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 ABSTRACT 

 
Distributed Optimization Under Partial Information Using Direct Interaction: A 

Methodology and Applications. (December 2005) 

Sun Woo Kim, B.S., Yonsei University, Korea; 

M.S., Yonsei University, Korea  

Chair of Advisory Committee: Dr. V. Jorge Leon  

 
This research proposes a methodology to solve distributed optimization problems 

where quasi-autonomous decision entities directly interact with each other for partial 

information sharing. In the distributed system we study the quasi-autonomy arising from 

the assumption that each decision entity has complete and unique responsibility for a 

subset of decision variables. However, when solving a decision problem locally, 

consideration is given to how the local decisions affect overall system performance such 

that close-to-optimal solutions are obtained among all participating decision entities. 

Partial information sharing refers to the fact that no entity has the complete information 

access needed to solve the optimization problem globally. This condition hinders the 

direct application of traditional optimization solution methods. In this research, it is 

further assumed that direct interaction among the decision entities is allowed. This 

compensates for the lack of complete information access with the interactive exchange 

of non-private information.  The methodology is tested in different application contexts: 

manufacturing capacity allocation, single machine scheduling, and jobshop scheduling. 

The experimental results show that the proposed method generates close-to optimal 

solutions in the tested problem settings. 
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CHAPTER I 

INTRODUCTION 

 

1. Overview of the research 

This research proposes a methodology to solve a class of distributed optimization 

problems where quasi-autonomous decision entities directly interact with each other 

only for partial information sharing. In the distributed system we study, the quasi-

autonomy arises from the assumption that each decision entity has responsibility for a 

subset of decision variables. However, when solving a decision problem locally, 

consideration is given to how the local decisions affect overall system performance. This 

ensures that close-to-optimal solutions are obtained among all participating decision 

entities. Partial information sharing occurs when no entity has the complete information 

access needed to solve the optimization problem globally. This condition hinders the 

direct application of traditional optimization solutions methods. In this research, it is 

further assumed that direct interaction among the decision entities is allowed. This 

compensates for the lack of complete information access with the interactive exchange 

of non-private information. This approach extends the work by Jeong and Leon (2002) 

where intermediary ‘coupling agents’ were used between interacting descision entities to 

solve the distrubuted optimization problem.  The methodology is tested in different 

application contexts: manufacturing capacity allocation, single machine scheduling, and 

jobshop scheduling.  

 

2. Motivation 

Consider a product and the company that manufactures the product. In the 

manufacturing company, there are several departments which are responsible for unique 

processes required to make the product. Each department has a manager to take charge 
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of the tasks and the decisions in it. Ultimately, these departments cooperate for the 

company’s goal, such as maximizing total profit. However, interdepartmental conflicts 

can arise due to the heterogeneousness of the tasks and the associated viewpoints of the 

product features. These conflicts can be resolved by sharing information and opinions 

without restriction or by a supervising authority with a global view of the company. But 

what if the information sharing is limited and no central coordination is possible? 

These days, subcontracting is a popular cost-saving measure allowing companies to 

concentrate on core processes, while subcontractors deal with minor processes. Take a 

look at the subcontracting method. How are conflicts between departments in the 

company and the subcontractors handled? The problem solving procedures will be 

similar: through the interactions between the departments and the subcontractors, they 

will find a compromised resolution. But there are two important things to keep in mind: 

restricted information sharing and the difficulty of centralized coordination. Even though 

the subcontractors cooperate for the company’s goal, they are independent systems. 

Exposing their private information to others may risk their autonomy. Therefore, the 

subcontractors will provide only the information necessary to settle the conflicts. And 

the supervising authority of the company can hardly intervene in the decision making 

procedure of the subcontractors and control them. Therefore, centralized modeling and 

solution methods are not applicable to the decision making and the associated 

optimization problems in this case. 

It is not difficult to find real-world examples similar to the second scenario. Consider 

an automotive manufacturing supply chain model: modular consortium (Ure and 

Jaegersberg, 2005). In a modular consortium, all suppliers are located in one site as the 

main automotive manufacturer. They assemble the modular parts for cars on their own 

production lines, then delivering these parts into the main production lines Just in Time 

(JIT) and Just in Sequence (JIS). Thus, the production schedules between the suppliers 

and the main manufacturer are closely connected. For example, if scheduling conflict 

problems occurred, they can be better treated by a distributed method.  
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The organizational structure of NIKE may require a distributed approach. NIKE owns 

only design and marketing departments, outsourcing the manufacturing facilities in 

countries for production. The decision making problems under this structure will be 

another example that requires a distributed methods. Similar cases can be found from the 

companies using OEM type production. 

In this research, we propose a distributed modeling and solution methodology to 

effectively deal with the decision making and optimization problems that arise in the 

aforementioned situations.  

 

3. Problem statement 

In this section, we present the Distributed Optimization Under Direct Interaction and 

Partial Information Sharing  Problem (DIPIP). 

A distributed system is comprised of multiple subsystems. Each subsystem has a 

quasi-autonomous decision maker who takes full control of the local problem solving 

and distinctive information associated with its own task and goal. Similar to Jeong and 

Leon (2002), a vector of decision variables, xi , is associated with the local decision 

variables of subsystem i, where ,...,mi 1= . Each subsystem i has a local objective, fi(xi), 

subject to local constraints, Bixi ≤ bi; where, xi is 1 × ui vector, where ui is the number of 

decision variables of the problem, and bi is 1 × vi, where vi is the number of local 

constraints of the problem. 

All the subsystems are directly or indirectly interconnected by coupling constraints. 

Let xij, iij xx ⊂ , be the set of local decision variables of subsystem i that are coupled 

with other subsystems in the jth coupling constraint. Sj is the set of subsystems that are 

coupled in jth coupling constraint.  Subsystems i and k are coupled if they are in the same 

Sj for some j.  Ti is the index-set of the coupling constraints where subsystem i is coupled 

with other subsystems. The vector of non-coupling variables xi0 is comprised of the local 

decision variables of subsystem i that are not related in any coupling constraint. All local 

variables are mutually exclusive among subsystems; that is xi ≠ xk for all i ≠ k , 

Uki ∈, where U is the index-set of the subsystems that consist of the global distributed 
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system and participate in the global system optimization procedure.  The coupling 

constraints are represented as ,...,rj axA j
Si

ijij
j

1 , =≤∑
∈

; where r is the number of 

coupling constraints in the distributed system. 

The overall distributed optimization problem can be written as follows: 

(DIPIP):                                              (1.1) 

Opt ∑
=

m

i
ii xf

1
)(                                      (i) 

s.t.                                                

All local constraints: iii bxB ≤ , ,...,mi 1=              (ii) 

All coupling constraints: ,...,rj axA j
Si

ijij
j

1 , =≤∑
∈

       (iii) 

Quasi-autonomy condition                          (iv) 

Partial information sharing condition                    (v) 

Direct interaction condition                         (vi) 

The objective function in (i) is the sum of all the local objectives.  The goal of this 

research is to pursue globally optimal and feasible solutions while local subsystem 

problems are solved independently by quasi-autonomous decision makers. The global 

system goal is the minimization of the sum of deviations in the subsystem solutions from 

the global optimal solution.  In a minimization problem the global objective can be 

written as:  

∑=∑ −
==

m

i
ii

m

i
iiii xfxfxf

11

* )(min))()((min                  (1.2) 

Constraint (ii) states that all local constraints must be satisfied.   

Constraint (iii) states that all coupling constraints must be satisfied.  In this research, 

it is assumed that 1≥iT  for Ui ∈  and 2≥jS  for all iTj ∈ .  1≥iT  means that 

subsystem i is coupled with other subsystems in at least one coupling constraint. If 

1=jS  and the corresponding subsystem index is i, then jth coupling constraint can be 

represented only by the local decision variables of the subsystem i. It would thus be 

considered a local constraint of subsystem i; that is, Ajxi ja≤ . Therefore, the assumption 
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implies that every subsystem is coupled with at least one other subsystem in one or more 

coupling constraints. Note that Figure 1 shows the block angular structure of the 

problem in a mathematical formulation. 

Conditions (iv), (v) and (vi) make DIPIP a novel distributed optimization problem 

under partial information sharing: 

• The quasi-autonomy condition in (iv) requires that only subsystem i has the authority 

to specify the values of the decision variables xi 

• The partial information sharing condition in (v) specifies what information is private 

and what information can be shared with others: 

a) The local objective, fi(xi), and the local constraints, Bixi ≤ bi, are private 

information of subsystem i. 

b) The values of xi associated with a given coupling constraint can be shared with 

the corresponding coupled subsystems. 

c) Subsystem i can partially view all the coupling contraints that contain any 

variable in xi. That is, in the jth coupling constraint, subsystem i can only view 

the coefficient vector, Aij, of its own decision variable vector and aj. This is an 

important difference from CICA (Jeong and Leon, 2002) where coupling agents 

have complete information about the coupling constraints and coupled 

autonomous organizations only recognize coupling agents with which they 

should interact.  

d) Subsystem i knows what other subsystems it is associated in coupling 

constraints; i.e. Sj is known to all the subsystems that are coupled in jth coupling 

constraint.  This is also an important difference with the problem studied by 

Jeong and Leon (2002), where “who” were the other subsystems was not 

explicitly known. 

• Direct interaction condition in (vi):  Coupled subsystems i and k must interact 

directly without mediation by passing non-private information vectors between each 

other.  This interaction must follow a pre-specified interaction protocol.  This is  
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Figure 1 The block angular structure of a distributed system. 

 

another difference with the work by Jeong and Leon (2002) where the interaction is 

through ‘coupling agents’. 

 

4. Research issues 

As described in the previous section, the DIPIP problem in (1.1) has unique 

characteristics that hinder the direct application of traditional optimization methods.  

Especially challenging is the fact that no one entity has full access to all the information 

required to solve the problem globally. When solving DIPIP, each subsystem can only 

view and control its local subproblem and the information that is received from other 

subsystems each iteration during the solution phase.  Hence, it is necessary to (1) define 

the appropriate information sharing between interacting subsystems, (2) formulate the 

local subproblems such that private information is not shared, and (3) design a suitable 

interaction protocol. 
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4.1. Information sharing 

Given two interacting subsystems, we assume that the minimum information that 

must be exchanged includes (1) the desired solutions, and (2) information about the local 

objective losses and local constraint violations for deviations from the solution in (1). It 

is assumed that the information vector from a subsystem to another subsystem is 

composed of the local solution vector and a penalty weight vector ( ijij ,αy ). The local 

solution ijy  satisfies local constraints and coupling constraints in Ti locally. The penalty 

weight ijα reflects the marginal variation of the local objective value and possible 

constraint violations if one deviates from the solution ijy .  When designing ijα , care 

must be taken not to disclose information that is private to subsystem i.  More details on 

the determination of ijα  are included Chapter II. 

 

4.2. Local subproblem 

DIPIP requires that subsystem i locally solves a subproblem, SUBi.  By carefully 

relaxing the coupling constraints to the objective function, each subsystem problem can 

be formulated independently but must include an augmented objective function f(.)+g(.). 

In this function, gi(.) must reflect  the objective and constraints of subsystems with 

which it is coupled. Given the information vectors from coupled subsystems, ( )ijij ,αy , 

where j is coupled with i: 

SUBi: (    OPT )( ii xf + ),,|( ikSkβ,αyxg jijijijiji ≠∈∀ , s.t. iii bxB ≤ )   (1.3) 

A detailed derivation of g(.) is given in Chapter II. 

 

4.3. Interaction protocol 

An interaction protocol must be designed to be suitable for partial information sharing 

and also make direct interactions possible without third party mediation.  There are two 

types of interaction methods: synchronous interaction, in which all the subsystems 
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exchange the information vectors simultaneously by the predetermined schedules; and 

asynchronous interaction, in which interactions occur independently between pairs of 

subsystems.  

The most important advantage of synchronous interactions is to get the information 

from all other participating decision entities at the same time. This helps the local 

solutions be updated to reflect all other subsystems’ desire in a balanced and timely 

manner. However, it is a rigid type of interaction method. For example, as the number of 

participating entities increases, it will become difficult to make all the interactions 

synchronized. 

On the other hand, asynchronous interactions is flexible in that any participating 

entity can initiate the interaction. In other words, local decision entities can interact with 

others whenever they need updated information in their schedule. But it also implies that 

they may not get the updated information from all other participants instantly. This can 

cause biased local solutions from the updated information only. Another potential 

disadvantage is that it may take more time in achieving a compromised solution, with a 

higher possibility of oscillating local solutions as well.  

 

5. Literature survey 

In this section, we review previous studies on distributed methods for large-scale 

optimization problems. Even though a number of heuristic-based methods exist for 

distributed optimization problem solving, the main objective of this research is to 

develop a distributed methodology with a strong mathematical programming basis. 

Therefore, we concentrate our review on related literature associated with mathematical 

programming. The distributed methods without mathematical programming background 

are mentioned last.  

 

5.1. Centralized decomposition method for large-scale optimization problems 

To efficiently solve large-scale optimization problems, mathematical decomposition 

techniques have been studied in the Operations Research area. The main idea behind 
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those methods is to decompose a large problem into multiple small-size problems, such 

as a master problem and subproblems in the Dantzig-Wolfe decomposition method. The 

master problem manages the shared resources among multiple subproblems by either 

updating the prices of the resources (Dantzig and Wolfe, 1961) or allocating the 

resources to subproblems (Bender, 1962; Kate, 1972). Subproblems are then solved to 

update either their demand for the resources or their desired price of the resources. The 

former approach is known as price-directed and the latter as resource-directed, classified 

by the information type the master problem sends to the subproblems. Lagrangian 

relaxation (Fisher, 1981) is also a popular technique explored by many OR researchers 

as a basis of distributed solution methods for large optimization problems (Roundy et al., 

1991). However, in the methods mentioned above, a single decision maker has full 

access to the complete problem formulation which is not allowed by constraints (iv)-(vi) 

in formulation (1.1). 

 

5.2. Distributed algorithm with unrestricted information sharing 

There are distributed algorithms that, for problem solving, allow any global 

information to be shared without restriction. Gou et al. (1994) applied the holonic 

system approach to a robotic assembly planning problem and introduced a distributed 

algorithm based upon Lagrangian relaxation concepts. The proposed model includes a 

central coordinator that collects all the necessary, though not complete, information to 

calculate coordination parameter values. Murphy et al. (1995) studied a decomposition-

coordination approach for large-scale optimization problems. In their research, a large 

problem is decomposed into several subproblems by duplicating coupled decision 

variables that they call boundary variables. Then, the Auxiliary Problem Principle is 

applied to minimize the Augmented Lagrangian subproblems. Although subproblems are 

solved independently, the addition of the consistency constraints maintains the same 

boundary variable values for all subproblems. Again, any necessary information can be 

exchanged to solve subproblems as the process repeats.  
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5.3. Distributed algorithm with restricted information sharing 

Since auctions can intuitively be viewed as a distributed process, a significant amount 

of work has been done to apply the auction mechanism to various problems. There are 

two main entities in the auction: the auctioneer, who collects bidding information from 

multiple bidders, updates resource prices, and allocates the resources to bidders; and the 

bidder, who bids for the limited resources. The exchanged information between the 

auctioneer and the bidder is restricted by a predetermined interaction mechanism. 

Bertsekas proposed an auction algorithm for assignment problems of linear 

programming (Bertsekas, 1988). In this study, he modeled the assignment problem as a 

multiple-person multiple-object auction. ε- Complementary Slackness (ε- CS) was 

introduced to avoid possible cyclical behaviors and to facilitate the algorithm in 

optimization contexts. The algorithm was later extended to transportation problems and 

other linear network optimization problems (Bertsekas and Tsitsiklis, 1989; Bertsekas, 

1990). Kutanoglu and Wu (1999) explored a group of combinatorial auction mechanisms 

for resource scheduling problems and showed that Lagrangian relaxation is equivalent to 

one of the combinatorial auction mechanisms. Ertogral and Wu (2000) applied the 

auction mechanism to solve production planning problems for multiple facilities. Guo et 

al. (2002) developed a market-oriented decomposition method based on double auctions 

for large-scale linear programming problems. They illustrated the relationship between 

the auction algorithm and mathematical programming by exploring similarities and 

differences between the proposed market-based algorithm and Dantzig-Wolfe 

decomposition method with economic interpretations.  

As a distributed method of much stronger mathematical programming basis, Jeong 

and Leon (2002) proposed a distributed methodology called CICA. In the CICA 

approach, two main entities are introduced, CAO and CA, to model the distributed 

problems. CAOs are quasi-autonomous organizations that solve their own local 

problems with independent decision authority. However, multiple CAOs are interrelated 

by coupling constraints. CAs manage the coupling constraints to help CAOs achieve 

compromised solutions that do not violate coupling constraints, as well as local 
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constraints. Both CAOs and CA do not have complete system information. While 

applied to machine scheduling problems and capacity allocation problems, only partial 

information can be shared during interactions between each CAO and CA.  

