

THE THEORETICAL DEVELOPMENT OF A NEW HIGH SPEED

SOLUTION FOR MONTE CARLO RADIATION TRANSPORT COMPUTATIONS

A Thesis

by

ALEXANDER SAMUEL PASCIAK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2005

Major Subject: Health Physics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE THEORETICAL DEVELOPMENT OF A NEW HIGH SPEED

SOLUTION FOR MONTE CARLO RADIATION TRANSPORT COMPUTATIONS

A Thesis

by

ALEXANDER SAMUEL PASCIAK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John R. Ford
Committee Members, Leslie A. Braby
 John W. Poston, Sr.
 Raytcho Lazarov
Head of Department, William E. Burchill

December 2005

Major Subject: Health Physics

iii

ABSTRACT

The Theoretical Development of a New High Speed

Solution for Monte Carlo Radiation Transport Computations. (December 2005)

Alexander Samuel Pasciak, B.S., University of Washington

Chair of Advisory Committee: Dr. John R. Ford

Advancements in parallel and cluster computing have made many complex

Monte Carlo simulations possible in the past several years. Unfortunately, cluster

computers are large, expensive, and still not fast enough to make the Monte Carlo

technique useful for calculations requiring a near real-time evaluation period. For Monte

Carlo simulations, a small computational unit called a Field Programmable Gate Array

(FPGA) is capable of bringing the power of a large cluster computer into any personal

computer (PC). Because an FPGA is capable of executing Monte Carlo simulations with

a high degree of parallelism, a simulation run on a large FPGA can be executed at a

much higher rate than an equivalent simulation on a modern single-processor desktop

PC. In this thesis, a simple radiation transport problem involving moderate energy

photons incident on a three-dimensional target is discussed. By comparing the

theoretical evaluation speed of this transport problem on a large FPGA to the evaluation

speed of the same transport problem using standard computing techniques, it is shown

that it is possible to accelerate Monte Carlo computations significantly using FPGAs. In

fact, we have found that our simple photon transport test case can be evaluated in excess

of 650 times faster on a large FPGA than on a 3.2 GHz Pentium-4 desktop PC running

iv

MCNP5—an acceleration factor that we predict will be largely preserved for most

Monte Carlo simulations.

v

ACKNOWLEDGEMENTS

I would like to thank my graduate advisor, Dr. John Ford, for his support of this

project. Without his support, this research would never have started. I would also like

to thank several other members of the Texas A&M Nuclear Engineering staff for their

support including: Dr. Daniel Reece, Dr. Leslie Braby and Dr. John W. Poston, Sr.

Funding for this research was provided by the Nuclear Engineering Education

Research (NEER) Grant Program. U. S. Department of Energy Grant No. DE-FG07-

021D14329

vi

TABLE OF CONTENTS

 Page

ABSTRACT ……………………………………………………………………… iii

ACKNOWLEDGEMENTS ……………………………………………………… v

TABLE OF CONTENTS ………………………………………………………… vi

LIST OF FIGURES ……………………………………………………………… viii

LIST OF TABLES ……………………………………………………………….. ix

CHAPTER

 I INTRODUCTION ……………………………………………….. 1

 II BACKGROUND ……………………………………………….... 3

 FPGA Background ……………………………………….. 3
 Development Overview ………………………………….. 6

 III TEST CASE ASSUMPTIONS …………………………………... 8

 IV IMPLEMENTATION METHODS ………………………………. 11

 Random Number Generation …………………………….. 11
 Cross Section Retrieval …………………………………... 14
 Logarithms ……………………………………………….. 21
 Exponentials ……………………………………………… 25
 Scattering Distributions …………………………………... 27
 Overall Layout …………………………………………… 29

 V RESULTS ………………………………………………………... 33

 Testing Methods ………...………………………………... 33
 Monte Carlo Results ……………………………………… 37

 VI CONCLUSIONS …………………………………………………. 43

 VII FUTURE WORK ………………………………………………… 44

REFERENCES …………………………………………………………………… 45

vii

 Page

VITA ……………………………………………………………………………... 47

viii

LIST OF FIGURES

FIGURE Page

1 A schematic showing the internals of an FPGA ………………………….. 5

2 A circuit schematic describing the Mersenne Twister FPGA

implementation …………………………………………………………… 15

3 The total macroscopic cross sections for aluminum, as it is stored on the

FPGA ……………………………………………………………………... 17

4 The exact EPDL97 cross sections and associated errors (red) compared

with the cross sections as stored on the FPGA (blue) ……………………. 18

5 A diagram of the interpolation scheme used for cross section retrieval ….. 20

6 A schematic depicting the log preprocessing stage ………………………. 24

7 A schematic depicting the log2 evaluation stage …………………………. 26

8 Dataflow of the overall algorithm, showing the ideal amount of ‘work’

completed per clock cycle ………………………………………………...

32

9 A flowchart describing the simulation process …………………………… 36

10 The programmed FPGA with one Monte Carlo transport module .………. 39

ix

LIST OF TABLES

TABLE Page

1 The resources consumed on the Xilinx Virtex-II Pro 100 FPGA by the

Monte Carlo radiation transport hardware design .……………………….. 38

2 The flux tallies for MCNP-5 vs. the flux tallies reported for the FPGA

hardware design …………………………………………………………... 41

1

CHAPTER I

INTRODUCTION

Currently, there are two widely used general computing methods for the

expedited execution of highly complex scientific computations: standard personal

computer (PC) based cluster computing and special purpose supercomputing. Twenty

years ago, the idea of using home PCs for scientific computations would have seemed

absurd, as home PCs (even in large numbers) could not match the speed of proprietary

special purpose supercomputers. Today, quite the opposite is true. The demand for home

PC’s drives the computing industry and so cluster computing using off the shelf PC

hardware has become the standard solution for scientific computation. This can be

attributed largely to the high availability and low price associated with standard PC

hardware. It is still true that special purpose machines can outperform standard PC

hardware, but the extremely limited availability and high cost is usually a sufficient

deterrent to their wide use.

Ignoring cost and availability constraints, the most efficient evaluation method

for a computationally-intensive problem, which is based on a relatively fixed algorithm,

is to utilize the power of a custom fabricated Application Specific Integrated Circuit

(ASIC). Unlike a standard microprocessor, ASICs are not driven by software; instead,

they are manufactured to perform one specific calculation. The advantage of using

ASICs for high speed computation is that they can have a much higher work rate than a

This thesis follows the style of the Health Physics Journal.

2

standard microprocessor. The disadvantage of using an ASIC is that, once

manufactured, the computation that it performs can never be altered. Since the

algorithms used in Monte Carlo radiation transport computations are problem specific, it

is unlikely that ASICs are flexible enough to be used as an aide to accelerate the speed of

Monte Carlo computations.

