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ABSTRACT 
 
 

The Theoretical Development of a New High Speed  
 

Solution for Monte Carlo Radiation Transport Computations.  (December 2005) 
 

Alexander Samuel Pasciak, B.S., University of Washington 
 

Chair of Advisory Committee:  Dr. John R. Ford 
 
 

Advancements in parallel and cluster computing have made many complex 

Monte Carlo simulations possible in the past several years.  Unfortunately, cluster 

computers are large, expensive, and still not fast enough to make the Monte Carlo 

technique useful for calculations requiring a near real-time evaluation period.  For Monte 

Carlo simulations, a small computational unit called a Field Programmable Gate Array 

(FPGA) is capable of bringing the power of a large cluster computer into any personal 

computer (PC).  Because an FPGA is capable of executing Monte Carlo simulations with 

a high degree of parallelism, a simulation run on a large FPGA can be executed at a 

much higher rate than an equivalent simulation on a modern single-processor desktop 

PC.  In this thesis, a simple radiation transport problem involving moderate energy 

photons incident on a three-dimensional target is discussed.  By comparing the 

theoretical evaluation speed of this transport problem on a large FPGA to the evaluation 

speed of the same transport problem using standard computing techniques, it is shown 

that it is possible to accelerate Monte Carlo computations significantly using FPGAs.  In 

fact, we have found that our simple photon transport test case can be evaluated in excess 

of 650 times faster on a large FPGA than on a 3.2 GHz Pentium-4 desktop PC running 
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MCNP5—an acceleration factor that we predict will be largely preserved for most 

Monte Carlo simulations. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Currently, there are two widely used general computing methods for the 

expedited execution of highly complex scientific computations: standard personal 

computer (PC) based cluster computing and special purpose supercomputing.  Twenty 

years ago, the idea of using home PCs for scientific computations would have seemed 

absurd, as home PCs (even in large numbers) could not match the speed of proprietary 

special purpose supercomputers. Today, quite the opposite is true. The demand for home 

PC’s drives the computing industry and so cluster computing using off the shelf PC 

hardware has become the standard solution for scientific computation.  This can be 

attributed largely to the high availability and low price associated with standard PC 

hardware.  It is still true that special purpose machines can outperform standard PC 

hardware, but the extremely limited availability and high cost is usually a sufficient 

deterrent to their wide use. 

Ignoring cost and availability constraints, the most efficient evaluation method 

for a computationally-intensive problem, which is based on a relatively fixed algorithm, 

is to utilize the power of a custom fabricated Application Specific Integrated Circuit 

(ASIC).  Unlike a standard microprocessor, ASICs are not driven by software; instead, 

they are manufactured to perform one specific calculation.  The advantage of using 

ASICs for high speed computation is that they can have a much higher work rate than a  

_____________ 
This thesis follows the style of the Health Physics Journal. 
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standard microprocessor.  The disadvantage of using an ASIC is that, once 

manufactured, the computation that it performs can never be altered.  Since the 

algorithms used in Monte Carlo radiation transport computations are problem specific, it 

is unlikely that ASICs are flexible enough to be used as an aide to accelerate the speed of 

Monte Carlo computations.  

A Field Programmable Gate Array (FPGA) is an integrated circuit which is 

capable of performing computations with nearly all of the same speed benefits of an 

ASIC.  However, FPGAs have one important advantage over ASICs—they are 

reprogrammable.  The computation that an FPGA performs can be completely changed 

in a fraction of a second by reprogramming the device.  Since the ability to reprogram an 

FPGA makes it very flexible, it is likely that the same type of FPGA can be used in a 

wide range of industries, from cellular telephones to automobiles. In turn, this makes it 

an off-the-shelf, high-availability, and cost-effective device.  FPGA technology has been 

around for a long time; however, the size and complexity of available devices is only 

just reaching a point in which they can be utilized to accelerate algorithms as complex as 

Monte Carlo radiation transport.   
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CHAPTER II 
 

BACKGROUND 
 
 

FPGA Background 

A field programmable gate array (FPGA) is a specialized computer chip 

composed of an array of small memory elements which can be reprogrammed to mimic 

the behavior of different elementary math and logic functions.  Connections between the 

small memory elements in the array can be altered using pass transistor switches 

allowing many memory elements to work together to compute complex mathematical 

functions.  A large FPGA has more than 50,000 of these reprogrammable memory 

elements, several hundred dedicated multiplier blocks, a large amount of onboard data 

storage elements, and the capability of multi-tera operation performance.  FPGAs can be 

programmed to execute almost any algorithm, but they are not programmed from 

standard computer code.  Instead, complete hardware designs (generally at the gate 

level) are used as logic patterns to program the FPGA.  Once the FPGA has been 

programmed, it behaves in exactly the same way as an ASIC which has been 

manufactured with a particular algorithm in mind.    

Classically, there have been two major types of FPGAs available in industry.  

The first is based on Static Random Access Memory (SRAM), the second is based on 

anti-fuse technology.  Anti-fuse technology utilizes fuse like elements which are 

electrically “blown” when the FPGA is programmed.  The fuses that are not “blown” 

during programming connect specific logic units within the FPGA to perform a given 

operation.  FPGAs using anti-fuse technology are quite different than the more popular 
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SRAM based FPGAs of today.  Anti-fuse FPGAs can be programmed only once, where 

SRAM based FPGAs can be programmed and reprogrammed in indefinite number of 

times.  Look-up tables (LUTs) form the core of an SRAM based FPGAs logic 

reproduction ability.  Standard LUTs are capable of mimicking any logic function which 

has the same number of inputs as the LUT.  For instance, a 4-input LUT stores truth 

table-like data corresponding to the operation of any 4-input logic function.  Multiple 

LUTs can be combined to perform more complex computations.  

SRAM based FPGAs have a large number of LUTs, each of which can be 

programmed individually to perform a specific function.  Most complex algorithms, 

however, will require the combined use of thousands or more LUTs to perform an 

evaluation.  Methods for efficient and yet programmable routing of signals between 

LUTs is a highly critical component of modern SRAM based FPGAs.  Often small 

clusters of LUTs are arranged in a square lattice formation with horizontal and vertical 

routing wires separating each LUT cluster within the lattice.  Each LUT cluster is paired 

with a programmable SRAM based switchbox, capable of changing the direction of 

signals running on the fixed routing wires, as well as connecting signals carried by 

specific routing wires to appropriate LUTs.  See Figure 1 for an illustration of these 

components. 

