
BELIEF SPACE-GUIDED NAVIGATION FOR ROBOTS AND AUTONOMOUS

VEHICLES

A Dissertation

by

BINBIN LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dezhen Song
Committee Members, Anxiao(Andrew) Jiang

Dylan A. Shell
Suman Chakravorty

Head of Department, Scott Schaefer

May 2021

Major Subject: Computer Engineering

Copyright 2021 Binbin Li

ABSTRACT

Navigating through the environment is a fundamental capability for mobile robots,

which is still very challenging today. Most robotic applications these days, such as mining,

disaster response, and agriculture, require the robots to move and perform tasks in a variety

of environments which are stochastic and sometimes even unpredictable. A robot often

cannot directly observe its current state but instead estimates a distribution over the set

of possible states based on sensor measurements that are both noisy and partial. The

actual robot position differs from its prediction after applying a motion command, due

to actuation noise. Classic algorithms for navigation should adapt themselves to where

the behavior of the environment is stochastic, and the execution of the motions has great

uncertainty.

To solve such challenging problems, we propose to guide the robot’s navigation in the

belief space. Belief space-guided navigation differs fundamentally from planning without

uncertainty where the state of the robot is always assumed to be known precisely. The

robot senses its environment, estimates its current state due to perception uncertainty, and

decides whether a new (or priori) action is appropriate. Based on that determination, it

actuates its sensors to move with motion uncertainty in the environment. This inspires

us to connect robot perception and motion planning, and reason about the uncertainty to

improve the quality of plan so that the robot can follow a collision-free, feasible kinody-

namic, and task-optimal trajectory.

In this dissertation, we explore the belief space-guided robotic navigation problems,

which include belief space-based scene understanding for autonomous vehicles, and intro-

duce belief space guided robotic planning.

We first investigate how belief space can facilitate scene understanding under the con-

ii

text of lane marking quality assessment in the application of autonomous driving. We

propose a new problem by measuring the quality of roads and ensuring they are ready

for autonomous driving. We focus on developing three quality metrics for lane markings

(LMs), correctness metric, shape metric, and visibility metric, and algorithms to assess

LM qualities to facilitate scene understanding.

As another example of using belief space for better scene understanding, we utilize

crowdsourced images from multiple vehicles to help verify LMs for high-definition (HD)

map maintenance. An LM is consistent if belief functions from the map and the image

satisfy statistical hypothesis testing. We further extend the Bayesian belief model into a

sequential belief update using crowdsourced images. LMs with a higher probability of

existence are kept in the HD map whereas those with a lower probability of existence are

removed from the HD map.

Belief space can also help us to tightly connect perception and motion planning. As

an example, we develop a motion planning strategy for autonomous vehicles. Named as

virtual lane boundary approach, this framework considers obstacle avoidance, trajectory

smoothness (to satisfy vehicle kinodynamic constraints), trajectory continuity (to avoid

sudden movements), global positioning system (GPS) following quality (to execute the

global plan), and lane following or partial direction following (to meet human expectation).

Consequently, vehicle motion is more human-compatible than existing approaches.

As another example of how belief space can help guide robots for different tasks, we

propose to use it for the probabilistic boundary coverage of unknown target fields (UTFs).

We employ Gaussian processes as a local belief function to approximate a field boundary

distribution in an ellipse-shaped local region. The local belief function allows us to predict

UTF boundary trends and establish an adjacent ellipse for further exploration. The pro-

cess is governed by a depth-first search process until UTF is approximately enclosed by

connected ellipses when the boundary coverage process ends. We formally prove that our

iii

boundary coverage process guarantees the enclosure above a given coverage ratio with a

preset probability threshold.

iv

ACKNOWLEDGMENTS

I would like to thank my advisors, colleagues, friends, and family who have helped me

throughout my Ph.D. study.

I would like to thank my committee chair, Dr. Dezhen Song, for his support and

guidance with my research. Many thanks to Dr. Haifeng Li, Dr. Hongpeng Wang, and Dr.

Baifan Chen for being my great research collaborators and friends. I also want to thank

my lab mates/alumni Dr. Joshph Lee, Dr. Chieh Chou, Hsin-min Cheng, Shu-Hao Yeh,

Aaron Kingery, Aaron Angert, and Di Wang for their support of my research projects at

A&M.

Sincere thanks to my advisory committee members Dr. Anxiao Jiang, Dr. Dylan Shell,

and Dr. Suman Chakravorty for their dedicated insights, valuable suggestions, and exciting

discussions.

Last but not least, special thanks to my family and friends for accompanying me

through my toughest time.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by my committee consisting of Dr. Dezhen Song, Dr. Anxiao

Jiang and Dr. Dylan Shell of the Department of Computer Science and Engineering, and

Dr. Suman Chakravorty of the Department of Aerospace Engineering.

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by the graduate research assistantship and teaching as-

sistantship from Texas A&M University.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xii

1. INTRODUCTION. 1

2. RELATED WORK . 6

3. BELIEF SPACE-BASED SCENE UNDERSTANDING FOR LANE MARK-
ING QUALITY ASSESSMENT . 11

3.1 Related Work . 12
3.2 Problem Formulation . 14

3.2.1 Inputs, Assumptions, and Notations . 14
3.2.2 Quality Metrics and Problem Definition . 15

3.3 Metric Modeling . 16
3.3.1 Correctness Metric . 17
3.3.2 Shape Metric . 20
3.3.3 Visibility Metric . 22

3.4 Dual Modal Lane Detection Algorithm . 22
3.4.1 Road Surface Extraction by Sensor Fusion . 24
3.4.2 Lane Marking Segmentation in Each Modality . 26
3.4.3 Left and Right Lane Marking Determination . 27

3.5 Experiments . 28
3.6 Conclusion. 29

4. BELIEF SPACE CROSS VALIDATE FROM CROWDSOURCED DATA FOR
LANE MARKING VERIFICATION . 33

vii

4.1 Introduction. 33
4.2 Related Work . 34
4.3 Problem Formulation . 36

4.3.1 Assumptions and Coordinate Systems . 36
4.3.2 HD Map and Camera Inputs . 37
4.3.3 Problem Definition . 38

4.4 Algorithm. 39
4.4.1 Lane Marking Projection and Uncertainty Analysis 39
4.4.2 Intra-Frame Lane Marking Verification . 41
4.4.3 Cross-frame Lane Marking Belief Update . 44
4.4.4 Algorithm . 45

4.5 Experiments . 46
4.6 Conclusion. 49

5. BELIEF SPACE FOR TIGHT CONNECTION BETWEEN PERCEPTION AND
PLANNING . 51

5.1 Introduction. 51
5.2 Related Work . 52
5.3 Problem Definition . 55
5.4 Algorithm. 56

5.4.1 Free-space Detection . 56
5.4.2 VLB Generation . 59

5.4.2.1 LB representation . 59
5.4.2.2 Examining ALB quality . 60
5.4.2.3 VLB generation . 61
5.4.2.4 Weight settings . 64

5.4.3 VLB Registration . 64
5.5 Experiments . 66
5.6 Conclusion . 69

6. BELIEF SPACE-BASED APPROACH OF PROBABILISTIC BOUNDARY COV-
ERAGE FOR UNKNOWN TARGET FIELDS. 71

6.1 Introduction. 71
6.2 Related Work . 72
6.3 Problem Definition . 74

6.3.1 Scenario and Assumptions . 74
6.3.2 UTF Properties and Modeling Perception . 74
6.3.3 Problem Definition . 76

6.4 System Modeling. 76
6.4.1 Ellipses, Robot Trajectory, Observation Set, and Initialization of

the Depth-First Search . 77

viii

6.4.2 Depth-First Search-based Boundary Traversing . 79
6.4.2.0.1 Branching Method . 79
6.4.2.0.2 Termination Scenarios . 81
6.4.2.0.3 Node/Ellipse Generation . 81

6.5 Boundary Coverage Performance Analysis . 82
6.5.1 Probability Bounds for a Point x in Aq . 82
6.5.2 Probability of Covering an UTF Boundary Point in Level Set Con-

struction . 84
6.5.3 Ensure Boundary Coverage Quality . 85
6.5.4 Algorithm and Complexity Analysis . 86

6.6 Experimental Result. 87
6.7 Conclusion. 88

7. CONCLUSIONS AND FUTURE WORK . 90

7.1 Conclusion. 90
7.2 Future Work . 92

REFERENCES . 93

ix

LIST OF FIGURES

FIGURE Page

3.1 Examples of urban road scenario. 13

3.2 An illustration of how to compute lane center curve and the shape metric.
Solid curves correspond to Ll and Lr which are determined by Lc. Thin
and dashed curves close to them represent points Xl and Xr, respectively.
The area of shaded region is µs. 19

3.3 Algorithm diagram. 23

3.4 Sample intermediate algorithm outputs (best viewed in color). 31

3.5 Performance metrics for six sequences from the KITTI dataset. Red boxes
indicate lane marking anomalies identified by correctness, shape or visi-
bility metrics. 32

3.6 Typical scenarios of abnormal lane markings. Figures labels correspond to
those in Fig. 3.5. 32

4.1 We extract belief for each LM in the map and accumuate historical obser-
vations from camera to verify the LMs. 34

4.2 System diagram.. 37

4.3 Pixel-wise LM probability distribution fm(
I x|zm,t) from the HD map in

(a) and fs(
I x|zt) from the image in (b). 43

4.4 ROC curve for lane marking verification in comparison. 48

4.5 LM belief adjustment with more and more observations. 49

5.1 We generate virtual lane boundaries for autonomous driving to ensure hu-
man compatible driving under complex road conditions. Green curves are
the VLBs generated by our algorithm (best viewed in color). 53

5.2 System diagram. The solid star represents the output of pose estimation,
which is also the input to the continuous LB generation and LB projection. 56

x

5.3 Sample algorithm outputs for six different scenarios. 67

5.4 Contribution to LCC cost by different components. 68

6.1 Problem illustration. a) Wind shear region boundary coverage application:
The green & orange clouds represent potential regions of interest that may
contain UTFs. To map each UTF, we need to send an UAV to cage the UTF.
b) Output of our boundary coverage algorithm is to cover the boundary
using a sequence of connected ellipses. 72

6.2 The robot accumulates observations in Aq in the blue shaded area in a),
establishes belief functions in Aq using a GP based on observation set Oq,
which assists in determining Ag in b). 77

6.3 Local coverage testing with real image data and robot coverage path. 88

xi

LIST OF TABLES

TABLE Page

4.1 Datasets for Comparison . 47
4.2 Evaluation using real data . 48

5.1 %VLBs on KITTI Dataset . 67

6.1 Local coverage experiment settings and results. 87

xii

1. INTRODUCTION

Navigating through a environment is the most fundamental capability for mobile robots,

which is still very challenging nowadays. A mobile robot is required to perform inference

from sensor measurements, to build a model of the surrounding environment, and to esti-

mate variables of interest. Moreover, it has to plan actions to accomplish given goals. Most

robotic applications these days, such as mining, disaster response, and agriculture, require

the robots to move and perform tasks in a variety of environments which are stochastic

and sometimes even unpredictable. A robot often cannot directly observe its current state

but instead estimates a distribution over the set of possible states based on sensor measure-

ments that are both noisy and partial. Besides, the actual robot position differs from the

prediction after applying a motion command due to actuation noise. Classic algorithms for

navigation should adapt themselves to where the behavior of the environment is stochastic,

and the execution of the motions has great uncertainty.

To solve such challenging problems, we propose to guide the robot’s navigation in the

belief space. Belief space-guided navigation differs fundamentally from planning without

uncertainty where the state of the robot is always assumed to be known precisely. The

robot cannot directly observe its state but can only infer it from past observations and

actions. This leads to the necessity of maintaining the space of all possible distributions

over the state space called belief space and computing a control policy to select the best

plan. However, belief space-guided navigation is still very challenging for several reasons.

The robot must produce plans that reliably achieve its tasks despite the difference between

the model (both perception and motion) and the real world. Meanwhile, the robot has to

compensate for model uncertainties, unknown external disturbances, and time-varying key

parameters. Explicitly considering motion and sensing uncertainty when computing robot

1

motions can improve the quality of computed plans.

Robots employ different sensors to “see", “touch", and “sense" the surrounding en-

vironment. For navigation alone, cameras, light detection and ranging (LIDAR) sensors,

radar sensors, ultrasonic sensors, and infrared sensors are widely used. Cameras are not

only inexpensive, but also able to capture texture, color and contrast information, and high

level of details about the world. LIDAR sensors can scan more than 100 meters in all

directions, generating a precise 3D map of its surroundings. Radar uses radio waves to

determine the velocity, range, and angle of objects, which can work in every condition and

even use reflection to “see" objects behind obstacles. Ultrasonic sensors measure distance

by sending out a sound wave at a specific frequency and wait for that sound wave to bounce

back. Infrared sensors are capable of measuring the heat being emitted by an object and

detecting motion by either emitting and/or detecting infrared radiation. Through sensory

systems, mobile robots acquire information about their surrounding environment to obtain

the belief space, the space of possible values that the robot state can take, and generate

feasible robot motions to avoid obstacles and maneuver to targets. However, the sensor

readings often contain great uncertainties due to sensing conditions, physical properties,

environmental variations, and resolution limitations. Furthermore, sensors have limited

sensing ranges. For instance, digital camera image noise is a random variation of bright-

ness or color information and produced by the sensitivity setting in the camera, length of

the exposure, and temperature [1, 2]. The depth noise of a Kinect is a quadratic function

of the depth [3]. The depth uncertainty of LIDAR has a linear relationship with the mea-

sured depth [4]. All of these cause uncertainty of robot’s state and limit a robotic systems’

ability to provide efficient and precise understandings of its environment to ensure proper

planning and action of the robot. Ignoring such uncertainty is unwise and may lead to

incorrect decision-making for the robots.

To deal with the challenges, the robot is expected to utilize knowledge from the be-

2

lief space during the navigation by considering perception uncertainty, originally from the

sensing system, and motion uncertainly carefully in order to make correct decisions. The

planner should not merely compute a static path but rather a collision-free, feasible kin-

odynamic, and task-optimal trajectory that allows the robot motion to perform given the

current state information. The optimal plan will maximize, for instance, the probability of

reaching a specified goal location while avoiding collisions with obstacles. These inspire

us to investigate how to guide the robot navigation in the belief space.

In this dissertation, we explore belief space-guided robotic navigation problems, which

include belief space-based scene understanding for autonomous vehicles, and introduce

belief space guided robotic planning.

We first investigate how belief space can facilitate scene understanding under the con-

text of lane marking quality assessment in the application of autonomous driving. We

focus on developing metrics and algorithms to assess LM qualities from an egocentric

view of an inspection vehicle equipped with a global positioning system (GPS) receiver,

a frontal-view camera, and a LIDAR system. We propose three quality metrics for LMs:

correctness metric, shape metric, and visibility metric. The correctness metric measures

the divergence between the expected LMs based on prior map inputs and the actual sen-

sor inputs. The shape metric evaluates smoothness in road curvature and width range.

The visibility metric evaluates the contrast between LMs and background road surfaces.

We propose a dual-modal algorithm to compute these metrics. We have implemented the

algorithms and tested them under open dataset. The results show that our metrics can

successfully detect LM anomalies in all testing scenarios.

As another example of using belief space for better scene understanding, we utilize

crowdsourced images from multiple vehicles to help verify LMs for high-definition (HD)

map maintenance. We obtain the LM distribution in the image space by considering the

camera pose uncertainty in perspective projection. Both LMs in the HD map and LMs in

3

the image are treated as observations of LM distributions which allow us to construct pos-

terior conditional distribution (a.k.a Bayesian belief functions) of LMs from either source.

An LM is consistent if belief functions from the map and the image satisfy statistical

hypothesis testing. We further extend the Bayesian belief model into a sequential belief

update using crowdsourced images. LMs with a higher probability of existence are kept in

the HD map whereas those with a lower probability of existence are removed from the HD

map. We verify our approach using real data. Experimental results show that our method

is capable of verifying and updating LMs in the HD map.

Belief space can also help us to tightly connect perception and motion planning. As

an example, we develop a motion planning strategy for autonomous vehicles. Existing

autonomous vehicle (AV) navigation algorithms treat lane recognition, obstacle avoid-

ance, local path planning, and lane following as separate functional modules which re-

sult in driving behavior that is incompatible with human drivers. It is imperative to de-

sign human-compatible navigation algorithms to ensure transportation safety. We develop

a new perception-planning framework that combines all these functionalities to ensure

human-compatibility. Using GPS-camera-LIDAR sensor fusion, we detect actual lane

boundaries (ALBs) and propose availability-reasonability-feasibility (ARF) threefold tests

to determine if we should generate virtual lane boundaries (VLBs) or follow ALBs. If

needed, VLBs are generated using a dynamically adjustable multi-objective optimization

framework that considers obstacle avoidance, trajectory smoothness (to satisfy vehicle kin-

odynamic constraints), trajectory continuity (to avoid sudden movements), GPS following

quality (to execute the global plan), and lane following or partial direction following (to

meeting human expectation). Consequently, vehicle motion is more human-compatible

than existing approaches. We have implemented our algorithm and tested under open-

source data with satisfying results.

As another example of how belief space can help guide robots for different tasks, we

4

propose to use it for probabilistic boundary coverage of unknown target fields (UTFs).

The robot accumulates sufficient sensory readings at each step to instantiate Gaussian pro-

cesses (GPs) as a local belief function to approximate field dispersion in an ellipse-shaped

local region, which allows us to predict UTF boundary trends and establish adjacent el-

lipses for further exploration in the next step. The overall process is governed by a depth-

first search process until the UTF is enclosed by fully connected ellipses. We prove that

our boundary coverage process can guarantee that the enclosure of UTF is above a given

coverage ratio with a preset probability threshold. We have implemented our method and

tested with different types of UTFs in simulation. The results show that the proposed algo-

rithm always guarantees that the coverage ratio is above the given threshold for all testing

cases (1D vs. 2D, smooth vs. non-smooth boundary, and convex vs. non-convex).

The rest of this dissertation is organized as follows. Section 2 reviews literature related

to this dissertation. Section 3 presents the belief space-based scene understanding for

a single robot, which we want to quantify the LM quality for autonomous driving. In

Section 4, we demonstrate the belief space-based scene understanding for multiple robots

by reporting a LM verification approach through crowdsourced images. Section 5 presents

our multi-module VLB generation methods that tightly connect the perception with motion

planning. In Section 6, we present the boundary coverage for UTFs. Section 7 concludes

the dissertation and discusses future work directions.

5

2. RELATED WORK

Our work is related to belief space representation, uncertainty model for robotic navi-

gation, and robotic navigation in belief space.

Adoption of appropriate belief space for robot navigation not only makes robotic prob-

lems computationally feasible, but also provides robustness in the presence of uncertainty.

Murray et al. [5] constructs robot-specific circuitry for motion planning, capable of gener-

ating motion plans approximately three orders of magnitude faster than existing methods.

Pivtoraiko et al. [6] propose deterministic search in a specially discretized state space,

and compute a set of elementary motions that connects each discrete state value to a set

of its reachable neighbors via feasible motions. Pivtoraiko et al. [7] compute a control

set which connects any state to its reachable neighbors in a limited neighborhood. Equiv-

alence classes of paths are used to implement a path sampling policy which preserves

expressiveness while eliminating redundancy. Howard et al. [8] presents an effective al-

gorithm for belief space sampling using a model-based planning algorithm that enables

high-speed navigation for robot. Klanvar et al. [9] use linearized tracking-error dynamics

to predict future system behavior and derive a control law from a quadratic cost func-

tion penalizing the system tracking error and control effort. Bouton et al. [10] provide

an efficient strategy to navigate through urban intersections is a difficult task, which help

navigate the robot through unsignalized intersections as a partially observable Markov

decision process and solves it using a Monte Carlo sampling method. Patil et al. [11]

address the problem of incorporating sensing discontinuities due to factors such as limited

field of view of sensors and occlusions, in an optimization-based framework for belief

space planning. Sadigh et al. [12] embrace the fact that robot actions affect what humans

do, leverage it to improve state estimation, and enable robots to do active information gath-

6

ering, by planning actions that probe the user in order to clarify their internal state. Note

that the robot state typically only has six degrees of freedom (three for rotation and three

for translation) in our problems. Instead of applying configuration space that performs

well in high-dimensional space, we fully utilize the belief space to guide the navigation

for the robot, and select the best route considering perception and motion uncertainty by

minimizing a customized cost to navigate the robot.

Different methods have been proposed to estimate the uncertainty for navigation tasks.

Markku et al. [13] devise a Poisson-Gaussian noise estimation method for images com-

bining variance-stabilization and noise estimation for additive Gaussian noise. Liu et al.

[14] estimate an upper bound noise level based on a piece-wise smooth image prior model

and measured CCD camera response functions. Michal et al. [15] quantify camera un-

certainty by computing the inversion instead of the pseudo inversion of the information

matrix, which allows the scaling of the values of the information matrix and produces

more precise results. Kovalev et al. [16] analyze the uncertainty of LIDAR data to provide

accurate measurements. Matthies et al. [17] use occupancy grid to integrate noisy range

data from multiple sensors and multiple robot positions into a common description of the

environment. Hanheide et al. [18] handle uncertain and incomplete information from the

sensors for robot task planning and explanation through three layers from the bottom level

to the top. Fabian et al. [19] improve the visual odometry performance through the anal-

ysis of the sensor noise and the propagation of error through the entire visual odometry

system. Van et al. [20] propose linear-quadratic Gaussian motion planning, which is based

on the linear-quadratic controller with Gaussian models of uncertainty, and explicitly char-

acterizes in advance (i.e. before execution) the a priori probability distributions of the state

of the robot along its path, to design a feasible trajectory after assessing the quality of the

path, for instance by computing the probability of avoiding collisions. Nardi et al. [21]

propose the use of an uncertainty-augmented Markov Decision Process to approximate the

7

underlying Partially Observable Markov Decision Process, and employ a localization prior

to estimate how the belief about the robot’s position propagates through the environment.