A Field Programmable Gate Array (FPGA) is an integrated circuit which is

capable of performing computations with nearly all of the same speed benefits of an

ASIC. However, FPGAs have one important advantage over ASICs—they are

reprogrammable. The computation that an FPGA performs can be completely changed

in a fraction of a second by reprogramming the device. Since the ability to reprogram an

FPGA makes it very flexible, it is likely that the same type of FPGA can be used in a

wide range of industries, from cellular telephones to automobiles. In turn, this makes it

an off-the-shelf, high-availability, and cost-effective device. FPGA technology has been

around for a long time; however, the size and complexity of available devices is only

just reaching a point in which they can be utilized to accelerate algorithms as complex as

Monte Carlo radiation transport.

3

CHAPTER II

BACKGROUND

FPGA Background

A field programmable gate array (FPGA) is a specialized computer chip

composed of an array of small memory elements which can be reprogrammed to mimic

the behavior of different elementary math and logic functions. Connections between the

small memory elements in the array can be altered using pass transistor switches

allowing many memory elements to work together to compute complex mathematical

functions. A large FPGA has more than 50,000 of these reprogrammable memory

elements, several hundred dedicated multiplier blocks, a large amount of onboard data

storage elements, and the capability of multi-tera operation performance. FPGAs can be

programmed to execute almost any algorithm, but they are not programmed from

standard computer code. Instead, complete hardware designs (generally at the gate

level) are used as logic patterns to program the FPGA. Once the FPGA has been

programmed, it behaves in exactly the same way as an ASIC which has been

manufactured with a particular algorithm in mind.

Classically, there have been two major types of FPGAs available in industry.

The first is based on Static Random Access Memory (SRAM), the second is based on

anti-fuse technology. Anti-fuse technology utilizes fuse like elements which are

electrically “blown” when the FPGA is programmed. The fuses that are not “blown”

during programming connect specific logic units within the FPGA to perform a given

operation. FPGAs using anti-fuse technology are quite different than the more popular

4

SRAM based FPGAs of today. Anti-fuse FPGAs can be programmed only once, where

SRAM based FPGAs can be programmed and reprogrammed in indefinite number of

times. Look-up tables (LUTs) form the core of an SRAM based FPGAs logic

reproduction ability. Standard LUTs are capable of mimicking any logic function which

has the same number of inputs as the LUT. For instance, a 4-input LUT stores truth

table-like data corresponding to the operation of any 4-input logic function. Multiple

LUTs can be combined to perform more complex computations.

SRAM based FPGAs have a large number of LUTs, each of which can be

programmed individually to perform a specific function. Most complex algorithms,

however, will require the combined use of thousands or more LUTs to perform an

evaluation. Methods for efficient and yet programmable routing of signals between

LUTs is a highly critical component of modern SRAM based FPGAs. Often small

clusters of LUTs are arranged in a square lattice formation with horizontal and vertical

routing wires separating each LUT cluster within the lattice. Each LUT cluster is paired

with a programmable SRAM based switchbox, capable of changing the direction of

signals running on the fixed routing wires, as well as connecting signals carried by

specific routing wires to appropriate LUTs. See Figure 1 for an illustration of these

components.

Typically, FPGAs can be found mounted on computer interface boards, allowing

a standard PC to stand as a host to an FPGA. While mounted on a computer interface

board, the FPGA can act as an extremely powerful co-processor. Unprocessed data will

be fed to the FPGA from the host PC, and processed data will be fed from the FPGA

5

Fi
g.

 1
. A

 S
ch

em
at

ic
 sh

ow
in

g
th

e
in

te
rn

al
s o

f a
n

FP
G

A
.

6

back to the host PC for hard-drive storage. Unlike standard computers, FPGAs are

capable of parallelizing even the most serial of algorithms. The secret to the speed

advantage of a single FPGA over a standard computer can be reduced to one important

fact: an FPGA is capable of performing orders of magnitude more work per clock cycle

than a standard computer. A useful and in-depth look at FPGAs and reconfigurable

computing is given by Compton and Hauck (Compton and Hauck 2002 ; Hauck 1998).

Development Overview

 The knowledge of software programming skills has spread to the point where it is

currently being taught in high schools. Unfortunately, the same cannot be said for

hardware development skills. With today’s high-level programming languages, it is

unlikely that all but the most experienced of programmers will be able to apply their

programming skills to advanced, FPGA-based hardware development. While there are a

small number of commercial programs on the market capable of converting certain C

and/or Java codes into FPGA compatible hardware designs, these programs are limited

to simple state machines and combinational logic, and are unlikely to be useful to a

programmer designing hardware for complex operations such as Monte Carlo transport.

Lower-level implementation and description of hardware designs using a hardware

definition language (HDL) is likely to be the only method versatile enough to implement

these kinds of algorithms.

 There are essentially two main HDLs widely available to programmers, Verilog

HDL and VHDL. A detailed overview of Verilog is given by Palnitkar (Palnitkar 2003).

7

Similarly, the VHDL language is detailed by Yalamanchili (Yalamanchili 2000). They

are similar languages, using only slightly different syntax. These languages do not

behave like a typical computer programming language—instead they simply serve to

describe in a “text” form the various items from a typical circuit schematic. For

instance, instead of variables such as an ‘int’ in the C computer language, variable-like

items called ‘wires’ are used to connect different functional blocks. When the code is

synthesized for FPGA implementation, each definition of a wire will be manifested in

exactly that way (a physical wired connection) on the FPGA. Learning these languages

is typically easy, provided the user has sufficient understanding of how the underlying

hardware is represented by the HDL.

8

CHAPTER III

TEST CASE ASSUMPTIONS

To date, Monte Carlo radiation transport computations have never been

attempted using FPGA-based reconfigurable computing techniques. The development of

the initial hardware algorithms is difficult and tedious since very few of the principles

that are currently applied to software-based Monte Carlo code development can be

applied to the hardware-based counterpart. The objective of this research is to verify and

categorize the possible degree of speed increase that can be achieved by using

reconfigurable, FPGA-based computing techniques to evaluate Monte Carlo radiation

transport problems. An assumption is made that if the evaluation of a relatively simple

transport problem on an FPGA is significantly faster than the evaluation of the same

problem using a standard PC, then that speed increase will likely be preserved for more

complex Monte Carlo evaluations. Therefore, to reduce the complexity of the initial

hardware designs necessary, a Monte Carlo photon transport simulation on a target with

simple geometric and material properties has been the subject of this thesis research.

The simple test situation consisted of an isotropic 250 keV photon point source in

an infinite medium of aluminum (Al). The tallies that were used were spherical flux

tallies (number of photons crossing a boundary) at intervals 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,

20 and 25 cm away from the source. The test algorithm uses a completely internalized

design, meaning that the FPGA does all of the work internally, leaving the host

computer to wait only for the requested number of histories to be completed and tallies

9

to be output. When the FPGA is programmed, all cross section data, scattering data,

random number generator initial states, tally points, and geometrical data are included as

part of the hardware design downloaded onto the FPGA.