 

5.4. Other distributed algorithms 

In this section reviews distributed methods based on heuristics or economic theory 

without a mathematical programming formulation.  

Originating from the distributed AI approach, the distributed constraint heuristic 

search has been popularly studied for machine scheduling problems. In this approach, 

job scheduling can be done on multiagent environments with a job-based perspective,  

resource-based perspective, or a combination of the two. The Intelligent Scheduling and 

Information System (ISIS) (Fox and Smith, 1984) and Opportunistic Intelligent 

Scheduling (OPIS) (Smith et al., 1990) were developed for factory scheduling. The 

former has adopted the job-based perspective, and the latter the combined perspective. 

Information sharing is unrestricted for both systems. Sycara et al. (1991) studied a 

micro-opportunistic scheduling system, based on the decomposition of resource periods 

and the allocation of the operation according to the bottleneck period. In their method, 

similar to CAs in CICA, third party monitoring agents exist to manage shared resources. 

Only partial information is shared, but any local information can be exchanged if other 

agents desire.    

Talukda et al. (1998) also proposed a distributed problem solving method called 

Asynchronous-team (A-team) based on multiagent systems. In their method, multiple 

autonomous agents with unique problem-solving techniques work together to solve large 

problems cooperatively. Each agent solves the problem independently, but using up-to-

date partial solutions of other agents without restriction.  

Another important stream of distributed problem solving studies is the market-like 

approach that attempted to interpret manufacturing control system behavior using 

economic theories. Contract-net, the interaction protocol used to allocate tasks to agents 

in distributed environments was first proposed by Davis and Smith (1983). It has been 
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applied for dynamic scheduling in manufacturing control systems (Duffie and Prabhu, 

1994; Lin and Solberg, 1994). For static scheduling, Wellman et al. (2001) developed 

auction protocols for decentralized scheduling problems. The proposed market 

mechanisms uses price information, derived via distributed bidding protocols, to 

determine schedules.  All of these methods are based on interactions between bidding 

agents and resource agents to exchange restricted information. 
 

6. Research contributions 

The main research contributions of this dissertation are: 

(i) Quasi-autonomy and partial information: We develop a methodology for 

modeling the distributed system and solving the associated optimization 

problems. In the system under study, no decision entity has the global view of the 

entire system or complete system information. While quasi-autonomous local 

decision entities solve the local problems indpendently, they cooperate to find a 

close-to-optimal system solution. To compensate for the lack of system 

information, partial local information sharing is allowed. Therefore, the proposed 

method is designed to search for the system solution under partial information 

sharing among quasi-autonomous decision entities. 

(ii) Direct interactions: The proposed method will be based on direct interactions for 

cooperative partial information sharing among local decision entities. Neither 

central coordination nor third party mediation is necessary in the proposed 

method. For example, the master problem in Lagrangian Relaxation and coupling 

agents (CAs) in CICA take the role of the coordination of local solutions in global 

preference. There is no previous research about direct interactions for information 

sharing in a distributed system.  

(iii)Interaction protocol for partial information sharing: The interaction protocol will 

be designed to exchange implicit but essential information sufficient to pursue the 

global goal without complete system information or global coordination. 
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(iv) Mathematical programming basis: We develop a solution methodology that can 

be applied to the optimization problems formulated by linear programming and 

integer programming. An LP heuristic is proposed to deal with the problems of 

large sizes in practical times. 

 

7. Organization of the dissertation 

This dissertation is organized as follows: Chapter II introduces a general distributed 

model and proposes a solution methodology, Direct Interaction for Partial Information 

Sharing (DIPIS).  In Chapter III, We study the distributed capacity allocation problem in 

a linear programming model. The proposed method is applied to single-machine 

scheduling problems in Chapter IV. In Chapter V, jobshop scheduling problems are 

investigated for the applicability of the proposed method to more complicated models. 

Finally, Chapter VI summarizes the research contributions and the directions of future 

study. 
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CHAPTER II 

METHODOLOGY FOR DISTRIBUTED OPTIMIZATION USING DIRECT 

INTERACTION UNDER PARTIAL INFORMATION SHARING  

 

In this chapter we develop the Direct Interaction for Partial Information Sharing 

(DIPIS) method to solve (DIPIP) described in Chapter I.  DIPIS decomposes DIPIP into 

interdependent subproblems using Lagrangean Relaxation concepts. These concepts are 

modified to ensure that private information remains local, and that no master problem is 

required to update the Lagrangian multipliers. At each iteration in DIPIS the subsystems 

solve local subproblems, computes a penalty vector (that reflects objective function and 

constraint violation if the current solutin is modified), and then pass the current solution 

and penalty weights to corresponding coupled subsystems.  This chapter starts by 

deriving the subsystem problem, then it describes the derivation of the penalty weights. 

It also describes the penalty updating from one iteration to the next used to reflect the 

new information from the other subsystems. Finally it presents the complete algorithm.  

 

1. Subsystem problem  

Observing the subsystem problem (SUBi) in expression (1.3) the main challenge is to 

derive an appropriate augmenting function g(.). If complete system information is 

available, the objective function of subsystem i is as follow (Jeong and Leon, 2002): 

)( ii xf  ∑ ∈+
∈ iTj

jkjj Skxg ),(  =  )( ii xf  ∑ ∑−±
∈ ∈i jTj Sk

kjkjjij xAaθ ))((     (2.1) 

In addition to the original objective function, the penalty functions related to the 

relaxed constraints must be included in the subsystem optimization problem for the 

pursuit of the global goal. ijθ , a vector of positive Lagrangian multipliers in the penalty 

function, can be calculated and updated using the system information without restriction. 

Hence, the violations of the subsystems’ solutions on the coupling constraints will be 

appropriately penalized. In the distributed system problem only partial information 
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sharing is allowed among subsystems and therefore the exact penalty functions cannot 

be generated. Specifically, in (2.1) the coefficients of the decision variables of other 

subsystems in the coupling constraints, { }),( iSkA jkj −∈∀ , are unknown to the 

subsystem i. And the decision variables of other subsystems, { }),( iSkx jkj −∈∀ , cannot 

be controlled by subsystem i. Consequently, ∑ ∈
∈ iTj

jkjj Skxg ),(  must be approximated 

using only the information vectors from other subsystems, {( kjkj ,αy ), { }iSk j −∈∀ }. 

This approximation makes the penalty functions represented by the decision variables of 

subsystem i. The resulting functions still have to reflect other subsystems’ desires in the 

coupling constraints so that the subsystem can find a compromised solution in global 

preference. Detailed derivation of the function approximation will be explained next. 

The penalty functions in (2.1) can be rearranged as follows, 

∑ ∑−−=∑ ∈
∈ −∈∈ i ji Tj iSk

kjkjijijjij
Tj

jkjj xAxAaθSkxg ))((),(
}{

           (2.2) 

Again, ∑
−∈ }{ iSk

kjkj
j

xA is unknown to subsystem i. Let =kjy kjkj xA  for 

{ }iSk j −∈∀ and then the penalty function can be restated as, 

{ } ∑ ∑−−=∑ −∈∀
∈ −∈∈ i ji Tj iSk

kjijijjij
Tj

jkjijj yxAaθiSkyxg ))((),,(
}{

       (2.3) 

Consider an element of the penalty function associated with jth coupling constraint, 

{ }),,( iSkyxg jkjijj −∈∀ . Here subsystem i has no control of kjy , the decision variables 

of subsystem k. At the end of (n-1)th iteration, subsystem i receives partial information 

( kjkj αy , ) from subsystem k where { }iSk j −∈∀ . Then, by substituting kjy for kjy , 

the penalty function can now be represented by only ijx , the decision variables of  

subsystem i. The cooperative solution ijx for ijx of subsystem i can be easily calculated 

using the coupling constraint with the information as follows, 

jijij rAx ⋅= −1   where ))(,0max(
}{

∑−=
−∈ iSk

kjjj
j

yar               (2.4) 
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ijx represents maximum avaiable value that ijx can get regarding jth coupling 

constraint, given kjy for { }iSk j −∈∀ . 

Similar to the derivation steps used in CICA model (Jeong and Leon, 2002), applying 

the first order Taylor expansion for the approximation of )( ijj xg at ijij xx = , we get, 

)( ijj xg = )( ijj xg + ))(( ijijijj xxxg −∇                        (2.5). 

where )( ijj xg∇
{ }

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

−∈∀∂
=

∂

∂
=

−∈ }{

,()(
iSk ij

kj

kj

jkjj

ij

jj

j x
y

y
iSkyg

x
rg

. 

Since
{ }

kj

jkjj
kj y

iSkyg
∂

−∈∀∂
=

),(
α  and ij

ij

kj A
x
y

−=
∂

∂
, (2.5) is equivalent to the 

following equation, 

)( ijj xg = )( ijj xg ))((
}{

ijij
iSk

kjij xxA
j

−∑−
−∈

α                    (2.6) 

Using (2.4), ijx can be replaced back by jr . And )( ijj xg is a constant term and thus 

can be excluded in the optimization process. The concluding formulation of )( ijj xg is, 

)( ijj xg = )()(
}{

jijij
iSk

kj rxA
j

−∑
−∈

α                           (2.7) 

Hence, the subsystem problem can be formulated as follows: 

SUBi: (OPT )( ii xf
{ }

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑±

∈ −∈i jTj
jijij

iSk
kj rxA )()( α ,s.t. iii bxB ≤ )          (2.8) 

where 
{ }

))(,0max( ∑−=
−∈ iSk

kjjj
j

yar     

The plus sign in the objective function is for minimization problems and the minus 

sign is for maximization problems. 
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2. Derivation of the penalty weights 

Given the information above, for a differentiable function jg , kjα , the penalty 

weight received from subsystem k associated with jth coupling constraint, can be defined 

as follows, 

=kjα { }

Δ−=
∂

−∈∀∂

kjkj yykj

jljkjj

y
kSlyyg ),,(

                     (2.9) 

That is, kjα implies the marginal variation of the function jg , as the value of kjy  

decreases from kjy by small positive constant Δ with values of all other variables fixed 

as given.  

If jg is not differentiable, kjα can be calculated by the form, 

{ } { }
Δ

−∈∀Δ−−−∈∀
=

),,(),,( kSlyygkSlyyg
α jljkjjjljkjj

kj       (2.10) 

(2.9) and (2.10) do not require complete system information related to the coupling 

constraints. Instead, they can be determined by using the partial information supplied by 

other subsystems.  

 

3. Lagrangian multiplier update for SUBi 

Section 3 describes a Lagrangian multiplier update procedure in DIPIS. The proposed 

procedure is based on the traditional subgradient optimization method, modified to 

comply with the partial information restrictions present in DIPIP. 

At the end of (n-1)th iteration, the subsystems interrelated with SUBi by coupling 

constraints send the associated system information {( 11 −− n
kj

n
kj ,αy ), { }iSk j −∈ } to 

subsystem i. Then, at nth iteration, subsystem i solves the following problem, 

SUBi: (OPT )( n
i i

xf ∑ ∑
∈ −∈

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

i jTj

n
j

n
ijij

iSk

n
kj rxA )()(

}{

1α ,s.t. i
n
ii bxB ≤ )        (2.11) 
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where ))(,0max(
}{

1∑
−∈

−−=
iSk

n
kjj

n
j

j

yar                   

Let ),( **
0

* n
ij

n
i

n
i xxx =  be the solution of (2.14). Given 1−n

kiy , the cooperative 

solution n
ijx is obtained using (2.4). Then, n

ijθ  can be updated as follows:1 

 ))(,0max( *1 n
ijij

n
j

n
iijij xArs −−= −nn θθ                        (2.12) 

     
∑
∈

−

−
=

iTj

n
ijij

n
j

n
ij

n
ii

n
ii

n
jn

j xAr

xxfxfτ
s 2*

*
0

*

)(

)ˆ,()(
   where n

ij
n
ij xx ≤ˆ                (2.13) 

 pττ n
j

n
j ×= −1 , if )ˆ,()()ˆ,()( 1*1

0
*1*

0
* −−− −>− n

ij
n
ii

n
ii

n
ij

n
ii

n
ii xxfxfxxfxf               

    1−= n
jτ ,  otherwise                                 (2.14) 

where n
js is a positive step size, n

jτ  is a positive step length, p is the step parameter 

with 0 <  p < 1 and )( *n
ii xf is the current objective value of Subi. )ˆ,( *

0
n
ij

n
ii xxf is the 

objective value when Subi problem is solved to minimize the conflict from the solutions 

of the coupled subsystems at (n-1)th iteration. 

The updating method is based on the subgradient optimization technique that is one 

of the most popular methods for solve Lagrangian Relaxation problems. The main 

difference of the proposed method from the traditional subgradient optimization 

technique is that the step size can be updated using partial information sent by coupled 

subsystems.  Traditional Lagrangian multiplier updating rules require a globally feasible 

upperbound solution which can be calculated with complete system information. In the 

proposed model, complete system information is not available to any local subsystem, 

making calculation of the centrally coordinated Lagrangian multipliers impossible. The 

proposed method updates Lagrangian multipliers locally, but appropriately; it uses 

partial system information obtained via direct interactions among the associated 

subsystems to guide the local solutions towards a compromised state. That is, it works to 

minimize conflict among local solutions associated with the coupling constraints.   
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4. DIPIS algorithm 

The steps of DIPIS algorithm in solving a distributed problem are as follows: 

 

Initialization: Set the number of maximum interaction N. 

Set 0=0
kjα , 00 =kjy , 0

js  = 0, 0
jτ  = 2 and p, 0 < p < 1. 

Set n = 1. 

Step 1:  SUBi problem.  For all i = 1,..,m. 

Step 1.1. Solve subsystem problem SUBi.  in (2.11). 

Step 1.2. Update step length n
iτ  as shown in (2.14). 

Step 1.3. Update step size n
is  as shown in (2.13). 

Step 1.4. Update n
ijθ  as shown in (2.12).  

              Step 1.5 Calculate n
ijα  as shown in (2.9) or (2.10) 

 Step 1.6. Distribute n
ijα  and n

ijy  to the coupled subsystems k, { }iSk j −∈∀ . 

Step 2: If any of the predetermined stopping criteria is satisfied, stop.  Otherwise n = n + 

1 and go to Step 1.  

 

The solution procedure starts with the initialization: setting all the penalty weights 

equal to zero and other parameters for Lagrangian multiplier updating to starting values. 

At every iteration, each subsystem solves its local problem and updates the penalty 

weights, as shown in step1. For the penalty weight updates, the subsystems need to get a 

cooperative solution which minimizes the conflict with other subsystems. The 

cooperative solution of subsystem i at nth iteration can be calculated as follows: 

(i) Substitute the solutions of other subsystms received at the end of the previous 

iteration, 1−n
kjy { } jiSk j ,, −∈∀ , into the coupling constraints and calculate 

n
ijx using (2.4) . 
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(ii) Then, solve the local problem by applying additional constraints that restrict 

the coupled decision variables by n
ij

n
ij xx ≤ . 

In this manner, the multipliers are updated using only the information from other 

subsystems.  

The objective difference between SUBi and the cooperative solution implies the 

compromise gap between subsystem i and other subsystems. If it is zero, subsystem i can 

reach its solution with no conflict at the current iteration. In step 1.2, if the compromise 

gap is larger than the value at the prevous iteration, the step length is reduced using the 

step parameter. Then, in step 1.3, the step size is calculated using the compromise gap 

and the total amount of the conflicts between SUBi solution and the solutions of other 

subsystems on the coupling constraints. The conflicts can be quantified 

by ∑
∈

−
iTj

n
ijij

n
j xAr 2* )( where =n

jr ))(,0max(
}{

1∑
−∈

−−
iSk

n
kjj

j

ya . The conflicts are interpreted as 

the locally measured amount of violations when applying the solutions of all the 

subsystems on the coupling constraints. For each violation on the coupling constraints, 

the associated Lagrangian multiplers are updated using the step size. The penalty 

weights are determined using the Lagrangian multipliers.  Then, the information vectors 

in the prescribed format are sent back to the coupled subsystems. Note that, at the first 

iteration, every subsystem solves its problem without any information from the others 

and thus no penalty weights will be calculated.  