Gonzalez et al. [22] uses a path planner that calculates optimal paths while considering

uncertainty in position and that uses landmarks to localize the vehicle as part of the plan-

ning process. However, existing approaches try to reduce the sensor uncertainty through

different probability models instead of proposing efficient approaches to help guide the

navigation in belief space for mobile robots.

We review three different categories for navigation in belief space to reduce uncer-

tainty in robot: reactive planning-based, sampling-based and optimization-based. Reac-

tive planning-based method considers the obstacle and target goal position into the plan-

ning pipeline. Koren et al. [23] propose iterative Gauss-Seidel method on discretized

cell grid to generate a single minimum globally at the location of the goal configuration.

Lengyel et al [24] describe a navigation function for each free configuration sample by

guaranteeing the global minimum at the goal configuration. Khatib et al. [25], Krogh

et al [26] and Hwang et al. [27] use potential field (PF) path planning to calculate force

fields generated by the goal target and the surrounding obstacles. A further extension of

the original PF is made by Huang et al. [28] for non-holonomic robots. They utilize

robot’s headings to the obstacles and the goal to track the path through the potential fields.

Thought reactive planning methods are successfully to generate feasible path, it is hard to

account for predicting the involvement of the environment in order to yield a deliberative

plan that has certain optimality sense overall a long spatial or temporal planning horizon.

Sampling-based method aims to discretize the configuration space and convert the motion

planning problem into a generate-and-evaluate problem or a graph search problem, which

has been widely used [29, 30]. Fox et al. [31] define the dynamic window method to gen-

erate sampled trajectories for the robots to select. Nagy et al. [32] generate cubic spirals

by considering a kinematically feasible control trajectory that connects the start position to

8

the goal. Kavraki et al. [33] propose the probabilistic road-map for path planning for path

planning problem, in which a learning phase explores the configuration space by grow-

ing the tree of randomly sampled points and a query phase traverse the graph to find a

feasible route. LaValle et al. [34] propose the Rapidly-exploration Random Tree, which

can be viewed as a single query version of PRM. Variation of PRM and RRT have been

widely used for mobile robots [35, 36, 37, 38]. Pivtoraiko et al. [6] propose to use state

lattice, which combine a discrete searching graph with kinodynamic constraints, which

has been applied in structured [39] and unstructured environment [40]. In terms of graph

construction and searching of the optimal path for motion planning problem, algorithm

like Dijkstra’s algorithm [41], A∗ [42], and D∗ [43] are developed to find the optimal but

exploring the graph less. Overall, the sampling-based planning methods provide a system-

atic approach for converting the continuous workspace into a discrete workspace modeled

by a graph in order to find a probabilistically complete or resolution-optimal planning so-

lution. The lattice-based approaches adapted for both unstructured and structured environ-

ments can easily integrate a non-holonomic vehicle’s kinematic constraints. On the other

hand, the downsides are equally obvious: the curse of dimensionality, the sub-optimality

introduced due to discretization, and the potentially intractable computational overhead.

Optimization-based method iteratively refines a solution until the termination/convergence

conditions are met while taking into account the robot’s dynamic model. Depending on

whether the optimization routine is applied to states or control, there are two classes of

trajectory optimization methods – direct and indirect. The direct methods enforce model

feasibility between states numerically by altering the state-control-state sequence along the

trajectory. Thrun et al. [44] propose a gradient descent optimizer to nudge teach sampled

point by minimizing the cumulative path jerk. Brandt et al. [45] graduate deforming a path

by achieving an equilibrium according to the artificial forces. Roesmann et al. [46] con-

sider the temporal aspects and dynamic constraints of the robot motion by augmenting the

9

time interval information. The indirect methods utilize the initial state to manipulate the

controls and the states along the robot trajectory, which must be obtained through forward

shooting (a.k.a, integration, evaluation, pass) using the dynamics model. Jaacobson et al.

[47] propose a second-order method (Differential Dynamic Programming) to improves the

robot path by the manipulating the control sequence locally. Berg et al. [48] exploit the

balance between the optimal control and the estimation to smooth the path using a ex-

tended Linear-quadratic regulator algorithm. Though optimization-based approaches are

efficient to deal with states or control, it is easier for the algorithm to be trapped into the

local minimal without careful tuning. In this dissertation, we carefully design our ap-

proaches that consider planning for robots in belief space rather than treating the robotic

motion as individual problems.

10

3. BELIEF SPACE-BASED SCENE UNDERSTANDING FOR LANE MARKING

QUALITY ASSESSMENT1

We first investigate how belief space can facilitate scene understanding under the con-

text of quantifying the lane marking quality in the application of autonomous vehicle. As

AVs are getting closer and closer to our life, one critical question remains unanswered:

are our roads ready for AVs? AV developers attempt to deal with all kinds of road condi-

tions. However, safety can be challenged when poor road conditions (see Fig. 3.1) appear

because there are limited training data for abnormalities. Due to the limited sensory capa-

bilities and on-board computation resources of AVs, exhaustively predicting road scenarios

is infeasible. A solution to reliable autonomous driving is to ensure our infrastructure is

ready for the technology.

Here we present a lane marking quality assessment (LMQA) method to help road in-

spection crews examine the quality of lane markings. The method assumes an egocentric

view with a GPS receiver, a frontal-view camera, and a LIDAR. Based on data from GPS,

prior maps from geographic information systems (GIS) and on-board sensors, we propose

three different lane quality metrics: correctness, shape, and visibility. The correctness

metric measures the divergence between the expected lane markings based on prior map

inputs and the actual sensor inputs. Building on the difference between posterior distribu-

tions, it takes uncertainties in inputs into consideration. The shape metric verifies if the

lane has smooth curvature according to road grade and is within satisfying width range.

The visibility metric evaluates the contrast between lane markings and background road

surfaces. Fusing camera images and LIDAR data, we propose an algorithm to compute

1Reprinted with permission from “Lane Marking Quality Assessment for Autonomous Driving” by B.Li,
D. Song, H. Li, A. Pike and P. Carson, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, October, 1-5, 2018.

11

these metrics. The algorithms extensively utilize both camera images and LIDAR data in

road surface detection and lane marking recognition to generate segmented left and right

lane marking points required by the three metrics computation. We have implemented

the algorithms and tested it using the KITTI dataset. The results show that our metrics

successfully recognize anomalies in lane markings.

It is worth noting that LMQA is NOT the same as the well-known lane marking detec-

tion problem. It is not in our best interest to develop/apply the most sensitive and accurate

lane detection algorithm in LMQA because we want to ensure that our roads are safe for

less capable vehicles. Here we measure roads instead of vehicles. LMQA focuses on

evaluating lane marking qualities instead of abilities to detect them. It needs to be able to

mark low quality road segments and output different types of quality issues instead of just

reporting “no lane” detected. It also takes into consideration of common sensor configura-

tions for all AVs instead of optimizing lane detection for a particular sensor configurations.

3.1 Related Work

The second part of our work is relevant to road quality assessment, road surface extrac-

tion, and lane detection in transportation and autonomous driving research. In this section,

we develop a review of related literature as follows.

Lane markings play an important role in autonomous driving. To the best of our knowl-

edge, little has been done to quantify lane markings to assist road maintenance. Harwood

et al. [49] use operational analysis procedures to assess the capacity and level of service

of two-lane highways. Flannery et al. [50] quantify the road service quality by compar-

ing drivers’ assessments of the performance of urban streets with objective measures of

performance. Thomas et al. [51] propose a systematic approach to evaluate algorithms

for extracting road marking features. Pohl et al. [52] estimate driver’s visual distraction

level to provide sufficient reliability of lane-keeping. However, none of them focus on

12

(a) New lane markings coexists with the old
one.

(b) Lane border shape may not satisfy the
standard.

(c) Faded or blurred lane markings.

Figure 3.1: Examples of urban road scenario.

measuring lane marking quality itself.

During road surface extraction, color and texture are the main perceptual cues for

navigation systems of semi- or fully autonomous vehicles. Besides obstacle avoidance,

road surface detection facilitates path planning and decision making. Common sensory

methods include cameras [53] and LIDARs. Pradeep et al. [54] use stereo camera data

to extract the road surface structure. Hernández et al. [55] filter and segment the road

surface from 3D point clouds acquired through mobile LIDAR systems. Li et al. [56]

utilize the structural information to find the road surface by combining multiple task deep

convolutional neural networks with a recurrent neural network detector. Yu et al. [57]

extract road surface points directly from three dimensional point clouds. Guan et al. [58]

extract road surface through a curb-based method using geo-referenced intensity images.

13

More detailed surveys can be found in [59, 60]. Most existing efforts only utilize a single

sensing modality, as we simultaneously employ both camera images and LIDAR data to

extract the road surface in our approach for more robustness.

A lane border detection system detects lane markings from complex environments.

Lane markings are important for reliable estimation of vehicle positions relative to lanes.

Different sensors or perception modalities have been used for lane border detection, such

as monocular vision [59, 61], LIDAR [62, 63, 64], stereo imaging [54, 65], GPS and

inertial measurement unit (IMU) [30, 66], and Radar [67]. Gu et al. [68] classify the

lane markings by fusing images and LIDAR scans using convolutional neural networks.

Huang et al. [69] describe and detect multiple lane borders in an urban road network from

calibrated video imagery and laser range data acquired by a moving vehicle. Mammeri

et al. [70] combine the Maximally Stable Extremal Region technique with the Hough

Transform to detect and recognize lane markings. Various lane border detection systems

have been proposed in the automotive industry [71, 72]. Built on existing efforts, our

dual-modal lane marking detection leverages inputs from both camera images and LIDAR

scans to facilitate lane marking quality metric computation with an attempt to provide a

baseline performance under common sensor configurations.

3.2 Problem Formulation

3.2.1 Inputs, Assumptions, and Notations

Our objective is to quantify the lane marking quality from an egocentric view. The

inspection vehicle is equipped with a frontal view camera and a LIDAR, and we use their

data as problem input. We also employ GPS data and prior maps consisting of a set of

3D lane boundaries, such as Google Maps, as part of inputs. We only evaluate immediate

left and right lane markings with respect to the vehicle due to their importance in guiding

the vehicle. We do not evaluate multiple parallel lanes simultaneously because the sensors

14

on-board the vehicle have perspective limitations. We have the following assumptions.

a.1 The camera is pre-calibrated and we know its intrinsic parameters. The nonlinear

distortion of camera images has been removed.

a.2 The GPS, the camera, and the LIDAR readings are already synchronized.

a.3 The coordinate system transformations between any two sensors are known by cali-

bration.

Common notations are defined as follows,

• Pi,t ∈ R3, the i-th 3D LIDAR point in the LIDAR reference system at time t. Also,

it is defined in a system with x-axis pointing to vehicle forward direction, y-axis

pointing to the left of the vehicle lateral direction, and z-axis pointing upward.

• Ii, the intensity value of the LIDAR point Pi,t .

• Pt := {Pi,t}, LIDAR point cloud data set at time t.

• It , the gray-scale camera image at time t.

• pk,t = [u v]ᵀ ∈ R2, the k-th pixel point in image It where (u,v) is the image coordi-

nate.

• X̃, homogeneous vector X̃ = [Xᵀ,1]ᵀ where Xᵀ denotes the inhomogeneous part of

X̃.

3.2.2 Quality Metrics and Problem Definition

We introduce three types of quality metrics for LMQA. Here we just define them. We

will model them mathematically in Section 3.3.

15

• Correctness Metric: Defined as µc, this metric quantifies the divergence between

sensed lane marking positions and that from the prior map in the GIS system. It may

be caused by slow updates of GIS database when road construction or maintenance

changes lane markings. Lane markings may disappear completely or be painted

incorrectly due to poor maintenance. All of these cause discrepancies between prior

maps and sensory inputs which introduces difficulty for AVs to make decisions.

• Shape Metric: Defined as µs, this metric measures whether the road segment is

smooth in curvature which is defined by road grade and conformity to lane width

standard. A smooth road with proper width makes it easier for AVs to perform

trajectory following and leads to smooth and safe rides. Lane width may differ

according to different road grades and countries but is always bounded between a

lower bound and an upper bound. Sometimes, the desired width may be a single

fixed value. For example, the US Interstate Highway standard dictates 3.7 meters

lane width.

• Visibility Metric: Defined as µv, the metric measures how visible lane markings

compare to background surface in both images and LIDAR data. High contrast

makes lane markings easy to be detected and segmented by AVs.

With assumptions, notations and quality metrics made, our problem can be defined as

follows,

Problem 1. Given the GPS coordinate, a prior map, the LIDAR point cloud Pt , and

camera image It , quantify the LMQA according to the aforementioned quality metrics.

3.3 Metric Modeling

Now let us model the three metrics mathematically. Note that we sample data periodi-

cally. At discrete time t, we have a camera image It and LIDAR point cloud Pt . To avoid

16

too much overlap with previous or following iterations, we only use a partial set of points

P̄t := {Pi,t |‖Pi,t‖ ≤ ζ · vτ,Pi,t ∈Pt}, (3.1)

where ‖ · ‖ is the vector l2-norm, τ is the sampling interval, v is current vehicle velocity,

and ζ is a positive constant controlling the overlap between P̄t and P̄t+1. To ensure full

coverage, we set ζ = 2. Since we know the relationship between the image coordinate

and LIDAR coordinate, we also use P̄t to obtain the corresponding Īt in It . Also, given

the GPS coordinate, we know the prior map region overlaps with P̄t . Define Xp ∈ R3

as the corresponding lane marking from the prior map in this overlapping region and set

Pp := {Xp} for all Xp’s. All metrics below are based on Pp, P̄t , and Īt .

3.3.1 Correctness Metric

We define the correctness metric in Īt . Let Ck represent an event that a pixel pk,t in

image Īt is a lane marking pixel,

Ck =

 1, pk,t is a lane marking point

0, otherwise.

Define P(Ck) as the probability for event Ck. Define prior map lane pixel xp as the pro-

jection of Xp from the prior map into Īt . Define K as the intrinsic camera parameters and

{R, t} as the extrinsic parameters between the camera and LIDAR, where R and t are the

rotation matrix and translation vector that relate the laser coordinate system to the camera

coordinate system. The projection is based on the perspective projection model,

x̃p = K[R t]X̃p. (3.2)

Define SP = {xp} to be the set that covers all points in Pp. Define set SQ that con-

17

tains all the lane marking pixels in Īt . Define posterior probability P(Ck|SP) to capture the

lane marking distribution in the image space through a prior map. It is not deterministic

because we have uncertainties in the map due to resolution limitations and errors in GPS

coordinates. Similarly, we define posterior probability P(Ck|SQ) to be the lane mark-

ing distribution given the sensory inputs. It is probabilistic due to sensory uncertainty.

Then the correctness metric is modeled as the difference between these two conditional

probabilistic distributions. We employ the smoothed Kullback-Leibler (KL) divergence to

characterize this difference,

µc = ∑
k

P(Ck|SP) log
P(Ck|SP)

P(Ck|SQ)
, (3.3)

A KL divergence of 0 indicates that we have two identical distributions, while a KL diver-

gence of 1 indicates that the two distributions are totally different. Therefore, we prefer

small values in this metric.

Now let us explain how to compute P(Ck|SP) and P(Ck|SQ). Recall that Xp ∈Pp

represents a lane marking point in the prior map and xp ∈SP is its projection using (4.2).

We use the set {(xp,Cp)} as the training set to instantiate a recursive Bayesian estimation

process to obtain the lane marking distribution P(Ck|SP) for the lane information on the

prior map. It can be computed by using a two-phase approach. For an x∗p ∈SP and its

corresponding event C∗p, we update the probability distribution,

P(C∗q |SP) = bel(C∗q | f (x∗q),σ2,x∗q,SP), (3.4)

where σ2 is the variance of the noise, and the latent function f is represented by Gaussian

Process (GPs) [73]. Here, σ2 encodes the vehicle’s current state, which is represented as

high-dimensional Gaussian distribution. As the vehicle is moving along the lane, the value

18

Lr

Ll

Lc

d/2
d/2

(a) A cubic polynomial fitting smooths
observation noises.

Lr

Ll
Lc

dmin/2
dmin/2

(b) An overly narrow lane results in
large µs.

Figure 3.2: An illustration of how to compute lane center curve and the shape metric. Solid
curves correspond to Ll and Lr which are determined by Lc. Thin and dashed curves close
to them represent points Xl and Xr, respectively. The area of shaded region is µs.

of σ also changes accordingly. The GP provides posterior distribution of pixel xk ∈ Īt for

prediction,

P(Ck|SP) = bel(Ck|µI,σ
2
I ,xk,SP). (3.5)

Here, µI and σ2
I are the expectation and variance of the posterior distribution related to

the kernel function, which characterizes the correlation between the function values at

different pixels. Here we employ a Gaussian kernel K as

K(pi,t ,p j,t) = σ
2
f exp(− 1

2λ 2
f
‖pi,t−p j,t‖2), (3.6)

for {pi,t ,p j,t}⊂ Īt with µI = kᵀ
∗(Ko+σ2I)−1C∗p and σ2

I = k∗∗kᵀ
∗(Ko+σ2I)−1k∗ where σ f

is the variance of the lane marking position, λ f is the length scale variable, k∗=K(SP,xk),

Ko is the kernel matrix of the training data SP, k∗∗=K(xk,xk), and I is an identity matrix.

Similarly, we get P(Ck|SQ) through (6.8)-(6.9). Therefore, we can obtain µc in (3.3)

through the two posterior distributions P(Ck|SQ) and P(Ck|SP).

19

3.3.2 Shape Metric

The shape metric evaluates the lane shape defined by lane boundaries by examining

its smoothness and width. To achieve this, we need to find the ‘best shape’ that fits the

observation data. The best shape refers to a segment of lane that has smooth curvature

defined by road grade and fits the width requirement. Then we evaluate how the existing

lane marking point set compares to the best shape.

First, we need to model the best shape. We adopt a cubic polynomial lane center curve

with a width to describe it because a cubic polynomial is sufficient to describe road curve

and can be computed straightforwardly from cubic spline fitting. Define the lane center

curve as a function of univariate parameter s,

Lc(s) = a0 +a1s+a2s2 +a3s3 ∈ R3, (3.7)

where {ai|i= 0,1,2,3} are 3-vectors for polynomial coefficients, and pa = [aᵀ0,a
ᵀ
1,a

ᵀ
2 ,a

ᵀ
3]
ᵀ.

By forcing Lc(s)⊂Pt ∪Pt−1, we obtain s range set S:

S := {s|Lc(s)⊂Pt ∪Pt−1}.

The reason that we choose s’s range, S, to be much bigger than that of Pt is to ensure

smoothness in future curve transition and full lane boundary coverage. For each point

Xc ∈ Lc(s) and a given width d, we find a point on the left boundary and a point on

the right boundary by walking along the direction perpendicular to Lc(s) by d/2 to the

left or right, respectively (see Fig. 3.2a). Therefore, lane boundaries Ll(s) and Lr(s) are

determined by Lc(s) for the given width d.

Now let us explain how to obtain the lane center curve. Define Xl and Xr to be left

and right lane marking points in P̄t , respectively. For a given left boundary set Ll(s), we

20

evaluate each point in Xl by measuring the closest distance dl:

dl(Xl,Ll) = min
s∈S
‖Xl−Ll(s)‖u min

s∈S
‖Xl−Lc(s)‖−d/2. (3.8)

The approximation works when the road is relatively flat. Similarly, we can evaluate each

point in Xr by measuring the closest distance dr:

dr(Xr,Ll) = min
s∈S
‖Xr−Lr(s)‖u min

s∈S
‖Xr−Lc(s)‖−d/2.

It is clear that both left and right boundaries are based on the lane center curve which needs

to be estimated with respect to inputs Xl and Xr. We evaluate a given lane center curve

using the observations Xl and Xr by the following objective function,

fl(Lc,d) =
1
nl

∑
Xl∈P̄t

dl(Xl,Ll)+
1
nr

∑
Xr∈P̄t

dr(Xr,Lr), (3.9)

where nl and nr are numbers of lane marking points in the left and right lanes, respectively.

Therefore, we can obtain the lane center curve and the optimal width by minimizing the

[p∗ᵀa , d∗]ᵀ = argmin
pa,d

f (Lc,d), (3.10)

subject to width constraint

dmin ≤ d ≤ dmax, (3.11)

where p∗a and d∗ are optimal lane center curve parameters and the optimal lane width,

and dmin and dmax are the minimum and maximum allowable width, respectively. The p∗a

defines the optimal center curve L∗c according to (3.7), and can be further constrained to

reflect desirable curvature range according to the road grade from GIS information so that

21

the optimization in (3.10) does not over fit the observations. With L∗c and d∗, our shape

metric is,

µs = f (L∗c ,d
∗). (3.12)

It is worth noting that µs characterizes both the smoothness and the width requirement.

Preferably µs should be small. In fact, dl and dr are the distances from the estimated

boundaries to their respective observations, which means the area of the shaded area in

Fig. 3.2 is µs. It is clear that µs becomes large if the lane markings do not correspond to

a smooth desirable curve. The same applies to the lane that is overly wide or narrow. In

such cases, µs becomes excessively large as shown in Fig. 3.2b.