Typically, FPGAs can be found mounted on computer interface boards, allowing 

a standard PC to stand as a host to an FPGA.  While mounted on a computer interface 

board, the FPGA can act as an extremely powerful co-processor. Unprocessed data will 

be fed to the FPGA from the host PC, and processed data will be fed from the FPGA  
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back to the host PC for hard-drive storage. Unlike standard computers, FPGAs are 

capable of parallelizing even the most serial of algorithms.  The secret to the speed 

advantage of a single FPGA over a standard computer can be reduced to one important 

fact: an FPGA is capable of performing orders of magnitude more work per clock cycle 

than a standard computer.  A useful and in-depth look at FPGAs and reconfigurable 

computing is given by Compton and Hauck (Compton and Hauck 2002 ; Hauck 1998).   

 

Development Overview 

 The knowledge of software programming skills has spread to the point where it is 

currently being taught in high schools.  Unfortunately, the same cannot be said for 

hardware development skills.  With today’s high-level programming languages, it is 

unlikely that all but the most experienced of programmers will be able to apply their 

programming skills to advanced, FPGA-based hardware development.  While there are a 

small number of commercial programs on the market capable of converting certain C 

and/or Java codes into FPGA compatible hardware designs, these programs are limited 

to simple state machines and combinational logic, and are unlikely to be useful to a 

programmer designing hardware for complex operations such as Monte Carlo transport.  

Lower-level implementation and description of hardware designs using a hardware 

definition language (HDL) is likely to be the only method versatile enough to implement 

these kinds of algorithms. 

 There are essentially two main HDLs widely available to programmers, Verilog 

HDL and VHDL.  A detailed overview of Verilog is given by Palnitkar (Palnitkar 2003).  
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Similarly, the VHDL language is detailed by Yalamanchili (Yalamanchili 2000).  They 

are similar languages, using only slightly different syntax.  These languages do not 

behave like a typical computer programming language—instead they simply serve to 

describe in a “text” form the various items from a typical circuit schematic.  For 

instance, instead of variables such as an ‘int’ in the C computer language, variable-like 

items called ‘wires’ are used to connect different functional blocks.  When the code is 

synthesized for FPGA implementation, each definition of a wire will be manifested in 

exactly that way (a physical wired connection) on the FPGA.  Learning these languages 

is typically easy, provided the user has sufficient understanding of how the underlying 

hardware is represented by the HDL. 



8  

CHAPTER III 
 

TEST CASE ASSUMPTIONS 
 
 

To date, Monte Carlo radiation transport computations have never been 

attempted using FPGA-based reconfigurable computing techniques.  The development of 

the initial hardware algorithms is difficult and tedious since very few of the principles 

that are currently applied to software-based Monte Carlo code development can be 

applied to the hardware-based counterpart.  The objective of this research is to verify and 

categorize the possible degree of speed increase that can be achieved by using 

reconfigurable, FPGA-based computing techniques to evaluate Monte Carlo radiation 

transport problems.  An assumption is made that if the evaluation of a relatively simple 

transport problem on an FPGA is significantly faster than the evaluation of the same 

problem using a standard PC, then that speed increase will likely be preserved for more 

complex Monte Carlo evaluations.  Therefore, to reduce the complexity of the initial 

hardware designs necessary, a Monte Carlo photon transport simulation on a target with 

simple geometric and material properties has been the subject of this thesis research.  

The simple test situation consisted of an isotropic 250 keV photon point source in 

an infinite medium of aluminum (Al).  The tallies that were used were spherical flux 

tallies (number of photons crossing a boundary) at intervals 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 

20 and 25 cm away from the source.  The test algorithm uses a completely internalized 

design, meaning that the FPGA does all of the work internally, leaving the host 

computer to wait only for the requested number of histories to be completed and tallies 
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to be output.  When the FPGA is programmed, all cross section data, scattering data, 

random number generator initial states, tally points, and geometrical data are included as 

part of the hardware design downloaded onto the FPGA. 

Monte Carlo based photon transport computations can be extremely complex if 

no approximations are made and if all secondary particles are tracked.  Since the purpose 

of this preliminary research was only to show the viability of FPGA-based Monte Carlo 

particle transport, secondary particles were ignored for simplicity.  Ignoring secondary 

particles for low-Z test materials still allows a fairly accurate simulation.  It should be 

noted that it would be possible to introduce Bremsstrahlung and fluorescence effects into 

our existing methods, so long as approximations can be used to eliminate full electron 

transport computations.   

For our current methods, interaction cross sections and scattering modifying 

factors are those given by Lawrence Livermore National Laboratory’s evaluated photon 

data library EPDL97 by Cullen (Cullen 1997a).  Incoherent scattering distribution 

functions are given by the product of the standard differential Klein-Nishina formula and 

the incoherent scattering function as described by Hubbell (Klein and Nishina 1929 ; 

Hubbell et al. 1975).  Coherent scattering distribution functions are given by the product 

of the Thompson scattering formula and the square of the coherent scattering form factor 

which is also described by Hubbell (Hubbell et al. 1975).  Equations 1 and 2 show the 

general relationships for incoherent and coherent scattering, respectively, where the 

scattering functions and form factors are functions of the momentum transfer (x) and the 

atomic number (Z). 
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Equation 3 is the general differential Klein-Nishina cross section, where re is the 

classical electron radius and k is the incident photon energy in units of electron rest 

mass. Equation 4 is the differential Thompson scattering cross section.  Equation 5 is the 

momentum transfer as a function of scattering angle and photon wavelength in units of 

angstroms.  

In addition to ignoring secondary particles, we have attempted to simplify our 

test case further by assuming that the source produces photons which have energies less 

than 1.022 MeV, insuring that the pair and triplet production cross sections for our 

energy range are not needed.  Therefore, our total macroscopic interaction cross section 

is given by:  µtotal = µincoherent + µcoherent + µphotoelectric. 

(1) 

(2) 

(3) 

(4) 

(5) 
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CHAPTER IV 

IMPLEMENTATION METHODS 

 

Random Number Generation 

 Random number generation is the core of any Monte Carlo simulation, and the 

efficient generation of high quality random numbers in hardware is imperative to the 

success of this project.  Classically, even the most advanced Monte Carlo radiation 

transport codes have relied on one of the least sophisticated pseudo-random number 

generation algorithms, the Linear Congruential Generator (LCG).  The general form of 

the LCG is: 

1( * ) modk kX A X C M−= +  

Where, Xk is the current random number in the series, Xk-1 is the previous random 

number in the series and A,C, and M are constants.  Careful selection of constants A and 

C is crucial to guarantee acceptable performance of the LCG as outlined by Park (Park 

and Miller 1988).  Even with optimal selection of constants A and C, the period of the 

LCG will be limited by the value of M used for the algorithm.  In fact, it is possible that 

the poor selection of constants A and C will result in a generator period which is much 

less than M.  

