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ABSTRACT 

 

Modeling of Recurrent Threshold Crossings due to Noise  

with Long Memory. (December 2005) 

Abhishek Narayan Singh, B.S., The University of Texas at Arlington 

Chair of Advisory Committee:  Dr. Laszlo B. Kish 

 

This thesis addresses the recurrent threshold crossing behavior of long-time 

correlated noise. The behavior of long-time correlated noise like f/1 , 5.1/1 f , and 2/1 f  

can be associated with the behavior of many phenomena in nature, so it is of interest to 

study the behavior of this noise. Our method of modeling their recurring behavior relies 

on setting a particular threshold level for a particular level of noise and observing how 

frequently the noise crosses the threshold level. We also add a periodic drive to the noise 

which enables it to cross the threshold level easily when it is at peak, and vice versa. 

This technique provides a model for the changing seasons that occur during every year. 

We also compare the recurrence behavior of threshold crossings from our computer 

simulations with theoretical results from the Rice formula. We have related the 

recurrence of these threshold crossings with the recurrence of natural disasters. 

Therefore we are providing a model to predict the recurrence of a natural disaster once 

that disaster has previously occurred. From our results, we conclude that once a natural 

disaster has occurred, there is a high probability of its recurrence in a short time, and this 

probability gradually decreases with time. 
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___________ 
This thesis follows the style and format of Fluctuation and Noise Letters. 
 

CHAPTER I 

 

INTRODUCTION 

A. Recurrent Events in Nature 

Natural hazards are assuming ever greater economic importance, not only on a 

regional but also on a global scale. The growth of major cities in hazard prone areas, and 

the public anxiety associated with risks to critical facilities such as nuclear reactors [1], 

has focused attention on the problems of insurance against natural hazards, disaster 

mitigation, and disaster prevention. 

In the pre-scientific age of the world, very natural things like earthquakes, 

volcanic eruptions, tidal waves, typhoons and devastating floods (not forgetting Noah's 

ark and the flood), did take place. Man on earth here explained them in his own simple 

way, elevating these phenomena at times to the level of divine activities or heavenly 

forces. Elsewhere, such elemental violence or misbehavior like hailstorms, directly 

descending from the skies, were explained as expressions of divine wrath or heaven's 

vengeance on man for his sinful behavior on earth. They were looked upon as acts of 

punishment sent down from above, to which man had to helplessly succumb. Whatever 

be the explanation man on earth gives to these phenomena which the ancients reckoned 

as heaven sent, they are known to everyone today as frequent events in the world we 

live, taking place with fair regularity. 
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It has been observed that many of the natural disasters are recurrent in nature, 

that is, they occur more than once over a span of time [2]. We all have seen the 

recurrence of tsunamis in Asia killing thousands of people. The recurrence of hurricanes, 

tornados, and floods are just a few examples of natural disasters that occur more than 

once over a period of time. Humans have not yet been able to develop any technology 

than can prevent these disasters; all we can do is to predict their happening just to better 

prepare ourselves to face them and thus minimize the damage caused and loss of lives. 

Many theories have been developed to provide a model for natural disaster prediction, 

however no theory can be hundred percent accurate in practice. In this thesis I have 

proposed a theory about the recurrence behavior of natural disasters based on the 

recurrence behavior of rare threshold crossings of long-time correlated noise. Natural 

Disasters like the Tsunami, Earthquakes, Drought, Famine, Flood, etc. are generated by 

a stochastic process crossing a certain threshold. We have related the occurrence of a 

natural disaster with the occurrence of rare threshold crossing of a long-time correlated 

noise. It has been observed that if the noise has a long correlation time, after a threshold 

crossing, there are several more threshold crossings in a short time. In other words, these 

threshold crossings tend to come in clusters which tell us that once the threshold is 

crossed, there is a higher probability of another crossing. The frequency of these 

threshold crossings decreases significantly as more time goes on. This implies that after 

one threshold crossing, there is an increased probability of a subsequent threshold 

crossing; this directly relates to the proposition that once a natural disaster has occurred, 

there is an increased probability of its recurrence in a short time. Consider an example of 
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a dam; if the level of water in a dam starts to rise for some reason, the dam will be able 

to hold the pressure only till a certain level, so called the threshold level. Once the water 

level crosses that threshold, there is a great chance that the dam wall will break.  

 

B. Recurrent False Alarms 

Almost every alarm system commercially available suffers from a problem of 

False alarms. False alarm means the abrupt activation of an alarm without any reason.  

One of the most important considerations when viewing an alarm system is its False 

Alarm Rate [3]. False Alarm Rate can be defined as the probability of the alarm system 

becoming activated when actually it should not. Besides external factors, there is no 

actual reasoning for the occurrence of False alarms. We believe that like Natural 

Disasters, false alarms are also caused by stochastic processes crossing a certain 

threshold. As we shall see in Chapter III, stochastic processes lead to threshold crossings 

that come in clusters. Since we are relating every threshold crossing with the occurrence 

of a false alarm, we shall see that if a false alarm has occurred once, there is an increased 

probability of its recurrence in a short time. Also the probability of false alarm 

recurrence will continuously decrease as more time passes; we shall view this in detail in 

chapter III.  