The iteration continues until the algorithm satisfies the predetermined stopping criteria 

(step 2). In this research, three stopping criteria are applied: the algorithm stops when (i) 

it achieves a compromised solution, (ii) the step length becomes small enough, that is 
nτ ≤ ε  where ε is a predetermined positive real constant, or (iii) the number of the direct 

interactions among subsystems reaches a predetermined value, n + 1 = N. A 

compromised solution is the set of the subsystems’ solutions that do not violate the 

coupling constraints, if entered into those constraints. That is, it is a globally feasible 

solution even if it may not be globally optimal. 
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CHAPTER III 

DISTRIBUTED CAPACITY ALLOCATION PROBLEM USING DIRECT 

INTERACTION FOR PARTIAL INFORMATION SHARING 

 

1. Introduction 

This chapter deals with a capacity allocation problem in a distributed manufacturing 

system environment. Specifically, multiple subsystems compete to acquire the service 

times of a single facility necessary for manufacturing individual products. The 

information associated with each product (e.g. processing times, profits, demands, etc.) 

is locally known only to the subsystem in charge of its production. In each subsystem, 

there exists a decision maker who manages local issues and makes a schedule of the 

production to satisfy local demands and maximize local profits. Subsystems must 

interact to find a compromised allocation solution that effectively utilizes the capacity of 

the facility. The major concern of this study is how to maximize the profits of the 

subsystems sharing a facility without creating conflict among the local production plans. 

Due to the quasi-autonomy condition and the partial information condition of the 

current problem, decomposition methods (e.g. Danzig-Wolfe decomposition, Lagrangian 

Relaxation, etc.) are not applicable.  This is because they require a centralized 

coordination of subproblem solutions using system information without restrictions. For 

example, in Lagrangian Relaxation with Subgradient Optimization method, the master 

problem calculates a globally feasible solution as an upperbound or lowerbound using 

the subproblem solutions and detailed information about the coupling constraints. This is 

not possible in the distributed system environment under this study. 

Cooperative Interaction via Coupling Agent  (CICA) (Jeong and Leon, 2002) was 

applied to solve the distributed capacity allocation problems with partial informatio 

sharing. In CICA, two main entities exist: Coupled Autonomous Organization (CAO) 

and Coupling Agent (CA). System problems are divided into CAOs’ local decision-

making subproblems and CA(s)’ coordinating problem. Each CAO solves its 
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subproblems independently and then send the partial local information to CA(s). CA has 

the coupling constraints associated with multiple CAOs and takes the role of 

coordinating subsystem solutions in global preference using only the partial system 

information obtained from CAOs through the interactions. The iterative solution 

procedure continues until the predetermined stopping criteria are satisfid. The 

experimental results showed that CICA works well for the corresponding problems.  

As proposed in the previous chapter, Direct Interaction for Partial Information 

Sharing (DIPIS) is a distributed solution method designed to work under partial 

information sharing. Neither centralized coordination nor third party intervention is 

required in the solution procedure. Additionally, direct interactions among subsystems 

are established to share partial subsystem information. 

The remainder of the chapter is organized as follows:  in section 2 the notations for 

mathematical representation of the problem are introduced and important constraints are 

explained. In section 3, the solution approach is described. Experimental results follow 

in section 4 along with corresponding tables and explanations. The conclusion is given 

in section 5. 

 

2. A distributed capacity allocation problem 

This section describes the distributed capacity allocation problem and its associated 

formulation. 

The distributed capacity allocation problem is the problem of allocating the fixed 

capacity of a facility to satisfy the demands of multiple independent subsystems. Each 

subsystem is managed by a different decision maker and has unique system information. 

To achieve close-to-optimal allocation, subsystems must cooperate with each other by 

sharing partial local information. In this situation, no single decision maker exists with 

the complete system information, thus traditional centralized optimization methods are 

not applicable. 
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Figure 2 An example of the distributed capacity allocation problem with single facility. 

 

Figure 2 illustrates the capacity allocation problem in a distributed system. As shown 

in the figure, each local production plan does not exceed the maximum capacity each 

time interval while the combined allocation can be infeasible due to excessive demands.    

Since each subsystem must determine how many it manufactures the product to 

satisfy the local demands through the production horizon, the decision variable itx  

denotes as follows: 

itx  =  production quantity of product i at time interval t proposed by subsystem i. 

Additionally, the following notations are used for the mathematical representation of 

the associated problem: 

T =  total production horizon. 

m  =  total number of subsystems in the global system. 

id  =  total demand of product i of  subsystem i;  i = 1,…,m. 

itb  =  profit of selling unit of product i for subsystem i at time interval t; t = 1,..,T. 

Time 

Capacity

max

1

Subsystem k 

Subsystem 1 Subsystem m

3 42

max

max

max

Subsystem i 

max
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tc  =  available service time of the facility at time interval t. 

ita  =  processing time of unit of product i for subsystem i at time interval t; t = 1,..,T. 

 

Let the global system be defined as an organization composed of associated 

subsystems. The objective of the global system is to maximize the sum of the 

subsystems’ profits, ∑ ∑
= =

m

i

T

t
itit xb

1 1
.   Two types of constraints are considered. Demand 

constraints confirm that each subsystem acquires sufficient production time slots in the 

facility to satisfy the demands within the planning horizon, i

T

t
it dx =∑

=1
, i = 1,…,m. 

Capacity constraints ensure that the total production time allocated to subsystems does 

not exceed the available capacity of the facility at any time period t, ∑ ≤
=

m

i
titit cya

1
, t = 

1,..,T.  Figure 3 shows the mathematical formulation of the distributed capacity 

allocation problem. Note that each demand constraint is represented by the decision 

variables of only one subsystem, which can be categorized as a local constraint. On the 

other hand, the capacity constraints associated with the facility are the coupling 

constraints because the decision variables of multiple subsystems are involved. Under 

the distributed system environment herein, the most important issue is how to find close-

to-optimal allocations when each subsystem has a limited view of the system. The 

aforementioned characteristics make the current problem more challenging. The 

assumptions specific to this capacity allocation problem are as follows: 

• Each subsystem has direct access to only its demand information; i.e. the demand 

constraints, i

T

t
it dx =∑

=1
, are known only by subsystem i and not to subsystem k, 

ik ≠ .  

• Each subsystem has a local objective unknown to other subsystems; i.e. the objective 

of subsystem i, ∑
=

T

t
itit xb

1
 is unknown to subsystem k, ik ≠ . 
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Figure 3 Mathematical representation of the distributed capacity allocation problem. 

 
• Each subsystem has limited access to the capacity information of the facility; i.e. 

subsystem i can see the capacity amount of the facility for each time period, but 

cannot see the load of subsystem k, ik ≠ . Each subsystem can control its load in 

order to not exceed the maximum available capacity in each time period; but since 

there is no central coordination it is possible that the total loads claimed by multiple 

subsystems in each time period exceed the maximum capacity of the facility. 

 
3. Solution approach 

This section describes Direct Interaction for Partial Information Sharing (DIPIS) 

methodology, originally proposed in Chapter II, to define the subsystem problems and 

solution procedures.  

Under the current distributed system environment, no subsystem knows the complete 

machine capacity constraints of the facility.  Instead, they have the partial information of 

decision variables and maximum available service times. DIPIS establishes direct 

interactions among subsystems that desire to use a facility. Through direct interactions, 

subsystems exchange limited local information. The information vector from subsystem 
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k consists of  two components, the service time necessary for the required production 

quantity in each time interval, 1−n
kty , and the penalty weight for not obtaining sufficient 

service time for the production, 1−n
ktα . Given the partial information of subsystem k, 

),( 11 −− n
kt

n
kty α , subsystem i maximizes its local objective while minimizing capacity 

violations by the service time requests in each interval.    

Section 3.1 defines the subsystem problem in a mathematical programming 

formulation. In section 3.2, the procedure to calculate the penalty weights exchanged 

among subsystems during direct interactions is explained in detail. 

 

3.1.  Subsystem problem (SPi) 

In this section, the mathematical formulation of the subsystem problems (SPi) is 

obtained by applying DIPIS method.  

Let U be the index-set of the subsystems that share the facility. Then, given the 

information vectors ),( 11 −− n
kt

n
kty α from subsystem k, the problem of subsystem i can be 

written as,  

(SPi): Max ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −∑+∑

= −∈

−

=

T

t
ctitit

iUk

n
kt

T

t

n
itit rxaxb

1 }{

1

1
))(( α   St. i

T

t

n
it dx =∑

=1
)      (3.1) 

where 
{ }

))(,0max( 1∑−=
−∈

−

iUk

n
kttct ycr                   

If complete information about the capacity constraints of the facility is available, i.e. 

all local subsystem information is accessible, the objective of subsystem i can be 

formulated as follows (Jeong and Leon, 2003): 

∑ ∑−+∑
= ==

T

t

m

i
itittt

T

t

n
itit xacθxb

1 11
)(                               (3.2) 

The capacity constraint at time interval t is relaxed with Lagrangian multiplier tθ and 

incorporated as an additional objective term. However, in the distributed system 

environment of this study, the local information of each subsystem is considered private 

and therefore the calculation of tθ is not possible. Only partial information among 
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subsystems is shared through direct interactions. The information vector is in the 

following form:  

),( 11 −− n
kt

n
kty α where 11 −− = n

ktkt
n
kt xay                          (3.3) 

Note that subsystem does not expose the full production information associated with 

the capacity constraints such as kta . Instead of sending kta and 1−n
ktx separately, 

subsystem k sends the combined values 1−n
kty . 1−n

ktα  reflects the marginal loss of the local 

objective of subsystem k if the desired amount of the capacity 1−n
kty cannot be obtained. 

Then, using derivation similar to that which was introduced in Chapter II, the second 

term of (3.2) is approximated to ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −∑

= −∈

−
T

t
ctitit

iUk

n
kt rxa

1 }{

1 ))(( α in the problem of 

subsystem i (SPi).  

 

3.2.  Penalty weights and Lagrangian multipliers update for SPi 

This section explains how to update the Lagrangian multipliers and the penalty 

weights using only partial information from other subsystems.  

Let *n
itx  be the solution of (3.1) at nth iteration. During the interaction, ** n

itit
n
it xay = is 

sent to other subsystems at the end of the iteration with the associated penalty weight 
n
itα .  Note that n

itα  has occurred not from the deviation from *n
itx , but rather from *n

ity . 

Hence, given 1−n
kty  from subsystem k where }{iUk −∈ , the second term of (3.2) is 

restated for subsystem i at nth iteration as the following: 

∑ ∑∑ ∑
= −∈

−

= =

=−−≈−
T

t

n
itit

n
it

n
it

iUk

n
ktt

n
it

T

t

m

i

n
ittt xayyycxacθ

ititit
1

***

}{

1

1 1

*     where)()( θ   (3.4) 

Note that n
itθ  is the Largrangian multiplier updated by subsystem i at nth iteration. 

Then, as the weight to represent the cost increment of )(
}{

1 n
it

iUk

n
ktt

n
it yyc −− ∑

−∈

−θ  when n
ity  

is decreased Δ  from *n
ity , n

itα  can be derived: 
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yyc
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∂
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−∑

*

))((
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1

                (3.5) 

For the capacity violation on tth time interval, n
itθ is updated as follows: 

n
itθ = ))(0max( *1 n

it
n

ct
nn

it yrs,θ −−−                           (3.6) 

where 
{ }

))(,0max( 1∑−=
−∈

−

iUk

n
ktt

n
ct ycr                  

ns =
∑
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ZZτ
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 nτ  = 1−nτ  if 1−≤ n
i

n
i RR ,                                     

   = 1−nτ n
i
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 otherwise,                               (3.8) 
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Note that the formulas are derived from the traditional subgradient optimization 

method modified to work under the partial information condition. In (3.6), n
ctr  is the 

remaining capacity available to subsystem i on time interval t at nth iteration. (3.7) is 

revised to update step size using local objective values. Specifically, n
iZ  is the objective 

value of subsystem i and n
LBZ  is the objective value of subsystem i obtained when it has 

allocated the facility capacity amount to other subsystems as requested and then used the 

remaining capacity for its production. If 0=− n
LB

n
i ZZ , it means that subsystem i can 

maximize its objective, i.e. there is no conflict with other subsystems when using the 

facility. Also, the step length is reduced by the step parameter whenever n
LB

n
i ZZ −  has 

failed to improve compared to the previous interaction, as shown in (3.8). The procedure 
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stops if the step length becomes small enough; that is nτ ≤ ε  where ε is a predetermined 

positive real constant. In this manner, Lagrangian multipliers can be successfully 

updated without the global information distributed systems manifestly lack.  

The formulas (3.8) are based on the updating rule proposed by Choi and Kim (1999). 

Because Lagrangian Relaxation method does not guarantee the primal feasibility of the 

solution, we apply Sherali and Choi’s (1996) procedure to recover it. Let n
iX  be the 

primal solution proposed by subsystem i at nth interaction.  Then, the primal solutions are 

defined as follows: 

∑
=

=
n

k

k
in

i n
x

X
1

 mii ,...,1      =∀                             (3.9) 

j
ix  is the solution of (3.1) at kth iteration j = 1,…,n.  (3.9) implies that the primal solution 

is recovered by giving equal weight to subsystem i’s solutions as obtained from the first 

to nth iteration. For more details about the primal recovery of Lagrangian solutions and 

the multiplier update rule, refer to Choi and Kim (1999), Sherali and Choi (1996), and 

Jeong (2001).  

 

3.3.  Steps of DIPIS for distributed capacity allocation problems 

This section summarizes the proposed DIPIS algorithm for distributed capacity 

allocation problems.  

 

Initialization: Set the number of maximum iterations N. 

 Set 0
itα  = 0, ti,∀ , 0s = 0, 0τ = 2 and p, 0 < p < 1. 

Set n = 1. 

Step 1 Subsystem’s problem (SPi).  For all i = 1,..,m  

Step 1.1 Solve SPi as shown in (3.1). 

Step 1.2 Update step length 1−n
iψ  as shown in (3.8). 

Step 1.3 Update step size 1−n
it  as shown in (3.7). 

Step 1.4 Update n
iρ  as shown in (3.6). 
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Step 1.5 Calculate n
itα  as shown in (3.5) 

Step 1.6 Distribute n
ity  and n

itα  ti,∀  to subsystem k k∀ .    

Step 2.  If any of the specified stopping criteria is satisfied, stop.  Otherwise n = n + 1 

and go to step 1. 

 

The solution procedure starts with the initialization: setting all the penalty weights 

equal to zero and other parameters to starting values. At every iteration, each subsystem 

solves its local problem and updates the penalty weights, as shown in step1. For the 

penalty weight updates, the subsystems need to reach a cooperative solution which 

minimizes the conflict among them. The cooperative solution of subsystem i at nth 

iteration can be calculated as follows: 

(i)  Substitute the solutions of other subsystms received at the end of the previous 

iteration, 1−n
kty { } tiuk ,, −∈∀ , into the coupling constraints. 

(ii) Then, solve the local problem by applying additional constraints that restrict the 

coupled decision variables by n
ct

n
ijit rxa ≤ where n

ctr  
{ }

))(,0max( 1∑
−∈

−−=
iUk

n
ktt yc . 

(iii) The resulted objective value is used as the lower bound, n
LBZ  when the stepsize and 

step length are updated.  

To calculate step size, the conflicts among subsystems must be quantified as 

∑∑
==

−=−
T

t

n
itit

n
ct

T

t

n
it

n
ct xaryr

1

2*

1

2* )()(  where n
ctr  

{ }
))(,0max( 1∑

−∈

−−=
iUk

n
ktt yc . The conflicts are 

interpreted as the locally measured amount of capacity violations when applying the 

solutions of all the subsystems on the capacity constraints. For each violation on the 

coupling constraints, the associated Lagrangian multiplers are updated using the step 

size. The penalty weights are determined using the Lagrangian multipliers.  Then, the 

information vectors in the prescribed format are exchanged. Note that, at first iteration, 

every subsystem solves its problem without outside information thus no penalty weights 

will be calculated at the first iteration.  
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The iteration continues until the algorithm satisfies the predetermined stopping 

criteria (step 2). In this research, three stopping criteria are applied: the algorithm stops 

when (i) it achieves a compromised solution, (ii) the step length becomes small enough, 

that is, nτ ≤ ε  where ε is a predetermined positive real constant, or (iii) the number of the 

direct interactions among subsystems reaches a predetermined value, n + 1 = N. A 

compromised solution is the set of the subsystems’ solutions without any conflict 

regarding the capacity of the facility; meaning, a solution is reached when there are no 

violations on the capacity constraints, if the solution were applied to them. Thus, it is a 

globally feasible solution even if it may not be globally optimal. 

 

4. Experimental results 

This section covers the experimental study used to investigate the performance of 

DIPIS when solving distributed capacity allocation problems. 

The proposed algorithm is tested on randomly generated problems using multiple 

varying factors to examine what, if any, variations affect the performance of the 

algorithm. The results are compared with the those of Lagrangian Relaxation (LR) 

algorithm and CICA. The comparison with LR results is interesting for two reasons: (i) 

the LR-based algorithm can use the system information without restrictions, (ii) the 

master problem in the LR algorithm coordinates the subsystem solutions.  The main 

difference between DIPIS and CICA is the existence of third party mediation in the 

algorithm. We expect to see the effect of that in the results.     