3.3.3 Visibility Metric

The visibility metric is defined based on both image pixels and LIDAR data. Define

µm,L and µb,L as the mean intensity values for the lane marking points and the background

points of the LIDAR scan, respectively. Recall that set SQ contains lane marking pixels

in image Īt , and define Sb,I to be the background pixel set. Define µm,I and µb,I to be the

mean intensity values of the SQ and Sb,I in Īt , respectively. The visibility metric is to

verify intensity ratios in two modalities.

µv = max
{

µm,L

µb,L
,

µm,I

µb,I

}
. (3.13)

It is clear that large values of µv are preferable. As long as the lane markings are visible

in either modality, we treat them as satisfactory here. It is also possible to change max to

min if we want to be more conservative.

3.4 Dual Modal Lane Detection Algorithm

To compute the aforementioned metrics, we need the segmented left and right lane

markings in both camera image and LIDAR data. This means that we need a lane detection

22

3) Road Surface

Extraction by Sensor

Fusion

4) Lane Marking

Segmentation in

Each Modality

2) Shadow Removal

and Road Surface

Segmentation

1) Data

Preprocessing

tP

I t

GPS

Data

Map

Camera

Image

LIDAR

Scan

 6.1) Correctness

Metric

 6.2) Shape Metric

 6.3) Visibility

Metric

s

c

v

,rs IP

*

,rs LP

Pp

I t

*

,rs IP

5) Left and Right

Lane Marking

Determination
Xl, Xr, SQ,

* *,cL d

, ,l IP ,l LP

Figure 3.3: Algorithm diagram.

algorithm. However, it is important to build this algorithm using the most common sensor

configurations without catering to a particular hardware choice. In fact, it is not in our best

interest to use the best lane detection algorithm for LMQA purposes because we measure

roads instead of vehicles. We need a baseline version of lane detection which can provide

inputs required by our metrics. Unfortunately, existing commercial products only provide

lane departure warnings instead of providing us with segmented pixels or coordinate. For

completeness, we describe our lane detection algorithm here.

The overall sensor fusion pipeline is described in Fig. 5.2. In data preprocessing, we

ensure all input data is synchronized. We then process camera images to remove shad-

ows [74]. The shadow-free RGB image is recovered by relighting each pixel. For each

image Īt , we extract the road surface by using fully convolutional networks [75, 76]. Note

that we use full RGB colored images instead of gray-scale images in this step. Define

Prs,I ⊂ Īt as road surface pixel set. Since noisy points are inevitable in Prs,I , we need to

fuse LIDAR data to reduce the influence of noise to refine the segmentation result.

23

3.4.1 Road Surface Extraction by Sensor Fusion

Define P̃r = [x y z 1]ᵀ as the homogeneous 3D road surface point corresponding to the

road surface image pixel pr ∈ Prs,I . For each pr, we obtain the corresponding LIDAR point

Pr using the inverse of (4.2),

Pr = [KR]−1p̃r−R−1t. (3.14)

Assembling all Pr, we obtain set Sr := {Pr} containing the 3D LIDAR points belonging

to road surface.

We model the road surface S(x,y,z) using curved surface patches through bivariate

polynomials [77],

z−Hr · zr = 0, (3.15)

where Hr = [a00 a01 a11 a20 a21 a22 a30 a31 a32 a33]
ᵀ is the surface parameter vector that

needs to be estimated, and zr = [1 x y x2 xy y2 x3 x2y xy2 y3]ᵀ. We apply RANSAC [78] to

filter out outliers and estimate the road surface model. A minimal solution can be estab-

lished by randomly choosing 9 points from set Sr using a singular value decomposition

(SVD) based algorithm. We set constraint ‖Hr‖2 = 1 to avoid zero value solutions. In

each iteration of RANSAC, we randomly select a minimal set of data from set Sr to esti-

mate the S(x,y,z). Denote d⊥(Hr,Pr) to be the shortest distance for a point Pr to the road

surface, which is

d⊥(Hr,Pr) = min
Xr∈S
‖Xr−Pr‖, (3.16)

subject to (3.15) for all Xr ∈ S(x,y,z), where Xr indicates a point on surface S(x,y,z) that

has the shortest distance to Pr. By introducing the Lagrange multipliers λ , we find the

24

point Xr on the road surface S for each Pr through solving the Lagrange function,

fr(Xr,Pr,Hr) = ‖Xr−Pr‖2 +λ (z−Hr · zr). (3.17)

We employ the distance measurement in (3.16) to determine inlier/outlier from the set Sr.

Define A as the inlier consensus set of road surface. We accept an inlier point set if the

ratio between the set cardinality of A and the sample size is greater than threshold τt .

τt = 0.6 in all experiments. After obtaining the largest consensus set, we refine the Hr

using all inliers by applying the maximum likelihood estimation (MLE) to minimize the

sum of distance errors,

Ĥr = argmin
Hr

∑
Pr∈A

d⊥(Hr,Pr)
2, (3.18)

where Ĥr denotes the estimation of Hr using the Levenberg-Marquardt (LM) algorithm.

After extracting road surface S(x,y,z), we calculate the distance for all the LIDAR

points in set {Pt \A } using (3.16). We include the LIDAR points with distances to the

surface less than threshold dε along with A itself,

Prs,L =
{

Pi,t |d⊥(Ĥr,Pi,t)≤ dε ,Pi,t ∈Pt ,Pi,t /∈A
}
∪A .

Define pe to be the corresponding image pixel projection for the LIDAR point Pe ∈ Prs,L

on the image Īt through (4.2). We adopt the DBSCAN clustering algorithm [79, 80] to

eliminate outliers of pixel pe located far away from the road surface. We then get the

boundary and the interiors to obtain new road surface pixel set P∗rs,I . We also remove the

corresponding outliers from set Prs,L to get updated road surface LIDAR data set (see Fig.

3.4a). By employing the road surface model, we reduce the noise from image segmentation

and include more LIDAR points that fit for the surface model, which reduces outliers for

lane marking detection from the LIDAR scan in the later part.

25

3.4.2 Lane Marking Segmentation in Each Modality

With the road surface pixel P∗rs,I extracted, we detect lane markings from the segmented

road surface in the image. Define g(pk,t) as the intensity value for k-th pixel pk,t = [u v]ᵀ.

We set the intensity value of non-road pixels in Īt to be zero. Now Īt only contains

black pixels and road surface pixels including lane markings. Lane marking pixels usually

have higher intensity values. To reduce the noise from the image, we apply Gaussian

blurring before segmenting lane marking pixels through image histogram. We obtain the

binned histogram according to 256 intensity levels. We apply Gaussian mixture model

using EM algorithm [81] to the histogram data and find the peak with the largest intensity

value µγ with variance σγ . By applying three-sigma thresholding [82], we obtain a lower

bound of the intensity value as gγ = µγ −3σγ . We obtain lane marking pixels pl (see Fig.

3.4b) in set

Pl,I = {pk,t |g(pk,t)≥ gγ}. (3.19)

Fig. 3.4b illustrates the lane marking pixels.

Lane markings are also detected using LIDAR scans due to the their high laser reflec-

tivity by design. Recall we have extracted road surface data from the LIDAR scan in set

P∗rs,L. Recall that variable Ie ∈ [0,255] to be the intensity value for LIDAR point Pe. We

threshold Ie to obtain lane markings in LIDAR data,

Pl,L = {Pe | Ie ≥ Ts,Pe ∈ P∗rs,L}, (3.20)

where threshold Ts is obtained using Otsu thresholding [83] that determines the optimal

intensity value Ts by maximizing the variance between background (asphalt or concrete)

and foreground (lane marking) classes.

26

3.4.3 Left and Right Lane Marking Determination

The lane markings from individual modalities can be further filtered through cross

modality validation. Eqs. (3.14) and (4.2) allow us to project points between LIDAR co-

ordinates and image coordinates back and forth. Hence, we can intersect the lane marking

points between Pl,I and Pl,L at LIDAR coordinates and generate a set P∗l,L which contain

dual-modal lane markings that are more robust than those in individual modalities.

At this moment, the lane markings may belong to several lane boundaries in a multi-

lane highway and include many outliers. We first filter out all candidate lane boundaries

before identifying the exact left and right lane boundaries. Define L j as the j-the lane

boundary. We apply T-Linkage [84] to obtain L j’s. T-Linkage is capable of detecting

multiple lane boundaries in the presence of outliers but it requires a model for L j. We

employ the cubic uniform B-spline lane boundary curve which is defined for a collection

of n+1 control points Ml = {Pq} from the set P∗l,L as,

L j(s) =
n

∑
q=0

PqNq,3(s). (3.21)

Here, Nq,3(s) are the basis functions with

Nq,0(s) =

1, if sq ≤ s≤ sq+1 and sq < sq+1

0, otherwise

Nq,h(s) =
s− sq

sq+3− sq
Nq,h−1(s)+

sq+4− s
sq+4− sq+1

Nq+1,h−1(s),

(3.22)

where h = 1,2,3, sq = q−3,q = 3,4, ...,n+1 with s0 = s1 = s2 = s3, and sn+1 = sn+2 =

sn+3 = sn+4. Note that the shape of the cubic uniform B-spline curve is dominated by the

control points. We can impose curvature constraints when choosing points to instantiate

27

models in T-Linkage.

After T-Linkage, we have a set of candidate lane boundaries L j’s. We need to identify

left and right lane boundaries and their associated lane markings. A simple observation

is that our left and right lane boundaries must intersect the low boundary of the image at

positions closer to center of the low boundary because that is the current vehicle location.

Recall that the horizontal dimension in the image is the u-axis. The intersection of L j with

low boundary generate u j. If the center is at uc, it is a natural divider for the left and right

sides. Then we sort |u j− uc| to generate two sorted sequences with increasing distances.

We then pair them by considering the fact that the distance between left and right bound-

aries should be longer than dmin and shorter than dmax. We might have multiple solutions

but we use how close they are to the previous period to find the optimal. This simple

search help us determine left and right boundaries, defined as Ll and Lr, respectively. For

each boundary, we find all closest points in P∗l,L and hence we determine Xl := {Xl} and

Xr := {Xr} as the resulting left and right lane marking sets, respectively.

With the Xl and Xr obtained, we project them back to Īt to search for more lane

marking points. Denote x j,w to be the corresponding projection pixel in Īt for the LIDAR

points in set Xl
⋃

Xr. We have lane marking pixel set

SQ = {pk,t | ‖pk,t−x j,w‖ ≤ d j,pk,t ∈ Ĩt ,g(pk,t)≥ gγ}, (3.23)

where nonnegative variable d j is a constant threshold value. Thus we have all values

needed for metrics in Section 3.3.

3.5 Experiments

We have implemented the proposed method on a Laptop PC with an Intel(R) CoreTM

i7-3517U CPU@1.90GHz and 8 GB memory. The Benchmark contains images showing

a variety of street scenes captured from a vehicle driving around the city of Karlsruhe.

28

Besides the raw data, KITTI comes with a number of labels for different tasks relevant to

autonomous driving to evaluate the performance of our road extraction and lane detection

results. Parameters are set according to the experiments empirically. We set dmax and dmin

in (3.11) to be 4.60 m and 2.70 m, respectively. We also set dε in (3.19) to be 0.1 m, and

d j to be 20 pixels for (3.23).

To verify our metrics, we use six different sequences of two categories from KITTI

dataset including city trail data and road trail data. Fig. 3.5 illustrates testing results. Let

us explain the abnormality of lane markings reflected by performance metrics as follows.

Fig. 3.6a shows a case that lacks lane markings at the beginning of the video sequence.

Fig. 3.6b shows a case that lanes start merging while the vehicle’s current lane does not

have left lane markings. Fig. 3.6c shows that the vehicle is entering a main road but the

current lane does not have lane markings. Fig. 3.6d shows that an intersection does not

have the lane markings to guide the vehicle. Fig. 3.6e shows a 3-way junction lacks part

of the left lane markings and has irregular lane markings. Fig. 3.6f shows a case that one

side of vehicle is just the shoulder with no right lane markings. To summarize, Fig. 3.5

shows that our metrics are able to capture the abnormality of the lane markings and can be

used as a measurement tool for road inspection.

3.6 Conclusion

We focused on development of a LMQA method for improving infrastructure for au-

tonomous driving. The method assumed an egocentric view from an inspection vehicle

equipped with a GPS receiver, a frontal view camera, and a LIDAR for LMQA. We pre-

sented metrics and algorithms for lane marking assessment. Three lane marking quality

metrics were proposed and modeled mathematically: correctness, shape, and visibility.

We also proposed a dual-modal algorithm to facilitate the computation of the three met-

rics. We took both prior map uncertainty and sensory uncertainty into consideration in

29

formulating our metrics and the algorithm. We implemented the algorithm and tested it

under an open dataset. The results were satisfying. Our method was able to identify low

quality segments of lane markings.

30

(a) he green points are the projected 3D LIDAR points from the road surface model by
sensor fusion.

(b) Lane marking pixels in image.

(c) Blue points are the pixel-wise projection of the lane marking points from the LIDAR
scan, red points are outliers, and the green curve in the middle is the lane center curve
and the other two are the left and right lane boundaries, respectively.

Figure 3.4: Sample intermediate algorithm outputs (best viewed in color).

31

(a) 2011_09_26_drive_0005. (b) 2011_09_26_drive_0056.

(c) 2011_09_26_drive_0001. (d) 2011_09_26_drive_0029.

(e) 2011_09_26_drive_0070. (f) 2011_09_26_drive_0047.

Figure 3.5: Performance metrics for six sequences from the KITTI dataset. Red boxes
indicate lane marking anomalies identified by correctness, shape or visibility metrics.

(a) No lane markings. (b) Merged lanes.

(c) Absence of lane markings. (d) A lane intersection.

(e) A 3-way junction. (f) Right shoulder w/o markings.

Figure 3.6: Typical scenarios of abnormal lane markings. Figures labels correspond to
those in Fig. 3.5.

32

4. BELIEF SPACE CROSS VALIDATE FROM CROWDSOURCED DATA FOR

LANE MARKING VERIFICATION 1

4.1 Introduction

Fo better scene understanding in the belief space, we utilize crowdsourced images

from multiple vehicles to verify the LMs for HD map maintenance. The fast-evolving

autonomous vehicle (AV) technology has the potential to drastically change modern trans-

portation. Many AVs rely on a HD map to navigate around. HD maps include a highly

accurate and realistic representation of the road, including many types of objects such as

LMs, traffic signs, street lamp posts, etc. In the absence of accurate GPS signals, the pre-

cision of LMs in HD maps is important for the vehicle to recognize lanes and plan for its

motion. However, LMs are not necessarily constant because they wear out due to road

usage and also vary due to road construction and maintenance. A set of outdated LMs

may lead to erroneous localization results. Frequently recollecting LM data is not only

cost-prohibitive but also unviable. It is common that the change frequency of the road

environment, especially in urban environment, is always faster than the rate of sending out

a mapping fleet.

We propose to utilize crowdsourced images to keep LMs up-to-date in the HD map. We

view LMs in both HD map and the crowdsourced images as observations of LM distribu-

tion. We model the posterior LM distribution in either source using Gaussian kernels. We

take the uncertainty from camera poses into consideration for image-based observations.

We examine their consistence within the same image coordinate using statistical hypoth-

esis testing. We then establish a sequential Bayesian model for updating the posterior

1Reprinted with permission from “Lane Marking Verification for High Definition Map Maintenance
Using Crowdsourced Images” by B. Li, D. Song, A. Kingery, D. Zheng, Y. Xu, and H. Guo, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, October. 25-29,
2020.

33

ID1001 ID1002

ID1005

ID1001 ID1002

ID1005

ID1001 ID1002

ID1005

Time 𝑖 Time 𝑗 Time 𝑘

(a) LMs are extracted from front-view camera images. We project LMs from
the HD map, which have unique ID numbers in the map database, into the front-
view camera images (in color). Different colors stand for different stages for
LM belief. LM in purple is “inconsistent", LM in Yellow is “undetermined",
and LM in green is “consistent".

0

0.2

0.4

0.6

0.8

1
Belief Adjustment

ID1001 ID1002 ID1005
ji k

(b) With accumulated observations such as camera images in (a) from left to
right, the LMs with ID1001 and ID1002 are “consistent" and kept in the HD
map, while the LM with ID1005 is labeled as “inconsistent" and removed from
the HD map.

Figure 4.1: We extract belief for each LM in the map and accumuate historical observa-
tions from camera to verify the LMs.

LM distributions using a sequence of crowdsourced images. We threshold the conditional

probability to determine if each LM is consistent, inconsistent, or undetermined. We have

implemented our map verification algorithm and tested it using real data. The experimental

results show that the algorithm has achieved its design goal and outperformed commonly

used intersection over union (IoU) metric in precision, recall and F1-measure.

4.2 Related Work

AVs require up-to-date high definition maps to ensure safe navigation and to cope with

environmental changes [85, 86, 87, 88]. To create updatable HD maps, it is necessary to

34

1) have the ability to detect LMs, 2) design a flexible data structure to represent maps, and

3) develop algorithms to validate and maintain HD maps.

LM detection and tracking play an important role in autonomous driving, which has

been studied for years [60, 89, 90, 91, 92]. Andrade et al. [93] use Hough transform to

track LMs through the shape-preserving spline interpolation. In [94], we fuse camera im-

ages and lidar point clouds to detect LMs and assess LM quality by proposing correctness,

shape and visibility metrics. Our recent work [95] also generates virtual LMs in sensor

space while considering vehicle size and kinodynamic constraints. Huang et al. [69] detect

and estimate multiple LMs by fusing calibrated video images and laser range data captured

by a moving vehicle. Kang et al. [96] propose a probabilistic decision-making algorithm

to track curbs that uses interacting multiple model method for autonomous mobile robot

navigation. Here we build on existing LM detection work to provide inputs for HD map

maintenance.

In robotics, simultaneous localization and mapping (SLAM) has developed many map

representations as a collection of landmarks which include occupancy grids [97, 98],

sparse visual features [99, 100, 101], and point clouds [102]. However, most existing

map representation are designed for stationary objects without consideration of frequent

updates.

In recent developments, Ryde et al. [103] employ multi-resolution occupied voxel lists

to represent 3D spatial maps, which detects changes by finding points that do not locate

inside an occupied voxel after alignment. Aijazi et al. [104] extract temporarily static

and mobile 3D point clouds by matching sensor’s observations on at different times of

the day, which yields the progressively modified 3D urban landscape. Wang et al. [105]

detect and track dynamic objects in dynamic environments, and build a map that satisfies

both navigation and safety requirements for autonomous driving in urban areas. Julie et

al. [106] assign scores for features in the map, which depend on the geometric distribution

35

and characteristics when the features are re-detected at a different time. Sun et al. [107]

present a novel semantic mapping approach for the successfully mapping of a dynamic

environment using more than two weeks of data. Nurminen et al. [108] propose methods

to support spatial updating and rapid alignment of physical and virtual spaces in the 3D

mobile maps. Unlike existing approaches, we employ Bayes’ theorem to track the belief

changes of LMs by fusing observations from crowdsourced data. Our method can remove

or add LMs as needed over long periods of time.

4.3 Problem Formulation

A vehicle is driving on a street with HD maps. It takes images from its camera and

verifies if LMs on the road are the same as those in its HD map. The HD map usually

consists of a variety of objects such as LMs, traffic signs, street lamp posts, etc. Since

LMs are the most common landmarks to help achieve high precision global localization.

Here we focus on verifying LMs in the HD map.

4.3.1 Assumptions and Coordinate Systems

The vehicle is equipped with a front facing camera to observe the LMs. We assume

that the camera is pre-calibrated, and the nonlinear distortion of images has been removed.

All coordinate systems or frames are right-handed systems and defined as follows,

• {C } defines the camera coordinate system with its origin at the camera center, z-

axis pointing forward coinciding with the camera’s principal axis, and its x-axis and

y-axis parallel to the horizontal and vertical directions of camera imaging sensor,

respectively.

• {I } defines the image coordinate system. Let I x = [u v]T ∈ It be a pixel point in

camera image It in {I } at time t where (u,v) is the image coordinate.

• {G } defines the vehicle global frame with the x-axis pointing to the east, y-axis

36

HD Map

Camera Pose/
Uncertainty

Video

1.3) Uncertainty
Analysis

1.2) LM Projection

2) Intra-Frame LM
Belief Verification

1.1) Map Pre-
processing

3.1) Query/Update
LM Belief in DB

3.3) Cross-frame
LM Belief Update

3.2) HD Map
LM Belief

Converged?

4) LM Detection LM is
“Consistent”

3.4) Lower
than Lower

Bound ?

LM is
“Inconsistent”

Yes
No

No
3.5) Higher
than Upper

Bound?

LM is
“Undetermined”

Yes

Yes

No

LM labeling

Figure 4.2: System diagram.

pointing north, and z-axis pointing upward.

Note that we will attach frames to a variable as the left super and sub scripts to indicate

which frame the variable is associated with.

4.3.2 HD Map and Camera Inputs

We have inputs from both HD map database and the on-board camera/sensors. From

the HD map, we have,

• G Mi is the i-th LM consisted of a set of points G Mi := {G Mi, j ∈R3| j = 1,2, ...,nb},

where Mi, j is the j-th point in the LM and nb is the number of the points in the i-th

LM. Correspondingly, we also have I Mi in camera frame.

• Mp is a HD map consisted of a set of LMs Mp := {G Mi⊂R3|i= 1,2, ...,na}where

G Mi is the i-th LM set and na is the number of LMs.

