

DISTRIBUTED OPTIMIZATION UNDER PARTIAL INFORMATION USING

DIRECT INTERACTION: A METHODOLOGY AND APPLICATIONS

A Dissertation

by

SUN WOO KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DISTRIBUTED OPTIMIZATION UNDER PARTIAL INFORMATION USING

DIRECT INTERACTION: A METHODOLOGY AND APPLICATIONS

A Dissertation

by

SUN WOO KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, V. Jorge Leon
Committee Members, Cesar O. Malave
 Amarnath Banerjee
 Sheng-Jen Hsieh
Head of Department, Brett A. Peters

December 2005

Major Subject: Industrial Engineering

 iii

 ABSTRACT

Distributed Optimization Under Partial Information Using Direct Interaction: A

Methodology and Applications. (December 2005)

Sun Woo Kim, B.S., Yonsei University, Korea;

M.S., Yonsei University, Korea

Chair of Advisory Committee: Dr. V. Jorge Leon

This research proposes a methodology to solve distributed optimization problems

where quasi-autonomous decision entities directly interact with each other for partial

information sharing. In the distributed system we study the quasi-autonomy arising from

the assumption that each decision entity has complete and unique responsibility for a

subset of decision variables. However, when solving a decision problem locally,

consideration is given to how the local decisions affect overall system performance such

that close-to-optimal solutions are obtained among all participating decision entities.

Partial information sharing refers to the fact that no entity has the complete information

access needed to solve the optimization problem globally. This condition hinders the

direct application of traditional optimization solution methods. In this research, it is

further assumed that direct interaction among the decision entities is allowed. This

compensates for the lack of complete information access with the interactive exchange

of non-private information. The methodology is tested in different application contexts:

manufacturing capacity allocation, single machine scheduling, and jobshop scheduling.

The experimental results show that the proposed method generates close-to optimal

solutions in the tested problem settings.

 iv

 To my family

 v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. V. Jorge Leon who helped me whenever I was

in academic difficulty and encouraged me to complete the Ph. D work. He himself

showed me how I should behave as a professional researcher. I also appreciate Dr. Cesar

O. Malave, Dr. Amarnath Banerjee and Dr. Sheng-Jen Hsieh for serving as my

committee and giving valuable suggestions.

I sincerely thank my parents, Jong Yul Kim and Jae Soon Gou, my parents-in-law

Haeng Won Chung and Seo Jung Choi, and all other family in Korea, for their endless

support and encouragement.

Finally, I would like to dedicate all of my work to my wife So Young Chung, my son

June-Suh Kim, and my daughter Yea-Rin Kim. Without their love, faith and sacrifice, I

would never accomplish this work. They deserve all of mine and I love them forever.

 vi

 TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS..v

TABLE OF CONTENTS ..vi

LIST OF FIGURES...ix

LIST OF TABLES ...x

CHAPTER

I INTRODUCTION ...1

1. Overview of the research..1
2. Motivation ..1
3. Problem statement ..3
4. Research issues...6
5. Literature survey ..8
6. Research contributions ...12
7. Organization of the dissertation ...13

II METHODOLOGY FOR DISTRIBUTED OPTIMIZATION USING DIRECT

INTERACTION UNDER PARTIAL INFORMATION SHARING......................14

1. Subsystem problem ..14
2. Derivation of the penalty weights ..17
3. Lagrangian multiplier update for SUBi ..17
4. DIPIS algorithm ...19

III DISTRIBUTED CAPACITY ALLOCATION PROBLEM USING DIRECT

INTERACTION FOR PARTIAL INFORMATION SHARING............................21

1. Introduction ..21
2. A distributed capacity allocation problem ...22
3. Solution approach...25

3.1. Subsystem problem (SPi) ...26
3.2. Penalty weights and Lagrangian multipliers update for SPi.....................27
3.3. Steps of DIPIS for distributed capacity allocation problems29

 vii

CHAPTER Page

4. Experimental results ...31
4.1. Performance measures..31
4.2. Experiments..32

5. Conclusion..33

IV SINGLE-MACHINE DISTRIBUTED SCHEDULING USING DIRECT

INTERACTION FOR PARTIAL INFORMATION SHARING............................35

1. Introduction ..35
2. A single-machine distributed scheduling problem...36
3. A solution methodology using DIPIS ..39

3.1. Sub-production system problems ...40
3.2. Updating the Lagrangian multiplier for the sub-production systems.......45
3.3. DIPIS algorithm for single-machine distributed scheduling problems....47

4. Experimental study...49
4.1. Experiment one ...50
4.2. Experiment two ...52

5. Conclusion..53

V DISTRIBUTED JOBSHOP SCHEDULING USING DIRECT INTERACTION

FOR PARTIAL INFORMATION SHARING ...56

1. Introduction ..56
2. Problem statement ..57
3. A Solution methodology using DIPIS..60

3.1. Subsystem problem (MSPi)..62
3.2. Derivation of the penalty weights ..65
3.3. Updating the Lagrangian multiplier for the subsystems66
3.4. DIPIS algorithm for distributed jobshop scheduling problems................67

4. Experimental results ...68
4.1. Experiments...69

5. Conclusions ..71

VI CONCLUSIONS AND FUTURE RESEARCH..73

1. Conclusions ..73
2. Future research ...74

REFERENCES...76

APPENDIX ..79

 viii

Page

VITA ..92

 ix

 LIST OF FIGURES

 Page

Figure 1 The block angular structure of a distributed system6

Figure 2 An example of the distributed capacity allocation problem with single
facility ...23

Figure 3 Mathematical representation of the distributed capacity allocation

problem ..25

Figure 4 Single machine scheduling in a system of 3 production lines.37

Figure 5 Information flow in DIPIS model for a single machine distributed
scheduling problem with m sub-production systems.40

Figure 6 Computational time comparison..55

Figure 7 Disjunctive graph of the distributed jobshop problem with three
subsystems...61

Figure 8 Information flows of DIPIS model for a distributed jobshop problem

with m subsystems...63

 x

LIST OF TABLES

 Page

Table 1 Comparison of PD results of DIPIS with LR and CICA.34

Table 2 Comparison of CV results of DIPIS with LR and CICA.34

Table 3 CV and PD results of DIPIS for small problem instances.52

Table 4 Computational times of DIPIS ..52

Table 5 PD and CV results of DIPIS for large problem instances.54

Table 6 Comparison of average computational times ..54

Table 7 PD and PV results of DIPIS algorithm for Jobshop problems......................72

Table 8 Computational results of the DIPIS algorithm..72

 1

CHAPTER I

INTRODUCTION

1. Overview of the research

This research proposes a methodology to solve a class of distributed optimization

problems where quasi-autonomous decision entities directly interact with each other

only for partial information sharing. In the distributed system we study, the quasi-

autonomy arises from the assumption that each decision entity has responsibility for a

subset of decision variables. However, when solving a decision problem locally,

consideration is given to how the local decisions affect overall system performance. This

ensures that close-to-optimal solutions are obtained among all participating decision

entities. Partial information sharing occurs when no entity has the complete information

access needed to solve the optimization problem globally. This condition hinders the

direct application of traditional optimization solutions methods. In this research, it is

further assumed that direct interaction among the decision entities is allowed. This

compensates for the lack of complete information access with the interactive exchange

of non-private information. This approach extends the work by Jeong and Leon (2002)

where intermediary ‘coupling agents’ were used between interacting descision entities to

solve the distrubuted optimization problem. The methodology is tested in different

application contexts: manufacturing capacity allocation, single machine scheduling, and

jobshop scheduling.

2. Motivation

Consider a product and the company that manufactures the product. In the

manufacturing company, there are several departments which are responsible for unique

processes required to make the product. Each department has a manager to take charge

This dissertation follows the format and style of IIE Transactions.

 2

of the tasks and the decisions in it. Ultimately, these departments cooperate for the

company’s goal, such as maximizing total profit. However, interdepartmental conflicts

can arise due to the heterogeneousness of the tasks and the associated viewpoints of the

product features. These conflicts can be resolved by sharing information and opinions

without restriction or by a supervising authority with a global view of the company. But

what if the information sharing is limited and no central coordination is possible?

These days, subcontracting is a popular cost-saving measure allowing companies to

concentrate on core processes, while subcontractors deal with minor processes. Take a

look at the subcontracting method. How are conflicts between departments in the

company and the subcontractors handled? The problem solving procedures will be

similar: through the interactions between the departments and the subcontractors, they

will find a compromised resolution. But there are two important things to keep in mind:

restricted information sharing and the difficulty of centralized coordination. Even though

the subcontractors cooperate for the company’s goal, they are independent systems.

Exposing their private information to others may risk their autonomy. Therefore, the

subcontractors will provide only the information necessary to settle the conflicts. And

the supervising authority of the company can hardly intervene in the decision making

procedure of the subcontractors and control them. Therefore, centralized modeling and

solution methods are not applicable to the decision making and the associated

optimization problems in this case.

It is not difficult to find real-world examples similar to the second scenario. Consider

an automotive manufacturing supply chain model: modular consortium (Ure and

Jaegersberg, 2005). In a modular consortium, all suppliers are located in one site as the

main automotive manufacturer. They assemble the modular parts for cars on their own

production lines, then delivering these parts into the main production lines Just in Time

(JIT) and Just in Sequence (JIS). Thus, the production schedules between the suppliers

and the main manufacturer are closely connected. For example, if scheduling conflict

problems occurred, they can be better treated by a distributed method.

 3

The organizational structure of NIKE may require a distributed approach. NIKE owns

only design and marketing departments, outsourcing the manufacturing facilities in

countries for production. The decision making problems under this structure will be

another example that requires a distributed methods. Similar cases can be found from the

companies using OEM type production.

In this research, we propose a distributed modeling and solution methodology to

effectively deal with the decision making and optimization problems that arise in the

aforementioned situations.

3. Problem statement

In this section, we present the Distributed Optimization Under Direct Interaction and

Partial Information Sharing Problem (DIPIP).

A distributed system is comprised of multiple subsystems. Each subsystem has a

quasi-autonomous decision maker who takes full control of the local problem solving

and distinctive information associated with its own task and goal. Similar to Jeong and

Leon (2002), a vector of decision variables, xi , is associated with the local decision

variables of subsystem i, where ,...,mi 1= . Each subsystem i has a local objective, fi(xi),

subject to local constraints, Bixi ≤ bi; where, xi is 1 × ui vector, where ui is the number of

decision variables of the problem, and bi is 1 × vi, where vi is the number of local

constraints of the problem.

All the subsystems are directly or indirectly interconnected by coupling constraints.

Let xij, iij xx ⊂ , be the set of local decision variables of subsystem i that are coupled

with other subsystems in the jth coupling constraint. Sj is the set of subsystems that are

coupled in jth coupling constraint. Subsystems i and k are coupled if they are in the same

Sj for some j. Ti is the index-set of the coupling constraints where subsystem i is coupled

with other subsystems. The vector of non-coupling variables xi0 is comprised of the local

decision variables of subsystem i that are not related in any coupling constraint. All local

variables are mutually exclusive among subsystems; that is xi ≠ xk for all i ≠ k ,

Uki ∈, where U is the index-set of the subsystems that consist of the global distributed

 4

system and participate in the global system optimization procedure. The coupling

constraints are represented as ,...,rj axA j
Si

ijij
j

1 , =≤∑
∈

; where r is the number of

coupling constraints in the distributed system.

The overall distributed optimization problem can be written as follows:

(DIPIP): (1.1)

Opt ∑
=

m

i
ii xf

1
)((i)

s.t.

All local constraints: iii bxB ≤ , ,...,mi 1= (ii)

All coupling constraints: ,...,rj axA j
Si

ijij
j

1 , =≤∑
∈

 (iii)

Quasi-autonomy condition (iv)

Partial information sharing condition (v)

Direct interaction condition (vi)

The objective function in (i) is the sum of all the local objectives. The goal of this

research is to pursue globally optimal and feasible solutions while local subsystem

problems are solved independently by quasi-autonomous decision makers. The global

system goal is the minimization of the sum of deviations in the subsystem solutions from

the global optimal solution. In a minimization problem the global objective can be

written as:

∑=∑ −
==

m

i
ii

m

i
iiii xfxfxf

11

*)(min))()((min (1.2)

Constraint (ii) states that all local constraints must be satisfied.

Constraint (iii) states that all coupling constraints must be satisfied. In this research,

it is assumed that 1≥iT for Ui ∈ and 2≥jS for all iTj ∈ . 1≥iT means that

subsystem i is coupled with other subsystems in at least one coupling constraint. If

1=jS and the corresponding subsystem index is i, then jth coupling constraint can be

represented only by the local decision variables of the subsystem i. It would thus be

considered a local constraint of subsystem i; that is, Ajxi ja≤ . Therefore, the assumption

 5

implies that every subsystem is coupled with at least one other subsystem in one or more

coupling constraints. Note that Figure 1 shows the block angular structure of the

problem in a mathematical formulation.

Conditions (iv), (v) and (vi) make DIPIP a novel distributed optimization problem

under partial information sharing:

• The quasi-autonomy condition in (iv) requires that only subsystem i has the authority

to specify the values of the decision variables xi

• The partial information sharing condition in (v) specifies what information is private

and what information can be shared with others:

a) The local objective, fi(xi), and the local constraints, Bixi ≤ bi, are private

information of subsystem i.

b) The values of xi associated with a given coupling constraint can be shared with

the corresponding coupled subsystems.

c) Subsystem i can partially view all the coupling contraints that contain any

variable in xi. That is, in the jth coupling constraint, subsystem i can only view

the coefficient vector, Aij, of its own decision variable vector and aj. This is an

important difference from CICA (Jeong and Leon, 2002) where coupling agents

have complete information about the coupling constraints and coupled

autonomous organizations only recognize coupling agents with which they

should interact.

d) Subsystem i knows what other subsystems it is associated in coupling

constraints; i.e. Sj is known to all the subsystems that are coupled in jth coupling

constraint. This is also an important difference with the problem studied by

Jeong and Leon (2002), where “who” were the other subsystems was not

explicitly known.

• Direct interaction condition in (vi): Coupled subsystems i and k must interact

directly without mediation by passing non-private information vectors between each

other. This interaction must follow a pre-specified interaction protocol. This is

 6

Figure 1 The block angular structure of a distributed system.

another difference with the work by Jeong and Leon (2002) where the interaction is

through ‘coupling agents’.

4. Research issues

As described in the previous section, the DIPIP problem in (1.1) has unique

characteristics that hinder the direct application of traditional optimization methods.

Especially challenging is the fact that no one entity has full access to all the information

required to solve the problem globally. When solving DIPIP, each subsystem can only

view and control its local subproblem and the information that is received from other

subsystems each iteration during the solution phase. Hence, it is necessary to (1) define

the appropriate information sharing between interacting subsystems, (2) formulate the

local subproblems such that private information is not shared, and (3) design a suitable

interaction protocol.

+ + + +)(11 xf)(ii xf

B1(x1)

Bi(xi)

Bm(xm)

b1

a1

bm

aj

ar

bi

…… ……

……

…… ……

……

……

…….

…….

≤

≤

≤

≤

≤

≤

)(mm xf

St.

Opt

A11x11 + … + Ai1xi1 + … + Am1xm1

A1jx1j + … + Aijxij + … + Amjxmj

A1rx1r + … + Airxir + … + Amrxmr

fi(xi)

 7

4.1. Information sharing

Given two interacting subsystems, we assume that the minimum information that

must be exchanged includes (1) the desired solutions, and (2) information about the local

objective losses and local constraint violations for deviations from the solution in (1). It

is assumed that the information vector from a subsystem to another subsystem is

composed of the local solution vector and a penalty weight vector (ijij ,αy). The local

solution ijy satisfies local constraints and coupling constraints in Ti locally. The penalty

weight ijα reflects the marginal variation of the local objective value and possible

constraint violations if one deviates from the solution ijy . When designing ijα , care

must be taken not to disclose information that is private to subsystem i. More details on

the determination of ijα are included Chapter II.

4.2. Local subproblem

DIPIP requires that subsystem i locally solves a subproblem, SUBi. By carefully

relaxing the coupling constraints to the objective function, each subsystem problem can

be formulated independently but must include an augmented objective function f(.)+g(.).

In this function, gi(.) must reflect the objective and constraints of subsystems with

which it is coupled. Given the information vectors from coupled subsystems, ()ijij ,αy ,

where j is coupled with i:

SUBi: (OPT)(ii xf +),,|(ikSkβ,αyxg jijijijiji ≠∈∀ , s.t. iii bxB ≤) (1.3)

A detailed derivation of g(.) is given in Chapter II.

4.3. Interaction protocol

An interaction protocol must be designed to be suitable for partial information sharing

and also make direct interactions possible without third party mediation. There are two

types of interaction methods: synchronous interaction, in which all the subsystems

 8

exchange the information vectors simultaneously by the predetermined schedules; and

asynchronous interaction, in which interactions occur independently between pairs of

subsystems.

The most important advantage of synchronous interactions is to get the information

from all other participating decision entities at the same time. This helps the local

solutions be updated to reflect all other subsystems’ desire in a balanced and timely

manner. However, it is a rigid type of interaction method. For example, as the number of

participating entities increases, it will become difficult to make all the interactions

synchronized.

On the other hand, asynchronous interactions is flexible in that any participating

entity can initiate the interaction. In other words, local decision entities can interact with

others whenever they need updated information in their schedule. But it also implies that

they may not get the updated information from all other participants instantly. This can

cause biased local solutions from the updated information only. Another potential

disadvantage is that it may take more time in achieving a compromised solution, with a

higher possibility of oscillating local solutions as well.

5. Literature survey

In this section, we review previous studies on distributed methods for large-scale

optimization problems. Even though a number of heuristic-based methods exist for

distributed optimization problem solving, the main objective of this research is to

develop a distributed methodology with a strong mathematical programming basis.

Therefore, we concentrate our review on related literature associated with mathematical

programming. The distributed methods without mathematical programming background

are mentioned last.

5.1. Centralized decomposition method for large-scale optimization problems

To efficiently solve large-scale optimization problems, mathematical decomposition

techniques have been studied in the Operations Research area. The main idea behind

 9

those methods is to decompose a large problem into multiple small-size problems, such

as a master problem and subproblems in the Dantzig-Wolfe decomposition method. The

master problem manages the shared resources among multiple subproblems by either

updating the prices of the resources (Dantzig and Wolfe, 1961) or allocating the

resources to subproblems (Bender, 1962; Kate, 1972). Subproblems are then solved to

update either their demand for the resources or their desired price of the resources. The

former approach is known as price-directed and the latter as resource-directed, classified

by the information type the master problem sends to the subproblems. Lagrangian

relaxation (Fisher, 1981) is also a popular technique explored by many OR researchers

as a basis of distributed solution methods for large optimization problems (Roundy et al.,

1991). However, in the methods mentioned above, a single decision maker has full

access to the complete problem formulation which is not allowed by constraints (iv)-(vi)

in formulation (1.1).

