proposed heuristic 

against existing heuristics that utilize global information, the experimental results show 

that the proposed methodology provides comparable results. When testing the robustness 

of the heuristics due to forecasting error, we found that the proposed heuristic incurs the 

lowest actual cost while the service level of each heuristic is about the same. 

To summarize, this research contributes to the supply chain inventory society in 

that  

 (a) The development of an interaction/negotiation procedure for distributed system 

with constant demand rate under private information environment. 

(b) The development of a scalable interaction/negotiation procedure for two adjacent 

echelons with time-dependent demand under private information environment. 

(c) Demonstrate on 

(i) information can be separate such that each facility will make use of the 

available information for decision-making; and  

(ii)  information required for implementing the proposed solution approach 

can be recovered through negotiation. 

 

5.2. Future research directions 

In this section, we outline the following possible future research direction.   
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5.2.1. General supply chain inventory system with private information 

In this research, special supply chain configurations are studied. A possible 

research direction is to extend the current model to general supply chain inventory 

system with time-dependent demands.  

In a serial/assembly system, the coordination can be decomposed such that the 

proposed interaction/negotiation framework can be applied to each supply-buyer pair. 

However, in general supply chain inventory system, negotiation may involve more than 

two facilities. In this case, a facility’s change in cost is a result of the combined effects 

of two or more interacting facilities. As such, the facility may not be able to determine 

the appropriate monetary compensation attributable to each interacting facility. To 

evaluate whether it is possible to extend our model to general supply chain 

configurations, we may need to develop different allocation schemes that allocate the 

monetary compensation to each interacting facility and test their corresponding 

performance. 

5.2.2. Capacity constraints 

This dissertation only addresses the uncapacitated supply chain inventory system. 

However, facility may have scarce capacity and thus the problem must be modeled with 

the capacity constraints. Due to the capacity limitation, the infeasibility of an upstream 

facility will ruin the solutions of all the facilities in the lowest echelon. For the system 

with private information, the feasibility restoration is a real challenge because no single 

facility has global information of the system. 

5.2.3. Stochastic demands 

The studies in this dissertation deal with the system with known demands; 

however, stochastic models provide better representations of the real world. In Chapter 

IV, a simple experiment for testing the quality of the solution of our heuristic under 

stochastic demands is performed, and the solutions of deterministic model may be an 

approximation for the stochastic demands case. However, better understanding of 
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coordinating inventory system under stochastic demands will be obtained by developing 

formal stochastic models. 

Extending the proposed models for stochastic demands case is challenging. It is 

because there will be backlog or shortage under stochastic environment, which is not 

considered in our deterministic model. Also, since the success of the proposed models 

depend on exchanging information on compensation, it may not be easy to determine the 

compensation under stochastic environment. 

5.2.4. Work-in-process inventory and variable lead times 

In this research, though work-in-process inventory system is modeled in the 

proposed node-model, it is disregarded because the production is assumed to be 

produced in batch and the production lead time is constant. However, work-in-process 

may have a significant impact on the inventory policy if these assumptions are violated. 

Therefore, it is necessary to extend the methodologies developed in this research to 

address the work-in-process inventory explicitly.  

One of the difficulties of addressing the work-in-process inventory system is that 

that the inclusion of work-in-process inventory system will increase the complexity of 

the node-model. Also, if the production lead time is not constant, the behavior of the 

inventory level of the work-in-process, and thus the related inventory systems, will be 

complicated. 

5.2.5. Variable lead times 

When studying the supply chain systems in this research, production lead time 

and delivery lead time is assumed to be constant. However, there are always options for 

the facility to minimize lead time. For example, production lead time can be shortened 

by using a faster machine at a higher cost; and delivery lead time can be shortened by 

choosing different carrier services at different cost.  

Extending the models to consider variable lead times provides an interesting 

challenge to the researcher. For example, by allowing the options of using different 

machines at different cost, we may have an embedded scheduling problem. Including the 
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carrier services options will also increase the complexity of the problem significantly. 

Besides, questions on whether the facilities can negotiate on what delivery mode must be 

address under private information environment. Therefore, the effect of variable lead 

times is worth investigating. 
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APPENDIX 

Appendix  

A.1. The Constrained-K Method (KCC) (Blackburn and Millen 1982) 

Define iK  and ie  as the setup/ordering cost and echelon holding cost of 

inventory unit i; and iK̂  and iê  as the revised setup/ordering cost and echelon holding 

cost of inventory unit i. Also, define )(iB  as the set of indices of immediate predecessors 

of inventory unit i, and )(ia  as index of the immediate successor of inventory unit i.  

KCC adjusts the setup cost and holding cost for each inventory unit as follows. 
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A.2. McLaren’s Setup Cost Adjustment Method (MS) (McLaren 1976) 

 Define ih  as the holding cost of inventory unit i, MS adjusts only the 

setup/ordering cost but not the holding cost and the adjustment procedure is as follows. 
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