 For Monte Carlo simulations executed on standard PCs, or even on standard PC-

based cluster computers, the linear congruential generator may be an acceptable option.  

However, when we begin to consider high-speed, Monte Carlo simulation using a 

(6) 
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hardware based solution, the requirements become quite different.  A simulation 

executed on a 1000-node cluster computer will essentially use 1000 carefully-seeded and 

independently-running random number generators to generate a particular set of random 

numbers.  Using an FPGA-based solution, the same number of random numbers will be 

generated using only a few independently-running random number generators, since the 

work rate of each generator is significantly higher on an FPGA than on a standard PC. 

Therefore, the random number generation algorithms used for an FPGA based Monte 

Carlo simulation must generate random number streams with a much larger period than 

is typically required by Monte Carlo codes running on standard PCs. 

In addition to identifying a pseudo-random number generation algorithm with a 

large period, one must also be found which can be efficiently implemented in hardware.  

L’Ecuyer has compiled a review of current methods in pseudo-random number 

generation and examines several types of generators which are based on a feedback shift 

register, as opposed to multiplication, to generate random streams (L’Ecuyer 1997).  Chu 

and Jones have successfully implemented several forms of simple feedback shift register 

(FSR) random number generator algorithms using FPGAs (Chu and Jones 1999).  While 

Chu and Jones’ work only examines the simplest generators of this type (namely 1 bit 

linear feedback shift registers and simple lagged Fibonacci generators), the 

implementation ease of an FSR-based generator in hardware is shown.  For our 

purposes, we have taken the next step and custom designed a new and efficient FPGA 

implementation for one of the most sophisticated FSR type generators, the Mersenne 

Twister. 
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Matsumoto and Nishimura are responsible for the development of the Mersenne 

Twister (a pseudo-random number generation algorithm), which has passed the most 

stringent of statistical tests for randomness and has an incredibly large period of (219937 – 

1) (Matsumoto and Nishimura 1998).   A period of (219937 – 1) implies that a virtually 

unlimited amount of random numbers can be generated from a single seed with no 

chance of a repeated sequence, which is essential when performing complex Monte-

Carlo analysis with a large number of iterations.  The methodology behind the Mersenne 

Twister (MT) is based on the equation: 

1: ( | )u l
k n k m k kX X X X A+ + += ⊗  

where the⊗ symbol denotes the exclusive or operation (XOR),   N = 624, M = 397, and 

Xk represents the kth  32-bit random number in a sequence and k ranges from 1 to N.  

(Xu
k | Xl 

k+1) is the most significant bit of the Xk random number concatenated with the 

lower 31 bits of the Xk+1 random number. This concatenation is multiplied by a constant 

matrix A.  As shown by Matsumoto and Nishimura, the matrix A can be selected such 

that the multiplication is reduced to a binary shift and another XOR.   

The algorithm is simple and has equally simple hardware requirements.  A small 

1024-element, 32-bit wide Virtex II1 blockram unit onboard the FPGA is used to store 

the previously generated 624 random numbers. Every time the MT module generates a 

new random number, it accesses two previously generated random numbers from the 
                                                 
1 The Virtex II FPGA is manufactured by Xilinx, Inc.  Virtex II and Virtex II-pro devices 
are the largest FPGAs available on the market circa 2004, and are the target test devices 
of this research.  

(7) 
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memory element to create the next random number.  In addition to the memory element, 

the only hardware operations necessary for the complete implementation of this 

algorithm are several counters, some small registers (flip-flops), and the bitwise 

exclusive or function.  All of these functions are easily and efficiently implemented on 

an FPGA.  When we implemented the MT on a large Virtex II FPGA, we found that each 

MT module requires 2 Virtex II blockram units and negligible (less than 1%) of 

reprogrammable logic slices.  A circuit schematic describing our FPGA implementation 

of the MT algorithm is shown in Figure 2. 

 

Cross Section Retrieval 

 For photon transport with a maximum energy of 1.022 MeV, the photon 

interaction cross sections of concern are incoherent scattering, coherent scattering and 

the photoelectric effect.  Our implementation uses analytical relationships to describe the 

differential coherent and incoherent scattering cross sections, as described by equations 

1-5.  The total interaction cross sections describing all 3 effects are based on the 

EPDL97 library by Cullen (Cullen 1997a).  

Like many cross sections describing particle interactions, the EPDL97 cross 

sections describing total coherent, incoherent and photoelectric effects are only visually 

decipherable on a log/log plot.  Assuming methods are available for efficient FPGA 

implementation of logarithms and exponentials (discussed in the next section), 

regeneration of the log/log cross sections can be performed on an FPGA.  Onboard 

FPGA blockram modules are used to store three individual cross section tables for each 
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Fig. 2. A circuit schematic describing the Mersenne Twister FPGA 
implementation.  
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material used in the Monte Carlo simulation.  A point-wise polynomial interpolation 

method is used to discretize each cross section so that the macroscopic cross section for 

a photon of any energy can be found using just one lookup attempt (no searching 

necessary).  While there is a small amount of approximation to this method, the 

introduced error is minimal.  In addition, we have found that the cross sectional values 

that are returned by our point-wise polynomial interpolation method are well within the 

energy specific error bars as defined by Cullen’s EPDL 97 documentation (Cullen 

1997b).  

 Figure 3 shows the interpolated discretization method used to store cross 

sectional data for non-differential photon interaction cross sections.  As can be seen in 

the figure, a different number of interpolation points is used for the cross sections 

describing each interaction type.  For incoherent scattering, the total interaction cross 

section is a very smooth curve as a function of energy.  As a result, only a small number 

of interpolation points (128 points) are necessary to reproduce the data.  The 

photoelectric total cross section is more complex, with K and L shell absorption edges 

visible in the cross section.  To accurately reproduce this data, 512 interpolation points 

are used.  The coherent scattering cross section is even more complex than the 

photoelectric, with detailed resonances in the low energy regions.  These resonances are 

very important to low-energy photon transport and cannot be ignored.  As a result, 1024 

discrete interpolation points are used to reproduce the coherent scattering cross section.  