5.2. Distributed algorithm with unrestricted information sharing

There are distributed algorithms that, for problem solving, allow any global

information to be shared without restriction. Gou et al. (1994) applied the holonic

system approach to a robotic assembly planning problem and introduced a distributed

algorithm based upon Lagrangian relaxation concepts. The proposed model includes a

central coordinator that collects all the necessary, though not complete, information to

calculate coordination parameter values. Murphy et al. (1995) studied a decomposition-

coordination approach for large-scale optimization problems. In their research, a large

problem is decomposed into several subproblems by duplicating coupled decision

variables that they call boundary variables. Then, the Auxiliary Problem Principle is

applied to minimize the Augmented Lagrangian subproblems. Although subproblems are

solved independently, the addition of the consistency constraints maintains the same

boundary variable values for all subproblems. Again, any necessary information can be

exchanged to solve subproblems as the process repeats.

 10

5.3. Distributed algorithm with restricted information sharing

Since auctions can intuitively be viewed as a distributed process, a significant amount

of work has been done to apply the auction mechanism to various problems. There are

two main entities in the auction: the auctioneer, who collects bidding information from

multiple bidders, updates resource prices, and allocates the resources to bidders; and the

bidder, who bids for the limited resources. The exchanged information between the

auctioneer and the bidder is restricted by a predetermined interaction mechanism.

Bertsekas proposed an auction algorithm for assignment problems of linear

programming (Bertsekas, 1988). In this study, he modeled the assignment problem as a

multiple-person multiple-object auction. ε- Complementary Slackness (ε- CS) was

introduced to avoid possible cyclical behaviors and to facilitate the algorithm in

optimization contexts. The algorithm was later extended to transportation problems and

other linear network optimization problems (Bertsekas and Tsitsiklis, 1989; Bertsekas,

1990). Kutanoglu and Wu (1999) explored a group of combinatorial auction mechanisms

for resource scheduling problems and showed that Lagrangian relaxation is equivalent to

one of the combinatorial auction mechanisms. Ertogral and Wu (2000) applied the

auction mechanism to solve production planning problems for multiple facilities. Guo et

al. (2002) developed a market-oriented decomposition method based on double auctions

for large-scale linear programming problems. They illustrated the relationship between

the auction algorithm and mathematical programming by exploring similarities and

differences between the proposed market-based algorithm and Dantzig-Wolfe

decomposition method with economic interpretations.

As a distributed method of much stronger mathematical programming basis, Jeong

and Leon (2002) proposed a distributed methodology called CICA. In the CICA

approach, two main entities are introduced, CAO and CA, to model the distributed

problems. CAOs are quasi-autonomous organizations that solve their own local

problems with independent decision authority. However, multiple CAOs are interrelated

by coupling constraints. CAs manage the coupling constraints to help CAOs achieve

compromised solutions that do not violate coupling constraints, as well as local

 11

constraints. Both CAOs and CA do not have complete system information. While

applied to machine scheduling problems and capacity allocation problems, only partial

information can be shared during interactions between each CAO and CA.

5.4. Other distributed algorithms

In this section reviews distributed methods based on heuristics or economic theory

without a mathematical programming formulation.

Originating from the distributed AI approach, the distributed constraint heuristic

search has been popularly studied for machine scheduling problems. In this approach,

job scheduling can be done on multiagent environments with a job-based perspective,

resource-based perspective, or a combination of the two. The Intelligent Scheduling and

Information System (ISIS) (Fox and Smith, 1984) and Opportunistic Intelligent

Scheduling (OPIS) (Smith et al., 1990) were developed for factory scheduling. The

former has adopted the job-based perspective, and the latter the combined perspective.

Information sharing is unrestricted for both systems. Sycara et al. (1991) studied a

micro-opportunistic scheduling system, based on the decomposition of resource periods

and the allocation of the operation according to the bottleneck period. In their method,

similar to CAs in CICA, third party monitoring agents exist to manage shared resources.

Only partial information is shared, but any local information can be exchanged if other

agents desire.

Talukda et al. (1998) also proposed a distributed problem solving method called

Asynchronous-team (A-team) based on multiagent systems. In their method, multiple

autonomous agents with unique problem-solving techniques work together to solve large

problems cooperatively. Each agent solves the problem independently, but using up-to-

date partial solutions of other agents without restriction.

Another important stream of distributed problem solving studies is the market-like

approach that attempted to interpret manufacturing control system behavior using

economic theories. Contract-net, the interaction protocol used to allocate tasks to agents

in distributed environments was first proposed by Davis and Smith (1983). It has been

 12

applied for dynamic scheduling in manufacturing control systems (Duffie and Prabhu,

1994; Lin and Solberg, 1994). For static scheduling, Wellman et al. (2001) developed

auction protocols for decentralized scheduling problems. The proposed market

mechanisms uses price information, derived via distributed bidding protocols, to

determine schedules. All of these methods are based on interactions between bidding

agents and resource agents to exchange restricted information.

6. Research contributions

The main research contributions of this dissertation are:

(i) Quasi-autonomy and partial information: We develop a methodology for

modeling the distributed system and solving the associated optimization

problems. In the system under study, no decision entity has the global view of the

entire system or complete system information. While quasi-autonomous local

decision entities solve the local problems indpendently, they cooperate to find a

close-to-optimal system solution. To compensate for the lack of system

information, partial local information sharing is allowed. Therefore, the proposed

method is designed to search for the system solution under partial information

sharing among quasi-autonomous decision entities.

(ii) Direct interactions: The proposed method will be based on direct interactions for

cooperative partial information sharing among local decision entities. Neither

central coordination nor third party mediation is necessary in the proposed

method. For example, the master problem in Lagrangian Relaxation and coupling

agents (CAs) in CICA take the role of the coordination of local solutions in global

preference. There is no previous research about direct interactions for information

sharing in a distributed system.

(iii)Interaction protocol for partial information sharing: The interaction protocol will

be designed to exchange implicit but essential information sufficient to pursue the

global goal without complete system information or global coordination.

 13

(iv) Mathematical programming basis: We develop a solution methodology that can

be applied to the optimization problems formulated by linear programming and

integer programming. An LP heuristic is proposed to deal with the problems of

large sizes in practical times.

7. Organization of the dissertation

This dissertation is organized as follows: Chapter II introduces a general distributed

model and proposes a solution methodology, Direct Interaction for Partial Information

Sharing (DIPIS). In Chapter III, We study the distributed capacity allocation problem in

a linear programming model. The proposed method is applied to single-machine

scheduling problems in Chapter IV. In Chapter V, jobshop scheduling problems are

investigated for the applicability of the proposed method to more complicated models.

Finally, Chapter VI summarizes the research contributions and the directions of future

study.

 14

CHAPTER II

METHODOLOGY FOR DISTRIBUTED OPTIMIZATION USING DIRECT

INTERACTION UNDER PARTIAL INFORMATION SHARING

In this chapter we develop the Direct Interaction for Partial Information Sharing

(DIPIS) method to solve (DIPIP) described in Chapter I. DIPIS decomposes DIPIP into

interdependent subproblems using Lagrangean Relaxation concepts. These concepts are

modified to ensure that private information remains local, and that no master problem is

required to update the Lagrangian multipliers. At each iteration in DIPIS the subsystems

solve local subproblems, computes a penalty vector (that reflects objective function and

constraint violation if the current solutin is modified), and then pass the current solution

and penalty weights to corresponding coupled subsystems. This chapter starts by

deriving the subsystem problem, then it describes the derivation of the penalty weights.

It also describes the penalty updating from one iteration to the next used to reflect the

new information from the other subsystems. Finally it presents the complete algorithm.

1. Subsystem problem

Observing the subsystem problem (SUBi) in expression (1.3) the main challenge is to

derive an appropriate augmenting function g(.). If complete system information is

available, the objective function of subsystem i is as follow (Jeong and Leon, 2002):

)(ii xf ∑ ∈+
∈ iTj

jkjj Skxg),(=)(ii xf ∑ ∑−±
∈ ∈i jTj Sk

kjkjjij xAaθ))(((2.1)

In addition to the original objective function, the penalty functions related to the

relaxed constraints must be included in the subsystem optimization problem for the

pursuit of the global goal. ijθ , a vector of positive Lagrangian multipliers in the penalty

function, can be calculated and updated using the system information without restriction.

Hence, the violations of the subsystems’ solutions on the coupling constraints will be

appropriately penalized. In the distributed system problem only partial information

 15

sharing is allowed among subsystems and therefore the exact penalty functions cannot

be generated. Specifically, in (2.1) the coefficients of the decision variables of other

subsystems in the coupling constraints, { }),(iSkA jkj −∈∀ , are unknown to the

subsystem i. And the decision variables of other subsystems, { }),(iSkx jkj −∈∀ , cannot

be controlled by subsystem i. Consequently, ∑ ∈
∈ iTj

jkjj Skxg),(must be approximated

using only the information vectors from other subsystems, {(kjkj ,αy), { }iSk j −∈∀ }.

This approximation makes the penalty functions represented by the decision variables of

subsystem i. The resulting functions still have to reflect other subsystems’ desires in the

coupling constraints so that the subsystem can find a compromised solution in global

preference. Detailed derivation of the function approximation will be explained next.

The penalty functions in (2.1) can be rearranged as follows,

∑ ∑−−=∑ ∈
∈ −∈∈ i ji Tj iSk

kjkjijijjij
Tj

jkjj xAxAaθSkxg))((),(
}{

 (2.2)

Again, ∑
−∈ }{ iSk

kjkj
j

xA is unknown to subsystem i. Let =kjy kjkj xA for

{ }iSk j −∈∀ and then the penalty function can be restated as,

{ } ∑ ∑−−=∑ −∈∀
∈ −∈∈ i ji Tj iSk

kjijijjij
Tj

jkjijj yxAaθiSkyxg))((),,(
}{

 (2.3)

Consider an element of the penalty function associated with jth coupling constraint,

{ }),,(iSkyxg jkjijj −∈∀ . Here subsystem i has no control of kjy , the decision variables

of subsystem k. At the end of (n-1)th iteration, subsystem i receives partial information

(kjkj αy ,) from subsystem k where { }iSk j −∈∀ . Then, by substituting kjy for kjy ,

the penalty function can now be represented by only ijx , the decision variables of

subsystem i. The cooperative solution ijx for ijx of subsystem i can be easily calculated

using the coupling constraint with the information as follows,

jijij rAx ⋅= −1 where))(,0max(
}{

∑−=
−∈ iSk

kjjj
j

yar (2.4)

 16

ijx represents maximum avaiable value that ijx can get regarding jth coupling

constraint, given kjy for { }iSk j −∈∀ .

Similar to the derivation steps used in CICA model (Jeong and Leon, 2002), applying

the first order Taylor expansion for the approximation of)(ijj xg at ijij xx = , we get,

)(ijj xg =)(ijj xg +))((ijijijj xxxg −∇ (2.5).

where)(ijj xg∇
{ }

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

−∈∀∂
=

∂

∂
=

−∈ }{

,()(
iSk ij

kj

kj

jkjj

ij

jj

j x
y

y
iSkyg

x
rg

.

Since
{ }

kj

jkjj
kj y

iSkyg
∂

−∈∀∂
=

),(
α and ij

ij

kj A
x
y

−=
∂

∂
, (2.5) is equivalent to the

following equation,

)(ijj xg =)(ijj xg))((
}{

ijij
iSk

kjij xxA
j

−∑−
−∈

α (2.6)

Using (2.4), ijx can be replaced back by jr . And)(ijj xg is a constant term and thus

can be excluded in the optimization process. The concluding formulation of)(ijj xg is,

)(ijj xg =)()(
}{

jijij
iSk

kj rxA
j

−∑
−∈

α (2.7)

Hence, the subsystem problem can be formulated as follows:

SUBi: (OPT)(ii xf
{ }

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑±

∈ −∈i jTj
jijij

iSk
kj rxA)()(α ,s.t. iii bxB ≤) (2.8)

where
{ }

))(,0max(∑−=
−∈ iSk

kjjj
j

yar

The plus sign in the objective function is for minimization problems and the minus

sign is for maximization problems.

 17

2. Derivation of the penalty weights

Given the information above, for a differentiable function jg , kjα , the penalty

weight received from subsystem k associated with jth coupling constraint, can be defined

as follows,

=kjα { }

Δ−=
∂

−∈∀∂

kjkj yykj

jljkjj

y
kSlyyg),,(

 (2.9)

That is, kjα implies the marginal variation of the function jg , as the value of kjy

decreases from kjy by small positive constant Δ with values of all other variables fixed

as given.

If jg is not differentiable, kjα can be calculated by the form,

{ } { }
Δ

−∈∀Δ−−−∈∀
=

),,(),,(kSlyygkSlyyg
α jljkjjjljkjj

kj (2.10)

(2.9) and (2.10) do not require complete system information related to the coupling

constraints. Instead, they can be determined by using the partial information supplied by

other subsystems.

3. Lagrangian multiplier update for SUBi

Section 3 describes a Lagrangian multiplier update procedure in DIPIS. The proposed

procedure is based on the traditional subgradient optimization method, modified to

comply with the partial information restrictions present in DIPIP.

At the end of (n-1)th iteration, the subsystems interrelated with SUBi by coupling

constraints send the associated system information {(11 −− n
kj

n
kj ,αy), { }iSk j −∈ } to

subsystem i. Then, at nth iteration, subsystem i solves the following problem,

SUBi: (OPT)(n
i i

xf ∑ ∑
∈ −∈

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

i jTj

n
j

n
ijij

iSk

n
kj rxA)()(

}{

1α ,s.t. i
n
ii bxB ≤) (2.11)

 18

where))(,0max(
}{

1∑
−∈

−−=
iSk

n
kjj

n
j

j

yar

Let),(**
0

* n
ij

n
i

n
i xxx = be the solution of (2.14). Given 1−n

kiy , the cooperative

solution n
ijx is obtained using (2.4). Then, n

ijθ can be updated as follows:1

))(,0max(*1 n
ijij

n
j

n
iijij xArs −−= −nn θθ (2.12)

∑
∈

−

−
=

iTj

n
ijij

n
j

n
ij

n
ii

n
ii

n
jn

j xAr

xxfxfτ
s 2*

*
0

*

)(

)ˆ,()(
 where n

ij
n
ij xx ≤ˆ (2.13)

 pττ n
j

n
j ×= −1 , if)ˆ,()()ˆ,()(1*1

0
1

0
* −−− −>− n

ij
n
ii

n
ii

n
ij

n
ii

n
ii xxfxfxxfxf

 1−= n
jτ , otherwise (2.14)

where n
js is a positive step size, n

jτ is a positive step length, p is the step parameter

with 0 < p < 1 and)(*n
ii xf is the current objective value of Subi.)ˆ,(*

0
n
ij

n
ii xxf is the

objective value when Subi problem is solved to minimize the conflict from the solutions

of the coupled subsystems at (n-1)th iteration.

The updating method is based on the subgradient optimization technique that is one

of the most popular methods for solve Lagrangian Relaxation problems. The main

difference of the proposed method from the traditional subgradient optimization

technique is that the step size can be updated using partial information sent by coupled

subsystems. Traditional Lagrangian multiplier updating rules require a globally feasible

upperbound solution which can be calculated with complete system information. In the

proposed model, complete system information is not available to any local subsystem,

making calculation of the centrally coordinated Lagrangian multipliers impossible. The

proposed method updates Lagrangian multipliers locally, but appropriately; it uses

partial system information obtained via direct interactions among the associated

subsystems to guide the local solutions towards a compromised state. That is, it works to

minimize conflict among local solutions associated with the coupling constraints.

 19

4. DIPIS algorithm

The steps of DIPIS algorithm in solving a distributed problem are as follows:

Initialization: Set the number of maximum interaction N.

Set 0=0
kjα , 00 =kjy , 0

js = 0, 0
jτ = 2 and p, 0 < p < 1.

Set n = 1.

Step 1: SUBi problem. For all i = 1,..,m.

Step 1.1. Solve subsystem problem SUBi. in (2.11).

Step 1.2. Update step length n
iτ as shown in (2.14).

Step 1.3. Update step size n
is as shown in (2.13).

Step 1.4. Update n
ijθ as shown in (2.12).

 Step 1.5 Calculate n
ijα as shown in (2.9) or (2.10)

 Step 1.6. Distribute n
ijα and n

ijy to the coupled subsystems k, { }iSk j −∈∀ .

Step 2: If any of the predetermined stopping criteria is satisfied, stop. Otherwise n = n +

1 and go to Step 1.

The solution procedure starts with the initialization: setting all the penalty weights

equal to zero and other parameters for Lagrangian multiplier updating to starting values.

At every iteration, each subsystem solves its local problem and updates the penalty

weights, as shown in step1. For the penalty weight updates, the subsystems need to get a

cooperative solution which minimizes the conflict with other subsystems. The

cooperative solution of subsystem i at nth iteration can be calculated as follows:

(i) Substitute the solutions of other subsystms received at the end of the previous

iteration, 1−n
kjy { } jiSk j ,, −∈∀ , into the coupling constraints and calculate

n
ijx using (2.4) .

 20

(ii) Then, solve the local problem by applying additional constraints that restrict

the coupled decision variables by n
ij

n
ij xx ≤ .

In this manner, the multipliers are updated using only the information from other

subsystems.

The objective difference between SUBi and the cooperative solution implies the

compromise gap between subsystem i and other subsystems. If it is zero, subsystem i can

reach its solution with no conflict at the current iteration. In step 1.2, if the compromise

gap is larger than the value at the prevous iteration, the step length is reduced using the

step parameter. Then, in step 1.3, the step size is calculated using the compromise gap

and the total amount of the conflicts between SUBi solution and the solutions of other

subsystems on the coupling constraints. The conflicts can be quantified

by ∑
∈

−
iTj

n
ijij

n
j xAr 2*)(where =n

jr))(,0max(
}{

1∑
−∈

−−
iSk

n
kjj

j

ya . The conflicts are interpreted as

the locally measured amount of violations when applying the solutions of all the

subsystems on the coupling constraints. For each violation on the coupling constraints,

the associated Lagrangian multiplers are updated using the step size. The penalty

weights are determined using the Lagrangian multipliers. Then, the information vectors

in the prescribed format are sent back to the coupled subsystems. Note that, at the first

iteration, every subsystem solves its problem without any information from the others

and thus no penalty weights will be calculated.

