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 ABSTRACT 

Variance Reduction and Outlier Identification for IDDQ Testing  

of Integrated Chips Using Principal Component Analysis. (December 2006) 

Vijay Balasubramanian, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Duncan M. Walker 

 

 

 

Integrated circuits manufactured in current technology consist of millions of 

transistors with dimensions shrinking into the nanometer range. These small transistors 

have quiescent (leakage) currents that are increasingly sensitive to process variations, 

which have increased the variation in good-chip quiescent current and consequently 

reduced the effectiveness of IDDQ testing. This research proposes the use of a multivariate 

statistical technique known as principal component analysis for the purpose of variance 

reduction. Outlier analysis is applied to the reduced leakage current values as well as the 

good chip leakage current estimate, to identify defective chips. The proposed idea is 

evaluated using IDDQ values from multiple wafers of an industrial chip fabricated in 130 

nm technology. It is shown that the proposed method achieves significant variance 

reduction and identifies many outliers that escape identification by other established 

techniques. For example, it identifies many of the absolute outliers in bad 

neighborhoods, which are not detected by Nearest Neighbor Residual and Nearest 

Current Ratio. It also identifies many of the spatial outliers that pass when using Current 

Ratio. The proposed method also identifies both active and passive defects.  
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I. INTRODUCTION 

1.1 Basics of Testing 

Testing of Integrated Chips (ICs) is a manufacturing step that ensures that the 

manufactured physical device does not have any kind of defects. The quality of a 

manufacturing process is measured by its yield, which is the fraction of good chips 

produced. The quality of testing is measured in terms of defect level (DL), which is the 

ratio of faulty chips that pass all tests; and fault coverage, which is the percentage of 

potential circuit faults that are tested. Testing helps with quality assurance and ensures 

that specifications are met in the final product shipped to customers. Feedback from 

testing, along with other comprehensive data collected during the manufacturing 

process, can be analyzed using statistical process control [1] to improve manufacturing 

quality. The manufacturing process produces wafers in batches known as lots, with each 

wafer containing multiple ICs.  

With recent advances in manufacturing technology, transistor geometries have 

shrunk significantly. Consequently, this has resulted in an increase in IC transistor 

density (number of transistors per unit area). Moore’s Law [2] states that transistor 

density is expected to double approximately every eighteen months. IC manufacturers 

have the capability to pack more functionality into any chip without significantly 

increasing its size. As a result, the complexity of testing ICs has also increased rapidly.  

______________ 

This thesis follows the style of IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems. 
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An ideal testing scheme would maximize fault coverage, while minimizing 

defect level and overall test costs. Any scheme would have to make a trade-off between 

fault coverage and test cost, as it is unnecessarily expensive and impossible for any test 

to screen all possible defects [3]. It is also important for any scheme to avoid false 

negatives. Any chip erroneously identified as defective has to be discarded and is a loss 

to the manufacturer. This is known as test overkill. 

1.1.1 Types of Tests 

Tests applied at the wafer level are known as wafer sort tests. Wafer sort tests are 

cost effective as they help in avoiding the cost associated with packaging defective 

chips. The savings achieved by early identification of defective chips becomes more 

significant as the cost of packaging increases [4]. There are two types of tests typically 

applied to ICs: functional and parametric tests. Functional tests are used to verify if 

known inputs result in expected behavior and outputs. A failure of this type means that 

the chip does not meet specifications and is definitely a defective chip. Parametric tests 

measure the value of specific parameters across the ICs in a wafer and mark a chip as a 

failure if the measurement falls outside normal expectations. Examples of parametric 

tests include speed (FMAX), minimum operating voltage (MINVDD) and quiescent 

leakage current (IDDQ) tests. Chips that fail functional tests are not subjected to 

parametric testing. Parametric failures indicate a problem with the quality of the chip, 

even if the specifications are met. An example of a parametric failure could be a chip 

that consumes more power than normal. This chip can still be used unless there are strict 

power constraints. Since these chips are still functional, the distinction between defective 
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chips and good chips is not always definitive, and the classification decision is 

subjective.  

1.1.2 Defects and Faults 

 

Figure 1. (a) Original layout and (b) actual silicon with bridging defect [5] 

A defect is defined as a physical deformation leading to device malfunction. 

Examples of defects include processing defects (missing contact windows), material 

defects (crystal imperfections), and packaging defects (contact degradation). There are 

infinite defects that can occur at the physical level, and thus it is impossible to test for all 

possible defects. Since multiple defects manifest themselves with similar behavior in the 

IC, defects are modeled as faults. Faults are higher-level abstractions of defects, with a 

(a) Printed layout 

Bridging defect 

(b) Manufactured silicon 
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finite number of fault locations on a chip. Examples of fault models include stuck-at-

zero (node values always at logic 0) and AND-bridge (short between two nodes modeled 

to behave as an AND gate) models. Figure 1 gives an example of a bridge between two 

nodes. A chip that does not have any defects will be referred to as a good chip in the rest 

of the thesis. 

Defects do not always cause functional failures. For example, the presence of a 

bridge between VDD and ground nodes of a chip increases the current flowing through 

ground and thereby increases the power consumption of the chip. This circuit, even 

though it might pass all functional tests, might still be a reliability risk.  

A defect has to be observable for it to be detected. A defect is observable at a 

node, if it affects the behavior or output of the IC. Functional tests strive to achieve high 

fault coverage on different fault models. In order for the defect to be detected, it has to 

be excited. Exciting a defect involves the use of a test vector that causes the defective 

node to behave differently than the defect-free node. 

Defects can be classified into active and passive defects. Active defects are those 

defects that are pattern dependent. This means that the defect is observable only for 

specific input patterns. It is the responsibility of the test engineer to ensure that the test 

strategy has high fault coverage on these types of defects. Passive defects are pattern 

independent. Defects can further be classified as local and global process defects. Global 

process defects like mask misalignment affect the functioning of a whole wafer and local 

process defects like bridges affect ICs in a specific locality. 
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1.1.3 Statistical Post Processing 

Burn-in (BI) tests have been the traditional method used for screening low 

reliability chips. During BI, ICs are subjected to stress at high voltage and temperature. 

The concept behind BI is that most of the risky chips fail at the early stages of their life 

(infant mortality) [6]. BI accelerates the aging process and catches infant mortality. 

Chips surviving BI are expected to have a low probability of failing in the field. The 

effectiveness of burn-in is decreasing because of the high costs and other physical effects 

[7]. Statistical post processing (SPP) of parametric test data collected at wafer sort has 

been suggested as an alternative to BI for identifying infant mortality [8].  

In order to account for the lack of clear distinction between the values of good 

and defective chips, SPP methods have to allow for variable thresholds when setting 

pass/fail limits. This should prevent too many chips having marginal values from being 

categorized as defective [9]. The threshold limit should take into consideration the trade-

off between DL and yield. Chips marked as defective because of unacceptable 

parametric data values will be referred to as outliers in the rest of the thesis. Outlier 

chips are known to have low reliability in the field [8]. The advantages of SPP methods 

are savings in time, fixtures, equipments and handlings [10]. Some examples of 

parametric tests used for SPP are low voltage (MINVDD) [11] and quiescent leakage 

current (IDDQ) [12] tests.  



 

 

6 

1.2 IDDQ Testing 

The leakage current (IDDQ) of a circuit is the current that flows through the 

ground nodes of an IC during its operation. The quiescent state for an IC is the state 

when all nodes have finished switching. A node is said to switch when its value changes 

from a binary 1 to 0 or vice versa.  