 

C. Why Study the Behavior of Noise with Long Memory 

Noise in physical systems is found to occur with various spectral forms. The 

power spectrum of fluctuations scales with frequency as αffS /1)( =  in a large variety 
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of physical, chemical, and biological systems. This power law behavior αf/1  often 

persists over several orders of magnitude with cutoffs present at both high and low 

frequencies, and with typical values of α  in the range 28.0 ≤≤α  [4]. In a somewhat 

loose terminology, all these systems are said to display f/1  noise although good quality 

data with α  very close to 1 exist only for the voltage fluctuations when a current is 

flowing through a resistor. Phenomena with 21 ≤<α  however, are abundant, a few 

examples include the occurrence of natural disasters like earthquakes, floods, volcanic 

eruptions, tsunamis, hurricanes, etc., white-dwarf light emissions, the flow of sand 

through hourglass, ionic current fluctuations in membrane channels, number of daily 

trades in the stock market, water flows of rivers, the spike train of nerve cells, the traffic 

flow on the highway, the electric noise in carbon nanotubes and in nanoparticle films, 

the interference fluctuations in wireless communication systems [5], and many more.  

The f/1  spectrum of noise has often been claimed to be some form of 

fundamental process which is very basic to the laws of nature because it is found in so 

many systems. The basic property of f/1  noise is that there is the same intensity in any 

decade of frequency compared with white noise where there is the same intensity per Hz 

bandwidth.  

The purpose of this study is to get some insight into the rare threshold crossing 

events of long-time correlated noise. Since we are claiming that the recurrent threshold 

crossing behavior of noise with long memory can be related to the recurrence behavior 

of many phenomena in nature - more specifically natural disasters, this study will help us 

provide a model for predicting the recurrence behavior of natural disasters based on the 
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recurrent threshold crossing behavior of long-time correlated noise. Since climatic 

changes are periodic in nature and these climatic changes in some ways contribute to the 

occurrence of natural disasters, we will add a periodic drive to our long-time correlated 

noise. This periodic drive is a sinusoidal signal added to the noise and will affect the 

overall behavior of the threshold crossings of noise. We will study how the behavior of 

threshold crossings will change once we introduce the sine wave. The idea behind 

introducing the sine wave will be to provide a model for the changing seasons like 

summer, winter, rainy and dry seasons and analyze any observed changes in behavior. 

This process is illustrated in the figures 1 through 6 below for f/1 , 5.1/1 f  and 2/1 f  

noise. 
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Fig. 1.  f/1  Noise with Periodic Drive 



 6

- 3

- 2

- 1

0

1

2

3

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0  

Fig. 2.  Additive of f/1  Noise and Periodic Drive 
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Fig. 4.  Additive of 5.1/1 f  Noise and Periodic Drive 
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Fig. 6.  Additive of 2/1 f  Noise and Periodic Drive 

 

 

 

D. Background:  Stochastic Resonance Phenomena 

Many scientists have been concerned lately with Stochastic Resonance (SR), a 

paradoxal phenomenon in which an optimal noise intensity maximizes the information 

transfer through a threshold device [6]. There is a particular amount of “spoiling” of the 

signal by an additive Gaussian noise which optimizes the SNR at the output of a 

stochastic resonator. Using a simple Level Crossing Detector (LCD) which is a 

stochastic resonator without internal dynamics, we are able to achieve a maximum at the 

output of the LCD for a particular level of input noise. The LCD works in such a way 

that a short uniform spike is initiated at its output whenever the voltage at its input goes 

through a given voltage level, the threshold voltage, in the increasing direction. Feeding 
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an LCD by the sum of a periodic signal and a Gaussian noise of variable strength yields 

a sharp maximum of the output SNR at a particular strength of the input noise. A very 

important observation is that the location of the maximum of SNR and generally the 

whole SNR curve is independent of the signal frequency in wide range of frequency 

which proves that the level crossing dynamics of that noisy signal inherently contains the 

SR effect and the stochastic resonator, the LCD, is not causing but only detecting the SR 

phenomenon. The illustration of stochastic resonance phenomenon is illustrated in figure 

7 below: 

  

 

Fig. 7.  Illustration of Stochastic Resonance Phenomena 
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E. Description of the Thesis 

In order to model the recurrent threshold crossings of long-time correlated noise, 

we will analyze the behavior of f/1 , 5.1/1 f , and 2/1 f  noise; these noise are long-time 

correlated and thus said to have “long memory”. To explore their behavior we will 

define three quantities: Noise Root-Mean-Square (rms) value, Threshold level, and 

Window size. We will observe how often the noise crosses a threshold value that we 

ourselves set. We will then study these threshold crossings of noise for definite time 

lengths, called window-sizes. Each window size would represent one time unit. For 

example we may decide to examine the threshold crossings of f/1  noise with an rms 

value of 0.1 using a threshold value of 0.8 and window size 100. This is shown in figure 

8 below: 
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Fig. 8.  Illustration of Threshold Crossing Phenomena for f/1  noise 
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Looking more closely, we will observe the fluctuation of noise and check when it 

crosses the threshold level. Starting at that point, we will examine the number of times 

the noise will cross the threshold level during a definite time period specified by the 

window size. The number of threshold crossings in the fixed time window will give us 

some idea about the behavior and random fluctuation of the noise. We will then study 

the change in the number of threshold crossings as we vary our window size. In other 

words, we will observe how frequently the noise is crossing the threshold level as time 

goes on. We will define the probability of threshold crossing as the number of actual 

threshold crossings in a given window size divided by the window size. We will also add 

a periodic drive to the noise which will provide a model for the changing seasons. This 

periodic drive is just a sinusoidal signal of fixed amplitude added to the noise. The idea 

behind adding the sinusoid to the noise is that when the sine wave will peak, it will 

constructively add to the noise and as a result increase the probability of the noise in 

crossing the threshold level. Likewise when the sinusoid will be at a minimum, it will 

subtract from the noise and decrease the noise level resulting in lower probability of the 

noise in crossing the threshold. To understand the practical significance of this 

experiment, we will first have to re-iterate the reason for studying the behavior of this 

long-time correlated noise. As already stated in section C above, the recurrence of rare 

threshold crossings of f/1 , 5.1/1 f , and 2/1 f  noise is similar to the recurrence of many 

phenomena in nature, more specifically natural disasters [7]. This is because both of 

these behaviors are caused by random stochastic processes crossing a certain threshold. 