The iteration continues until the algorithm satisfies the predetermined stopping criteria

(step 2). In this research, three stopping criteria are applied: the algorithm stops when (i)

it achieves a compromised solution, (ii) the step length becomes small enough, that is
nτ ≤ ε where ε is a predetermined positive real constant, or (iii) the number of the direct

interactions among subsystems reaches a predetermined value, n + 1 = N. A

compromised solution is the set of the subsystems’ solutions that do not violate the

coupling constraints, if entered into those constraints. That is, it is a globally feasible

solution even if it may not be globally optimal.

21

CHAPTER III

DISTRIBUTED CAPACITY ALLOCATION PROBLEM USING DIRECT

INTERACTION FOR PARTIAL INFORMATION SHARING

1. Introduction

This chapter deals with a capacity allocation problem in a distributed manufacturing

system environment. Specifically, multiple subsystems compete to acquire the service

times of a single facility necessary for manufacturing individual products. The

information associated with each product (e.g. processing times, profits, demands, etc.)

is locally known only to the subsystem in charge of its production. In each subsystem,

there exists a decision maker who manages local issues and makes a schedule of the

production to satisfy local demands and maximize local profits. Subsystems must

interact to find a compromised allocation solution that effectively utilizes the capacity of

the facility. The major concern of this study is how to maximize the profits of the

subsystems sharing a facility without creating conflict among the local production plans.

Due to the quasi-autonomy condition and the partial information condition of the

current problem, decomposition methods (e.g. Danzig-Wolfe decomposition, Lagrangian

Relaxation, etc.) are not applicable. This is because they require a centralized

coordination of subproblem solutions using system information without restrictions. For

example, in Lagrangian Relaxation with Subgradient Optimization method, the master

problem calculates a globally feasible solution as an upperbound or lowerbound using

the subproblem solutions and detailed information about the coupling constraints. This is

not possible in the distributed system environment under this study.

Cooperative Interaction via Coupling Agent (CICA) (Jeong and Leon, 2002) was

applied to solve the distributed capacity allocation problems with partial informatio

sharing. In CICA, two main entities exist: Coupled Autonomous Organization (CAO)

and Coupling Agent (CA). System problems are divided into CAOs’ local decision-

making subproblems and CA(s)’ coordinating problem. Each CAO solves its

22

subproblems independently and then send the partial local information to CA(s). CA has

the coupling constraints associated with multiple CAOs and takes the role of

coordinating subsystem solutions in global preference using only the partial system

information obtained from CAOs through the interactions. The iterative solution

procedure continues until the predetermined stopping criteria are satisfid. The

experimental results showed that CICA works well for the corresponding problems.

As proposed in the previous chapter, Direct Interaction for Partial Information

Sharing (DIPIS) is a distributed solution method designed to work under partial

information sharing. Neither centralized coordination nor third party intervention is

required in the solution procedure. Additionally, direct interactions among subsystems

are established to share partial subsystem information.

The remainder of the chapter is organized as follows: in section 2 the notations for

mathematical representation of the problem are introduced and important constraints are

explained. In section 3, the solution approach is described. Experimental results follow

in section 4 along with corresponding tables and explanations. The conclusion is given

in section 5.

2. A distributed capacity allocation problem

This section describes the distributed capacity allocation problem and its associated

formulation.

The distributed capacity allocation problem is the problem of allocating the fixed

capacity of a facility to satisfy the demands of multiple independent subsystems. Each

subsystem is managed by a different decision maker and has unique system information.

To achieve close-to-optimal allocation, subsystems must cooperate with each other by

sharing partial local information. In this situation, no single decision maker exists with

the complete system information, thus traditional centralized optimization methods are

not applicable.

23

Figure 2 An example of the distributed capacity allocation problem with single facility.

Figure 2 illustrates the capacity allocation problem in a distributed system. As shown

in the figure, each local production plan does not exceed the maximum capacity each

time interval while the combined allocation can be infeasible due to excessive demands.

Since each subsystem must determine how many it manufactures the product to

satisfy the local demands through the production horizon, the decision variable itx

denotes as follows:

itx = production quantity of product i at time interval t proposed by subsystem i.

Additionally, the following notations are used for the mathematical representation of

the associated problem:

T = total production horizon.

m = total number of subsystems in the global system.

id = total demand of product i of subsystem i; i = 1,…,m.

itb = profit of selling unit of product i for subsystem i at time interval t; t = 1,..,T.

Time

Capacity

max

1

Subsystem k

Subsystem 1 Subsystem m

3 42

max

max

max

Subsystem i

max

24

tc = available service time of the facility at time interval t.

ita = processing time of unit of product i for subsystem i at time interval t; t = 1,..,T.

Let the global system be defined as an organization composed of associated

subsystems. The objective of the global system is to maximize the sum of the

subsystems’ profits, ∑ ∑
= =

m

i

T

t
itit xb

1 1
. Two types of constraints are considered. Demand

constraints confirm that each subsystem acquires sufficient production time slots in the

facility to satisfy the demands within the planning horizon, i

T

t
it dx =∑

=1
, i = 1,…,m.

Capacity constraints ensure that the total production time allocated to subsystems does

not exceed the available capacity of the facility at any time period t, ∑ ≤
=

m

i
titit cya

1
, t =

1,..,T. Figure 3 shows the mathematical formulation of the distributed capacity

allocation problem. Note that each demand constraint is represented by the decision

variables of only one subsystem, which can be categorized as a local constraint. On the

other hand, the capacity constraints associated with the facility are the coupling

constraints because the decision variables of multiple subsystems are involved. Under

the distributed system environment herein, the most important issue is how to find close-

to-optimal allocations when each subsystem has a limited view of the system. The

aforementioned characteristics make the current problem more challenging. The

assumptions specific to this capacity allocation problem are as follows:

• Each subsystem has direct access to only its demand information; i.e. the demand

constraints, i

T

t
it dx =∑

=1
, are known only by subsystem i and not to subsystem k,

ik ≠ .

• Each subsystem has a local objective unknown to other subsystems; i.e. the objective

of subsystem i, ∑
=

T

t
itit xb

1
 is unknown to subsystem k, ik ≠ .

25

Figure 3 Mathematical representation of the distributed capacity allocation problem.

• Each subsystem has limited access to the capacity information of the facility; i.e.

subsystem i can see the capacity amount of the facility for each time period, but

cannot see the load of subsystem k, ik ≠ . Each subsystem can control its load in

order to not exceed the maximum available capacity in each time period; but since

there is no central coordination it is possible that the total loads claimed by multiple

subsystems in each time period exceed the maximum capacity of the facility.

3. Solution approach

This section describes Direct Interaction for Partial Information Sharing (DIPIS)

methodology, originally proposed in Chapter II, to define the subsystem problems and

solution procedures.

Under the current distributed system environment, no subsystem knows the complete

machine capacity constraints of the facility. Instead, they have the partial information of

decision variables and maximum available service times. DIPIS establishes direct

interactions among subsystems that desire to use a facility. Through direct interactions,

subsystems exchange limited local information. The information vector from subsystem

Subsystem 1 Subsystem i Subsystem m
… …

Max ∑
=

T

t
tb

0
1

St. ∑
=

T

t
tx

1
1 1d=

Max ∑
=

T

t
itb

0

St. i

T

t
it dx =∑

=1

Max ∑
=

T

t
tb

0
1

St. m

T

t
mt dx =∑

=1

Facility

+1111xa +11 ii xa 11 mm xa 1c≤

 +tt xa 11 +itit xa mtmt xa tc≤

 +TT xa 11 +iTiT xa mTmT xa Tc≤

26

k consists of two components, the service time necessary for the required production

quantity in each time interval, 1−n
kty , and the penalty weight for not obtaining sufficient

service time for the production, 1−n
ktα . Given the partial information of subsystem k,

),(11 −− n
kt

n
kty α , subsystem i maximizes its local objective while minimizing capacity

violations by the service time requests in each interval.

Section 3.1 defines the subsystem problem in a mathematical programming

formulation. In section 3.2, the procedure to calculate the penalty weights exchanged

among subsystems during direct interactions is explained in detail.

3.1. Subsystem problem (SPi)

In this section, the mathematical formulation of the subsystem problems (SPi) is

obtained by applying DIPIS method.

Let U be the index-set of the subsystems that share the facility. Then, given the

information vectors),(11 −− n
kt

n
kty α from subsystem k, the problem of subsystem i can be

written as,

(SPi): Max ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −∑+∑

= −∈

−

=

T

t
ctitit

iUk

n
kt

T

t

n
itit rxaxb

1 }{

1

1
))((α St. i

T

t

n
it dx =∑

=1
) (3.1)

where
{ }

))(,0max(1∑−=
−∈

−

iUk

n
kttct ycr

If complete information about the capacity constraints of the facility is available, i.e.

all local subsystem information is accessible, the objective of subsystem i can be

formulated as follows (Jeong and Leon, 2003):

∑ ∑−+∑
= ==

T

t

m

i
itittt

T

t

n
itit xacθxb

1 11
)((3.2)

The capacity constraint at time interval t is relaxed with Lagrangian multiplier tθ and

incorporated as an additional objective term. However, in the distributed system

environment of this study, the local information of each subsystem is considered private

and therefore the calculation of tθ is not possible. Only partial information among

27

subsystems is shared through direct interactions. The information vector is in the

following form:

),(11 −− n
kt

n
kty α where 11 −− = n

ktkt
n
kt xay (3.3)

Note that subsystem does not expose the full production information associated with

the capacity constraints such as kta . Instead of sending kta and 1−n
ktx separately,

subsystem k sends the combined values 1−n
kty . 1−n

ktα reflects the marginal loss of the local

objective of subsystem k if the desired amount of the capacity 1−n
kty cannot be obtained.

Then, using derivation similar to that which was introduced in Chapter II, the second

term of (3.2) is approximated to ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −∑

= −∈

−
T

t
ctitit

iUk

n
kt rxa

1 }{

1))((α in the problem of

subsystem i (SPi).

3.2. Penalty weights and Lagrangian multipliers update for SPi

This section explains how to update the Lagrangian multipliers and the penalty

weights using only partial information from other subsystems.

Let *n
itx be the solution of (3.1) at nth iteration. During the interaction, ** n

itit
n
it xay = is

sent to other subsystems at the end of the iteration with the associated penalty weight
n
itα . Note that n

itα has occurred not from the deviation from *n
itx , but rather from *n

ity .

Hence, given 1−n
kty from subsystem k where }{iUk −∈ , the second term of (3.2) is

restated for subsystem i at nth iteration as the following:

∑ ∑∑ ∑
= −∈

−

= =

=−−≈−
T

t

n
itit

n
it

n
it

iUk

n
ktt

n
it

T

t

m

i

n
ittt xayyycxacθ

ititit
1

}{

1

1 1

* where)()(θ (3.4)

Note that n
itθ is the Largrangian multiplier updated by subsystem i at nth iteration.

Then, as the weight to represent the cost increment of)(
}{

1 n
it

iUk

n
ktt

n
it yyc −− ∑

−∈

−θ when n
ity

is decreased Δ from *n
ity , n

itα can be derived:

28

n
it

yy

n
it

n
it

iUk

n
ktt

n
it

n
it

n
itit

y

yyc
θ

θ
α =

∂

−−∂−
=

Δ−=

−∈

−∑

*

))((
}{

1

 (3.5)

For the capacity violation on tth time interval, n
itθ is updated as follows:

n
itθ =))(0max(*1 n

it
n

ct
nn

it yrs,θ −−− (3.6)

where
{ }

))(,0max(1∑−=
−∈

−

iUk

n
ktt

n
ct ycr

ns =
∑

=

−

−
T

t

n
it

n
ct

n
LB

n
i

n

yr

ZZτ

1

2*)(
 (3.7)

 nτ = 1−nτ if 1−≤ n
i

n
i RR ,

 = 1−nτ n
i

n
i

R
R 1−

 otherwise, (3.8)

where
∑

=

−

−
= T

t

n
it

n
ct

n
LB

n
in

i

yr

ZZ
R

1

2*)(
 and

∑
=

−−

−−
−

−

−
= T

t

n
it

n
ct

n
LB

n
in

i

yr

ZZ
R

1

2*11

11
1

)(

Note that the formulas are derived from the traditional subgradient optimization

method modified to work under the partial information condition. In (3.6), n
ctr is the

remaining capacity available to subsystem i on time interval t at nth iteration. (3.7) is

revised to update step size using local objective values. Specifically, n
iZ is the objective

value of subsystem i and n
LBZ is the objective value of subsystem i obtained when it has

allocated the facility capacity amount to other subsystems as requested and then used the

remaining capacity for its production. If 0=− n
LB

n
i ZZ , it means that subsystem i can

maximize its objective, i.e. there is no conflict with other subsystems when using the

facility. Also, the step length is reduced by the step parameter whenever n
LB

n
i ZZ − has

failed to improve compared to the previous interaction, as shown in (3.8). The procedure

29

stops if the step length becomes small enough; that is nτ ≤ ε where ε is a predetermined

positive real constant. In this manner, Lagrangian multipliers can be successfully

updated without the global information distributed systems manifestly lack.

The formulas (3.8) are based on the updating rule proposed by Choi and Kim (1999).

Because Lagrangian Relaxation method does not guarantee the primal feasibility of the

solution, we apply Sherali and Choi’s (1996) procedure to recover it. Let n
iX be the

primal solution proposed by subsystem i at nth interaction. Then, the primal solutions are

defined as follows:

∑
=

=
n

k

k
in

i n
x

X
1

 mii ,...,1 =∀ (3.9)

j
ix is the solution of (3.1) at kth iteration j = 1,…,n. (3.9) implies that the primal solution

is recovered by giving equal weight to subsystem i’s solutions as obtained from the first

to nth iteration. For more details about the primal recovery of Lagrangian solutions and

the multiplier update rule, refer to Choi and Kim (1999), Sherali and Choi (1996), and

Jeong (2001).

3.3. Steps of DIPIS for distributed capacity allocation problems

This section summarizes the proposed DIPIS algorithm for distributed capacity

allocation problems.

Initialization: Set the number of maximum iterations N.

 Set 0
itα = 0, ti,∀ , 0s = 0, 0τ = 2 and p, 0 < p < 1.

Set n = 1.

Step 1 Subsystem’s problem (SPi). For all i = 1,..,m

Step 1.1 Solve SPi as shown in (3.1).

Step 1.2 Update step length 1−n
iψ as shown in (3.8).

Step 1.3 Update step size 1−n
it as shown in (3.7).

Step 1.4 Update n
iρ as shown in (3.6).

30

Step 1.5 Calculate n
itα as shown in (3.5)

Step 1.6 Distribute n
ity and n

itα ti,∀ to subsystem k k∀ .

Step 2. If any of the specified stopping criteria is satisfied, stop. Otherwise n = n + 1

and go to step 1.

The solution procedure starts with the initialization: setting all the penalty weights

equal to zero and other parameters to starting values. At every iteration, each subsystem

solves its local problem and updates the penalty weights, as shown in step1. For the

penalty weight updates, the subsystems need to reach a cooperative solution which

minimizes the conflict among them. The cooperative solution of subsystem i at nth

iteration can be calculated as follows:

(i) Substitute the solutions of other subsystms received at the end of the previous

iteration, 1−n
kty { } tiuk ,, −∈∀ , into the coupling constraints.

(ii) Then, solve the local problem by applying additional constraints that restrict the

coupled decision variables by n
ct

n
ijit rxa ≤ where n

ctr
{ }

))(,0max(1∑
−∈

−−=
iUk

n
ktt yc .

(iii) The resulted objective value is used as the lower bound, n
LBZ when the stepsize and

step length are updated.

To calculate step size, the conflicts among subsystems must be quantified as

∑∑
==

−=−
T

t

n
itit

n
ct

T

t

n
it

n
ct xaryr

1

2*

1

2*)()(where n
ctr

{ }
))(,0max(1∑

−∈

−−=
iUk

n
ktt yc . The conflicts are

interpreted as the locally measured amount of capacity violations when applying the

solutions of all the subsystems on the capacity constraints. For each violation on the

coupling constraints, the associated Lagrangian multiplers are updated using the step

size. The penalty weights are determined using the Lagrangian multipliers. Then, the

information vectors in the prescribed format are exchanged. Note that, at first iteration,

every subsystem solves its problem without outside information thus no penalty weights

will be calculated at the first iteration.

31

The iteration continues until the algorithm satisfies the predetermined stopping

criteria (step 2). In this research, three stopping criteria are applied: the algorithm stops

when (i) it achieves a compromised solution, (ii) the step length becomes small enough,

that is, nτ ≤ ε where ε is a predetermined positive real constant, or (iii) the number of the

direct interactions among subsystems reaches a predetermined value, n + 1 = N. A

compromised solution is the set of the subsystems’ solutions without any conflict

regarding the capacity of the facility; meaning, a solution is reached when there are no

violations on the capacity constraints, if the solution were applied to them. Thus, it is a

globally feasible solution even if it may not be globally optimal.

4. Experimental results

This section covers the experimental study used to investigate the performance of

DIPIS when solving distributed capacity allocation problems.

The proposed algorithm is tested on randomly generated problems using multiple

varying factors to examine what, if any, variations affect the performance of the

algorithm. The results are compared with the those of Lagrangian Relaxation (LR)

algorithm and CICA. The comparison with LR results is interesting for two reasons: (i)

the LR-based algorithm can use the system information without restrictions, (ii) the

master problem in the LR algorithm coordinates the subsystem solutions. The main

difference between DIPIS and CICA is the existence of third party mediation in the

algorithm. We expect to see the effect of that in the results.

4.1. Performance measures

Since DIPIS does not guarantee the global feasibility and the optimal convergence,

two performance measures are introduced to evaluate the quality of the solution: Percent

Deviation (PD) and Capacity Violation (CV) (Jeong and Leon, 2003).

PD indicates the closeness of the solutions to the optimal solution or best solution if

the optimal solution is not available.

32

(%)100PD *

*

×
−

=
Z

ZZ
 (3.10)

Here Z and *Z are the global objective value of DIPIS solution and the optimal solution,

respectively.

CV is proposed to show the degree of the capacity violation of the subsystems’

solutions as follows:

CV =
∑

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −⎥⎦

⎤
⎢⎣
⎡∑

=

= =

T

t
t

T

t
t

m

i
itit

c

cxa

1

1 1
,0max

 (3.11)

CV represents the ratio of the sum of excessive capacity to the total facility capacity.

Each measure can reveal only one aspect of the solution quality. For example, a

solution with a minimal PD but large CV may not be considered “good”. Therefore, the

quality of solutions must be evaluated using both measures.

4.2. Experiments

In this experimental study, distributed capacity allocation problems with two

subsystems in a single facility are considered. DIPIS algorithm stops when n = 100 or

step length εn ≤τ where 00001.0=ε .