The main idea behind IDDQ testing is that in a good chip, there is no direct path 

between VDD and ground for static inputs. Theoretically, this means that there should be 

no current flow to the ground node of any chip. In practice, there is always some 

background leakage current, but the magnitude of this current is negligible. The only 

time when the leakage current is expected to be higher is when the input changes. This 

causes some transistors to become open and others to close. This creates a temporary 

path between VDD and ground. This value settles back to being negligible once the 

circuit reaches quiescent state. The presence of defects like a short across transistors can 

create a new path between VDD and ground at quiescent state, thus increasing the leakage 

current. This unexpected increase can be used to identify defects in chips.  

For example, Figure 2 shows a CMOS inverter circuit with one PMOS and 

NMOS transistor. When the input is logic 0, the PMOS transistor is closed and the 

NMOS open, causing the output to be logic 1. When the input changes from logic 0 to 1, 

the NMOS transistor turns on and the PMOS transistor turns off causing both transistors 

to be closed for a short time. This causes an increase in the leakage current above the 

usual noise. The final output settles to logic 0 and the leakage current stabilizes once 

both transistors reach their final state. The presence of a short across the PMOS 
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transistor as indicated in Figure 2, prevents it from being open, thus creating a path 

between VDD and ground, increasing the quiescent leakage current.  This type of defect 

is an active defect manifesting itself for an input of logic 0. 

 

Figure 2. (a) Inverter CMOS circuit and (b) inverter timing diagram [5] 

IDDQ tests have the capability to detect shorts between two switching nodes, 

between a signal and VDD and between VDD and ground. The first two defects are active 

defects and the third defect is a passive defect. Some engineers consider passive defects 

benign, since they do not affect circuit functionality. Chips with passive defects are 

unusable under strict reliability constraints. IDDQ testing falls under the category of 

parametric tests and there is no clear distinction between the values of leakage current of 

a defective chip and good chip.  

VDD 
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drain 

IDD 

Input 

Output 

IDD 

Time 

High switching transient current (IDDT) 

Low quiescent current (IDDQ) for fault-free circuit 

Quiescent current for defective circuit  

Defect 

(a) 
 
(b) 

Output Input 



 

 

8 

1.2.1 Advantages of IDDQ Testing 

There are many advantages of IDDQ testing [13]. One of the main advantages of 

IDDQ testing is that it has 100% observability, unlike functional tests, such as a stuck-at 

test. Any defect that elevates leakage current can be detected by observing the power 

supply current. The only responsibility of test engineers is to excite all possible defects. 

Further, high fault coverage can be achieved by using a relatively small number of test 

vectors [14]. It has also been shown that IDDQ tests are superior in identifying bridging 

defects when compared with voltage-based tests [15]. IDDQ is also a viable alternative to 

BI tests [12] and can be used to identify weak ICs with latent defects. IDDQ testing also 

detects some defects that are not detected by any other test methods [7], [16]. Some 

examples of this include resistive shorts, delay faults and faults in redundant logic.  

1.2.2 Technology Effects on IDDQ 

The number of transistors in ICs is constantly increasing. During quiescent 

operation, the CMOS IC has about half of its transistors on (closed) and the other half 

off (open). Each of the transistors in the off state contributes a small leakage current. As 

the number of transistors increase, this background leakage current also increases. 

The rapid increase in transistor density indicated by Moore’s Law is achieved by 

constantly decreasing transistor geometries. In particular, the channel length (L) of a 

transistor has decreased considerably. The channel length is defined as the distance 

between the source and drain terminals of a MOS transistor. If the power supply voltage 

(VDD) of a transistor is not lowered simultaneously with L, the internal electric field of 
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the transistor increases, decreasing the reliability of the transistor. Thus, VDD is reduced 

to improve reliability and to decrease power consumed by the transistor. Consequently, 

the threshold voltage of the transistor (VTH) has to be reduced in order to decrease the 

switching speed of transistors. The subthreshold leakage current of a MOSFET transistor 

is given by  

)1(2 tV
DS

V

tV
TH

V

GS
V

eeV
L

W
CI tOXSUB

−

⋅
−

−⋅⋅⋅⋅⋅=
η

µ  

where µ is the carrier mobility, COX is the gate capacitance per unit area, W is the 

channel width, VGS is the gate-to-source voltage, VDS is the drain-to-source voltage, Vt is 

the thermal voltage and η is a technology dependent parameter [17]. As indicated by the 

formula and as shown in Figure 3, the subthreshold leakage current increases 

exponentially with decrease in VTH [18]. 
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Figure 3. Effect of threshold voltage (VTH) on IDDQ [5] 
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Another phenomenon known as the short channel effect (SCE) [19] also 

increases the magnitude of leakage current of a short channel transistor. Figure 4 shows 

eight different components that affect the leakage current of a short channel transistor as 

suggested in [18]. I1 is the reverse bias saturation current flowing across the PN junction 

of drain-to-substrate and well-to-substrate. I1 is a significant component of the leakage 

current of long channel transistors. I2 is the subthreshold leakage current and is a result 

of current flow from the drain to the source terminal. This current flows when VGS is less 

than VTH. DIBL is the channel surface current induced by the lowering of VTH. GIDL 

occurs when a large electric field at the oxide-to-drain interface (due to VDD bias voltage 

across the gate and drain terminals) causes charge tunneling and hole electron pairs 

subsequently. I5 starts when applied voltage causes the charge depletion region of the 

source and drain to expand and meet, creating a short which allows the flow of current 

through them. This specifically affects short channel transistors where the source and 

drain depletion regions are closer to each other. I6 affects transistors with width less than 

0.5 µm. I7 is caused because of the presence of very thin gate oxides, which allow for 

tunneling of electrons across it. I8 is caused because of the injection of hot carriers into 

the oxide.  

For short-channel transistors, all eight components can play a significant role, 

whereas long channeled transistors have only one significant leakage component (I1). I2 

is insignificant for long channel transistors because of higher values of VTH. All the other 

components are a result of physical phenomenon associated with smaller geometries.  
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Because of this, SCE causes a further increase in leakage current values of short channel 

transistors. 

 

Figure 4. Leakage current components for short channel CMOS transistor [18] 

Maintaining exact measurements for small transistor geometries is difficult. Any 

error in the actual transistor geometries causes some variations in the performance of the 

chip. Any IC will have many physical and environmental variations because of the 

complexity of the manufacturing process. This expected variation across the various 

parameters of a short channel transistor is known as process variation. Process variations 

occur due to variations in oxide thickness, imperfections in spatial uniformity of gas 

flow in various manufacturing steps etc.  

For deep submicron (DSM) technology (technology using short channel 

transistors), the impact of process variation on IC performance is expected to be 

significant [20]. An example of the effect of process variation is that IDDQ measurements 

of an IC will have large variations because of variations in L (because of the exponential 
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relationship between ISUB and L). Process variations can affect the performance of an IC 

by up to 35% [21].  

