
USING BLOCKS TO CONSTRUCT 3D SHAPES AND CREATE

TRANSFORMATION ANIMATIONS

A Thesis

by

LU LIU

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2006

Major Subject: Visualization Sciences

USING BLOCKS TO CONSTRUCT 3D SHAPES AND CREATE

TRANSFORMATION ANIMATIONS

A Thesis

by

LU LIU

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Frederic I. Parke

Committee Members, Mary Saslow

John Keyser

Head of Department, Mark Clayton

December 2006

Major Subject: Visualization Sciences

iii

ABSTRACT

Using Blocks to Construct 3D Shapes and

Create Transformation Animations. (December 2006)

Lu Liu, B.Arch., Tsinghua University

Chair of Advisory Committee: Dr. Frederic I. Parke

The objective of this research is to develop methods by which we can use blocks to

approximate the shapes of 3D objects and to generate shape transformation animations.

Two graphic tools are developed. One assists the animator in constructing 3D shapes

with bricks of different sizes and matching up the different shapes. The other tool helps

the animator generate a transformation animation of those bricks. Using polygon shape

data, these tools can procedurally place the bricks and control their animation. Several

different methods for animation are introduced. Those methods provide different ways to

generate animation paths of the blocks. The no path animation and the straight path

animation are easy for the animator to create and the animation time is easily controlled.

The flocking animation will provide more interesting effect.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Prof. Frederic I. Parke, for his time, patience,

guidance and enthusiasm in both my study and thesis writing. I would also like to thank

Mary Saslow and John Keyser who served on my committee for being prompt and

supportive.

I would like to thank Tatsuya Nakamura and Josh Rowe for generously sharing

ideas with me.

An important thank you also goes out to my parents for blessing and supporting me

with their love.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION ………………………………………………………… 1