 

4.1.  Performance measures 

Since DIPIS does not guarantee the global feasibility and the optimal convergence, 

two performance measures are introduced to evaluate the quality of the solution: Percent 

Deviation (PD) and Capacity Violation (CV) (Jeong and Leon, 2003).  

PD indicates the closeness of the solutions to the optimal solution or best solution if 

the optimal solution is not available.  
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(%)100PD *

*

×
−

=
Z

ZZ
                               (3.10) 

Here Z  and *Z  are the global objective value of DIPIS solution and the optimal solution, 

respectively. 

CV is proposed to show the degree of the capacity violation of the subsystems’ 

solutions as follows:    

CV = 
∑

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −⎥⎦

⎤
⎢⎣
⎡∑

=

= =

T

t
t

T

t
t

m

i
itit

c

cxa

1

1 1
,0max

                         (3.11)   

CV represents the ratio of the sum of excessive capacity to the total facility capacity.   

Each measure can reveal only one aspect of the solution quality. For example, a 

solution with a minimal PD but large CV may not be considered “good”. Therefore, the 

quality of solutions must be evaluated using both measures. 

 

4.2. Experiments 

In this experimental study, distributed capacity allocation problems with two 

subsystems in a single facility are considered. DIPIS algorithm stops when n = 100 or 

step length εn ≤τ where 00001.0=ε . 

The test problems are randomly generated by varying five factors: the number of time 

intervals, profit of the products, processing times, demands, and capacity ratio per time 

interval. Two levels of variances are considered per factor as follows (Jeong and Leon, 

2003): 

(i) The number of time intervals is 5 or 10. 

(ii) The profits are randomly generated from the uniform distribution U(10,30) or 

U(10,50). 

(iii) The processing times are randomly generated from the uniform distribution 

U(2,5) or U(2,10). 
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(iv) The demands are randomly generated from the uniform distribution U(300, 

500) or U(300,600). 

(v) The capacity ratio (E) is 1.0 or 1.1.  

The capacity ratio represents the ratio of maximum available facility capacity to the 

total demands of all subsystems. Setting the maximum available capacity to be greater 

than or equal to total demands, meaning E ≥  1.0, ensures that every problem considered 

herein has at least one feasible solution. Therefore, 25 problem types are considered and 

10 problem instances are generated per problem type, totaling 320 test problems. C 

language is used to code the programs, and the subsystem problems in the LP 

formulation are solved using Cplex.  

Tables 1 and 2 show the PDs and CVs of DIPIS with the results of other solution 

algorithms such as LR and CICA. Here the results of CICA are obtained from CICA-

WPCI setting which implies that the coupled autonomous organizations (CAOs) 

recognize the maximum available capacity per time interval. For a fair comparison with 

CICA, it would be appropriate to consider the solutions of both coupled autonomous 

organizations and coupling agents (CA). This is because in DIPIS no third party 

coordinating entity such as a coupling agent exists; instead, subsystems perform the roles 

of both. The average PD and CV of the proposed algorithm are less than 2% and 3%, 

respectively. As shown in Table 1, DIPIS results are better than LR, which is unexpected. 

Note that LR is a centralized algorithm which can use more system information and 

update Lagrangian multipliers with a globally feasible lowerbound. It is conjectured that 

the number of subsystems is two, which is not sufficient to show the difference between 

the distributed system model and the centralized system model. That is, the 

distributedness of system information and decision entities appears to be too low. 

Additionally, DIPIS finds 34 optimal solutions out of the 320 problems.  

 

5. Conclusion 

In this chapter, the capacity allocation problem in a distributed environment is studied 

for the adaptability of the proposed distributed solution method in linear programming 
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formulation. To resolve the potential oscillation problem due to the LP formulation, a 

convex combination rule proposed by Choi and Kim (1999) is revised to update the 

Lagrangian multipliers in the DIPIS method.  

The experimental results show that DIPIS works well for the 320 test problems. It 

even outperforms the centralized algorithm LR which has more system information at 

any given time. The conjectured reason is that the test system consists of only two 

subsystems, the simplest distributed system setting. Additionally, the designs of a 

Lagrangian multiplier update routine (which maximize the usefulness of global 

coordination by the master problem) are expected to improve the performance of the LR 

algorithm.  

The capacity allocation problems in distributed systems with more than two 

subsystems associated with multiple facilities are suggested as a direction for future 

research. The results are believed to more precisely describe the performance of the 

proposed algorithm.  

 

Table 1 Comparison of PD results of DIPIS with LR and CICA 

PD (%)  DIPIS LR CICA – ORG CICA - CA 
Min 0.00 0.00 0.00 0.06 
Avg 1.76 4.08 2.61 8.70 
Max 23.05 42.88 25.06 60.05 

 
Table 2 Comparison of CV results of DIPIS with LR and CICA 

CV (%)  DIPIS LR CICA-ORG 
Min 0.00 0.00 0.00 
Avg 2.12 8.33 7.62 
Max 31.71 42.72 45.38 
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CHAPTER IV 

SINGLE-MACHINE DISTRIBUTED SCHEDULING USING DIRECT 

INTERACTION FOR PARTIAL INFORMATION SHARING 

 

1. Introduction 

This chapter addresses a single-machine scheduling problem that arises in a 

manufacturing system where the decision authorities and information are distributed in 

multiple sub-production systems. The situation occurs in practice when multiple sub-

production systems must share a single-machine due to the limited production resources. 

Although sub-production systems have distinct products for independent manufacturing, 

some jobs require products be processed on a shared machine. Consequently, to find a 

compromised schedule for using the shared machine, quasi-autonomous decision makers 

in sub-production systems must consider interactions one another.         

Direct Interaction for Partial Information Sharing (DIPIS), as proposed in Chapter II, 

is applied to solve this problem. Direct interactions are established among sub-

production systems for sharing local information. During the interactions, only local 

information limited to the jobs processed on the shared machine is exchanged. The 

information must represent the needs of the sub-production system and supportive 

evidence based on the local objective and constraints. Hence, the goal of optimizing the 

schedule of the shared machine, as well as local sub-production objectives, is pursued.  

The chapter is organized as follows. In section 2, the definition of a single-machine 

distributed scheduling problem is introduced in a mathematical form with necessary 

notations. Major issues of the problem are also described. A solution method using 

DIPIS is represented in section 3. The experimental results and conclusion are 

summarized in section 4. 
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2.  A single-machine distributed scheduling problem 

A single-machine distributed system consists of m sub-production systems that share 

a machine in processing jobs. The problem is how to schedule sub-production jobs on 

the shared machine in order to minimize a global objective in a linear function of job 

completion times. Two characteristics denote this problem as distributed: (1) multiple 

quasi-autonomous decision entities are involved in the problem solving, (2) there is only 

partial information sharing allowed. The first condition means each sub-production 

system has a decision maker that only schedules jobs within that sub-production system.  

The second condition means that the job information of each sub-production system (e.g. 

processing times, precedence relationships, etc.) is private and only non-private local 

information is partially shared with other systems in pursuit of the global goal. For 

example, in Figure 4, the local information about the jobs in the shaded box is shared 

each other.  

For clarity of the presentation and derivations, total weighted completion time is 

examined as the objective function. Next, the notation is introduced for the mathematical 

representations of the problem. We use the notation similar to the one proposed by 

Pritsker et al. (1969) for IP formulation. Let T be the production planning horizon and 

the decision variable is,  

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise.  ,0

.by time started has  job if  ,1 t j
x jt  t = 1,..,T 

The following notations are additionally used for the problem formulation: 

sj   =  ∑
=

−
T

t
jtx

1

)1( : starting time of job j. 

U: the set of all jobs that must process on the shared machine.  

Ui: the set of jobs of sub-production system i. miUU i ,...,1   , =⊂   

ii Un =  

∑
=

==
m

i
inUN

1

 

pj: processing time of job j. 



 

 

 

37

 

 

Figure 4 Single machine scheduling in a system of 3 production lines. 
 

cj  = sj   + pj  = ∑
=

−
T

t
jtx

1

)1(  + pj: completion time of job j. 

(j, k): job j must precede job k. 

wj: weight for unit completion time of job j. 

 

Then, the mathematical model of the single-machine scheduling problem under study 

is, 

   Min  ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

Uj
j

T

t
jtj pxw

1
)1(                           (4.1) 

St.  1,...,1 ,   1 −=∀≥+ Ttjxx jtjt                         (4.2) 

∑
+−

=

≥
1

1
1

jpT

t
jtx     Nj ,...,1=                          (4.3) 

Production line 1 

Production line 2 

Production line 3 

Shared machine
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( ) q

T

t
rtqt pxx ≥−∑

=1
 miUrqrq i ,...,1,,:),( =∈∀            (4.4) 

∑
=

− ∀≤−
N

j
pjtjt txx

j
1

   1)(                                 (4.5) 

Quasi-autonomy condition                              (4.6) 

Partial Information Sharing                              (4.7) 

{ } tjx jt ∀∀= ,       1,0                                   (4.8) 

 

The objective of the system (4.1) is to minimize the total sum of the weighted 

completion times of all jobs processed on the shared machine. Constraint (4.2) implies 

that, once started, a job remains started in all subsequent time periods. Constraint (4.3) 

ensures that all the jobs can be finished within the production planning horizon.  The 

precedence constraint (4.4) implies that the interval of the starting times between job q 

and job r must be at least pq in order to finish job q before job r starts processing. Note 

that only the jobs in the same sub-production system are related by the precedence 

constraints, thus grouping them per each sub-production system. Constraint (4.5) is the 

capacity constraints of the shared machine, meaning that only one machine is available 

for job processing through all the processing time slots. Multiple sub-production system 

decision variables are included in these constraints. That is, multiple sub-production 

systems are coupled by the capacity constraints. (4.6) and (4.7) are the conditions that 

define the distributed system. Finally, Constraints (4.8) is for the declaration of the 

binary integer decision variables.  

In the distributed scheduling problem, jobs processed on the shared machine are 

distributed among sub-production systems. So the local objective of sub-production 

system i is to minimize the sum of the weighted completion time of its own jobs on the 

shared machine, i.e. ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

iUj
j

T

t
jtj pxw

1
)1( . Sub-production system i recognizes only 

the precedence constraints between its own jobs, ( ) q

T

t
rtqt pxx ≥−∑

=1
 iUrqrq ∈∀ ,:),( . 
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These local precedence constraints are unknown to other sub-production systems. On the 

other hand, capacity constraints (4.5) include the decision variables of multiple sub-

production systems. Each sub-production system can see its own decision variables and 

the available capacity per time slot, i.e. txx
i

j
Uj

pjtjt ∀≤−∑
∈

−    1)( . With these partial 

capacity constraints, the sub-production system problem can be solved independently. 

But the resulting schedule may have conflicts because multiple sub-production systems 

can claim the same time slots. The key issue is how to optimize sub-production systems’ 

local schedules without creating capacity violations. Consequently, the research problem 

in this chapter is how to allocate jobs to time slots on a shared machine in order to 

minimize the total weighted completion times using partial information sharing.   

 

3. A Solution methodology using DIPIS 

This section describes the solution procedures for applying DIPIS to the single-

machine distributed scheduling problem.  

DIPIS relaxes the machine capacity constraints from the system problem and thus 

decomposes it into m sub-production system problems. The sub-production system 

problems do not have the machine capacity constraints. Instead, they include penalty 

functions to reflect the machine capacity information as additional objectives. For this 

purpose, the sub-production systems interact by exchanging local information vectors. 

Figure 5 illustrates direct interactions among sub-production systems and the 

information flows at nth iteration. Let St be the index-set of sub-production systems that 

are coupled in the machine capacity constraint on time slot t. Sub-production system i 

receives information vectors from sub-production system k where { }iSk t −∈  via direct 

interactions. Let 1−n
kΓ  be the set of time slots on the shared machine that sub-production 

system k desires to use for its job processing at (n - 1)th iteration. The information vector 

from sub-production system k consists of  two components.  This first is a solution 

vector of sub-production system k’s scheduling problem composed of the desired time  

 



 

 

 

40

 
Figure 5 Information flow in DIPIS model for a single machine distributed scheduling 

problem with m sub-production systems. 
 

slot t, where 1−∈ n
kΓt  , of the shared machine for processing its jobs. The second is the 

weight 1−n
ktα  that sub-production system k claims as the penalty cost of taking time slot t. 

Section 3.1 describes the sub-production system problem in mathematical 

programming formulations. Section 3.2 explains the derivation of the penalty costs 

exchanged among sub-production systems via direct interactions.  

 

3.1. Sub-production system problems 

The sub-production system problem is defined in two types of mathematical 

programming formulations: 0/1 integer, and linear program formulation. In general, an 

IP problem is better suited for the scheduling problems in terms of solution quality. 

However, as the problem size increases the computation times increases exponentially. 

The proposed LP heuristic is designed to solve the problem of large sizes with practical 

computation times. 
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3.1.1  IP formulation  

Using the same notations as in the previous section, the problem of sub-production 

system i (SPi-IP) at nth iteration is formulated as follows: 

   (SPi-IP):  Min   ∑ ∑
∈ =

⎟
⎠

⎞
⎜
⎝

⎛
+−

iUj
j

T

t

n
jtj pxw

1
)1( + ∑ ∑ ∑

−∈ Γ∈ ∈
−

−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

}{

1

1

)(
iSk t Uj

n
pjt

n
jt

n
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t
n
k i

j
xxα    (4.9) 

St.   jtjt xx ≥+1            1,...,1 ,   −=∈∀ TtUj i          (4.10) 

 ∑
+−

=

≥
1

1
1

jpT

t
jtx                 iUj ∈∀                    (4.11)  

( ) q

T

t

n
rt

n
qt pxx ≥−∑

=1
       iUrqrq ∈∀ ,:),(            (4.12) 

1)( ≤−∑
∈

−
i

j
Uj

n
pjt

n
jt xx      t∀                       (4.13) 

{ }1,0=n
jtx              tj ∀∀ ,                   (4.14) 

In the second term of the objective function, ∑ −
∈

−
i

jUj

n
pjt

n
jt xx )( indicates if sub-

production system i desires to use time slot t.  If penalty 1−n
ktα received from sub-

production system k is positive, that means sub-production system k also wants to use 

the slot t. Thus, it indicates the potential schedule conflict between sub-production 

systems i and k on time slot t. It costs 1−n
ktα  for sub-production system i to take the time 

slot. Therefore, the problem is to find a compromised solution that minimizes both the 

schedule conflict with other sub-production systems and the local objective function. 

Constraint (4.10) ensures the nonpreemptiveness of the solution schedule. Constraint 

(4.11) implies that all jobs must be scheduled within the planning horizon. Constraint 

(4.12) and (4.13) are the local precedence constraint and the local machine conflict 

constraint, respectively.  

Note that the second term of the objective function is the penalty function that 

substitutes the Lagrangian relaxed machine capacity constraint function as follows: 
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⎟
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xx
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))((1θ                      (4.15) 

where n
tθ is the Lagrangian multiplier of the machine capacity constraint on the time slot 

t at nth iteration. The Lagrangian relaxation method needs complete sub-production 

system information to calculate the global upperbound and update Lagrangian 

multiplers. But job processing times are private sub-production system information here. 

So, DIPIS is applied to find an alternative penalty function which can be formed using 

only solutions of other systems, associated sub-production system penalties, and local 

job information. Derivation of the penalty function using DIPIS is illustrated as follows: 
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where )))((1,0max(
}{

∑ ∑ −−=
−∈ ∈

−
iSk Uj

n
pjt

n
jt

n
t

t k
j

xxr . n
tr indicates the remaining machine 

capacity on time slot t that sub-production system i can use without penalty at nth 

iteration. By the solution vectors received via direct interactions, sub-production system 

i can recognize which time slots are desired by sub-production sytem k and thus 

determine n
tr . Here n

tθ is linearly approximated as ∑
∈ tSk

n
ktθ using the first order Taylor 

expansion and n
ktθ is the partial penalty weight associated with the variations of local 

objective and local constraints in sub-production system k. These partial terms can be 

calculated by a central decision entity who does not exist in the system under study. 