The test problems are randomly generated by varying five factors: the number of time

intervals, profit of the products, processing times, demands, and capacity ratio per time

interval. Two levels of variances are considered per factor as follows (Jeong and Leon,

2003):

(i) The number of time intervals is 5 or 10.

(ii) The profits are randomly generated from the uniform distribution U(10,30) or

U(10,50).

(iii) The processing times are randomly generated from the uniform distribution

U(2,5) or U(2,10).

33

(iv) The demands are randomly generated from the uniform distribution U(300,

500) or U(300,600).

(v) The capacity ratio (E) is 1.0 or 1.1.

The capacity ratio represents the ratio of maximum available facility capacity to the

total demands of all subsystems. Setting the maximum available capacity to be greater

than or equal to total demands, meaning E ≥ 1.0, ensures that every problem considered

herein has at least one feasible solution. Therefore, 25 problem types are considered and

10 problem instances are generated per problem type, totaling 320 test problems. C

language is used to code the programs, and the subsystem problems in the LP

formulation are solved using Cplex.

Tables 1 and 2 show the PDs and CVs of DIPIS with the results of other solution

algorithms such as LR and CICA. Here the results of CICA are obtained from CICA-

WPCI setting which implies that the coupled autonomous organizations (CAOs)

recognize the maximum available capacity per time interval. For a fair comparison with

CICA, it would be appropriate to consider the solutions of both coupled autonomous

organizations and coupling agents (CA). This is because in DIPIS no third party

coordinating entity such as a coupling agent exists; instead, subsystems perform the roles

of both. The average PD and CV of the proposed algorithm are less than 2% and 3%,

respectively. As shown in Table 1, DIPIS results are better than LR, which is unexpected.

Note that LR is a centralized algorithm which can use more system information and

update Lagrangian multipliers with a globally feasible lowerbound. It is conjectured that

the number of subsystems is two, which is not sufficient to show the difference between

the distributed system model and the centralized system model. That is, the

distributedness of system information and decision entities appears to be too low.

Additionally, DIPIS finds 34 optimal solutions out of the 320 problems.

5. Conclusion

In this chapter, the capacity allocation problem in a distributed environment is studied

for the adaptability of the proposed distributed solution method in linear programming

34

formulation. To resolve the potential oscillation problem due to the LP formulation, a

convex combination rule proposed by Choi and Kim (1999) is revised to update the

Lagrangian multipliers in the DIPIS method.

The experimental results show that DIPIS works well for the 320 test problems. It

even outperforms the centralized algorithm LR which has more system information at

any given time. The conjectured reason is that the test system consists of only two

subsystems, the simplest distributed system setting. Additionally, the designs of a

Lagrangian multiplier update routine (which maximize the usefulness of global

coordination by the master problem) are expected to improve the performance of the LR

algorithm.

The capacity allocation problems in distributed systems with more than two

subsystems associated with multiple facilities are suggested as a direction for future

research. The results are believed to more precisely describe the performance of the

proposed algorithm.

Table 1 Comparison of PD results of DIPIS with LR and CICA

PD (%) DIPIS LR CICA – ORG CICA - CA
Min 0.00 0.00 0.00 0.06
Avg 1.76 4.08 2.61 8.70
Max 23.05 42.88 25.06 60.05

Table 2 Comparison of CV results of DIPIS with LR and CICA

CV (%) DIPIS LR CICA-ORG
Min 0.00 0.00 0.00
Avg 2.12 8.33 7.62
Max 31.71 42.72 45.38

35

CHAPTER IV

SINGLE-MACHINE DISTRIBUTED SCHEDULING USING DIRECT

INTERACTION FOR PARTIAL INFORMATION SHARING

1. Introduction

This chapter addresses a single-machine scheduling problem that arises in a

manufacturing system where the decision authorities and information are distributed in

multiple sub-production systems. The situation occurs in practice when multiple sub-

production systems must share a single-machine due to the limited production resources.

Although sub-production systems have distinct products for independent manufacturing,

some jobs require products be processed on a shared machine. Consequently, to find a

compromised schedule for using the shared machine, quasi-autonomous decision makers

in sub-production systems must consider interactions one another.

Direct Interaction for Partial Information Sharing (DIPIS), as proposed in Chapter II,

is applied to solve this problem. Direct interactions are established among sub-

production systems for sharing local information. During the interactions, only local

information limited to the jobs processed on the shared machine is exchanged. The

information must represent the needs of the sub-production system and supportive

evidence based on the local objective and constraints. Hence, the goal of optimizing the

schedule of the shared machine, as well as local sub-production objectives, is pursued.

The chapter is organized as follows. In section 2, the definition of a single-machine

distributed scheduling problem is introduced in a mathematical form with necessary

notations. Major issues of the problem are also described. A solution method using

DIPIS is represented in section 3. The experimental results and conclusion are

summarized in section 4.

36

2. A single-machine distributed scheduling problem

A single-machine distributed system consists of m sub-production systems that share

a machine in processing jobs. The problem is how to schedule sub-production jobs on

the shared machine in order to minimize a global objective in a linear function of job

completion times. Two characteristics denote this problem as distributed: (1) multiple

quasi-autonomous decision entities are involved in the problem solving, (2) there is only

partial information sharing allowed. The first condition means each sub-production

system has a decision maker that only schedules jobs within that sub-production system.

The second condition means that the job information of each sub-production system (e.g.

processing times, precedence relationships, etc.) is private and only non-private local

information is partially shared with other systems in pursuit of the global goal. For

example, in Figure 4, the local information about the jobs in the shaded box is shared

each other.

For clarity of the presentation and derivations, total weighted completion time is

examined as the objective function. Next, the notation is introduced for the mathematical

representations of the problem. We use the notation similar to the one proposed by

Pritsker et al. (1969) for IP formulation. Let T be the production planning horizon and

the decision variable is,

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise. ,0

.by time started has job if ,1 t j
x jt t = 1,..,T

The following notations are additionally used for the problem formulation:

sj = ∑
=

−
T

t
jtx

1

)1(: starting time of job j.

U: the set of all jobs that must process on the shared machine.

Ui: the set of jobs of sub-production system i. miUU i ,...,1 , =⊂

ii Un =

∑
=

==
m

i
inUN

1

pj: processing time of job j.

37

Figure 4 Single machine scheduling in a system of 3 production lines.

cj = sj + pj = ∑
=

−
T

t
jtx

1

)1(+ pj: completion time of job j.

(j, k): job j must precede job k.

wj: weight for unit completion time of job j.

Then, the mathematical model of the single-machine scheduling problem under study

is,

 Min ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

Uj
j

T

t
jtj pxw

1
)1((4.1)

St. 1,...,1 , 1 −=∀≥+ Ttjxx jtjt (4.2)

∑
+−

=

≥
1

1
1

jpT

t
jtx Nj ,...,1= (4.3)

Production line 1

Production line 2

Production line 3

Shared machine

38

() q

T

t
rtqt pxx ≥−∑

=1
 miUrqrq i ,...,1,,:),(=∈∀ (4.4)

∑
=

− ∀≤−
N

j
pjtjt txx

j
1

 1)((4.5)

Quasi-autonomy condition (4.6)

Partial Information Sharing (4.7)

{ } tjx jt ∀∀= , 1,0 (4.8)

The objective of the system (4.1) is to minimize the total sum of the weighted

completion times of all jobs processed on the shared machine. Constraint (4.2) implies

that, once started, a job remains started in all subsequent time periods. Constraint (4.3)

ensures that all the jobs can be finished within the production planning horizon. The

precedence constraint (4.4) implies that the interval of the starting times between job q

and job r must be at least pq in order to finish job q before job r starts processing. Note

that only the jobs in the same sub-production system are related by the precedence

constraints, thus grouping them per each sub-production system. Constraint (4.5) is the

capacity constraints of the shared machine, meaning that only one machine is available

for job processing through all the processing time slots. Multiple sub-production system

decision variables are included in these constraints. That is, multiple sub-production

systems are coupled by the capacity constraints. (4.6) and (4.7) are the conditions that

define the distributed system. Finally, Constraints (4.8) is for the declaration of the

binary integer decision variables.

In the distributed scheduling problem, jobs processed on the shared machine are

distributed among sub-production systems. So the local objective of sub-production

system i is to minimize the sum of the weighted completion time of its own jobs on the

shared machine, i.e. ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

iUj
j

T

t
jtj pxw

1
)1(. Sub-production system i recognizes only

the precedence constraints between its own jobs, () q

T

t
rtqt pxx ≥−∑

=1
 iUrqrq ∈∀ ,:),(.

39

These local precedence constraints are unknown to other sub-production systems. On the

other hand, capacity constraints (4.5) include the decision variables of multiple sub-

production systems. Each sub-production system can see its own decision variables and

the available capacity per time slot, i.e. txx
i

j
Uj

pjtjt ∀≤−∑
∈

− 1)(. With these partial

capacity constraints, the sub-production system problem can be solved independently.

But the resulting schedule may have conflicts because multiple sub-production systems

can claim the same time slots. The key issue is how to optimize sub-production systems’

local schedules without creating capacity violations. Consequently, the research problem

in this chapter is how to allocate jobs to time slots on a shared machine in order to

minimize the total weighted completion times using partial information sharing.

3. A Solution methodology using DIPIS

This section describes the solution procedures for applying DIPIS to the single-

machine distributed scheduling problem.

DIPIS relaxes the machine capacity constraints from the system problem and thus

decomposes it into m sub-production system problems. The sub-production system

problems do not have the machine capacity constraints. Instead, they include penalty

functions to reflect the machine capacity information as additional objectives. For this

purpose, the sub-production systems interact by exchanging local information vectors.

Figure 5 illustrates direct interactions among sub-production systems and the

information flows at nth iteration. Let St be the index-set of sub-production systems that

are coupled in the machine capacity constraint on time slot t. Sub-production system i

receives information vectors from sub-production system k where { }iSk t −∈ via direct

interactions. Let 1−n
kΓ be the set of time slots on the shared machine that sub-production

system k desires to use for its job processing at (n - 1)th iteration. The information vector

from sub-production system k consists of two components. This first is a solution

vector of sub-production system k’s scheduling problem composed of the desired time

40

Figure 5 Information flow in DIPIS model for a single machine distributed scheduling

problem with m sub-production systems.

slot t, where 1−∈ n
kΓt , of the shared machine for processing its jobs. The second is the

weight 1−n
ktα that sub-production system k claims as the penalty cost of taking time slot t.

Section 3.1 describes the sub-production system problem in mathematical

programming formulations. Section 3.2 explains the derivation of the penalty costs

exchanged among sub-production systems via direct interactions.

3.1. Sub-production system problems

The sub-production system problem is defined in two types of mathematical

programming formulations: 0/1 integer, and linear program formulation. In general, an

IP problem is better suited for the scheduling problems in terms of solution quality.

However, as the problem size increases the computation times increases exponentially.

The proposed LP heuristic is designed to solve the problem of large sizes with practical

computation times.

Sub-production
system 1

(SP1)

Sub-production
system i

(SPi)

Sub-production
system m

(SPm)

Sub-production
system k

(SPk)

…

……

),(1
1

1
1

−− n
t

n
ty α),(11 −− n

mt
n
mty α

),(1
1

1
1

−− n
t

n
ty α

),(11 −− n
it

n
ity α

),(11 −− n
it

n
ity α

),(11 −− n
it

n
ity α

),(11 −− n
mt

n
mty α

41

3.1.1 IP formulation

Using the same notations as in the previous section, the problem of sub-production

system i (SPi-IP) at nth iteration is formulated as follows:

 (SPi-IP): Min ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

iUj
j

T

t

n
jtj pxw

1
)1(+ ∑ ∑ ∑

−∈ Γ∈ ∈
−

−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

}{

1

1

)(
iSk t Uj

n
pjt

n
jt

n
kt

t
n
k i

j
xxα (4.9)

St. jtjt xx ≥+1 1,...,1 , −=∈∀ TtUj i (4.10)

 ∑
+−

=

≥
1

1
1

jpT

t
jtx iUj ∈∀ (4.11)

() q

T

t

n
rt

n
qt pxx ≥−∑

=1
 iUrqrq ∈∀ ,:),((4.12)

1)(≤−∑
∈

−
i

j
Uj

n
pjt

n
jt xx t∀ (4.13)

{ }1,0=n
jtx tj ∀∀ , (4.14)

In the second term of the objective function, ∑ −
∈

−
i

jUj

n
pjt

n
jt xx)(indicates if sub-

production system i desires to use time slot t. If penalty 1−n
ktα received from sub-

production system k is positive, that means sub-production system k also wants to use

the slot t. Thus, it indicates the potential schedule conflict between sub-production

systems i and k on time slot t. It costs 1−n
ktα for sub-production system i to take the time

slot. Therefore, the problem is to find a compromised solution that minimizes both the

schedule conflict with other sub-production systems and the local objective function.

Constraint (4.10) ensures the nonpreemptiveness of the solution schedule. Constraint

(4.11) implies that all jobs must be scheduled within the planning horizon. Constraint

(4.12) and (4.13) are the local precedence constraint and the local machine conflict

constraint, respectively.

Note that the second term of the objective function is the penalty function that

substitutes the Lagrangian relaxed machine capacity constraint function as follows:

42

⎟
⎠
⎞

⎜
⎝
⎛

∑ ∑ −−−
= ∈

−

m

k Uj

n
pjt

n
jt

n
t

k
j

xx
1

))((1θ (4.15)

where n
tθ is the Lagrangian multiplier of the machine capacity constraint on the time slot

t at nth iteration. The Lagrangian relaxation method needs complete sub-production

system information to calculate the global upperbound and update Lagrangian

multiplers. But job processing times are private sub-production system information here.

So, DIPIS is applied to find an alternative penalty function which can be formed using

only solutions of other systems, associated sub-production system penalties, and local

job information. Derivation of the penalty function using DIPIS is illustrated as follows:

⎟
⎠
⎞

⎜
⎝
⎛

∑ ∑ −−−
= ∈

−

m

k Uj

n
pjt

n
jt

n
t

k
j

xx
1

))((1θ ⎟
⎠
⎞

⎜
⎝
⎛

∑ −−∑−=
∈

−
∈ k

j
t Uj

n
pjt

n
jt

Sk

n
kt xx)(1θ

⎟
⎠
⎞

⎜
⎝
⎛

∑ −−∑−≈
∈

−
−∈

−

i
j

t Uj

n
pjt

n
jt

n
t

iSk

n
kt xxr)(

}{

1α (4.16)

where)))((1,0max(
}{

∑ ∑ −−=
−∈ ∈

−
iSk Uj

n
pjt

n
jt

n
t

t k
j

xxr . n
tr indicates the remaining machine

capacity on time slot t that sub-production system i can use without penalty at nth

iteration. By the solution vectors received via direct interactions, sub-production system

i can recognize which time slots are desired by sub-production sytem k and thus

determine n
tr . Here n

tθ is linearly approximated as ∑
∈ tSk

n
ktθ using the first order Taylor

expansion and n
ktθ is the partial penalty weight associated with the variations of local

objective and local constraints in sub-production system k. These partial terms can be

calculated by a central decision entity who does not exist in the system under study.

Therefore, each term n
ktθ is replace by the value, 1−n

ktα , which is locally determined by

each sub-production system at the end of the previous iteration. Note that, for the

subproblem of sub-production system i, its own term is set to zero and the resultant

penalty weight is ∑
−∈ }{iSk

n
kt

t

α . This is because the violations on the coupling constraints are

presumed to be incurred by other sub-production systems and thus each sub-production

system doesnot penalize itself.

43

In single-machine problems, n
tr can be either 0 or 1. If at least one sub-production

system other than sub-production system i desires to use time slot t for its job

processing, 1)))((
}{

≥∑ ∑ −
−∈ ∈

−
iSk Uj

n
pjt

n
jt

t k
j

xx and n
tr is 0. The associated penalty cost

is ∑
−∈

−

}{

1

iSk

n
kt

t

α . If no other sub-production system claims time slot t, n
tr is 1 and thus sub-

production system i can use time slot t without any penalty, i.e. 0
}{

1 =∑
−∈

−

iSk

n
kt

t

α . Therefore,

as shown in (4.7), the following form of the penalty function can represent both cases:

⎟
⎠
⎞

⎜
⎝
⎛

∑ −∑
∈

−
−∈

−

i
j

t Uj

n
pjt

n
jt

iSk

n
kt xx)(

}{

1α (4.17)

The algorithm based on 0/1 IP formulation of DIPIS is expected to show promising

performance dealing with single machine scheduling problems under partial information

sharing. This is akin to what the CICA model showed in similar problems with allowing

third party mediation (Jeong and Leon, 2005). However, IP formulation has limitations

in solving problems with large job set. As the number of jobs to schedule increases, the

computational efficiency deteriorates significantly, thus prohibiting practical

implementation of the proposed algorithm to industry-size problems. To resolve this

limitation, LP-CICA, LP version of CICA algorithm, was developed using LP relaxation

proposed by Dyer and Wolsey (1990) and tested. For more details about LP-CICA, refer

to appendix A. Similarly, here we introduce an efficient LP heuristic for the associated

scheduling problems.

3.1.2 LP Heuristic

This section describes an LP relaxed formulation and a feasibility restoration routine.

For LP relaxed formulation, we use notation similar to Dyer and Wolsey (1990) and

Uma and Wein (1998). First, let the decision variable yjt be newly defined as follows:

.,...,1 ,
otherwise. ,0

].1[interval timein the processed being is job if ,10
: Tt

t,t jy
y jt

jt =
⎩
⎨
⎧ +≤<

Then, the LP problem of sub-production system i (SPi-LP) is proposed as follows:

44

(SPi-LP): Min ∑
∈ iUj

n
jj cw + ∑ ∑

−∈ Γ∈

−

−}{

1

1

)(
iSk t

n
t

n
kt

t
n
k

Yα (4.18)

St. ∑
=

=
T

t
j

n
jt py

1
 iUj ∈∀ (4.19)

r
n
q

n
r pcc ≥− iUrqrq ∈∀ ,:),((4.20)

 1≤∑
∈ iUj

n
jty t∀ (4.21)

0
2

)
2
1(1

1
=∑ ++−

=

T

t

j
jt

j

n
j

p
yt

p
c iUj ∈∀ (4.22)

 0=∑−
∈ iUj

n
jt

n
t yY t∀ (4.23)

In the objective (4.18), the variable n
jc is used for the completion time of job j and

n
tY is for the occupancy of sub-production system i on the time slot t at nth iteration.

Constraint (4.19) ensures that job j be finished within the planning horizon. The

precedence constraint is shown in (4.20): the time interval between the completion times

of job q and r must be at least pr. Constraint (4.21) implies that the maximum available

machine capacity per time slot is one. Using the formula (4.22), the completion time of

job j is calculated. Note that, if the schedule for job j is nonpreemptive, (4.22) calculates

the exact completion time. If it is preemptive, it provides the average completion time of

the schedule. (4.23) defines n
tY to be total sum of the processing times requested by sub-

production system i on time slot t.

