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ABSTRACT

The Theoretical Development of a New High Speed
Solution for Monte Carlo Radiation Transport Computations. (December 2005)
Alexander Samuel Pasciak, B.S., University of Washington

Chair of Advisory Committee: Dr. John R. Ford

Advancements in parallel and cluster computing have made many complex
Monte Carlo simulations possible in the past several years. Unfortunately, cluster
computers are large, expensive, and still not fast enough to make the Monte Carlo
technique useful for calculations requiring a near real-time evaluation period. For Monte
Carlo simulations, a small computational unit called a Field Programmable Gate Array
(FPGA) is capable of bringing the power of alarge cluster computer into any personal
computer (PC). Because an FPGA is capable of executing Monte Carlo simulations with
a high degree of parallelism, asimulation run on alarge FPGA can be executed at a
much higher rate than an equivalent simulation on a modern single-processor desktop
PC. Inthisthesis, asimple radiation transport problem involving moderate energy
photons incident on athree-dimensional target is discussed. By comparing the
theoretical evaluation speed of this transport problem on alarge FPGA to the evaluation
speed of the same transport problem using standard computing techniques, it is shown
that it is possible to accelerate Monte Carlo computations significantly using FPGAs. In
fact, we have found that our simple photon transport test case can be evaluated in excess

of 650 times faster on alarge FPGA than on a 3.2 GHz Pentium-4 desktop PC running



MCNP5—an acceleration factor that we predict will be largely preserved for most

Monte Carlo simulations.
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CHAPTERI

INTRODUCTION

Currently, there are two widely used general computing methods for the
expedited execution of highly complex scientific computations: standard personal
computer (PC) based cluster computing and special purpose supercomputing. Twenty
years ago, the idea of using home PCs for scientific computations would have seemed
absurd, as home PCs (even in large numbers) could not match the speed of proprietary
special purpose supercomputers. Today, quite the opposite is true. The demand for home
PC’ s drives the computing industry and so cluster computing using off the shelf PC
hardware has become the standard solution for scientific computation. This can be
attributed largely to the high availability and low price associated with standard PC
hardware. Itisstill true that special purpose machines can outperform standard PC
hardware, but the extremely limited availability and high cost is usually a sufficient
deterrent to their wide use.

Ignoring cost and availability constraints, the most efficient eval uation method
for a computationally-intensive problem, which is based on arelatively fixed algorithm,
isto utilize the power of a custom fabricated Application Specific Integrated Circuit
(ASIC). Unlike a standard microprocessor, ASICs are not driven by software; instead,
they are manufactured to perform one specific calculation. The advantage of using

ASICsfor high speed computation is that they can have a much higher work rate than a

Thisthesis follows the style of the Health Physics Journal.



standard microprocessor. The disadvantage of using an ASIC isthat, once
manufactured, the computation that it performs can never be altered. Since the
algorithms used in Monte Carlo radiation transport computations are problem specific, it
isunlikely that ASICs are flexible enough to be used as an aide to accelerate the speed of
Monte Carlo computations.

A Field Programmable Gate Array (FPGA) is an integrated circuit whichis
capable of performing computations with nearly all of the same speed benefits of an
ASIC. However, FPGAs have one important advantage over ASICs—they are
reprogrammable. The computation that an FPGA performs can be completely changed
in afraction of a second by reprogramming the device. Since the ability to reprogram an
FPGA makesit very flexible, it islikely that the same type of FPGA canbeusedina
wide range of industries, from cellular telephones to automobiles. In turn, this makes it
an off-the-shelf, high-availability, and cost-effective device. FPGA technology has been
around for along time; however, the size and complexity of available devicesisonly
just reaching a point in which they can be utilized to accelerate algorithms as complex as

Monte Carlo radiation transport.



CHAPTERII

BACKGROUND

FPGA Background

A field programmable gate array (FPGA) is a specialized computer chip
composed of an array of small memory elements which can be reprogrammed to mimic
the behavior of different elementary math and logic functions. Connections between the
small memory elementsin the array can be altered using pass transistor switches
allowing many memory elements to work together to compute complex mathematical
functions. A large FPGA has more than 50,000 of these reprogrammable memory
elements, several hundred dedicated multiplier blocks, alarge amount of onboard data
storage elements, and the capability of multi-tera operation performance. FPGASs can be
programmed to execute amost any algorithm, but they are not programmed from
standard computer code. Instead, complete hardware designs (generally at the gate
level) are used aslogic patternsto program the FPGA. Once the FPGA has been
programmed, it behavesin exactly the same way as an ASIC which has been
manufactured with a particular algorithm in mind.

Classically, there have been two major types of FPGAs available in industry.
Thefirst is based on Static Random Access Memory (SRAM), the second is based on
anti-fuse technology. Anti-fuse technology utilizes fuse like elements which are
electrically “blown” when the FPGA is programmed. The fuses that are not “blown”
during programming connect specific logic units within the FPGA to perform agiven

operation. FPGAs using anti-fuse technology are quite different than the more popul ar



SRAM based FPGAs of today. Anti-fuse FPGAs can be programmed only once, where
SRAM based FPGAS can be programmed and reprogrammed in indefinite number of
times. Look-up tables (LUTs) form the core of an SRAM based FPGAs logic
reproduction ability. Standard LUTs are capable of mimicking any logic function which
has the same number of inputsasthe LUT. For instance, a4-input LUT stores truth
table-like data corresponding to the operation of any 4-input logic function. Multiple
LUTs can be combined to perform more complex computations.