Through an on-board map-based localization algorithm, the vehicle obtains the camera

pose and its uncertainty range. Denote the camera’s pose at time t by C
G Tt . C

G Tt is the rigid

body transformation from frame G to frame C ,

C
G Tt =

 C
G Rt

C
G tt

01×3 1

 ,
37

where C
G tt is the translation vector from the origin of {G } to the origin of {C }, and

C
G Rt ∈ S O3 is the rotation matrix from {G } to {C } and represented in Euler angle

α t = [φ ,θ ,ψ]T in Z-Y-X order.

For uncertainties of camera poses, we represent the vehicle state as Gaussian distri-

bution, and have α t ∼ N(ᾱ t ,Σαt) and C
G tt ∼ N(CG t̄t ,Σtt), where Σαt and Σtt are the corre-

sponding covariance matrices for rotation and translation, respectively. Here, the overhead

symbol ‘–’ represents the mean of the vector, and the vehicle state’s distribution α t and

C
G tt is changing with incoming camera images It .

For camera image It , we can extract LM points using lane detection algorithms in the

Chapter 3. It results in I xs as LM points in the image (see Box 4 in Fig. 5.2). We do not

need to group them into different LM sets. Assemble all LM points I xs, we obtain set zt

and its cardinality nh = |zt |.

4.3.3 Problem Definition

We want to use crowdsourced images to confirm or disconfirm each LM set G Mi in

HD map. This will generate three labeled categories including “consistent", “inconsistent"

or “undetermined." The “consistent" LM G Mi will be kept in the HD map while “inconsis-

tent" LM points will be removed, and those “undetermined" LM points will require more

observations in the future to ascertain its consistency.

Given a sequence of crowdsourced data ordered by time t = 0, ...,T where T the latest

time index, our problem is defined as follows,

Problem 2. Given the HD map Mp, camera images I0:T , and historical camera poses

C
G T0:T with known covariance matrices, label consistence category for each LM set G Mi

in the HD map Mp.

38

4.4 Algorithm

Fig. 5.2 illustrates our system diagram. It mainly contains the following blocks: (1.1-

1.3) we project LM points from HD map into the correct camera frame of the vehicle.

We analyze and compute the uncertainty of the projected points; (2) We update LM point

belief modeling given the current image observation; (3.1-3.5) LM point belief update by

accumulating all the historical camera observations. We start with the first block.

4.4.1 Lane Marking Projection and Uncertainty Analysis

Note that the vehicle samples data periodically. At discrete time t, we have the cam-

era’s pose {CG Rt ,
C
G tt}. We extract a subset of LMs from the HD map based on vehicle

speed vt and distance threshold dm,

Mm={G Mi, j|‖G Mi, j +
C
G Rᵀ

t
C
G tt‖ ≤ dm,

G Mi, j ∈Mp}. (4.1)

Here, ‖ · ‖ is the vector l2-norm. Distance threshold dm is obtained as follows,

dm =

ζ · vtt if vt > 0

νv, otherwise

where ζ controls the overlapping regions of the HD map between neighboring Mm, t is

the sampling interval, and νv is a constant. Define U = K C
G Rt , and U3ᵀ to be the third row

of U. Here, K is the intrinsic camera matrix under the pin hole model. We remove point

G Mi, j in Mm that is in the back of the camera if the condition,

U3ᵀ(G Mi, j +
C
G RT

t
C
G tt)< 0,

39

is satisfied. Recall Mm is made of a set of LM points with known LM index, and we have

grouped the points belonging to the i-th LM as G Mi. We accumulate such LMs that can

be projected into image It in set {G Mi|i ∈Mt}, where Mt is the index set.

Given the camera pose {CG Rt ,
C
G tt}, we can project LMs from {G } to {C } through

perspective projection,

x̃r = cpK(CG RtXr +
C
G tt) (4.2)

for each LM point Xr ∈ G Mi, where cp is a scalar, and a vector with symbol ‘∼’ on

top is in its homogeneous representation. This generates a projected HD map pixel set

zm,t := {I xr|Xr ∈ G Mi} at time t.

The point positions of Xr are not noise free. We need to understand how it propagates

to the image frame. The noise distribution of Xr is modeled as a zero-mean Gaussian with

covariance σ2
r I3, where I3 is a 3×3 identity matrix and σr is determined by the accuracy

of the HD map. As a function of ν = [αT
t ,XT

r ,
C
G tTt]T in (4.2), we have

cov

(
α t

Xr

C
G tt

)
=

Σαt 03×3 cov(α t ,

C
G tt)

03×3 σ2
r I3 03×3

cov(α t ,
C
G tt) 03×3 Σtt

 , (4.3)

by assuming that α t is independent of the other two vectors. Then we have

Σxr = Jνcov

(
α t

Xr

C
G tt

)

JTν , (4.4)

under the first-order approximation (see Box 1.3 in Fig. 5.2) in error forward propagation,

40

where Jν is the Jacobian matrix of (4.2) by

Jν =
∂ x̃r

∂ν
= cpK

[
∂ (CG RtXr)

∂αt
C
G Rt I3×3

]
. (4.5)

The covariance matrix Σxr characterizes the uncertainty of the projected LM points

from HD map to the current camera frame. It allows us to establish a belief model for LM

points.

4.4.2 Intra-Frame Lane Marking Verification

It is worth noting that verifying LMs between the HD map and those in the current

camera frame is not a point-to-point verification. In fact, this is a set-to-set association and

requires a new belief model to facilitate this. We first establish a pixel-wise intra-frame

belief function to verify LMs using a single frame.

Due to the existence of noises in HD maps, the projected HD map zm,t can be under-

stood as an observation of actual LMs in the current camera coordinate system. We model

the conditional probability distribution of a pixel being a true LM pixel as a weighted sum

of Gaussian functions established given the pixel and its neighbors (see Fig. 5.3a) in the

observation zm,t ,

fm(
I x|zm,t) = ∑

I x∈Ne(I xr)

wa
exp(−1

2d(I x,I xr))

2π
√
|Σxr |

(4.6)

where d(I x,I xr) = (I x−I xr)
TΣ
−1
Xr
(I x−I xr), Ne(

I xr) is the neighboring set with

d(I x,I xr)≤ κ2
m, κm is a threshold, |Σxr | is the determinant of Σxr , wa is a normalization

factor, and a = 1,2, ...,ng. Here we set κ2
m = F−1(α,2), where F−1(α,2) is the inverse

cumulative χ2 distribution function with a desired confidence level of α and 2 degrees of

freedom.

Similarly, the current camera image also provides an observation zt , we can model the

41

conditional probability distribution fs(
I x|zt) where fs(·) shares the same format of fm(·)

(4.6) except that the noise covariance matrix is σ2
s I2 instead of Σxr , and σs is determined

by the accuracy of our LM segmentation model. An example of fm(
I x|zm,t) and fs(

I x|zt)

is shown in Fig. 5.3b.

For a pixel I x ∈ zt , we can obtain both fm(
I x|zm,t) and fs(

I x|zt). This allows us

to test if I x is a consistent LM pixel across the HD map data and the camera image by

verifying if fm(
I x|zm,t) and fs(

I x|zt) are the same distribution through goodness of fit

test,

H0: I x is a consistent LM pixel.

H1: Otherwise.

Through chi-square goodness of fit test [109], we have

χ
2 =

(
fs(

I x|zt)− fm(
I x|zm,t)

)2

fm(I x|zm,t)
.

We reject H0 if

χ
2 > χ

2
1−β ,1,

where β is the significance level.

Thus for each LM zm,t at time t, we obtain the consistent pixel set as,

Xi,t :=
{

I x| fs(
I x|zt)≤

fm(
I x|zm,t)+

√
fm(I x|zm,t)χ2

1−β ,1,
I x ∈ zm,t

}
.

Define Xi,t |zt as the conditional spatial distribution of the i-th LM G Mi in camera frame

42

(a) Pixel-wise LM probability distribution fm(
I x|zm,t) from the HD map.

(b) fs(
I x|zt) from the image.

Figure 4.3: Pixel-wise LM probability distribution fm(
I x|zm,t) from the HD map in (a)

and fs(
I x|zt) from the image in (b).

given the observation zt . Then we have

P(Xi,t |zt)=

1
ξ

∑I x∈Xi,t
fs(

I x|zt), if Xi,t 6= /0,

0, otherwise,
(4.7)

where ξ is a normalization factor.

Noted that as P(Xi,t |zt) is easily influenced by the current observation zt , and current

camera pose with respect to {G }. We need to fuse observations from multiple vehicles at

different times to ensure we can identify correct consistency category so that the i-th LM

should be kept or removed from the HD map Mp.

43

4.4.3 Cross-frame Lane Marking Belief Update

LMs in the HD map can be classified into three categories: 1) LMs with no matchings

in the image; 2) LMs which have appeared in the image; and 3) false-positive LMs caused

by noises, which will be filtered out with more observations. Here we combine all the

historic observations for the LM G Mi from the crowdsourced images to establish a robust

belief function (see Box 3.3 in Fig. 5.2) and verify the existence of LMs in the map.

Accumulating all images up-to-date into current observation zt at time t, we have

Z0:t =
⋃

t{zt}. Note that Z0:t−1 = Z0:t \ zt . Define P(Xi|Z0:t−1) as the conditional spa-

tial probability of the LM G Mi given the observation set Z0:t−1. Similarly, we define

the conditional probability P(Xi|Z0:t) here. To verify the existence of the LM G Mi, our

problem becomes how to compute P(Xi|Z0:t) given the current observation zt , previous

observation set Z0:t−1 and the conditional probability P(Xi|Z0:t−1).

We decompose the conditional probability P(Xi|Z0:t) and have,

P(Xi|Z0:t) = P(Xi|Z0:t−1,zt) =
P(zt ,Z0:t−1,Xi)

P(zt ,Z0:t−1)

=
P(zt ,Z0:t−1|Xi)P(Xi)

P(zt ,Z0:t−1)
. (4.8)

Since observations in Z0:t−1 are independent of each other, we have P(zt ,Z0:t−1|Xi) =

∏
t
t=0 P(zt |Xi,t) and P(zt ,Z0:t−1) = ∏

t
t=0 P(zt). Plug them into (4.8), we obtain

P(Xi|Z0:t) =
P(Xi)∏

t
t=0 P(zt |Xi,t)

∏
t
t=0 P(zt)

. (4.9)

Similarly, we obtain P(Xi|Z0:t−1),

P(Xi|Z0:t−1) =
P(Xi)∏

t−1
t=0 P(zt |Xi,t)

∏
t−1
t=0 P(zt)

. (4.10)

44

Combine (4.9) and (4.10), we have

P(Xi|Z0:t)

P(Xi|Z0:t−1)
=

P(Xi)∏
t
t=0 P(zt |Xi,t)

P(Xi)∏
t−1
t=0 P(zt |Xi,t)

∏
t−1
t=0 P(zt)

∏
t
t=0 P(zt)

=
P(zt |Xi,t)

P(zt)
. (4.11)

Plug P(zt |Xi,t) = P(Xi,t |zt)P(zt)/P(Xi,t) into (4.11) and we have

P(Xi|Z0:t) = ζ P(Xi,t |zt)P(Xi|Z0:t−1), (4.12)

where ζ is a normalization factor.

With more observations, we update the conditional probability P(Xi|Z0:t) for the i-th

LM until it converges. For initialization, we set P(Xi|Z0:t−1) to be 1, and utilize (4.7) to

update P(Xi|Z0:t) in (4.12).

We threshold P(Xi|Z0:t) to determine if the i-th LM is consistent or not. Define εu and

εv, 1> εu > εv > 0, as thresholds to determine if an LM is consistent or not. If P(Xi|Z0:t)≥

εu, then the i-th LM is consistent; if P(Xi|Z0:t) ≤ εv, then the i-th LM is inconsistent;

otherwise, the i-th LM G Mi is undetermined and we expect more observations to confirm

its consistency.

4.4.4 Algorithm

We summarize our our LM verification algorithm in Algorithm 1. It is noted that we

stop updating P(Xi|Z0:t) for the LM G Mi if P(Xi|Z0:t) ≥ εu, thus the computation com-

plexity can be greatly decreased with the increasing number of consistent LMs. Besides,

we also utilize a local database to store the LM belief every time with new observations to

decrease the memory usage (see Box 3.1 in Fig. 5.2). If an LM’s belief by using crowd-

sourced images is still below the pre-selected threshold and required to be removed, we

45

Algorithm 1: Lane Marking Verification
1 Input: Mp,T0:t ,∑α0:t ,∑t0:t ,Z0:t

2 Output: The i-th LM G Mi is consistent or not
3 for t ∈ {0,1, ..., t} do // O(t)
4 Obtain set Mm using (4.1); // O(n logn)
5 Compute I xr through (4.2); // O(1)
6 Generate fm(

I x) by (4.6) ; // O(ng)

7 Get fs(
I x) through zt ; // O(nh)

8 Attain P(Xi|zt) in (4.7); // O(1)
9 Obtain P(Xi|Z0:t−1) and P(Xi|Z0:t); // O(1)

10 if P(Xi|Z0:t)≥ εu then
11 Report G Mi as “consistent"; // O(1)
12 Stop updating P(Xi|Z0:t); // O(1)

13 else if P(Xi|Z0:t)≤ εv then
14 Mark G Mi as “inconsistent"; // O(1)

15 else
16 Mark G Mi as “undetermined"; // O(1)

query the HD map and remove the corresponding LM.

We summarize the computational complexity of our algorithm, and have

Lemma 1. Our lane marking verification algorithm runs in O(tn log(n)).

4.5 Experiments

We have implemented our algorithm in C++ under Ubuntu 16.04. It is tested on a

Laptop PC with an Intel® Core™ i5-8265U CPU@1.60GHz and 8 GB RAM. We collect

images using forward-looking cameras mounted on data collection vehicles. The data have

been collected on the north segment of the 4th ring road in the Beijing. The vehicles runs

on the same part of road back and forth at different days and different times. We collected

two datasets with different weather conditions (see Tab. 4.1). The image resolution is 300

× 480. We plan to release our data and algorithm output, a total of 14815 frames to the

46

Table 4.1: Datasets for Comparison

Dataset Date Length #Images Weather

A 2019_07_01 634s 4953 Partially sunny
B 2019_07_29 352s 3088 Light rain

pubilc2.

We set εu = 0.99 and εv = 0.01 in experiments. To evaluate the performance of our

approach quantitatively, three metrics, including precision, recall, and F1-measure [110],

are employed. The F1-measure is the harmonic mean of precision and recall. Recall that

set zm,t contains all the project pixels for the i-th LM and zt has the LM pixels extracted

from the images. For comparison, we compare our algorithms to the following approaches.

• r-IoU: we replace (4.7) using a common similarity metric: intersection over union

(IoU),

P(Xi,t |zt) =
|zm,t

⋂
zt |

|zm,t
⋃

zt |
.

• p-IoU: we project the all the historical LM pixels from the camera images for the

G Mi to the latest image frame IT and use IoU metric above to verify its existence.

The experimental results in Tab. 4.2 show that our approach outperforms the r-IoU or

p-IoU based approach. Set similarity based approach generates a relatively lower P(Xi,t |zt)

by disregarding potential pixels that belong to the LM and require more observations than

our algorithm even for consistent LMs. Besides, the p-IoU based method ignores the

camera pose uncertainty, map accuracy and lane marking pixel noise, and yields poor

verification performance.
2http://telerobot.cs.tamu.edu/lane/

47

Table 4.2: Evaluation using real data

Dataset Methods Precision Recall F1-measure
Ours 91.13% 92.47% 91.80%

A
r-IoU 88.32% 90.13% 89.22%
p-IoU 76.24% 79.38% 77.78%
Ours 92.36% 93.75% 93.05%

B
r-IoU 87.22% 88.17% 87.69%
p-IoU 72.13% 75.26% 73.66%

In Fig. 4.4, we plot the receiver operating characteristic (ROC) curves for each method

by varying their respective thresholds. In the ROC plane, the upper left corner represents

the ideal result. It is clear that our method outperforms the IoU by a large margin. In fact,

this is not surprising because IoU produces too many false negatives.

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
Po

si
tiv

e
R

at
e

Figure 4.4: ROC curve for lane marking verification in comparison.

We present ten example LMs from the HD map to illustrate the belief update process:

six consistent LMs have been identified and kept in the map by our algorithm and four LMs

have been identified as inconsistent and hence removed. We plot their belief changes as the

number of the observations increase in Fig. 4.5. Initially, most LMs are “undetermined"

48

due to the lack of enough observations. With more and more incoming observations, LM

statuses converge to either "consistent" or "inconsistent." For an LM that is kept in the

map, it is clear that P(Xi|Z0:t) grows monotonically toward εu. For LM that is inconsistent

with the map, its belief is mostly at a lower level all the times and below the threshold εv,

as expected.

Figure 4.5: LM belief adjustment with more and more observations.

4.6 Conclusion

Here we presented an algorithm for updating LMs in HD maps using crowdsourced

images. Realizing LMs in both the HD map and camera images contain noises, we model

them respectively as observations of two LM spatial distributions in the camera frame

and check if they agree with each other via a goodness of fit test. We model the Gaussian

belief functions by considering noises from camera motion. We derive a sequential Bayes’

model to allow the belief functions to be updated using crowdsourced images. We have

implemented and tested our algorithms using data collected from testing vehicles and the

49

results showed that our approach is successful and outperformed the counterpart.

50

5. BELIEF SPACE FOR TIGHT CONNECTING BETWEEN PERCEPTION AND

PLANNING1

5.1 Introduction

Belief space can also help us to tightly connect perception and motion planning. As an

example, we develop a motion planning strategy for autonomous vehicles. As more and

more companies are developing AVs, it is important to ensure that the driving behavior of

AVs is human-compatible because AVs will have to share roads with human drivers in the

years to come. When planning motion for an AV, we can adjust speed and trajectory in

many possible ways but not all plans guarantee human compatibility, which requires the

understanding of human decision process. A human driver is far better than an AV when

handling complex situations. A human driver can avoid obstacles and still respect LMs

and traffic cones to a large degree. A human driver can override lane boundaries (LBs)

in appropriate scenarios: LMs may disappear or be blocked by construction or parked

vehicles, LMs may not be consistent with the traveling direction, a vehicle may be travel-

ing too fast, thus being temporarily unable to follow the sudden changes in LMs, etc. In

fact, there is a tight connection between perception for scene understanding and motion

planning, which involves finding an optimal trajectory under multiple objectives.

However, traditional navigation design in AVs treats functionalities such as lane recog-

nition, obstacle avoidance, local path planning, and lane following as separate modules

which results in unnatural driving behavior from a human perspective. For example, a

low-level obstacle avoidance as reflex behavior often emphasizes speedy response instead

of incorporating in-depth LB understanding. The resulting obstacle avoidance may not be

1Reprinted with permission from “Virtual Lane Boundary Generation for Human-Compatible Au-
tonomous Driving: A Tight connecting between Perception and Planning” by B.Li, D. Song, A. Ramchan-
dani, H. Cheng, D. Wang, Y. Xu, and B. Chen, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Macau, China, Nov. 4-8, 2019.

51

human-compatible.

We propose a new tightly-connected perception-planning framework to improve human-

compatibility. Using GPS-camera-lidar multi-modal sensor fusion, we detect ALBs and

propose availability-resonability-feasibility tests to determine if we should generate VLBs

or follow ALBs. When needed, VLBs are generated using a dynamically adjustable multi-

objective optimization framework that considers obstacle avoidance, trajectory smooth-

ness (to satisfy vehicle kinodynamic constraints), trajectory continuity (to avoid sudden

movements), GPS following quality (to execute global plan), and lane following or partial

direction following (to meet human expectation). The resulting trajectory is more human

compatible than existing approaches, especially when coping with difficult conditions (see

Fig. 5.1).

We have implemented our algorithm and tested it with the KITTI open source data set.

The source codes have been released on Github™. The results have shown that our algo-

rithm automatically and dyanmically switches between VLBs and ALBs. The ratio of time

the VLB dominated segments range from 29% to 100% depending upon road scenarios.

Our multiple-objective tightly-connected perception-planning framework produces high

quality trajectories in city environments.

5.2 Related Work

Our research is related to LB detection and tracking, local path planning, and obstacle

avoidance.

LB detection and tracking plays an important role in autonomous driving, which has

been studied for years [60, 89]. Andrade et al. [93] propose to detect and track LBs by us-

ing Hough transform and a shape-preserving spline interpolation. Li et al. [111] introduce

predictive random sample consensus (RANSAC) to fit and track LBs in the presence of

heavy noise and outliers. Petrovai et al. [91] apply stereovision to track 3D LBs. Huang

52

(a) Current lane lacks left lane bound-
ary. (b) Traffic cones alter roads

(c) Parked cars block streets (d) There are no LMs at all.

Figure 5.1: We generate virtual lane boundaries for autonomous driving to ensure human
compatible driving under complex road conditions. Green curves are the VLBs generated
by our algorithm (best viewed in color).

et al. [69] detect and estimate multiple LBs by fusing calibrated video imagery and laser

range data for a moving vehicle. Joshi et al. [92] use a 1D Laplacian filter to extract and

track LBs from 3D lidar data. Kang et al. [96] propose a probabilistic decision-making al-

gorithm to track curbs that uses interacting multiple model method for autonomous mobile

robot navigation. Most existing methods detect and track LBs as an isolated perception

problem. In this work, we tightly connect perception with planning by generating VLBs

in sensor space while considering vehicle size and kinodynamic constraints.

Traditionally, obstacle avoidance is often designed as a low level reflex for a robot to

stay away from obstacles. Obstacle avoidance for autonomous driving involves planning

the AV’s trajectory by satisfying control objectives subject to non-collision constraints.