The main differences between the LP problem and IP problem originate from the

introduction of newly defined decision variables. The decision variables can now take

any fractional value in [0,1]. This implies that more than one job can be processed on the

same time slot. Accordingly, forcing the schedule to be nonpreemptive becomes less

meaningful. Hence, in the LP problem, nonpreemptive constraints are relaxed for further

improvement of the computational efficiency.

45

The resultant solution of SPi-LP can be a preemptive nonintegral schedule, making it

even locally infeasible. So, a feasibility restoration routine is needed to recover the

integrality and the nonpreemptiveness of the schedule. In this study, a simple post-

processing routine based on the completion time information from the SPi-LP schedule

is applied as follows:

Feasibility Restoration Routine.

Step 1. Sort jobs in the ascending order of the completion time.

Step 2. If two or more jobs have the same completion time, order them by WSPT rule. If

jobs are still tied, order them arbitrarily.

Step 3. Check the schedule overlap between adjacent jobs. If overlapping occurs, adjust

the starting time of the succeeding job to the completion time of the preceding job.

Step 4. Check if the last job finishes processing within the planning horizon. If not,

readjust the completion time of the last job so that the last job finishes by the

planning horizon. If overlapping occurs due to this adjustment, reset the

completion time of the preceding job by the starting time of the succeeding job.

Using the feasibility restoration routine proposed above, we can convert solutions of

SPi-LP to nonpreemptive integer schedules.

3.2. Updating the Lagrangian multiplier for the sub-production systems

In this section, we explain how to update the Lagrangian multipliers of machine

capacity constraints and calculate the penalty weights. For convenience of the

illustration, we use the notations for SPi-IP.

Let n
itθ be the Lagrangian multiplier for the machine capacity constraint on time slot t

calculated by sub-production system i at the end of nth iteration. n
itθ is updated using the

subgradient optimization method modified as follows to work under partial information:
n
itθ)))((,0max(1 ∑ −−−=

∈
−

−

i
jUj

n
pjt

n
jt

n
t

n
i

n
it xxrsθ (4.24)

⎜⎜
⎝

⎛
=

,1
,0

where n
tr

otherwise

forif 1
t

n
k SkΓt ∈∃∈ −

46

n
is

∑ ⎟
⎠
⎞

⎜
⎝
⎛

∑ −−

−
=

= ∈
−

T

t Uj

n
pjt

n
jt

n
t

n
c

n
i

n
i

i
j

xxr

ZZτ

1

2

)(
 (4.25)

pτ n
i

n
i ×= −1τ , 11if −− −>− n

c
n
i

n
c

n
i ZZZZ

1−= n
iτ , otherwise, (4.26)

where n
iZ is the local objective value of sub-production system i problem at nth iteration.

n
cZ is the local objective value of sub-production system i when the problem is further

restricted to minimize the schedule conflict with other sub-production systems. For

instance, when 1−∈ n
kΓt , then the time slot t is restricted in order that sub-production

system i cannot take the time slot for its schedule. Therefore, n
cZ is obtained when

restricting all 1−∈ n
kΓt { }iSk t −∈ for .

Note that the proposed Lagrangian multipliers update rule does not require a global

upper bound to update step size. As shown in (4.25), the local solutions n
iZ and n

cZ are

used to calculate the step size. n
c

n
i ZZ − tells the compromise level of sub-production

system i with other sub-production systems. If 0=− n
c

n
i ZZ , sub-production system i

schedules its jobs without using all the time slots desired by other sub-production

systems. Otherwise, Lagrangian multipliers are updated proportional to n
c

n
i ZZ − . As

shown in (4.26), step length is reduced when n
c

n
i ZZ − is not improved compared to the

previous iteration.

The next step is to determine the penalty weight using the updated Lagrangian

multipliers. The penalty weight n
itα represents the average cost increment incurred when

a new schedule is built without using time slot t. Consider a job j which is scheduled

from n
js + 1 to j

n
j ps + . The total cost increment incurred when sub-production system i

47

cannot use this time interval is ∑
+

+=

j
n
j

n
j

ps

st

n
it

1
θ . Then, the average cost increment in this time

interval is calculated as follows:

j

ps

st

n
it

n
it p

j
n
j

n
j

∑
=

+

+= 1
θ

α (4.27)

(4.27) is applied to n
itα for all the time slots scheduled for the jobs of sub-production

system i, i.e. n
iΓt ∈∀ .

3.3. DIPIS algorithm for single-machine distributed scheduling problems

In this section, DIPIS algorithm for a single-machine distributed scheduling problem

is summarized.

Initialization: Set the number of maximum interactions N.

Set { }=0
kΓ , 00 =ktα , 00 =is , 20 =iτ , tk,∀ and p, 0 < p < 1.

Set n = 1.

Step 1: Sub-production system’s problem. For i = 1,…,m.

Step 1.1: Solve the problem SPi-IP or SPi-LP and apply the feasibility

restoreation routine to find n
iΓ .

 Step 1.2: Calculate the step length n
iτ as shown in (4.26).

Step 1.3: Calculate the step size n
is as shown in (4.25).

Step 1.4: Update the Lagrangian multipliers n
itθ as shown in (4.24) t∀ .

Step 1.5: Calculate penalty weights n
itα , n

iΓt ∈∀ as shown in (4.27).

Step 1.6: Distribute the information vector (t , n
itα), n

iΓt ∈∀ to sub-production

system k, { }iSk t −∈∀ .

Step 2: If n = N or 1−= n
i

n
i ΓΓ i∀ , stop. Otherwise, n = n + 1 and go to step 1.

48

The solution procedure starts with the initialization: setting all the penalty weights

equal to zero and other parameters to starting values. At every iteration, each sub-

production system solves its local problem and updates the penalty weights, as shown in

step1. For the penalty weight updates, the sub-production systems need to reach a

cooperative solution which minimizes the schedule conflict on the shared machine one

another. The cooperative solution of subsystem i at nth iteration can be calculated as

follows:

a. For n
kΓt ∈∀ from sub-production system k, set 0=n

tr which means that

current sub-production system would not be able to schedule its jobs on
n
kΓt ∈∀ .

b. Then, solve the restricted problem by (i). The resulted objective value is used

as n
cZ for updating step size and step length.

To calculate step size (step 1.3), the conflict among sub-production systems is

quantified as the sum of capacity violations on all the time slots in the following form:

∑ ∑ −−
= ∈

−

T

t Uj

n
pjt

n
jt

n
t

i
j

xxr
1

2))((. For each violation on the coupling constraints, the associated

Lagrangian multiplers are updated using the step size (step 1.4). The penalty weights are

determined using the Lagrangian multipliers (step 1.5). Then, the information vectors in

the prescribed format are exchanged (step 1.6).

The iteration continues until the algorithm satisfies the predetermined stopping criteria

(step 2). In this research, two stopping criteria are applied: the algorithm stops when (i) it

achieves a converged solution, (ii) the number of the direct interactions reaches a

predetermined value, i.e. n + 1 = N. If a converged solution does not violate any of the

coupling constraints, it is a compromised solution; meaning, it is a globally feasible

solution even if it may not be globally optimal.

49

4. Experimental study

This section explains the experimental study used to investigate the performance of

DIPIS in single-machine distributed scheduling problems. Specifically, two experiments

are performed to test the proposed algorithm. The first experiment tests how the variance

of the problem factors affect the performance of DIPIS. The second focuses on the

computational efficiency of the algorithm, especially for large problems. The results are

compared to those of centralized algorithm. The algorithm is implemented using C

programming language. CPLEX is used to solve the sub-production system problems in

LP formulation.

In this experimental study, two performance measures are proposed to evaluate the

quality of DIPIS solutions: PD (Percent Deviation) and CV (Capacity Violation). PD is

calculated to examine the closeness of the solution after global feasibility restoration to

the global optimal solution.

(%)100PD *

*

×
−

=
Z

ZZ
 (4.28)

Here Z and *Z are the global objective value of DIPIS solution and the optimal solution,

respectively.

CV is designed to measure the capacity violations of the solutions of sub-production

systems before global feasibility restoration.

∑ ∑ ∑
= = ∈

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

T

t

m

k Uj
pjtjt

k

j
xx

1 1
1)(,0maxCV (4.29)

CV indicates the total excess of capacity by the solutions of the sub-production systems.

Finally, the computation times of DIPIS algorithm are examined and compared to the

results of centralized algorithm.to check the applicability to large size problems.

50

4.1. Experiment one

 This experiment considers three sub-production systems with one shared machine

problem. Each sub-production system has six jobs to be processed on the shared

machine.

The main purpose of this experiment is to explore the behavior of the proposed

algorithm according to the variations of the problem parameters. To do so, the

combinations of processing times and precedence level of jobs are considered as

follows:

(1) processing times generated from U(1,5) or U(1,10)

(2) three levels of the precedence relationships

In level 1, two jobs in each sub-production system are in a precedence relationship. In

level 2 and 3, three and four jobs are in the precedence relationship, respectively, The

problem types are classified by the combinations of the distribution of processing time

and the precedence level. For instance, ‘(1,5) level 1’ implies that processing times are

generated from U(1,5) and two jobs are in a precedence relation. Therefore, a total of 6

types of problems are examined in this experiment. The weight for completion time is

randomly generated from the discrete uniform distribution U(1,10). For each problem

type, 30 problems are generated and tested. We set a step parameter p = 0.75 that has

performed well empirically in distributed scheduling problems (Jeong and Leon, 2002).

Table 3 and 4 show the PD, CV, and computational times of DIPIS with step

parameter p = 0.75. The PD results in Table 3 illustrate that, on average, DIPIS yields

solutions less than 5% from optimal.

A statistical test is performed to identify if the variations in processing times affects

the solution quality of DIPIS. The first test hypotheses are as follows:

H0:)10,1(,)5,1(, PDPD μμ = and H1:)10,1(,)5,1(, PDPD μμ <

Here)5,1(,PDμ and)10,1(,PDμ denote the average PDs with the problems of the processing

times from U(1,5) and U(1,10), respectively. At significance level of 5 %, H0 is rejected

51

with p-value equal to 0.0195, meaning the difference between two PDs are statistically

significant.

The second hypotheses are designed for CV results as follows:

H0:)10,1(,)5,1(, CVCV μμ = and H1:)10,1(,)5,1(, CVCV μμ <

Here)5,1(,CVμ and)10,1(,CVμ are the average CVs with the problems of the processing times

from U(1,5) and U(1,10), respectively. At significance level of 5 %, H0 is rejected with

p-value equal to 0.0001. Test result tells that CVs are also significantly affected by the

variations in processing times. Especially, according to the results shown in Table 3,

average CVs are doubled when the variations in processing times are increased twice.

The purpose of the second statistical test is to examine the effect of the precedence

levels on the solution quality. The first test hypotheses are as follows:

H0: 3)5,1(,1)5,1(, levelPDlevelPD μμ = and H1: 3)5,1(,1)5,1(, levelPDlevelPD μμ <

Here 1)5,1(, levelPDμ and 3)5,1(, levelPDμ denote the average PDs with the problems of the

processing times from U(1,5) and the precedence level 1 and 3, respectively. At

significance level of 5 %, H0 is not rejected with p-value equal to 0.7402.

The next test hypotheses are as follows:

H0: 3)10,1(,1)10,1(, levelPDlevelPD μμ = and H1: 3)10,1(,1)10,1(, levelPDlevelPD μμ <

At significance level of 5 %, H0 is rejected with p-value equal to 0.0332.

The two hypotheses test results show that the variations in precedence level does not

change PDs significantly with low variations in processing times while it significantly

affects PDs with high variations in processing times.

In Table 4, the average computational times of the centralized algorithm and DIPIS

are compared. The results show that DIPIS solves all the problems in two minutes.

Because the sizes of the test problems in this experiment are small, absolute comparison

52

between two results is considered to be less meaningful. The same comparison for large

problem instances will be dealt in the next section.

Table 3 CV and PD results of DIPIS for small problem instances

Percent Deviation (PD) Capacity Violation (CV)
Problem type

Min avg Max Min Avg Max

(1,5) level 1 0.20 3.07 7.26 4 13.03 24

(1,5) level 2 0.30 2.92 7.11 4 15.03 29

(1,5) level 3 0.04 3.24 8.79 3 12.13 22

(1,10) level 1 0.50 3.21 8.00 7 27.30 51

(1,10) level 2 0.82 3.68 9.98 9 26.97 63

(1,10) level 3 0.77 4.53 9.74 9 24.77 49

Table 4 Computational times of DIPIS

Computational time (sec.)

DIPIS algorithm Problem type Optimal
solution Min Avg Max

(1,5) level 1 0.16 58.29 61.50 68.82

(1,5) level 2 0.17 59.81 61.78 70.02

(1,5) level 3 0.18 57.88 61.66 67.50

(1,10) level1 0.22 58.98 63.03 68.24

(1,10) level 2 0.25 60.99 67.50 89.82

(1,10) level 3 0.27 58.95 63.80 75.06

4.2. Experiment two

This section checks the practical applicability of DIPIS for solving large problem

instances.

53

The experiments herein consider 36 and 48 jobs. The processing times are randomly

generated from uniform distribution U(1,50) or U(1,100). Precedence level 2 is applied

to all the test problems, meaning half of jobs are related with the precedence constraints.

A total of seventy random problems are generated and tested.

Table 5 show the PD results for each problem type. The problem types are

represented by the combination of the number of jobs and the maximum processing time.

For example, ‘(36,50)’ implies that the problem instances are to schedule 36 jobs with

the processing times randomly generated from U(1,50). According to the results, DIPIS

generates the solutions within 6% of optimal. Note that these results are obtained under

partial information sharing and are thus encouraging.

As the processing times of jobs increase, computational efficiency of the centralized

problems in IP formulations significantly deteriorates (refer to Table 6). For example,

the centralized problems of 48 jobs with the processing times generated from U(1,100)

requre more than 4 hours while DIPIS solves the same type of the problems in less than

2 hours.

Figure 6 illustrates the exponential increase in the computational times of centralized

algorithm. Computational times of DIPIS also tend to increase but relatively small by

increases in the problem size.

5. Conclusion

This study explores the performance of DIPIS for various types of single-machine

scheduling problems. Besides the overall solution qualities of less than 6% from the

optimal solutions, comparably excellent performances in computational times make

DIPIS promising and competitive – especially for large problems.

Investigating various interaction mechanisms in a distributed system environment is

interesting and worth studying as future research.

54

Table 5 PD and CV results of DIPIS for large problem instances

Percent Deviation (PD) Capacity Violation (CV)
Problem type

Min avg Max Min Avg Max

(36, 50) 1.50 4.08 7.33 132 215.1 430

(36, 100) 1.29 5.22 22.04 288 481.45 734

(48, 50) 1.36 3.33 6.41 246 345.45 520

(48, 100)* 2.27 3.69 8.38 578 695.6 822
*due to excessive runtimes, only ten problems are tested in this type.

Table 6 Comparison of average computational times

Computational Times (sec.)

Optimal DIPIS Problem type

Min avg Max Min Avg Max

(36, 50) 66.39 141.68 307.19 336.27 409.50 549.17

(36, 100) 545.42 1109.7 2246.09 707.34 952.45 1222.6

(48, 50) 617.99 2039.75 4476.63 974.16 1311.01 1715.8

(48, 100)* 5903.53 17965.06 36874.34 2782.70 4311.27 5981.1
*due to excessive runtimes, only ten problems are tested in this type.

55

CPU Time Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

(36, 50) (36, 100) (48, 50) (48, 100)

(Jobs, Proc. Times)

Ti
m

e
(s

ec
.)

CPU-Optimal
CPU-DIPIS

Figure 6 Computational time comparison.

56

CHAPTER V

DISTRIBUTED JOBSHOP SCHEDULING USING DIRECT INTERACTION

FOR PARTIAL INFORMATION SHARING

1. Introduction

In jobshop manufacturing systems, multiple machines process jobs with multiple

operations. The scheduling problems associated with the jobshop systems are often too

complicated to be addressed by a centralized decision maker. Take the example of an

assembly plant for a product consisting of multiple parts. The parts manufactured on

different machine shops are assembled according to a predetermined sequence. What if

some parts are produced by subcontractors ? (Ure and Jaegersberg, 2005) The machine

shops of subcontractors must be managed separately by independent decision makers.

According to the local machine conditions (e.g. machine capacity, downtime, etc.), they

generate local production schedules. However, the parts must be delivered to the

assembly plant in order that the total assembly time can be minimized. A supervisor in

the assembly plant may not directly control the local information or local tasks of the

subcontractors.

Lagrangian relaxation has been studied by many researchers as an efficient

centralized decomposition method to jobshop scheduling problems (Roundy et al., 1991;

Gou et al., 1994). But to coordinate subproblem solutions within a global preference, the

master problem must be able to access local information without restriction. This is not

possible in the aforementioned scenario. Cooperative Interaction via Coupling Agents, a

distributed method proposed by Jeong and Leon (2002), has been applied to solve the

scheduling problems in a systems where there is only partial information sharing.

However, in CICA, third party entities (Coupling Agents) exist to guide subsystems in

finding compromised solutions.

57

In this chapter, DIPIS is applied to solve the distributed jobshop scheduling problems.

This method requires neither centralized coordination nor third party mediation. It uses

direct interactions among subsystems to share partial information.

The chapter is organized as follows: Section 2 presents the mathematical formulation

of the problem. The solution approach is described in section 3. Section 4 shows the

experimental results in tables with explanations. Finally, the conclusion appears in

section 5.

2. Problem statement

This section explains jobshop scheduling problems in a distributed system

environment.

General jobshop scheduling problems are described as follows: N jobs are to be

processed on m machines with the objective of minimizing sum of the weighted

completion times of jobs, subject to two constraints: (i) the operation sequence of each

job is prescribed; and (ii) each machine can process only one job at a time. (i) implies

precedence constraints for job operations and (ii) indicates machine capacity constraints.

An operation is denoted as the processing of a job on a machine. The completion of each

job requires m operations and the operation sequence is predetermined. The operation

sequences are not necessarily the same for all jobs. Each operation is non-preemptive

and can only be processed on a designated machine.

In this study, we consider a distributed jobshop system that consists of m subsystems.

Each subsystem possesses a unique machine to process one operation of each job. The

system information each subsystem has is restricted to only the processing times of N

operations on its machine and partial job operation sequences. From the partial operation

sequences, subsystems can identify which subsystem processings precede or follow their

job operations. The subproblem of each subsystem is to schedule the job operations it

processes in order to minimize the sum of the weighted completion times subject to the

machine capacity constraints. Subsystems also exchange partial local information to

58

achieve the global objective. As previously mentioned, this is the minimization of the

sum of the weighted completion times of the last operation in each job.