The introduction of the periodic drive increases or decreases the probability of the 
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threshold crossing. Practically this can be understood as different seasons during a year 

affecting the frequency and intensity of natural disasters. For example, compared to any 

other time of the year, there is a greater chance of flood during the rainy season. 

Similarly, there is a greater chance of drought during the dry/summer season, and so on. 

More generally a periodic drive can be thought of as a model for the different external 

factors contributing to the recurrence of any natural disaster. 

For this thesis, I have computed the number of threshold crossings of f/1 , 

5.1/1 f , and 2/1 f  noise for different time lengths - ranging from as little as 110 , to as 

large as 410 . I took 100 recordings for the number of threshold crossings in each of the 

window sizes and computed their average and shown them on a graph (in chapter III).  
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CHAPTER II 

 

MATHEMATICAL CONSIDERATIONS 

A. Rice Theory of Threshold Crossings for Recurrent Events 

The distribution of threshold crossings has no exact theoretical solution. 

However there is a theory for the mean frequency of crossings. Rice determined the 

mean frequency 0ν  of zero-crossings of the amplitude of Gaussian noise. In order to 

obtain the mean frequency ( )tUν  of crossings of arbitrary levels tU  we derive the Rice-

formula in a different and simpler way which yields the required generalization [8]. We 

are concerned with physical noise which means that the amplitude )(ty  of the Gaussian 

noise and its velocity dtdy  have finite root-mean-square (rms) values σ  and ∆ , 

respectively. Thus, their power spectrum have cut-offs (at least from high frequencies). 

First, it is shown that the amplitude )(ty  of the Gaussian noise is statistically 

independent of its velocity dtdy . According to the random-phase-oscillators 

representation of Gaussian process, the amplitude of a Gaussian noise can be written as: 

 

)2sin()(
1

nn
n

n tfaty φπ +⋅⋅= ∑
∞

=

     (1) 

 

where na , nf  and nφ  are the amplitude, the frequency and the random initial phase of 

the thn  oscillator, respectively. The oscillator frequency is given as fnfn δ⋅=  where 
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fδ  is infinitesimally small. The random set of nφ  (uniformly distributed in the range of 

]2,0( π ) is different for each representation of the given noise process. From equation 

2.1, the velocity can be written as: 

 

∑
∞

=

+⋅⋅⋅⋅=
1

)2cos(2)(
n

nnnn tfaf
dt

tdy φππ     (2) 

 

It is easy to see that the cross-correlation function of equations 2.1 and 2.2 is zero 

due to the orthogonality of sine and cosine functions with the same frequency, and due 

to the orthogonality of sine waveoidal functions with different frequencies: 

 

  0)()( =
t

dttdyty        (3) 

 

where the index t represents time-averaging (as )(ty  and dtdy  are stationary and 

ergodic processes). Using the well known fact that a zero-correlation of two different 

Gaussian processes implies their statistical independence, we can conclude that the 

instantaneous amplitude and the instantaneous velocity of a Gaussian noise are 

statistically independent from each other.  

In the next step, we determine the functional form of the mean frequency ( )tU0ν  

of the crossing of level tU  by the noise amplitude )(ty . Let us consider the behavior of 

the noise in an infinitesimally narrow amplitude interval UUtyUU tt ∂+≤≤∂− )(  
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around tU . The infinitesimal smallness of the interval U∂2  has two important 

implications: i) the amplitude distribution function of the noise will be uniform in this 

range; ii) for a long but finite duration of the noise, the number of those amplitude 

trajectories which enter into the interval and, after changing their direction, leave the 

interval without crossing the level tU , is zero. Note the last implication pre-requires the 

frequency band limited property of the physical Gaussian noise (see above). On the other 

hand, the number of amplitude trajectories which enter into the interval and, without 

changing their direction, leave the interval via crossing the level tU , is not zero and it is 

related to the mean frequency ( )tUν  of crossing this level. On the basis of these 

considerations the following relations can be written for the probability of finding the 

instantaneous amplitude )(ty  within the interval: 

 

tUUUg tt ∂=∂⋅ )()(2 ν       (4) 

 

where )(Ug  is the amplitude distribution of the noise, that is, 

]2/)/(exp[)2()( 212
1

σσπ tt UUg −⋅⋅= −−
 and t∂  is the mean passing time of trajectories 

via the interval. The right hand side of equation 2.4 represents the fraction of time which 

the noise amplitude spends in the interval. From equation 2.4, the level crossing 

frequency can be given as follows: 

 



 16

( ) ]2/)/(exp[)2(2 212
1

σσπν tt U
t

UU −⋅⋅
∂
∂
⋅= −−

   (5) 

 

The quantity 2∂U/∂t is equal to the mean velocity of the noise in the interval. 

Due to the statistical independence of the velocity and the amplitude, ∂U/∂t will be 

independent from the location of the interval, so the value of tU . On the other hand, 

∂U/∂t is proportional to the rms velocity of the noise, consequently: 

 

  ( ) ]2/)/(exp[ 21 σσν tt UcU −⋅⋅∆⋅= −     (6) 

 

where c is a constant. With the help of the power-density spectrum )( fS  of the noise 

)(ty , the delta term can be replaced by the integral of )()2( 22 fSf ⋅⋅π : 

 

( )
2

1

0

2
2

2
1 )(

2
exp ⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
⋅= ∫

∞
− dffSf

U
CU t

t σ
σν    (7) 
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where cC 24π= . Equations 2.6 and 2.7 describe the functional form of the dependence 

of ν  on )( fS  and tU . The determination of the constants c and C is based on the 

following trick: we take 0=tU  as threshold (so the value of the exponent term becomes 

1) and a narrow-band noise with the following spectrum: 0)( SfS =  for 

fffff ∂+<<∂− 00  and otherwise it is zero. 