Therefore, each term n
ktθ  is replace by the value, 1−n

ktα , which is locally determined by 

each sub-production system at the end of the previous iteration. Note that, for the 

subproblem of sub-production system i, its own term is set to zero and the resultant 

penalty weight is ∑
−∈ }{iSk

n
kt

t

α . This is because the violations on the coupling constraints are 

presumed to be incurred by other sub-production systems and thus each sub-production 

system doesnot penalize itself. 
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In single-machine problems, n
tr can be either 0 or 1. If at least one sub-production 

system other than sub-production system i desires to use time slot t for its job 

processing, 1)))((
}{

≥∑ ∑ −
−∈ ∈

−
iSk Uj

n
pjt

n
jt

t k
j

xx and n
tr is 0. The associated penalty cost 

is ∑
−∈

−

}{

1

iSk

n
kt

t

α . If no other sub-production system claims time slot t, n
tr is 1 and thus sub-

production system i can use time slot t without any penalty, i.e. 0
}{

1 =∑
−∈

−

iSk

n
kt

t

α . Therefore, 

as shown in (4.7), the following form of the penalty function can represent both cases: 
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The algorithm based on 0/1 IP formulation of DIPIS is expected to show promising 

performance dealing with single machine scheduling problems under partial information 

sharing. This is akin to what the CICA model showed in similar problems with allowing 

third party mediation (Jeong and Leon, 2005). However, IP formulation has limitations 

in solving problems with large job set. As the number of jobs to schedule increases, the 

computational efficiency deteriorates significantly, thus prohibiting practical 

implementation of the proposed algorithm to industry-size problems. To resolve this 

limitation, LP-CICA, LP version of CICA algorithm, was developed using LP relaxation 

proposed by Dyer and Wolsey (1990) and tested. For more details about LP-CICA, refer 

to appendix A. Similarly, here we introduce an efficient LP heuristic for the associated 

scheduling problems. 

 

3.1.2   LP Heuristic  

This section describes an LP relaxed formulation and a feasibility restoration routine. 

For LP relaxed formulation, we use notation similar to Dyer and Wolsey (1990) and 

Uma and Wein (1998). First, let the decision variable yjt be newly defined as follows: 

.,...,1 ,
otherwise.  ,0

].1[interval  timein the processed being is  job if  ,10
: Tt

t,t  jy
y jt

jt =
⎩
⎨
⎧ +≤<

 

Then, the LP problem of sub-production system i (SPi-LP) is proposed as follows: 
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(SPi-LP):  Min  ∑
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In the objective (4.18), the variable n
jc is used for the completion time of job j and  

n
tY  is for the occupancy of sub-production system i on the time slot t at nth iteration. 

Constraint (4.19) ensures that job j be finished within the planning horizon. The 

precedence constraint is shown in (4.20): the time interval between the completion times 

of job q and r must be at least pr. Constraint (4.21) implies that the maximum available 

machine capacity per time slot is one. Using the formula (4.22), the completion time of 

job j is calculated. Note that, if the schedule for job j is nonpreemptive, (4.22) calculates 

the exact completion time.  If it is preemptive, it provides the average completion time of 

the schedule. (4.23) defines n
tY  to be total sum of the processing times requested by sub-

production system i on time slot t.  

The main differences between the LP problem and IP problem originate from the 

introduction of newly defined decision variables. The decision variables can now take 

any fractional value in [0,1]. This implies that more than one job can be processed on the 

same time slot. Accordingly, forcing the schedule to be nonpreemptive becomes less 

meaningful. Hence, in the LP problem, nonpreemptive constraints are relaxed for further 

improvement of the computational efficiency.
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The resultant solution of  SPi-LP can be a preemptive nonintegral schedule, making it 

even locally infeasible. So, a feasibility restoration routine is needed to recover the 

integrality and the nonpreemptiveness of the schedule. In this study, a simple post-

processing routine based on the completion time information from the SPi-LP schedule 

is applied as follows: 

Feasibility Restoration Routine.  

Step 1. Sort jobs in the ascending order of the completion time. 

Step 2. If two or more jobs have the same completion time, order them by WSPT rule. If 

jobs are still tied, order them arbitrarily. 

Step 3. Check the schedule overlap between adjacent jobs. If overlapping occurs, adjust 

the starting time of the succeeding job to the completion time of the preceding job.   

Step 4. Check if the last job finishes processing within the planning horizon. If not, 

readjust the completion time of the last job so that the last job finishes by the 

planning horizon. If overlapping occurs due to this adjustment, reset the 

completion time of the preceding job by the starting time of the succeeding job. 

Using the feasibility restoration routine proposed above, we can convert solutions of 

SPi-LP to nonpreemptive integer schedules.  

 

3.2. Updating the Lagrangian multiplier for the sub-production systems 

In this section, we explain how to update the Lagrangian multipliers of machine 

capacity constraints and calculate the penalty weights. For convenience of the 

illustration, we use the notations for SPi-IP.  

Let n
itθ be the Lagrangian multiplier for the machine capacity constraint on time slot t 

calculated by sub-production system i at the end of nth iteration. n
itθ  is updated using the 

subgradient optimization method modified as follows to work under partial information: 
n
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∈
−

−

i
jUj

n
pjt

n
jt

n
t

n
i

n
it xxrsθ             (4.24) 

⎜⎜
⎝

⎛
=

,1
,0

where n
tr

otherwise

forif 1
t

n
k SkΓt ∈∃∈ −

               



 

 

 

46

n
is

∑ ⎟
⎠
⎞

⎜
⎝
⎛

∑ −−

−
=

= ∈
−

T

t Uj

n
pjt

n
jt

n
t

n
c

n
i

n
i

i
j

xxr

ZZτ

1

2

)(
                     (4.25) 

pτ n
i

n
i ×= −1τ , 11if −− −>− n

c
n
i

n
c

n
i ZZZZ                    

1−= n
iτ , otherwise,                            (4.26) 

 

where n
iZ  is the local objective value of sub-production system i problem at nth iteration. 

n
cZ is the local objective value of sub-production system i when the problem is further 

restricted to minimize the schedule conflict with other sub-production systems. For 

instance, when 1−∈ n
kΓt , then the time slot t is restricted in order that sub-production 

system i cannot take the time slot for its schedule.  Therefore, n
cZ is obtained when 

restricting all 1−∈ n
kΓt  { }iSk t −∈  for .  

Note that the proposed Lagrangian multipliers update rule does not require a global 

upper bound to update step size. As shown in (4.25), the local solutions n
iZ and n

cZ  are 

used to calculate the step size. n
c

n
i ZZ − tells the compromise level of sub-production 

system i with other sub-production systems. If 0=− n
c

n
i ZZ , sub-production system i 

schedules its jobs without using all the time slots desired by other sub-production 

systems. Otherwise, Lagrangian multipliers are updated proportional to n
c

n
i ZZ − . As 

shown in (4.26), step length is reduced when n
c

n
i ZZ − is not improved compared to the 

previous iteration.  

The next step is to determine the penalty weight using the updated Lagrangian 

multipliers. The penalty weight n
itα  represents the average cost increment incurred when 

a new schedule is built without using time slot t. Consider a job j which is scheduled 

from n
js  + 1 to j

n
j ps + . The total cost increment incurred when sub-production system i 
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cannot use this time interval is ∑
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(4.27) is applied to n
itα  for all the time slots scheduled for the jobs of sub-production 

system i, i.e. n
iΓt ∈∀ . 

 

3.3. DIPIS algorithm for single-machine distributed scheduling problems 

In this section, DIPIS algorithm for a single-machine distributed scheduling problem 

is summarized. 

 

Initialization: Set the number of maximum interactions N. 

Set { }=0
kΓ , 00 =ktα , 00 =is  , 20 =iτ , tk,∀ and p, 0 < p < 1. 

Set n = 1. 

Step 1: Sub-production system’s problem. For i = 1,…,m. 

Step 1.1: Solve the problem SPi-IP or SPi-LP and apply the feasibility 

restoreation routine to find  n
iΓ . 

    Step 1.2: Calculate the step length n
iτ  as shown in (4.26). 

Step 1.3: Calculate the step size n
is  as shown in (4.25). 

Step 1.4: Update the Lagrangian multipliers n
itθ as shown in (4.24) t∀ . 

Step 1.5: Calculate penalty weights n
itα , n

iΓt ∈∀ as shown in (4.27).  

Step 1.6: Distribute the information vector ( t , n
itα ), n

iΓt ∈∀  to sub-production 

system k, { }iSk t −∈∀ . 

Step 2: If n = N or 1−= n
i

n
i ΓΓ  i∀ , stop.  Otherwise, n = n + 1 and go to step 1. 
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The solution procedure starts with the initialization: setting all the penalty weights 

equal to zero and other parameters to starting values. At every iteration, each sub-

production system solves its local problem and updates the penalty weights, as shown in 

step1. For the penalty weight updates, the sub-production systems need to reach a 

cooperative solution which minimizes the schedule conflict on the shared machine one 

another. The cooperative solution of subsystem i at nth iteration can be calculated as 

follows: 

a. For n
kΓt ∈∀ from sub-production system k, set 0=n

tr which means that 

current sub-production system would not be able to schedule its jobs on 
n
kΓt ∈∀ . 

b. Then, solve the restricted problem by (i). The resulted objective value is used 

as n
cZ for updating step size and step length.  

To calculate step size (step 1.3), the conflict among sub-production systems is 

quantified as the sum of capacity violations on all the time slots in the following form: 

∑ ∑ −−
= ∈

−

T

t Uj

n
pjt

n
jt

n
t

i
j

xxr
1

2))(( . For each violation on the coupling constraints, the associated 

Lagrangian multiplers are updated using the step size (step 1.4). The penalty weights are 

determined using the Lagrangian multipliers (step 1.5).  Then, the information vectors in 

the prescribed format are exchanged (step 1.6).  

The iteration continues until the algorithm satisfies the predetermined stopping criteria 

(step 2). In this research, two stopping criteria are applied: the algorithm stops when (i) it 

achieves a converged solution, (ii) the number of the direct interactions reaches a 

predetermined value, i.e. n + 1 = N. If a converged solution does not violate any of the 

coupling constraints, it is a compromised solution; meaning, it is a globally feasible 

solution even if it may not be globally optimal. 
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4. Experimental  study 

This section explains the experimental study used to investigate the performance of 

DIPIS in single-machine distributed scheduling problems. Specifically, two experiments 

are performed to test the proposed algorithm. The first experiment tests how the variance 

of the problem factors affect the performance of DIPIS. The second focuses on the 

computational efficiency of the algorithm, especially for large problems. The results are 

compared to those of centralized algorithm. The algorithm is implemented using C 

programming language. CPLEX is used to solve the sub-production system problems in 

LP formulation.  

In this experimental study, two performance measures are proposed to evaluate the 

quality of DIPIS solutions: PD (Percent Deviation) and CV (Capacity Violation). PD is 

calculated to examine the closeness of the solution after global feasibility restoration to 

the global optimal solution. 

(%)100PD *

*

×
−

=
Z

ZZ
                          (4.28) 

Here Z  and *Z  are the global objective value of DIPIS solution and the optimal solution, 

respectively. 

CV is designed to measure the capacity violations of the solutions of sub-production 

systems before global feasibility restoration.  
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CV indicates the total excess of capacity by the solutions of the sub-production systems. 

Finally, the computation times of DIPIS algorithm are examined and compared to the 

results of centralized algorithm.to check the applicability to large size problems.  
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4.1. Experiment one  

 This experiment considers three sub-production systems with one shared machine 

problem.  Each sub-production system has six jobs to be processed on the shared 

machine.  

The main purpose of this experiment is to explore the behavior of the proposed 

algorithm according to the variations of the problem parameters. To do so, the 

combinations of processing times and precedence level of jobs are considered as 

follows: 

(1) processing times generated from U(1,5) or U(1,10) 

(2) three levels of the precedence relationships 

In level 1, two jobs in each sub-production system are in a precedence relationship. In 

level 2 and 3, three and four jobs are in the precedence relationship, respectively, The 

problem types are classified by the combinations of the distribution of processing time 

and the precedence level. For instance, ‘(1,5) level 1’ implies that processing times are 

generated from U(1,5) and two jobs are in a precedence relation. Therefore, a total of 6 

types of problems are examined in this experiment. The weight for completion time is 

randomly generated from the discrete uniform distribution U(1,10). For each problem 

type, 30 problems are generated and tested. We set a step parameter p = 0.75 that has 

performed well empirically in distributed scheduling problems (Jeong and Leon, 2002). 

Table 3 and 4 show the PD, CV, and computational times of DIPIS with step 

parameter p = 0.75. The PD results in Table 3 illustrate that, on average, DIPIS yields 

solutions less than 5% from optimal.  

A statistical test is performed  to identify if the variations in processing times affects 

the solution quality of DIPIS. The first test hypotheses are as follows: 

H0: )10,1(,)5,1(, PDPD μμ =  and H1: )10,1(,)5,1(, PDPD μμ <               

Here )5,1(,PDμ and )10,1(,PDμ denote the average PDs with the problems of the processing 

times from U(1,5) and U(1,10), respectively. At significance level of 5 %, H0 is rejected 
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with p-value equal to 0.0195, meaning the difference between two PDs are statistically 

significant.  

The second hypotheses are designed for CV results as follows:  

H0: )10,1(,)5,1(, CVCV μμ =  and H1: )10,1(,)5,1(, CVCV μμ <               

Here )5,1(,CVμ and )10,1(,CVμ are the average CVs with the problems of the processing times 

from U(1,5) and U(1,10), respectively. At significance level of 5 %, H0 is rejected with 

p-value equal to 0.0001. Test result tells that CVs are also significantly affected by the 

variations in processing times. Especially, according to the results shown in Table 3, 

average CVs are doubled when the variations in processing times are increased twice. 

The purpose of the second statistical test is to examine the effect of the precedence 

levels on the solution quality. The first test hypotheses are as follows: 

H0: 3)5,1(,1)5,1(, levelPDlevelPD μμ =  and H1: 3)5,1(,1)5,1(, levelPDlevelPD μμ <      

Here 1)5,1(, levelPDμ and 3)5,1(, levelPDμ denote the average PDs with the problems of the 

processing times from U(1,5) and the precedence level 1 and 3, respectively. At 

significance level of 5 %, H0 is not rejected with p-value equal to 0.7402.  

The next test hypotheses are as follows: 

H0: 3)10,1(,1)10,1(, levelPDlevelPD μμ =  and H1: 3)10,1(,1)10,1(, levelPDlevelPD μμ <     

At significance level of 5 %, H0 is rejected with p-value equal to 0.0332. 

The two hypotheses test results show that the variations in precedence level does not 

change PDs significantly with low variations in processing times while it significantly 

affects PDs with high variations in processing times. 

In Table 4, the average computational times of the centralized algorithm and DIPIS 

are compared. The results show that DIPIS solves all the problems in two minutes. 

Because the sizes of the test problems in this experiment are small, absolute comparison 



 

 

 

52

between two results is considered to be less meaningful. The same comparison for large 

problem instances will be dealt in the next section.   

 

Table 3 CV and PD results of DIPIS for small problem instances 

Percent Deviation (PD) Capacity Violation (CV) 
Problem type 

Min avg Max Min Avg Max 

(1,5) level 1 0.20 3.07 7.26 4 13.03 24 

(1,5) level 2 0.30 2.92 7.11 4 15.03 29 

(1,5) level 3 0.04 3.24 8.79 3 12.13 22 

(1,10) level 1 0.50 3.21 8.00 7 27.30 51 

(1,10) level 2 0.82 3.68 9.98 9 26.97 63 

(1,10) level 3 0.77 4.53 9.74 9 24.77 49 
 
Table 4 Computational times of DIPIS 

Computational time (sec.) 

DIPIS algorithm Problem type Optimal 
solution Min Avg Max 

(1,5) level 1 0.16 58.29 61.50 68.82 

(1,5) level 2 0.17 59.81 61.78 70.02 

(1,5) level 3 0.18 57.88 61.66 67.50 

(1,10) level1 0.22 58.98 63.03 68.24 

(1,10) level 2 0.25 60.99 67.50 89.82 

(1,10) level 3 0.27 58.95 63.80 75.06 

 

4.2. Experiment two 

This section checks the practical applicability of DIPIS for solving large problem 

instances. 
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The experiments herein consider 36 and 48 jobs. The processing times are randomly 

generated from uniform distribution U(1,50) or U(1,100). Precedence level 2 is applied 

to all the test problems, meaning half of jobs are related with the precedence constraints. 

A total of seventy random problems are generated and tested.  

Table 5 show the PD results for each problem type. The problem types are 

represented by the combination of the number of jobs and the maximum processing time. 

For example, ‘(36,50)’ implies that the problem instances are to schedule 36 jobs with 

the processing times randomly generated from U(1,50). According to the results, DIPIS 

generates the solutions within 6% of optimal. Note that these results are obtained under 

partial information sharing and are thus encouraging. 

As the processing times of jobs increase, computational efficiency of the centralized 

problems in IP formulations significantly deteriorates (refer to Table 6). For example, 

the centralized problems of 48 jobs with the processing times generated from U(1,100) 

requre more than 4 hours while DIPIS solves the same type of the problems in less than 

2 hours.  

Figure 6 illustrates the exponential increase in the computational times of centralized 

algorithm. Computational times of DIPIS also tend to increase but relatively small by 

increases in the problem size.   