The decision variables are as follows:

sij : starting time of operation i of job j

cij : completion time of operation i of job j i

Cj : completion time of job j

In addition, the following notations are used to mathematically model the problem:

T: the production planning horizon

pij : processing time of job j on machine i, i = 1,…, m

wj: weight for unit completion time of job j

Aj : set of pairs of operations for job j constrained by precedence relations

(k, l): operation k must precede operation l

For convenience, ∑ ∑=
= =

m

i

N

j
ijpT

1 1
 in order to schedule all jobs. And the index i for an

operation also indicates the subsystem that has a machine for processing that operation.

The jobshop scheduling problem under study can be represented as follows:

Min ∑
=

N

j
jjCw

1
 (5.1)

St. ljkjlj pcc ≥− NjAlklk j ,...,1,,:),(=∈∀ (5.2)

 ijikij pcc ≥− ikijik pcc ≥−or mi ,...,1= j∀, (5.3)

ijj cC ≥ i∀ j∀, (5.4)

Quasi-autonomy condition (5.5)

Partial Information Sharing condition (5.6)

The system objective (5.1) is to minimize the total sum of the weighted completion

times of N jobs processed on m machines. The precedence constraint (5.2) implies that

the interval of the starting times between operation k and l of job j must be at least plj in

order to finish operation k before operation l starts processing. Note that two operations

of a job in the precedence relation are processed on different machines. Since each

59

machine belongs to a distinct subsystem, every precedence constraint associates two

subsystems and is considered to be a coupling constraint. Constraint (5.3) is the capacity

constraints of the machines, meaning that a machine can process only one job operation

at a time. Constraint (5.4) ensures that the completion time of a job be the time to finish

processing all its operations. In a distributed problem, this constraint is not applicable

because no subsystem knows completion times of all job operations. Associated with

constraint (5.4), the relationship between the global objective and subsystem objectives

is explained in the following section. (5.5) and (5.6) are the conditions that characterize

the distributed jobshop systems: (i) each subsystem has a quasi-autonomous decisiion

entity, (ii) and job processing times on a specific machine are private information only

known to the subsystem that owns the machine.

In the distributed jobshop system studied here, each subsystem has multiple

operations to process on its machine and generates a schedule by solving the local

subproblem. Then, partial information associated with the precedence relationships

among the operations of jobs is shared to optimize the global goal. Figure 7 shows the

disjunctive graph representation of the corresponding problem. The first and last nodes

are artificial, used for starting and ending respectively. Operations of the same color,

which are connected with conjunctive arcs, are in precedence relationships. Disjunctive

arcs link the operations that belong to the same subsystem for processing on one

machine. Here Okj represents the kth operation of job j where k = 1, 2, 3 and j = 1, 2, 3,

4.

To illustrate, let subsystem 1 be responsible for the processing the operations O11,

O22, O23, O34; subsystem 2 for O21, O32, O13, O24; and subsystem 3 for O31, O12,

O33, O14. Each subsystem determines the starting times of its operations without

schedule conflict on its own machine. However, schedule conflicts with other

subsystems may arise because no subsystem has control of the starting times of the

operations in other subsystems. For example, the schedule of subsystem 1 is in the order

of (O23, O11, O34, O22) and subsystem 2 in (O24, O32, O21, O13). Consider a pair of

operations in precedence relationships, (O13→O23). O23 is the first operation in the

60

current schedule of subsystem 1 and O13 the last operation of subsystem 2. Without

recognizing the completion time of O13 in subsystem 2, subsystem 1 may schedule the

starting time of O23 as early as possible to minimize the weighted completion time of

O23. If subsystems do not share schedule information, similar conflicts may occur

between all the pairs of operations in the precedence relationship, (O11→O21),

(O24→O34), and (O22→O32).

Therefore, the distributed jobshop problem is how to schedule the operations of jobs

in order to minimize the sum of the weighted completion times under partial information

sharing. Neither centralized coordination nor third party intervention is allowed to

resolve the conflicts among the schedules of the subsystems. Interactions among

subsystems are required to exchange local information in order to find solutions without

the precedence violation.

3. A Solution methodology using DIPIS

This section describes Direct Interaction for Partial Information Sharing (DIPIS)

methodology, proposed in Chapter II, to define the subsystem problem and solution

procedures.

In examinging the relationships between the global system objective and subsystems’

objectives, we consider the global objective, ∑
=

N

j
jjCw

1
,and the local objective of

subsystem i, ∑ −
=

N

j
ijijj rcw

1
)(. Since jw is known to all subsystems, we focus on the

relationships between completion times of a job and the operations of the job.

By definition, the completion time of a job indicates the time to finish the last

operation of the job. But the completion time of a job implicitly includes all the

processing information of the intermediate operations as well as the last operation. To

expand the completion time of a job using this intermediate information,

jC [] jmc≡)(...)(...)()(]1[][]1[][]1[]2[]1[jmjmjijijjj ccccccc −− −++−++−+= (5.7)

61

Figure 7 Disjunctive graph of the distributed jobshop problem with three subsystems.

Here [] jic means the completion time of the ith operation of job j. Because the ith

operation of job j can only be processed after the (i-1)th operation of job j are finished

processing, the completion time of the (i-1)th operation is equal to the ready time of the

ith operation, i.e. [] [] jiji cr 1−= . Note that [] 01 =jr for j∀ . The minimization of the

completion time of job j is equivalent to the minimization of the sum of the gap between

the completion time of the ith operation and its ready timefor i =1,…,m. Therefore, if a

subsystem can obtain the ready time information of its operations, the system objective

is represented as follows:

∑ ∑ −=∑ ∑ −=∑ ∑ −=∑
= == == ==

m

i

N

j
ijijj

N

j

m

i
ijijj

N

j

m

i
jijij

N

j
jj rcwrcwrcwCw

1 11 11 1
][][

1
)(min)(min)(min min

 (5.8)

Note that the last term means that the system objective can be represented as the sum of

m subsystems’ objectives.

Figure 8 shows direct interactions among subsystems and the information flows of

DIPIS model for a distributed jobshop problem. Through the interactions among

subsystems, partial local information associated with the precedence relations is

O11 O21 O31

O12 O22 O32

O14 O24 O34

O23O13

62

exchanged. Let 1−n
ijc and 1−n

ijs be the completion time and the starting time of operation i

of job j on a machine of subsystem i after (n-1)th iteration, respectively. 1−n
ijα and 1−n

ijβ

denote the Earliness and Tardiness (E/T) weights of starting operation i of job j one time

unit early and late from 1−n
ijs respectively. The information vector from subsystem i to

subsystem k that has the next operation of job j is),(11 −− n
ij

n
ijc α and the information vector

to subsystem l that has the preceding operation of job j is),(11 −− n
ij

n
ijs β . Note that 1−n

ijc is

used as the proposed ready time of the next operation of job j and 1−n
ijs as the proposed

due date of the previous operation of job j at nth iteration

Section 3.1 describes the subsystem problem in mathematical programming

formulation. In section 3.2, the procedure to calculate Earliness/Tardiness (E/T) weights

is explained in detail.

3.1. Subsystem problem (MSPi)

In this section, a mathematical formulation of the subsystem problem is introduced.

Because each subsystem has one machine to schedule the operations, the subsystem

problem is equivalent to a single-machine scheduling problem with n operations. We

define the problem in LP formulation, similar to that of Chapter IV. The main difference

between these two formulations is the relaxed constraints: the formulation in Chapter IV

relaxes the machine capacity constraint and the one defined here relaxes the precedence

constraints. The same feasibility restoration routine in Chapter IV is applied to recover

the integrality and nonpreemptiveness of the LP solutions.

First let decision variable yijt be defined as follows:

.,...,1 ,
otherwise. ,0

].1[interval timein the machineon processed being is job if ,10
: Tt

t,t ijy
y ijt

ijt =
⎩
⎨
⎧ +≤<

63

Figure 8 Information flows of DIPIS model for a distributed jobshop problem with m

subsystems.

Additionally, the following notations are used for the mathematical formulation of the

problem:

j
1th A Oij) (Olj, where iteration. nat machineon job of ready time : ∈= −n

lj
n

ij
n

ij crijr

j

1th A Okj) (Oij, where iteration. nat machineon job of date due : ∈= −n
lj

n
ij

n
ij sdijd

n
ij

n
ij

n
ij

n
ij

n
ij

n
ij dcLijL ΦΘ== - - iteration. nat machineon job of lateness : th

),0max(iteration. nat machineon job of earliness : th n

ij
n
ij

n
ij

n
ij cdij −=ΦΦ

),0max(iteration. nat machineon job of tardiness: n

ij
th n

ij
n
ij

n
ij dcij −=ΘΘ

Then, the machine problem of subsystem i (MSPi) is proposed as follows:

(MSPi): Min ∑ −
=

N

j

n
ij

n
ijj rcw

1
)(+ ∑ Θ

=

−
N

j

n
ij

n
kj

1

1β (5.9)

St. 0
2

)
2
1(1

1
=∑ ++−

=

T

t

ij
ijt

ij

n
ij

p
yt

p
c Nj ,...,1= (5.10)

ij
n

ij
n
ij prc +≥ j∀ (5.11)

Subsystem 1
(MSP1)

Subsystem i
(MSPi)

Subsystem m
(MSPm)

Subsystem k
(MSPk)

…

……

),(1
1

1
1

−− n
j

n
js β),(11 −− n

mj
n
mjc α

),(1
1

1
1

−− n
j

n
jc α

),(11 −− n
ij

n
ijs β

),(1
1

1
1

−− n
l

n
ls β

),(11 −− n
il

n
ilc α

),(11 −− n
ml

n
mls β

64

n
ij

n
ij

n
ij dcL =− j∀ (5.12)

0 =Φ+Θ− n
ij

n
ij

n
ijL j∀ (5.13)

∑ =
=

T

t
ij

n
ijt py

1
 j∀ (5.14)

1
1

≤∑
=

N

j

n
ijty Tt ,...,1= (5.15)

n
ijL unrestricted j∀ (5.16)

Note that, in the second term of the objective (5.9), 1−n
kjβ is applied when subsystem i

schedules job j on its machine later than the proposed due date of subsystem k, 1−= n
kj

n
ij sd ,

thus causing tardiness in the amount of n
kj

n
ij

n
ij sc −=Θ . Using the formula (5.10), the

completion time of job j on the machine of subsystem i is calculated. If there is a

nonpreemptive integral schedule of job j, (5.10) provides the exact completion time. If it

is preemptive, (5.10) provides the average completion time of the schedule. Constraint

(5.11) ensures that job j be scheduled after the previous operation of job j is finished

processing. (5.12) and (5.13) are used to determine tardiness. Through constraint (5.14),

job j is sure to be finished within the planning horizon. Constraint (5.15) implies that the

maximum available machine capacity per time slot is one. (5.16) means that lateness can

take a positive, zero, or negative value.

Suppose a central decision maker exists to apply traditional Lagrangian relaxation for

solving the current problem. Then, by relaxing the precedence constraints, the problem

can be decomposed into m machine subproblems. The objective of the LR subproblem

would be as follows:

Min ∑ −−∑ −
==

N

j
ijkjkj

N

j
ijijj csrcw

11
)()(θ (5.17)

kjs is the starting time of the operation k of job j on machine k where (Oij, Okj) jA∈ .

The second term is the function used to penalize the precedence violation if Oij is

scheduled later than the proposed completion time of Okj. However, in a distributed

65

system environment there is no central entity that can update Lagrangian multiplier kjθ

using a global upperbound. Simply, subsystem i does not have full information about

Okj and cannot control the schedule of Okj which belongs to subsystem k. DIPIS

proposes a new term that can be represented by the variables of subsystem i using partial

information received from subsystem k, as shown in (5.9). Detailed derivation of the

penalty weights associated with Lagrangian multipliers will be explained in the

following section.

 After solving MSPi, the feasibility restoration routine introduced in Chapter IV is

applied to obtain a non- preemptive integral schedule from the LP solution.

3.2. Derivation of the penalty weights

The local objective of subsystem i, (5.9), can be restated using the information

received from subsystem k,),(11 −− n
kj

n
kjs β , as follows:

∑ −
=

N

j

n
ij

n
ijj rcw

1
)(+ ∑ Θ

=

−
N

j

n
ij

n
kj

1

1β = ∑ −−∑ −
=

−−

=

N

j

n
ij

n
kj

n
kj

N

j

n
ij

n
ijj csrcw

1

11

1
)()(β (5.18)

The first term of the objective is a decomposed part of the global objective associated

with only the operations of subsystem i. The second term is introduced to minimize the

precedence violations between the operations that belong to different subsystems.

So, 1−n
kjβ should reflect the variation of the function ∑ −−

=

N

j
ijkjkj cs

1
)(θ for the violations

occurred when subsystem i schedules Oij tardier than the proposed starting time of Okj,

i.e. 1−> n
kj

n
ij sc . Note that in a distributed system environment, 1−n

kjβ can only be

approximated using partial local information at (n-1)th iteration. Therefore, the tardiness

weight 1−n
kjβ is proposed as follows:

1
1

1

*1

)(−

=

−
− =

∂

−∂
=

−

n
kj

sskj

ijkj
n
kjn

kj
n
kjkj

s
cs

θ
θ

β (5.19)

66

3.3. Updating the Lagrangian multiplier for the subsystems

Section 3.3 describes how to update Lagrangian multipliers using only the partial

information received from other subsystems.

Let n
ijθ be the Lagrangian multiplier for the precedence constraints between the pair

of operations, (Olj, Oij), of job j at nth iteration which is updated by subsystem i.

Given),(11 −− n
kj

n
kjs β , the subgradient optimization method is modified to calculate the

Lagrangian multipliers using only partial information:
n
ijθ))(,0max(11 n

ij
n
kj

n
i

n
ij cs −−= −− τθ (5.20)

()∑ −

−
=

=

−
N

j

n
ij

n
kj

n
UBi

n
i

n
in

i
cs

ZZ

1

21

,ψ
τ (5.21)

,1 pn
i

n
i ×= −ψψ 1

,
1

, if −− −>− n
UBi

n
i

n
UBi

n
i ZZZZ

1−= n
iψ Otherwise (5.22)

where n
iZ is the local objective value of subsystem i problem at nth iteration and n

UBiZ , is

the local objective value of an upperbound solution of subsystem i problem obtained

through the following routine.

Upperbound Calculation Routine.

Initialization. Identify the processing sequence of jobs from the schedule at nth iteration.

Step 1. Inform completion times of the operations to the subsystems associated with the

precedence constraints.

Step 2. Using the completion times received from other subsystems as new ready times of

the associated operations, check if the current schedule has any ready time

violations. If so, build a new schedule that observes the processing sequence

identified at initialization. Otherwise, keep the current schedule.

Step 3. If the current schedule does not violate any precedence constraints, check if other

subsystems also have schedules without ready time violations. If so, stop here and

67

calculate the local objective value with the current schedule. Otherwise, go to step

4.

Step 4. Check the cycle problem of the schedule. If the completion time of the last

operation in the processing sequence becomes greater than the planning horizon, it

implies that some operations of current processing sequence cause a cycle (or

cycles). Then, stop here and use 1
,
−n
UBiZ as n

UBiZ , . Otherwise, go to step 1.

From the routine described above, we can get a globally feasible local schedule even

though the objective value may not be good. Note that subsystems still exchange partial

local information for this purpose.

3.4. DIPIS algorithm for distributed jobshop scheduling problems

In this section, DIPIS algorithm for distributed jobshop scheduling problems is

summarized.

Initialization: Set the number of maximum interaction N.

Set, 00 =kjβ , 00 =iτ , 20 =iψ , jk,∀ where k = 1,…,m, j = 1,…,N

and p, 0 < p < 1. Set n = 1.

Step 1: Sub-production system’s problem. For i = 1,…,m.

Step 1.1: Solve the problem MSPi and apply feasibility restoreation routine to find

 n
ijs , n

ijc .

Step 1.2: Calculate the step length n
iψ as shown in (5.22).

Step 1.3: Calculate the step size n
iτ as shown in (5.21).

Step 1.4: Update the Lagrangian multipliers n
ijθ as shown in (5.20) j∀ .

Step 1.5: Calculate penalty weights n
ijβ , j∀ as shown in (5.19).

Step 1.6: Distribute the information vector),(n
ij

n
ijs β to subsystem l, where

(Olj,Oij) jA∈ and)0,(n
ijc to subsystem k, (Oij, Okj) jA∈ . j∀ .

Step 2: If n = N or 1−= n
ij

n
ij cc for ji,∀ , stop. Otherwise, n = n + 1 and go to step 1.

68

The solution procedure starts with the initialization: setting all the penalty weights

equal to zero and other parameters to starting values. At every iteration, each subsystem

solves its local problem and updates the penalty weights, as shown in step1. For the

penalty weight updates, the subsystems need a cooperative solution which will not

violate the precedence constraints when applied to them. The cooperative solution of

subsystem i at nth iteration can be calculated using the upperbound calculation routine in

section 3.3. The objective value of this solution is used as n
UBiZ , for updating step size

and step length (step 1.2 and 1.3).

To calculate step size (step 1.3), precedence violations are quantified as the sum of

difference between the completion time of the operations in the current subsystem and

the starting time of their successors, i.e. ()∑ −
=

−
N

j

n
ij

n
kj cs

1

21 for (Oij, Okj) jA∈ , j∀ . For each

of the precedence constraints, the associated Lagrangian multiplers are updated using the

step size (step 1.4). The penalty weights are determined using the Lagrangian multipliers

(step 1.5). Then, the information vectors in the prescribed format are sent to the coupled

subsystems (step 1.6).

The iteration continues until the algorithm satisfies the predetermined stopping criteria

(step 2). In this research, two stopping criteria are applied: the algorithm stops when (i) it

achieves a converged solution, (ii) the number of the direct interactions reaches a

predetermined value, i.e. n + 1 = N. The converged solution means the completion times

of the operations in all jobs do not change iteration by the iteration. If a converged

solution does not violate any of the precedence constraints, it is a compromised solution;

meaning, it is a globally feasible solution even if it may not be globally optimal.

4. Experimental results

This section explains the experimental study used to investigate the performance of

DIPIS for solving the distributed jobshop scheduling problems. The algorithm is

69

implemented using C programming language. CPLEX is used to solve the subsystem

problems in LP formulation.

As performance measures to evaluate the quality of DIPIS solutions, Percent

Deviation (PD) and Precedence Violation (PV) are used. PD is calculated to examine the

closeness of the solution after global feasibility restoration to the optimal solution, or the

best solution if an optimal solution is not available.

(%)100PD *

*

×
−

=
Z

ZZ
 (5.23)

Here Z and *Z are the global objective value of the DIPIS solution and the optimal

solution, respectively.