SRAM based FPGASs have alarge number of LUTS, each of which can be
programmed individually to perform a specific function. Most complex algorithms,
however, will require the combined use of thousands or more LUTs to perform an
evaluation. Methods for efficient and yet programmable routing of signals between
LUTsisahighly critical component of modern SRAM based FPGAs. Often small
clustersof LUTs are arranged in a square | attice formation with horizontal and vertical
routing wires separating each LUT cluster within the lattice. Each LUT cluster is paired
with a programmable SRAM based switchbox, capable of changing the direction of
signals running on the fixed routing wires, as well as connecting signals carried by
specific routing wires to appropriate LUTs. See Figure 1 for an illustration of these
components.

Typicaly, FPGAs can be found mounted on computer interface boards, allowing
astandard PC to stand as a host to an FPGA. While mounted on a computer interface
board, the FPGA can act as an extremely powerful co-processor. Unprocessed data will

be fed to the FPGA from the host PC, and processed datawill be fed from the FPGA
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back to the host PC for hard-drive storage. Unlike standard computers, FPGAs are
capable of parallelizing even the most serial of algorithms. The secret to the speed
advantage of asingle FPGA over a standard computer can be reduced to one important
fact: an FPGA is capable of performing orders of magnitude more work per clock cycle
than a standard computer. A useful and in-depth look at FPGASs and reconfigurable

computing is given by Compton and Hauck (Compton and Hauck 2002 ; Hauck 1998).

Development Overview

The knowledge of software programming skills has spread to the point whereit is
currently being taught in high schools. Unfortunately, the same cannot be said for
hardware development skills. With today’ s high-level programming languages, it is
unlikely that all but the most experienced of programmers will be able to apply their
programming skills to advanced, FPGA-based hardware development. While there are a
small number of commercial programs on the market capable of converting certain C
and/or Java codes into FPGA compatible hardware designs, these programs are limited
to simple state machines and combinational logic, and are unlikely to be useful to a
programmer designing hardware for complex operations such as Monte Carlo transport.
Lower-level implementation and description of hardware designs using a hardware
definition language (HDL) islikely to be the only method versatile enough to implement
these kinds of algorithms.

There are essentially two main HDLs widely available to programmers, Verilog

HDL and VHDL. A detailed overview of Verilog is given by Palnitkar (Palnitkar 2003).



Similarly, the VHDL language is detailed by Y alamanchili (Y aamanchili 2000). They
are similar languages, using only dlightly different syntax. These languages do not
behave like atypical computer programming language—instead they ssmply serve to
describein a“text” form the various items from atypical circuit schematic. For
instance, instead of variables such asan ‘int’ in the C computer language, variable-like
items called ‘wires are used to connect different functional blocks. When the code is
synthesized for FPGA implementation, each definition of awire will be manifested in
exactly that way (a physical wired connection) on the FPGA. Learning these languages
istypically easy, provided the user has sufficient understanding of how the underlying

hardware is represented by the HDL.



CHAPTER I1I

TEST CASE ASSUMPTIONS

To date, Monte Carlo radiation transport computations have never been
attempted using FPGA -based reconfigurable computing techniques. The development of
the initial hardware algorithms is difficult and tedious since very few of the principles
that are currently applied to software-based Monte Carlo code devel opment can be
applied to the hardware-based counterpart. The objective of this research isto verify and
categorize the possible degree of speed increase that can be achieved by using
reconfigurable, FPGA-based computing techniques to evaluate Monte Carlo radiation
transport problems. An assumption is made that if the evaluation of arelatively smple
transport problem on an FPGA is significantly faster than the evaluation of the same
problem using a standard PC, then that speed increase will likely be preserved for more
complex Monte Carlo evaluations. Therefore, to reduce the complexity of the initial
hardware designs necessary, a Monte Carlo photon transport simulation on a target with

simple geometric and material properties has been the subject of this thesis research.

The simple test situation consisted of an isotropic 250 keV photon point source in
an infinite medium of aluminum (Al). The tallies that were used were spherical flux
tallies (number of photons crossing aboundary) at intervals 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,
20 and 25 cm away from the source. The test algorithm uses a completely internalized
design, meaning that the FPGA does all of the work internally, leaving the host

computer to wait only for the requested number of histories to be completed and tallies



to be output. When the FPGA is programmed, all cross section data, scattering data,
random number generator initial states, tally points, and geometrical data are included as
part of the hardware design downloaded onto the FPGA.

Monte Carlo based photon transport computations can be extremely complex if
no approximations are made and if all secondary particles are tracked. Since the purpose
of this preliminary research was only to show the viability of FPGA-based Monte Carlo
particle transport, secondary particles were ignored for simplicity. Ignoring secondary
particles for low-Z test materials still allows afairly accurate ssmulation. It should be
noted that it would be possible to introduce Bremsstrahlung and fluorescence effects into
our existing methods, so long as approximations can be used to eliminate full electron

transport computations.