53

Many methods for obstacle avoidance have been proposed [112, 113]. Khatib [25] de-

signs artificial potential field to represent the obstacles so that a robot reaches the goal

without colliding with obstacles. Song et al. [114] construct a vision vector space to

facilitate motion planning to avoid obstacles by fitting the dynamic requirement of a mo-

torcycle. Kahlouche et al. [115] employ optical flow to get the information about the

robot environment for visual obstacle avoidance. Sgorbissa et al. [116] integrate a prior

knowledge of the environment with local perceptions, and guarantee that the robot can

never be trapped in deadlocks even when operating within a partially unknown dynamic

environment. For simple mobile robots in slow speed, obstacle avoidance does not have to

be built on sophisticated perception model. However, an AV has to follow traffic rules and

handle conflicting goals to meet human expectations.

Local path planning produces a collision-free path for AVs based on a predefined

global route and in situ information from on-board sensors [117]. Compared with the

grid-based methods [118], the sampling-based methods [119] are more widely used to

find a collision-free path due to the high-speed driving requirement. Likhachev et al.

[120] present a graph-based planning and re-planning algorithm, which is able to produce

bounded sub-optimal solutions to speed up decision time. Chu et al. [121] propose to gen-

erate an optimal path for off-road autonomous driving with static obstacles. Li et al. [122]

employ a hierarchical planning strategy by extracting a reference path from the lidar-based

localization map. Bai et al. [123] utilize an intention-aware online planning approach for

AVs to drive near pedestrians safely, efficiently, and smoothly. Ma et al. [124] propose

an efficient sampling-based planning method, which introduces a rule-template set based

on the traffic scenes and an aggressive extension strategy of search tree. However, these

dedicated planning approaches seek to find an optimal trajectory in the free space to avoid

static or dynamic obstacles. The trajectory generated may not be compatible with human

drivers.

54

5.3 Problem Definition

The vehicle is equipped with a frontal view camera, a lidar, and a GPS receiver, which

is the common sensory configuration for AVs. Prior maps, such as Google™ Maps or

OpenStreetMaps™[125], are used as a part of the inputs. We have the following assump-

tions,

a.1 The camera is pre-calibrated, and the nonlinear distortion of images has been re-

moved.

a.2 All sensor readings are synchronized.

a.3 The coordinate system transformations between any two sensors are known by prior

calibration.

All coordinate systems are right hand system and common notations are defined as

follows,

• {L } defines the lidar coordinate system with x-axis pointing in the vehicle forward

direction, y-axis pointing to the left, and z-axis pointing upward. Pi,t = [xi,t ,yi,t ,zi,t]
ᵀ ∈

R3 is the i-th 3D lidar point with respect to {L } at time t ∈ {0,1, ...,T}, and

Pt := {Pi,t} is the set of lidar points at time t.

• {C } defines the camera coordinate system with x-axis pointing to the right of the

vehicle lateral direction and z-axis pointing forward coinciding with the front-view

camera’s principal axis.

• {I } defines image coordinate system. Let pk,t = [u v]ᵀ ∈ {I } be the k-th pixel

point in image It at time t, where (u,v) is the image coordinate.

• {W } defines the world coordinate system which overlaps with {L } at the vehicle

starting position.

55

Global Planner

GPS/IMU
Map

2.5) Optimal LCC
Selection and VLB

Generation

1.1) Free-space
Detection

1.2) Exist
Free Space?

Camera Image

LIDAR Scan

No Feasible
Road

VLBs

Yes

Yes

2.6) VLB
Feasible?

3.1) Pose
Estimation

3.3) VLB
Projection

3.2) Continuous
VLB Generation

No

No

2.1) ALB
Detection

2.4) Reference
LCC Generation

2.3) Weight
Setting2.2) ARF Tests

Figure 5.2: System diagram. The solid star represents the output of pose estimation, which
is also the input to the continuous LB generation and LB projection.

Denote the left and right LBs in {W } by W Ll and W Lr at time t, respectively. Note

that left superscript in this paper describes the coordinate system for the corresponding

variable. With the assumptions and notations defined, our problem is defined as follows,

Problem 3. Given a prior map, current GPS position, and in situ camera and lidar inputs,

and velocity profile and global route from a global planner, recognize, generate and track

LBs W Ll and W Lr in {W }, or report when the VLBs cannot be generated.

5.4 Algorithm

Fig. 5.2 shows the system diagram. It mainly contains the following blocks: A) Free-

space detection, B) VLB generation where we perform ALB detection and also determine

how we should generate VLBs, and C) VLB registration where we track the LBs through

an extended Kalman filter (EKF) and re-project VLBs in {W }. We start with the free-

space detection.

5.4.1 Free-space Detection

The free-space is collision free surface in front of the vehicle which can be defined

by road edges and obstacle boundaries. We detect free space in both camera and lidar

56

modalities and extract free-space surface boundary in {L } (see Box 1.1 in Fig. 5.2).

We start with recognizing road surface in both image and lidar data based on our prior

work [94] where we have employed camera-lidar fusion to obtain road surface pixel set

I Pr in image coordinate {I } using the appearance classification. We also have the cor-

responding 3D point lidar point cloud set L Pr ⊂Pt for I Pr. For each point pr ∈ I Pr and

its corresponding lidar point Pr ∈L Pr, we have the projection relationships between them,

p̃r = cpK[CL R C
L t]P̃r and Pr = cq[KC

L R]−1p̃r− C
L R−1C

L t, where cp and cq are scalars, a

vector with symbol ‘∼’ on top is in its homogeneous representation, K is the intrinsic cam-

era matrix under the pin hole model, and C
L R and C

L t are the rotation matrix and translation

vector between {L } and {C }, respectively. We also use two more inputs from [94]: the

road surface model with coefficient vector H∗r which is acquired by fitting points in L Pr to

a polynomial model, and d⊥(H∗r ,Pi,t) which is the shortest distance for a point Pi,t to the

road surface.

Building on these prior results, we design a two-step approach to obtain 3D free-space

surface boundary points. 1) We only keep lidar points L Ct with small elevation difference

to the surface model, L Ct = {Pi,t | cl ≤ d⊥(H∗r ,Pi,t)≤ cu,Pi,t ∈Pt}, where cl and cu are

thresholds. 2) We compute the average surface normal of each pixel’s neighbor set and

use it to determine if it is on the smooth surface. Let us detail the second step here.

For each point Pi,t ∈ L Ct , we can find its neighbor set L Ei by selecting the K-nearest

neighbors (KNNs) [126] with an upper bound dr. L Ei = {P j,t | ‖Pi,t −P j,t‖ ≤ dr,P j,t ∈
L Ct}, where index variable j ∈N satisfies j 6= i and 1≤ j ≤ K. Next we apply methods

in [127] to extract surface normal for the neighbor set to determine if Pi,t is a smooth road

point. Define Ĉi,t =
1
|L Ei|∑P j,t∈L Ei

P j,t to be the 3D centroid of L Ei, and

de(Pi,t) =
1
|L Ei| ∑

P j,t∈L Ei

‖Pi,t−P j,t‖
‖Pi,t‖

, (5.1)

57

to be the normalized average distance for all points in L Ei to Pi,t . Define ds(Pi,t ,P j,t) =

‖P j,t− Ĉi,t‖/‖Pi,t‖ as the normalized distance for the point P j,t to remove scale effect.

Define a weight value w j,t for the P j,t to be

w j,t =

exp
−

ds(Pi,t ,P j,t)
2

de(Pi,t)2 , if ds(Pi,t ,P j,t)≥de(Pi,t),

1, otherwise.

Let λ1, λ2 and λ3 be the eigenvalues of the correlation matrix ∑
|L Ei|
j=1 w j,t(P j,t− Ĉi,t)(P j,t−

Ĉi,t)
ᵀ, and suppose λ1 ≤ λ2 ≤ λ3. According to [128], a point on smooth road surface has

λ1 significantly smaller than the other two; for a free-space surface boundary point, λ1

and λ2 are substantially smaller than λ3. Therefore, we can use this property to obtain

boundary point set L Ft by thresholding,

L Ft =
{

Pi,t |λ3/∑
3
i=1 λi ≥ λd,Pi,t ∈ L Ct

}
, (5.2)

where λd is the threshold. Inspired by [129], we can further remove noisy points in set

L Ft by examining surface normal vector directions. For a point Pi,t ∈ L Ft , we compute

the average surface normal θi,t as follows, θi,t =
1
|L Ei|∑

|L Ei|
j=1 arctan |zi,t−z j,t |√

|xi,t−x j,t |2+|yi,t−y j,t |2
. Note

that points on the road surface have small variations in z direction which means small θi,t

values. Therefore, we can identify boundary/obstacle points by thresholding on θi,t and

obtain free-space surface boundary point set L Bt as follows,

L Bt = {Pi,t |θi,t ≥ θv,Pi,t ∈ L Ft}, (5.3)

where θv is the threshold.

Next, we need to verify if there is available free space in front of the vehicle given

58

vehicle kinodynamic and size constraints. We apply a state lattice planner [8] to generate

a set of seven candidate arc trajectories {L Llp}7
lp=1 that evenly cover curvatures in the

allowable range given the current speed. The length of arc is the braking distance. Let dv

be the haft width of the vehicle. We evaluate all points in the region swiped by the vehicle

if following the arc L Llp which is set L Plp = {Pi,t |min‖Pi,t −Pw‖ ≤ dv,Pi,t ∈Pt ,Pw ∈
L Llp}. Denote the logic OR operator by

∨
. If we have,

∨
lp

{L Plp

⋂
L Bt = /0

}
= 1, (5.4)

then the free space exists (see decision box 1.2 in Fig. 5.2) and we move on to next step.

Otherwise, there is no feasible road and global planner needs to be notified to re-plan route.

The global planner concerns overall routing and is not the concern of this paper.

5.4.2 VLB Generation

VLBs and corresponding lane center curves (LCCs) regulate how the vehicle can

move. Generating them is equivalent to local planning but with tight connecting to per-

ception and vehicle kinodynamic constraints. By tight connecting we mean that LCCs and

VLBs are evaluated directly and locally in the sensor space without an additional world

model. We have to answer two important questions here: 1) when should we decide to

deviate from ALBs? and 2) how to generate VLBs to balance multiple requirements to be

human compatible?

5.4.2.1 LB representation

Before we dive into details, let us define LCC and the information obtained from ALB

as shown in our prior work [94]. In fact, it is also possible to use lane detection methods

from other existing works. From [94], we obtain ALB and the corresponding LCC L La is

59

represented as cubic B-spline curves that are made of l piecewise polynomial functions,

L La,l(s) = al,0 +al,1s+al,2s2 +al,3s3 (5.5)

be the l-th curve segment where {al, j|l = 1,2, ...,nc− 3, j = 0,1,2,3} are 3-vectors for

polynomial coefficients, 0 ≤ s ≤ se, nc is the number of the control points for the spline

curve, and se = nc+3 is the maximum knots. Subscript a indicates this LCC is from ALB.

As shown in [94], for a given LCC and a lane width, it is trivial to obtain the left and right

LBs L Ll(s) and L Lr(s), respectively, and vice versa.

5.4.2.2 Examining ALB quality

For question 1), we determine if the vehicle should follow ALBs using availability,

reasonability, and feasibility (ARF) tests (see Box 2.2 in Fig. 5.2). For availability, we

examine if ALBs provide a sufficiently long trajectory to follow.

∫ se

0
‖L L

′
a(s)‖ds≥ lmin, (5.6)

where ‖ · ‖ is the vector l2-norm and lmin is the trajectory length threshold.

For reasonability, we check if the LCC L La heading agrees with the vehicle’s current

heading. Let nv ∈R3 point to the vehicle’s driving direction at time t, and nu ∈R3 be the

first derivative of the LCC L La(s) when s = 0, respectively. Let 〈·, ·〉 represent the inner

product between two vectors. For a threshold βl = 10◦, if

arccos
〈nv,nu〉
‖nv‖‖nu‖

≤ βl, (5.7)

then the current LCC L La is reasonable.

For feasibility, we want to make sure that the curvature of the LCC is compatible

60

with the current vehicle speed. We precompute a look-up table offline considering the

vehicle speed and the curvature. Let 〈·×·〉 represent vector cross product. Let κmax be the

maximum allowable LCC curvature for the vehicle given the current forward speed vt . We

have a feasible LCC if
‖〈L L′a(s)×L L′′a(s)〉‖

‖L L′a(s)‖3 ≤ κmax. (5.8)

ARF test results are used to set weights in selecting LCCs for VLB and will be detailed

later in Section 5.4.2.4.

5.4.2.3 VLB generation

For question 2), to generate human-compatible VLBs, we need to a) respect partial in-

formation from ALB, b) follow GPS waypoints, c) avoid dynamic and stationary obstacles,

and d) consider vehicle kinodynamic constraints.

Therefore, we need the planned GPS trajectory as a seed. From the current GPS read-

ing and the prior map, we can extract a set of GPS way points to represent the road ahead.

The number of points depends on the velocity of the vehicle and the minimum number

needed to construct a cubic B-spline representation. We can project these 2D map points

onto the road surface model to obtain 3D points. Applying cubic B-spline fitting and

coordinate transformation, we obtain its representation in current lidar coordinates to be

L Lg(s) where subscript g means this is from GPS reference. Note that LCC of VLBs

should start with the endpoint of previous LCC (denoted by L L−(s)) at time t−1 which

happens when s = se. L Lg(s) and L L− do not necessarily overlap. A minimum distance

parallel shift of L Lg(s) allows point L L−(se) be located on the shifted L Lg(s). The

shifted L Lg(s) is cropped to start at the point and serve as the seed trajectory for candi-

date trajectory generation. In fact, the shifted L Lg(s) does not need to be collision free.

The new trajectory along with velocity profile and vehicle size are then used to generate

candidate trajectories by sampling on lattice using [8], which provide us a set of candidate

61

LCCs L L ⊂Lc considering the vehicle’s kinodynamic constraints. Of course, any can-

didate LCC L L also have to pass our ARF tests. If none of the candidate LCC pass ARF

tests, the system reports “no feasible road” to the global planner.

We then select the best candidate LCC by minimizing a cost function C(L L) (see Box

2.5 in Fig. 5.2)

L L? = argmin
L L⊂Lc

C(L L), (5.9)

that is designed to consider human compatibility by integrating smoothness fs, obstacle

avoidance fo, GPS trajectory following fg, trajectory continuity fc, and ALBs fa as follows

C(L L) = fs(
L L)+w2 fo(

L L,L Bt)+w3 fg(
L L,L Lg)

+w4 fc(
L L,L L−)+w5 fa(

L L,L La), (5.10)

where w2, ..,w5 are non-negative weighting variables.

Function fs(
L L) controls the smoothness of the LCC [130],

fs(
L L) =

∫ se

0
‖L L

′
(s)‖2ds+w1

∫ se

0
‖L L

′′
(s)‖2ds, (5.11)

where w1 is a non-negative weight variable, [0,se] define spline parameter range for the

LCC.

Function fo(
L L,L Bt) is the cost related to the clearance to boundary/obstacle L Bt

set in (5.3). Let d∗o = min
Pi,t∈L Bt ,0≤s≤se

‖L L(s)−Pi,t‖, be the shortest distance between a

62

candidate LCC and a road edge point Pi,t ∈ L Bt , we have

fo(
L L,L Bt) =

0 if d∗o ≥ dr,

cb
dl−dr

(d∗o−dr) if dl < d∗o < dr,

∞ otherwise.

(5.12)

where cb is linear cost coefficient for distance to obstacle, dl and dr define the distance

interval where the linear cost function is applied.

Cost function fg(
L L,L Lg) wants the output trajectory to be similar to that of the GPS

trajectory,

fg(
L L,L Lg) =

∫ se

0
‖L L−L Lg‖2ds. (5.13)

Cost function fc(
L L,L L−) maintains continuity of LCC from prior period L L− (not-

ing it has been transformed to current {L } coordinate),

fc(
L L,L L−) =

∫ se

0
‖L L−L L−‖2ds. (5.14)

This cost function helps avoid sudden motion and makes the LCC more compatible with

human drivers.

Cost function fa(
L L,L La) regulates the LCC to be close to ALBs,

fa(
L L,L La) =

∫ se

0
‖L L−L La‖2ds. (5.15)

This function regulates LCC to follow ALBs as much as possible which makes LCC to

meet human expectation better.

63

5.4.2.4 Weight settings

Non-negative weighting variables w1, w2, w3, w4, and w5 play an important role in

regulating the LCC. This is done before LCC generation (see Box 2.3 in Fig. 5.2).

w1 and w4 control the smoothness of the resulting LCC. They should be an increasing

function of velocity due to vehicle kinodynamic constraints. They are also related to driv-

ing status. If the vehicle decides to make a turn or switch lanes as instructed by the global

planner, then we set them to be zero since we do not need to follow the previous direction.

w2 controls how conservative the vehicle should be in obstacle avoidance. It should

be a function of the relative velocity to obstacles. For example, the existence of a cyclist

demands higher w2 settings.

w3 controls GPS following quality. It should be determined by how good the prior map

quality is. If the road is under construction and the prior map has not been updated, then

we should reduce w3 to allow more deviation from the original map.

w5 is adjusted according to ARF test results. If ALBs do not exist or are not reasonable

(i.e. fail the first two tests of ARF tests), we set w5 to be 0 because there is no trustable

L La. However, w5 remains positive if ALBs are infeasible due to vehicle kinodynamic

constraints. If ALBs pass all ARF tests, then w5 is set to the highest value to ensure good

lane following.

5.4.3 VLB Registration

So far, we have obtained LCCs which are computed in local lidar coordinates and are

piece-wise polynomials over time. To ensure a smooth and continuous trajectory in {W },

we apply an EKF to track VLBs to generate and register continuous curves (see Boxes 3.2

and 3.3 in Fig. 5.2).

We need the coordinate transformation from time t − 1 to t. This can be obtained

using the optimization-based multi-sensor state estimator [131] (see Box 3.1 in Fig. 5.2)).

64

Denote the rotation matrix and translation vector with respect to {W } at time t by L Rt

and L tt , respectively. Let L Rt
t−1 and L tt

t−1 be the relative rotation matrix and translation

vector from t−1 to t, respectively. We have L Rt
t−1 =

L Rt−1
L R−1

t and L tt
t−1 =

L tt−1−
L Rt

t−1
L tt . Recall the cubic B-spline curves are made of piecewise polynomial functions,

and each polynomial function needs four control points to satisfy its continuity properties.

We sort the control points for the optimal LCC L L? according to the increasing order of

their distance to the origin of {L }. let L P? = {P1,P2, ...,Pnc} be the control point set for

the L L?. Here, ‖Pp‖< ‖Pq‖ for Pp,Pq ∈ L P? if p < q. Let

zp,t = [Pᵀ
p,P

ᵀ
p+1,P

ᵀ
p+2,P

ᵀ
p+3]

ᵀ, (5.16)

be the observations for the LCC for p = 1,2, ...,nc−3. Define a state vector

xp,t−1 = [aᵀp,3,a
ᵀ
p,2,a

ᵀ
p,1,a

ᵀ
p,0]

ᵀ, (5.17)

through (5.5) for the LCC at time t−1. The state transition function is just the coordinate

system transformation between adjacent time epochs,

xp,t = Rt
t−1xp,t−1 +

03×1

03×1

03×1

L tt
t−1

+wt , (5.18)

where wt has zero mean and covariance Qt , and Rt
t−1 = diag(L Rt

t−1,
L Rt

t−1,
L Rt

t−1,
L Rt

t−1)

65

is a diagonal block matrix. According to [132], the observation function is

zp,t =

03×3
2
3I −I I

03×3 −1
3I 03×3 I

03×3
2
3I I I

6I 11
3 I 2I I

xp,t +mt , (5.19)

where mt is zero mean and has the covariance t , and I is a 3× 3 identity matrix. We

continuously predict and update the EKF as more data comes in, and register the optimal

LCC by

W L?(s) = L Rᵀ
t
L L?(s)−L tt , (5.20)

from {L } to {W }. We also apply (5.20) to obtain the left VLB W Ll(s) and the right VLB

W Lr(s), respectively.

The LCC W L?(s) is tracked by the vehicle controller, which generates corresponding

throttle, brake and steering commands to determine the vehicle status from time t to t +1.

Typically, the vehicle state can be represented as a high-dimensional Gaussian distribution.

Considering the updated vehicle states, our methods continuously generate new LCC to

lead the navigation of the vehicle with incoming sensor measurements.

5.5 Experiments

We have implemented the proposed method in C++ and shared it on Github™2. It is

tested on a Laptop PC with an Intel® Core™i7-3517U CPU@1.90GHz and 8 GB RAM.

We test our approach using the KITTI dataset [133], which contains images covering a

variety of street scenes captured from a vehicle driving around the city of Karlsruhe.

We have tested our algorithm on four different sequences of two categories from KITTI

dataset including city and residential area (see Tab. 5.1). In all cases, our algorithm can

2https://github.com/bli-tamu/LDRT

66

Table 5.1: %VLBs on KITTI Dataset

Sequence Duration length % (w5 = 0)
2011_09_26_drive_0035 13 s 60.41 m 100%
2011_09_26_drive_0039 40 s 297.09 m 100%
2011_09_26_drive_0051 44 s 255.42 m 92%
2011_09_26_drive_0056 30 s 419.95 m 29%

(a) No LMs. (b) Passing static obstacle.

(c) Neogoiating traffic barriers. (d) Road intersections

(e) Merging w. dynamic obstacles. (f) Parked cars and no LMs.

Figure 5.3: Sample algorithm outputs for six different scenarios.

generate feasiable LCC and VLBs to guide the vehicle. In last column, we track the ratio

when w5 = 0 because it indicates that the vehicle decides to deviate from ALBs. The ratio

varies from from 29% to 100% due to different road scenarios. Some road segments have

great ALBs and do not need VLB generation as much (e.g. the fourth row) while some

roads do not have ALBs at all (e.g. the first two rows).