Then, in the limit ∂f→0, equation 2.7 will approach the zero-crossing frequency 

of a sine waveoidal signal with frequency 0f , that is, 02 f⋅=ν . In this way we have 

obtained our final formula: 

 

  ( )
2

1

0

2
2

2
1 )(

2
exp2 ⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
⋅= ∫

∞
− dffSf

U
U t

t σ
σν    (8) 

which is the generalization of the Rice-formula (derived for the frequency of zero-

crossings). Indeed, in the limit of 0=tU , equation 2.8 becomes identical with the 

formula derived by Rice. 
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B. Evaluation of Rice Formula for f/1 , 5.1/1 f , and 2/1 f  noise: 

From our equation (2.8), we have the generalization of Rice formula given as: 

 

 ( )
2

1

2
2

2
1

2

1

)(
2

exp2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅⋅⎥

⎦

⎤
⎢
⎣

⎡−
⋅= ∫−

f

f

t
t dffSfUU

σ
σν     (9) 

 

where ( )tUν  is the mean frequency of crossings of arbitrary level tU , σ  is the rms 

value of noise, and )( fS  is the power-density spectrum of the noise. We will use this 

formula to theoretically evaluate the mean threshold crossing frequency according to the 

lower and upper cutoff frequencies that are used in our computer models. We will then 

plot the graphs of the theoretically calculated mean threshold crossing frequencies for 

different window sizes. This will be done by scaling the upper cutoff frequency of the 

noise that which corresponds to that window size. We will then compare our computer 

simulation results with our theoretical results calculated using the Rice formula. The 

expressions for lower and upper cutoff frequencies based on window sizes are given 

below:  

 

1
1
1
==lowerf   

thwindowleng
fupper

1
=   
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1. Rice formula for f/1  noise 

Here we have, 

 

 ∫ ⋅=
2

1

)(
f

f

dffSσ  where      
f
AfS =)( ,  where A is a constant. 

 

Therefore after integration we get: 

 

 
2/1

1

2ln
2

1

⎥
⎦

⎤
⎢
⎣

⎡
⋅=⋅= ∫ f

fAdf
f
Af

f

σ        (10) 

 

In our case the lower frequency 1f  is just the inverse of the total time period (16384 

steps) and the upper frequency 2f  is the inverse of one time step given as: 

 

 
16384

1
1 =f ,  and 1

1
1

2 ==f  

 

From our experiments, Noise rms, σ  was calculated as 1.65 and the threshold level tU  

was set to 1.82 

Therefore from equation (2.10) we can calculate the value of constant A. 
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Now we can calculate the mean frequency of crossings using equation (2.9) 
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2. Rice formula for 5.1/1 f  noise 

Here we have, 

 

 ∫ ⋅=
2

1

)(
f

f

dffSσ  where      5.1)(
f
AfS = ,  where A is a constant. 

 

Therefore after integration we get: 
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In our case the lower frequency 1f  is just the inverse of the total time period (16384 

steps) and the upper frequency 2f  is the inverse of one time step given as: 

 

 
16384

1
1 =f ,  and 1

1
1

2 ==f  

 

From our experiments, Noise rms, σ  was calculated as 1.66 and the threshold level tU  

was set to 1.83 

Therefore from equation (2.11) we can calculate the value of constant A. 
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Now we can calculate the mean frequency of crossings using equation (2.9) 
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3. Rice formula for 2/1 f  noise 

Here we have, 

 ∫ ⋅=
2

1

)(
f

f

dffSσ  where      2)(
f
AfS = ,  where A is a constant. 

 

Therefore after integration we get: 
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In our case the lower frequency 1f  is just the inverse of the total time period (16384 

steps) and the upper frequency 2f  is the inverse of one time step given as: 
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From our experiments, Noise rms, σ  was calculated as 1.65 and the threshold level tU  

was set to 1.82.  

Therefore from equation (2.12) we can calculate the value of constant A. 
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( )[ ] 000166.01)16384/1(65.1 2/111 =⇒−⋅= −− AA  

 
Now we can calculate the mean frequency of crossings using equation (2.9) 
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CHAPTER III 

 

SIMULATION RESULTS 

A. Evaluation of Threshold Crossings without Periodic Drive 

As mentioned in Chapter II, we have computed the average number of threshold 

crossings for f/1 , 5.1/1 f , and 2/1 f  noise versus increasing window sizes, without the 

introduction of the sinusoidal signal, and plotted the results in figures 9 through 11. 

From the graphs we see that the average number of threshold crossings decreases as our 

window size gets larger. This means that once the threshold level is crossed by the noise, 

there is an increased probability that it will be crossed again in a shorter time; and as 

time goes on, that probability gets smaller. Since we are relating every threshold 

crossing of noise with the occurrence of a natural disaster, it is logical to say that after 

the occurrence of any natural disaster, there is an increased probability of its recurrence. 