Monte Carlo based photon transport computations can be extremely complex if

no approximations are made and if all secondary particles are tracked. Since the purpose

of this preliminary research was only to show the viability of FPGA-based Monte Carlo

particle transport, secondary particles were ignored for simplicity. Ignoring secondary

particles for low-Z test materials still allows a fairly accurate simulation. It should be

noted that it would be possible to introduce Bremsstrahlung and fluorescence effects into

our existing methods, so long as approximations can be used to eliminate full electron

transport computations.

For our current methods, interaction cross sections and scattering modifying

factors are those given by Lawrence Livermore National Laboratory’s evaluated photon

data library EPDL97 by Cullen (Cullen 1997a). Incoherent scattering distribution

functions are given by the product of the standard differential Klein-Nishina formula and

the incoherent scattering function as described by Hubbell (Klein and Nishina 1929 ;

Hubbell et al. 1975). Coherent scattering distribution functions are given by the product

of the Thompson scattering formula and the square of the coherent scattering form factor

which is also described by Hubbell (Hubbell et al. 1975). Equations 1 and 2 show the

general relationships for incoherent and coherent scattering, respectively, where the

scattering functions and form factors are functions of the momentum transfer (x) and the

atomic number (Z).

10

() (), , ,
(,)INCOHERENT KNd E Z d E

S x Z
d d

σ θ σ θ⎡ ⎤
= •⎢ ⎥Ω Ω⎣ ⎦

,

() () ()2(,)COHERENT Td d
F x Z

d d
σ θ σ θ⎡ ⎤

= •⎢ ⎥Ω Ω⎣ ⎦
,

where,

() [] ()222
2 2 1 cos

1 (1 cos) 1 cos
2 1 (1 cos)

kn ed kr k
d k
σ θ θ

θ θ
θ

− ⎡ ⎤−
= + − + +⎢ ⎥

Ω + −⎢ ⎥⎣ ⎦
,

() ()
2

21 cos
2

t ed r
d
σ θ

θ= +
Ω

,

sin
2

()
x

A

θ

λ

⎛ ⎞
⎜ ⎟
⎝ ⎠= .

Equation 3 is the general differential Klein-Nishina cross section, where re is the

classical electron radius and k is the incident photon energy in units of electron rest

mass. Equation 4 is the differential Thompson scattering cross section. Equation 5 is the

momentum transfer as a function of scattering angle and photon wavelength in units of

angstroms.

In addition to ignoring secondary particles, we have attempted to simplify our

test case further by assuming that the source produces photons which have energies less

than 1.022 MeV, insuring that the pair and triplet production cross sections for our

energy range are not needed. Therefore, our total macroscopic interaction cross section

is given by: µtotal = µincoherent + µcoherent + µphotoelectric.

(1)

(2)

(3)

(4)

(5)

11

CHAPTER IV

IMPLEMENTATION METHODS

Random Number Generation

 Random number generation is the core of any Monte Carlo simulation, and the

efficient generation of high quality random numbers in hardware is imperative to the

success of this project. Classically, even the most advanced Monte Carlo radiation

transport codes have relied on one of the least sophisticated pseudo-random number

generation algorithms, the Linear Congruential Generator (LCG). The general form of

the LCG is:

1(*) modk kX A X C M−= +

Where, Xk is the current random number in the series, Xk-1 is the previous random

number in the series and A,C, and M are constants. Careful selection of constants A and

C is crucial to guarantee acceptable performance of the LCG as outlined by Park (Park

and Miller 1988). Even with optimal selection of constants A and C, the period of the

LCG will be limited by the value of M used for the algorithm. In fact, it is possible that

the poor selection of constants A and C will result in a generator period which is much

less than M.

 For Monte Carlo simulations executed on standard PCs, or even on standard PC-

based cluster computers, the linear congruential generator may be an acceptable option.

However, when we begin to consider high-speed, Monte Carlo simulation using a

(6)

12

hardware based solution, the requirements become quite different. A simulation

executed on a 1000-node cluster computer will essentially use 1000 carefully-seeded and

independently-running random number generators to generate a particular set of random

numbers. Using an FPGA-based solution, the same number of random numbers will be

generated using only a few independently-running random number generators, since the

work rate of each generator is significantly higher on an FPGA than on a standard PC.

Therefore, the random number generation algorithms used for an FPGA based Monte

Carlo simulation must generate random number streams with a much larger period than

is typically required by Monte Carlo codes running on standard PCs.

In addition to identifying a pseudo-random number generation algorithm with a

large period, one must also be found which can be efficiently implemented in hardware.

L’Ecuyer has compiled a review of current methods in pseudo-random number

generation and examines several types of generators which are based on a feedback shift

register, as opposed to multiplication, to generate random streams (L’Ecuyer 1997). Chu

and Jones have successfully implemented several forms of simple feedback shift register

(FSR) random number generator algorithms using FPGAs (Chu and Jones 1999). While

Chu and Jones’ work only examines the simplest generators of this type (namely 1 bit

linear feedback shift registers and simple lagged Fibonacci generators), the

implementation ease of an FSR-based generator in hardware is shown. For our

purposes, we have taken the next step and custom designed a new and efficient FPGA

implementation for one of the most sophisticated FSR type generators, the Mersenne

Twister.

13

Matsumoto and Nishimura are responsible for the development of the Mersenne

Twister (a pseudo-random number generation algorithm), which has passed the most

stringent of statistical tests for randomness and has an incredibly large period of (219937 –

1) (Matsumoto and Nishimura 1998). A period of (219937 – 1) implies that a virtually

unlimited amount of random numbers can be generated from a single seed with no

chance of a repeated sequence, which is essential when performing complex Monte-

Carlo analysis with a large number of iterations. The methodology behind the Mersenne

Twister (MT) is based on the equation:

1: (|)u l
k n k m k kX X X X A+ + += ⊗

where the⊗ symbol denotes the exclusive or operation (XOR), N = 624, M = 397, and

Xk represents the kth 32-bit random number in a sequence and k ranges from 1 to N.

(Xu
k | Xl

k+1) is the most significant bit of the Xk random number concatenated with the

lower 31 bits of the Xk+1 random number. This concatenation is multiplied by a constant

matrix A. As shown by Matsumoto and Nishimura, the matrix A can be selected such

that the multiplication is reduced to a binary shift and another XOR.