 

5. Conclusion 

This study explores the performance of DIPIS for various types of single-machine 

scheduling problems.  Besides the overall solution qualities of less than 6% from the 

optimal solutions, comparably excellent performances in computational times make 

DIPIS promising and competitive – especially for large problems. 

Investigating various interaction mechanisms in a distributed system environment is 

interesting and worth studying as future research.  
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Table 5 PD and CV results of DIPIS for large problem instances 

Percent Deviation (PD) Capacity Violation (CV) 
Problem type 

Min avg Max Min Avg Max 

(36, 50) 1.50 4.08 7.33 132 215.1 430 

(36, 100) 1.29 5.22 22.04 288 481.45 734 

(48, 50)  1.36 3.33 6.41 246 345.45 520 

(48, 100)* 2.27 3.69 8.38 578 695.6 822 
*due to excessive runtimes, only ten problems are tested in this type. 

 

 

Table 6 Comparison of average computational times  

Computational Times (sec.) 

Optimal DIPIS Problem type 

Min avg Max Min Avg Max 

(36, 50) 66.39 141.68 307.19 336.27 409.50 549.17 

(36, 100) 545.42 1109.7 2246.09 707.34 952.45 1222.6

(48, 50)  617.99 2039.75 4476.63 974.16 1311.01 1715.8

(48, 100)* 5903.53 17965.06 36874.34 2782.70 4311.27 5981.1
*due to excessive runtimes, only ten problems are tested in this type. 
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Figure 6 Computational time comparison. 
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CHAPTER V 

DISTRIBUTED JOBSHOP SCHEDULING USING DIRECT INTERACTION 

FOR PARTIAL INFORMATION SHARING 

 

1. Introduction 

In jobshop manufacturing systems, multiple machines process jobs with multiple 

operations. The scheduling problems associated with the jobshop systems are often too 

complicated to be addressed by a centralized decision maker. Take the example of an 

assembly plant for a product consisting of multiple parts. The parts manufactured on 

different machine shops are assembled according to a predetermined sequence. What if 

some parts are produced by subcontractors ? (Ure and Jaegersberg, 2005)  The machine 

shops of subcontractors must be managed separately by independent decision makers. 

According to the local machine conditions (e.g. machine capacity, downtime, etc.), they 

generate local production schedules. However, the parts must be delivered to the 

assembly plant in order that the total assembly time can be minimized. A supervisor in 

the assembly plant may not directly control the local information or local tasks of the 

subcontractors.  

Lagrangian relaxation has been studied by many researchers as an efficient 

centralized decomposition method to jobshop scheduling problems (Roundy et al., 1991; 

Gou et al., 1994). But to coordinate subproblem solutions within a global preference, the 

master problem must be able to access local information without restriction. This is not 

possible in the aforementioned scenario. Cooperative Interaction via Coupling Agents, a 

distributed method proposed by Jeong and Leon (2002), has been applied to solve the 

scheduling problems in a systems where there is only partial information sharing. 

However, in CICA, third party entities (Coupling Agents) exist to guide subsystems in 

finding compromised solutions. 
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In this chapter, DIPIS is applied to solve the distributed jobshop scheduling problems. 

This method requires neither centralized coordination nor third party mediation. It uses 

direct interactions among subsystems to share partial information.   

The chapter is organized as follows:  Section 2 presents the mathematical formulation 

of the problem. The solution approach is described in section 3. Section 4 shows the 

experimental results in tables with explanations. Finally, the conclusion appears in 

section 5.   

 

2. Problem statement 

This section explains jobshop scheduling problems in a distributed system 

environment.  

General jobshop scheduling problems are described as follows: N jobs are to be 

processed on m machines with the objective of minimizing sum of the weighted 

completion times of jobs, subject to two constraints: (i) the operation sequence of each 

job is prescribed; and (ii) each machine can process only one job at a time. (i) implies 

precedence constraints for job operations and (ii) indicates machine capacity constraints. 

An operation is denoted as the processing of a job on a machine. The completion of each 

job requires m operations and the operation sequence is predetermined. The operation 

sequences are not necessarily the same for all jobs. Each operation is non-preemptive 

and can only be processed on a designated machine.  

In this study, we consider a distributed jobshop system that consists of m subsystems. 

Each subsystem possesses a unique machine to process one operation of each job. The 

system information each subsystem has is restricted to only the processing times of N 

operations on its machine and partial job operation sequences. From the partial operation 

sequences, subsystems can identify which subsystem processings precede or follow their 

job operations. The subproblem of each subsystem is to schedule the job operations it 

processes in order to minimize the sum of the weighted completion times subject to the 

machine capacity constraints. Subsystems also exchange partial local information to 
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achieve the global objective. As previously mentioned, this is the minimization of the 

sum of the weighted completion times of the last operation in each job.  

The decision variables are as follows: 

sij :  starting time of operation i of job j  

cij :  completion time of operation i of job j i 

Cj :  completion time of job j 

In addition, the following notations are used to mathematically model the problem: 

T: the production planning horizon 

pij :  processing time of job j on machine i, i = 1,…, m 

wj: weight for unit completion time of job j 

Aj : set of pairs of operations for job j constrained by precedence relations 

(k, l): operation k must precede operation l  

For convenience, ∑ ∑=
= =

m

i

N

j
ijpT

1 1
 in order to schedule all jobs. And the index i for an 

operation also indicates the subsystem that has a machine for processing that operation. 

The jobshop scheduling problem under study can be represented as follows: 

Min   ∑
=

N

j
jjCw

1
                                     (5.1) 

St.   ljkjlj pcc ≥−               NjAlklk j ,...,1,,:),( =∈∀   (5.2) 

 ijikij pcc ≥− ikijik pcc ≥−or   mi ,...,1= j∀,            (5.3) 

ijj cC ≥                   i∀ j∀,                 (5.4) 

Quasi-autonomy condition                          (5.5) 

Partial Information Sharing condition                  (5.6) 

 

The system objective (5.1) is to minimize the total sum of the weighted completion 

times of N jobs processed on m machines.  The precedence constraint (5.2) implies that 

the interval of the starting times between operation k and l of job j must be at least plj in 

order to finish operation k before operation l starts processing. Note that two operations 

of a job in the precedence relation are processed on different machines. Since each 
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machine belongs to a distinct subsystem, every precedence constraint associates two 

subsystems and is considered to be a coupling constraint. Constraint (5.3) is the capacity 

constraints of the machines, meaning that a machine can process only one job operation 

at a time. Constraint (5.4) ensures that the completion time of a job be the time to finish 

processing all its operations. In a distributed problem, this constraint is not applicable 

because no subsystem knows completion times of all job operations. Associated with 

constraint (5.4), the relationship between the global objective and subsystem objectives 

is explained in the following section. (5.5) and (5.6) are the conditions that characterize 

the distributed jobshop systems: (i) each subsystem has  a quasi-autonomous decisiion 

entity, (ii) and job processing times on a specific machine are private information only 

known to the subsystem that owns the machine. 

In the distributed jobshop system studied here, each subsystem has multiple 

operations to process on its machine and generates a schedule by solving the local 

subproblem. Then, partial information associated with the precedence relationships 

among the operations of jobs is shared to optimize the global goal. Figure 7 shows the 

disjunctive graph representation of the corresponding problem. The first and last nodes 

are artificial, used for starting and ending respectively. Operations of the same color, 

which are connected with conjunctive arcs, are in precedence relationships. Disjunctive 

arcs link the operations that belong to the same subsystem for processing on one 

machine. Here Okj represents the kth operation of job j where k = 1, 2, 3 and j = 1, 2, 3, 

4. 

To illustrate, let subsystem 1 be responsible for the processing the operations O11, 

O22, O23, O34; subsystem 2 for O21, O32, O13, O24; and subsystem 3 for O31, O12, 

O33, O14. Each subsystem determines the starting times of its operations without 

schedule conflict on its own machine. However, schedule conflicts with other 

subsystems may arise because no subsystem has control of the starting times of the 

operations in other subsystems. For example, the schedule of subsystem 1 is in the order 

of (O23, O11, O34, O22) and subsystem 2 in (O24, O32, O21, O13). Consider a pair of 

operations in precedence relationships, (O13→O23). O23 is the first operation in the 
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current schedule of subsystem 1 and O13 the last operation of subsystem 2. Without 

recognizing the completion time of O13 in subsystem 2, subsystem 1 may schedule the 

starting time of O23 as early as possible to minimize the weighted completion time of 

O23. If subsystems do not share schedule information, similar conflicts may occur 

between all the pairs of operations in the precedence relationship, (O11→O21), 

(O24→O34), and (O22→O32).    

Therefore, the distributed jobshop problem is how to schedule the operations of jobs 

in order to minimize the sum of the weighted completion times under partial information 

sharing. Neither centralized coordination nor third party intervention is allowed to 

resolve the conflicts among the schedules of the subsystems.  Interactions among 

subsystems are required to exchange local information in order to find solutions without 

the precedence violation. 

 

3. A Solution methodology using DIPIS 

This section describes Direct Interaction for Partial Information Sharing (DIPIS) 

methodology, proposed in Chapter II, to define the subsystem problem and solution 

procedures. 

In examinging the relationships between the global system objective and subsystems’ 

objectives, we consider the global objective, ∑
=

N

j
jjCw

1
,and the local objective of 

subsystem i, ∑ −
=

N

j
ijijj rcw

1
)( . Since jw  is known to all subsystems, we focus on the 

relationships between completion times of a job and the operations of the job. 

By definition, the completion time of a job indicates the time to finish the last 

operation of the job. But the completion time of a job implicitly includes all the 

processing information of the intermediate operations as well as the last operation. To 

expand the completion time of a job using this intermediate information, 

jC  [ ] jmc≡  )(...)(...)()( ]1[][]1[][]1[]2[]1[ jmjmjijijjj ccccccc −− −++−++−+=    (5.7) 
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Figure 7 Disjunctive graph of the distributed jobshop problem with three subsystems. 

 

Here [ ] jic  means the completion time of the ith operation of job j. Because the ith 

operation of job j can only be processed after the (i-1)th operation of job j are finished 

processing, the completion time of the (i-1)th operation is equal to the ready time of the 

ith operation, i.e. [ ] [ ] jiji cr 1−= . Note that [ ] 01 =jr for j∀ . The minimization of the 

completion time of job j is equivalent to the minimization of the sum of the gap between 

the completion time of the ith operation and its ready timefor i =1,…,m. Therefore, if a 

subsystem can obtain the ready time information of its operations, the system objective 

is represented as follows:  

∑ ∑ −=∑ ∑ −=∑ ∑ −=∑
= == == ==

m

i

N

j
ijijj

N

j

m

i
ijijj

N

j

m

i
jijij

N

j
jj rcwrcwrcwCw

1 11 11 1
][][

1
)( min  )( min  )( min  min

 (5.8) 

Note that the last term means that the system objective can be represented as the sum of 

m subsystems’ objectives.  

Figure 8 shows direct interactions among subsystems and the information flows of 

DIPIS model for a distributed jobshop problem. Through the interactions among 

subsystems, partial local information associated with the precedence relations is 

O11 O21 O31 

O12 O22 O32 

O14 O24 O34 

O23O13 
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exchanged. Let 1−n
ijc  and 1−n

ijs  be the completion time and the starting time of operation i 

of job j on a machine of subsystem i after (n-1)th iteration, respectively. 1−n
ijα and 1−n

ijβ  

denote the Earliness and Tardiness (E/T) weights of starting operation i of job j one time 

unit early and late from 1−n
ijs respectively. The information vector from subsystem i to 

subsystem k that has the next operation of job j is ),( 11 −− n
ij

n
ijc α and the information vector 

to subsystem l that has the preceding operation of job j is ),( 11 −− n
ij

n
ijs β . Note that 1−n

ijc  is 

used as the proposed ready time of the next operation of job j and 1−n
ijs  as the proposed 

due date of the previous operation of job j at nth iteration  

Section 3.1 describes the subsystem problem in mathematical programming 

formulation. In section 3.2, the procedure to calculate Earliness/Tardiness (E/T) weights 

is explained in detail. 

 

3.1. Subsystem problem (MSPi) 

In this section, a mathematical formulation of the subsystem problem is introduced. 

Because each subsystem has one machine to schedule the operations, the subsystem 

problem is equivalent to a single-machine scheduling problem with n operations. We 

define the problem in LP formulation, similar to that of Chapter IV. The main difference 

between these two formulations is the relaxed constraints: the formulation in Chapter IV 

relaxes the machine capacity constraint and the one defined here relaxes the precedence 

constraints. The same feasibility restoration routine in Chapter IV is applied to recover 

the integrality and nonpreemptiveness of the LP solutions.  

First let decision variable yijt be defined as follows: 

.,...,1 ,
otherwise.  ,0

].1[interval  timein the  machineon  processed being is  job if  ,10
: Tt

t,t  ijy
y ijt

ijt =
⎩
⎨
⎧ +≤<
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Figure 8 Information flows of DIPIS model for a distributed jobshop problem with m 

subsystems.
  

Additionally, the following notations are used for the mathematical formulation of the 

problem: 
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Then, the machine problem of subsystem i (MSPi) is proposed as follows: 

(MSPi):  Min   ∑ −
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n
ij

n
ij

n
ij dcL =−                       j∀            (5.12) 

0 =Φ+Θ− n
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ijL                    j∀             (5.13)  
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j

n
ijty                          Tt ,...,1=        (5.15) 

n
ijL   unrestricted                     j∀            (5.16) 

 

Note that, in the second term of the objective (5.9), 1−n
kjβ is applied when subsystem i 

schedules job j on its machine later than the proposed due date of subsystem k, 1−= n
kj

n
ij sd , 

thus causing tardiness in the amount of n
kj

n
ij

n
ij sc −=Θ .  Using the formula (5.10), the 

completion time of job j on the machine of subsystem i is calculated. If there is a 

nonpreemptive integral schedule of job j, (5.10) provides the exact completion time. If it 

is preemptive, (5.10) provides the average completion time of the schedule. Constraint 

(5.11) ensures that job j be scheduled after the previous operation of job j is finished 

processing. (5.12) and (5.13) are used to determine tardiness. Through constraint (5.14), 

job j is sure to be finished within the planning horizon. Constraint (5.15) implies that the 

maximum available machine capacity per time slot is one. (5.16) means that lateness can 

take a positive, zero, or negative value.  

Suppose a central decision maker exists to apply traditional Lagrangian relaxation for 

solving the current problem. Then, by relaxing the precedence constraints, the problem 

can be decomposed into m machine subproblems. The objective of the LR subproblem 

would be as follows: 

Min   ∑ −−∑ −
==

N

j
ijkjkj

N

j
ijijj csrcw

11
)()( θ                      (5.17) 

kjs is the starting time of the operation k of job j on machine k where (Oij, Okj) jA∈ . 

The second term is the function used to penalize the precedence violation if Oij is 

scheduled later than the proposed completion time of Okj. However, in a distributed 
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system environment there is no central entity that can update Lagrangian multiplier kjθ  

using a global upperbound. Simply, subsystem i does not have full information about 

Okj and cannot control the schedule of Okj which belongs to subsystem k. DIPIS 

proposes a new term that can be represented by the variables of subsystem i using partial 

information received from subsystem k, as shown in (5.9). Detailed derivation of the 

penalty weights associated with Lagrangian multipliers will be explained in the 

following section. 

 After solving MSPi, the feasibility restoration routine introduced in Chapter IV is 

applied to obtain a non- preemptive integral schedule from the LP solution.   

 

3.2. Derivation of the penalty weights 

The local objective of subsystem i, (5.9), can be restated using the information 

received from subsystem k, ),( 11 −− n
kj

n
kjs β , as follows: 
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1

11

1
)()( β    (5.18)  

The first term of the objective is a decomposed part of the global objective associated 

with only the operations of subsystem i. The second term is introduced to minimize the 

precedence violations between the operations that belong to different subsystems. 

So, 1−n
kjβ  should reflect the variation of the function ∑ −−

=

N

j
ijkjkj cs

1
)(θ  for the violations 

occurred when subsystem i schedules Oij tardier than the proposed starting time of Okj, 

i.e. 1−> n
kj

n
ij sc . Note that in a distributed system environment, 1−n

kjβ can only be 

approximated using partial local information at (n-1)th iteration. Therefore, the tardiness 

weight 1−n
kjβ  is proposed as follows: 

1
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3.3. Updating the Lagrangian multiplier for the subsystems 

Section 3.3 describes how to update Lagrangian multipliers using only the partial 

information received from other subsystems. 

Let n
ijθ be the Lagrangian multiplier for the precedence constraints between the pair 

of operations, (Olj, Oij), of job j at nth iteration which is updated by subsystem i. 