The theoretical results for the mean number of threshold crossings derived from the Rice 

formula are also plotted in the figures 9 through 11. As expected, the slopes of both the 

theoretical and experimental graphs are very close. There is a slight difference in the 

slope for the case of f/1  noise due to some aliasing effects. There is also a shift in the 

theoretical curves; this is primarily due to the un-adjustable calibration of computer and 

theoretical models. However, more important aspect in the graphs is the slope of the 

curves which is very similar. This theoretically proves our proposition from the 

computer simulations that the rate of threshold crossings decreases with increasing 

window sizes.  
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Fig. 9.  Representation of Threshold Crossings for f/1  noise (Nrms=1.65, Th=1.82) 
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Fig. 10.  Representation of Threshold Crossings for 5.1/1 f  noise (Nrms=1.66, Th=1.83) 
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Fig. 11.  Representation of Threshold Crossings for 2/1 f  noise (Nrms=1.65, Th=1.82) 
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B. Evaluation of Threshold Crossings with Periodic Drive 

We have also computed the average number of threshold crossings for f/1 , 

5.1/1 f , and 2/1 f  noise with the introduction of a small periodic drive. For this case we 

shall investigate the number of successful sinusoidal periods that contain at least one 

threshold crossing. It should be noted that we are not interested in evaluating the number 

of times the threshold is crossed during a certain window period. Instead we are keen to 

know how many successive sinusoids that are added to the noise, contain at least one 

threshold crossing. In practical terms, this means that if a particular natural disaster 

occurs in a particular year, we are computing the successive number of years that it is 

likely to recur. After looking at the figures 12 through 23, it has been observed that once 

the threshold is crossed, the probability that it will be crossed again in the very next 

sinusoid is the highest. The probability gets smaller as we start examining more 

successive sinusoids. Practically this means that once a natural disaster occurs in a 

particular year, it highly likely that it will recur in the next year, less likely that it will 

recur in the year after that, and even less likely that will recur in the following one, and 

so on. Practically this implies that the probability of recurrence of a natural disaster 

decreases at a very high rate as time passes and it is highest in the year just after the 

occurrence of the first disaster. A very important observation from the graphs is that the 

exponential decay is greatest for 2/1 f  noise and smallest for f/1  noise. Basically it is 

observed that larger the negative exponent of the noise is, faster is the rate of decay of 

the number of threshold crossings. From the graphs 12 through 23 below, we have 

obtained the curve-fit equations; these equations are summarized in table 1 below: 
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Table 1.  Summary of Curve-fits for Graphs with Periodic Drive  

 f/1  Noise 5.1/1 f  Noise 2/1 f  Noise 

Graph 1: xe ⋅−× 25363.019.543  xe ⋅−× 46571.091.736  xe ⋅−× 69386.01092  

Graph 2: xe ⋅−× 45979.01222  xe ⋅−× 49251.049.846  xe ⋅−× 44813.079.331  

Graph 3: xe ⋅−× 27634.016.636  xe ⋅−× 51868.056.953  xe ⋅−× 69206.087.676  

Graph 4: xe ⋅−× 25451.071.258  xe ⋅−× 3485.002.883  xe ⋅−× 67278.01.1309  
 

 

 

 

It is visible from the table above that the rate of decay of the threshold crossings 

increases as the negative exponent of the noise increases. Also for the case when the 

noise level and the sine wave amplitude add up to the threshold value (graphs 1 above), 

the number of overall threshold crossings is highest for 2/1 f  noise and least for f/1  

noise. This implies that for 2/1 f noise case, there will be much more threshold crossings 

in the very next sine wave as opposed to f/1  noise case. As mentioned earlier, figures 

12 through 23 show the average number of threshold crossings for the different noise 

with the introduction of the periodic drive. 
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Fig. 12:  Number of Periods of Successive Threshold Crossings (1/f, Nrms=1.14, 
Srms=0.1, Th = 1.24)  
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Fig 13:  Number of Periods of Successive Threshold Crossings (1/f, Nrms=1.34, 
Srms=1.34, Th = 2.68) 
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Fig 14:  Number of Periods of Successive Threshold Crossings (1/f, Nrms=1.4, Srms=0, 
Th = 1.4) 
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Fig 15:  Number of Periods of Successive Threshold Crossings(1/f, Nrms=1.4, Srms=0, 
Th =0) 
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Fig 16:  Number of Periods of Successive Threshold Crossings ( 5.1/1 f , Nrms=1.65, 
Srms=0.1, Th=1.75) 
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Fig 17:  Number of Periods of Successive Threshold Crossings ( 5.1/1 f , Nrms=1.13, 
Srms=1.13, Th=2.26) 
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Fig 18:  Number of Periods of Successive Threshold Crossings ( 5.1/1 f , Nrms=1.64, 
Srms=0, Th=1.64) 
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Fig 19:  Number of Periods of Successive Threshold Crossings ( 5.1/1 f , Nrms=1.43, 
Srms=0, Th=0) 
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Fig 20:  Number of Periods of Successive Threshold Crossings ( 2/1 f , Nrms=0.9, 
Srms=0.1, Th = 0.99) 
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Fig 21:  Number of Periods of Successive Threshold Crossings ( 2/1 f , Nrms=1.4, 
Srms=1.4, Th = 2.8) 
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Fig 22:  Number of Periods of Successive Threshold Crossings ( 2/1 f , Nrms=1.64, 
Srms=0, Th = 1.64) 
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Fig 23:  Number of Periods of Successive Threshold Crossings ( 2/1 f , Nrms=0.88, 
Srms=0, Th = 0) 
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CHAPTER IV 

 

CONCLUSION 

In this thesis we have focused on the recurrence behavior of rare threshold 

crossings due to noise with long memory. The behavior of long-time correlated noise 

can be related to the behavior of many natural phenomena – natural disasters and false 

alarms for our case. We have observed that the probability of recurrence of threshold 

crossings varies as we observe the noise process for different time periods. The 

probability of a second threshold crossing is highest within a short time after the first 

threshold crossing. We have compared the behavior of threshold crossing events of f/1 , 