The algorithm is simple and has equally simple hardware requirements. A small

1024-element, 32-bit wide Virtex II1 blockram unit onboard the FPGA is used to store

the previously generated 624 random numbers. Every time the MT module generates a

new random number, it accesses two previously generated random numbers from the

1 The Virtex II FPGA is manufactured by Xilinx, Inc. Virtex II and Virtex II-pro devices
are the largest FPGAs available on the market circa 2004, and are the target test devices
of this research.

(7)

14

memory element to create the next random number. In addition to the memory element,

the only hardware operations necessary for the complete implementation of this

algorithm are several counters, some small registers (flip-flops), and the bitwise

exclusive or function. All of these functions are easily and efficiently implemented on

an FPGA. When we implemented the MT on a large Virtex II FPGA, we found that each

MT module requires 2 Virtex II blockram units and negligible (less than 1%) of

reprogrammable logic slices. A circuit schematic describing our FPGA implementation

of the MT algorithm is shown in Figure 2.

Cross Section Retrieval

 For photon transport with a maximum energy of 1.022 MeV, the photon

interaction cross sections of concern are incoherent scattering, coherent scattering and

the photoelectric effect. Our implementation uses analytical relationships to describe the

differential coherent and incoherent scattering cross sections, as described by equations

1-5. The total interaction cross sections describing all 3 effects are based on the

EPDL97 library by Cullen (Cullen 1997a).

Like many cross sections describing particle interactions, the EPDL97 cross

sections describing total coherent, incoherent and photoelectric effects are only visually

decipherable on a log/log plot. Assuming methods are available for efficient FPGA

implementation of logarithms and exponentials (discussed in the next section),

regeneration of the log/log cross sections can be performed on an FPGA. Onboard

FPGA blockram modules are used to store three individual cross section tables for each

15

Fig. 2. A circuit schematic describing the Mersenne Twister FPGA
implementation.

16

material used in the Monte Carlo simulation. A point-wise polynomial interpolation

method is used to discretize each cross section so that the macroscopic cross section for

a photon of any energy can be found using just one lookup attempt (no searching

necessary). While there is a small amount of approximation to this method, the

introduced error is minimal. In addition, we have found that the cross sectional values

that are returned by our point-wise polynomial interpolation method are well within the

energy specific error bars as defined by Cullen’s EPDL 97 documentation (Cullen

1997b).

 Figure 3 shows the interpolated discretization method used to store cross

sectional data for non-differential photon interaction cross sections. As can be seen in

the figure, a different number of interpolation points is used for the cross sections

describing each interaction type. For incoherent scattering, the total interaction cross

section is a very smooth curve as a function of energy. As a result, only a small number

of interpolation points (128 points) are necessary to reproduce the data. The

photoelectric total cross section is more complex, with K and L shell absorption edges

visible in the cross section. To accurately reproduce this data, 512 interpolation points

are used. The coherent scattering cross section is even more complex than the

photoelectric, with detailed resonances in the low energy regions. These resonances are

very important to low-energy photon transport and cannot be ignored. As a result, 1024

discrete interpolation points are used to reproduce the coherent scattering cross section.

This number of interpolation points is capable of accurately reproducing the cross

section data, even in resonance regions. Figure 4 illustrates the exact cross sections

17

C
oh

er
en

t
Ph

ot
oe

le
ct

ric

In
co

he
re

nt

Fi
g.

 3
. T

he
 to

ta
l m

ac
ro

sc
op

ic
 c

ro
ss

 se
ct

io
ns

 fo
r a

lu
m

in
um

, a
s i

t i
s s

to
re

d
on

 th
e

FP
G

A
.

18

Fi
g.

 4
. T

he
 e

xa
ct

 E
PD

L9
7

cr
os

s s
ec

tio
ns

 a
nd

 a
ss

oc
ia

te
d

er
ro

rs
 (r

ed
) c

om
pa

re
d

w
ith

 th
e

cr
os

s
se

ct
io

ns
 a

s s
to

re
d

on
 th

e
FP

G
A

 (b
lu

e)
.

19

and their published error range in red, compared with our cross sections as stored on the

FPGA shown in blue. The error range depicted in red is given by the exact cross

sections plus/minus the energy specific error bars described by Cullen’s EPDL97

documentation (Cullen 1997b).

The algorithm of choice used to interpolate between discrete points in the cross

section retrieval design is variable, however, the easiest and most effective form is

polynomial interpolation. The optimal order of the polynomial used depends on the

shape of the cross section, the number of discrete points used, and desired multiplier

versus blockram usage on the FPGA. To properly capture photoelectric edges and

coherent scattering resonance regions, we have found that the optimal interpolation

scheme is linear interpolation with a large number of discrete interpolation slices. Figure

5 illustrates the hardware interpolation scheme used to reproduce cross section data that

has been pre-divided into 512 slices. Linear interpolation was used in this example,

where 512 individual interpolation coefficients are stored in onboard FPGA blockram.

In Figure 5, the most significant 9 bits of the input value are used as the memory address

selector. After the memory unit returns the interpolation coefficients corresponding to a

particular discrete slice, the remaining bits from the input are assumed to be a decimal

value in the range [0,1) and are used as the operand in the equation:

log() * [10 :]Cross Section M x end B− = +

where M and B are stored interpolation constants and x[10:end] are the least significant

remaining bits of the input.

(8)

20

{b
1,

b 2
, b

3,
b 4

, b
5}

.{
b 6

, b
7,

b 8
, b

9,
b 1

0,
b 1

1,
b 1

2,
b 1

3,
b 1

4,
b 1

5,
b 1

6,
b 1

7,
b 1

8,
b 1

9,
b 2

0,
b 2

1,
b 2

2}

22
 b

it
in

pu
t i

n
th

e
ra

ng
e

[0
, 3

2)
. N

ot
e

th
e

po
si

tio
n

of
 th

e
de

ci
m

al
 p

oi
nt

M
os

t s
ig

ni
fic

an
t 9

 b
its

ch

oo
se

 w
hi

ch
 o

f t
he

 5
12

el

em
en

ts
 in

 th
e

em
be

dd
ed

bl

oc
kr

am
 to

 a
cc

es
s.

 T
he

bl

oc
kr

am
 re

tu
rn

s
in

te
rp

ol
at

io
n

co
ef

fic
ie

nt
s

fo
r t

ha
t s

lic
e.

M B

Em
be

dd
ed

M

ul
tip

lie
r

Ad
de

r

O
ut

pu
t f

ol
lo

w
in

g
th

e
fo

rm
 y

 =
 M

 *
 x

 +
 B

Fi
g.

 5
. A

 d
ia

gr
am

 o
f t

he
 in

te
rp

ol
at

io
n

sc
he

m
e

us
ed

 fo
r c

ro
ss

 se
ct

io
n

re
tri

ev
al

.