I.1. Motivations ……………………………………………………… 1

I.2. Objectives ………………………………………………………... 2

II PREVIOUS WORK ……………………………………………………… 3

II.1. Volume Metamorphosis …………………………………………. 3

II.2. Previous Studies about 2D Block Placement ……………………. 3

II.3. Flock Animation ……………………………………...…………. 4

III METHODOLOGY ……………………………………………………….. 6

III.1. Matching Shapes ……………………………………………. 6

III.1.1. Volume Creation ……………………………………… 6

III.1.2. Dividing the Shape into Two Parts ...………….……… 8

III.1.3. Converting the Voxels into Bricks ……….………… 9

III.1.4. Matching …………………………………………...... 11

III.2. Finding Animation Paths ……………………………………… 14

III.2.1. Animation without Paths ……………………………. 14

III.2.2. Animation with Straight Paths ………………………. 14

III.2.3. Applying Flock Animation to Bricks ……………...... 15

III.2.4. Assigning Another Position as

an Intermediate Aiming Target ……………………… 21

vi

CHAPTER Page

III.3. Exporting the Animation Paths to MAYA ………….………. 24

IV IMPLEMENTATION AND RESULTS ………………………………... 25

IV.1. Implementation ………………………………………………... 25

IV.1.1 Tips for Modeling in MAYA ………………………... 25

IV.1.2 The Program for Matching …………………………... 25

IV.1.3 The Program for Animation Paths Solving ………….. 27

IV.2. Results ………………………………………………………… 28

V EVALUATION, CONCLUSIONS AND FUTURE WORK ….……….. 31

V.1. Evaluation ……………………………………………………… 31

V.2. Future Work ……………………………………………………. 32

REFERENCES ……………………………………………………………………… 34

APPENDIX A ….…………………………………………………………………… 36

VITA ………………………………………………………………………………… 37

vii

LIST OF FIGURES

FIGURE Page

1 The transformation of a school of fish .…………………………………. 5

2 The pipeline of my methodology …………………………...................... 6

3 How to judge whether a voxel is inside the shape or not ………….......... 7

4 Dividing each shape into two corresponding groups ………………...…. 8

5 Scaling the shapes to get enough voxels inside …………………............ 9

6 Filling the bricks into each layer of two volumes ………………...…… 10

7 Converting the voxels in the surface part of the cubical shape and

the inside part of the spherical shape into bricks ………………………. 11

8 Matching the bricks in two shapes ………………………………...…... 13

9 Collision avoidance ……………………………………………………. 16

10 Target aiming ……..…………………………………………...………. 16

11 Activating a group of bricks ……….…………..………………...……. 19

12 Brick P in deactivation region …………………………………………. 20

13 Method for deactivating the brick ………………………………...…… 21

14 Picking the intermediate aiming position from

the surface of a hemisphere ……………………………………………. 22

15 Picking the intermediate aiming position from

the surface of a sphere …………………………………………………. 23

16 Two polygonal models created in MAYA …………………………….. 26

17 Polygon models are imported into the program and voxelized ……...... 26

viii

FIGURE Page

18 One frame in the animation paths solving process ………..…….…….. 27

19 A cube transforms into a sphere using the flocking approach. …….... 28

20 A cube transforms into a sphere by

using spherical intermediate positions ……………………………….... 29

1

CHAPTER I

INTRODUCTION

Building blocks are a popular toy around the world. As a kind of building block toy,

LEGOs[1] are designed to make or to approximate almost any shape.

During the past decade, building blocks have also become a theme in some

computer graphic developments. Some 3D block animations have been created [2].

Computer aided design software for block based structures has been developed by the

LEGO company [3]. Using this software, a user can conveniently choose from a variety

of LEGO pieces to create a desired shape. In this study, we present a practical method to

build three-dimensional shapes using blocks or bricks of different sizes and to create

visually interesting animations of the bricks transforming from one shape to another

shape.

I.1. Motivations

The motivation for generating these animations is to help people understand how these

two shapes are built up from the same group of bricks; and to create interesting visual

effects. These methods are also motivated by Lerios’s thesis, Feature-based volume

metamorphosis [4] and crowd animation effects in PIXAR Animation Studio’s movie

Finding Nemo [5]. These methods can easily be used by animators who have an artistic

background and have basic skills using MAYA. These methods are affordable for low

The journal model is IEEE Transactions on Visualization and Computer Graphics.

2

budget animation projects that require these kinds of block animation effects

I.2. Objectives

The first objective of this work is three-dimensional shape approximation with blocks. A

C++ program is developed that will load in two polygonal 3D geometry files and

approximate these polygon shapes with groups of bricks. Then the program matches up

corresponding bricks in each group one by one; assigning IDs to each brick. When

finished matching, the program exports data for all the bricks of each group into an

output data file. This file includes the size of each brick and its position in each shape.

The second objective is to generate transforming animation. A program is created

to load in the data file from the shape filling program and check if the data is matched. If

it is, the program calculates an animation path for each brick; moving each brick from its

location in the first shape to its position in the second shape. Then the program exports

the animation paths in a format usable in Maya. An animator can then create the final

animations using the powerful shading and lighting tools in MAYA.

3

CHAPTER II

PREVIOUS WORK

This chapter reviews previous work on topics related to this study. Previous research on

volume metamorphosis and 2D block placement is briefly discussed as preparation for

solving the matching problem. This is followed by a discussion of the flock animation

technique, which will be applied to solve for animation paths.

II.1. Volume Metamorphosis

Feature-based 3D volume metamorphosis [4] applies to changing volume-based

representations of objects. It is an extension of Beier and Neely’s 2D image warping [6]

technique into 3D space. The first step is to divide the source and target volumes into

several parts. By manually using points, segments, rectangles and boxes as elements, the

user builds corresponding element pairs in each volume. The second step is to transform

these elements in the source volume, by moving, turning and stretching them to match

respectively the position, orientation and size of the corresponding elements in the target

volume.

II.2. Previous Studies about 2D Block Placement

Miyata developed a method for generating realistic 2D Texture maps for a stone wall [7].

His method places random sized rectangle stones, working from the bottom of the image

to the top of the image. It then fills in small stones for the remaining vacant spaces. This

4

is a simple and efficient way to place the biggest blocks first and place smaller blocks

for the remaining spaces in a desired 2D shape.