1.2.3 Challenge Facing IDDQ 

I
th

I
th

(a) (b)

A B

I
DDQ

F
re

q
u
e

n
c
y

F
re

q
u
e

n
c
y

Fault - free chips

Faulty chips

Fault - free chips

Faulty chips

I
th

I
th

(a) (b)

A B

I
DDQ

F
re

q
u
e

n
c
y

F
re

q
u
e

n
c
y

Fault - free chips

Faulty chips

Fault - free chips

Faulty chips

DDQI

A

I
th

I
th

(a) (b)

A B

I
DDQ

F
re

q
u
e

n
c
y

F
re

q
u
e

n
c
y

Fault - free chips

Faulty chips

Fault - free chips

Faulty chips

I
th

I
th

(a) (b)

A B

I
DDQ

F
re

q
u
e

n
c
y

F
re

q
u
e

n
c
y

Fault - free chips

Faulty chips

Fault - free chips

Faulty chips

DDQI

A

 

Figure 5. Effect of single IDDQ threshold on (a) old and (b) DSM technologies [5] 

Traditionally, it has been easy to estimate the expected leakage current values for 

defect free ICs empirically or through simulations. Any IC with IDDQ value greater than 

the estimated value was considered faulty. This simple methodology is unsuitable for 

advanced and smaller technologies. The increase in IDDQ because of defects is not 

significant when compared to background IDDQ. This makes it hard to identify if a chip 

has high IDDQ values because of SCE or because of a defect. The effect of process 

variation further complicates this process. Process variation creates an overlap in the 

IDDQ values of defective and good chips as shown in Figure 5. This overlap causes any 

single threshold to create false negatives also known as test overkill (region B in Figure 
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5 causing loss to manufacturer) as well as false positives also known as test escapes 

(region A in Figure 5 affecting DL). This has contributed to a decrease in the overall 

resolution of IDDQ testing [19]. Hence, the International Technology Roadmap for 

Semiconductors [22] considers IDDQ to be a very difficult challenge.  

1.3 Research Objectives 

The aim of this research is to improve the resolution of IDDQ testing for DSM 

technologies, by identifying defective chips when taking into account the effects of SCE 

and process variations. The proposed research method aims to achieve variance 

reduction in the leakage current values of ICs in order to widen the gap between leakage 

current of defective and good chips. 

1.4 Structure of Thesis 

The rest of the thesis is organized as follows: Section II covers some of the 

previous work published in this field; Section III covers the proposed method and 

research methodology. Results obtained from implementing proposed method on IDDQ 

values of an industry standard chip are presented in section IV, followed by conclusions 

in Section V. 
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II. PREVIOUS WORK 

Initially, IDDQ testing methods concentrated on estimating maximum IDDQ of good 

chips and any chip with IDDQ greater than this value was considered defective. The 

threshold limit can be set through circuit simulations [23] - [25] or statistical analysis of 

empirical data [26]. Example of empirical analysis is identifying defective chips from 

the distribution of IDDQ data. Defective chips with high IDDQ values tend to be present at 

the tail of the distribution. Good chip IDDQ values have to be estimated on a vector-to-

vector basis in order to account for the different paths that are sensitized by each test 

vector.  

The usability of such methods has decreased with the use of short channel 

transistors. Efforts of the research community have shifted to techniques resistant to the 

effect of SCE and process variations. The bulk of research efforts have concentrated on 

three classes of methods for improving IDDQ testing: 

• The first class of methods uses manipulate measured IDDQ to achieve variance 

reduction. This reduces the overlap between defective and good chip 

distributions. 

• The second class of methods uses the correlation/dependence of IDDQ with 

other parameters to identify defective chips. 

• Finally, other methods use complex statistical analysis techniques to group 

chips as defective and good.  
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This section contains an overview of some of the important literature published 

by the research community. There are other techniques like the use of statistical 

clustering, wafer signatures, eigen-signatures, design for IDDQ testability, and IDDT based 

techniques [27] that are not covered in this section. 

2.1 Current Signature 

 

Figure 6. Example of current signature 

The current signature [28] of a chip is the graphical plot of IDDQ measurements 

for all test vectors sorted in ascending order. The presence of an active defect causes a 

rise in measured IDDQ and causes a step in the signature. Any chip with a sufficiently 
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large step in the signature is considered defective. Current signatures are also very useful 

for failure diagnosis [29]. Figure 6 gives an example of a current signature.  

Current signatures do not detect chips with passive defects, as the IDDQ 

measurements of all vectors will be elevated and do not produce any steps. In order for 

current signatures to be effective, there has to be a sufficient number of test vectors. 

Measurement of IDDQ is a slow process because of the waiting required for the chip to 

settle into the quiescent state. This makes it impractical to measure IDDQ for many 

vectors.  

2.2 Current Ratios 

The current ratio (CR) of a chip is defined as the ratio of maximum IDDQ to 

minimum IDDQ over all test vectors. It has been observed that the current ratios of good 

chips are almost equal, even for DSM technologies [30]. Current ratios are independent 

of the absolute value of currents and thus are self-scaling with process variations. For 

testing, the vectors causing minimum and maximum IDDQ values can be estimated using 

circuit characterization and the expected CR is calculated. The tester measures the IDDQ 

for these two vectors on all chips and rejects a chip if the CR is not within expected CR 

and its guard band. CR has the same disadvantages of current signatures in that it has 

difficulty detecting passive defects. The presence of a passive defect increases the IDDQ 

of all vectors proportionately, decreasing CR. The main disadvantage of CR is that some 

defective chips can still have the same CR value as good chips, thus making it hard to 

detect them.  
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2.3 Statistical Outlier Rejection Methods 

Statistical techniques like Chauvenet’s Criterion and the Tukey Test [31] can be 

used to estimate if entries in a population do not conform to normal behavior. Both these 

methods assume that the distribution of the population is normal. IDDQ values can be 

expected to have a lognormal distribution because of the exponential relationship 

between IDDQ and L. Lognormal data can be converted to the normal distribution by 

taking a natural log of the original data. The converted data set will still not be 

completely normal because of the effect of process variations and measurement noise.  

Chauvenet’s Criterion uses the probability of occurrence of a measurement to 

detect outliers. An observation is an outlier if the number of measurements at least as 

bad as the observation is less than a coefficient c, 

n(worse than observation) = N · Pr(Occurrence of Measurement) 

where N is the total number of observations. The probability of occurrence can be 

obtained from a normal error integral table. The value of c for a normal distribution is 

0.5. The Tukey Test rejects an observation as an outlier if it falls outside the range of  

[ LQ – k · IQR, UQ + k · IQR] 

where k is a constant, LQ is the first quartile value, UQ the third quartile value and IQR 

is the inter-quartile region (UQ – LQ). If the distribution is normal, a k of 1.5 

corresponds to the 3σ limit. For both these test methods, the coefficients must be chosen 

carefully taking into account the normality of the data set, in order to retain their 

effectiveness. 
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2.4 Correlation/Dependence of IDDQ on Other Parameters 

The leakage current of a good chip (explained in Section 2) depends on the 

temperature T. 

T

DDQ eI ∝  

A good chip with no defects can be expected to have higher leakage at higher 

temperatures. This relationship can be exploited to test ICs by making current 

measurements at two different temperatures [32]. IDDQ in the presence of defects may 

remain the same or decrease with an increase in temperature. The problem with this 

approach is that it is impractical because of the costs associated with testing at multiple 

temperatures during production. However, it is useful in diagnosis. 

Another physical parameter that affects IDDQ is the power supply voltage. IDDQ 

measurements for the same test vector at multiple voltages can be used to identify 

defective chips [33]. Implementation of testing at multiple voltage levels is not 

straightforward at the production level and there is a decrease in voltage spread with the 

decrease in VDD for DSM transistors. 

There is a high correlation between the leakage current of an IC and its 

maximum operating frequency. Both parameters are dependent on the channel length. 

Shorter channel length results in a linear increase in switching speed, but an exponential 

increase in leakage current. This correlation can be exploited to identify defective chips 

[34]. 
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2.5 Justification for Variance Reduction 

The idea behind variance reduction is that underlying process variations affecting 

IDDQ testing can be removed with the help of a reasonably accurate estimation of good 

chip IDDQ values ( Î ) [35]. The residue ( I
~

) calculated by 

III ˆ~
−=  

where I is the measured IDDQ test response, will have a distribution with reduced 

variance and reduced overlap of good and faulty chip distributions. Applying statistical 

techniques on the residual to identify outliers will improve DL and decrease false 

negatives.  