21

 It should be emphasized that performing the cross-section lookup in the manner

described above will only require a small amount of FPGA resources. For each material,

storing interpolation coefficients describing all three interaction types will take only 3-5

blockram slices (out of hundreds available) on a Xilinx Virtex-II FPGA. In addition to

the blockram slices and regardless of the number of materials stored, one embedded

multiplier is necessary to perform the interpolation. The cross-section lookup is fast

using the described techniques, and can be completed with a work rate of 1 evaluation

per clock cycle.

Logarithms

 Logarithm evaluations of different bases are used through the Monte Carlo

hardware radiation transport schemes described in this thesis. Regardless of the base

required, however, all initial evaluations are computed using log2—because it is most

naturally implemented in a binary number system. Once log2(x) is evaluated, the change

of base formula was used to convert log2 to logb for any base b by simply multiplying

log2(x) by a constant k, where k follows the formula:

2

1
log ()

k
b

= .

With a conversion mechanism to transform log2(x) into logb(x) efficiently, great detail

must be paid to the accurate and fast evaluation of log2(x). As opposed to cross-section

retrieval, where some sort of lookup table implementation is the natural solution, the

obvious solution to the hardware-based evaluation of a logarithm is typically a series

(9)

22

expansion. Series expansions for the evaluation of log fit the general form (Arfken

1985):

2 3 4 5

log (1) ...
2 3 4 5e
x x x xx x+ = − + − + − .

A calculator or a computer which uses a series expansion like that in equation 10 to

evaluate a logarithm will cycle through each term in the expansion, evaluating one term

at a time. Our designs, on the other hand, will require a much higher work rate than this,

since the overall goal of this project is speed. With speed in mind, the expansion in

equation 10 can be evaluated with a work rate of 1 evaluation per clock cycle in

hardware using (2n – 2) multipliers, where n is the number of expansion terms to be

evaluated. Large Xilinx Virtex-II FPGAs have hundreds of embedded multipliers, and

so a requirement for (2n – 2) multipliers may not be an issue provided that only a small

number of series terms needs to be evaluated to obtain convergence. Unfortunately, we

need to evaluate log(x) for all values of x, even as x approaches zero. The series

expansion for log given in equation 10 converges very slowly as the operand approaches

zero and requires the evaluation of many terms to obtain convergence. Due to a slow

convergence as the operand approaches zero, evaluation of the series expansion on an

FPGA will result in either the loss of our 1 evaluation per clock cycle work rate or the

use of a vast amount of FPGA resources to perform the evaluation; either of which is

unacceptable to our project goal.

If an expansion-based evaluation is not an option, the other logical solution is a

lookup table-based evaluation. Unfortunately, for a lookup-table based evaluation to be

(10)

23

effective, there must be a finite region for which the evaluation is performed--in our case

we must perform log(x) for any x such that 0 x≤ ≤ ∞ . To solve this problem, we have

developed a transformation to force the operand of log(x) into a specific region,

namely1 2x≤ < . The shape of the log curve in the region 1 2x≤ < is smooth and

simple and can be easily regenerated using a point-wise polynomial interpolation method

similar to the one used for cross-section retrieval. The transformation used becomes

extremely simplistic if 2 is the logarithm base used. Equations 11 and 12 illustrate the

form of the transformation.

n
2 2 2log (x) = log (m 2) = log (m) + n⋅

where,

2 , and 1 2 nx m m= ⋅ ≤ < .

For any operand x, m and n can be found by placing x in a pseudo-floating-point form—

an extremely efficient operation in hardware consisting mostly of binary shift operations.

A preprocessing stage using pipelined multiplexer arrays handles the binary shifting

such that an equivalent value for x is determined in the form of equation 12. Figure 6

shows this preprocessing stage. Once the preprocessing has been completed, the

exponent n can be set aside until the log2(m) evaluation has been completed using

lookup-table methods

 With n and m in equation 11 determined by the preprocessing stage, the

evaluation of log2(m) can be completed efficiently using lookup-table methods since m

now has a fixed range. A polynomial-interpolation method similar to the one used for

the cross-section retrieval is an excellent solution for the reproduction of log2(m).

(11)

(12)

24

Fig. 6. A schematic depicting the log preprocessing stage. The
pipelining stages have been omitted.

25

The log2 curve is very smooth, unlike the curves representing cross-section data, and

therefore will benefit from the use of a higher-order, polynomial-interpolation algorithm.

Binomial-interpolation coefficients are stored for each log2 slice for m in the range [1,

2). Using 512 slices and binomial interpolation between each slice, log2(m) can be

evaluated with a maximum associated algorithm error of about 10-10. A diagram

detailing this evaluation on the FPGA is shown in Figure 7. Evaluation of log2(x) can be

performed for any input x with equivalent precision by adding the shift constant

determined by the preprocessing stage to the resultant value of log2(m).

Exponentials

 In much the same way that performing logarithm evaluations is necessary to

cross-section retrieval, so is performing exponential evaluations. The cross-sectional

data for each material are stored in a log2 / log2 format, and a final evaluation of 2x will

be necessary to obtain an un-transformed cross section value. As with logarithm, a

series expansion based evaluation of 2x is certainly possible, although this will not be as

efficient as an interpolated look-up table solution. Again, however, we must find a

transformation that will allow us to perform the interpolated look-up table portion of the

evaluation over a very fixed range. We have developed the transformation described in

equations 13 and 14 below to allow for the efficient, hardware-based evaluation of 2x for

all values of x in hardware:

.2 2 , where i and d represent the integer
 and decimal components of x

x i d=
 (13)

26

Integrated BlockRam
9 bit address space
56 bits per address

“pseudo float” mantissa from
preprocessing unit

exponent (n) from
preprocessing unit

Most Significant 9 bits

Least Significant 17 bits

Multiply
18x18

>> K1 >> K2

FastCarry Adder

Log2 OUTPUT

Multiply
18x18

Multiply
18x18

Fig. 7. A schematic depicting the log2 evaluation stage. The pipelining
stages have been omitted as in Figure 6.

27

. 0. 0. 0.2 2 2 2 2i d i d i d d i+= = ⋅ = <<

A polynomial-interpolated, lookup table can now efficiently evaluate 20.d, where d is a

number in the range [0,1). Then, a simple binary shift by the integer i will return the

correct evaluation for 2x, for any value of x. The methods for the polynomial-

interpolated look-up table evaluation of 20.d are nearly identical to the methods used to

evaluate log2(m) as described in the previous section. Just as in the case of log2, we have

developed methods for implementing 2x very efficiently in hardware to a high degree of

precision—methods which are unique to this project.

Scattering Distributions

 To determine the new scattering angle after a coherent or incoherent scattering

event, the rejection technique must be used on the probability density functions

described in equations 1-4. While the Klein-Nishina differential cross section is not

directly invertible, Nelson has documented methods of efficiently sampling the Klein-

Nishina distribution using a combined rejection-composition technique (Nelson et al.