For our current methods, interaction cross sections and scattering modifying
factors are those given by Lawrence Livermore National Laboratory’s evaluated photon
datalibrary EPDL97 by Cullen (Cullen 1997a). Incoherent scattering distribution
functions are given by the product of the standard differential Klein-Nishina formula and
the incoherent scattering function as described by Hubbell (Klein and Nishina 1929 ;
Hubbell et al. 1975). Coherent scattering distribution functions are given by the product
of the Thompson scattering formula and the square of the coherent scattering form factor
which is also described by Hubbell (Hubbell et al. 1975). Equations 1 and 2 show the
general relationships for incoherent and coherent scattering, respectively, where the
scattering functions and form factors are functions of the momentum transfer (x) and the

atomic number (2).
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Equation 3 isthe general differential Klein-Nishina cross section, where re isthe
classical electron radius and k is the incident photon energy in units of electron rest
mass. Equation 4 is the differential Thompson scattering cross section. Equation 5 isthe
momentum transfer as a function of scattering angle and photon wavelength in units of

angstroms.

In addition to ignoring secondary particles, we have attempted to simplify our
test case further by assuming that the source produces photons which have energies less
than 1.022 MeV, insuring that the pair and triplet production cross sections for our
energy range are not needed. Therefore, our total macroscopic interaction cross section

is g'Ven by Mtotal = Mincoherent + Mconerent + thotoelectric-
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CHAPTER IV

IMPLEMENTATION METHODS

Random Number Generation

Random number generation is the core of any Monte Carlo simulation, and the
efficient generation of high quality random numbers in hardware is imperative to the
success of thisproject. Classically, even the most advanced Monte Carlo radiation
transport codes have relied on one of the least sophisticated pseudo-random number
generation algorithms, the Linear Congruential Generator (LCG). The general form of

theLCGis:
X, =(A* X, ;+C)modM (6)

Where, Xy isthe current random number in the series, Xi.1 isthe previous random
number in the seriesand A,C, and M are constants. Careful selection of constantsA and
Ciscrucia to guarantee acceptable performance of the LCG as outlined by Park (Park
and Miller 1988). Even with optimal selection of constants A and C, the period of the
LCG will be limited by the value of M used for the algorithm. Infact, it is possible that
the poor selection of constants A and C will result in agenerator period which is much

less than M.

For Monte Carlo simulations executed on standard PCs, or even on standard PC-
based cluster computers, the linear congruential generator may be an acceptabl e option.

However, when we begin to consider high-speed, Monte Carlo smulation using a
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hardware based solution, the requirements become quite different. A simulation
executed on a 1000-node cluster computer will essentialy use 1000 carefully-seeded and
independently-running random number generators to generate a particular set of random
numbers. Using an FPGA-based solution, the same number of random numbers will be
generated using only afew independently-running random number generators, since the
work rate of each generator is significantly higher on an FPGA than on a standard PC.
Therefore, the random number generation algorithms used for an FPGA based Monte
Carlo simulation must generate random number streams with a much larger period than

istypicaly required by Monte Carlo codes running on standard PCs.

In addition to identifying a pseudo-random number generation algorithm with a
large period, one must also be found which can be efficiently implemented in hardware.
L’ Ecuyer has compiled areview of current methods in pseudo-random number
generation and examines several types of generators which are based on a feedback shift
register, as opposed to multiplication, to generate random streams (L’ Ecuyer 1997). Chu
and Jones have successfully implemented several forms of simple feedback shift register
(FSR) random number generator algorithms using FPGAs (Chu and Jones 1999). While
Chu and Jones’ work only examines the simplest generators of thistype (namely 1 bit
linear feedback shift registers and simple lagged Fibonacci generators), the
implementation ease of an FSR-based generator in hardware is shown. For our
purposes, we have taken the next step and custom designed a new and efficient FPGA
implementation for one of the most sophisticated FSR type generators, the Mersenne

Twister.



13

Matsumoto and Nishimura are responsible for the development of the Mersenne
Twister (a pseudo-random number generation algorithm), which has passed the most
stringent of statistical tests for randomness and has an incredibly large period of (2" —
1) (Matsumoto and Nishimura 1998). A period of (2'°*"— 1) implies that a virtually
unlimited amount of random numbers can be generated from a single seed with no
chance of arepeated sequence, which is essential when performing complex Monte-

Carlo analysis with alarge number of iterations. The methodology behind the Mersenne

Twister (MT) is based on the equation:

X :Xker@)(XliJ |XII<+1)A (7)

k+n -

where the® symbol denotes the exclusive or operation (XOR), N =624, M = 397, and
X represents the k™ 32-bit random number in a sequence and k ranges from 1 to N.
(X% | X' k+1) is the most significant bit of the X random number concatenated with the
lower 31 bits of the Xy+1 random number. This concatenation is multiplied by a constant
matrix A. Asshown by Matsumoto and Nishimura, the matrix A can be selected such

that the multiplication is reduced to a binary shift and another XOR.

The algorithm is simple and has equally simple hardware requirements. A small
1024-element, 32-hit wide Virtex |1* blockram unit onboard the FPGA is used to store
the previously generated 624 random numbers. Every time the MT module generates a

new random number, it accesses two previously generated random numbers from the

! The Virtex Il FPGA is manufactured by Xilinx, Inc. Virtex I and Virtex 11-pro devices
are the largest FPGAs available on the market circa 2004, and are the target test devices
of thisresearch.
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memory element to create the next random number. In addition to the memory element,
the only hardware operations necessary for the complete implementation of this
algorithm are several counters, some small registers (flip-flops), and the bitwise
exclusive or function. All of these functions are easily and efficiently implemented on
an FPGA. When we implemented the MT on alarge Virtex || FPGA, we found that each
MT module requires 2 Virtex Il blockram units and negligible (less than 1%) of
reprogrammable logic slices. A circuit schematic describing our FPGA implementation

of the MT algorithm is shown in Figure 2.