Assume that the estimates for good chip IDDQ values Î  are accurate and the 

wafer predominantly contains good ICs. In this situation, the mean value of residual 

I
~

would be nearly zero. Mathematically, 

0]ˆ[][]ˆ[]
~

[ ≈−=−= IEIEIIEIE   

In a wafer with outlier measurements, with ε  being the offset from I, the expected value 

of the residual is:  

εεεε ≈+=+=−+ ]
~

[]
~

[]ˆ[ IEIEIIE . 

This shows that the effect of the defect will still be present in the residual and that 

information is not lost with variance reduction [35]. This is true only if the estimate Î  is 

reasonable.  

For any wafer, the variance of I
~

is  

IIIIIVar ˆ
2
ˆ

2 2)
~

( σσρσσ ⋅⋅−+=   
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where 2σ represents variance and ρ is the covariance between I and Î . In order to 

reduce the variance of I
~

, there must be a high correlation between I and Î  [35]. The 

following cases from [35] clarify this situation: 

• If the good chip IDDQ estimate is the mean of the measured values, then 

0ˆ =
I

σ and the variance of I
~

will be the same as the variance of I. 

• If the good chip estimate is the same as the measured values, then 

II
σσ =ˆ and 1=ρ . This causes the variance of I

~
to be zero. 

• If 22
ˆ 8.0 II

σσ =  and 8.0=ρ , then 22.0)
~

( IIVar σ= . 

Thus, any reasonably accurate good chip IDDQ estimate can be used to achieve variance 

reduction and to improve the likelihood of detecting the presence of a defect. 

In order to formulate a good estimate of good chip IDDQ, data statistics such as lot 

means, standard deviation of wafer means, average wafer standard deviation and 

standard deviation of wafer standard deviations can be used as clues to identify variation 

sources more accurately [36]. 

2.6 Delta IDDQ 

Delta IDDQ is a variance reduction method that tries to eliminate background 

leakage currents [37]. The delta IDDQ of a chip for the i
th

 vector is defined as  

)1()()( −−=∆ iIiIiI DDQDDQDDQ  

where IDDQ(i) and IDDQ(i-1) are the leakage current measurements for the i
th

 and (i-1)
st
 

vectors. For a good chip, the mean value of ∆IDDQ should almost be equal to zero since 
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each vector will sensitize similar leakage paths. The presence of an active defect causes 

a spike in the ∆IDDQ values. The assumption here is that there is at least one test vector 

that causes excitation of a defect and one adjacent vector that exhibits normal leakage 

values. The presence of a passive defect causes all the IDDQ values to be high and thus 

does not affect ∆IDDQ. The effectiveness of delta IDDQ depends on the number of test 

vectors. The limited number of test vectors reduces its effectiveness. The future of delta 

IDDQ for DSM technologies is questionable [15].  

  

Figure 7. Wafer level raw IDDQ surface plot 
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2.7 Wafer Level Spatial Correlation Methods 

The good chip IDDQ values of neighboring chips on a wafer have high correlation 

as they undergo similar process parameters and changes. As a result, the IDDQ values of 

neighbors can be used as an estimate for the purpose of variance reduction. Defect 

clustering also suggests that a chip with many defective neighbors is more likely to fail. 

Any chip that has significantly higher IDDQ values when compared to its neighbors is a 

termed a spatial outlier. Every chip in a wafer has at most eight immediate neighbors. 

Chips on the wafer edge will have less than eight neighbors and other chips might have 

less than eight if some of the neighbors failed functional tests (and so no IDDQ test was 

applied). Figure 7 shows an example of IDDQ surface plot across a wafer. Many methods 

have been proposed that take advantage of the spatial correlations between chips. Wafer 

level post processing has applicability to other parametric test data and helps in 

improving the early failure rate [8]. The main disadvantage of wafer level analysis is that 

any defective chip present in a bad neighborhood will pass because of conformance with 

chips in the immediate neighborhood, increasing the DL.  

2.7.1 Nearest Neighbor Residual (NNR) 

The mean IDDQ at a location over all test vectors is used as the IDDQ of an IC for 

spatial analysis. This method uses the median of neighboring chips IDDQ as the estimator 

for variance reduction [38]. The median is resistant to outliers, so the estimate will retain 

its accuracy even in the presence of defective neighbors. High residuals are considered 

an indicator of defective chips. If any chip does not have all its eight neighbors, chips at 
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longer distances are used to obtain at least eight for use in the estimate. To avoid the bias 

generated by choosing random chips at longer distances, all the chips at a particular 

distance from the current chip being tested are used. The effectiveness of NNR depends 

on the smoothness of the within-wafer measurement values. In the presence of regular 

spatial patterns, such as due to stepper fields, sophisticated neighbor selection methods 

must be used to identify neighbors with the highest correlation [39].  

2.7.2 Neighbor Current Ratio (NCR) 

The NCR value of a node is defined as the ratio of the IDDQ of a chip to that of its 

neighbor for the same test vector [40]. The NCR value of a good chip is expected to be 

equal to one. Process variation causes some variation in the value of NCR, but it should 

be close to one. The maximum NCR value of a chip over all test vectors and all 

neighbors is used for outlier analysis. NCR is a variance reduction method using the 

ratio as the mode of variance reduction rather than the residual. In the absence of 

neighbors, dies at farther distances can be used in a method similar to that of NNR. 

2.7.3 Spatial Fit Method 

The IDDQ values coupled with the X and Y location of neighbors can be 

manipulated to estimate maximum good chip IDDQ values for the purpose of variance 

reduction. Using IDDQ as the value for the Z dimension, linear regression can be used to 

form the best fit plane and the estimate for the current chip being tested can be extracted 

from the plane [41].  For forming the best-fit plane, one needs at least three data points, 

and if a chip does not have three neighbors, dies at longer distances are used.   
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2.7.4 Immediate Neighbor Difference IDDQ Test (INDIT) 

This method is similar to NNR. The main difference is that the analysis is 

performed on a vector-by-vector basis. The residual for a chip is calculated as the 

maximum of the residual with each of the neighbor [42]. Outlier analysis is performed 

on the residual data for each vector.  

2.7.5 Neighbor Selection Using Location Averaging 

A fixed neighborhood for wafer level spatial analysis works fine when the IDDQ 

across the wafer exhibits a smooth pattern. Along with smooth patterns, IDDQ data also 

exhibit systematic patterns across the wafer, due to processing effects such as the stepper 

field. Linewidth variation within the stepper field results in a checkerboard pattern in 

measured values across the wafer. The effects of such patterns vary on a wafer-to-wafer 

and lot-to-lot basis. This makes it essential to use a neighbor selection scheme that 

dynamically identifies inherent patterns across a wafer.  

Location averaging [39] is one such method. The first step involves using every 

candidate neighbor as the estimate for the whole wafer. The best residual obtained across 

the whole wafer using this estimate is computed (median of residuals).  The candidate 

neighbors that have the best residual with respect to the whole wafer are used for 

performing variance reduction.  
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2.8 CR and NCR 

A combination of CR and NCR can be effectively used to weed out false 

positives from each of the tests [43]. The advantages of CR and NCR complement each 

other. For example, low CR value and a correspondingly high NCR value indicate the 

presence of a passive defect. This kind of defect, which escaped detection in CR, will be 

detected by NCR. Conversely, CR can detect a chip in a bad neighborhood that contains 

an active defect, which may escape the NCR test. The presence of a passive defect in a 

bad neighborhood is one situation where neither CR nor NCR identifies the defect.  

2.9 Independent Component Analysis (ICA) 

ICA has been suggested as an SPP method to identify outliers in IDDQ data [44]. 