J. Legakis, J. Dorsey and S. Gortler developed a pattern generator that gives a

solution for applying texture onto 3D objects [8]. This strategy generates a grid on the

object’s surface and then fills rectangular bricks with different sizes into the grid. This is

very similar to the method we use to fill bricks into a volume as discussed later.

II.3. Flock Animation

The aggregate motion of a simulated flock is created by a distributed behavioral model;

much like a natural flock. Each flock member chooses its own course. Each simulated

member is implemented using physics that controls its motion, and a set of behavior

rules that can be specified by the user. The aggregate motion of the simulated flock is

the result of the interaction of the relatively simple behaviors of the individual simulated

objects. Flock simulation can be applied to particle systems. Some advanced flock

systems have been developed to simulate realistic virtual crowds [9][10].

A good example of flock animation for shape transformation is in the PIXAR

movie Finding Nemo [5]. In this movie, a school of fish was successfully simulated to

form the shapes of several different geometries. Figure 1 shows the school of fish

transforming from the shape of a swordfish into the shape of a lobster.

5

Fig. 1. The transformation of a school of fish.

Images by PIXAR Animation Studios.

6

CHAPTER III

METHODOLOGY

Figure 2 shows the pipeline of my methodology. I use both MAYA and two programs I

developed to get the animation results.

Fig. 2. The pipeline of my methodology.

III.1. Matching Shapes

This section discusses the approaches used to create block approximations to

three-dimensional shapes and how the blocks of two shapes are matched. The block

matching is necessary to enable the desired transforming animations.

III.1.1. Volume Creation

To create the required volume data to approximate the desired shapes, a program is

created to convert the geometric surface shape model into a voxelized model. The first

7

step in the voxelization is to import a specified polygonal surface geometry. The .obj file

format is used because it is widely supported by most popular 3D software packages.

The imported geometry must be the closed polygonal surface for the desired volume.

After loading the shape data, a 3D grid will be applied to the shape. As shown in

Figure 2, the program will send two virtual rays, one up and one down, from each

position in the 3D grid. We pick four voxels (A,B,C,D) in the figure 3 as examples. If

both rays intersect the geometry’s surface an even number of times (as for voxel B and

D, the two numbers in the bracket are the number of times each ray intersects the

surface), this position in the grid must be outside the geometry. If both rays intersect an

odd number of times (as for voxel A and C), the position is inside. If one intersects an

even number of times and the other intersects an odd number of times, the geometry is

not a closed shape. In this case, we need to fix the polygonal model.

Fig. 3. How to judge whether a voxel is inside the shape or not.

8

III.1.2. Dividing the Shape into Two Parts

To transform source volume S to target volume T, requires determining a

correspondence between the two shapes. Since each shape is formed with different

arrangements of bricks, the program must match the bricks of each specific size in the

two shapes.

First, we need to match the voxels. In most cases, the number of voxels in S and T

are not the same. My solution is to divide the voxelized volumes S and T into surface

voxel groups Ss and Ts and interior voxel groups Si and Ti (Figure 4). Assuming a

closed shape, we can potentially see all surface voxels, but we can’t see the interior

voxels. It will be reasonable for the surface groups to have priority in the matching

process.

Fig. 4. Dividing each shape into two corresponding groups.

A good solution is to adjust one shape’s inside group to match the other shapes

surface group. In those cases where we can’t match up the entire set of bricks, we can

still finish the most important task; to provide completely matched surface groups Ss and

Ts.

9

To achieve this goal, we need to ensure that the inside group of one shape contains

no fewer voxels than the outside group of the other shape. If this is not the case, we can

simply uniformly scale the shape geometries to enlarge their volumes relative to the 3D

voxel grid. The number of voxels inside the shapes will increase cubically while the

number of surface voxels will increase by the second power. We can easily find a good

scale factor to make the number of inside voxels in each shape larger than the number of

surface voxels in the other shape (Figure 5).

Fig. 5. Scaling the shapes to get enough voxels inside.

III.1.3. Converting the Voxels into Bricks

The bricks we are using to approximate the shape can have different sizes. For this

project, the length and width combinations will be defined by the animator, the height of

the bricks is fixed to one unit.

The problem of filling the bricks into the modeled shape becomes the problem of

packing each layer of the voxelized model with several different size elements (Figure 6).