This number of interpolation points is capable of accurately reproducing the cross 

section data, even in resonance regions.  Figure 4 illustrates the exact cross sections 
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and their published error range in red, compared with our cross sections as stored on the 

FPGA shown in blue.  The error range depicted in red is given by the exact cross 

sections plus/minus the energy specific error bars described by Cullen’s EPDL97 

documentation (Cullen 1997b).  

The algorithm of choice used to interpolate between discrete points in the cross 

section retrieval design is variable, however, the easiest and most effective form is 

polynomial interpolation.  The optimal order of the polynomial used depends on the 

shape of the cross section, the number of discrete points used, and desired multiplier 

versus blockram usage on the FPGA.  To properly capture photoelectric edges and 

coherent scattering resonance regions, we have found that the optimal interpolation 

scheme is linear interpolation with a large number of discrete interpolation slices.  Figure 

5 illustrates the hardware interpolation scheme used to reproduce cross section data that 

has been pre-divided into 512 slices.  Linear interpolation was used in this example, 

where 512 individual interpolation coefficients are stored in onboard FPGA blockram.  

In Figure 5, the most significant 9 bits of the input value are used as the memory address 

selector.  After the memory unit returns the interpolation coefficients corresponding to a 

particular discrete slice, the remaining bits from the input are assumed to be a decimal 

value in the range [0,1) and are used as the operand in the equation:  

log( ) * [10 : ]Cross Section M x end B− = +  

where M and B are stored interpolation constants and x[10:end] are the least significant 

remaining bits of the input.  

(8) 



20  

 

{b
1, 

b 2
, b

3, 
b 4

, b
5}

.{
b 6

, b
7, 

b 8
, b

9, 
b 1

0, 
b 1

1, 
b 1

2, 
b 1

3, 
b 1

4, 
b 1

5, 
b 1

6, 
b 1

7, 
b 1

8, 
b 1

9, 
b 2

0, 
b 2

1, 
b 2

2}

22
 b

it 
in

pu
t i

n 
th

e 
ra

ng
e 

[0
, 3

2)
. N

ot
e 

th
e 

po
si

tio
n 

of
 th

e 
de

ci
m

al
 p

oi
nt

M
os

t s
ig

ni
fic

an
t 9

 b
its

 
ch

oo
se

 w
hi

ch
 o

f t
he

 5
12

 
el

em
en

ts
 in

 th
e 

em
be

dd
ed

 
bl

oc
kr

am
 to

 a
cc

es
s. 

 T
he

 
bl

oc
kr

am
 re

tu
rn

s 
in

te
rp

ol
at

io
n 

co
ef

fic
ie

nt
s 

fo
r t

ha
t s

lic
e.

M B

Em
be

dd
ed

 
M

ul
tip

lie
r

Ad
de

r

O
ut

pu
t f

ol
lo

w
in

g 
th

e 
fo

rm
 y

 =
 M

 *
 x

 +
 B

Fi
g.

 5
. A

 d
ia

gr
am

 o
f t

he
 in

te
rp

ol
at

io
n 

sc
he

m
e 

us
ed

 fo
r c

ro
ss

 se
ct

io
n 

re
tri

ev
al

.  
 



21  

 It should be emphasized that performing the cross-section lookup in the manner 

described above will only require a small amount of FPGA resources.  For each material, 

storing interpolation coefficients describing all three interaction types will take only 3-5 

blockram slices (out of hundreds available) on a Xilinx Virtex-II FPGA.  In addition to 

the blockram slices and regardless of the number of materials stored, one embedded 

multiplier is necessary to perform the interpolation.  The cross-section lookup is fast 

using the described techniques, and can be completed with a work rate of 1 evaluation 

per clock cycle.  

 

Logarithms  

 Logarithm evaluations of different bases are used through the Monte Carlo 

hardware radiation transport schemes described in this thesis.  Regardless of the base 

required, however, all initial evaluations are computed using log2—because it is most 

naturally implemented in a binary number system.  Once log2(x) is evaluated, the change 

of base formula was used to convert log2 to logb for any base b by simply multiplying 

log2(x) by a constant k, where k follows the formula: 

2

1
log ( )

k
b

= . 

With a conversion mechanism to transform log2(x) into logb(x) efficiently, great detail 

must be paid to the accurate and fast evaluation of log2(x).  As opposed to cross-section 

retrieval, where some sort of lookup table implementation is the natural solution, the 

obvious solution to the hardware-based evaluation of a logarithm is typically a series 

(9) 
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expansion.  Series expansions for the evaluation of log fit the general form (Arfken 

1985):  

2 3 4 5

log (1 ) ...
2 3 4 5e
x x x xx x+ = − + − + −  . 

A calculator or a computer which uses a series expansion like that in equation 10 to 

evaluate a logarithm will cycle through each term in the expansion, evaluating one term 

at a time.  Our designs, on the other hand, will require a much higher work rate than this, 

since the overall goal of this project is speed.  With speed in mind, the expansion in 

equation 10 can be evaluated with a work rate of 1 evaluation per clock cycle in 

hardware using (2n – 2) multipliers, where n is the number of expansion terms to be 

evaluated.  Large Xilinx Virtex-II FPGAs have hundreds of embedded multipliers, and 

so a requirement for (2n – 2) multipliers may not be an issue provided that only a small 

number of series terms needs to be evaluated to obtain convergence.  Unfortunately, we 

need to evaluate log(x) for all values of x, even as x approaches zero.  The series 

expansion for log given in equation 10 converges very slowly as the operand approaches 

zero and requires the evaluation of many terms to obtain convergence.  Due to a slow 

convergence as the operand approaches zero, evaluation of the series expansion on an 

FPGA will result in either the loss of our 1 evaluation per clock cycle work rate or the 

use of a vast amount of FPGA resources to perform the evaluation; either of which is 

unacceptable to our project goal. 

If an expansion-based evaluation is not an option, the other logical solution is a 

lookup table-based evaluation.  Unfortunately, for a lookup-table based evaluation to be 

(10) 
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effective, there must be a finite region for which the evaluation is performed--in our case 

we must perform log(x) for any x such that 0 x≤ ≤ ∞ .  To solve this problem, we have 

developed a transformation to force the operand of log(x) into a specific region, 

namely1 2x≤ < .  The shape of the log curve in the region 1 2x≤ <  is smooth and 

simple and can be easily regenerated using a point-wise polynomial interpolation method 

similar to the one used for cross-section retrieval.  The transformation used becomes 

extremely simplistic if 2 is the logarithm base used.  Equations 11 and 12 illustrate the 

form of the transformation. 

n
2 2 2log (x) = log (m  2 ) = log (m) + n⋅  

where, 

2  ,  and  1 2 nx m m= ⋅ ≤ < . 