ICA is a multivariate statistical analysis technique that extracts statistically independent 

sources of variations from the original data. The independent sources of variations are 

used to model the underlying process parameters and process variations. NNR analysis is 

performed on each of the extracted source to identify outliers. 

2.10 Variable Reduction Using Principal Component Analysis (PCA)  

PCA is another multivariate statistical technique that is used to extract 

uncorrelated sources of variations from a data set. A variable reduction (VR) method 

[45] based on PCA can be used to remove IDDQ measurements from the data set that 

provide redundant information and other measurements that explain very little variance. 

VR is used to reduce the complexity of the data set being analyzed. The output of VR is 
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run through PCA again, the Euclidian distance of all chips is calculated with the source 

values as coordinates, and a contour is set. Any chip that falls outside this contour is 

considered defective (or a candidate for burn-in). 

2.11 Need for Future Research 

There is no one test that can identify all defects while avoiding false negatives 

and false positives. Each test has its own advantages where they catch specific kinds of 

defects or defect behaviors. Development of new test methods will increase the total 

number of defects detected and reduce the DL. 

None of the variance reduction methods explained in this section attempt to 

model the measured IDDQ values based on underlying physical factors like SCE, when 

trying to estimate good chip values. The contribution of this thesis is to use principal 

component analysis for the purpose of variance reduction and specifically, to estimate 

good chip IDDQ values. The effects of physical factors are inherently accounted for by 

PCA. The proposed outlier rejection techniques also attempt to identify passive and 

active defects, irrespective of if they are present in a good or bad neighborhood.  
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III. PROPOSED METHOD 

The main causes for the decrease in resolution of IDDQ testing are the effects of 

SCE and process variations. In the technique proposed in this thesis, a multivariate 

statistical analysis method known as principal component analysis (PCA) is used to 

model and extract the effects of SCE and process variations. PCA is preferred over ICA 

because the physical parameters affecting IC performance are correlated to each other 

rather than independent to each other. The extracted parameters are used to estimate the 

good chip IDDQ values for the purpose of variance reduction. Analysis is performed on a 

wafer-by-wafer basis because different process parameters may have varying 

significance in different wafers. 

3.1 Principal Component Analysis  

Multivariate statistics consists of procedures that involve the observation and 

analysis of more than one statistical variable. PCA is one such procedure that aims to 

reduce the dimensionality of a data set while retaining majority of the variance of the 

original data set [46]. Reduction in the dimensionality is possible only when the inputs 

are interrelated. For example, suppose we are interested in studying the variance and 

correlation/covariance structures of p variables in a data set x. We would have to analyze 

the data as well as )1(
2

1
−⋅⋅ pp  entries in the correlation/covariance matrix. This is not 

feasible unless the size of p is small. An alternative approach is to analyze a derived data 

set y (obtained using PCA), which retains most of the variance and 
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correlation/covariance information from x using m variables.  If m<p, then the amount of 

data to be analyzed reduces. 

The set of variables outputted by PCA are known as principal components (PCs 

or components). PCA extracts components concentrating on variances. PCs are extracted 

in increasing order of variance explained and all PCs are uncorrelated. The variability in 

the original data set is projected onto a set of new axes. PCA extracts as many PCs as the 

number of variables (p). In general, the first few (m) components are expected to explain 

most of the variance in the original data, where m << p for large values of p. The rest of 

the components are not important in terms of the variance of the original data set. Figure 

8 shows an example of how to visualize PCA. The original data set has two variables (x 

and y) and PCA outputs two PCs, with the first PC explaining most of the variance. 

There is no reduction in the number of meaningful components because of the small 

value of p. However, PCA helps in better visualization of the data. 

 

Figure 8. Visualization of PCA 
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3.1.1 Scree Test 

 

Figure 9. Scree plot for selecting significant PCs 

There are many ways to decide on the number of PCs to retain (choosing the 

value of m) during dimensionality reduction. One such method known as the Scree test 

uses a graph known as the Scree plot [47].  The Scree plot is a line graph of the 

eigenvalues of each PC against their index. The eigenvalues are computed during PCA, 
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and represent the importance of each component. The number of PCs to be retained (m) 

is chosen such that the slope of all lines before the m
th

 PC are all steep and to the right of 

the m
th

 component are not steep.  The definition of steep and not steep is subjective. 

Figure 9 shows an example of a Scree plot with a cutoff point. 

3.1.2 Factor Scores, Factor Pattern and Factor Loading Matrices 

The new data set that is output by PCA is referred to as factor scores (y) in the 

rest of the thesis. Another feature of PCA is that the PCs extracted are a linear 

combination of the p variables in the original dataset x standardized (xSTD). The 

coefficients used to achieve this transformation will be referred to as the factor loading 

matrix (A).  

Axy STD ⋅=  

The original data set can also be represented as a linear combination of the extracted 

PCs. The coefficients of this transformation will be referred to as the factor pattern 

matrix (B). 

ByxSTD ⋅=  

kppkkk bybybyx +++= ...2211  

where kx  is the k
th

 variable in xSTD.  
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3.2 Variance Reduction Using PCA 

The main idea behind the proposed method is that PCA is used to model the 

inherent physical effects that are affecting the leakage current in DSM transistors. The 

good chip IDDQ values of all chips in a wafer are estimated by manipulating the output of 

PCA and outliers are identified from the reduced data. In order to run PCA on the data, 

we need to identify the input data set. For this case, the input will be the IDDQ 

measurements of all chips across one wafer for multiple test vectors. Each test vector 

IDDQ value is a variable for PCA. Some preprocessing is done on the data, to make it 

more suitable for PCA.  

3.2.1 Normalizing Transformation 

PCA does not make any assumptions about the distribution of the input data set. 

However if the input data set follows the normal distribution, the accuracy of the PCs 

extracted increases. IDDQ follows the lognormal distribution and the natural log of IDDQ 

measurements is used to make the inputs closer to the normal distribution.  

3.2.2 Scaling of Data 

Applying the normalizing transforms to IDDQ data causes negative values to be 

part of the data set used as input to PCA. To avoid this, IDDQ data is scaled before the 

normalizing transform is applied. The formula used for scaling is:  

)min( _

_

_

iDDQ

iDDQ

iSCALED
I

I
I =  
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where iDDQI _  is the IDDQ measurement for the i
th

 vector and iSCALEDI _  is the 

scaled value for the i
th

 vector. 

3.2.3 Extreme Outlier Removal 

The presence of extreme outliers in a data set has a disproportionate impact on 

the PCs, and in some cases, the PCs may be significantly determined based on these 

outliers [46]. These extreme outliers with very high IDDQ values for some test vectors 

need to be removed from the data set, to avoid distorting the results. For this purpose, a 

very high hard threshold can be used. If any chip has a measured IDDQ value that is 

greater than this threshold, it can be rejected as an outlier. Other techniques that can be 

used are statistical methods like the Tukey test or Chauvenet’s criterion. Any of the 

methods covered in Section II. Previous Work should work for this purpose. Care has to 

be taken to ensure that the pass/fail threshold is not too strict, as the objective is to 

remove the extreme outliers only. 

3.2.4 Variance Reduction 

Running PCA on the normalized, extreme outlier removed IDDQ data, outputs a 

set of factor scores, the factor pattern and factor loading matrices, and the Scree plot. 

The factor scores will be the score of each chip on the different components. The results 

will contain as many components as the number of test vectors in the original data set.  

As explained above, the first several components explain most of the variance in the 

input data set. The Scree plot is used to identify how many of the components to retain 

for further manipulation. 
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In the IDDQ data, the first component output by PCA explains most of the 

variance. This component likely explains transistor gate length variation. Gate length 

varies more than other process parameters, and affects IDDQ through the short channel 

effect. The second component is likely to be VTH implant variation, which directly 

affects leakage. The labeling provided with this analysis is just an educated guess based 

on the knowledge of underlying physics of ICs. It would be impossible to identify the 

components with high confidence based only on the IDDQ measurements.  