1985). For simplicity, no combined rejection-composition techniques or even combined

inversion-rejection techniques will be used for the initial tests described in this thesis.

Nelson et al.’s methods are only mentioned for completeness and applicability to future

research in this area.

 One hardware module was designed to evaluate either a coherent or an

incoherent scattering event. Based on the event type and the momentum transfer, either

(14)

28

the incoherent scattering function or the square of the coherent scattering form factor for

the material is determined from a polynomial-interpolated lookup table—similar in

design to the cross-section retrieval methods described in a previous section. The

differential Klein-Nishina cross section given in equation 3 is used for both coherent and

incoherent scattering by setting the incident photon energy to for coherent scattering,

thereby reducing the Klein-Nishina cross section to the Thompson cross section in

equation 4.

 As stated previously, no combined inversion-rejection methods were used.

Therefore, rejection technique attempts were made by sampling a uniformly distributed

scattering angle between 0 and 180 degrees and also sampling uniformly between 0 and

the maximum of the scattering function / form factor value for the incident photon

energy of interest. As a result, rejection-technique efficiency was low for higher-energy

incoherent scattering and lower still for high-energy coherent scattering. Fortunately, a

high-energy, coherent scattering event is very rare, so the inefficiency is somewhat

counterbalanced naturally by the cross sections. To further correct for the remaining

inefficiency of the rejection technique, four complete hardware-based scattering modules

were run in parallel to quadruple the chances of finding a non-rejected scattering angle

for each attempt.

Standard software-based methods perform the rejection technique using a While

loop, halting the progress of the entire program until a non-rejected value is identified.

Unfortunately, it is not known how many iterations will be necessary to find a non-

rejected value. This poses a problem for a hardware-based rejection technique

29

algorithm. Since our designs are highly pipelined and depend on the parallel execution

of different portions of the calculations necessary for the simulation of each photon

interaction, every operation must take a fixed number of clock cycles to complete.

Because of this, a looping, rejection-technique algorithm cannot be compatible with our

methodology. Therefore, if all four parallel rejection-technique attempts fail to find a

non-rejected value, the transport of a particular particle will cease, and will be resumed

from the previous successful interaction point in a future clock cycle. For an explanation

of hardware pipelining techniques see Hennessy and Patterson (Hennessy and Patterson

1998).

Running four rejection algorithms in parallel makes the overall efficiency of the

algorithm acceptable. If high-energy, coherent scattering is ignored, overall efficiency is

about 85 percent. If high-energy, coherent scattering is included, the overall efficiency

drops into the 60 percent range.

Overall Layout

 As stated earlier, the simple test transport problem consists of an isotropic 250

keV photon point source in an infinite, three-dimensional medium of aluminum with a

number of spherical tallies measuring the number of photons crossing a boundary. Since

speed is the most important goal of this project, the overall transport algorithm has been

designed to optimally evaluate 1 complete photon interaction per clock cycle. The

algorithm deviates from this optimal goal only in the event that all four of the parallel,

30

rejection-technique modules used to probe the scattering distributions return a rejected

value. In this case, the interaction will be marked as incomplete and will be re-evaluated

in a subsequent clock cycle. No useful work is done in a clock cycle where there is a 4-

fold rejection.

 After a scattering event is completed and a scattering angle found,

transformations must be used to determine a Cartesian vector describing the new particle

direction. The familiar Cashwell and Everett method was used to determine a unit

vector representing the particle trajectory after scatter (Cashwell and Everett 1959). The

Cashwell and Everett method is shown in equations 15, 16, and 17:

2

(sin() cos() sin()sin())' cos()
1

s s
s

u w vu u
w

ϑ ψ ϑ ψϑ ⋅ ⋅ ∆ − ⋅ ∆
= ⋅ +

−

2

(sin()cos() sin()sin())' cos()
1

s s
s

v w uv v
w

ϑ ψ ϑ ψϑ ⋅ ⋅ ∆ + ⋅ ∆
= ⋅ +

−

2' cos() sin() cos() 1s sw w wϑ ϑ ψ= ⋅ − ∆ −

where, ψ∆ is a uniformly distributed random number between 0 and 2π radians

representing the change in azimuthal angle, sϑ is the scattered angle obtained by probing

the scattering distributions and u,v,w is a unit vector representing particle direction.

 The Cashwell and Everett equations can be implemented efficiently onboard a

Xilinx Virtex-II series FPGA due to the large number of embedded multipliers and

blockram units available in the device. Implementation methods are similar to those

described before, combining polynomial-interpolated lookup tables with, in this case,

(15)

(16)

(17)

31

several additional units of embedded multipliers to carry out the multiplications in

equations 15-17.

 A block schematic showing the entire algorithm operation is given in Figure 8.

The algorithm is capable of running on a large Xilinx Virtex-II FPGA with negligible

interaction from a host PC. All random numbers are internally generated, and all Monte

Carlo transport operations are evaluated inside the FPGA. The design was heavily

pipelined to increase the maximum clock speed at which the FPGA can operate. As a

general design rule, pipeline stages were placed after no more than a single 32-bit

fast carry adder, two 18x18 embedded multipliers or equivalent distributed logic—

ensuring a clock speed surpassing 100 MHz.

32

Fig. 8. Dataflow of the overall algorithm, showing the ideal amount of
‘work’ completed per clock cycle.

33

CHAPTER V

RESULTS

Testing Methods

 Modern FPGA technology is just now reaching a mature enough level so that

implementation and execution of an algorithm of the complexity described in the

preceding chapters are possible. Because of this, one of the largest FPGAs available on

the market will be required for the actual implementation and testing of these algorithms.

All of the hardware algorithms described previously were designed specifically for the

Xilinx Virtex-II Pro 100 FPGA, one of the largest FPGAs available on the market circa

2005. Unfortunately, the price of the Xilinx Virtex-II Pro 100 FPGA is typically in the

$15,000 range when purchased in conjunction with a PCI interface board. Physical

access to this device was not available at the time of this thesis research; however, this in

no way precludes us from obtaining both accurate and useful results.

 To obtain useful and accurate results without actually using the physical Xilinx

Virtex-II Pro 100 FPGA, a two stage simulation has been performed. Both stages of the

simulation use synthesizable HDL code describing the Monte Carlo hardware transport

design as a basis for simulation. We briefly discussed Verilog and VHDL codes in

Chapter II, however, what was not mentioned is that certain strict coding techniques

must be followed for an FPGA place and route software package to translate the HDL

code into a programming file that can be used to physically program the FPGA. When

the HDL is written in such a way, we call a particular HDL code “synthesizable”.