For any operand x, m and n can be found by placing x in a pseudo-floating-point form—

an extremely efficient operation in hardware consisting mostly of binary shift operations.  

A preprocessing stage using pipelined multiplexer arrays handles the binary shifting 

such that an equivalent value for x is determined in the form of equation 12.  Figure 6 

shows this preprocessing stage.  Once the preprocessing has been completed, the 

exponent n can be set aside until the log2(m) evaluation has been completed using 

lookup-table methods 

 With n and m in equation 11 determined by the preprocessing stage, the 

evaluation of log2(m) can be completed efficiently using lookup-table methods since m 

now has a fixed range.  A polynomial-interpolation method similar to the one used for 

the cross-section retrieval is an excellent solution for the reproduction of log2(m).  

(11) 

(12) 
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Fig. 6.  A schematic depicting the log preprocessing stage.  The 
pipelining stages have been omitted.  
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The log2 curve is very smooth, unlike the curves representing cross-section data, and 

therefore will benefit from the use of a higher-order, polynomial-interpolation algorithm.  

Binomial-interpolation coefficients are stored for each log2 slice for m in the range [1, 

2).  Using 512 slices and binomial interpolation between each slice, log2(m) can be 

evaluated with a maximum associated algorithm error of about 10-10.   A diagram 

detailing this evaluation on the FPGA is shown in Figure 7.  Evaluation of log2(x) can be 

performed for any input x with equivalent precision by adding the shift constant 

determined by the preprocessing stage to the resultant value of log2(m).  

 

Exponentials 

 In much the same way that performing logarithm evaluations is necessary to 

cross-section retrieval, so is performing exponential evaluations.  The cross-sectional 

data for each material are stored in a log2 / log2 format, and a final evaluation of 2x will 

be necessary to obtain an un-transformed cross section value.  As with logarithm, a 

series expansion based evaluation of 2x is certainly possible, although this will not be as 

efficient as an interpolated look-up table solution.  Again, however, we must find a 

transformation that will allow us to perform the interpolated look-up table portion of the 

evaluation over a very fixed range.  We have developed the transformation described in 

equations 13 and 14 below to allow for the efficient, hardware-based evaluation of 2x for 

all values of x in hardware: 

.2 2   ,      where i and d represent the integer 
                      and decimal components of x

x i d=
 (13) 
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Integrated BlockRam
9 bit address space
56 bits per address

“pseudo float” mantissa from 
preprocessing unit

exponent (n) from 
preprocessing unit

Most Significant 9 bits

Least Significant 17 bits

Multiply
18x18

>> K1 >> K2

FastCarry Adder

Log2   OUTPUT

Multiply
18x18

Multiply
18x18

Fig. 7.  A schematic depicting the log2 evaluation stage.  The pipelining 
stages have been omitted as in Figure 6.  



27  

 

. 0. 0. 0.2 2 2 2 2i d i d i d d i+= = ⋅ = <<  

A polynomial-interpolated, lookup table can now efficiently evaluate 20.d, where d is a 

number in the range [0,1).  Then, a simple binary shift by the integer i will return the 

correct evaluation for 2x, for any value of x.  The methods for the polynomial-

interpolated look-up table evaluation of 20.d are nearly identical to the methods used to 

evaluate log2(m) as described in the previous section.  Just as in the case of log2, we have 

developed methods for implementing 2x very efficiently in hardware to a high degree of 

precision—methods which are unique to this project. 

 

Scattering Distributions 

 To determine the new scattering angle after a coherent or incoherent scattering 

event, the rejection technique must be used on the probability density functions 

described in equations 1-4.  While the Klein-Nishina differential cross section is not 

directly invertible, Nelson has documented methods of efficiently sampling the Klein-

Nishina distribution using a combined rejection-composition technique (Nelson et al. 

1985).  For simplicity, no combined rejection-composition techniques or even combined 

inversion-rejection techniques will be used for the initial tests described in this thesis.  

Nelson et al.’s methods are only mentioned for completeness and applicability to future 

research in this area.   

 One hardware module was designed to evaluate either a coherent or an 

incoherent scattering event.  Based on the event type and the momentum transfer, either 

(14) 
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the incoherent scattering function or the square of the coherent scattering form factor for 

the material is determined from a polynomial-interpolated lookup table—similar in 

design to the cross-section retrieval methods described in a previous section.  The 

differential Klein-Nishina cross section given in equation 3 is used for both coherent and 

incoherent scattering by setting the incident photon energy to for coherent scattering, 

thereby reducing the Klein-Nishina cross section to the Thompson cross section in 

equation 4.  

 As stated previously, no combined inversion-rejection methods were used.  

Therefore, rejection technique attempts were made by sampling a  uniformly distributed 

scattering angle between 0 and 180 degrees and also sampling uniformly between 0 and 

the maximum of the scattering function / form factor value for the incident photon 

energy of interest.  As a result, rejection-technique efficiency was low for higher-energy 

incoherent scattering and lower still for high-energy coherent scattering.  Fortunately, a 

high-energy, coherent scattering event is very rare, so the inefficiency is somewhat 

counterbalanced naturally by the cross sections.  To further correct for the remaining 

inefficiency of the rejection technique, four complete hardware-based scattering modules 

were run in parallel to quadruple the chances of finding a non-rejected scattering angle 

for each attempt. 

Standard software-based methods perform the rejection technique using a While 

loop, halting the progress of the entire program until a non-rejected value is identified.  

Unfortunately, it is not known how many iterations will be necessary to find a non-

rejected value.  This poses a problem for a hardware-based rejection technique 
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algorithm.  Since our designs are highly pipelined and depend on the parallel execution 

of different portions of the calculations necessary for the simulation of each photon 

interaction, every operation must take a fixed number of clock cycles to complete.  

Because of this, a looping, rejection-technique algorithm cannot be compatible with our 

methodology.  Therefore, if all four parallel rejection-technique attempts fail to find a 

non-rejected value, the transport of a particular particle will cease, and will be resumed 

from the previous successful interaction point in a future clock cycle.  For an explanation 

of hardware pipelining techniques see Hennessy and Patterson (Hennessy and Patterson 

1998). 