The variances explained by the significant components are expected for all chips 

across a wafer, including defective ones. These components theoretically exacerbate the 

problem of identifying defective chips, by increasing good chip IDDQ values and by 

causing significant variations in measured IDDQ.  

The significant components in the original IDDQ measurements can be used to 

estimate good chip IDDQ for the purpose of variance reduction. Reduced data can be 

calculated by subtracting the good chip IDDQ values from the original IDDQ 

measurements. The only variance remaining in the reduced data should be that caused by 

defects. To calculate the reduced IDDQ data, the factor pattern matrix and the factor 

scores need to be manipulated.  

mmSTDRED Byxx ..1..1 ⋅−=  

where REDx  is the reduced IDDQ data, STDx  is the standardized original IDDQ data, my ..1  is 

the factor scores for the first m significant component and mB ..1  is the factor pattern 

matrix containing coefficients for the first m significant components. 
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3.2.5 Outlier Identification 

Active defects present in chips increases the IDDQ measurements for defective 

chips and only for the test vector exciting the defect. The increase in IDDQ by this kind of 

defect should not account for significant variance in the original data. IDDQ outliers 

caused by active defects should be a part of the other ignored components.  On the other 

hand, passive defects increase the IDDQ of a chip for all test vectors. This might cause 

significant variations in the original data, and might be hidden in the significant 

components.  

In order to identify active defects, we need to perform statistical analysis on the 

reduced IDDQ measurements. The variance of the reduced data set should be much lower 

than the variance of the original data. Any kind of statistical method covered in the 

previous work, such as the Tukey test, can be applied at this stage, on each of the test 

vectors. Further variance reduction should be avoided as the main cause of variations 

have already been identified and extracted. 

In order to identify passive defects, we need to analyze the significant 

components. We can perform statistical outlier analysis using methods such as the Tukey 

test, or apply variance reduction methods like NCR or NNR to each of the significant 

components to identify passive defects hidden in each of them.  

3.3 Overview of Proposed Method 

The following steps are an overview of the proposed method with the flow chart 

shown in Figure 10. 
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• Scale data. 

• Apply normalizing transform to IDDQ measurements. 

• Remove extreme outliers from transformed data. 

• Run PCA on data. 

• Use Scree plot to identify number of significant components. 

• Compute standardized IDDQ values. 

• Perform data reduction using factor scores and factor pattern matrices. 

• Identify active defects in reduced data. 

• Identify passive defects in different significant components. 

 

Figure 10. Flow chart of proposed method 
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IV. IMPLEMENTATION AND RESULTS 

The scripts used to execute the different stages of the proposed solution approach 

were implemented in Matlab. The script for PCA was written in SAS, which outputs the 

factor pattern, factor scores and factor loading matrices for any given input.  

The idea was implemented and tested on IDDQ measurements from a high-volume 

industry chip manufactured using 130 nm technology. The IDDQ data set contains 

measurements for 10 test vectors across 14 different wafers. Leakage current was 

measured for each test vector pre and post voltage stress (an elevated voltage designed to 

cause failure in weak transistor gate oxides).  

All analysis for the proposed method has been performed on scaled and 

normalized IDDQ measurements and not the original measurements. Any reference to 

IDDQ with respect to the proposed method is actually referring to the scaled and 

normalized data. The analysis for evaluation on classic methods such as NCR, NNR etc. 

have been done using the original IDDQ measurements without any scaling or 

normalizing transforms. The reason is that methods such as NCR and NNR are self-

scaling. 

4.1 Normalizing Transformation 

Figure 11 shows the normal probability plot of scaled IDDQ measurements for a 

vector across one wafer, and Figure 12 shows the normal probability plot of the same 

vector after applying the natural logarithm as a normalizing transform. This 

transformation is used because IDDQ is exponential in transistor threshold voltage, which 
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in turn is primarily linear in transistor gate length. Since gate length variation is the 

dominant process variation, if gate length is Normal, then IDDQ will be lognormal. Using 

the log transform should result in data that is Normal, except for outliers. 
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Figure 11. Normal probability plot of scaled IDDQ data 

The normalized data values in Figure 12 are closer to the normal line (red) than 

in Figure 11. Since our outlier analysis techniques and PCA depend on normally-

distributed data, the log of the scaled IDDQ values is used for analysis.  
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Figure 12. Normal probability plot after normalizing transform 

4.2 Pre and Post Stress Data 

As mentioned above, the IDDQ data set contains leakage current measurements for 

different test vectors at nominal operating voltage. The chips were then subjected to 

stress at higher voltages. The same test vectors were reapplied to the chips again at 

nominal operating voltage. For chips without gate oxide defects, the voltage stress does 

not affect IDDQ significantly. For some chips with defects, applying high voltage can 

either heal the defect (causing post-stress IDDQ to be lower), or cause a low reliability 
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chip to become defective (post-stress IDDQ is higher). Any chip that has a significant 

positive or negative shift in IDDQ is a defective chip with reliability issues.  
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Figure 13. Pre vs. post stress normalized IDDQ scatter plot 

Figure 13 shows that most of the pre and post stress measurements fall on the 

x=y line, with a small guard band around it. These chips did not have any significant 

shift in their IDDQ measurements. The data points above the line are chips in which the 

leakage current increased after stress and the points below the line are healer chips, 

which have lower IDDQ after stress. Both the pre and post stress data is used in the 
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analysis as two different test vectors because of their combined ability to identify 

defective chips. Pre stress data is referred to as vectors 1-10 and post stress is referred to 

as vectors 11-20. For classic IDDQ analysis methods, analysis is performed on the pre and 

post stress data separately and the results are combined. 

4.3 Statistical Information about Test Data 

Table I shows the correlation matrix between the IDDQ measurements of different 

vectors for wafer 1. The post stress vectors are not included in this table because of their 

similarities with the pre stress data.  

Table I. Correlation matrix of wafer 1 pre stress vectors 

Vector 1 2 3 4 5 6 7 8 9 10

1 1 0.7117 0.7361 0.9545 0.9727 0.9829 0.9712 0.9786 0.8952 0.9724

2 0.7117 1 0.5231 0.7066 0.708 0.7196 0.7112 0.7161 0.6456 0.7164

3 0.7361 0.5231 1 0.7571 0.7347 0.7421 0.7336 0.7367 0.7277 0.7352

4 0.9545 0.7066 0.7571 1 0.9671 0.9615 0.9594 0.9596 0.8982 0.9605

5 0.9727 0.708 0.7347 0.9671 1 0.9767 0.9778 0.9808 0.9036 0.9695

6 0.9829 0.7196 0.7421 0.9615 0.9767 1 0.9776 0.9823 0.8922 0.9802

7 0.9712 0.7112 0.7336 0.9594 0.9778 0.9776 1 0.9821 0.8873 0.9709

8 0.9786 0.7161 0.7367 0.9596 0.9808 0.9823 0.9821 1 0.8968 0.972

9 0.8952 0.6456 0.7277 0.8982 0.9036 0.8922 0.8873 0.8968 1 0.8804

10 0.9724 0.7164 0.7352 0.9605 0.9695 0.9802 0.9709 0.972 0.8804 1  

One can observe from Table I that all the test vectors except vectors 2 and 3 are 

highly correlated with each other. Vectors 2 and 3 do not have high correlation with any 

of the other test vectors, except their corresponding post stress vector (not displayed). 