5.1/1 f , and 2/1 f  noise from our computer simulations with analytical results from the 

Rice formula and have observed many similarities. We have seen that the rate of 

decrease of number of threshold crossings as we observe the crossings for longer times 

is the same. Both analytical and computer simulation emphasize the fact that the 

probability of a second threshold crossing is highest in a shorter time after the first 

crossing. Since we are relating the occurrence of every threshold crossing with the 

occurrence of a natural disaster or a false alarm, we can safely conclude that once a 

natural disaster or false alarm occurs, there is a high probability that it will recur in a 

short time.   
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APPENDIX A 

 

MATLAB CODE FOR THE SIMULATION MODEL 

A. Threshold Crossing Case without Periodic Drive 

This part of Matlab simulation code was divided into five M-files, each of which 

had a unique function to perform. The whole task of evaluating the threshold crossings 

was broken down into simpler, smaller tasks and performed accordingly. These simpler 

tasks were Noise Generation, Level Crossing Detection, Crossing Calculation, RMS 

evaluation, and a function for controlling all of these simpler tasks to work hand-in-

hand. Looking more closely, the first step would be to generate an array of noise 

specified by the user; this array would then be sent to a level crossing detector module 

that would indicate instances of threshold crossings in regards to a particular threshold 

value provided to it. More specifically it would generate an array of ones and zeros; ones 

being the points where the noise successfully crossed the threshold value and vice versa 

for zeros. Once this was accomplished, this array of ones and zeros would be passed on 

to a function called crossing detector. The function would calculate how many ones and 

zeros were present in the array and thus evaluate the probability of threshold crossing, 

which is just the number of threshold crossings in a particular window size divided by 

the size of the window. We also had to define an RMS calculation function that would 

help us calculate the rms value of the noise. This was helpful in cases where we had to 

define the threshold value as some percentage of the rms value of the noise. There was 

also a controlling function called “main” which was responsible for calling all the 
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functions mentioned above to work hand-in-hand. This was very helpful because we had 

to take multiple records of the threshold crossings and average the statistics to come up 

with our graphs. The code for each module is given below: 

 

Level Crossing Detector: 
 
function output_lcd = Level_Crossing_Detector(incoming_signal, 
TH_value, size_value) 
prev_amp = 0; 
poscrossing = 0; 
negcrossing = 0; 
for i = 1:1:(size_value) 
    curr_amp = incoming_signal(i); 
    if ((prev_amp < TH_value) & (curr_amp > TH_value)) 
        output_lcd(i) = 1; 
        poscrossing = poscrossing + 1; 
    else 
        output_lcd(i) = 0; 
    end 
    prev_amp = curr_amp; 
end 
return; 
 
 
 
Crossing Detector: 
 
function Average_crossing = crossing_detector(lcd_output, SIZE, 
WINDOW) 
 
for i = 1:1:SIZE 
    if ((lcd_output(i) == 1)&((i + WINDOW) <= SIZE)) 
        crossing_sum = 0; 
        for j = (i+1):1:(i + WINDOW) 
            crossing_sum = crossing_sum + lcd_output(j); 
        end 
        break; 
    else 
        crossing_sum = 0; 
    end 
end 
Average_crossing = (crossing_sum/WINDOW); 
return; 
 
 
 
RMS Calculator: 
 
function rms_value = rms_calc(input_array, SIZE) 
input_array_square = input_array.*input_array; 
input_array_mean_square = mean(input_array_square); 
rms_value = input_array_mean_square^0.5; 
return; 
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Noise Generator: 
 
function averaged_noise = Noise_Generate_Average(length, k, 
noisefactor) 
 
pack 
format compact 
 
while length>15; 
 'length ² 15  !!!' 
 length = input('length must be smaller than 15, enter again:'); 
end 
 
noiselength=2^length; 
 
 
 noise = (rand(1,noiselength)-0.5);  
 
 spectrum=fft(noise); 
 
    for t = 1:1:noiselength 
        theta = 2*pi*(rand(1)) - pi; 
        spectrum_scramble_phase(t) = 
complex((abs(spectrum(t)))*cos(theta) ,  
(abs(spectrum(t)))*sin(theta)); 
    end 
 
 p = k/2 ; 
 
 for f=1:noiselength 
  spectrum_scramble_phase(f) = f^p * 
spectrum_scramble_phase(f); 
 end 
 
 energy=sum((abs(spectrum_scramble_phase)).^2); 
 
 power=energy/noiselength; 
 norm=power^0.5; 
 
 noise = (1 + 
10*noisefactor)*real(ifft(spectrum_scramble_phase)/norm); 
 
 averagenoise = sum(noise)/noiselength; 
 
 noise = noise - averagenoise; 
 
for x = 1:1:(noiselength-4) 
    averaged_noise(x) = (noise(x) + noise(x+1) + noise(x+2) + 
noise(x+3) + noise(x+4))/5; 
end 
averaged_noise(noiselength-3) = noise(noiselength-3); 
averaged_noise(noiselength-2) = noise(noiselength-2); 
averaged_noise(noiselength-1) = noise(noiselength-1); 
averaged_noise(noiselength) = noise(noiselength); 
return; 
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Main: 
 
clear; 
%################################################################# 
global SIGNAL_FREQ SIGNAL_AMP THRESHOLD LENGTH SIZE NOISE_TYPE WINDOW 
 
%SIGNAL_FREQ = input('Enter Signal Frequency (in Hz):  '); 
%SIGNAL_AMP = input('Enter Signal Amplitude:  '); 
 