Running four rejection algorithms in parallel makes the overall efficiency of the 

algorithm acceptable.  If high-energy, coherent scattering is ignored, overall efficiency is 

about 85 percent.  If high-energy, coherent scattering is included, the overall efficiency 

drops into the 60 percent range.  

 

Overall Layout 

 As stated earlier, the simple test transport problem consists of an isotropic 250 

keV photon point source in an infinite, three-dimensional medium of aluminum with a 

number of spherical tallies measuring the number of photons crossing a boundary.  Since 

speed is the most important goal of this project, the overall transport algorithm has been 

designed to optimally evaluate 1 complete photon interaction per clock cycle.  The 

algorithm deviates from this optimal goal only in the event that all four of the parallel, 



30  

rejection-technique modules used to probe the scattering distributions return a rejected 

value.  In this case, the interaction will be marked as incomplete and will be re-evaluated 

in a subsequent clock cycle.  No useful work is done in a clock cycle where there is a 4-

fold rejection. 

 After a scattering event is completed and a scattering angle found, 

transformations must be used to determine a Cartesian vector describing the new particle 

direction.  The familiar Cashwell and Everett method was used to determine a unit 

vector representing the particle trajectory after scatter (Cashwell and Everett 1959).  The 

Cashwell and Everett method is shown in equations 15, 16, and 17: 

2

( sin( ) cos( ) sin( )sin( ))' cos( )
1

s s
s

u w vu u
w

ϑ ψ ϑ ψϑ ⋅ ⋅ ∆ − ⋅ ∆
= ⋅ +

−
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ϑ ψ ϑ ψϑ ⋅ ⋅ ∆ + ⋅ ∆
= ⋅ +

−
 

2' cos( ) sin( ) cos( ) 1s sw w wϑ ϑ ψ= ⋅ − ∆ −  

where, ψ∆  is a uniformly distributed random number between 0 and 2π  radians 

representing the change in azimuthal angle, sϑ  is the scattered angle obtained by probing 

the scattering distributions and u,v,w is a unit vector representing particle direction.  

 The Cashwell and Everett equations can be implemented efficiently onboard a 

Xilinx Virtex-II series FPGA due to the large number of embedded multipliers and 

blockram units available in the device.  Implementation methods are similar to those 

described before, combining polynomial-interpolated lookup tables with, in this case, 

(15) 

(16) 

(17) 
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several additional units of embedded multipliers to carry out the multiplications in 

equations 15-17.  

 A block schematic showing the entire algorithm operation is given in Figure 8.  

The algorithm is capable of running on a large Xilinx Virtex-II FPGA with negligible 

interaction from a host PC.  All random numbers are internally generated, and all Monte 

Carlo transport operations are evaluated inside the FPGA.  The design was heavily 

pipelined to increase the maximum clock speed at which the FPGA can operate.  As a 

general design rule, pipeline stages were placed after no more than a single 32-bit  

fast carry adder, two 18x18 embedded multipliers or equivalent distributed logic—

ensuring a clock speed surpassing 100 MHz.  
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Fig. 8.  Dataflow of the overall algorithm, showing the ideal amount of 
‘work’ completed per clock cycle. 
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CHAPTER V 
 

RESULTS 

 

Testing Methods 

 Modern FPGA technology is just now reaching a mature enough level so that 

implementation and execution of an algorithm of the complexity described in the 

preceding chapters are possible.  Because of this, one of the largest FPGAs available on 

the market will be required for the actual implementation and testing of these algorithms.  

All of the hardware algorithms described previously were designed specifically for the 

Xilinx Virtex-II Pro 100 FPGA, one of the largest FPGAs available on the market circa 

2005.  Unfortunately, the price of the Xilinx Virtex-II Pro 100 FPGA is typically in the 

$15,000 range when purchased in conjunction with a PCI interface board.  Physical 

access to this device was not available at the time of this thesis research; however, this in 

no way precludes us from obtaining both accurate and useful results.   

 To obtain useful and accurate results without actually using the physical Xilinx 

Virtex-II Pro 100 FPGA, a two stage simulation has been performed.  Both stages of the 

simulation use synthesizable HDL code describing the Monte Carlo hardware transport 

design as a basis for simulation.  We briefly discussed Verilog and VHDL codes in 

Chapter II, however, what was not mentioned is that certain strict coding techniques 

must be followed for an FPGA place and route software package to translate the HDL 

code into a programming file that can be used to physically program the FPGA.  When 

the HDL is written in such a way, we call a particular HDL code “synthesizable”.  
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 With synthesizable HDL code describing the design, the function of the code is 

verified using an HDL compiler/simulator.  We used Modelsim XE II v 5.7 G to 

simulate the HDL code at the gate level, clock cycle by clock cycle, to obtain the exact 

design output that would be obtained from an FPGA programmed using the HDL code 

and run for the same number of clock cycles.  This level of simulation is fairly slow 

since the computer simulates the response of each gate in the design (of which there are 

millions) to changing inputs.  The simulation of our Monte Carlo HDL code using 

Modelsim XE took approximately 4 weeks to complete 10,000 photon particle histories.  

However, the information obtained by this simulation was invaluable.  From the 

Modelsim simulation we were able to obtain the exact tally data for each tally (used for 

design verification), as well as the exact number of clock cycles necessary to complete 

the 10,000 photon histories.  It is important to note that this process is not necessary if a 

physical device is in hand.  Modelsim will still be used to debug the hardware, but this 

process will not be time consuming since a many particle simulation will not be 

performed.  

 The second portion of the simulation also utilized the synthesizable HDL code as 

a basis.  The Xilinx ISE Foundation 6.2.02i software package was used to synthesize and 

implement the HDL design to a level such that a programming file was generated which 

can be used to physically program the Xilinx Virtex-II Pro 100 FPGA.  The Xilinx ISE 

software breaks up the HDL code and uses sophisticated logic reduction algorithms to 

optimize the design as much as possible (the synthesis stage).  After synthesis, the ISE 

software uses libraries detailing the exact structure of the Virtex-II Pro 100 FPGA to 
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optimally place different design components on the FPGA as well as to optimally route 

signals between interacting components on the FPGA.  Place and route is performed by 

sophisticated algorithms which minimize the FPGA resources that the design consumes, 

as well as maximize the clock speed of the design (shorter routing distances between 

components translates to a higher overall clock speed).  The place and route process 

returns an exact FPGA utilization report describing the consumption of different types of 

FPGA components when the device is programmed.  In addition, the place and route 

process also returns a timing report, providing a conservative clock speed estimate at 

which the design can run when programmed on the Virtex-II Pro 100 FPGA.  Part of the 

libraries built into the ISE software describing the structure of the Virtex-II Pro 100 

FPGA include timing data for each part of the devices internal components.  Using these 

data, and summing timing delays along components between pipelining stages, the ISE 

software determines an accurate clock speed estimation.  A flowchart describing the 

simulation methods originating from the synthesizable HDL code is shown in Figure 9. 