Subsystems solve machine problems with relaxed precedence constraints using

starting times and completion times received from other subsystems. Therefore the

degree of precedence violations in subsystems’ solutions before global feasibility

restoration is a good indicator of performance.

PV =
()()

(%)100
,0max

×
∑ −
∀

T

sc
j

kjij

 where (Oij, Okj) ∈ Aj (5.24)

Finally, computation times of DIPIS are presented to check the efficiency of the

algorithm.

4.1. Experiments

This study describes the experimental results of DIPIS for solving jobshop scheduling

problems under partial information. DIPIS solutions are compared to the non-delay

schedule generated by applying the WSPT rule given all the job processing times for job

priorities. The jobshop problems are NP-hard, thus difficult to get the optimals.

Alternatively, WSPT results are used for the comparison in this experimental study.

WSPT rule is known to work well for a scheduling problem with the objective of total

weighted completion times (Pinedo, 1995).

70

The jobshop problem of scheduling twenty jobs on five machines is tested for

investigating the performance of the proposed algorithm. The problem data are

generated as follows:

(i) Weights are randomly generated from uniform distribution U(1,20).

(ii) The processing times are randomly generated from U(1,100).

Two types of problems are examined. The problem types are classified by the

characteristic of the operation sequences. Problem type 1 (P1) has a special routing

structure: machines are divided into two groups. The machines in group one are

designated for the first two operations of jobs and the ones in the other group for the

later three operations. In problem type 2 (P2), the operation sequences of jobs is

randomly generated, i.e. the operations of each order are randomly distributed to all

machines. Ten instances are generated and tested for each type.

Table 7 shows the PD results of DIPIS algorithm. Due to the complexity of jobshop

problems, optimal solutions of the test problems are not available. Instead, PD measures

the closeness of the solution to the WSPT nondelay solution. The results show that

DIPIS has the solutions with less than 6% of average deviations. In some problem

instances, DIPIS generates better solutions than WSPT.

Two hypothesis tests are performed to identify if the variations in operation

sequences affect the performance of the proposed algorithm. The first test hypotheses are

as follows:

H0: 1,,1,, PWSPTPDPDIPISPD μμ = and H1: 1,,1,, PWSPTPDPDIPISPD μμ >

Here 1,, PDIPISPDμ and 1,, PWSPTPDμ denote the average PDs of DIPIS and WSPT when solving

P1 instances, respectively. At significance level of 5 %, H0 is not rejected with p-value

equal to 0.2688. This means there is no difference in the average PDs between the two

algorithms.

The next test hypotheses are as follows:

H0: 2,,2,, PWSPTPDPDIPISPD μμ = and H1: 2,,2,, PWSPTPDPDIPISPD μμ >

71

Here 2,, PDIPISPDμ and 2,, PWSPTPDμ denote the average PDs of DIPIS and WSPT when

solving P2 instances, respectively. At significance level of 5 %, H0 is rejected with p-

value equal to 0.0389. This tells us that, for the random routing problems, WSPT works

better than DIPIS.

Table 7 also shows the PV results which represent the degree of precedence

violations. For both problem types, PV is less than 2% which is considered small.

Table 8 reports the computational times of DIPIS for solving the jobshop scheduling

problems. A statistical test is performed to check if the variations in the operation

sequence affect the computational times of DIPIS. The hypotheses are as follows:

H0: 2,.1,. PTimeCompPTimeComp μμ = and H1: 2,.1,. PTimeCompPTimeComp μμ >

At significance level of 5 %, H0 is not rejected. The result means that the difference

between the average computational times for two problem types is not statistically

significant (p-value = 0.7693). Therefore, the computational efficiency of the proposed

algorithm is not affected by the difference in the operation sequence types.

5. Conclusions

In this chapter, DIPIS is applied to jobshop scheduling problems in a distributed

system consisting of multiple subsystems. Each subsystem is responsible for the

scheduling of jobs on its own machine. The local processing information of each

subsystem is considered private and is not exposed to other subsystems. Using direct

interaction among subsystems, partial information is exchanged for the optimization of

the global objective (represented by the sum of the subsystems’ local objectives). The

experiment results show that DIPIS generates competitive solutions within less than 6%

worse than WSPT results. Considering that the proposed algorithm solves the problems

under conditions of partial information sharing and no central coordination, the

performance of DIPIS is encouraging.

72

Table 7 PD and PV results of DIPIS algorithm for Jobshop problems
DIPIS algorithm

PD (%) PV (%) PROBLEM
TYPE

Min Avg Max Min Avg Max

P1 -4.11 2.13 11.63 0 0.76 7.58
P2 -4.72 5.37 22.02 0 1.57 9.90

Table 8 Computational results of the DIPIS algorithm
DIPIS algorithm

COMPUTATIONAL TIMES (SEC.) PROBLEM
TYPE

MIN. AVG. MAX.
P1 802.33 1031.74 1753.28
P2 860.64 1063.66 1333.70

73

CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

1. Conclusions

The purpose of this dissertation is to develop a general solution methodology for

solving optimization problems in a distributed system environment where decision

making authorities and system information are distributed among multiple subsystems.

No central decision making activity is involved in the optimization procedure. Instead,

the subsystems cooperate to achieve the system goal as well as the local subsystem

goals. The local information of the subsystems is not fully exposed to one another but

partial information sharing occurs among subsystems for system optimization.

Direct Interaction for Partial Information Sharing (DIPIS) is proposed to model the

aforementioned distributed system and solve the associated optimization problems.

Direct interactions are established among subsystems for partial information sharing

associated with coupling constraints in order to find a compromised system solution. The

proposed solution method is based on Lagrangian Relaxation method modified to work

without global system control or complete system information. Chapter II describes the

mathematical model of DIPIS, interaction mechanism for partial information sharing,

and the information format. Detailed solution procedures are explained with the

associated formulas.

In Chapter III, distributed capacity allocation problems are explored as an application

of DIPIS. The purpose of this study is to investigate the performance of the proposed

method for solving problems in LP model. The convex combination rule proposed by

Choi and Kim (1999) is used to resolve the issue of the solution oscillation in LP model.

The experimental results show that DIPIS outperforms CICA and LR in the distributed

capacity allocation problems with two subsystems and one facility. Even though more

extensive experiments involving an increased number of subsystems is necessary, the

74

results are encouraging; DIPIS performs competitively under partial information without

central or third party coordination for achieving the global goal.

Single-machine distributed scheduling problems are presented in Chapter IV as the

second application. Two types of mathematical formulations are introduced: IP and LP.

The IP model, as previously pointed out in CICA model, reveals a limitation in solving

the problems of large size; i.e. as the number of jobs and the processing times increase,

the computational times increase exponentially. The main contribution of this chapter is

the development of the heuristic based on LP model. The results show that the

performance of DIPIS with LP heuristic is promising. Computational times are

considerably smaller compared to the centralized algorithm while maintaining the

solution quality within on average 6 % from the optimal.

The final application of the research is the distributed jobshop scheduling problem.

Whereas the proposed solution model appears to be similar to the traditional machine

decomposition method, the local job processing information on each machine in DIPIS

model is independently managed without being fully exposed to any other entity. For a

globally feasible schedule, partial solutions and the associated weights are exchanged in

predetermined format. In the experiments, two types of problems classified by the

characteristic of the operation sequences are tested and compared with a centralized

WSPT non-delay schedule. The results indicate that DIPIS performs well by generating

the solutions within 6 % of average deviation from WSPT values.

2. Future research

This section presents other issues in the current research and the direction of future

research.

In this research, the subsystems participating in the global system optimization

directly interact for partial information sharing by the predetermined time schedule,

which is called synchronous interaction. However, this type of interaction may not fit all

the real-world cases. As the number of subsystems increases, the degree of the

distributedness of the global system information and decision making authorities

75

increases as well; then, it would become more difficult to synchronize all the interactions

among the participating subsystems because each subsystem manages different local

tasks and schedules according to the local system condition. Enforcing synchronous

interactions under this situation requires more restricted interaction rules, which may

deteriorate the performance of subsystems and, in the worst case, the global system goal.

Alternatively, a more flexible interaction method where any subsystem can initiate the

interaction process in its preference would be more advantageous. This type of

interaction is called asynchronous interaction. Therefore, asynchronous interaction is an

interesting topic for future research.

In scheduling applications, we proposed LP heuristic to improve the computational

efficiency of the solution method as an alternative of IP model. As expected, the

heuristic was effective in reducing the computational times, especially for solving the

larger problems. However, from the aspect of the solution quality, LP heuristic may not

be considered superior to IP model. For example, if using IP, we can always find the

local optimum, while LP heuristic provides an approximate solution. Even though the

local optimum is not always favorable from the global viewpoint, it is still a good

candidate of the global optimum. Another reason is that the heuristic may lose some of

the system information due to the approximation steps. Therefore, the development of a

model that can fully use the system information (as much as received) and then provide

the best intermediate solution will be a desirable direction for future research.

The global feasibility of the distributed solution, as mentioned in Jeong (2001), is also

an important issue for applying the proposed method to real-world problems. Global

feasibility is difficult to achieve without the global view of the system or the centralized

control of the system information.

76

 REFERENCES

Benders, J. R. (1962) Partitioning procedure for solving mixed variables programming

problems. Numerische Mathematik, 4, 238-252.

Bertsekas, D. P. (1988) The auction algorithm : a distributed relaxation method for the

assignment problems. Annals of Operations Research, 14, 105-123.

Bertsekas, D. P. (1990) The auction algorithm for assignment and other network flow

problems: a tutorial. Interface, 20(4), 133-149.

Bertsekas, D. P. and Tsitsiklis, J. N. (1989) Parallel And Distributed Computation:

Numerical Methods, Prentice-Hall., Englewood Cliffs, NJ.

Choi G. and Kim C. (1999) Primal recovery strategy for Lagrangian dual subgradient-

based methods, Proceedings of the 99’ Spring Conference of The Korean Institute of

Industrial Engineers /Korean Operation Research and Management Science Society,

Korea, 313-314.

Dantzig G. B. and Wolfe P. (1961) The decomposition algorithm for linear programs.

Econometrica, 29, 767-778.

Davis, R. and Smith, R. G. (1983) Negotiation as a metaphor for distributed problem

solving. Artificial Intelligence, 20, 63-109.

Duffie, N. A. and Prabhu, V. V. (1994) Real-time distributed scheduling of heterarchical

manufacturing systems. Journal of Manufacturing Systems, 13(2), 94-107.

Ertogral, K. and Wu S. D. (2000) Auction-theoretic coordination of production planning

in the supply chain. IIE Transactions, 32, 931-940.

Fisher, M. (1981) The Lagrangian Relaxation method for solving integer programming

problems. Management Science, 27, 1-18.

Fox, M. S. and Smith, S. F. (1984) ISIS-a knowledge-based system for factory

scheduling. Expert System, 1(1) 25-48.

Gou, L., Hasegawa, T. and Luh, P. B. (1994) Holonic planning and scheduling for a

robotic assembly Testbed, Proceedings of the 4th Rensselaer International

Conference on Computer Integrated Manufacturing and Automation Technology,

Troy, NY, 142-149.

77

Guo, Z., Koehler G. J., and Whinston A. B. (2002) Market-based optimization

algorithms for distributed systems. Working paper, Department of Management

Science and Information Systems, The University of Texas at Austin.

Jeong, I-J (2001) Cooperative interaction of distributed organizations via coupling

agents: a methodology and applications. Ph.D. Dissertation. Industrial Engineering,

Texas A&M University, College Station.

Jeong, I-J and Leon, V. J. (2002) Decision making and cooperative interaction via

coupling agents in organizationally distributed systems. IIE Transactions - Special

Issue on Large Scale Optimization, 34, 789-802.

Jeong, I-J and Leon, V. J. (2003) Distributed allocation of capacity of a single-

facility using cooperative interaction via coupling agents. International Journal of

Production Research, 1(1), 15-30.

Jeong, I-J and Leon, V. J. (2005) A single-machine distributed scheduling methodology

using cooperative interaction via coupling agents. IIE Transactions, 37(2), 37-152.

Kate, A. T. (1972) Decomposition of linear program by direct distribution.

Econometrica, 40(5), 883-898.

Kutanoglu, E. and Wu S. D. (1999) On combinatorial auction and Lagrangian

Relaxation for distributed resource scheduling. IIE Transactions, 31(9), 813-826.

Lin, G. Y. and Solberg, J. J. (1992) Integrated shop floor control using autonomous

agents. IIE Transactions, 24(3), 57-71.

Murphy L., Contreras J., and Wu F. (1995) A decomposition-coordination approach for

large-scale optimization, Proceedings SIAM Conference on Parallel Processing for

Scientific Computing, San Francisco, CA, 78-83.

Pinedo, M. (1995) Scheduling: Theory, Algorithms and Systems, Prentice-Hall.,

Englewood Cliffs, NJ.

Roundy, R. D., Maxwell, W. L., Herer, Y. T., Tayur, S. R. and Getzler, A. W. (1991) A

price-directed approach to real-time scheduling of manufacturing operations. IIE

Transactions, 23, 149-160.

78

Sherali, H. and Choi, G. (1996) Recovery of primal solutions when using subgradient

optimization methods to solve Lagrangian duals of linear programs. Operations

Research Letters, 19, 105-113.

Smith, S. F., Ow, P. S., Potvin, J. Y., Muscettola, N., and Matthys, D. C. (1990) An

integrated framework for generating and revising factory schedule. Journal of the

Operations Research Society, 41, 539-552.

Sycara, K., Roth, S., Sadeh N., and Fox M. S.(1991) Distributed constrained heuristic

search. IEEE Transactions On Systems Man and Cybernetics, 21(6), 1446-1461.

Talukdar, S., Baerentzen L., Gove A. and de Souza, P. (1998) Asynchronous teams:

cooperation schemes for autonomous agents. Journal of Heuristics, 4(4), 295-321.

Ure, J. and Jaegersberg, G. (2005) Invisible Architecture -The Benefits Of Aligning

People, Processes And Technology: Case Studies For System Designers And

Managers, British Computer Society, UK.

Wellman, M. P., Walsh, W. E., Wurman, P. R. and MacKie-Mason, J. K. (2001) Auction

protocols for decentralized scheduling. Games and Economic Behavior, 35, 271-303.

79

 APPENDIX

LP-CICA – HEURISTIC TO IMPROVE COMPUTATIONAL TIMES OF

SINGLE-MACHINE DISTRIBUTED SCHEDULING PROBLEMS

The appexdix introduces LP-CICA, LP heuristic developed for CICA method to solve

a single-machine distributed scheduling problem of large size in practical times.

A.1. Introduction

We consider a single machine scheduling problem where autonomous decision

makers exist in each of multiple sub-production systems. Sub-production systems

independently maintain their own jobs to schedule while communicating with each other

to pursue a global goal of minimizing total weighted completion times of the jobs. The

primary assumption is that none of the sub-production system and shared machine has

complete knowledge about the entire system. Cooperative Interaction via Coupling

Agents (CICA) methodology was proposed to apply to the described scheduling

problems and tested with small size of jobs. Although CICA algorithm generated

promising results, it also showed the limitation to deal with the problems with large size

of jobs. Thus, we develop a heuristic to efficiently solve the established single machine

scheduling problems, i.e. reduce the computational time in a practical range even for the

problems of large job sets. The heuristic is developed based on LP relaxation

formulation of the associated single machine scheduling problems, modifying to

specifically address the current problem. The experimental results show significant

improvement in computational time with still maintaining the solution qualities in

reasonable levels.

A.2. Motivation

A distributed scheduling problem is a problem where the decision authorities and

information are distributed in multiple sub-production systems and no complete

80

information sharing is achievable among the sub-production systems. Thus, centralized

solution methodologies to optimize the problem with one complicated model are hardly

applicable or not recommended due to the implementation issues such as unrealistic

computational times to solve the problem. In lieu of this, alternative distributed solution

methodologies have been actively studied among OR, Computer Science and Artificial

Intelligence researchers [4, 10].

Cooperative Interaction via Coupling Agents (CICA) has been developed by Jeong

and Leon [4] to deal with the distributed problems in an appropriate manner. CICA is

based on Lagrangian Relaxation (LR) with modifications to reduce the amount of global

information required for its application. CICA and LR differ in the way coupling

constraints can be relaxed, and the information sharing associated with coupling

constraints. Specifically, in the CICA model, decision agents termed Coupling Agents

(CA) manage coupling constraints to reach compromise among the solutions of

separable sub-problems which are associated with quasi-autonomous agents termed

Coupled Autonomous Organizations (CAO). This is a major difference of CICA from

LR in which all coupling constraints are dealt by a single decision entity [4].

In this paper, a heuristic, termed LP Relaxed CICA (LP-CICA), is proposed to solve

problems of realistic size in practical times. A significant limitation of the CICA

formulation proposed in Jeong and Leon [5] is that the computational times required to

solve large problems prohibitively increase as the number of jobs increases. LP-CICA

utilizes LP relaxation formulation proposed by Dyer and Wolsey [2] to apply CICA

methodology to the current distributed scheduling problems. However, by applying

CICA methodology to the scheduling problems with a linear function of completion

times, the resultant problems turn out to be earliness/tardiness (E/T) scheduling

problems. Consequently, in LP-CICA formulations, new constraints are inevitably

introduced into the formulations proposed by Dyer and Wolsey [2] so that LP-CICA

manages corresponding E/T scheduling problems in an appropriate manner.

The primary differences between CICA formulation and LP-CICA formulation are

the integrality relaxation of the 0/1 decision variables and the relaxation of the non-

81

preemptive constraints. Thus, the performance of LP-CICA is expected to be better than

CICA from the standpoint of the computational times.

A.3. Single Machine Distributed Scheduling

We consider a manufacturing facility that has m sub-production systems and a shared

machine. Let U be the set of all jobs in the facility and Ui , a subset of U, that comprises

jobs in sub-production system i, where |Ui| = ni , i = 1,…,m. It is assumed that the job

subsets are disjoint so that the shared machine processes total of N = |U| ∑=
=

m

1i
in jobs. The

goal in this study is to schedule N jobs on the shared machine to minimize total weighted

completion times in a distributed manner. What meant by ‘distributed’ is that (1) there

exists a decision maker in the sub-production system i who can authorize only the

schedule of its ni jobs and the relevant information, (2) each sub-production system and

the shared machine can exchange only partial information (for a more complete

description of this, the reader is referred to [4, 5, 10]).