NOISE_TYPE = input('Type of noise to generate (f^k), enter k:  '); 
PERCENT_THRESHOLD = input('Enter Threshold percentage (#%):  '); 
LENGTH = 14;    %input('Enter Array length (2^length), enter length: 
'); 
SIZE = 2^LENGTH; 
TOTAL_RECORD = input('Enter total number of records:  '); 
NOISE_LEVEL = input('Enter Noise level:  '); 
 
for x = 1:1:8 
    window_length(x) = x + 1; 
end 
for x = 30:1:126 
    window_length(x-21) = round(1.08^(x));     
end 
NF = NOISE_LEVEL; 
 
Tester_noise_array = Noise_Generate_Average(LENGTH, NOISE_TYPE, NF); 
Noise_rms_value = rms_calc(Tester_noise_array, SIZE); 
THRESHOLD = (PERCENT_THRESHOLD/100)*Noise_rms_value; 
 
%Input_Signal = Signal_Generate(SIGNAL_AMP, SIGNAL_FREQ, SIZE); 
 
Avg_per_Window = []; 
 
for window_number = 1:1:size(window_length,2) 
    WINDOW = window_length(window_number); 
 
    Avg_crossings_holder = []; 
     
    for RECORD = 1:1:TOTAL_RECORD 
        Input_Noise = Noise_Generate_Average(LENGTH, NOISE_TYPE, NF); 
 
        %Signal_Noise = Input_Signal + Input_Noise; 
 
        LCD output = Level Crossing Detector(Input Noise, THRESHOLD, 
SIZE); 
        Avg_crossings = crossing_detector(LCD_output, SIZE, WINDOW); 
        Avg_crossings_holder(RECORD) = Avg crossings; 
%This line puts all crossings wrt. RECORD number 
    end 
 
    Avg per Window(window number) = mean(Avg crossings holder); 
%This line puts all avg. crossing wrt. window length 
end 
 
Avg_per_Window 
window_length 
plot (window_length, Avg_per_Window) 
clear; 
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B. Threshold Crossing Case with Periodic Drive 

This part of Matlab simulation code was divided into six M-files, each of which 

had a unique function to perform. The whole task of evaluating the threshold crossings 

with the sinusoidal signal was broken down into simpler, smaller tasks and performed 

accordingly. These simpler tasks were Noise Generation, Signal Generation, Level 

Crossing Detection, Crossing Calculation, RMS evaluation, and a function for 

controlling all of these simpler tasks to work hand-in-hand. Looking more closely, the 

first step would be to generate an array of noise specified by the user, this was then 

added to a sinusoidal signal array of specified frequency and amplitude; this array would 

then be sent to a level crossing detector module that would indicate instances of 

threshold crossings in regards to a particular threshold value provided to it. More 

specifically it would generate an array of ones and zeros; ones being the points where the 

noise successfully crossed the threshold value and vice versa for zeros. Once this was 

accomplished, this array of ones and zeros would be passed on to a function called 

crossing detector. The function would calculate how many ones and zeros were present 

in the array within each period of the sinusoidal signal. This was done to predict how 

many times the noise plus signal cross the threshold level within each period of the sine 

wave. This function would then evaluate how many successive sinusoids had at least one 

threshold crossing. A total of seven successive sinusoids were analyzed for each noise 

process. The result would be the maximum number of successive sinusoids with at least 

one threshold crossing. We also had to define an RMS calculation function that would 

help us calculate the rms value of the noise. This was helpful in cases where we had to 



 43

define the threshold value as some percentage of the rms value of the noise. There was 

also a controlling function called “main” which was responsible for calling all the 

functions mentioned above to work hand-in-hand. This was very helpful because we had 

to take multiple records of the threshold crossings and average the statistics to come up 

with our graphs. The code for each module is given below: 

 

Level Crossing Detector: 
 
function output_lcd = Level_Crossing_Detector(incoming_signal, 
TH_value, size_value) 
prev_amp = 0; 
poscrossing = 0; 
for i = 1:1:(size_value) 
    curr_amp = incoming_signal(i); 
    if ((prev_amp < TH_value) & (curr_amp > TH_value)) 
        output_lcd(i) = 1; 
        poscrossing = poscrossing + 1; 
    else 
        output_lcd(i) = 0; 
    end 
    prev_amp = curr_amp; 
end 
return; 
 
 
 
Crossing Detector: 
 
function sequence_sum_array = crossing_detector(lcd_output, SIZE, 
SIGNAL_FREQ) 
crossing_sum = []; 
crossing_per_cycle = []; 
for i = 1:1:SIGNAL_FREQ 
    for j = (1 + ((i-1)*(SIZE/SIGNAL_FREQ))):1:(i*(SIZE/SIGNAL_FREQ)) 
        k = j - ((i-1)*(SIZE/SIGNAL_FREQ)); 
        crossing_per_cycle(k,i) = lcd_output(j); 
    end 
end 
 
crossing_sum = sum(crossing_per_cycle); 
 