 Once the FPGA clock speed and exact number of clock cycles required to 

compute 10,000 particle histories is determined, the theoretical throughput of the design 

when implemented on a Virtex-II Pro 100 FPGA can be found using: 

Particle Histories
Second

Clock Speed (Hz)                              
(Average Number of Clock Cycles Per History)

Throughput ⎡ ⎤ =⎢ ⎥⎣ ⎦  
(18) 

. 
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Fig. 9.  A flowchart describing the simulation process. 
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When a specific FPGA is not available, speed benchmarking methods similar to those 

described above are used widely in published works by researchers in the field of 

reconfigurable computing, and are considered to be acceptable forms of testing.  

Examples of some published articles which use similar methodologies to speed 

benchmark their algorithms on FPGAs are Jarvinen et al. 2003 and Shackleford et al. 

2002. 

 

Monte Carlo Results 

 Using the Xilinx ISE Foundation 6.2.02i software package, the synthesizable 

hardware designs created for this research were analyzed.  The software package returns 

FPGA usage data, timing analysis and a bit-stream FPGA programming file.  A 

summary of the Virtex-II Pro 100 FPGA utilization and timing data can be found in 

Table 1.  In Figure 10, a visual representation of the FPGA programmed with our Monte 

Carlo hardware design is shown, where the blue regions represent used portions of the 

FPGA.  As can seen by the data presented in Table 1, roughly 20% of the general logic 

portion of the device (LUTs) is used in this implementation.  The device has plenty of 

room to implement a more complex Monte Carlo simulation. On the other hand, if we 

wish to utilize the entire processing power of this FPGA to evaluate this particular 

simulation, three independent implementations can be programmed to run in parallel on 

the device.  In this case, the overall clock speed was reduced from 136.7 MHz to 111.5 

Mhz due to less optimal signal routing incurred by the utilization of a more significant 

amount of the programmable logic within the FPGA. 
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Table 1.  The resources consumed on the Xilinx Virtex-II Pro 100 FPGA by the Monte 
Carlo radiation transport hardware design. 

 Used Available Percent Utilization 
 
Number of Slices 

 
11,944 

 
44,096 

 
27 % 

Number of Slice 
Flip-Flops 

12,648 88,192 14 % 

Number of 4-Input 
LUTS 

17,747 88,192 20 % 

Number of 
Embedded Block-
Rams 

79 444 17 % 

Number of 
Embedded 18x18 
Multipliers 

117 444 26 % 

Estimated Clock 
Speed 

136.733 MHz N/A N/A 
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Fig. 10.  The programmed FPGA with one Monte Carlo transport 
module.  Blue denotes the utilized portions of the FPGA. 
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 Using the Modelsim XE  II 5.7 g HDL compiler, a simulation of the hardware 

design was also performed.  The flux tallies that we obtained from Modelsim XE were 

compared with the flux results generated using MCNP-5 (X-5 Monte Carlo Team, 

2003).  MCNP-5 was used as a comparison to our hardware method for two reasons.  

First, we used MCNP as a result comparison to ensure our methods are on target, and 

there are no significant bugs in our hardware design.  More importantly, however, we 

obtained a speed comparison from MCNP-5.  To closely compare to our hardware 

design, MCNP was programmed to ignore Bremsstrahlung radiation and all secondary 

electrons.  However, MCNP did simulate 1st fluorescence x-rays, which we did not. This 

accounted for a 3.5 percent increase in the number of photons MCNP tracked that our 

hardware design did not track.  Repercussions to be aware of are that MCNP reported 

slightly higher flux tallies and performed about 3.5 percent more computational work 

than our hardware design.  Flux comparisons are shown in Table 2 for 10,000 histories.  

The flux tallies reported by our FPGA hardware design are very close to those reported 

by MCNP.  The fluxes reported by MCNP were slightly higher in regions where 

photoelectric and Compton interactions (and thus fluorescence yield) were highest, but 

this was expected. 

 Simulation of 10,000 histories using Modelsim XE II 5.7 g running the hardware 

design revealed that the evaluation of 10,000 histories corresponded to 76,231 photon 

interactions—which agrees almost exactly with MCNP-5.  The number of clock cycles 

required to evaluate 76,231 photon interactions was reported to be exactly 129,541.  This 

deviation from our 1 clock cycle per photon interaction ideal work rate was caused by an 
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Table 2.  The flux tallies for MCNP-5 versus the flux tallies reported by the FPGA 
hardware design. 
Tally Distancea  MCNP-5 FPGA  % Difference % Standard Error 

 
2 cm 

 
11,717 

 
11,625 

 
0.785 

 
0.924 

3 cm 11,680 11,521 1.361 0.925 

4 cm 11,168 10,962 1.844 0.946 

5 cm 10,388 10,133 2.455 0.981 

6 cm 9,488 9,145 3.615 1.026 

7 cm 8,412 8,122 3.447 1.090 

8 cm 7,326 7,140 2.539 1.168 

9 cm 6,160 6,083 1.250 1.274 

10 cm 5,183 5,128 1.061 1.389 

 
a Although tallies were performed at 15, 20, and 25 cm, the standard error resulting from 
running only 10,000 histories at those distances becomes high enough that the results are 
not reliable. Both the FPGA-based simulation and MCNP-5 suffer from this issue. 
Therefore, these flux tallies are not presented in this table.   
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efficiency decrease due to the use of the rejection technique to probe the differential 

scattering distributions.  Using equation 18, we find that the theoretical work rate of the 

Xilinx Virtex-II Pro 100 FPGA is 633.15 million complete photon histories per minute 

when programmed with our Monte Carlo particle transport hardware designs.  This is the 

work rate for only one instance of the design (where the FPGA is approximately 20% 

utilized) and running at 136.7 MHz.  Utilization of the entire FPGA by running three 

transport simulations in parallel produced a higher work rate.  At 111.5 MHz, three 

independently running transport simulations produced a theoretical work rate of 1.55 

billion complete photon histories per minute on the Xilinx Virtex-II Pro 100 FPGA.  