Using notation similar to the one in Dyer and Wolsey [2] and Uma and Wein [14], let

T denote the planning horizon and the decision variable xjt be defined as,

.,...,1 ,
otherwise. ,0

. timein the processed being is job if ,1
Tt

1]t[t, period j
x jt =

⎩
⎨
⎧ +

=

Associated with job j are the processing time pj, start time sj ∑ −+=
=

T

t

j
jt

j

p
xt

p 1 2
)

2
1(1 ,

completion time Cj = jj ps + ∑ ++=
=

T

t

j
jt

j

p
xt

p 1 2
)

2
1(1 and the weight per unit of

completion time wj.

The machine capacity constraints are introduced as ,1≤∑
∈Uj

jtx Tt ,...,1 = so that the

maximum number of jobs that can be processed in any time slot must be less than or

equal to one. And the precedence constraints between jobs in the sub-production system

are also considered in this problem. If job q precedes job r where iUq ∈ and iUr ∈ , then the

82

precedence relation is shown as (q, r). Now the precedence constraints are represented as

,,:),(, irqr UrqrqpCC ∈∀≥− mi ,...,1= .

As mentioned earlier, the problem of concern here is considered as distributed

scheduling instance. Sub-production system i can recognize the partial objective function

terms ∑
∈ iUj

jjCw , and capacity constraints, precedence constraints associated with

jobs iUj ∈ . Naturally the schedule claimed by the sub-production system i may have

machine conflict with schedules claimed by other sub-production systems ik ≠ .

Therefore, the main question is how to generate the schedule of jobs Uj ∈ on the shared

machine without capacity violation under partial information sharing.

A.4. LP relaxed CICA

The problem is formulated by CICA model proposed by Jeong and Leon [4], as

shown in Fig. A.1. Associated with the shared machine there is a problem (MP), and

associated with each sub-production system there is a problem (SPi). Sub-production

systems communicate with the shared machine by exchanging information triplets

during an iterative process. At iteration n, the information from (MP) to (SPi) consists

of a triplet formed by a solution vector of a scheduling problem 1n
yjS − , and weight

vector 1n
j
−μ , 1n

j
−π that represent the starting time of job j determined by the shared

machine, and the costs of shifting job j one unit left/right from its position in 1n
yjS − ,

respectively. Similarly, the information from (SPi) to (MP) consists of a solution

vector n
xjS , weight vector n

jα , n
jβ , determined by the sub-production system. For further

information on CICA solution methodology, the reader is referred to [4, 5].

83

Fig. A 1 CICA model for a single machine problem [5]

The following two sections describe the problem formulations for the shared machine

and the sub-production systems. Section A.4.1 describes LP relaxed CICA and its

feasibility restoration procedure to recover the integrality and non-preemptiveness of the

solution.

A.4.1. CICA formulation for sub-production system

Let 1−n
yjs and 1−n

yjC be the starting time and the completion time of job j determined by

the shared machine after (n-1)th iteration, respectively. Note the subscript y indicates that

the information is specified by the shared machine. 1−n
jμ and 1−n

jπ are the

earliness/tardiness (E/T) weights by starting job j one unit early/late from 1−n
yjs . Then the

problem of sub-production system i (SPi) at nth iteration can be formulated as follows:

SPi: Min ∑∑∑
∈

−

∈

−

∈

Γ++
iii Uj

n
j

n
j

Uj

n
j

n
j

Uj
jj ECw 11 πμ (A.1)

 St. ,
1

∑
=

=
T

t
jjt px iUj ∈ (A.2)

(MP): Shared Machine
Problem

n
i

n
i

n
xi ,α,s β

(SPi):
Sub-production System i

Problem

(SPm)

1n
j

1n
j

1n
jy π,μ,s −−−

(SP1)

84

 ,1∑
∈

≤
iUj

jtx Tt ,...,1= (A.3)

,rqr pCC ≥− iUrqrq ∈∀ ,:),((A.4)

,)
2
1(1

2 1
∑ ++=
=

T

t
jt

j

j
j xt

p
p

C iUj ∈∀ (A.5)

,1 n
j

n
j

n
yjj ECC −Γ=− − iUj ∈∀ (A.6)

,0≤Θ⋅− j
n
j TE iUj ∈∀ (A.7)

,TT j
n
j ≤Θ⋅+Γ iUj ∈∀ (A.8)

,jj pC ≥ iUj ∈∀ (A.9)

,TC j ≤ iUj ∈∀ (A.10)

 { },1,0∈Θ j iUj ∈∀ (A.11)

 },1,0{∈jtx tUj i ∀∈∀ , (A.12)

Note that the objective function of the sub-production system i (A.1) is to find the

best local solution along with minimizing deviation from the shared machine solutions.

Constraint (A.2) is a typical scheduling constraint which implies all jobs must be

finished within the planning horizon. Constraint (A.3) and (A.4) are the local capacity

and precedence constraint, respectively. Of particular concern is constraint (A.5) which

is to calculate the completion time of each job using decision variables [2]. This

constraint is essential in LP-CICA because it can also provide an approximation of

completion times even with a preemptive non-integer schedule. Constraints (A.6), (A.7),

(A.8), (A.9), (A.10) and (A.11) are introduced to customize the formulation to the

imposed E/T scheduling problems. Constraint (A.6) is to calculate E/T amount in case

that the solution of the sub-production systems cannot match the shared machine one.

Adding constraint (A.7) and (A.8) to the formulation ensures that earliness and tardiness

cannot be positive at the same time for any job (i
n
j

n
j UjE ∈=Γ⋅ ,0). Constraint (A.9)

and (A.10) are the feasibility constraints that enforce all jobs to be scheduled within the

85

planning horizon. Constraint (A.11) is 0/1 integer variables that are auxiliary to the

constraints (A.7) and (A.8). Constraint (A.12) is 0/1 decision variable constraints which

will be relaxed in LP-CICA.

A.4.2. CICA formulation for shared machine

The shared machine collects information from the sub-production systems. Let
n
xjs and n

xjC be the starting time and the completion time of job j determined by the sub-

production systems after nth iteration, respectively. Note the subscript x indicates that the

information is specified by the sub-production systems. n
jα and n

jβ are the

earliness/tardiness (E/T) weights by starting job j one unit early/late from n
xjs . For the

clarity of the formulation, yjt is introduced as the decision variables of the shared

machine problem. Then the shared machine problem (MPj) can be formulated as

follows:

MPj : Min ∑
∈

+
Uj

n
j

n
j

n
j

n
j ΓβEα)((A.13)

St. ,py
T

t
j

n
jt∑ = Uj ∈∀ (A.14)

,1≤∑
∈Uj

n
jty Tt ,...,1= (A.15)

,)
2
1(1

2 1
∑ ++=
=

T

t
jt

j

j
j yt

p
p

C Uj ∈∀ (A.16)

,n
j

n
j

n
xjj ECC −Γ=− Uj ∈∀ (A.17)

,0≤Θ⋅− j
n
j TE Uj ∈∀ (A.18)

,TT j
n
j ≤Θ⋅+Γ Uj ∈∀ (A.19)

 ,jj pC ≥ Uj ∈∀ (A.20)

 ,TC j ≤ Uj ∈∀ (A.21)

86

 { },1,0∈Θ j Uj ∈∀ (A.22)

},1,0{∈jty tUj ∀∈∀ , (A.23)

The formulation for shared machine problems are the same as one for sub-production

systems as shown in the previous section except that (i) in the objective functions of the

shared machine problems, total weighted completion times are not included, and (ii) the

precedence constraints are excluded. The major concern of the shared machine problem

is to make compromise among sub-production systems’ schedules, not to minimize the

completion times of jobs. And the precedence relationship between jobs is considered to

be private information of the sub-production systems. Therefore, it is not known to the

shared machine in the distributed system environment under this study.

A.4.3. LP relaxed CICA

The integrality of binary decision variables are relaxed in the formulations for both

sub-production systems and shared machine. That is, decision variables, xjt, have

fractional values between zero and one. Undoubtedly, the resulted solutions are not

guaranteed to be integral. Thus, an additional procedure to recover the feasibility of the

solution is required at each iteration.

In this paper, a simple post-processing routine for the feasibility restoration is applied

as follows:

Feasibility Restoration Procedure for LP-CICA

Step 1. Sort jobs in the ascending order of the completion time.

Step 2. If two or more jobs have the same completion time, order them by

WSPT rule. If jobs are still tied, order them arbitrarily.

Step 3. Check the schedule overlapping between adjacent jobs. If overlapping

occurs, reset the starting time of the latter job by the completion time of the

preceded job.

87

Step 4. Check if the last job finishes processing within the planning horizon. If

not, readjust the completion time of the last job so that the last job finishes by the

planning horizon. If overlapping occurs due to this adjustment, reset the

completion time of the preceded job by the starting time of the latter job.

A.5. Experimental study

In this section, the performance of LP-CICA is experimentally compared with CICA

and Lagrangian Relaxation using randomly generated problems. In Lagrangian

Relaxation, the machine conflict constraints are relaxed and the centralized problem is

decomposed into m independent sub-problems. The experiments are performed for two

distributed environment settings, two sub-production systems with one shared machine

and four sub-production systems with one shared machine. The algorithm is coded by C

language and CPLEX version 8.1 is used as an optimization tool to solve the sub-

production system problems and the shared machine problem.

For the performance measures of the algorithms, ‘PD’ reflecting the quality of the

solution and the computational times are used. Although main interest in this paper is the

improvement of computational times of the LP-CICA compared to CICA, the solution

quality of LP-CICA algorithm is undoubtedly important for the algorithm evaluation.

The closeness of the algorithm solution to the centralized solution is evaluated as

follows:

PD = *

*

Z
Z-Z

where Z is the algorithm solution and Z* is the centralized solution [4,5].

The first experiment considers two sub-production systems with one shared machine.

The weight for the completion time is generated from the discrete uniform distribution

U(1,10). Two factors are considered in this experiment, the variance of the processing

times and the number of jobs that have precedence constraints. Processing times are

generated from either U(1,5) or U(1,10). And three levels of the precedence constraints

are tested. As an illustrated example, consider the problem instance that each sub-

88

production system has 18 jobs to schedule. In level 1, four jobs have a precedence

relationship (e.g., () () () (){ }4,3,3,2,2,1, ∈rq). In levels 2 and 3, nine and thirteen jobs are

interrelated by precedence constraints respectively. Therefore, the total number of

problem types is 6 and 10 problem replicates are generated for each type. The step

parameter for CICA is set to 0.75 and the one for Lagrangian Relaxation is set to 0.5

because those parameter values are known to perform well empirically for each

algorithm [3, 5]. The various problem sizes are tested so that the behavior of the

algorithms under practical job settings can be observed.

Table A.1 and A.2 show the percent deviations of the solutions after global feasibility

restoration and CPU times of Lagrangian relaxation, CICA and LP-CICA for various

sizes of jobs. LP-CICA as well as Lagrangian relaxation and CICA yields solutions

within 5 % deviation from optimal solutions, yet requiring less than half the CPU times

of CICA algorithm for large jobs.

The second experiment considers four sub-production systems with one shared

machine to investigate the behavior of the algorithm in multiple sub-production systems

environments. The test problems are generated in the same method as the first

experiment. The step parameter settings are also the same as the first experiment. To

observe the performance of LP-CICA in moderately large problem size, problems of

scheduling 36 jobs are tested.

As seen in Table A.3, the solution qualities of both CICA and LP-CICA somewhat

deteriorate compared to two sub-production system environment setting while

Lagrangian relaxation shows no significant change. Nevertheless, both algorithms still

maintain solutions of less than 5 % percent deviations. Considering no complete

information sharing among sub-production systems, performances of both algorithms in

this setting are considered to be in tolerable level.

Table A.1 Percent Deviation comparison for large job sets

89

*Since Lagrangian relaxation method requires significantly large computational times to solve the problems for 36 jobs, the LR

results for 36 jobs are obtained from 12 test problems randomly generated from processing times of U(1,5) and precedence

constraints of level 1.

Table A.2 Computational time comparison for large job sets

*Since Lagrangian relaxation method requires significantly large computational times to solve the problems for 36 jobs, the LR

results for 36 jobs are obtained from 12 test problems randomly generated from processing times of U(1,5) and precedence

constraints of level 1.

Table A.3 Results comparison for 4 sub-production system problems

A.6. Conclusion

Percent Deviation

Lagrangian Relaxation CICA algorithm LP-CICA algorithm No. of
Jobs

min avg max min avg max min avg max

12 0.000 0.001 0.046 0.000 0.015 0.229 0.000 0.029 0.216

24 0.000 0.004 0.059 0.000 0.016 0.163 0.000 0.016 0.131

36 0.000* 0.000* 0.003* 0.000 0.012 0.123 0.000 0.015 0.112

48 - - - - - - 0.000 0.014 0.055

Computational Time (sec.)

Lagrangian Relaxation CICA algorithm LP-CICA algorithm No. of
Jobs

min avg max min avg max Min avg max

12 12.69 63.85 204.03 23.92 38.49 155.05 27.77 31.41 36.88

24 114.78 1541.40 9129.61 34.89 141.98 1280.61 40.83 61.15 99.30

36 1813.11* 7054.66* 13230.67* 69.67 1079.04 5446.33 75.25 132.52 237.56

48 - - - - - - 123.09 301.37 690.69

 Lagrangian Relaxation CICA algorithm LP-CICA algorithm

Percent Deviation No. of
Jobs min avg max min avg max Min avg max

36 0.000 0.001 0.004 0.000 0.035 0.245 0.000 0.037 0.281

Computational Time (sec.) No. of
Jobs min avg max min avg max Min avg max

36 277.64 1092.79 3695.39 76.08 332.14 1507.78 81.20 133.12 209.92

90

In this study, in order to efficiently solve the established single machine scheduling

problems, i.e. reduce the computational time in a practical range even for the problems

of large job sets, we developed LP-CICA model in which the LP relaxation is applied on

0/1 integer decision variables.

The experimental results show that LP-CICA can reduce the computational times up

to 5% of Lagrangian relaxation and 13 % of CICA while it obtain reasonable solution

quality as explained in the previous section. The environment with multiple sub-

production systems is also examined. LP-CICA can reduce the computational times up

to 13% of Lagrangian relaxation and 40 % of CICA.

A.7. References

[1] Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993) Nonlinear programming:

Theory and algorithms. 2nd Edn., John Wiley & Sons, New York

[2] Dyer, M. E. and Wolsey, L. A. (1990) Formulating the single machine sequencing

problem with release dates as a mixed integer program. Discrete Applied

Mathematics, 26, 255 - 270

[3] Fisher, M. (1981) The Lagrangian relaxation method for solving integer

programming problems. Management Science, 27, 1-18

[4] Jeong I. J. and Leon V. J. (2002) Decision making and cooperative interaction via

coupling agents in organizationally distributed system. IIE Transactions – Special

Issue in Large Scale Optimization, 34,789-802

[5] Jeong I. J. and Leon V. J. (2005) A single-machine distributed-scheduling

methodology using cooperative-interaction via coupling-agents, IIE Transactions,

Vol. 37, No.2, 137-152

[6] Nemhauser, G. L. and Wolsey, L. A. (1989) Integer and combinatorial optimization,

John Wiley & Sons, New York

[7] Pinedo, M. (1995) Scheduling: Theory, algorithms and systems. Prentice Hall,

Englewood Cliffs, NJ

91

[8] Pritsker A., Watters, L. and Wolfe P. (1969) Multiproject scheduling with limited

resources: a zero-one programming approach. Management Science: Theory, 16(1),

93-108

[9] Sherali, H. and Choi, G. (1996) Recovery of primal solutions when using

subgradient optimization methods to solve Lagrangian duals of linear programs.

Operations Research Letters, 19,105-113

[10] Sycara, K., Roth, S., Sadeh, N. and Fox, M. (1991) Distributed constrained heuristic

search. IEEE Transaction on Systems Man and Cybernetics, 21(6), 1446 – 1461

[11] Uma, R. N. and Wein, J. (1998) On the relationship between combinatorial and LP-

based approaches to NP-hard scheduling. Lecture Notes in Computer Science, 1412,

394-408

92

 VITA

Sun Woo Kim received his B.S. degree in Mechanical Engineering from Yonsei

University, Seoul, Korea, in 1991. After military service, for an M.S. degree, he entered

the same department in 1994. While in the M.S. program, his research was focused on

concurrent engineering and computer-aided process planning in CAD/CAM lab under

the guidance of Prof. Soo-Hong Lee. He received his M.S. degree in 1996. The research

fields of his interest include distributed optimization, production planning and

scheduling, and manufacturing system analysis and control. His address in Korea is 269-

12, Sadang 4 dong, Dongjak-gu, Seoul 156-094, Korea.

	ABSTRACT
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	To my family ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	LIST OF FIGURES
	 LIST OF TABLES
	CHAPTER I
	INTRODUCTION
	1. Overview of the research
	2. Motivation
	3. Problem statement
	4. Research issues
	4.2. Local subproblem
	4.3. Interaction protocol

	5. Literature survey
	6. Research contributions
	7. Organization of the dissertation

	CHAPTER II
	METHODOLOGY FOR DISTRIBUTED OPTIMIZATION USING DIRECT INTERACTION UNDER PARTIAL INFORMATION SHARING
	1. Subsystem problem
	2. Derivation of the penalty weights
	3. Lagrangian multiplier update for SUBi
	4. DIPIS algorithm

	CHAPTER III
	DISTRIBUTED CAPACITY ALLOCATION PROBLEM USING DIRECT INTERACTION FOR PARTIAL INFORMATION SHARING
	1. Introduction
	2. A distributed capacity allocation problem
	3. Solution approach
	3.1. Subsystem problem (SPi)
	3.2. Penalty weights and Lagrangian multipliers update for SPi
	3.3. Steps of DIPIS for distributed capacity allocation problems

	4. Experimental results
	4.1. Performance measures
	4.2. Experiments

	5. Conclusion

	CHAPTER IV
	SINGLE-MACHINE DISTRIBUTED SCHEDULING USING DIRECT INTERACTION FOR PARTIAL INFORMATION SHARING
	1. Introduction
	2. A single-machine distributed scheduling problem
	3. A Solution methodology using DIPIS
	4. Experimental study
	4.1. Experiment one
	4.2. Experiment two

	5. Conclusion

	
	CHAPTER V
	DISTRIBUTED JOBSHOP SCHEDULING USING DIRECT INTERACTION FOR PARTIAL INFORMATION SHARING
	1. Introduction
	2. Problem statement
	3. A Solution methodology using DIPIS
	3.1. Subsystem problem (MSPi)
	3.2. Derivation of the penalty weights
	3.3. Updating the Lagrangian multiplier for the subsystems
	3.4. DIPIS algorithm for distributed jobshop scheduling problems

	4. Experimental results
	4.1. Experiments

	5. Conclusions

	CHAPTER VI
	CONCLUSIONS AND FUTURE RESEARCH
	1. Conclusions
	2. Future research

	 REFERENCES
	
	
	 APPENDIX
	 VITA