Cross Section Retrieval

For photon transport with a maximum energy of 1.022 MeV, the photon
interaction cross sections of concern are incoherent scattering, coherent scattering and
the photoelectric effect. Our implementation uses analytical relationships to describe the
differential coherent and incoherent scattering cross sections, as described by equations
1-5. Thetotal interaction cross sections describing all 3 effects are based on the

EPDL97 library by Cullen (Cullen 1997a).

Like many cross sections describing particle interactions, the EPDL97 cross
sections describing total coherent, incoherent and photoel ectric effects are only visually
decipherable on alog/log plot. Assuming methods are available for efficient FPGA
implementation of logarithms and exponentials (discussed in the next section),
regeneration of the log/log cross sections can be performed on an FPGA. Onboard

FPGA blockram modules are used to store three individual cross section tables for each
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material used in the Monte Carlo simulation. A point-wise polynomial interpolation
method is used to discretize each cross section so that the macroscopic cross section for
a photon of any energy can be found using just one lookup attempt (no searching
necessary). While thereis a small amount of approximation to this method, the
introduced error isminimal. In addition, we have found that the cross sectional values
that are returned by our point-wise polynomial interpolation method are well within the
energy specific error bars as defined by Cullen’s EPDL 97 documentation (Cullen

1997b).

Figure 3 shows the interpolated discretization method used to store cross
sectional datafor non-differential photon interaction cross sections. Ascan beseenin
the figure, adifferent number of interpolation pointsis used for the cross sections
describing each interaction type. For incoherent scattering, the total interaction cross
section is avery smooth curve as afunction of energy. Asaresult, only a small number
of interpolation points (128 points) are necessary to reproduce the data. The
photoel ectric total cross section is more complex, with K and L shell absorption edges
visible in the cross section. To accurately reproduce this data, 512 interpolation points
are used. The coherent scattering cross section is even more complex than the
photoel ectric, with detailed resonances in the low energy regions. These resonances are
very important to low-energy photon transport and cannot be ignored. Asaresult, 1024
discrete interpolation points are used to reproduce the coherent scattering cross section.
This number of interpolation points is capable of accurately reproducing the cross

section data, even in resonance regions. Figure 4 illustrates the exact cross sections
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and their published error range in red, compared with our cross sections as stored on the
FPGA shown in blue. The error range depicted in red is given by the exact cross
sections plus/minus the energy specific error bars described by Cullen’s EPDL 97

documentation (Cullen 1997b).

The algorithm of choice used to interpolate between discrete points in the cross
section retrieval design is variable, however, the easiest and most effective formis
polynomial interpolation. The optimal order of the polynomial used depends on the
shape of the cross section, the number of discrete points used, and desired multiplier
versus blockram usage on the FPGA. To properly capture photoelectric edges and
coherent scattering resonance regions, we have found that the optimal interpolation
schemeislinear interpolation with alarge number of discrete interpolation slices. Figure
5 illustrates the hardware interpolation scheme used to reproduce cross section data that
has been pre-divided into 512 slices. Linear interpolation was used in this example,
where 512 individual interpolation coefficients are stored in onboard FPGA blockram.

In Figure 5, the most significant 9 bits of the input value are used as the memory address
selector. After the memory unit returns the interpolation coefficients corresponding to a
particular discrete slice, the remaining bits from the input are assumed to be a decimal

value in the range [0,1) and are used as the operand in the equation:
log(Cross — Section) =M * x[10:end] + B (8)

where M and B are stored interpolation constants and x[10:end] are the least significant

remaining bits of the input.
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It should be emphasized that performing the cross-section lookup in the manner
described above will only require a small amount of FPGA resources. For each material,
storing interpolation coefficients describing all three interaction types will take only 3-5
blockram dlices (out of hundreds available) on a Xilinx Virtex-1l FPGA. In addition to
the blockram dlices and regardless of the number of materials stored, one embedded
multiplier is necessary to perform the interpolation. The cross-section lookup is fast
using the described techniques, and can be completed with awork rate of 1 evaluation

per clock cycle.

Logarithms

Logarithm evaluations of different bases are used through the Monte Carlo
hardware radiation transport schemes described in thisthesis. Regardless of the base
required, however, al initial evaluations are computed using log—because it is most
naturally implemented in a binary number system. Once logx(X) is evaluated, the change
of base formulawas used to convert log, to log, for any base b by simply multiplying
logz(x) by aconstant k, where k follows the formula:

ket
log, (b)

(9)

With a conversion mechanism to transform log,(x) into logy(X) efficiently, great detail
must be paid to the accurate and fast evaluation of logx(x). As opposed to cross-section
retrieval, where some sort of lookup table implementation is the natural solution, the

obvious solution to the hardware-based evaluation of alogarithmistypically a series
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expansion. Series expansions for the evaluation of log fit the general form (Arfken

1985):