 For speed comparison purposes, MCNP-5 was run on a modern 3.2 GHz Intel 

Pentium-IV desktop computer.  MCNP-5 was run under the Microsoft Windows XP 

operating system with no other active processes running on the PC.  MCNP-5 performed 

the same simulation, ignoring secondary electrons and Bremsstrahlung radiation.  As 

was previously stated, the only difference in the simulation that MCNP-5 performed was 

that it simulated 1st fluorescence x rays which accounted for 3.5 % additional photon 

histories.  Including the fluorescence x rays, MCNP-5 can compute this simulation at a 

work rate of 2.3704 million source particles per minute.  Multiplying by 3.5% additional 

photons per source particle, we estimate that MCNP-5 running on a 3.2 GHz Pentium-4 

PC can track about 2.4534 million complete photon histories per minute.   

Comparing the two work rates, it seems that a single Xilinx Virtex-II Pro FPGA 

is more than 650 times faster than a 3.2 GHz Intel Pentium-IV desktop PC running 

MCNP-5 at evaluating this particular radiation transport problem. 
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CHAPTER VI 

CONCLUSIONS 

 

 This thesis research has accomplished its key goals.  First, a new method for 

Monte Carlo radiation transport has been developed and exercised on a simple transport 

problem.  We have shown that the radiation transport problem described in this thesis 

can be evaluated in excess of 650 times faster on a large FPGA than it can be evaluated 

on a 3.2 GHz Pentium-IV desktop PC running MCNP-5.  This is a substantial 

acceleration factor which we believe can be preserved when the techniques discussed in 

this thesis are expanded to evaluate more complex Monte Carlo simulations. 

 This is just a first step for FPGA and hardware based Monte Carlo radiation 

transport.  The research in this thesis has shown the incredible potential of the 

application of FPGAs to Monte Carlo radiation transport problems, opening the door to 

further research in any of the unbounded number of applications that these techniques 

may have for accelerating radiation transport computations.  
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CHAPTER VII 
 

FUTURE WORK 

 

 Plans to continue this work are well underway.  Development will be done to 

support FPGA based coupled photon-electron Monte Carlo transport as well as possible 

extensions to include neutron transport.  As these development steps are completed, 

published comparisons will be performed between commercial Monte Carlo transport 

codes and our methods to characterize the speed increase achieved.   In addition, we 

have plans to support complex voxel geometries to accurately model biological organs 

and tissues.  Combining the support of voxel geometry representation with ultra-high 

speed coupled photon-electron transport will be important for the evaluation of internal 

and external dosimetry calculations for both health physics and medical physics 

applications.   

 



45  

REFERENCES 

Arfken G. Mathematical methods for physicists, 3rd ed. Orlando, FL: Academic Press; 
1985. 
 
Cashwell E, Everett C. A practical manual on the Monte Carlo method for random walk 
problems. Elmsford, NY: Pergamon Press; 1959. 
 
Chu P, Jones R.  Design techniques of FPGA based random number generator. 
Proceedings of the Military and Aerospace Applications of Programmable Devices and 
Technologies Conference. 1999:1-6. 
 
Compton K, Hauck S. Reconfigurable computing: A survey of systems and software. 
ACM 34:171-210; 2002. 
 
Cullen D. 1997a: the evaluated photon data library, ’97 version [online]. Available at: 
http://www.llnl.gov/cullen1/DOCUMENT/EPDL97/epdl97.htm. Accessed 20 November 
2004. 
 
Cullen D. 1997b: Report UCRL-50400, Vol.6, Rev.5, 1997 [online]. Available at: 
http://www.llnl.gov/cullen1/document/epdl97/epdl97.pdf. Accessed 20 November 2004. 
 
Hauck S. The future of reconfigurable systems. Proceedings of the Fifth Canadian 
Conference on Field Programmable Devices. 1998:1-8. 
 
Hennessy J, Patterson D. Computer organization and design, 2nd ed. San Francisco, CA: 
Morgan Kaufmann; 1998 
 
Hubbell J, Veigele W, Briggs E, Brown R, Cromer D, Howerton R. Atomic form factors, 
incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. 
Data 4:471-539; 1975. 
 
Jarvinen KU, Tommiska MT, Skytta JO. A fully pipelined memoryless 17.8 Gbps AES-
128 encryptor. Proceedings of the ACM FPGA ’03 Conference. 2003:1-9 
 
Klein O, Nishina Y. Über die streuung von strahlung durch freie elektronen nach der 
neuen relativistischen quantendynamik von dirac. Z. Physik 52:853; 1929. 
 
L’Ecuyer P. Uniform random number generators: A review. Proceedings of the 1997 
Winter Simulation Conference. 1997:127-134. 
 
Matsumoto M, Nishimura T. Mersenne Twister: A 623-dimensionally equidistributed 
uniform  pseudorandom number generator. ACM Transactions on Modeling and 



46  

Computer Simulations: Special Issue on Uniform Random Number Generation 8:3–30; 
1998. 
 
Nelson W, Hirayama J, Rogers W. The EGS4 code system. Stanford Linear Accelerator 
Center; SLAC-265, UC-32; 1985. 
 
Palnitkar S. Verilog HDL, 2nd ed. Indianapolis, IN: Prentice Hall PTR; 2003. 
 
Park SK, Miller KW. Random number generators: good ones are hard to find. ACM 
31:1192-1201; 1988. 
 
Shackleford B, Tanaka M, Carter RJ, Snider G. FPGA implementation of neighborhood-
of-four cellular automata random number generators. Proceedings of the ACM FPGA 
’02 Conference. 2002:1-7 
 
X-5 Monte Carlo Team. MCNP5-A general monte carlo n-particle transport code. Los 
Alamos National Laboratory; 2003. 
 
Yalamanchili S. Introductory VHDL: From simulation to synthesis. Indianapolis, IN: 
Prentice Hall; 2000. 
 
 
 
 
 

 

 

 

 

 

 

 

 



47  

VITA 

 

Name:   Alexander Samuel Pasciak 
 
Address:  1328 Rathwood Ave. 
   Richland, WA 99352 
 
Email Address: pasciak@cedar.ne.tamu.edu 
 
 
Education:  B.S., Electrical Engineering, The University of Washington, 2003 
 
   

 

 

 

  

  

  

  

 
 

 

 

 
 
 
 
 

 