34

 With synthesizable HDL code describing the design, the function of the code is

verified using an HDL compiler/simulator. We used Modelsim XE II v 5.7 G to

simulate the HDL code at the gate level, clock cycle by clock cycle, to obtain the exact

design output that would be obtained from an FPGA programmed using the HDL code

and run for the same number of clock cycles. This level of simulation is fairly slow

since the computer simulates the response of each gate in the design (of which there are

millions) to changing inputs. The simulation of our Monte Carlo HDL code using

Modelsim XE took approximately 4 weeks to complete 10,000 photon particle histories.

However, the information obtained by this simulation was invaluable. From the

Modelsim simulation we were able to obtain the exact tally data for each tally (used for

design verification), as well as the exact number of clock cycles necessary to complete

the 10,000 photon histories. It is important to note that this process is not necessary if a

physical device is in hand. Modelsim will still be used to debug the hardware, but this

process will not be time consuming since a many particle simulation will not be

performed.

 The second portion of the simulation also utilized the synthesizable HDL code as

a basis. The Xilinx ISE Foundation 6.2.02i software package was used to synthesize and

implement the HDL design to a level such that a programming file was generated which

can be used to physically program the Xilinx Virtex-II Pro 100 FPGA. The Xilinx ISE

software breaks up the HDL code and uses sophisticated logic reduction algorithms to

optimize the design as much as possible (the synthesis stage). After synthesis, the ISE

software uses libraries detailing the exact structure of the Virtex-II Pro 100 FPGA to

35

optimally place different design components on the FPGA as well as to optimally route

signals between interacting components on the FPGA. Place and route is performed by

sophisticated algorithms which minimize the FPGA resources that the design consumes,

as well as maximize the clock speed of the design (shorter routing distances between

components translates to a higher overall clock speed). The place and route process

returns an exact FPGA utilization report describing the consumption of different types of

FPGA components when the device is programmed. In addition, the place and route

process also returns a timing report, providing a conservative clock speed estimate at

which the design can run when programmed on the Virtex-II Pro 100 FPGA. Part of the

libraries built into the ISE software describing the structure of the Virtex-II Pro 100

FPGA include timing data for each part of the devices internal components. Using these

data, and summing timing delays along components between pipelining stages, the ISE

software determines an accurate clock speed estimation. A flowchart describing the

simulation methods originating from the synthesizable HDL code is shown in Figure 9.

 Once the FPGA clock speed and exact number of clock cycles required to

compute 10,000 particle histories is determined, the theoretical throughput of the design

when implemented on a Virtex-II Pro 100 FPGA can be found using:

Particle Histories
Second

Clock Speed (Hz)
(Average Number of Clock Cycles Per History)

Throughput ⎡ ⎤ =⎢ ⎥⎣ ⎦
(18)

.

36

Fig. 9. A flowchart describing the simulation process.

37

When a specific FPGA is not available, speed benchmarking methods similar to those

described above are used widely in published works by researchers in the field of

reconfigurable computing, and are considered to be acceptable forms of testing.

Examples of some published articles which use similar methodologies to speed

benchmark their algorithms on FPGAs are Jarvinen et al. 2003 and Shackleford et al.

2002.

Monte Carlo Results

 Using the Xilinx ISE Foundation 6.2.02i software package, the synthesizable

hardware designs created for this research were analyzed. The software package returns

FPGA usage data, timing analysis and a bit-stream FPGA programming file. A

summary of the Virtex-II Pro 100 FPGA utilization and timing data can be found in

Table 1. In Figure 10, a visual representation of the FPGA programmed with our Monte

Carlo hardware design is shown, where the blue regions represent used portions of the

FPGA. As can seen by the data presented in Table 1, roughly 20% of the general logic

portion of the device (LUTs) is used in this implementation. The device has plenty of

room to implement a more complex Monte Carlo simulation. On the other hand, if we

wish to utilize the entire processing power of this FPGA to evaluate this particular

simulation, three independent implementations can be programmed to run in parallel on

the device. In this case, the overall clock speed was reduced from 136.7 MHz to 111.5

Mhz due to less optimal signal routing incurred by the utilization of a more significant

amount of the programmable logic within the FPGA.

38

Table 1. The resources consumed on the Xilinx Virtex-II Pro 100 FPGA by the Monte
Carlo radiation transport hardware design.

 Used Available Percent Utilization

Number of Slices

11,944

44,096

27 %

Number of Slice
Flip-Flops

12,648 88,192 14 %

Number of 4-Input
LUTS

17,747 88,192 20 %

Number of
Embedded Block-
Rams

79 444 17 %

Number of
Embedded 18x18
Multipliers

117 444 26 %

Estimated Clock
Speed

136.733 MHz N/A N/A

39

Fig. 10. The programmed FPGA with one Monte Carlo transport
module. Blue denotes the utilized portions of the FPGA.

40

 Using the Modelsim XE II 5.7 g HDL compiler, a simulation of the hardware

design was also performed. The flux tallies that we obtained from Modelsim XE were

compared with the flux results generated using MCNP-5 (X-5 Monte Carlo Team,

2003). MCNP-5 was used as a comparison to our hardware method for two reasons.

First, we used MCNP as a result comparison to ensure our methods are on target, and

there are no significant bugs in our hardware design. More importantly, however, we

obtained a speed comparison from MCNP-5. To closely compare to our hardware

design, MCNP was programmed to ignore Bremsstrahlung radiation and all secondary

electrons. However, MCNP did simulate 1st fluorescence x-rays, which we did not. This

accounted for a 3.5 percent increase in the number of photons MCNP tracked that our

hardware design did not track. Repercussions to be aware of are that MCNP reported

slightly higher flux tallies and performed about 3.5 percent more computational work

than our hardware design. Flux comparisons are shown in Table 2 for 10,000 histories.

The flux tallies reported by our FPGA hardware design are very close to those reported

by MCNP. The fluxes reported by MCNP were slightly higher in regions where

photoelectric and Compton interactions (and thus fluorescence yield) were highest, but

this was expected.

 Simulation of 10,000 histories using Modelsim XE II 5.7 g running the hardware

design revealed that the evaluation of 10,000 histories corresponded to 76,231 photon

interactions—which agrees almost exactly with MCNP-5. The number of clock cycles

required to evaluate 76,231 photon interactions was reported to be exactly 129,541. This

deviation from our 1 clock cycle per photon interaction ideal work rate was caused by an

41

Table 2. The flux tallies for MCNP-5 versus the flux tallies reported by the FPGA
hardware design.
Tally Distancea MCNP-5 FPGA % Difference % Standard Error

2 cm

11,717

11,625

0.785

0.924

3 cm 11,680 11,521 1.361 0.925

4 cm 11,168 10,962 1.844 0.946

5 cm 10,388 10,133 2.455 0.981

6 cm 9,488 9,145 3.615 1.026

7 cm 8,412 8,122 3.447 1.090

8 cm 7,326 7,140 2.539 1.168

9 cm 6,160 6,083 1.250 1.274

10 cm 5,183 5,128 1.061 1.389

a Although tallies were performed at 15, 20, and 25 cm, the standard error resulting from
running only 10,000 histories at those distances becomes high enough that the results are
not reliable. Both the FPGA-based simulation and MCNP-5 suffer from this issue.
Therefore, these flux tallies are not presented in this table.