Given ),( 11 −− n
kj

n
kjs β , the subgradient optimization method is modified to calculate the 

Lagrangian multipliers using only partial information: 
n
ijθ ))(,0max( 11 n

ij
n
kj

n
i

n
ij cs −−= −− τθ                    (5.20) 

( )∑ −

−
=

=

−
N

j

n
ij

n
kj

n
UBi

n
i

n
in

i
cs

ZZ

1

21

,ψ
τ                             (5.21) 

,1 pn
i

n
i ×= −ψψ   1

,
1

, if −− −>− n
UBi

n
i

n
UBi

n
i ZZZZ                

1−= n
iψ      Otherwise                        (5.22) 

where n
iZ  is the local objective value of subsystem i problem at nth iteration and n

UBiZ , is 

the local objective value of an upperbound solution of subsystem i problem obtained 

through the following routine. 

Upperbound Calculation Routine.  

Initialization. Identify the processing sequence of jobs from the schedule at nth iteration. 

Step 1. Inform completion times of the operations to the subsystems associated with the 

precedence constraints.  

Step 2. Using the completion times received from other subsystems as new ready times of 

the associated operations, check if the current schedule has any ready time 

violations. If so, build a new schedule that observes the processing sequence 

identified at initialization. Otherwise, keep the current schedule. 

Step 3. If the current schedule does not violate any precedence constraints, check if other 

subsystems also have schedules without ready time violations. If so, stop here and 
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calculate the local objective value with the current schedule. Otherwise, go to step 

4. 

Step 4. Check the cycle problem of the schedule. If the completion time of the last 

operation in the processing sequence becomes greater than the planning horizon, it 

implies that some operations of current processing sequence cause a cycle (or 

cycles). Then, stop here and use 1
,
−n
UBiZ  as n

UBiZ , . Otherwise, go to step 1. 

From the routine described above, we can get a globally feasible local schedule even 

though the objective value may not be good. Note that subsystems still exchange partial 

local information for this purpose.  

 

3.4. DIPIS algorithm for distributed jobshop scheduling problems 

In this section, DIPIS algorithm for distributed jobshop scheduling problems is 

summarized. 

Initialization: Set the number of maximum interaction N. 

Set, 00 =kjβ , 00 =iτ  , 20 =iψ , jk,∀ where k = 1,…,m, j = 1,…,N  

and p, 0 < p < 1. Set n = 1. 

Step 1: Sub-production system’s problem. For i = 1,…,m. 

Step 1.1: Solve the problem MSPi and apply feasibility restoreation routine to find 

 n
ijs ,  n

ijc . 

Step 1.2: Calculate the step length n
iψ  as shown in (5.22). 

Step 1.3: Calculate the step size n
iτ  as shown in (5.21). 

Step 1.4: Update the Lagrangian multipliers n
ijθ as shown in (5.20) j∀ . 

Step 1.5: Calculate penalty weights n
ijβ , j∀ as shown in (5.19).  

Step 1.6: Distribute the information vector ),( n
ij

n
ijs β  to subsystem l, where 

(Olj,Oij) jA∈  and )0,( n
ijc to subsystem k, (Oij, Okj) jA∈ . j∀ . 

Step 2: If n = N or 1−= n
ij

n
ij cc  for ji,∀ , stop.  Otherwise, n = n + 1 and go to step 1. 
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The solution procedure starts with the initialization: setting all the penalty weights 

equal to zero and other parameters to starting values. At every iteration, each subsystem 

solves its local problem and updates the penalty weights, as shown in step1. For the 

penalty weight updates, the subsystems need a cooperative solution which will not 

violate the precedence constraints when applied to them. The cooperative solution of 

subsystem i at nth iteration can be calculated using the upperbound calculation routine in 

section 3.3. The objective value of this solution is used as n
UBiZ ,  for updating step size 

and step length (step 1.2 and 1.3).  

To calculate step size (step 1.3), precedence violations are quantified as the sum of 

difference between the completion time of the operations in the current subsystem and 

the starting time of their successors, i.e. ( )∑ −
=

−
N

j

n
ij

n
kj cs

1

21 for (Oij, Okj) jA∈ , j∀ . For each 

of the precedence constraints, the associated Lagrangian multiplers are updated using the 

step size (step 1.4). The penalty weights are determined using the Lagrangian multipliers 

(step 1.5).  Then, the information vectors in the prescribed format are sent to the coupled 

subsystems (step 1.6).  

The iteration continues until the algorithm satisfies the predetermined stopping criteria 

(step 2). In this research, two stopping criteria are applied: the algorithm stops when (i) it 

achieves a converged solution, (ii) the number of the direct interactions reaches a 

predetermined value, i.e. n + 1 = N. The converged solution means the completion times 

of the operations in all jobs do not change iteration by the iteration. If a converged 

solution does not violate any of the precedence constraints, it is a compromised solution; 

meaning, it is a globally feasible solution even if it may not be globally optimal. 

 

4. Experimental results 

This section explains the experimental study used to investigate the performance of 

DIPIS for solving the distributed jobshop scheduling problems. The algorithm is 
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implemented using C programming language. CPLEX is used to solve the subsystem 

problems in LP formulation.  

As performance measures to evaluate the quality of DIPIS solutions, Percent 

Deviation (PD) and Precedence Violation (PV) are used. PD is calculated to examine the 

closeness of the solution after global feasibility restoration to the optimal solution, or the 

best solution if an optimal solution is not available. 

(%)100PD *

*

×
−

=
Z

ZZ
                               (5.23) 

Here Z  and *Z  are the global objective value of the DIPIS solution and the optimal 

solution, respectively. 

Subsystems solve machine problems with relaxed precedence constraints using 

starting times and completion times received from other subsystems. Therefore the 

degree of precedence violations in subsystems’ solutions before global feasibility 

restoration is a good indicator of performance.  

PV = 
( )( )

(%)100
,0max

×
∑ −
∀

T

sc
j

kjij

   where (Oij, Okj) ∈   Aj     (5.24) 

Finally, computation times of DIPIS are presented to check the efficiency of the 

algorithm. 

 

4.1. Experiments 

This study describes the experimental results of DIPIS for solving jobshop scheduling 

problems under partial information. DIPIS solutions are compared to the non-delay 

schedule generated by applying the WSPT rule given all the job processing times for job 

priorities. The jobshop problems are NP-hard, thus difficult to get the optimals. 

Alternatively, WSPT results are used for the comparison in this experimental study. 

WSPT rule is known to work well for a scheduling problem with the objective of total 

weighted completion times (Pinedo, 1995). 
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The jobshop problem of scheduling twenty jobs on five machines is tested for 

investigating the performance of the proposed algorithm. The problem data are 

generated as follows: 

(i) Weights are randomly generated from uniform distribution U(1,20). 

(ii) The processing times are randomly generated from U(1,100).  

Two types of problems are examined. The problem types are classified by the 

characteristic of the operation sequences. Problem type 1 (P1) has a special routing 

structure: machines are divided into two groups. The machines in group one are 

designated for the first two operations of jobs and the ones in the other group for the 

later three operations. In problem type 2 (P2), the operation sequences of jobs is 

randomly generated, i.e. the operations of each order are randomly distributed to all 

machines. Ten instances are generated and tested for each type. 

Table 7 shows the PD results of DIPIS algorithm. Due to the complexity of jobshop 

problems, optimal solutions of the test problems are not available. Instead, PD measures 

the closeness of the solution to the WSPT nondelay solution. The results show that 

DIPIS has the solutions with less than 6% of average deviations. In some problem 

instances, DIPIS generates better solutions than WSPT.  

Two hypothesis tests are performed to identify if the variations in operation 

sequences affect the performance of the proposed algorithm. The first test hypotheses are 

as follows: 

H0: 1,,1,, PWSPTPDPDIPISPD μμ =  and H1: 1,,1,, PWSPTPDPDIPISPD μμ >       

Here 1,, PDIPISPDμ and 1,, PWSPTPDμ denote the average PDs of DIPIS and WSPT when solving 

P1 instances, respectively. At significance level of 5 %, H0 is not rejected with p-value 

equal to 0.2688. This means there is no difference in the average PDs between the two 

algorithms. 

The next test hypotheses are as follows: 

H0: 2,,2,, PWSPTPDPDIPISPD μμ =  and H1: 2,,2,, PWSPTPDPDIPISPD μμ >       
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Here 2,, PDIPISPDμ and 2,, PWSPTPDμ denote the average PDs of DIPIS and WSPT when 

solving P2 instances, respectively. At significance level of 5 %, H0 is rejected with p-

value equal to 0.0389. This tells us that, for the random routing problems, WSPT works 

better than DIPIS. 

Table 7 also shows the PV results which represent the degree of precedence 

violations. For both problem types, PV is less than 2% which is considered small.  

Table 8 reports the computational times of DIPIS for solving the jobshop scheduling 

problems. A statistical test is performed to check if the variations in the operation 

sequence affect the computational times of DIPIS. The hypotheses are as follows: 

H0: 2,.1,. PTimeCompPTimeComp μμ =  and H1: 2,.1,. PTimeCompPTimeComp μμ >      

At significance level of 5 %, H0 is not rejected. The result means that the difference 

between the average computational times for two problem types is not statistically 

significant (p-value = 0.7693). Therefore, the computational efficiency of the proposed 

algorithm is not affected by the difference in the operation sequence types.  

 

5.   Conclusions 

In this chapter, DIPIS is applied to jobshop scheduling problems in a distributed 

system consisting of multiple subsystems. Each subsystem is responsible for the 

scheduling of jobs on its own machine. The local processing information of each 

subsystem is considered private and is not exposed to other subsystems. Using direct 

interaction among subsystems, partial information is exchanged for the optimization of 

the global objective (represented by the sum of the subsystems’ local objectives). The 

experiment results show that DIPIS generates competitive solutions within less than 6% 

worse than WSPT results. Considering that the proposed algorithm solves the problems 

under conditions of partial information sharing and no central coordination, the 

performance of DIPIS is encouraging.   
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Table 7 PD and PV results of DIPIS algorithm for Jobshop problems 
DIPIS algorithm 

PD (%) PV (%) PROBLEM 
TYPE 

Min Avg Max Min Avg Max 

P1 -4.11 2.13 11.63 0 0.76 7.58 
P2 -4.72 5.37 22.02 0 1.57 9.90 

 

 

Table 8 Computational results of the DIPIS algorithm 
DIPIS algorithm 

COMPUTATIONAL TIMES (SEC.) PROBLEM 
TYPE 

MIN. AVG. MAX. 
P1 802.33 1031.74 1753.28 
P2 860.64 1063.66 1333.70 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

1. Conclusions 

The purpose of this dissertation is to develop a general solution methodology for 

solving optimization problems in a distributed system environment where decision 

making authorities and system information are distributed among multiple subsystems. 

No central decision making activity is involved in the optimization procedure. Instead, 

the subsystems cooperate to achieve the system goal as well as the local subsystem 

goals. The local information of the subsystems is not fully exposed to one another but 

partial information sharing occurs among subsystems for system optimization.   

Direct Interaction for Partial Information Sharing (DIPIS) is proposed to model the 

aforementioned distributed system and solve the associated optimization problems. 

Direct interactions are established among subsystems for partial information sharing 

associated with coupling constraints in order to find a compromised system solution. The 

proposed solution method is based on Lagrangian Relaxation method modified to work 

without global system control or complete system information. Chapter II describes the 

mathematical model of DIPIS, interaction mechanism for partial information sharing, 

and the information format. Detailed solution procedures are explained with the 

associated formulas. 

In Chapter III, distributed capacity allocation problems are explored as an application 

of DIPIS. The purpose of this study is to investigate the performance of the proposed 

method for solving problems in LP model. The convex combination rule proposed by 

Choi and Kim (1999) is used to resolve the issue of the solution oscillation in LP model. 

The experimental results show that DIPIS outperforms CICA and LR in the distributed 

capacity allocation problems with two subsystems and one facility. Even though more 

extensive experiments involving an increased number of subsystems is necessary,  the 
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results are encouraging; DIPIS performs competitively under partial information without 

central or third party coordination for achieving the global goal. 

Single-machine distributed scheduling problems are presented in Chapter IV as the 

second application. Two types of mathematical formulations are introduced: IP and LP. 

The IP model, as previously pointed out in CICA model, reveals a limitation in solving 

the problems of large size; i.e. as the number of jobs and the processing times increase, 

the computational times increase exponentially. The main contribution of this chapter is 

the development of the heuristic based on LP model.  The results show that the 

performance of DIPIS with LP heuristic is promising. Computational times are 

considerably smaller compared to the centralized algorithm while maintaining the 

solution quality within on average 6 % from the optimal. 

The final application of the research is the distributed jobshop scheduling problem. 

Whereas the proposed solution model appears to be similar to the traditional machine 

decomposition method, the local job processing information on each machine in DIPIS 

model is independently managed without being fully exposed to any other entity. For a 

globally feasible schedule, partial solutions and the associated weights are exchanged in 

predetermined format. In the experiments, two types of problems classified by the 

characteristic of the operation sequences are tested and compared with a centralized 

WSPT non-delay schedule.  The results indicate that DIPIS performs well by generating 

the solutions within 6 % of average deviation from WSPT values.    

 

2. Future research 

This section presents other issues in the current research and the direction of future 

research. 

In this research, the subsystems participating in the global system optimization 

directly interact for partial information sharing by the predetermined time schedule, 

which is called synchronous interaction. However, this type of interaction may not fit all 

the real-world cases. As the number of subsystems increases, the degree of the 

distributedness of the global system information and decision making authorities 



 

 

 

75

increases as well; then, it would become more difficult to synchronize all the interactions 

among the participating subsystems because each subsystem manages different local 

tasks and schedules according to the local system condition. Enforcing synchronous 

interactions under this situation requires more restricted interaction rules, which may 

deteriorate the performance of subsystems and, in the worst case, the global system goal. 

Alternatively, a more flexible interaction method where any subsystem can initiate the 

interaction process in its preference would be more advantageous. This type of 

interaction is called asynchronous interaction. Therefore, asynchronous interaction is an 

interesting topic for future research. 

In scheduling applications, we proposed LP heuristic to improve the computational 

efficiency of the solution method as an alternative of IP model. As expected, the 

heuristic was effective in reducing the computational times, especially for solving the 

larger problems. However, from the aspect of the solution quality, LP heuristic may not 

be considered superior to IP model. For example, if using IP, we can always find the 

local optimum, while LP heuristic provides an approximate solution. Even though the 

local optimum is not always favorable from the global viewpoint, it is still a good 

candidate of the global optimum. Another reason is that the heuristic may lose some of 

the system information due to the approximation steps. Therefore, the development of a 

model that can fully use the system information (as much as received) and then provide 

the best intermediate solution will be a desirable direction for future research. 

The global feasibility of the distributed solution, as mentioned in Jeong (2001), is also 

an important issue for applying the proposed method to real-world problems. Global 

feasibility is difficult to achieve without the global view of the system or the centralized 

control of the system information.  
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 APPENDIX 

LP-CICA – HEURISTIC TO IMPROVE COMPUTATIONAL TIMES OF 

SINGLE-MACHINE DISTRIBUTED SCHEDULING PROBLEMS 

 

The appexdix introduces LP-CICA, LP heuristic developed for CICA method to solve 

a single-machine distributed scheduling problem of large size in practical times. 

  

A.1. Introduction  

We consider a single machine scheduling problem where autonomous decision 

makers exist in each of multiple sub-production systems. Sub-production systems 

independently maintain their own jobs to schedule while communicating with each other 

to pursue a global goal of minimizing total weighted completion times of the jobs.  The 

primary assumption is that none of the sub-production system and shared machine has 

complete knowledge about the entire system. Cooperative Interaction via Coupling 

Agents (CICA) methodology was proposed to apply to the described scheduling 

problems and tested with small size of jobs. Although CICA algorithm generated 

promising results, it also showed the limitation to deal with the problems with large size 

of jobs. Thus, we develop a heuristic to efficiently solve the established single machine 

scheduling problems, i.e. reduce the computational time in a practical range even for the 

problems of large job sets.  The heuristic is developed based on LP relaxation 

formulation of the associated single machine scheduling problems, modifying to 

specifically address the current problem.  The experimental results show significant 

improvement in computational time with still maintaining the solution qualities in 

reasonable levels.  

 

A.2. Motivation 

A distributed scheduling problem is a problem where the decision authorities and 

information are distributed in multiple sub-production systems and no complete 
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information sharing is achievable among the sub-production systems. Thus, centralized 

solution methodologies to optimize the problem with one complicated model are hardly 

applicable or not recommended due to the implementation issues such as unrealistic 

computational times to solve the problem. In lieu of this, alternative distributed solution 

methodologies have been actively studied among OR, Computer Science and Artificial 

Intelligence researchers [4, 10].  