2 X3 X4 X5

X
log,(1+X) =X——+———+——....
0.0+ =x -2+ =T T (10

A calculator or a computer which uses a series expansion like that in equation 10 to
evauate alogarithm will cycle through each term in the expansion, evaluating one term
at atime. Our designs, on the other hand, will require a much higher work rate than this,
since the overall goal of this project is speed. With speed in mind, the expansion in
equation 10 can be evaluated with awork rate of 1 evaluation per clock cyclein
hardware using (2n — 2) multipliers, where n is the number of expansion termsto be
evaluated. Large Xilinx Virtex-11 FPGAs have hundreds of embedded multipliers, and
so arequirement for (2n — 2) multipliers may not be an issue provided that only a small
number of series terms needs to be evaluated to obtain convergence. Unfortunately, we
need to evaluate log(x) for all values of x, even as x approaches zero. The series
expansion for log given in equation 10 converges very slowly as the operand approaches
zero and requires the evaluation of many terms to obtain convergence. Dueto aslow
convergence as the operand approaches zero, evaluation of the series expansion on an
FPGA will result in either the loss of our 1 evaluation per clock cycle work rate or the
use of avast amount of FPGA resources to perform the evaluation; either of whichis
unacceptable to our project goal.

If an expansion-based evaluation is not an option, the other logical solutionisa

lookup table-based evaluation. Unfortunately, for alookup-table based evaluation to be
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effective, there must be afinite region for which the evaluation is performed--in our case
we must perform log(x) for any x such that 0< x <. To solve this problem, we have
developed atransformation to force the operand of log(x) into a specific region,
namely1< x < 2. The shape of thelog curvein theregion 1< x < 2 is smooth and
simple and can be easily regenerated using a point-wise polynomial interpolation method
similar to the one used for cross-section retrieval. The transformation used becomes
extremely simplistic if 2 isthe logarithm base used. Equations 11 and 12 illustrate the
form of the transformation.

log, (x) =log,(m - 2") =log,(m) +n (11)
where,

x=m-2", and 1<m<?2 . (12)
For any operand x, m and n can be found by placing x in a pseudo-floating-point form—
an extremely efficient operation in hardware consisting mostly of binary shift operations.
A preprocessing stage using pipelined multiplexer arrays handles the binary shifting
such that an equivalent value for x is determined in the form of equation 12. Figure 6
shows this preprocessing stage. Once the preprocessing has been completed, the
exponent n can be set aside until the log,(m) evaluation has been completed using
lookup-table methods
With n and min equation 11 determined by the preprocessing stage, the

evaluation of logx(m) can be completed efficiently using lookup-table methods since m
now has afixed range. A polynomial-interpolation method similar to the one used for

the cross-section retrieval is an excellent solution for the reproduction of 1ogz(m).
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number exponent (n) Where: 1<=m <2

Fig. 6. A schematic depicting the log preprocessing stage. The
pipelining stages have been omitted.
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Thelog, curve is very smooth, unlike the curves representing cross-section data, and
therefore will benefit from the use of a higher-order, polynomial-interpolation algorithm.
Binomial-interpolation coefficients are stored for each log, slice for min the range [1,
2). Using 512 dlices and binomial interpolation between each dice, logz(m) can be
evaluated with a maximum associated algorithm error of about 10%°. A diagram
detailing this evaluation on the FPGA is shown in Figure 7. Evaluation of 1og,(x) can be
performed for any input x with equivalent precision by adding the shift constant

determined by the preprocessing stage to the resultant value of logz(m).

Exponentials

In much the same way that performing logarithm evaluations is necessary to
cross-section retrieval, so is performing exponential evaluations. The cross-sectiond
data for each material are stored in alog, / log, format, and afinal evaluation of 2* will
be necessary to obtain an un-transformed cross section value. Aswith logarithm, a
series expansion based evaluation of 2* is certainly possible, although this will not be as
efficient as an interpolated look-up table solution. Again, however, we must find a
transformation that will allow us to perform the interpolated |ook-up table portion of the
evaluation over avery fixed range. We have devel oped the transformation described in
equations 13 and 14 below to allow for the efficient, hardware-based evaluation of 2* for

al values of x in hardware:

2*=2"" | wherei and d represent the integer (13)
and decimal components of x
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Fig. 7. A schematic depicting the log, evaluation stage. The pipelining
stages have been omitted asin Figure 6.
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2i.d — 2i+0.d — 2i . 20.d — 20.d << | (14)

A polynomial-interpolated, lookup table can now efficiently evaluate 2°¢, wheredisa
number in the range [0,1). Then, asimple binary shift by the integer i will return the
correct evaluation for 2%, for any value of x. The methods for the polynomial-
interpolated look-up table evaluation of 2° are nearly identical to the methods used to
evauate logy(m) as described in the previous section. Just asin the case of log,, we have
devel oped methods for implementing 2* very efficiently in hardware to a high degree of

precision—methods which are unique to this project.

Scattering Distributions

To determine the new scattering angle after a coherent or incoherent scattering
event, the regjection technique must be used on the probability density functions
described in equations 1-4. While the Klein-Nishina differential cross section is not
directly invertible, Nelson has documented methods of efficiently sampling the Klein-
Nishina distribution using a combined rejection-composition technique (Nelson et al.
1985). For simplicity, no combined rejection-composition techniques or even combined
inversion-rejection techniques will be used for the initial tests described in thisthesis.
Nelson et al.’s methods are only mentioned for completeness and applicability to future

research in this area.

One hardware module was designed to evaluate either a coherent or an

incoherent scattering event. Based on the event type and the momentum transfer, either
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the incoherent scattering function or the square of the coherent scattering form factor for
the material is determined from a polynomial-interpolated lookup table—similar in
design to the cross-section retrieval methods described in a previous section. The
differential Klein-Nishina cross section given in equation 3 is used for both coherent and
incoherent scattering by setting the incident photon energy to for coherent scattering,
thereby reducing the Klein-Nishina cross section to the Thompson cross section in

equation 4.