Many of the wafers in the test data follow a correlation structure similar to Table I. Table 

II shows the correlation matrix of wafer 3, in which none of the test vectors are highly-
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correlated. Wafer 4 has a similar correlation structure. This indicates that there can be 

significant variation in the behavior of ICs on different wafers. For this reason, the test 

data analysis is performed wafer-by-wafer.  

Table II. Correlation matrix of wafer 3 pre stress vectors 

Vector 1 2 3 4 5 6 7 8 9 10

1 1 0.3457 0.4611 0.5108 0.4148 0.4678 0.4886 0.3783 0.4924 0.5133

2 0.3457 1 0.5927 0.4204 0.3938 0.5345 0.5556 0.4405 0.5276 0.5278

3 0.4611 0.5927 1 0.5797 0.4595 0.6493 0.6528 0.4909 0.6802 0.6472

4 0.5108 0.4204 0.5797 1 0.3919 0.5463 0.5347 0.4043 0.5583 0.5649

5 0.4148 0.3938 0.4595 0.3919 1 0.4904 0.4923 0.3319 0.4657 0.4412

6 0.4678 0.5345 0.6493 0.5463 0.4904 1 0.7348 0.5733 0.7277 0.7387

7 0.4886 0.5556 0.6528 0.5347 0.4923 0.7348 1 0.5826 0.7428 0.7116

8 0.3783 0.4405 0.4909 0.4043 0.3319 0.5733 0.5826 1 0.5398 0.5161

9 0.4924 0.5276 0.6802 0.5583 0.4657 0.7277 0.7428 0.5398 1 0.7467

10 0.5133 0.5278 0.6472 0.5649 0.4412 0.7387 0.7116 0.5161 0.7467 1  

4.4 Extreme Outlier Removal  

Since the IDDQ data is used as input to principal component analysis, extreme 

outliers must be removed from that data to maintain the integrity of PCA. Of the 

different methods explained before, the Tukey test was used to remove extreme IDDQ 

values. The Tukey test analyzes the data on a vector-by-vector basis and sets different 

limits for each vector, but uses the same Tukey coefficient. As a recap, a value x is 

considered to be an outlier if 

x > UQ + k ·IQR 

where k = 3.5, UQ is the upper quartile and IQR is the inter-quartile range. The lower 

bound was not considered because we do consider low IDDQ values in this research. The 
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Tukey test was chosen because of its simplicity, ease of implementation and normality 

of the test data over the IQR. A k value of 3.5 was chosen to allow for a loose limit (1.5 

corresponds approximately to the 3σ limit for normal data) that would still reject 

extreme values. Figures 14 and 15 show the normal probability plots for IDDQ 

measurements of the first vector on Wafer 1, before and after outlier removal.  
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Figure 14. Normal probability plot for normalized IDDQ of wafer 1 vector 1 
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Figure 15. Effect of removing extreme outliers for wafer 1 vector 1 

Spatial analysis using NNR with outliers rejected using the Tukey test with a 

coefficient of k=3.5, was also performed on the input data after removal of Tukey 

outliers. The idea behind this was that any chip that is an extreme spatial outlier is also 

an obvious outlier. For this case, spatial analysis did not identify any extreme outliers. 

This can be attributed to Tukey outliers being a super set of the extreme spatial outliers.  

4.5 PCA 

After removing extreme outliers from IDDQ data, PCA was run using the scaled 

and normalized IDDQ measurements as the input data set.  
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Table III. Percentage of variance explained by PCA components wafer-by-wafer 

Wafer 1 2 3 4 5 6 7 8 9 10

Component 1 83.45 75.59 50.25 55.49 70.78 78.36 78.5 79.75 87.9 75.45

Component 2 6.05 6.26 5.62 5 7.88 7.02 6.15 8.1 3.5 6.1

Component 3 4.85 4.19 4.61 4.68 6.36 5.47 3.8 3.15 2.65 4.1

Component 4 2.2 2.38 4.215 4.86 2.46 1.67 2.05 2.15 1.15 2.55

Wafer 11 12 13 14

Component 1 76.8 80.15 70.45 84.1

Component 2 5.65 4.1 5.65 7.1

Component 3 4.8 3.15 4.5 2.35

Component 4 2.45 2 3.45 1.9

 

 

Figure 16. Scree plot of eignevalues for wafer 1 
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Figure 17. Scree plot of eigenvalues for wafer 3 

Table III lists the percentage of variance in the original data explained by the first 

four components output by PCA. For most wafers, the first component explains most of 

the variance. This can be expected because of the high correlations between the IDDQ 

measurements of most of the test vectors. The first component for wafers 3 and 4 

explains only about 50% of the variance. This is because of the poor correlation between 

the IDDQ of different test vectors for these wafers. Figures 16 and 17 show the Scree plot 

for wafers 1 and 3. The Scree plot explains the significance of the different components. 
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PCA outputs 20 components because there are 20 test vectors in the input data. The first 

two components for each wafer were identified as significant using the Scree test. The 

addition of chip X and Y location as inputs to PCA was evaluated, but it did not 

significantly increase the variance explained by the components.  

4.6 Component Identification 

Figures 18 and 19 show the surface plots of several vectors in wafers 1 and 3. 

They also contain the surface plot of the significant components. Wafers 1 and 3 are 

used here because they are representative of the structure of data present in the 

remaining wafers.   

It can be observed from the surface plots that the first component looks similar to 

the surface plots of vectors in both wafers. The first component based on the figures can 

be labeled as the expected IDDQ at any given location considering IDDQ of all test vectors. 

This component can be assumed to explain the effects of SCE. The second component is 

more difficult to identify and label. The second component tries to explain the variance 

in the IDDQ measurements for the test vector with the most variance. For example, in 

wafer 1, component 2 extracted information about vector 2.   

4.7 Variance Reduction 

The factor pattern, factor score and factor loadings output by PCA are for the 

standardized input IDDQ data. As a result, all the following plots are based on analysis of 

standardized data. The variance for each standardized vector is 1 for any wafer. 
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Figure 18. Surface plot of wafer 1 IDDQ and significant components  
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Figure 19. Surface plots of wafer 3 IDDQ and significant components 
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Table IV. Variance of reduced vector data for wafers 1 and 3 

Vector 1 Vector 2 Vector 3 Vector 4 Vector 5 Vector 6 Vector 7 Vector 8 Vector 9 Vector 10

Wafer 1 0.0493 0.1974 0.3136 0.0716 0.0426 0.0369 0.0416 0.0398 0.2147 0.0456

Wafer 3 0.6813 0.2272 0.4026 0.6083 0.7258 0.3203 0.3215 0.6544 0.3192 0.3104  

The proposed variance reduction method creates reduced test data, with the IDDQ 

of each vector reduced. Table IV shows the variance of the reduced data. For wafer 1, 

the variance reduces considerably for all vectors except for 2, 3 and 9, which have less 

correlation with other vectors. Variance reduction for wafer 3 achieves some reduction, 

but not comparable to wafer 1. This can again be attributed to the lack of high 

correlations between the IDDQ measurements for the vectors in wafer 3. Figures 20, 21, 

22 and 23 give a visual representation of the reduction by displaying the surface plot of 

the original as well as the reduced IDDQ data along with the normal probability plot.  

As observed in Figure 20 for wafer 1 vector 1, the surface plot of the reduced 

IDDQ values is smooth and without significant variation. The main sources of variation 

are large positive and negative spikes in the surface plot. The positive spikes are due to 

defective chips. In the normal probability plot of the reduced data for wafer 1 vector 2, 

one can observe that almost 50% of the chips have a reduced data close to zero (between 

the probability range of 0.25 to 0.75). This shows that the prediction for vector 2 through 

PCA is accurate for 50% of the data.  