One plausible way in packing is to use bricks as big as possible because it generates

groups with fewer bricks. Since there may still be vacant spaces left after we place as

10

many big blocks as possible, unit size blocks should be used to fill in these spaces.

Fig. 6. Filling the bricks into each layer of two volumes.

My method is to define an array Bsize which will store the different sizes. In this

array, the biggest size will be saved in the first position and the unit size (1*1) will be

saved in the last position. If two sizes have the same number of voxels, we can put either

one of them earlier in Bsize. While converting, the program will randomly pick a voxel

in the surface part of the layer and check if it can fill this position with the first size

stored in Bsize. If any part of the brick is out of the boundary of surface part or intersects

with other existing bricks, the program will then use the next size in Bsize, until it finds a

proper size. The program will keep filling bricks in another randomly picked position

until there is no vacant space left in the surface part of this layer. The same method and

size array will be used to covert the surface and inside parts into bricks in every layer, in

each volume. In Figure 7, I choose two shapes and use one layer in each shape as an

example (Figure 7.a). Then I use bricks with sizes of 1*3, 3*1, 1*2, 2*1 and 1*1 to fill

in the surface part of cubical shape and the inside part of spherical shape (Figure 7.b).

11

Fig. 7. Converting the voxels in the surface part of the cubical shape and the inside part

of the spherical shape into bricks.

III.1.4. Matching

We then want to fill the volumes with groups of different size bricks. For example, the

animator defines n different sizes. For each group of bricks of the same size in surface

group Ss, we label them as Ss1, Ss2 … Ssn. Also, we can use Si1, Si2 ... Sin for labeling

the inside group Si. It is the same case for volume T. After we subdivide the volume

elements into these secondary groups, we need to match them up, in each shape, one by

one. Ss1 needs to match with Ti1, Ss2 needs to match with Ti2 and so on.

To match the numbers of each size of bricks, a good way is to match the number of

the biggest size bricks first. If the numbers of the biggest size bricks do not match, extra

big bricks can be divided into smaller bricks. On the other hand, two smaller bricks may

not be combined into a bigger brick if they don’t have the proper size and position. Then

we will match the numbers of the second to biggest bricks, down to the smallest size

bricks (Figure 8.a to Figure 8.h).

While matching the bricks with the same size, the positions of bricks in each shape

12

will also be considered. Based on the animation rules discussed in a later chapter, the

bricks in the top layer of the source volume will animate first. It will also be good for the

bricks in the bottom layers of the target volume to finish their animation as early as

possible. For this objective, my method will order the bricks with the same size from the

top layer to the bottom layer for each volume. Then it will match the first brick in the

array of the source volume to the last one in the array of the target volume, then the

second to the second to last, until bricks in one array or both arrays are all matched.

Finally we may have some smallest size bricks remaining. As we previously

discussed, these should be unit size bricks. Since the number of voxels of each inside

group is larger than the number of the surface group of the other shape, there are some

extra unit size bricks inside both shapes. The simplest method is to delete them, which

will create some holes in both volumes. A better solution will be to match those bricks

from the top of the source volume to the bottom of the target volume, as many as

possible. Then the program deletes those brick which can’t correspond in the other shape

in the final step (Figure 8.i and Figure 8.j).

13

Fig. 8. Matching the bricks in two shapes.

14

III.2. Finding Animation Paths

The motivation for the generated animations is to help people understand how these two

shapes are built up from the same group of bricks and to create interesting visual effects.

III.2.1. Animation without Paths

The simplest method for generating animation is to move each brick directly from its

position in one shape (initial position) to its position in the other shape (end position) in

one frame time. The sequence of the bricks to be animated is determined by their

positions in the source shape. Generally, the bricks will be animated from the top layer

to the bottom layer in the source shape. In order to avoid all bricks in the same layer

moving at the same frame, the frames for them to be animated are randomly picked in a

certain range. For example, the time for bricks in the top layer to be animated will be

picked from frame 0 to frame 10, the frame range for the bricks in the second to top

layer will be frame 5 to frame 15, then next layer will be frame 10 to 20… This effect

looks similar to traditional stop motion animation. It is not necessary to generate

animation paths for the bricks.