As stated previously, no combined inversion-rejection methods were used.
Therefore, regjection technique attempts were made by sampling a uniformly distributed
scattering angle between 0 and 180 degrees and also sampling uniformly between 0 and
the maximum of the scattering function / form factor value for the incident photon
energy of interest. Asaresult, rejection-technique efficiency was low for higher-energy
incoherent scattering and lower still for high-energy coherent scattering. Fortunately, a
high-energy, coherent scattering event is very rare, so the inefficiency is somewhat
counterbalanced naturally by the cross sections. To further correct for the remaining
inefficiency of the rejection technique, four complete hardware-based scattering modules
were run in parallel to quadruple the chances of finding a non-rejected scattering angle

for each attempt.

Standard software-based methods perform the rejection technique using a While
loop, halting the progress of the entire program until a non-rejected value isidentified.
Unfortunately, it is not known how many iterations will be necessary to find a non-

rejected value. This poses a problem for a hardware-based rejection technique
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algorithm. Since our designs are highly pipelined and depend on the parallel execution
of different portions of the calculations necessary for the ssmulation of each photon
interaction, every operation must take afixed number of clock cycles to complete.
Because of this, alooping, rejection-technigque algorithm cannot be compatible with our
methodology. Therefore, if all four parallel rejection-technique attempts fail to find a
non-rejected value, the transport of a particular particle will cease, and will be resumed
from the previous successful interaction point in afuture clock cycle. For an explanation
of hardware pipelining techniques see Hennessy and Patterson (Hennessy and Patterson

1998).

Running four rejection algorithms in parallel makes the overall efficiency of the
algorithm acceptable. If high-energy, coherent scattering isignored, overall efficiency is
about 85 percent. If high-energy, coherent scattering isincluded, the overall efficiency

drops into the 60 percent range.

Overall Layout

As stated earlier, the simple test transport problem consists of an isotropic 250
keV photon point source in an infinite, three-dimensional medium of aluminum with a
number of spherical tallies measuring the number of photons crossing a boundary. Since
speed is the most important goal of this project, the overall transport algorithm has been
designed to optimally evaluate 1 complete photon interaction per clock cycle. The

algorithm deviates from this optimal goal only in the event that all four of the parallel,
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rejection-technique modules used to probe the scattering distributions return a rejected
value. Inthis case, the interaction will be marked as incomplete and will be re-evaluated
in a subsequent clock cycle. No useful work isdonein aclock cycle where thereis a 4-

fold rgjection.

After a scattering event is completed and a scattering angle found,
transformations must be used to determine a Cartesian vector describing the new particle
direction. The familiar Cashwell and Everett method was used to determine a unit
vector representing the particle trajectory after scatter (Cashwell and Everett 1959). The
Cashwell and Everett method is shown in equations 15, 16, and 17:

(u-w-sin(9,) cos(Ay)—v-sin($)sin(Ay)) (15)
1-w?

u'=u-cos(9)+

(v-w-sin(4)cos(Ap) +u-sin(4)sin(Ay)) (16

2

v'=Vv-cos(¥) +
1-w

W' =w-cos(4 ) —sin(& ) cos(A y)vV1-w? (17)

where, Ay isauniformly distributed random number between 0 and 27 radians
representing the change in azimuthal angle, 9, isthe scattered angle obtained by probing
the scattering distributions and u,v,w is a unit vector representing particle direction.

The Cashwell and Everett equations can be implemented efficiently onboard a
Xilinx Virtex-11 series FPGA due to the large number of embedded multipliers and

blockram units available in the device. Implementation methods are similar to those

described before, combining polynomial-interpolated lookup tables with, in this case,
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several additional units of embedded multipliers to carry out the multiplicationsin

eguations 15-17.

A block schematic showing the entire algorithm operation is given in Figure 8.
The algorithm is capable of running on alarge Xilinx Virtex-11 FPGA with negligible
interaction from ahost PC. All random numbers are internally generated, and all Monte
Carlo transport operations are evaluated inside the FPGA. The design was heavily
pipelined to increase the maximum clock speed at which the FPGA can operate. Asa

general design rule, pipeline stages were placed after no more than a single 32-bit

fast carry adder, two 18x18 embedded multipliers or equivaent distributed logic—

ensuring a clock speed surpassing 100 MHz.
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CHAPTERYV

RESULTS

Testing Methods

Modern FPGA technology isjust now reaching a mature enough level so that
implementation and execution of an algorithm of the complexity described in the
preceding chapters are possible. Because of this, one of the largest FPGAs available on
the market will be required for the actual implementation and testing of these algorithms.
All of the hardware algorithms described previously were designed specificaly for the
Xilinx Virtex-11 Pro 100 FPGA, one of the largest FPGAs available on the market circa
2005. Unfortunately, the price of the Xilinx Virtex-11 Pro 100 FPGA istypicaly in the
$15,000 range when purchased in conjunction with a PCI interface board. Physical
access to this device was not available at the time of this thesis research; however, thisin
no way precludes us from obtaining both accurate and useful results.