42

efficiency decrease due to the use of the rejection technique to probe the differential

scattering distributions. Using equation 18, we find that the theoretical work rate of the

Xilinx Virtex-II Pro 100 FPGA is 633.15 million complete photon histories per minute

when programmed with our Monte Carlo particle transport hardware designs. This is the

work rate for only one instance of the design (where the FPGA is approximately 20%

utilized) and running at 136.7 MHz. Utilization of the entire FPGA by running three

transport simulations in parallel produced a higher work rate. At 111.5 MHz, three

independently running transport simulations produced a theoretical work rate of 1.55

billion complete photon histories per minute on the Xilinx Virtex-II Pro 100 FPGA.

 For speed comparison purposes, MCNP-5 was run on a modern 3.2 GHz Intel

Pentium-IV desktop computer. MCNP-5 was run under the Microsoft Windows XP

operating system with no other active processes running on the PC. MCNP-5 performed

the same simulation, ignoring secondary electrons and Bremsstrahlung radiation. As

was previously stated, the only difference in the simulation that MCNP-5 performed was

that it simulated 1st fluorescence x rays which accounted for 3.5 % additional photon

histories. Including the fluorescence x rays, MCNP-5 can compute this simulation at a

work rate of 2.3704 million source particles per minute. Multiplying by 3.5% additional

photons per source particle, we estimate that MCNP-5 running on a 3.2 GHz Pentium-4

PC can track about 2.4534 million complete photon histories per minute.

Comparing the two work rates, it seems that a single Xilinx Virtex-II Pro FPGA

is more than 650 times faster than a 3.2 GHz Intel Pentium-IV desktop PC running

MCNP-5 at evaluating this particular radiation transport problem.

43

CHAPTER VI

CONCLUSIONS

 This thesis research has accomplished its key goals. First, a new method for

Monte Carlo radiation transport has been developed and exercised on a simple transport

problem. We have shown that the radiation transport problem described in this thesis

can be evaluated in excess of 650 times faster on a large FPGA than it can be evaluated

on a 3.2 GHz Pentium-IV desktop PC running MCNP-5. This is a substantial

acceleration factor which we believe can be preserved when the techniques discussed in

this thesis are expanded to evaluate more complex Monte Carlo simulations.

 This is just a first step for FPGA and hardware based Monte Carlo radiation

transport. The research in this thesis has shown the incredible potential of the

application of FPGAs to Monte Carlo radiation transport problems, opening the door to

further research in any of the unbounded number of applications that these techniques

may have for accelerating radiation transport computations.

44

CHAPTER VII

FUTURE WORK

 Plans to continue this work are well underway. Development will be done to

support FPGA based coupled photon-electron Monte Carlo transport as well as possible

extensions to include neutron transport. As these development steps are completed,

published comparisons will be performed between commercial Monte Carlo transport

codes and our methods to characterize the speed increase achieved. In addition, we

have plans to support complex voxel geometries to accurately model biological organs

and tissues. Combining the support of voxel geometry representation with ultra-high

speed coupled photon-electron transport will be important for the evaluation of internal

and external dosimetry calculations for both health physics and medical physics

applications.

45

REFERENCES

Arfken G. Mathematical methods for physicists, 3rd ed. Orlando, FL: Academic Press;
1985.

Cashwell E, Everett C. A practical manual on the Monte Carlo method for random walk
problems. Elmsford, NY: Pergamon Press; 1959.

Chu P, Jones R. Design techniques of FPGA based random number generator.
Proceedings of the Military and Aerospace Applications of Programmable Devices and
Technologies Conference. 1999:1-6.

Compton K, Hauck S. Reconfigurable computing: A survey of systems and software.
ACM 34:171-210; 2002.

Cullen D. 1997a: the evaluated photon data library, ’97 version [online]. Available at:
http://www.llnl.gov/cullen1/DOCUMENT/EPDL97/epdl97.htm. Accessed 20 November
2004.

Cullen D. 1997b: Report UCRL-50400, Vol.6, Rev.5, 1997 [online]. Available at:
http://www.llnl.gov/cullen1/document/epdl97/epdl97.pdf. Accessed 20 November 2004.

Hauck S. The future of reconfigurable systems. Proceedings of the Fifth Canadian
Conference on Field Programmable Devices. 1998:1-8.

Hennessy J, Patterson D. Computer organization and design, 2nd ed. San Francisco, CA:
Morgan Kaufmann; 1998

Hubbell J, Veigele W, Briggs E, Brown R, Cromer D, Howerton R. Atomic form factors,
incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref.
Data 4:471-539; 1975.

Jarvinen KU, Tommiska MT, Skytta JO. A fully pipelined memoryless 17.8 Gbps AES-
128 encryptor. Proceedings of the ACM FPGA ’03 Conference. 2003:1-9

Klein O, Nishina Y. Über die streuung von strahlung durch freie elektronen nach der
neuen relativistischen quantendynamik von dirac. Z. Physik 52:853; 1929.

L’Ecuyer P. Uniform random number generators: A review. Proceedings of the 1997
Winter Simulation Conference. 1997:127-134.

Matsumoto M, Nishimura T. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Transactions on Modeling and

46

Computer Simulations: Special Issue on Uniform Random Number Generation 8:3–30;
1998.

Nelson W, Hirayama J, Rogers W. The EGS4 code system. Stanford Linear Accelerator
Center; SLAC-265, UC-32; 1985.

Palnitkar S. Verilog HDL, 2nd ed. Indianapolis, IN: Prentice Hall PTR; 2003.

Park SK, Miller KW. Random number generators: good ones are hard to find. ACM
31:1192-1201; 1988.

Shackleford B, Tanaka M, Carter RJ, Snider G. FPGA implementation of neighborhood-
of-four cellular automata random number generators. Proceedings of the ACM FPGA
’02 Conference. 2002:1-7

X-5 Monte Carlo Team. MCNP5-A general monte carlo n-particle transport code. Los
Alamos National Laboratory; 2003.

Yalamanchili S. Introductory VHDL: From simulation to synthesis. Indianapolis, IN:
Prentice Hall; 2000.

47

VITA

Name: Alexander Samuel Pasciak

Address: 1328 Rathwood Ave.
 Richland, WA 99352

Email Address: pasciak@cedar.ne.tamu.edu

Education: B.S., Electrical Engineering, The University of Washington, 2003