This kind of animation will work well in some cases that have a small number of

bricks. But, it won’t let people realize the bricks in both shapes are matched, one by one,

if there are several bricks moving at the same time.

III.2.2. Animation with Straight Paths

Another approach is to create an animation path for each brick. Given the initial position

15

and end position of each brick, there will be many possible paths for the movement. The

simplest way is to make a straight path between each position pair. This solution allows

good control of animation time. Each brick moves along its straight path in a number of

frames. Shortcomings are that there may be collisions between bricks and that the

resulting visual effects may not be interesting.

III.2.3. Applying Flock Animation to Bricks

A more interesting solution for animation is to apply flock simulation to the bricks. This

approach adds behavior rules to the bricks, such as the collision avoidance behavior

described by Reynolds [11]. The set of behavior rules used will determine each brick’s

acceleration value at each simulation time step.

The set of rules used is:

1. Activation: A brick will not be activated until the bricks above it in the source

shape are activated.

2. Collision Avoidance: avoid collisions with nearby bricks. As shown in Figure 9,

if the distance h between two bricks P1 and P2 is less that a preset value, those

two bricks will accelerate away from each other. In the preset range, the

magnitude of the acceleration is an inverse function to h.

16

Fig. 9. Collision avoidance.

3. Target Aiming: Attempt to get to the goal position assigned by the matching

algorithm by accelerating toward it (Figure 10). The smaller the distance to the

target h is, the smaller the acceleration toward the target will be. In my

implementation, it’s a direct ratio. When the brick reaches the target position, the

acceleration will be zero.

Fig. 10. Target aiming.

4. Deactivation: When a brick is within to a certain distance of its final position and

the bricks under it are all deactivated, it will decelerate toward that position and

be less affected by other bricks. This deceleration will reduce the brick’s velocity

based on how close it will be to the goal position at the next simulation time step.

17

The velocity of each brick will be zero when it reaches its final position.

There are some details on how to activate and how to deactivate a brick. To

deconstruct a model of stacked bricks, usually people will take the bricks from the top to

the bottom. That is the basic idea we use to activate bricks. This will avoid moving the

bricks inside the shape too early; avoiding intersection with unactivated bricks above it.

The simplest solution is to activate all bricks in each layer at the same time. The

bricks in the top layer will be activated first, then the bricks in the next layer in the next

frame time. Two shortcomings of this method are obvious. First, the motions of bricks in

each layer are unified when they are activated. The animation effect is a lack of

randomness that will make the animation uninteresting. The second shortcoming will be

noticed if the shape doesn’t have many layers, for example, if the shape has 10 layers.

The bricks in top layer will be activated at the first fame time. The bricks in bottom layer

will start their movement at the tenth frame. Standard video has 30 frames per second.

The time difference of 10 frames will be 1/3 second. This is a very small amount of time

for people to perceive. The resulting animation looks as though all bricks are activated at

the same time.

18

A better solution is to use a randomness factor for the time to activate each brick

while making sure the brick will not be activated if there are unactivated bricks above it.

While running, the path generating program will check each unactivated brick to

see if all bricks above it are activated. If so, this brick is ready to be activated. The

program will randomly choose several bricks from these ready bricks and initialize their

motions to activate them. The remaining bricks will still be unactivated and wait to be

chosen at later frame times. Figure 11 shows an example of activating a group bricks.

The yellow means the brick could be activated, the red means the brick is selected by the

program and will be activated in the next frame.

To deactivate a brick, the program must drive the brick to reach its final position

and make its velocity and acceleration be zero at that time.

As shown in Figure 12, if the distance, h, from the brick’s current position, P, to its

final position, A, is smaller than a certain value r, the program will divide the velocity, V,

of the brick into two parts. One part, V1, is aimed toward the final target. The other part,

V2, is perpendicular to V1. Also, bricks within distance r of their final position will not

be affected by other bricks.

19

Fig. 11. Activating a group of bricks.

20

Fig. 12. Brick P in deactivation region.