To obtain useful and accurate results without actually using the physical Xilinx
Virtex-11 Pro 100 FPGA, atwo stage simulation has been performed. Both stages of the
simulation use synthesizable HDL code describing the Monte Carlo hardware transport
design asabasis for smulation. We briefly discussed Verilog and VHDL codesin
Chapter 11, however, what was not mentioned is that certain strict coding techniques
must be followed for an FPGA place and route software package to trandate the HDL
code into a programming file that can be used to physically program the FPGA. When

the HDL iswritten in such away, we call aparticular HDL code “ synthesizable’.



With synthesizable HDL code describing the design, the function of the codeis
verified using an HDL compiler/simulator. We used Modelsm XE Il v 5.7 G to
simulate the HDL code at the gate level, clock cycle by clock cycle, to obtain the exact
design output that would be obtained from an FPGA programmed using the HDL code
and run for the same number of clock cycles. Thislevel of simulationisfairly slow
since the computer simulates the response of each gate in the design (of which there are
millions) to changing inputs. The simulation of our Monte Carlo HDL code using
Modelsim XE took approximately 4 weeks to complete 10,000 photon particle histories.
However, the information obtained by this ssmulation was invaluable. From the
Modelsim simulation we were able to obtain the exact tally data for each tally (used for
design verification), as well as the exact number of clock cycles necessary to complete
the 10,000 photon histories. It isimportant to note that this processis not necessary if a
physical deviceisin hand. Modelsim will still be used to debug the hardware, but this
process will not be time consuming since a many particle simulation will not be
performed.

The second portion of the simulation also utilized the synthesizable HDL code as
abasis. The Xilinx ISE Foundation 6.2.02i software package was used to synthesize and
implement the HDL design to alevel such that a programming file was generated which
can be used to physically program the Xilinx Virtex-11 Pro 100 FPGA. The Xilinx ISE
software breaks up the HDL code and uses sophisticated logic reduction algorithms to
optimize the design as much as possible (the synthesis stage). After synthesis, the ISE

software uses libraries detailing the exact structure of the Virtex-11 Pro 100 FPGA to
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optimally place different design components on the FPGA as well asto optimally route
signals between interacting components on the FPGA. Place and route is performed by
sophisticated algorithms which minimize the FPGA resources that the design consumes,
as well as maximize the clock speed of the design (shorter routing distances between
components translates to a higher overall clock speed). The place and route process
returns an exact FPGA utilization report describing the consumption of different types of
FPGA components when the device is programmed. |n addition, the place and route
process also returns atiming report, providing a conservative clock speed estimate at
which the design can run when programmed on the Virtex-11 Pro 100 FPGA. Part of the
libraries built into the I SE software describing the structure of the Virtex-11 Pro 100
FPGA include timing data for each part of the devicesinternal components. Using these
data, and summing timing delays along components between pipelining stages, the ISE
software determines an accurate clock speed estimation. A flowchart describing the
simulation methods originating from the synthesizable HDL code is shown in Figure 9.
Once the FPGA clock speed and exact number of clock cycles required to
compute 10,000 particle histories is determined, the theoretical throughput of the design

when implemented on a Virtex-11 Pro 100 FPGA can be found using:

(18)

Throughput { Particle HIStOI’IeS} _

Second
Clock Speed (Hz)
(Average Number of Clock Cycles Per ° )]
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When a specific FPGA is not available, speed benchmarking methods similar to those
described above are used widely in published works by researchersin the field of
reconfigurable computing, and are considered to be acceptable forms of testing.
Examples of some published articles which use similar methodologies to speed
benchmark their algorithms on FPGAs are Jarvinen et al. 2003 and Shackleford et al.

2002.

Monte Carlo Results

Using the Xilinx |SE Foundation 6.2.02i software package, the synthesizable
hardware designs created for this research were analyzed. The software package returns
FPGA usage data, timing analysis and a bit-stream FPGA programming file. A
summary of the Virtex-11 Pro 100 FPGA utilization and timing data can be found in
Table 1. InFigure 10, avisua representation of the FPGA programmed with our Monte
Carlo hardware design is shown, where the blue regions represent used portions of the
FPGA. As can seen by the data presented in Table 1, roughly 20% of the general logic
portion of the device (LUTS) isused in thisimplementation. The device has plenty of
room to implement a more complex Monte Carlo simulation. On the other hand, if we
wish to utilize the entire processing power of this FPGA to evaluate this particul ar
simulation, three independent implementations can be programmed to run in parallel on
the device. Inthiscase, the overall clock speed was reduced from 136.7 MHz to 111.5
Mhz dueto less optimal signal routing incurred by the utilization of a more significant

amount of the programmable logic within the FPGA.
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Table 1. The resources consumed on the Xilinx Virtex-11 Pro 100 FPGA by the Monte
Carlo radiation transport hardware design.