Sample outputs are shown in Fig. 5.3. The green masked area is the free space de-

tected by the algorithm. Four different dotted lines are drawn on the six figures: purple

67

0 50 100 150 200 250 300 350
Frame No.

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
C

os
t

Smoothness f
s

Boundary/Obs. w
2
f
o

GPS trajectory w
3
 f

g

Prior Period LCC w
4
 f

c
ALBs w

5
 f

a

(a) 2011_09_26_drive_0039

50 100 150 200 250
Frame No.

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
C

os
t

Smoothness f
s

Boundary/Obs. w
2
 F

o

GPS trajectory w
3
 f

g
Prior Period LCC w

4
 f

c

ALBs w
5
 f

a

(b) 2011_09_26_drive_0056

Figure 5.4: Contribution to LCC cost by different components.

lines represent GPS way points from Google maps, blue lines are the algorithm output

LCCs W L?(s), red lines are the high precision GPS recording of actual human driving the

vehicle which can be viewed as the human decision counterpart, and two green lines are

the left LB W Ll(s) and the right LB W Lr(s), respectively. It is clear that way points from

Google maps are too lousy to be used as direct navigation guides, as indicated by the poor

quality of purple lines. When comparing our algorithm outputs to the GPS recording of

the human driving, blue lines are quite in agreement with red lines with the only excep-

tion in Fig. 5.3e. Note that red lines extend beyond blue lines due to different trajectory

length which does not mean that they do not agree. Even in Fig. 5.3e, both the blue line

and the red line are viable choices. In all cases, our algorithm can generate LCCs that are

compatible with human expectations.

Fig. 5.4 further illustrates how different components contribute to the VLB LCC se-

lection in (5.10) using the second and fourth sequence in Tab. 5.1. The plots are the nor-

malized ratios in the overall objective function value. During the computation, the weight

settings for the optimization problem are set as w1 = 1, w2 = 1, w3 = 2, w4 = 0.2 and

w5 = 5 for non-zero cases to balance the multiple objectives in the LCC selection. It is

68

clear that every component in (5.10) plays a role in determining LCC.

The more interesting part is the dynamic change of ratios, as shown by Fig. 5.4a which

really exposes the inner-works of VLB generation. First, there are no ALBs in the entire

sequence and w5 has to be zero during 100% of the time. Second, both fs (green solid line)

and w2 fo (blue dashed line) are relatively high throughout the entire sequence because it

is important to avoid obstacles and maintain smooth motion during the driving. A close

look reveals that there are four sudden drops for w2 fo. Two short segments are located at

frames 34–85, one long segment appears at frames 216–254 and the last one is at frames

374–394. These are due to the fact that there are no obstacles at the time and the road is

empty. Consequently, the vehicle relies more on GPS trajectory following and we can see

that ratio of w3 fg increases. It means that the algorithm automatically falls back to rely on

other available information when there are no LMs and no obstacles, which is desirable.

The w4 fc usually has a segment of being zero at frames 293–334 because the vehicle is

make a 90◦ turn and actively set w4 to be zero. Similar scenario happens at the beginning

of Fig. 5.4b. The sequence in Fig. 5.4b has high quality ALBs mostly and only needs to

rely on VLBs 29% of the time. It is clear that w5 fa remains high at frames 44–149 and

184–293 where the AV relies a lot on the ALB following. In addition, the reason that we

have a segment of VLBs at frames 150-183 is due to a parked vehicle occupying part of

the road which is shown in Fig. 5.3b.

5.6 Conclusion

We reported our development of a new tightly connected perception and planning

framework to enable AVs to consider multiple conflicting goals simultaneously and gen-

erate human-compatible navigation trajectories. We built on our prior work to detect free

space using camera-lidar sensor fusion and proposed ARF tests to determine whether the

AV should simply follow ALBs or generate VLBs by taking into account vehicle kino-

69

dynamic constraints, obstacle avoidance, smooth motion, GPS trajectory following, re-

specting direction of LMs in a multi-objective optimization framework with dynamically

adjustable weights for different road scenarios. We implemented our algorithm and the

test results confirmed our design.

70

6. BELIEF SPACE-BASED APPROACH OF PROBABILISTIC BOUNDARY

COVERAGE FOR UNKNOWN TARGET FIELDS1

6.1 Introduction

We propose to use belief space for probabilistic boundary coverage of UTFs. Imagine

that an unmanned aerial vehicle (UAV) is dispatched to map boundaries of excessive wind

shear or low pressure regions in storm cells (see Fig. 6.1). The UAV has to plan its motion

based on its on-board sensor readings to quickly enclose the UTF, which is a form of

boundary coverage problem. However, UTFs often do not have a clear boundary or a

known dispersion function and the UAV has to get closer to the field to take multiple

readings to predict field dispersion for boundary coverage. Moreover, the sensor readings

often contain large uncertainties due to variations of the field itself or difficult sensing

conditions. It is clear that regular boundary traversing techniques are not applicable. Such

problems are not unusual. Another example is that an inspection robot is tasked to find

thin hairline cracks on the airport runway. These applications propose a new problem:

how can we design a principled approach to ensure the robot can effectively cage UTFs

under large perception uncertainty and limited sensing range.

We present this new boundary coverage problem and propose an algorithm to solve

the problem. At each step, the robot accumulates sufficient sensory readings to instantiate

Gaussian processes (GPs) as a local belief function to approximate field dispersion in an

ellipse-shaped local region. The local belief function allows us to predict UTF boundary

trends and establish adjacent ellipses for further exploration in next step. The process is

governed by a depth-first search process until UTF is enclosed by connected ellipses (see

1Reprinted with permission from “Probabilistic Boundary Coverage for Unknown Target Fields with
Large Perception Uncertainty and Limited Sensing Range” by B.Li and D. Song, Robotics Research.
Springer, Cham, 2020. 711-726.

71

(a) Wind shear region boundary cover-
age application.

Aq

Ag

(xp,yp)

(xg,yg)

Aq

Ag

(xq,yq)

A0

x0

x1

(b) Output of our boundary coverage al-
gorithm.

Figure 6.1: Problem illustration. a) Wind shear region boundary coverage application:
The green & orange clouds represent potential regions of interest that may contain UTFs.
To map each UTF, we need to send an UAV to cage the UTF. b) Output of our boundary
coverage algorithm is to cover the boundary using a sequence of connected ellipses.

Fig. 6.1b) with probability guarantees, as we formally prove that our boundary coverage

process guarantees that the enclosed UTF is above a given coverage ratio with a preset

probability threshold. We have implemented our method and tested with different types

of UTFs (1D vs. 2D, smooth vs. non-smooth boundary, and convex vs. non-convex) in

simulation. The results show that the algorithm always guarantees that the coverage ratio

is above the given threshold for all testing cases, which is conformable to our analysis.

6.2 Related Work

The first part of our work relates to coverage in continuous fields, discrete space search,

and robotic caging in manipulation and grasping.

Boundary coverage of UTFs is related to well-studied coverage problems because the

latter also need to identify target field boundary before planning for coverage. However,

identifying the boundary might not be an issue if target field information is known whereas

our problems focus on identifying boundaries. In coverage problems, the focus is to cal-

culate optimal trajectories with respect to a given objective function for known field func-

72

tions. Most existing methods depend on gradients or other information from the known

field functions. Yun et al. [134] present decentralized algorithms for the coverage with

mobile robots on a graph. Miller et al. [135] use an ergodic control algorithm for the cov-

erage with respect to the expected information density. Shnaps et al. [136] perform online

tethered coverage in planar unknown environments using position and local obstacle de-

tection sensors. Bekris et al. [137] apply cloud computing to efficiently plan the motion

of new robot manipulators designed for flexible manufacturing floors. In our boundary

coverage problem, we have to approximate field functions based on noisy and local/partial

observations before planning for robot motion which further complicates the problem.

Searching for point/small objects without field functions can be viewed as a discrete

search problem. The original search space could be either continuous or discrete but it

is often discretized into grids or graphs in the searching process [138]. Acar et al. [139]

introduce a hierarchical decomposition that combines the Morse decompositions and the

generalized Voronoi diagram to ensure that the robot covers the searching domain. Paull

et al. [140] present a sensor driven on-line approach for seabed coverage for mine coun-

termeasure using grid-based coverage. Xu et al. [141] address the problem of effective

graph coverage with environmental constraints and incomplete prior map information.

Mannadiar et al. [142] guarantee the complete coverage of the free space based on the

Boustrophedon cellular decomposition. Although these methods can be applied to UTF

searching problem, their approaches are low efficient because the existing methods do not

exploit the continuity of UTF structure.

Boundary coverage of UTFs is related to the caging problem in grasping which fo-

cuses on using geometric information of the manipulated object to generate stable grasps

[143, 144, 145, 146, 147]. Vongmasa et al. [148] compute coverage parameters for 2D

polygons to form a cage to transport an object. Pereira et al. [149] enable a team of robots

with limited sensing range to achieve a condition of object closure, and move toward a

73

goal position while maintaining the object closure condition. Ivan et al. [150] compute

coverage without the reliance to geometrical detail but capture the topology of punctured

euclidean spaces. Zarubin et al. [151] use geodesic balls to estimate object’s surface in

the presence of noise. These methods compute the waypoints for the object to generate a

set of caging grasps. One issue that separates UTF caging from object caging is the issue

of limited sensing range because objects are often small and fully covered by the sensor in

the grasping process.

6.3 Problem Definition

6.3.1 Scenario and Assumptions

A mobile robot or UAV is dispatched to find an efficient path to enclose UTFs in an

obstacle-free 2D space. This robot is equipped of sensors with a limited sensing range. The

robot observation noise follows a Gaussian distribution with zero mean and variance σ2.

To formulate the UTF boundary coverage problem, we have the following assumptions:

1. We assume that the UTF is much larger than the sensing capabilities of the robot, and

the moving speed of the robot is much faster than that of the UTF. This is common

for large scale coverage occurring on the surface of the Earth.

2. The robot knows its current position using global positioning system and has a mem-

ory of where the robot has visited before.

3. We have no knowledge about UTF shapes.

4. GPs are capable of approximating the UTF boundary distribution.

6.3.2 UTF Properties and Modeling Perception

To further clarify our problem, let us define UTF and its key properties. Denote zt to

be the sensor readings at time t when the robot is at position xt = [x(t) y(t)]T ∈R2, and set

74

ZT = {z1,z2, ...,zT} as all observations sensed from the beginning of localization process

up to time T . Denote T to be the UTF region and x = [x,y]T ∈ R2 to be a point in the 2D

space. T is usually obtained by thresholding the field boundary distribution function or

geometric constraints which are described as follows,

T :=

{
x
∣∣∣{IIN =

∧
zt∈ZT

(
f (zt ,xt ,σ)≥ ft

)}
= 1 (is TRUE)

}
, (6.1)

where indicator variable IIN ∈{0,1} is binary (boolean) variable depending on if the thresh-

olding criteria are satisfied,
∧

is logic AND operator, f is a nonnegative field boundary

distribution function, σ is the standard deviation of observation noise, and thresholding

value ft for field value is predetermined by application.

Unfortunately, there is often no prior knowledge about shape and position of UTFs.

Instead of computing from geometric constraints, indicator variable IIN values are often

obtained by thresholding sensory readings. We assume the robot is equipped with an omni-

directional sensor with the maximum sensing distance ds. If ds = 0, the sensor becomes

a point sensor such as a barometer measuring air pressure changes at its current position;

if ds > 0, the sensor may have measurable coverage like a camera covering the UTF. Let

∂T be the T’s boundary. ∂T would be unmeasurable if there were no uncertainty in the

sensing process. Due to the fact that zt is normally distributed, we have,

∂T :=
{

x
∣∣∣IUTF = 1,x ∈ T

}
, (6.2)

where IUTF ∈ {0,1} is a binary indicator variable describing if the point is a boundary point

and

IUTF =
(∨

zt∈ZT

(
f (zt ,xt ,σ) = ft

))∧(
IIN=1

)
. (6.3)

It is worth noting that (6.3) usually cannot be directly computed since we do not know

75

f . With observations from multiple sensor readings, it can be predicted by a GP based on

observations (zt ,xt). To ensure the coverage of a UTF, we just need to cover its boundary

∂T. The coverage of UTF interior is trivial if ∂T is covered.

6.3.3 Problem Definition

To quantify the boundary coverage performance, we need to define a performance

metric to determine the trade-off between quality and effort: let β ∈ (0,1] be the coverage

ratio threshold for UTF boundary. Denote ST to be the area of the UTF’s boundary ∂T. The

UTF’s boundary is a 2D region due to robot sensing uncertainties. We have the following

boundary coverage success metric.

Condition 1 (Quality Metric). The boundary coverage task for the UTF is considered to

be accomplished if the covered boundary is no less than βST where ST is the area of the

UTF’s boundary ∂T.

With inputs and quality metric defined, our problem is described as follows,

Problem 4. Given the observation set ZT , plan robot trajectory xT+1 based on xT to

generate ellipses to cover ∂T with Condition 1 satisfied.

6.4 System Modeling

The robot starts the boundary coverage process when it encounters an UTF region. The

boundary coverage process generates a sequence of ellipses to enclose the UTF, which are

treated as nodes for a depth-first search of a tree. Employing a sequence of ellipses allows

us to break down a long boundary traversing problem into a sequence of local problems

to reduce problem scale. In each local problem, we can handle challenges associated with

limited sensing range and observation uncertainty. We arrange each ellipse to have its long

axis aligned with the boundary of the UTF to speed up the boundary coverage process. At

each ellipse, the robot accumulates observations to instantiate a Gaussian Process (GP)

76

to predict the position of next ellipse along the boundary. The depth-first search ensures

that the robot traverses the entire UTF boundary and coordinates ellipse generation as tree

expansion which will be detailed later.

Let us clarify the use of index variables in the depth-first search progress. Ellipse Aq

is where the robot is currently located. Index g refers to the total number of ellipses. Since

we start the index with its root at A0, Ag is also the new ellipse during new node genera-

tion. Ap refers to which neighboring ellipse the robot uses to enter Aq. The “neighboring

ellipse” refers to either parent or child nodes of q on the search tree.

The whole process consists of two main steps: initialization and boundary traversing.

We start with system initialization.

6.4.1 Ellipses, Robot Trajectory, Observation Set, and Initialization of the Depth-

First Search

The boundary coverage process relies on a sequence of ellipses to track UTF bound-

aries. Define Aq as the q-th ellipse,

Aq =
{

x
∣∣∣(x−xq

)T Cq
(
x−xq

)
≤ 1
}
, (6.4)

where xq = [xq,yq]
T is its center point and Cq is a 2×2 positive definite matrix.

Aq
xp xq

(a) Accumulate obs. in Aq

Aq xg

Lq(λ)xp

Ag

xq

(b) Compute Lq(λ) and obtain Ag

Figure 6.2: The robot accumulates observations in Aq in the blue shaded area in a), es-
tablishes belief functions in Aq using a GP based on observation set Oq, which assists in
determining Ag in b).

77

When the robot enters Aq from a neighboring ellipse center xp to current ellipse center

xq along the shortest path, the robot trajectory set uq in Aq can be defined as,

uq = {x|x = ρxp +(1−ρ)xq,ρ ∈ [0,1]} (6.5)

if ignoring obstacles. Denote t j ∈ R as the exact continuous time at the moment of the

discrete time j when the robot with constant velocity traverses from xp to xq. Let t j −

t j−1 = c0 for j > 0 where c0 ∈R+ is a constant variable. The index j is reset to zero every

time when the robot reaches xq. During the travel, the robot accumulates observations

from its on-board sensor to establish its observation set Oq,

Oq =
{
(x,zt j)

∣∣ |x−xt j | ≤ ds,xt j ∈ uq
}
, (6.6)

and denote x ∈ Xq. Fig. 6.2a illustrates the observation set Oq coverage in Aq.

The ellipse generation process initializes at the moment when the robot first encounters

an UTF at point x0. It immediately generates A0 which is chosen to be a circle because it

is likely that we do not have enough information to determine boundary direction yet. For

A0, we have

C0 =

 1/4d2
s 0

0 1/4d2
s

 . (6.7)

On the other hand, u0 is slightly different from (6.5) because we do not have a neighboring

ellipse. Alternatively, we substitute xp with xenter in (6.5) to obtain u0 where xenter is the

point of entry to A0 during the global search process. Consequently, we have a non-empty

observation set O0.

78

6.4.2 Depth-First Search-based Boundary Traversing

We employ a depth-first search over a tree, which contains all ellipses as tree nodes.

Ellipse A0 is the root node of the ellipse tree. Each node q stores its uq and Oq. Oq is

updated as the robot travels inside the ellipse. As mentioned before, the robot only moves

between ellipse centers xq of neighboring tree nodes along a linear path because we ignore

the obstacle in the process. This also yields a piecewise linear trajectory for the robot.

6.4.2.0.1 Branching Method At each ellipse Aq, the robot uses Oq to instantiate a GP

[152] approximating the belief function for ∂T in Aq which provides information to de-

termine Ag. More specifically, for an x ∈ Aq, the GP provides posterior distribution

P(IUTF|x,Oq) for the UTF region to stand for the field function. It is worth noting that

Oq theoretically contains infinite number of observations. To facilitate computation, we

sample Oq using a local lattice according to sensor spatial resolution or task needs to accel-

erate GP training time. Recall Oq is continuously updated according to the robot trajectory

set. This leads to a recursive Bayesian estimation process, which can be computed using a

two-phase approach [153]:

1. Update Phase: For an x∗ ∈Oq,

P(I∗UTF|x∗,Oq) = bel(I∗UTF| f ∗(x∗),σ2), (6.8)

where the latent function f ∗ is represented by GP, an approximation of (6.3).

2. Prediction Phase: The GP provides posterior distribution for the UTF boundary for

a given x /∈Oq,

P(IUTF|x,Oq) = bel(IUTF|µI,σ
2
I). (6.9)

Here, µI and σ2
I are the expectation and variance of the posterior distribution re-

79

lated to the kernel function, which characterizes the correlation between the func-

tion values at different locations, namely, f ∗(xi) and f ∗(x j). We employ a histogram

intersection kernel K as

K(xi,x j) =
2

∑
d=1

min(xi(d),x j(d)). (6.10)

for xi,x j ∈ R2 with µI = kT
∗ (K+σ2I)−1I∗UTF and σ2

I = k∗∗kT
∗ (K+σ2I)−1k∗ where

k∗ = K(Xq,x), K is the kernel matrix of the training data Xq, k∗∗ = K(x,x), and I is

an identity matrix.

To approximate the UTF boundary ∂T, we calculate the level set Lq(λ) where thresh-

old λ > 0, to cover regions with high probability of containing the boundary. This is done

by thresholding on P(IUTF|x,Oq).

Lq(λ) =
{

x|P(IUTF|x,Oq)≥ λ ,x ∈ Aq
}
. (6.11)

The value of threshold λ is determined by coverage ratio threshold β in Condition 1 and

will be discussed in Section 6.5.2.

Now let us show how to determine xg, center of the new node on the ellipse tree. The

boundary of Lq(λ) intercepts the boundary of Aq and generates a set of points XL
q . As

illustrated Fig. 6.2b, we evenly divide Aq into kd = 12 sectors with each sector spanning

2π/kd = π/6. For each sector, we identify a middle angle boundary point xs
q by inter-

cepting Aq boundary with the ray shooting from the ellipse center along the middle angle

(π/kd from the sector side). We add xs
q to the candidate solution set X∗q for xg if we can

find a solution in set XL
q located on the corresponding sector boundary. This means that

we use XL
q to filter out less likely candidate center locations. To avoid repeated search,

we remove xs
q of the sector where the robot enters Aq from the candidate solution set X∗q.

80

Therefore, set X∗q only contains branches that robot has not visited.

6.4.2.0.2 Termination Scenarios With X∗q introduced, let us explain the termination

condition of the search, which has two scenarios. When X∗q is empty, it means that the

robot reaches the extreme end of the UTF which is the leaf of the depth-first search tree.

Now the only choice is to let the robot traverse back on the tree to the parent ellipse and

check if the candidate solution set of the parent ellipse is non-empty. If a non-empty node

is found, we enter the tree expansion case as described in the sub-section. Otherwise, we

keep back-traversing the robot and repeat this process along the tree to upper level parent

node. We update p and q in the process.

If we return to the root and find X∗0 is empty, it means the robot has covered the entire

search tree in the boundary traversing. This concludes the first termination scenario and

the depth-first search ends. This scenario occurs a lot with curves, lines or other thin UTFs.

For a compact and sizable UTF, it is likely that the robot loops around the UTF (see

Fig.6.1b), which is the second termination scenario. Because it leads the robot to travel

back to A0, we can identify this by verifying if xq ∈ A0 is true. We also need to remove

the candidate solution from the sector that contains xq in X∗0. Again, if X∗0 is empty, the

search ends.

6.4.2.0.3 Node/Ellipse Generation Here comes the tree expansion or node generation

process. It happens if the candidate solution set X∗q is non-empty for the original q or the

updated q from the back-traversing process, then we choose the xg as follows,

xg = argmax
x∈X∗q

(
arccos

〈xq−,x∗,q〉
‖xq−‖ · ‖x∗,q‖

)
. (6.12)

where xq− = xq− xp represents the vector describing how the robot enters Aq, x∗,q =

x− xq, ‖·‖ is vector l-2 norm, and 〈·, ·〉 is vector inner product. This means that the

candidate is the closest to the direction that the robot enters Aq. Once xg is chosen, we

81

remove it from X∗q = X∗q \{xg}. This is to avoid repeated search when we return to Aq in

the depth-first search process. Again, set X∗q keeps track of the visited branch of the search

tree. New node g is added to the tree with its parent to be q and g = g+1.