As shown in figure 13, to deactivate the brick in position P, the program will

generate acceleration in both directions V1 and V2. For the V2 direction, the acceleration

will be n2*V2, where n2 is a negative real number set by the animator. This means the

brick will get an acceleration opposite to the V2 direction. The larger V2, the larger the

deceleration the brick gets. The acceleration in the V1 direction will be n1*V1 + Aaim.

n1 is also a user set negative real number. Aaim is the aiming acceleration. The smaller h,

the smaller Aaim will be, as we described above. By choosing proper values for n1 and

n2, the brick will decelerate while moving toward the target. In each next simulation

frame time, the brick moves to a new position P’ and gets a new position with a new

velocity. When h is less than a small threshold value, which means the brick is very

close to the target point A, the program will just set the position of the brick to A and set

21

the velocity and acceleration to be zero. The brick is deactivated after this frame.

Fig. 13. Method for deactivating the brick.

III.2.4. Assigning Another Position as an Intermediate Aiming Target

Another plausible solution is to procedurally compute an “intermediate aiming target”

for each brick in the simulation. The activated brick will check to see if the bricks under

it in the target shape are all deactivated. If not, it will aim for its intermediate aiming

target and move toward it. When the bricks under it in the target shape are all

deactivated, it will switch its aiming target back to its position in the target shape. Then

the brick will move toward its final position and get deactivated when it arrives there.

The intermediate position could be randomly generated or generated using certain

rules. Different ways for choosing these positions will create different visual effects.

Several possible ways could be:

A. Picking positions on a hemisphere surface. This hemisphere is above the

two shapes and will cover them like the sky. This is a good choice if the

22

animator wants to create animation with the first shape deconstructed from

the top layer down and the second shape to be constructed from the bottom

layer up.

To choose the intermediate positions from the surface of a hemisphere,

my method will first create a line between the initial position, P1, and the

end position, P2. Then a ray from the center of the hemisphere, C, to the

mid point of the line is created. This ray will intersect the surface of the

hemisphere. This intersection point, p, will be used as the intermediate

aiming target point (Figure 14).

Fig. 14. Picking the intermediate aiming position from the surface of a

hemisphere.

B. Picking positions on a spherical surface large enough to include both shapes

inside. In this case, the bricks will pop out from the first shape and then

converge to the second shape. The movement of the bricks will look similar to

23

the movement of the school of fish in the film Finding Nemo [5] (Figure 1).

The better sequence to activate the bricks in this case will be to activate the

bricks from the outside to the inside (Figure 15). The intermediate positions

will be determined by a method similar to the one we used for picking from

hemisphere.

Fig. 15. Picking the intermediate aiming position from the surface of a sphere.

C. Other ways to pick intermediate positions include, for example, picking

positions on a plane or picking positions along a 3D curve. In addition to using

a single geometry or curve, it is also possible to pick positions inside the

volume of some implicit surface.

By assigning intermediate targets to each brick, even if two shapes are very close

together or overlap each other, the bricks will still find a position to move toward and

wait for the proper time to move to their final positions.

24

III.3. Exporting the Animation Paths to MAYA

The computed animation paths will be exported into MAYA. During the path simulation,

the program will generate one text file for every frame. These files record the IDs and

positions of each brick in each frame. The file generated at the first frame includes brick

size information.

A MEL script loads in the data from these files, generates the display geometry for

bricks with the sizes recorded in the first file, and moves the bricks to their positions in

each frame.

The matching program doesn’t consider brick color. All bricks created in MAYA

are assigned a default shader. The animator can assign the different colors he want to the

bricks. It could be one color or several colors for the bricks in each surface. Using

MAYA’s lighting and rendering tools, the final high quality brick shape transformation

animation can be rendered.

25

CHAPTER IV

IMPLEMENTATION AND RESULTS

IV.1. Implementation

This chapter discusses the implementation of the ideas and concepts presented in the

previous chapter. It also discusses the results achieved. The chapter begins with some

tips for creating the object models to be used with these techniques.

IV.1.1. Tips for Modeling in MAYA

It’s not necessary and perhaps not wise to create very detailed models. The details which

are smaller than one voxel will be ignored after voxelizing.