Used Available Percent Utilization
Number of Slices 11,944 44,096 27 %
Number of Slice 12,648 88,192 14 %
Flip-Flops
Number of 4-Input 17,747 88,192 20 %
LUTS
Number of 79 444 17 %
Embedded Block-
Rams
Number of 117 444 26 %
Embedded 18x18
Multipliers
Estimated Clock 136.733 MHz N/A N/A

Speed
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Using the Modelssm XE 1 5.7 g HDL compiler, a simulation of the hardware
design was also performed. The flux tallies that we obtained from Modelsim XE were
compared with the flux results generated using MCNP-5 (X-5 Monte Carlo Team,
2003). MCNP-5 was used as a comparison to our hardware method for two reasons.
First, we used MCNP as aresult comparison to ensure our methods are on target, and
there are no significant bugsin our hardware design. More importantly, however, we
obtained a speed comparison from MCNP-5. To closely compare to our hardware
design, MCNP was programmed to ignore Bremsstrahlung radiation and all secondary
electrons. However, MCNP did simulate 1% fluorescence x-rays, which we did not. This
accounted for a 3.5 percent increase in the number of photons MCNP tracked that our
hardware design did not track. Repercussions to be aware of are that MCNP reported
dlightly higher flux tallies and performed about 3.5 percent more computational work
than our hardware design. Flux comparisons are shown in Table 2 for 10,000 histories.
The flux tallies reported by our FPGA hardware design are very close to those reported
by MCNP. The fluxes reported by MCNP were slightly higher in regions where
photoel ectric and Compton interactions (and thus fluorescence yield) were highest, but
this was expected.

Simulation of 10,000 histories using Modelsim XE |1 5.7 g running the hardware
design revealed that the evaluation of 10,000 histories corresponded to 76,231 photon
interactions—which agrees amost exactly with MCNP-5. The number of clock cycles
required to evaluate 76,231 photon interactions was reported to be exactly 129,541. This

deviation from our 1 clock cycle per photon interaction ideal work rate was caused by an
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Table2. Theflux talliesfor MCNP-5 versus the flux tallies reported by the FPGA

hardware design.

Tally Distance® MCNP-5 FPGA % Difference % Standard Error
2cm 11,717 11,625 0.785 0.924
3cm 11,680 11,521 1.361 0.925
4cm 11,168 10,962 1.844 0.946
5cm 10,388 10,133 2.455 0.981
6cm 9,488 9,145 3.615 1.026
7cm 8,412 8,122 3.447 1.090
8cm 7,326 7,140 2.539 1.168
9cm 6,160 6,083 1.250 1274
10 cm 5,183 5128 1.061 1.389

& Although tallies were performed at 15, 20, and 25 cm, the standard error resulting from
running only 10,000 histories at those distances becomes high enough that the results are
not reliable. Both the FPGA-based simulation and MCNP-5 suffer from this issue.
Therefore, these flux tallies are not presented in thistable.
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efficiency decrease due to the use of the rejection technique to probe the differential
scattering distributions. Using equation 18, we find that the theoretical work rate of the
Xilinx Virtex-11 Pro 100 FPGA is 633.15 million complete photon histories per minute
when programmed with our Monte Carlo particle transport hardware designs. Thisisthe
work rate for only one instance of the design (where the FPGA is approximately 20%
utilized) and running at 136.7 MHz. Utilization of the entire FPGA by running three
transport smulationsin parallel produced a higher work rate. At 111.5 MHz, three
independently running transport simulations produced a theoretical work rate of 1.55

billion complete photon histories per minute on the Xilinx Virtex-11 Pro 100 FPGA.

For speed comparison purposes, MCNP-5 was run on amodern 3.2 GHz Intel
Pentium-1V desktop computer. MCNP-5 was run under the Microsoft Windows XP
operating system with no other active processes running on the PC. MCNP-5 performed
the same simulation, ignoring secondary electrons and Bremsstrahlung radiation. As
was previoudly stated, the only difference in the simulation that MCNP-5 performed was
that it simulated 1% fluorescence x rays which accounted for 3.5 % additional photon
histories. Including the fluorescence x rays, MCNP-5 can compute this simulation at a
work rate of 2.3704 million source particles per minute. Multiplying by 3.5% additional
photons per source particle, we estimate that MCNP-5 running on a 3.2 GHz Pentium-4

PC can track about 2.4534 million complete photon histories per minute.

Comparing the two work rates, it seemsthat asingle Xilinx Virtex-11 Pro FPGA
is more than 650 times faster than a 3.2 GHz Intel Pentium-1V desktop PC running

MCNP-5 at evaluating this particular radiation transport problem.
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CHAPTER VI

CONCLUSIONS

Thisthesis research has accomplished its key goals. First, anew method for
Monte Carlo radiation transport has been developed and exercised on a simple transport
problem. We have shown that the radiation transport problem described in thisthesis
can be evaluated in excess of 650 times faster on alarge FPGA than it can be evaluated
on a 3.2 GHz Pentium-1V desktop PC running MCNP-5. Thisis a substantial
acceleration factor which we believe can be preserved when the techniques discussed in
thisthesis are expanded to evaluate more complex Monte Carlo ssimulations.

Thisisjust afirst step for FPGA and hardware based Monte Carlo radiation
transport. The research in this thesis has shown the incredible potential of the
application of FPGAsto Monte Carlo radiation transport problems, opening the door to
further research in any of the unbounded number of applications that these techniques

may have for accel erating radiation transport computations.



CHAPTER VII

FUTURE WORK

Plans to continue this work are well underway. Development will be done to
support FPGA based coupled photon-electron Monte Carlo transport as well as possible
extensions to include neutron transport. As these development steps are completed,
published comparisons will be performed between commercial Monte Carlo transport
codes and our methods to characterize the speed increase achieved. In addition, we
have plans to support complex voxel geometries to accurately model biological organs
and tissues. Combining the support of voxel geometry representation with ultra-high
speed coupled photon-electron transport will be important for the evaluation of internal
and external dosimetry calculations for both health physics and medical physics

applications.
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