i = 1; 
j = 1; 
while i ~= 128 
 
 if ((i+8 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 0 
&& crossing_sum(i+2) ~= 0 && crossing_sum(i+3) ~= 0 && 
crossing_sum(i+4) ~= 0 && crossing_sum(i+5) ~= 0 && crossing_sum(i+6) 
~= 0 && crossing_sum(i+7) ~= 0)) 
     sequence_sum = 8; 
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     i = i + 8; 
 elseif ((i+7 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0 && crossing_sum(i+2) ~= 0 && crossing_sum(i+3) ~= 0 && 
crossing_sum(i+4) ~= 0 && crossing_sum(i+5) ~= 0 && crossing_sum(i+6) 
~= 0)) 
     sequence_sum = 7; 
     i = i + 7; 
 elseif ((i+6 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0 && crossing_sum(i+2) ~= 0 && crossing_sum(i+3) ~= 0 && 
crossing_sum(i+4) ~= 0 && crossing_sum(i+5) ~= 0)) 
     sequence_sum = 6; 
     i = i + 6; 
 elseif ((i+5 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0 && crossing_sum(i+2) ~= 0 && crossing_sum(i+3) ~= 0 && 
crossing_sum(i+4) ~= 0)) 
     sequence_sum = 5; 
     i = i + 5; 
 elseif ((i+4 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0 && crossing_sum(i+2) ~= 0 && crossing_sum(i+3) ~= 0)) 
     sequence_sum = 4; 
     i = i + 4; 
 elseif ((i+3 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0 && crossing_sum(i+2) ~= 0)) 
     sequence_sum = 3; 
     i = i + 3; 
 elseif ((i+2 < 128) && (crossing_sum(i) ~= 0 && crossing_sum(i+1) ~= 
0)) 
     sequence_sum = 2; 
     i = i + 2; 
 elseif ((i+1 < 128) && (crossing_sum(i) ~= 0)) 
     sequence_sum = 1; 
     i = i + 1; 
 else  
     sequence_sum = 0; 
     i = i + 1; 
 end 
 sequence_sum_array(j) = sequence_sum; 
 j = j + 1; 
end 
 sequence_sum_array; 
return; 
 
 
 
Noise Generator: 
 
function averaged_noise = Noise_Generate_Average(length, k, 
noisefactor) 
 
pack 
format compact 
 
while length>15; 
 'length ² 15  !!!' 
 length = input('length must be smaller than 15, enter again:  
'); 
end 
 
noiselength=2^length; 
 
 noise = (rand(1,noiselength)-0.5);  
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 spectrum=fft(noise); 
 
    for t = 1:1:noiselength 
        theta = 2*pi*(rand(1)) - pi; 
        spectrum_scramble_phase(t) = 
complex((abs(spectrum(t)))*cos(theta) , 
(abs(spectrum(t)))*sin(theta)); 
    end 
 
 p = k/2 ; 
 
 for f=1:noiselength 
  spectrum_scramble_phase(f) = f^p * 
spectrum_scramble_phase(f); 
 end 
 
 energy=sum((abs(spectrum_scramble_phase)).^2); 
 
 power=energy/noiselength; 
 norm=power^0.5; 
 
 noise = (1 + 
10*noisefactor)*real(ifft(spectrum_scramble_phase)/norm); 
 
 averagenoise = sum(noise)/noiselength; 
 
 noise = noise - averagenoise; 
 
for x = 1:1:(noiselength-4) 
    averaged_noise(x) = (noise(x) + noise(x+1) + noise(x+2) + 
noise(x+3) + noise(x+4))/5; 
end 
averaged_noise(noiselength-3) = noise(noiselength-3); 
averaged_noise(noiselength-2) = noise(noiselength-2); 
averaged_noise(noiselength-1) = noise(noiselength-1); 
averaged_noise(noiselength) = noise(noiselength); 
return; 
 
 
 
Signal Generator: 
 
function A = Signal_Generate(SIGNAL_AMP, SIGNAL_FREQ, SIZE) 
t = 0:0.001:((SIZE-1)*0.001); 
A = SIGNAL_AMP*sin(2*pi*t*SIGNAL_FREQ/(0.001*SIZE)); 
return; 
 
 
 
RMS Calculator: 
 
function rms_value = rms_calc(input_array, SIZE) 
input_array_square = input_array.*input_array; 
input_array_mean_square = mean(input_array_square); 
rms_value = input_array_mean_square^0.5; 
return; 
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Main: 
 
global SIGNAL_FREQ SIGNAL_AMP THRESHOLD LENGTH SIZE NOISE_TYPE 
 
LENGTH = 14; 
SIZE = 2^LENGTH; 
SIGNAL_FREQ = 128; 
NOISE_TYPE = input('Type of noise to generate (f^k), enter k:  '); 
NF = input('Enter Noise factor:  '); 
PERCENT_THRESHOLD = input('Enter Threshold percentage (#%):  '); 
 
Tester_noise_array = Noise_Generate_Average(LENGTH, NOISE_TYPE, NF); 
Noise_rms_value = rms_calc(Tester_noise_array, SIZE) 
THRESHOLD = (PERCENT_THRESHOLD/100)*Noise_rms_value 
 
SIGNAL_AMP = input('Enter Signal Amplitude:  '); 
TOTAL_RECORD = input('Enter total number of records:  '); 
 
Input_Signal = Signal_Generate(SIGNAL_AMP, SIGNAL_FREQ, SIZE); 
%plot(Input_Signal) 
 
sequence_holder = []; 
 
for RECORD = 1:1:TOTAL_RECORD 
 
Input_Noise = Noise_Generate_Average(LENGTH, NOISE_TYPE, NF); 
Signal_Noise = Input_Signal + Input_Noise; 
LCD_output = Level_Crossing_Detector(Signal_Noise, THRESHOLD, SIZE); 
 
sequence_sum_array = crossing_detector(LCD_output, SIZE, 
SIGNAL_FREQ); 
 
for i = 1:1:size(sequence_sum_array,2) 
    array_sequence(RECORD, i) = sequence_sum_array(i); 
end 
end 
array_sequence; 
 
 
k = 1; 
for RECORD = 1:1:TOTAL_RECORD  
    for i = 1:1:size(array_sequence,2) 
        if array_sequence(RECORD, i) ~= 0 
            final_array(k) = array_sequence(RECORD, i); 
            k = k+1; 
        end 
    end 
end 
 
final_array 
 
A = 1:1:7; 
B = final_array; 
hist(B, A) 
 
clear; 
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