For shape transformation animation, I would recommend avoiding thin flat shapes

such as flags or pieces of paper. If the thickness of the shape is smaller than one unit, it

won’t even generate voxels. A good shape for transformation should have some interior

volume. The reason for this has been described in Section III.1.3 .

The positions of the two shapes in space will affect our choice of animation effects.

If we want to use effects without choosing intermediate positions for bricks, we should

keep the two shapes some distance apart, or at least avoid overlapping them in space.

IV.1.2. The Program for Matching

The program for brick matching is written in C++. Each brick is represented as a data

node with ID, size and position attributes.

26

To help the animator check progress, the program generates a screen window to

show the result of voxelizing imported polygonal surface models. Figure 16 shows two

example models built in MAYA. Figure 17 shows the window created by the matching

program.

Fig. 16. Two polygonal models created in MAYA.

Fig. 17. Polygon models are imported into the program and voxelized.

27

This view can be interactively controlled by the mouse. The right mouse button

controls camera zoom. The left mouse button controls the rotation of the camera. This is

similar to the default viewing controls in MAYA.

IV.1.3. The Program for Animation Paths Solving

The animation paths solving program is also written in C++. Each brick is a node in this

program. The program uses these nodes to build the flocking system to simulate the

motion paths. The program will load in a parameter file created by the animator. The

values set in this file will control the effect of output animation.

In most cases, the number of blocks will be quite large. The animator will want to

monitor the result of the simulation process. OpenGL is a good choice for supporting

this 3D display.

Figure 18 is an example screen image from the animation paths solving program.

Each small cube is one brick in the simulation. The viewing camera can be controlled by

the mouse.

Fig. 18. One frame in the animation paths solving process.

28

In this program, I defined a class for the brick. The class has two arrays to store the

IDs of the bricks stacked above it in the first shape and the bricks under it in the second

shape. While the simulation is running, the program checks the status of each brick in

the arrays to decide what this brick should do in each iteration.

IV.2. Results

Figure 19 shows several frames from the transformation between a brick model of a

white cube to a brick model of a blue sphere using the flocking approach. In this case,

intermediate positions were chosen from the surface of a hemisphere.

Fig. 19. A cube transforms into a sphere using the flocking approach.

29

Figure 20 shows another transformation from the cube to the sphere. In this case,

intermediate positions were chosen from the surface of a whole sphere. The sphere is

large enough to include both shapes inside. The visual effect here is very different from

the first transformation example.

Fig. 20. A cube transforms into a sphere by using spherical intermediate positions.

The first case took five minutes to build the two shapes in MAYA. The matching

program generated 988 blocks and matched them up in 15 seconds. The iterative process

for determining good animation paths parameters took about 20 minutes. In each

iteration the input parameters were adjusted to finally get animation paths that produced

the desired result. The times for the second case are similar to the first one but took less

30

time in finding good parameter values.

31

CHAPTER V

EVALUATION, CONCLUSIONS AND FUTURE WORK

V.1. Evaluation

The original objectives have been met as the above results show. We have developed a

method that automatically builds specified 3D shapes using a group of bricks with

different sizes. The bricks in two shapes can be automatically matched up. By dividing

each volume into two parts, different surface colors can be specified for the two shapes.

After matching, several types of animation paths have been successfully procedurally

generated. The animation path results were imported into MAYA successfully and used

to create high quality shape transformation animations.

The animation effects produced are very interesting. In the flock simulation, each

brick moves with apparent intelligence and motivation as we expected. Several distinct

visual effects were created by choosing different animation path techniques. For

example, by choosing intermediate positions from a sphere (Figure 9), we can imitate

the crowd animation effect shown in the film Finding Nemo [5] (Figure 1).

A disadvantage of the flock simulation is that there is no direct control of animation

time. It might take a long time for all bricks to be deactivated. The values of

accelerations for the bricks, the threshold range for the bricks to be deactivated and the

deceleration factors while deactivating will affect the movements and time for the bricks

to stop their motion. It requires the animator to have some experience and patience to

adjust the parameters to get the desired results.

32

The efficiency of this method is good. The entire time for an experienced animator

to generate a piece of transform animation, including modeling, matching, path solving

and importing into MAYA, can be less than 30 minutes.