After obtaining new center xg, we place Ag into its position by determining Cg. Set

the long and short axes of Ag to be 4ds and 2ds, respectively. To approximate the UTF

boundary, we want the long axis of Ag to be aligned with xg−xq as follows,

Cg =

 cosθ −sinθ

sinθ cosθ

 1

16d2
s

0

0 1
4d2

s

 cosθ sinθ

−sinθ cosθ

 , (6.13)

where θ is determined by

θ = arctan
(yg− yq

xg− xq

)
. (6.14)

After Ag is determined, the robot motion is also obtained as ug. As the robot moves

toward xg, we update X∗q, p, and q accordingly.

6.5 Boundary Coverage Performance Analysis

The remaining question is how good the boundary coverage quality is and how to

guarantee Condition 1. We first analyze the coverage quality for a point x in Aq and then

aggregate it into the entire boundary.

6.5.1 Probability Bounds for a Point x in Aq

The UTF boundary ∂T is covered by the level set Lq(λ) which is generated by the

thresholding on P(IUTF|x,Oq) in (6.11). It is important to understand P(IUTF|x,Oq). P(IUTF|x,Oq)

is a function of its condition (x,Oq) which means it is still a random variable because

(x,Oq) are random variables. Since it is a random variable, it has an expectation E
(
P(IUTF|x,Oq)

)
.

E
(
P(IUTF|x,Oq)

)
can be estimated by averaging P(IUTF|x,Oq) across all points using the

output from GPs. E
(
P(IUTF|x,Oq)

)
can be viewed as an observation of the unconditional

82

distribution P(IUTF). P(IUTF) is the mean value of P(IUTF|x,Oq). P(IUTF) is important because

it can help us to determine if we miss any UTF boundary points when performing thresh-

olding in (6.11). We do not know P(IUTF) but we know its low bound in probability as

follows.

Lemma 2. With 1− τ probability, P(IUTF) which is the unconditional probability that a

point in Aq belongs to UTF boundary has the following lower bound B−q ,

P(IUTF)≥ B−q = inf
η>0

{
E(P(IUTF|x,Oq))−

η

2
− 1

lmaxη
log

1
τ

}
, (6.15)

where τ ∈ (0,1) is a chosen small number, lmax is the set cardinality of Lq(λ), and non-

negative variable η is determined by the inf computation.

Proof. The lower bound of P(IUTF) can be proved by relating it to its estimator E(P(IUTF|x,Oq)).

We construct the following probability event E0 for t >−1,

P(E0) = P
(

P(IUTF)−
η

2
−E

(
P(IUTF|x,Oq)

)
≤−(t +1)

)
. (6.16)

This is equivalent to,

P(E0) = P(e−η lmax(P(IUTF)−η

2−E(P(IUTF|x,Oq))) ≥ eη lmax(t+1)), (6.17)

and apply Markov’s inequality, we have,

P(E0)≤ e−η lmax(t+1)E
(

e−η lmax(P(IUTF)−η

2−E(P(IUTF|x,Oq)))
)
. (6.18)

Since eη lmax
η

2 ≥ 1, we multiply it to the right hand side of (6.18) and move the constant

83

terms outside the expectation E(·), we have

P(E0)≤e−η lmax(t−η

2)−η lmax(P(IUTF)−η

2)

×E
(

eη lmax(E(P(IUTF|x,Oq))−1)
)

(6.19)

Using the fact that E(P(IUTF|x,Oq))≤ 1, we know

P(E0)≤ e−η lmax(t−η

2)−η lmaxP(IUTF)+
η2lmax

2 E
(
e0) , (6.20)

which leads to

P(E0)≤ e−η lmax(t−η

2)+
η2lmax

2 = τ. (6.21)

We can solve t from (6.21) and plug it back to (6.16) and the lemma is proved.

6.5.2 Probability of Covering an UTF Boundary Point in Level Set Construction

Lower bound B−q can help us determine the probability that the UTF boundary is cap-

tured by the GP in level set construction (6.11). It also helps determine how to choose λ .

It is clear that a reasonable λ should be smaller than B−q . Defining F(µ,σ2)(x) as the cumu-

lative probability function of the Gaussian distribution N(µ,σ2), we have the following

lemma,

Lemma 3. For a given lower bound B−q and λ ≤ B−q at point x ∈ Aq when computing the

level set Lq(λ), the probability that an UTF boundary point satisfies (6.11) is no less than

(1−F(B−q ,σ2
I)
(λ))(1− τ) where σ2

I is the variance of P(IUTF|x,Oq).

Proof. From GP model, we know P(IUTF|x,Oq) is a Gaussian distribution with mean µI =

P(IUTF) and variance σ2
I . For a given λ and B−q , the fact that an UTF boundary point is

captured means the following conditional event P(IUTF|x,Oq) ≥ λ |µI ≥ B−q occurs. We

84

now compute its probability by further conditioning on E0 and applying the fact that B−q is

not a deterministic bound,

P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q)

= P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)(1− τ)

+P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)τ

≥ P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)(1− τ)

≥ P(P(IUTF|x,Oq)≥ λ |µI = B−q ,E0)(1− τ). (6.22)

Therefore, we have

P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q))≥ (1−F(B−q ,σ2
I)
(λ))(1− τ). (6.23)

Note that σ2
I can be obtained using GP outputs.

6.5.3 Ensure Boundary Coverage Quality

Recall that we have coverage ratio threshold β in boundary coverage quality metric

defined in Condition 1 in our problem definition in Section 6.3.3. To satisfy the condition,

we choose λ and τ accordingly. This means that we can set

(1−F(B−q ,σ2
I)
(λ))(1− τ) = β , (6.24)

to help obtain a correct threshold λ . We do have some freedom in choosing τ to assist the

selection of λ . It is not difficult to perform binary search to obtain it.

85

Algorithm 2: Boundary Coverage of an UTF

1

Input : Robot observations Oq

Output: Robot trajectory in set G
2 Generate A0 at x0 ; // O(1)
3 Stack S = {} ; // O(1)
4 Push(S,x0) ; // O(1)
5 while S is not empty do // O(ν)
6 xq = Pop(S); // O(1)
7 if Visited(xq) := FALSE then
8 Visited(xq) := TRUE; // O(1)
9 Update p and q according to trajectory; // O(1)

10 P(IUTF|x,Oq) using GPs; // O(nq lognq)
11 Obtain B−q according to (6.15); // O(logns)

12 Calculate λ through (6.24); // O(1)
13 X∗q =

⋃
xs

q\{xp}; // O(1)
14 if X∗q = /0 or xq ∈ A0 for q 6= 0 then
15 if Robot at A0 then
16 Break; // O(1)

17 else
18 Travese back to parent node; // O(1)

19 else
20 Obtain Ag and move to xg; // O(1)

21 Push(S,xg) ; // O(1)
22 G = G

⋃
{xg} ; // O(1)

6.5.4 Algorithm and Complexity Analysis

Algorithm 2 summarizes the proposed method. To overcome the computational lim-

itations of naive GPs with time complexity O(n3
q), we employ a Gaussian process with

generalized histogram intersection kernels to speed up the naive GPs to O(nq lognq) where

nq is the set cardinality of Oq [153]. Recall that ν refers the number of ellipse centers, and

we initially set Oq = /0, X∗q = /0, and G = /0. For the coverage process, Algorithm 2 details

the pseudocode, which leads to the following complexity result.

Lemma 4. Boundary coverage algorithm for an UTF runs in O(νnq lognq) time, where

86

nq is the set cardinality of Oq, and ν is the number of ellipses to enclose the UTF.

6.6 Experimental Result

We have implemented the proposed method in Matlab on a Laptop PC with an Intel(R)

CoreTM i7-3517U CPU@1.90GHz and 8 GB memory. To verify the proposed local cov-

erage method, we simulate different field shapes to test our approach (see Table 6.1). It

includes both simple geometric shapes such as lines, circles, squares, and two complex

shapes including storm cells and an island. Fig. 6.3 shows the images of the two complex

shapes. Each image has a resolution of 720×480 pixels.

To measure our algorithm’s boundary coverage capability, we define AL as the bound-

ary area covered using our method, and A as the actual area the UTF boundary occupies.

We evaluate the coverage ratio βr by using:

βr =
|AL∩A|
|A|

. (6.25)

We set the value ds = 1 for the simple geometric shapes and ds equal to 20 pixels for the

two image-based case.

Table 6.1: Local coverage experiment settings and results.

UTF Type f j(x) Dimension Boundary Shape βr β

Line 2x− y+5 = 0 with 3≤ x≤ 12 1D smooth convex 98.12% 95.00%
Circle 25− (x−6)2− (y−6)2 ≥ 0 2D smooth convex 97.56% 95.00%
Square |x−5| ≤ 6, |y−5| ≤ 6 2D non-smooth convex 93.34% 90.00%

Storm cell see Fig. 6.3a 2D non-smooth non-convex 87.32% 85.00%
Island see Fig. 6.3b 2D non-smooth non-convex 88.59% 85.00%

The experimental settings and results are shown in Table 6.1. The last two rows show

that for a given different threshold β , our algorithm has guaranteed that the actual coverage

is no less than β for all testing cases, which is conformable to our analysis. Also, the

87

sample robot trajectories for boundary traversing are illustrated as green piecewise linear

curves in the right side of Fig. 6.3. It is clear that the robot successfully covers the both

testing cases.

(a) A weather radar map showing a storm cell.

(b) An island map.

Figure 6.3: Local coverage testing with real image data and robot coverage path.

6.7 Conclusion

We introduced a new UTF boundary coverage problem with many applications. We

reported a probabilistic boundary coverage method for addressing UTF problems. We

generated a sequence of ellipses to cover UTF boundary. The introduction of ellipse se-

88

quence also allowed us to decompose the long trajectory traversing problem to multiple

local problems with each ellipse represented a local problem. In each local problem, we

employed Gaussian processes (GPs) as a local belief function to approximate field distri-

bution. The local belief function allows us to predict UTF boundary trends and establish

adjacent ellipses for further exploration. The process was governed by a depth-first search

process until UTF is approximately enclosed by connected ellipses. We formally proved

that our boundary coverage process guarantees the enclosure above a given coverage ratio

with a preset probability threshold. We implemented our algorithm and successfully tested

it in experiments with different field types.

89

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

Navigation is a fundamental problem for robots as a combination of motion planning,

obstacle avoidance, object detection, and tracking, mapping and localization. A typical

problem is how to navigate the robot in an uncertain belief space due to noisy and par-

tial observations of the state of both the surrounding environment and the robot. As au-

tonomous systems leave the factory floor and become more pervasive in the form of drones

and self-driving cars, it is becoming increasingly important to understand how to design

systems that will not fail under these real-world conditions. Although it is important that

these systems be safe, it is also important that they do not operate so conservatively as

to be ineffective. They must have a strong understanding of the risks induced by their

actions so they can avoid unnecessary risks and operate efficiently. In this dissertation, we

explore the belief space-guided robotic navigation problems, which include belief space-

based scene understanding for autonomous vehicles, and introduce belief space guided

robotic planning.

When autonomous vehicle (AV) navigates in the city or urban environment in Chapter

4, the quality of lane markings (LMs) has to be assessed to help improve infrastructure

for autonomous driving. Based on our multi-module fused based methods, we presented

metrics and algorithms for lane marking assessment. Three lane marking quality metrics

were proposed and modeled mathematically: correctness, shape, and visibility. We also

proposed a dual-modal algorithm to facilitate the computation of the three metrics. We

took both prior map uncertainty and sensory uncertainty into consideration in formulating

our metrics and the algorithm.

We also use belief space for better scene understanding. As an example, we utilize

90

crowdsourced images from multiple vehicles to help verify LMs for high-definition (HD)

map maintenance in Chapter 5. We model them respectively as observations of two LM

spatial distributions in the camera frame and check if they agree with each other via good-

ness of fit test by realizing LMs in both the HD map and camera images contain noises.

We derive a sequential Bayes’ model to allow the belief functions to be updated using

crowdsourced images.

In chapter 6, we utilize the belief space to tightly connect perception and planning for

autonomous vehicles. We detect free space using camera-lidar sensor fusion and proposed

a availability-reasonability-feasibility test to determine whether the AV should simply fol-

low actual lane boundary or generate virtual lane boundary by taking into account vehicle

kinodynamic constraints, obstacle avoidance, smooth motion, ground-positioning-system

trajectory following, respecting the direction of lane markings in a multi-objective opti-

mization framework with dynamically adjustable weights for different road scenarios.

We propose to use belief space for probabilistic boundary coverage of unknown target

fields (UTFs) in Chapter 7. We generated a sequence of ellipses to cover the UTF bound-

ary, which allowed us to decompose the long trajectory traversing problem to multiple

local problems with each ellipse represented a local problem. In each local problem, we

employed Gaussian processes as a local belief function to approximate field distribution.

The local belief function allows us to predict UTF boundary trends and establish adjacent

ellipses for further exploration. The process was governed by a depth-first search process

until UTF is approximately enclosed by connected ellipses. We formally proved that our

boundary coverage process guarantees the enclosure above a given coverage ratio with a

preset probability threshold.

91

7.2 Future Work

In this dissertation, we propose different robotic applications for belief space-guided

navigation. The following directions can be explored in the future.

• Belief space-based scene understanding for lane marking quality assessment: We

will perfect the algorithm and perform more tests. We will also develop assessment

algorithms for traffic signals, signs, and surface quality.

• Belief space cross validation from crowdsourced data for lane marking verification:

We will extend approach to other objects in HD maps to ensure HD maps can be

kept up-to-date at low cost. We will consider to reconstruct LMs from the percep-

tion inputs and update the HD maps. We will theoretically analyze the number of

samples required to verify the LMs.

• Belief space for tightly connection between perception and motion planning: We

will conduct more physical experiments and we will incorporate more functional-

ities such as velocity planning to make navigation decisions more human-like and

human-compatible.

• Belief space-based approach for probabilistic boundary coverage of UTFs: We will

provide overall trajectory length prediction for the algorithm. We will consider a

multiple robot team and moving targets. We will also consider robots/UAVs with

kinodynamic constraints in the trajectory generation.

92

REFERENCES

[1] K. Rank, M. Lendl, and R. Unbehauen, “Estimation of image noise variance,” IEE

Proceedings-Vision, Image and Signal Processing, vol. 146, no. 2, pp. 80–84, 1999.

[2] M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris, “Survey of image

denoising techniques,” in Proceedings of GSPX, pp. 27–30, 2004.

[3] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data

for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 2012.

[4] F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas, and R. Siegwart, “Noise char-

acterization of depth sensors for surface inspections,” in Applied Robotics for the

Power Industry (CARPI), 2012 2nd International Conference on, pp. 16–21, IEEE,

2012.

[5] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris, “Robot motion

planning on a chip.,” in Robotics: Science and Systems, 2016.

[6] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile

robot motion planning in state lattices,” Journal of Field Robotics, vol. 26, no. 3,

pp. 308–333, 2009.

[7] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Optimal, smooth, nonholonomic mo-

bile robot motion planning in state lattices,” Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-15, 2007.

[8] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State space sampling of

feasible motions for high-performance mobile robot navigation in complex envi-

ronments,” Journal of Field Robotics, vol. 25, no. 6-7, pp. 325–345, 2008.

93

[9] G. Klančar and I. Škrjanc, “Tracking-error model-based predictive control for mo-

bile robots in real time,” Robotics and autonomous systems, vol. 55, no. 6, pp. 460–

469, 2007.

[10] M. Bouton, A. Cosgun, and M. J. Kochenderfer, “Belief state planning for au-

tonomously navigating urban intersections,” in 2017 IEEE Intelligent Vehicles Sym-

posium (IV), pp. 825–830, IEEE, 2017.

[11] S. Patil, Y. Duan, J. Schulman, K. Goldberg, and P. Abbeel, “Gaussian belief space

planning with discontinuities in sensing domains,” in 2014 IEEE International Con-

ference on Robotics and Automation (ICRA), pp. 6483–6490, IEEE, 2014.

[12] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information gathering ac-

tions over human internal state,” in 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 66–73, IEEE, 2016.

[13] M. Mäkitalo and A. Foi, “Noise parameter mismatch in variance stabilization, with

an application to poisson–gaussian noise estimation,” IEEE Transactions on Image

Processing, vol. 23, no. 12, pp. 5348–5359, 2014.

[14] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang, “Noise estimation from a single

image,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, vol. 1, pp. 901–908, IEEE, 2006.

[15] M. Polic and T. Pajdla, “Uncertainty computation in large 3d reconstruction,” in

Image Analysis (P. Sharma and F. M. Bianchi, eds.), (Cham), pp. 110–121, Springer

International Publishing, 2017.

[16] V. A. Kovalev and W. E. Eichinger, Elastic lidar: theory, practice, and analysis

methods. John Wiley & Sons, 2004.

94

[17] L. Matthies and A. Elfes, “Integration of sonar and stereo range data using a grid-

based representation,” in Robotics and Automation, 1988. Proceedings., 1988 IEEE

International Conference on, pp. 727–733, IEEE, 1988.

[18] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö, A. Aydemir,

P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, et al., “Robot task planning and

explanation in open and uncertain worlds,” Artificial Intelligence, vol. 247, pp. 119–

150, 2017.

[19] J. Fabian and G. M. Clayton, “Error analysis for visual odometry on indoor,

wheeled mobile robots with 3-d sensors,” IEEE/ASME Transactions on Mechatron-

ics, vol. 19, no. 6, pp. 1896–1906, 2014.

[20] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path planning

for robots with motion uncertainty and imperfect state information,” The Interna-

tional Journal of Robotics Research, vol. 30, no. 7, pp. 895–913, 2011.

[21] L. Nardi and C. Stachniss, “Uncertainty-aware path planning for navigation on road

networks using augmented mdps,” in 2019 International Conference on Robotics

and Automation (ICRA), pp. 5780–5786, IEEE, 2019.

[22] J. P. Gonzalez and A. Stentz, “Planning with uncertainty in position using high-

resolution maps,” in Proceedings 2007 IEEE International Conference on Robotics

and Automation, pp. 1015–1022, IEEE, 2007.

[23] Y. Koren, J. Borenstein, et al., “Potential field methods and their inherent limitations

for mobile robot navigation.,” in ICRA, vol. 2, pp. 1398–1404, 1991.

[24] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time robot mo-

tion planning using rasterizing computer graphics hardware,” ACM SIGGRAPH

Computer Graphics, vol. 24, no. 4, pp. 327–335, 1990.

95

[25] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in

Autonomous robot vehicles, pp. 396–404, Springer, 1986.

[26] B. Krogh and C. Thorpe, “Integrated path planning and dynamic steering control

for autonomous vehicles,” in Proceedings. 1986 IEEE International Conference on

Robotics and Automation, vol. 3, pp. 1664–1669, IEEE, 1986.

[27] Y. K. Hwang and N. Ahuja, “Gross motion planning—a survey,” ACM Computing

Surveys (CSUR), vol. 24, no. 3, pp. 219–291, 1992.

[28] W. H. Huang, B. R. Fajen, J. R. Fink, and W. H. Warren, “Visual navigation and

obstacle avoidance using a steering potential function,” Robotics and Autonomous

Systems, vol. 54, no. 4, pp. 288–299, 2006.

[29] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa

grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[30] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Dug-

gins, T. Galatali, C. Geyer, et al., “Autonomous driving in urban environments:

Boss and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–

466, 2008.

[31] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[32] B. Nagy and A. Kelly, “Trajectory generation for car-like robots using cubic curva-

ture polynomials,” Field and Service Robots, vol. 11, 2001.

[33] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE trans-

actions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

96

[34] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”

1998.

[35] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-time mo-

tion planning with applications to autonomous urban driving,” IEEE Transactions

on control systems technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[36] J. hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras, and

K. Iagnemma, “Optimal motion planning with the half-car dynamical model for

autonomous high-speed driving,” in 2013 American control conference, pp. 188–

193, IEEE, 2013.

[37] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (bit*):

Sampling-based optimal planning via the heuristically guided search of implicit

random geometric graphs,” in 2015 IEEE international conference on robotics and

automation (ICRA), pp. 3067–3074, IEEE, 2015.

[38] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson,

“Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning

and sampling-based planning,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), pp. 5113–5120, IEEE, 2018.

[39] M. McNaughton, Parallel algorithms for real-time motion planning. PhD thesis,

Citeseer, 2011.

[40] M. Likhachev and D. Ferguson, “Planning long dynamically feasible maneuvers

for autonomous vehicles,” The International Journal of Robotics Research, vol. 28,

no. 8, pp. 933–945, 2009.

[41] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Nu-

merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

97

[42] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[43] S. Koenig and M. Likhachev, “Dˆ* lite,” Aaai/iaai, vol. 15, 2002.

[44] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa

grand challenge,” in The 2005 DARPA grand challenge, pp. 1–43, Springer, 2007.

[45] T. Brandt, T. Sattel, and J. Wallaschek, “Towards vehicle trajectory planning for

collision avoidance based on elastic bands,” International Journal of Vehicle Au-

tonomous Systems, vol. 5, no. 1-2, pp. 28–46, 2007.

[46] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Trajectory

modification considering dynamic constraints of autonomous robots,” in ROBOTIK

2012; 7th German Conference on Robotics, pp. 1–6, VDE, 2012.

[47] D. H. Jacobson, “New second-order and first-order algorithms for determining opti-

mal control: A differential dynamic programming approach,” Journal of Optimiza-

tion Theory and Applications, vol. 2, no. 6, pp. 411–440, 1968.