Cooperative Interaction via Coupling Agents (CICA) has been developed by Jeong 

and Leon [4] to deal with the distributed problems in an appropriate manner. CICA is 

based on Lagrangian Relaxation (LR) with modifications to reduce the amount of global 

information required for its application.  CICA and LR differ in the way coupling 

constraints can be relaxed, and the information sharing associated with coupling 

constraints.  Specifically, in the CICA model, decision agents termed Coupling Agents 

(CA) manage coupling constraints to reach compromise among the solutions of 

separable sub-problems which are associated with quasi-autonomous agents termed 

Coupled Autonomous Organizations (CAO). This is a major difference of CICA from 

LR in which all coupling constraints are dealt by a single decision entity [4].   

In this paper, a heuristic, termed LP Relaxed CICA (LP-CICA), is proposed to solve 

problems of realistic size in practical times.  A significant limitation of the CICA 

formulation proposed in Jeong and Leon [5] is that the computational times required to 

solve large problems prohibitively increase as the number of jobs increases. LP-CICA 

utilizes LP relaxation formulation proposed by Dyer and Wolsey [2] to apply CICA 

methodology to the current distributed scheduling problems. However, by applying 

CICA methodology to the scheduling problems with a linear function of completion 

times, the resultant problems turn out to be earliness/tardiness (E/T) scheduling 

problems. Consequently, in LP-CICA formulations, new constraints are inevitably 

introduced into the formulations proposed by Dyer and Wolsey [2] so that LP-CICA 

manages corresponding E/T scheduling problems in an appropriate manner.  

The primary differences between CICA formulation and LP-CICA formulation are 

the integrality relaxation of the 0/1 decision variables and the relaxation of the non-
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preemptive constraints. Thus, the performance of LP-CICA is expected to be better than 

CICA from the standpoint of the computational times.   

 

 

A.3. Single Machine Distributed Scheduling 

We consider a manufacturing facility that has m sub-production systems and a shared 

machine. Let U be the set of all jobs in the facility and Ui , a subset of U, that comprises 

jobs in sub-production system i, where |Ui| = ni , i = 1,…,m. It is assumed that the job 

subsets are disjoint so that the shared machine processes total of N = |U| ∑=
=

m

1i
in jobs. The 

goal in this study is to schedule N jobs on the shared machine to minimize total weighted 

completion times in a distributed manner. What meant by ‘distributed’ is that (1) there 

exists a decision maker in the sub-production system i who can authorize only the 

schedule of its ni jobs and the relevant information, (2) each sub-production system and 

the shared machine can exchange only partial information (for a more complete 

description of this, the reader is referred to [4, 5, 10]).  

Using notation similar to the one in Dyer and Wolsey [2] and Uma and Wein [14], let 

T denote the planning horizon and the decision variable xjt be defined as, 

.,...,1 ,
otherwise.  ,0

. timein the processed being is  job if  ,1
Tt

1]t[t, period j
x jt =

⎩
⎨
⎧ +

=
 

Associated with job j are the processing time pj, start time sj ∑ −+=
=

T

t

j
jt

j

p
xt

p 1 2
)

2
1(1 , 

completion time Cj = jj ps +  ∑ ++=
=

T

t

j
jt

j

p
xt

p 1 2
)

2
1(1  and the weight per unit of 

completion time wj.  

The machine capacity constraints are introduced as ,1≤∑
∈Uj

jtx Tt ,...,1 =  so that the 

maximum number of jobs that can be processed in any time slot must be less than or 

equal to one. And the precedence constraints between jobs in the sub-production system 

are also considered in this problem. If job q precedes job r where iUq ∈ and iUr ∈ , then the 
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precedence relation is shown as (q, r). Now the precedence constraints are represented as 

,,:),(, irqr UrqrqpCC ∈∀≥−   mi ,...,1= .  

As mentioned earlier, the problem of concern here is considered as distributed 

scheduling instance. Sub-production system i can recognize the partial objective function 

terms ∑
∈ iUj

jjCw , and capacity constraints, precedence constraints associated with 

jobs iUj ∈ . Naturally the schedule claimed by the sub-production system i may have 

machine conflict with schedules claimed by other sub-production systems ik ≠ . 

Therefore, the main question is how to generate the schedule of jobs Uj ∈ on the shared 

machine without capacity violation under partial information sharing.   

 

A.4. LP relaxed CICA 

The problem is formulated by CICA model proposed by Jeong and Leon [4], as 

shown in Fig. A.1. Associated with the shared machine there is a problem (MP), and 

associated with each sub-production system there is a problem (SPi). Sub-production 

systems communicate with the shared machine by exchanging information triplets 

during an iterative process.  At iteration n, the information from (MP) to (SPi) consists 

of a triplet formed by a solution vector of a scheduling problem 1n
yjS − , and weight 

vector 1n
j
−μ , 1n

j
−π  that represent the starting time of job j determined by the shared 

machine, and the costs of shifting job j one unit left/right from its position in 1n
yjS − , 

respectively.  Similarly, the information from (SPi) to (MP) consists of a solution 

vector n
xjS , weight vector n

jα , n
jβ , determined by the sub-production system. For further 

information on CICA solution methodology, the reader is referred to [4, 5]. 

 

 

 

 

 



 

 

 

83

 

 
 

Fig. A 1 CICA model for a single machine problem [5] 
 

The following two sections describe the problem formulations for the shared machine 

and the sub-production systems. Section A.4.1 describes LP relaxed CICA and its 

feasibility restoration procedure to recover the integrality and non-preemptiveness of the 

solution.  

 

A.4.1. CICA formulation for sub-production system  

Let 1−n
yjs and 1−n

yjC be the starting time and the completion time of job j determined by 

the shared machine after (n-1)th iteration, respectively. Note the subscript y indicates that 

the information is specified by the shared machine.  1−n
jμ and 1−n

jπ are the 

earliness/tardiness (E/T) weights by starting job j one unit early/late from 1−n
yjs . Then the 

problem of sub-production system i (SPi) at nth iteration can be formulated as follows: 

SPi:  Min   ∑∑∑
∈

−

∈

−

∈

Γ++
iii Uj

n
j

n
j

Uj

n
j

n
j

Uj
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 ,1∑
∈

≤
iUj

jtx                      Tt ,...,1=         (A.3) 

,rqr pCC ≥−                    iUrqrq ∈∀ ,:),(    (A.4) 
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∑ ++=
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T

t
jt

j

j
j xt

p
p

C          iUj ∈∀          (A.5) 

,1 n
j

n
j

n
yjj ECC −Γ=− −                iUj ∈∀          (A.6) 

,0≤Θ⋅− j
n
j TE                  iUj ∈∀          (A.7) 

,TT j
n
j ≤Θ⋅+Γ                  iUj ∈∀          (A.8) 

,jj pC ≥                       iUj ∈∀          (A.9) 

,TC j ≤                        iUj ∈∀           (A.10) 

  { },1,0∈Θ j                       iUj ∈∀         (A.11) 

 },1,0{∈jtx                      tUj i ∀∈∀ ,        (A.12) 

 

Note that the objective function of the sub-production system i (A.1) is to find the 

best local solution along with minimizing deviation from the shared machine solutions. 

Constraint (A.2) is a typical scheduling constraint which implies all jobs must be 

finished within the planning horizon. Constraint (A.3) and (A.4) are the local capacity 

and precedence constraint, respectively. Of particular concern is constraint (A.5) which 

is to calculate the completion time of each job using decision variables [2]. This 

constraint is essential in LP-CICA because it can also provide an approximation of 

completion times even with a preemptive non-integer schedule. Constraints (A.6), (A.7), 

(A.8), (A.9), (A.10) and (A.11) are introduced to customize the formulation to the 

imposed E/T scheduling problems. Constraint (A.6) is to calculate E/T amount in case 

that the solution of the sub-production systems cannot match the shared machine one. 

Adding constraint (A.7) and (A.8) to the formulation ensures that earliness and tardiness 

cannot be positive at the same time for any job ( i
n
j

n
j UjE ∈=Γ⋅ ,0 ).  Constraint (A.9) 

and (A.10) are the feasibility constraints that enforce all jobs to be scheduled within the 
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planning horizon. Constraint (A.11) is 0/1 integer variables that are auxiliary to the 

constraints (A.7) and (A.8). Constraint (A.12) is 0/1 decision variable constraints which 

will be relaxed in LP-CICA. 

 

A.4.2. CICA formulation for shared machine  

The shared machine collects information from the sub-production systems. Let 
n
xjs and n

xjC be the starting time and the completion time of job j determined by the sub-

production systems after nth iteration, respectively. Note the subscript x indicates that the 

information is specified by the sub-production systems. n
jα and n

jβ are the 

earliness/tardiness (E/T) weights by starting job j one unit early/late from n
xjs . For the 

clarity of the formulation, yjt is introduced as the decision variables of the shared 

machine problem. Then the shared machine problem (MPj) can be formulated as 

follows: 

MPj :  Min   ∑
∈

+
Uj

n
j

n
j

n
j

n
j ΓβEα )(                             (A.13) 
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,0≤Θ⋅− j
n
j TE                 Uj ∈∀          (A.18) 

,TT j
n
j ≤Θ⋅+Γ                  Uj ∈∀         (A.19) 

     ,jj pC ≥                       Uj ∈∀         (A.20) 

     ,TC j ≤                        Uj ∈∀         (A.21) 
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     { },1,0∈Θ j                      Uj ∈∀         (A.22) 

},1,0{∈jty                      tUj ∀∈∀ ,       (A.23) 

 

The formulation for shared machine problems are the same as one for sub-production 

systems as shown in the previous section except that (i) in the objective functions of the 

shared machine problems, total weighted completion times are not included, and (ii) the 

precedence constraints are excluded.  The major concern of the shared machine problem 

is to make compromise among sub-production systems’ schedules, not to minimize the 

completion times of jobs. And the precedence relationship between jobs is considered to 

be private information of the sub-production systems. Therefore, it is not known to the 

shared machine in the distributed system environment under this study. 

 

A.4.3.  LP relaxed CICA 

The integrality of binary decision variables are relaxed in the formulations for both 

sub-production systems and shared machine. That is, decision variables, xjt, have 

fractional values between zero and one. Undoubtedly, the resulted solutions are not 

guaranteed to be integral. Thus, an additional procedure to recover the feasibility of the 

solution is required at each iteration.    

In this paper, a simple post-processing routine for the feasibility restoration is applied 

as follows: 

Feasibility Restoration Procedure for LP-CICA 

Step 1. Sort jobs in the ascending order of the completion time. 

Step 2. If two or more jobs have the same completion time, order them by 

WSPT rule. If jobs are still tied, order them arbitrarily. 

Step 3. Check the schedule overlapping between adjacent jobs. If overlapping 

occurs, reset the starting time of the latter job by the completion time of the 

preceded job.   
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Step 4. Check if the last job finishes processing within the planning horizon. If 

not, readjust the completion time of the last job so that the last job finishes by the 

planning horizon. If overlapping occurs due to this adjustment, reset the 

completion time of the preceded job by the starting time of the latter job. 
 

A.5. Experimental study 

In this section, the performance of LP-CICA is experimentally compared with CICA 

and Lagrangian Relaxation using randomly generated problems. In Lagrangian 

Relaxation, the machine conflict constraints are relaxed and the centralized problem is 

decomposed into m independent sub-problems. The experiments are performed for two 

distributed environment settings, two sub-production systems with one shared machine 

and four sub-production systems with one shared machine. The algorithm is coded by C 

language and CPLEX version 8.1 is used as an optimization tool to solve the sub-

production system problems and the shared machine problem.   

For the performance measures of the algorithms, ‘PD’ reflecting the quality of the 

solution and the computational times are used. Although main interest in this paper is the 

improvement of computational times of the LP-CICA compared to CICA, the solution 

quality of LP-CICA algorithm is undoubtedly important for the algorithm evaluation. 

The closeness of the algorithm solution to the centralized solution is evaluated as 

follows: 

PD = *

*

Z
Z-Z

             

where Z is the algorithm solution and Z* is the centralized solution [4,5]. 

The first experiment considers two sub-production systems with one shared machine. 

The weight for the completion time is generated from the discrete uniform distribution 

U(1,10). Two factors are considered in this experiment, the variance of the processing 

times and the number of jobs that have precedence constraints.  Processing times are 

generated from either U(1,5) or U(1,10). And three levels of the precedence constraints 

are tested. As an illustrated example, consider the problem instance that each sub-
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production system has 18 jobs to schedule. In level 1, four jobs have a precedence 

relationship (e.g., ( ) ( ) ( ) ( ){ }4,3,3,2,2,1, ∈rq ).  In levels 2 and 3, nine and thirteen jobs are 

interrelated by precedence constraints respectively. Therefore, the total number of 

problem types is 6 and 10 problem replicates are generated for each type. The step 

parameter for CICA is set to 0.75 and the one for Lagrangian Relaxation is set to 0.5 

because those parameter values are known to perform well empirically for each 

algorithm [3, 5]. The various problem sizes are tested so that the behavior of the 

algorithms under practical job settings can be observed. 

Table A.1 and A.2 show the percent deviations of the solutions after global feasibility 

restoration and CPU times of Lagrangian relaxation, CICA and LP-CICA for various 

sizes of jobs.  LP-CICA as well as Lagrangian relaxation and CICA yields solutions 

within 5 % deviation from optimal solutions, yet requiring less than half the CPU times 

of CICA algorithm for large jobs. 

The second experiment considers four sub-production systems with one shared 

machine to investigate the behavior of the algorithm in multiple sub-production systems 

environments. The test problems are generated in the same method as the first 

experiment. The step parameter settings are also the same as the first experiment. To 

observe the performance of LP-CICA in moderately large problem size, problems of 

scheduling 36 jobs are tested. 

As seen in Table A.3, the solution qualities of both CICA and LP-CICA somewhat 

deteriorate compared to two sub-production system environment setting while 

Lagrangian relaxation shows no significant change. Nevertheless, both algorithms still 

maintain solutions of less than 5 % percent deviations. Considering no complete 

information sharing among sub-production systems, performances of both algorithms in 

this setting are considered to be in tolerable level.    
 

 

Table A.1 Percent Deviation comparison for large job sets  
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*Since Lagrangian relaxation method requires significantly large computational times to solve the problems for 36 jobs, the LR 

results for 36 jobs are obtained from 12 test problems randomly generated from processing times of U(1,5) and precedence 

constraints of level 1. 

 
Table A.2 Computational time comparison for large job sets 

*Since Lagrangian relaxation method requires significantly large computational times to solve the problems for 36 jobs, the LR 

results for 36 jobs are obtained from 12 test problems randomly generated from processing times of U(1,5) and precedence 

constraints of level 1. 

 
Table A.3 Results comparison for 4 sub-production system problems 

A.6.  Conclusion 

Percent Deviation 

Lagrangian Relaxation CICA algorithm LP-CICA algorithm No. of 
Jobs 

min avg max min avg max min avg max 

12 0.000 0.001 0.046 0.000 0.015 0.229 0.000 0.029 0.216 

24 0.000 0.004 0.059 0.000 0.016 0.163 0.000 0.016 0.131 

36 0.000* 0.000* 0.003* 0.000 0.012 0.123 0.000 0.015 0.112 

48 - - - - - - 0.000 0.014 0.055 

Computational Time (sec.) 

Lagrangian Relaxation CICA algorithm LP-CICA algorithm No. of 
Jobs 

min avg max min avg max Min avg max 

12 12.69 63.85 204.03 23.92 38.49 155.05 27.77 31.41 36.88 

24 114.78 1541.40 9129.61 34.89 141.98 1280.61 40.83 61.15 99.30 

36 1813.11* 7054.66* 13230.67* 69.67 1079.04 5446.33 75.25 132.52 237.56 

48 - - - - - - 123.09 301.37 690.69 

 
 Lagrangian Relaxation CICA algorithm LP-CICA algorithm 

Percent Deviation No. of 
Jobs min avg max min avg max Min avg max 

36 0.000 0.001 0.004 0.000 0.035 0.245 0.000 0.037 0.281 

Computational Time (sec.) No. of 
Jobs min avg max min avg max Min avg max 

36 277.64 1092.79 3695.39 76.08 332.14 1507.78 81.20 133.12 209.92 
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In this study, in order to efficiently solve the established single machine scheduling 

problems, i.e. reduce the computational time in a practical range even for the problems 

of large job sets, we developed LP-CICA model in which the LP relaxation is applied on 

0/1 integer decision variables.  

The experimental results show that LP-CICA can reduce the computational times up 

to 5% of Lagrangian relaxation and 13 % of CICA while it obtain reasonable solution 

quality as explained in the previous section. The environment with multiple sub-

production systems is also examined. LP-CICA can reduce the computational times up 

to 13% of Lagrangian relaxation and 40 % of CICA.  
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