There are some limitations in my method. The animator must try to avoid using

some thin or slim shapes, like a piece of paper, or a slim stick. Those shapes might not

get good result after voxeliztion. Also to divide the shape into two parts and get enough

voxels inside, might require scaling them to a very big size which will make the

simulation very slow.

The flocking system will generate accelerations to avoid collisions in the animation.

However there might still be some collisions if some bricks have extremely high speed

or several collision avoiding accelerations counteract each other. To avoid this case and

keep smooth animation paths, requires a more complex flocking system.

I developed a new method to solve the matching problem. I also developed my own

flocking system which has some special functions to meet special requirements. As part

of this thesis work, I learned the theories about the packing problem and the flock

simulation.

V.2. Future Work

We see the potential for future work improving on several aspects of this study. These

include:

1. More animation effects choices should be available for the animator. We have

developed several ways to compute animation paths, but obviously not all

33

possible ways. Every animator may have their own idea about how to control the

animation. Further study might provide more interesting and exciting effects.

2. The user interface of the animation paths solving program should be more

convenient for the animator to us; interactively controlling the program rather

than editing a parameter file.

34

REFERENCES

[1] LEGO Group. LEGO. http://www.LEGO.com/

[2] Curious Pictures. Building Blocks - AT&T. Film shown at SIGGRAPH 2002

Animation Theater, 2002.

[3] LEGO Group. Ldraw. http://www.ldraw.org/

[4] A. Lerios, C. D. Garfinkle and M. Levoy. “Feature-based volume metamorphosis”.

Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques,

page 449 – 456, Sept. 1995.

[5] Disney/PIXAR Animation Studios. Finding Nemo (film). 2003.

[6] T. Beier, S. Neely. “Feature-based image metamorphosis”. Proc. 19th Annual

Conference on Computer Graphics and Interactive Techniques SIGGRAPH '92,

Volume 26 Issue 2, page 35-42, Jul. 1992.

[7] K. Miyata. “A method of generating stone wall patterns.” Proc. 17th Annual

Conference on Computer Graphics and Interactive Techniques SIGGRAPH '90,

Volume. 24 Issue 4, pp. 387-394, Sept. 1990.

[8] J. Legakis, J. Dorsey and S. Gortler. “Feature-based cellular texturing for

Architectural models”. Proc. 28th Annual Conference on Computer Graphics and

Interactive Techniques, pp 309-316, Aug. 2001.

[9] M. Anderson, E. McDaniel and S. Chenney. “Autonomous characters and flocking:

constrained animation of flocks”. Proc. 2003 ACM SIGGRAPH/Eurographics

35

Symposium on Computer Animation SCA '03, pp. 289-297, Jul. 2003.

[10] D. Thalmann, C. Hery, S. Lippman, H. Ono, S. Regelous and D. Sutton. “Crowd

and group animation”. SIGGRAPH 2004 Course Notes SIGGRAPH '04, Article No.

34, Aug. 2004.

[11] C. W. Reynolds. “Flocks, herds and schools: a distributed behavioral model”.

Proc. 14th Annual Conference on Computer Graphics and Interactive Techniques

SIGGRAPH '87, Volume 21 Issue 4, page 25–34, Aug. 1987.

36

APPENDIX A

VIDEO FILES

The attached Quicktime video files are examples of transformation animations using

different approaches

anim01.mov: animation without paths

anim02.mov: animation with straight paths

anim03.mov: animation by flocking simulation

anim04.mov: animation with hemispherical intermediate positions

anim05.mov: animation with spherical intermediate positions

37

VITA

Lu Liu

Address

401 Southwest PKWY Apt#516

College Station, Texas 77840

twols@viz.tamu.edu

Research Interests

3D Modeling and Animation Technology

Texture Painting

Developing Animation Tools Using Scripting Languages

Education

12/06 M.S. in Visualization Sciences Texas A&M University

07/01 Bachelor of Architecture Tsinghua University

Employment

01/06 - 07/06 PIXAR Animation Studios,CA Technical Director Intern

02/02 – 06/03 Crystal CG Co. ltd.Beijing, China Technical Director