[48] J. van den Berg, “Iterated lqr smoothing for locally-optimal feedback control of sys-

tems with non-linear dynamics and non-quadratic cost,” in 2014 American Control

Conference, pp. 1912–1918, IEEE, 2014.

[49] D. W. Harwood, A. D. May, I. B. Anderson, L. Leiman, and A. R. Archilla, “Ca-

pacity and quality of service of two-lane highways,” Final Report, NCHRP Project,

pp. 3–55, 1999.

[50] A. Flannery, K. Wochinger, and A. Martin, “Driver assessment of service quality

on urban streets,” Transportation Research Record: Journal of the Transportation

98

Research Board, no. 1920, pp. 25–31, 2005.

[51] T. Veit, J.-P. Tarel, P. Nicolle, and P. Charbonnier, “Evaluation of road marking

feature extraction,” in Intelligent Transportation Systems, 2008. ITSC 2008. 11th

International IEEE Conference on, pp. 174–181, IEEE, 2008.

[52] J. Pohl, W. Birk, and L. Westervall, “A driver-distraction-based lane-keeping as-

sistance system,” Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, vol. 221, no. 4, pp. 541–552, 2007.

[53] K. Yamaguchi, A. Watanabe, T. Naito, and Y. Ninomiya, “Road region estimation

using a sequence of monocular images,” in Pattern Recognition, 2008. ICPR 2008.

19th International Conference on, pp. 1–4, IEEE, 2008.

[54] V. Pradeep, G. Medioni, and J. Weiland, “Piecewise planar modeling for step de-

tection using stereo vision,” in Workshop on computer vision applications for the

visually impaired, 2008.

[55] J. Hernández and B. Marcotegui, “Filtering of artifacts and pavement segmentation

from mobile lidar data,” in ISPRS Workshop Laserscanning 2009, 2009.

[56] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network for structural pre-

diction and lane detection in traffic scene,” IEEE transactions on neural networks

and learning systems, vol. 28, no. 3, pp. 690–703, 2017.

[57] Y. Yu, J. Li, H. Guan, F. Jia, and C. Wang, “Learning hierarchical features for auto-

mated extraction of road markings from 3-d mobile lidar point clouds,” IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8,

no. 2, pp. 709–726, 2015.

[58] H. Guan, J. Li, Y. Yu, C. Wang, M. Chapman, and B. Yang, “Using mobile laser

scanning data for automated extraction of road markings,” ISPRS Journal of Pho-

99

togrammetry and Remote Sensing, vol. 87, pp. 93–107, 2014.

[59] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking for

driver assistance: survey, system, and evaluation,” IEEE transactions on intelligent

transportation systems, vol. 7, no. 1, pp. 20–37, 2006.

[60] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane

detection: a survey,” Machine vision and applications, vol. 25, no. 3, pp. 727–745,

2014.

[61] F. Samadzadegan, A. Sarafraz, and M. Tabibi, “Automatic lane detection in image

sequences for vision-based navigation purposes,” ISPRS Image Engineering and

Vision Metrology, 2006.

[62] S. Kammel and B. Pitzer, “Lidar-based lane marker detection and mapping,” in

Intelligent Vehicles Symposium, 2008 IEEE, pp. 1137–1142, IEEE, 2008.

[63] A. von Reyher, A. Joos, and H. Winner, “A lidar-based approach for near range lane

detection,” in Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pp. 147–

152, IEEE, 2005.

[64] K. Takagi, K. Morikawa, T. Ogawa, and M. Saburi, “Road environment recognition

using on-vehicle lidar,” in Intelligent Vehicles Symposium, 2006 IEEE, pp. 120–125,

IEEE, 2006.

[65] L. T. Sach, K. Atsuta, K. Hamamoto, and S. Kondo, “A robust road profile estima-

tion method for low texture stereo images,” in Image Processing (ICIP), 2009 16th

IEEE International Conference on, pp. 4273–4276, IEEE, 2009.

[66] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,

D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior: The stanford entry

in the urban challenge,” Journal of field Robotics, vol. 25, no. 9, pp. 569–597, 2008.

100

[67] U. Hofmann, A. Rieder, and E. D. Dickmanns, “Radar and vision data fusion for

hybrid adaptive cruise control on highways,” Machine Vision and Applications,

vol. 14, no. 1, pp. 42–49, 2003.

[68] X. Gu, A. Zang, X. Huang, A. Tokuta, and X. Chen, “Fusion of color images and

lidar data for lane classification,” in Proceedings of the 23rd SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, p. 69, ACM,

2015.

[69] A. S. Huang, D. Moore, M. Antone, E. Olson, and S. Teller, “Finding multiple lanes

in urban road networks with vision and lidar,” Autonomous Robots, vol. 26, no. 2-3,

pp. 103–122, 2009.

[70] A. Mammeri, A. Boukerche, and Z. Tang, “A real-time lane marking localization,

tracking and communication system,” Computer Communications, vol. 73, pp. 132–

143, 2016.

[71] B.-S. Shin, Z. Xu, and R. Klette, “Visual lane analysis and higher-order tasks: a

concise review,” Machine vision and applications, vol. 25, no. 6, pp. 1519–1547,

2014.

[72] S. P. Narote, P. N. Bhujbal, A. S. Narote, and D. M. Dhane, “A review of recent

advances in lane detection and departure warning system,” Pattern Recognition,

vol. 73, pp. 216–234, 2018.

[73] C. E. Rasmussen, “Gaussian processes in machine learning,” in Advanced lectures

on machine learning, pp. 63–71, Springer, 2004.

[74] R. Guo, Q. Dai, and D. Hoiem, “Single-image shadow detection and removal using

paired regions,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 2033–2040, 2011.

101

[75] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[76] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” IEEE transactions on pattern analysis and machine intelligence,

vol. 39, no. 4, pp. 640–651, 2017.

[77] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision, vol. 5. McGraw-Hill New

York, 1995.

[78] R. Raguram, J.-M. Frahm, and M. Pollefeys, “A comparative analysis of ransac

techniques leading to adaptive real-time random sample consensus,” European Con-

ference on Computer Vision, pp. 500–513, 2008.

[79] D. Arlia and M. Coppola, “Experiments in parallel clustering with dbscan,” in Eu-

ropean Conference on Parallel Processing, pp. 326–331, Springer, 2001.

[80] H. B. Barua and S. Sarmah, “An extended density based clustering algorithm for

large spatial 3d data using polyhedron approach,” International Journal of Com-

puter Applications, vol. 58, no. 2, 2012.

[81] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of electronic

imaging, vol. 16, no. 4, p. 049901, 2007.

[82] J. M. Duncan, “Factors of safety and reliability in geotechnical engineering,” Jour-

nal of geotechnical and geoenvironmental engineering, vol. 126, no. 4, pp. 307–316,

2000.

[83] M. H. J. Vala and A. Baxi, “A review on otsu image segmentation algorithm,” In-

ternational Journal of Advanced Research in Computer Engineering & Technology

(IJARCET), vol. 2, no. 2, pp. pp–387, 2013.

102

[84] L. Magri and A. Fusiello, “T-linkage: A continuous relaxation of j-linkage for

multi-model fitting,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 3954–3961, 2014.

[85] D. Borrmann, R. Heß, H. Houshiar, D. Eck, K. Schilling, and A. Nüchter, “Robotic

mapping of cultural heritage sites.,” International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences, 2015.

[86] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simulta-

neous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43,

no. 1, pp. 55–81, 2015.

[87] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth,

B. Upcroft, and M. Milford, “Place categorization and semantic mapping on a mo-

bile robot,” in 2016 IEEE international conference on robotics and automation

(ICRA), pp. 5729–5736, IEEE, 2016.

[88] J. R. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez, “Robot@ home, a

robotic dataset for semantic mapping of home environments,” The International

Journal of Robotics Research, vol. 36, no. 2, pp. 131–141, 2017.

[89] K. Abdulrahim and R. A. Salam, “Traffic surveillance: A review of vision based

vehicle detection, recognition and tracking,” International journal of applied engi-

neering research, vol. 11, no. 1, pp. 713–726, 2016.

[90] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of

vision-based vehicle detection, tracking, and behavior analysis,” IEEE Transactions

on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773–1795, 2013.

[91] A. Petrovai, R. Danescu, and S. Nedevschi, “A stereovision based approach for

detecting and tracking lane and forward obstacles on mobile devices,” in Intelligent

103

Vehicles Symposium (IV), 2015 IEEE, pp. 634–641, IEEE, 2015.

[92] A. Joshi and M. R. James, “Generation of accurate lane-level maps from coarse

prior maps and lidar,” IEEE Intelligent Transportation Systems Magazine, vol. 7,

no. 1, pp. 19–29, 2015.

[93] D. C. Andrade, F. Bueno, F. R. Franco, R. A. Silva, J. H. Z. Neme, E. Margraf,

W. T. Omoto, F. A. Farinelli, A. M. Tusset, S. Okida, et al., “A novel strategy for

road lane detection and tracking based on a vehicle’s forward monocular camera,”

IEEE Transactions on Intelligent Transportation Systems, no. 99, pp. 1–11, 2018.

[94] B. Li, D. Song, H. Li, A. Pike, and P. Carlson, “Lane marking quality assessment

for autonomous driving,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 1–9, IEEE, 2018.

[95] B. Li, D. Song, A. Ramchandani, H.-M. Cheng, D. Wang, Y. Xu, and B. Chen,

“Virtual lane boundary generation for human-compatible autonomous driving: A

tight coupling between perception and planning,” in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, 2019.

[96] Y. Kang, C. Roh, S.-B. Suh, and B. Song, “A lidar-based decision-making method

for road boundary detection using multiple kalman filters,” IEEE Transactions on

Industrial Electronics, vol. 59, no. 11, pp. 4360–4368, 2012.

[97] A. Elfes, Occupancy Grids: A Probabilistic Framework for Robot Perception and

Navigation. PhD thesis, Department of Electrical and Computer Engineering,

Carnegie Mellon University, 1989.

[98] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI Magazine,

no. 9, pp. 61–74, 1988.

104

[99] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,”

in Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM Interna-

tional Symposium on, pp. 225–234, IEEE, 2007.

[100] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and ac-

curate monocular slam system,” IEEE Transactions on Robotics, vol. 31, no. 5,

pp. 1147–1163, 2015.

[101] Y. Lu and D. Song, “Visual navigation using heterogeneous landmarks and unsu-

pervised geometric constraints,” in IEEE Transactions on Robotics (T-RO), vol. 31,

pp. 736 —- 749, June 2015.

[102] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient FastSLAM algorithm

for generating maps of large-scale cyclic environments from raw laser range mea-

surements,” in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.

2003 IEEE/RSJ International Conference on, vol. 1, pp. 206–211, IEEE, 2003.

[103] J. Ryde and N. Hillier, “Alignment and 3d scene change detection for segmentation

in autonomous earth moving,” in 2011 IEEE International Conference on Robotics

and Automation, pp. 1484–1490, IEEE, 2011.

[104] A. Aijazi, P. Checchin, and L. Trassoudaine, “Automatic removal of imperfections

and change detection for accurate 3d urban cartography by classification and incre-

mental updating,” Remote Sensing, vol. 5, no. 8, pp. 3701–3728, 2013.

[105] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultane-

ous localization, mapping and moving object tracking,” The International Journal

of Robotics Research, vol. 26, no. 9, pp. 889–916, 2007.

[106] J. S. Berrio, J. Ward, S. Worrall, and E. Nebot, “Identifying robust landmarks in

feature-based maps,” arXiv preprint arXiv:1809.09774, 2018.

105

[107] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett, “Recurrent-octomap: Learn-

ing state-based map refinement for long-term semantic mapping with 3-d-lidar

data,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3749–3756, 2018.

[108] A. Nurminen and A. Oulasvirta, “Designing interactions for navigation in 3d mobile

maps,” in Map-based mobile services, pp. 198–227, Springer, 2008.

[109] A. Satorra and P. M. Bentler, “A scaled difference chi-square test statistic for mo-

ment structure analysis,” Psychometrika, vol. 66, no. 4, pp. 507–514, 2001.

[110] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informed-

ness, markedness and correlation,” 2011.

[111] Y. Li and N. R. Gans, “Predictive ransac: Effective model fitting and tracking ap-

proach under heavy noise and outliers,” Computer Vision and Image Understanding,

vol. 161, pp. 99 – 113, 2017.

[112] A. Mukhtar, L. Xia, and T. B. Tang, “Vehicle detection techniques for collision

avoidance systems: A review.,” IEEE Trans. Intelligent Transportation Systems,

vol. 16, no. 5, pp. 2318–2338, 2015.

[113] A. Pandey, S. Pandey, and D. Parhi, “Mobile robot navigation and obstacle avoid-

ance techniques: A review,” Int Rob Auto J, vol. 2, no. 3, p. 00022, 2017.

[114] D. Song, H. N. Lee, J. Yi, and A. Levandowski, “Vision-based motion planning for

an autonomous motorcycle on ill-structured roads,” Autonomous Robots, vol. 23,

no. 3, pp. 197–212, 2007.

[115] K. Souhila and A. Karim, “Optical flow based robot obstacle avoidance,” Interna-

tional Journal of Advanced Robotic Systems, vol. 4, no. 1, p. 2, 2007.

[116] A. Sgorbissa and R. Zaccaria, “Planning and obstacle avoidance in mobile robotics,”

Robotics and Autonomous Systems, vol. 60, no. 4, pp. 628–638, 2012.

106

[117] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion plan-

ning techniques for automated vehicles.,” IEEE Trans. Intelligent Transportation

Systems, vol. 17, no. 4, pp. 1135–1145, 2016.

[118] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,

U. Franke, N. Appenrodt, C. G. Keller, et al., “Making bertha drive-an autonomous

journey on a historic route.,” IEEE Intell. Transport. Syst. Mag., vol. 6, no. 2, pp. 8–

20, 2014.

[119] T. Gu, J. Atwood, C. Dong, J. M. Dolan, and J.-W. Lee, “Tunable and stable real-

time trajectory planning for urban autonomous driving,” in Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 250–256, IEEE,

2015.

[120] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun, “Anytime

dynamic a*: An anytime, replanning algorithm.,” in ICAPS, pp. 262–271, 2005.

[121] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-road autonomous

driving with avoidance of static obstacles,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 13, no. 4, pp. 1599–1616, 2012.

[122] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, “Real-time trajectory planning for au-

tonomous urban driving: Framework, algorithms, and verifications,” IEEE/ASME

Transactions on Mechatronics, vol. 21, no. 2, pp. 740–753, 2016.

[123] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online pomdp plan-

ning for autonomous driving in a crowd,” in Robotics and Automation (ICRA), 2015

IEEE International Conference on, pp. 454–460, IEEE, 2015.

[124] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng, “Efficient sampling-

based motion planning for on-road autonomous driving,” IEEE Transactions on

107

Intelligent Transportation Systems, vol. 16, no. 4, pp. 1961–1976, 2015.

[125] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” Ieee Pervas

Comput, vol. 7, no. 4, pp. 12–18, 2008.

[126] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,”

IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580–585, 1985.

[127] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d point

cloud based object maps for household environments,” Robotics and Autonomous

Systems, vol. 56, no. 11, pp. 927–941, 2008.

[128] S. Gumhold, X. Wang, and R. S. MacLeod, “Feature extraction from point clouds.,”

in IMR, Citeseer, 2001.

[129] A. Y. Hata, F. S. Osorio, and D. F. Wolf, “Robust curb detection and vehicle lo-

calization in urban environments,” in Intelligent vehicles symposium proceedings,

2014 IEEE, pp. 1257–1262, IEEE, 2014.

[130] T. Mörwald, J. Balzer, and M. Vincze, “Modeling connected regions in arbitrary

planar point clouds by robust b-spline approximation,” Robotics and Autonomous

Systems, vol. 76, pp. 141–151, 2016.

[131] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-

inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–

1020, 2018.

[132] G. E. Farin and G. Farin, Curves and surfaces for CAGD: a practical guide. Morgan

Kaufmann, 2002.

[133] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti

dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–

1237, 2013.

108

[134] S.-k. Yun and D. Rus, “Distributed coverage with mobile robots on a graph: loca-

tional optimization and equal-mass partitioning,” Robotica, vol. 32, no. 02, pp. 257–

277, 2014.

[135] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic explo-

ration of distributed information,” IEEE Transactions on Robotics, vol. 32, no. 1,

pp. 36–52, 2016.

[136] I. Shnaps and E. Rimon, “Online coverage by a tethered autonomous mobile

robot in planar unknown environments,” IEEE Transactions on Robotics, vol. 30,

pp. 966–974, Aug 2014.

[137] K. Bekris, R. Shome, A. Krontiris, and A. Dobson, “Reducing roadmap size for net-

work transmission in support of cloud automation,” IEEE Robotics and Automation

Magazine, 2016.

[138] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile

robotics,” Autonomous robots, vol. 31, no. 4, p. 299, 2011.

[139] E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with extended range

detectors,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 189–198, 2006.

[140] L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-driven online coverage planning

for autonomous underwater vehicles,” IEEE/ASME Transactions on Mechatronics,

vol. 18, no. 6, pp. 1827–1838, 2013.

[141] L. Xu and A. Stentz, “An efficient algorithm for environmental coverage with mul-

tiple robots,” in Robotics and Automation (ICRA), 2011 IEEE International Con-

ference on, pp. 4950–4955, IEEE, 2011.

[142] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary environ-

ment,” in IEEE International Conference on Robotics and Automation, pp. 5525–

109

5530, 2010.

[143] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via caging in envi-

ronments with obstacles,” in IEEE International Conference on Robotics and Au-

tomation, pp. 1471–1476, 2008.

[144] Y. Maeda, N. Kodera, and T. Egawa, “Caging-based grasping by a robot hand with

rigid and soft parts,” in IEEE International Conference on Robotics and Automation

(ICRA), pp. 5150–5155, 2012.

[145] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,” The Interna-

tional Journal of Robotics Research, vol. 31, no. 7, pp. 886–900, 2012.

[146] P. Pipattanasomporn, T. Makapunyo, and A. Sudsang, “Multifinger caging using

dispersion constraints,” IEEE Transactions on Robotics, vol. 32, no. 4, pp. 1033–

1041, 2016.

[147] W. Wan and R. Fukui, “Efficient planar caging test using space mapping,” IEEE

Transactions on Automation Science and Engineering, vol. 15, pp. 278–289, Jan

2018.

[148] P. Vongmasa and A. Sudsang, “Coverage diameters of polygons,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pp. 4036–4041, IEEE,

2006.

[149] G. A. Pereira, M. F. Campos, and V. Kumar, “Decentralized algorithms for multi-

robot manipulation via caging,” The International Journal of Robotics Research,

vol. 23, no. 7-8, pp. 783–795, 2004.

[150] V. Ivan and S. Vijayakumar, “Space-time area coverage control for robot motion

synthesis,” in International Conference on Advanced Robotics (ICAR), pp. 207–

212, IEEE, 2015.

110

[151] D. Zarubin, F. T. Pokorny, M. Toussaint, and D. Kragic, “Caging complex objects

with geodesic balls,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 2999–3006, IEEE, 2013.

[152] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approxi-

mate gaussian process regression,” Journal of Machine Learning Research, vol. 6,

no. Dec, pp. 1939–1959, 2005.

[153] E. Rodner, A. Freytag, P. Bodesheim, and J. Denzler, “Large-scale gaussian process

classification with flexible adaptive histogram kernels,” in European Conference on

Computer Vision, pp. 85–98, Springer, 2012.

111

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Related Work
	Belief Space-based Scene Understanding for Lane Marking Quality Assessment
	Related Work
	Problem Formulation
	Inputs, Assumptions, and Notations
	Quality Metrics and Problem Definition

	Metric Modeling
	Correctness Metric
	Shape Metric
	Visibility Metric

	Dual Modal Lane Detection Algorithm
	Road Surface Extraction by Sensor Fusion
	Lane Marking Segmentation in Each Modality
	Left and Right Lane Marking Determination

	Experiments
	Conclusion

	Belief Space Cross Validate from Crowdsourced Data for Lane Marking Verification
	Introduction
	Related Work
	Problem Formulation
	Assumptions and Coordinate Systems
	HD Map and Camera Inputs
	Problem Definition

	Algorithm
	Lane Marking Projection and Uncertainty Analysis
	Intra-Frame Lane Marking Verification
	Cross-frame Lane Marking Belief Update
	Algorithm

	Experiments
	Conclusion

	Belief Space for Tight connection between Perception and Planning
	Introduction
	Related Work
	Problem Definition
	Algorithm
	Free-space Detection
	VLB Generation
	LB representation
	Examining ALB quality
	VLB generation
	Weight settings

	VLB Registration

	Experiments
	Conclusion

	Belief Space-based Approach of Probabilistic Boundary Coverage for Unknown Target Fields
	Introduction
	Related Work
	Problem Definition
	Scenario and Assumptions
	UTF Properties and Modeling Perception
	Problem Definition

	System Modeling
	Ellipses, Robot Trajectory, Observation Set, and Initialization of the Depth-First Search
	Depth-First Search-based Boundary Traversing
	Branching Method
	Termination Scenarios
	Node/Ellipse Generation

	Boundary Coverage Performance Analysis
	Probability Bounds for a Point x in Aq
	Probability of Covering an UTF Boundary Point in Level Set Construction
	Ensure Boundary Coverage Quality
	Algorithm and Complexity Analysis

	Experimental Result
	Conclusion

	Conclusions and Future Work
	Conclusion
	Future Work

	REFERENCES