For wafer 3, no significant inferences can be made from observing the reduced 

data in Figures 22 and 23. 
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Figure 20. Variance reduction for wafer 1 vector 1 
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Figure 21. Variance reduction for wafer 1 vector 2 
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Figure 22. Variance reduction for wafer 3 vector 1 
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Figure 23. Variance reduction for wafer 3 vector 2 
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4.8 Outlier Identification 

In order to identify defective chips in the input data, outlier analysis needs to be 

performed on the reduced data as well as the first and second components. All the plots 

in this subsection are with respect to the standardized IDDQ data.  

4.8.1 Detecting Chips with Passive Defects 

The components represent the variance expected for all the chips in a wafer for 

all test vectors. Outlier analysis on the first and second components identifies passive 

defects. A combination of Tukey test and spatial analysis was used to analyze the 

components. The Tukey test classifies a chip as defective if its measurement for either 

component is too high. A Tukey coefficient of k=1.75 was used for the first component 

and k=2 was used for the second component. These values were set based on visual 

observation of the data. The coefficients can be adjusted to trade between yield and 

defect level. 

The output of the Tukey test is then subjected to spatial analysis to identify 

spatial outliers that do not conform to its neighbors. Tukey is performed before spatial 

analysis, in order to reject outliers that would distort the spatial analysis. NNR was used 

for the wafer level spatial analysis. After finding the residuals in NNR, a Tukey test with 

coefficient k=2.5 was used to remove outliers. Eight neighbors of a chip were chosen 

from a 5x5 square matrix around it, with the chip under analysis being in the center of 

the square. Correlations between the center chip and the neighboring chips were 
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computed. The top eight neighbors for which there is IDDQ data are used in the NNR 

analysis. Fewer neighbors are used if eight are not available. 
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Figure 24. Surface and normality plot of first two components of wafer 1 
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Figure 25. Outlier analysis on first component of wafer 1 
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Figure 26. Outlier analysis on second component of wafer 1 
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Figures 24 – 26 are visual representations of the outlier analysis performed on the 

components for wafer 1. Outlier analysis of the first component for wafer 1 rejected 26 

out of 1340 chips (tukey test rejected 11 and spatial analysis rejected 15). The surface 

plots of Figure 24 give an idea of the kind of outliers that are caught using spatial 

analysis. Outlier analysis on the second component rejected 123 out of 1340 chips (tukey 

test rejected 118 and spatial analysis rejected 5). The second component has a strict 

threshold because the majority of chips (approximately 75%) have a value very close to 

zero, reducing the tolerance of the Tukey test.  

Figures 27 – 29 are visual representations of the outlier analysis performed on 

wafer 3. The analysis rejected 2 of 500 chips (Tukey rejected 2 and spatial analysis 

rejected 0) based on the first component and no outliers were detected in the second 

components. (Note that wafer 3 has only one-third the voltage test yield of wafer 1). The 

failure rate for wafer 3 is low because of the high variance in the values for both the 

components. The total number of chips mentioned here is after the removal of extreme 

outliers from the data and the number of outliers do not include extreme outliers. 
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Figure 27. Surface and normality plot of first two components of wafer 3 
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Figure 28. Outlier analysis on first component of wafer 3 
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Figure 29. Outlier analysis on second component of wafer 3 
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Figure 30. Tukey output for wafer 1 vector 1 reduced data 

4.8.2 Detection of Chips with Active Defects 

Chips with active defects have higher IDDQ values only for circuit states that 

sensitize the defect. This increase in IDDQ should affect only some of the vectors and 

consequently will cause a smaller change in the variance in the original IDDQ 

measurements. As a result, this defect-induced variance will not be extracted as a part of 

the significant components. Outlier analysis will have to be performed on the reduced 
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data to be able to catch these defects. Outliers in the reduced data are identified with the 

Tukey test using a coefficient of k=3.  
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Figure 31. Tukey output for wafer 1 vector 2 reduced data 

For most of the wafers and test vectors, the reduced data is similar to the surface 

plot of wafer 1 vector 1 in Figure 20. The presence of a positive spike in an otherwise 

smooth surface plot indicates that the original IDDQ measurement for this chip is well 

above the expected IDDQ computed using the components. These chips can be classified 

as defective with active defects. The presence of negative spikes in the surface plot 
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indicates that the measured IDDQ was much lower than the expected value. This can be 

caused because of the presence of elevated IDDQ chips distorting the model. These kinds 

of chips are not classified as defective, as any chip with low IDDQ because of a defect 

will experience significant functional failure, which would have been detected as part of 

functional tests.   

Figures 30 and 31 show the effect of applying the Tukey test to the reduced IDDQ 

data of wafer 1 for vectors 1 and 2. A total of 61 out of 1340 chips were identified as 

defective. Figures 32 and 33 show the effect of a Tukey test applied to the reduced data 

of wafer 3, vectors 1 and 2. In this situation, 26 out of 500 chips are identified as 

defective.  
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Figure 32. Tukey output for wafer 3 vector 1 reduced data 



 

 

65 

0

20

40

60

0

20

40

60

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Tukey test output

Wafer 3 Vector 2 - Outlier removal on reduced data

-2 -1 0 1

0.001

0.003

0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

0.997

0.999

Data

P
ro

b
a
b
ili

ty

Normplot of tukey test output

 

Figure 33. Tukey output on wafer 3 vector 2 reduced data 

By observing figures 30 and 31 in comparison with figures 20 and 21, one can 

observe that chips some chips which have negative residue are still being rejected by 

tukey test. This is happening because of the presence of a corresponding high residue for 

this chip in another test vector, which causes tukey to identify and reject it. 

4.9 Final List of Outliers 

The chips rejected by the proposed method are from three different analysis 

stages. The first sets of chips rejected are the extreme outliers. The second set of chips 

rejected is the outliers in the component data. The final sets of chip rejected are outliers 
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in the reduced data. There can be overlap between chips that fail the analysis on 

components of PCA and chips that fail because they are outliers in the reduced data. 

For wafer 1, 207 out of 1358 chips were identified as defective, including 

extreme outliers. For wafer 3, 35 out of 507 chips were identified as defective. The 

locations of the chips that passed voltage test and those chips that were rejected in the 

analysis of the IDDQ data are shown in Figure 34. As noted earlier, wafer 3 has relatively 

low yield. 
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Figure 34. Plots of chip locations/defective chip locations for wafers 1 and 3 
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4.10 Competitive Analysis 

Table V. Summary of number of chips rejected by different methods 

Wafer Total Chips
Proposed 

Method Failures
NNR Failures NCR Failures CR Failures

1 1358 207 46 87 79

2 1176 129 22 67 54

3 507 35 8 18 8

4 456 85 5 13 6

5 1079 178 19 56 38

6 639 70 28 45 26

7 418 87 18 41 17

8 453 92 24 25 20

9 232 35 10 6 7

10 1413 307 66 77 98

11 1349 299 74 72 71

12 1313 253 72 80 67

13 1324 164 65 57 40

14 656 78 13 18 19  

In this section, the proposed outlier analysis method is compared to several 

widely-published methods. Table V contains a summary of the number of chips 

identified as defective by the different techniques for each wafer and Table VI contains 

the number of chips identified as defective uniquely by NNR, NCR and CR when 

compared against the proposed method. Figure 35 shows the Venn diagram of the 

number of defective chips identified by the proposed method, NCR, CR and NNR for 

wafer 1. The sizes of the different regions in the Venn diagram are not indicative of the 

size of the set. In the absence of actual burn in data, it is very difficult to compare the 
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performance of different methods, as the final decision about whether a chip is defective 

or not is subjective.  

Table VI. Comparison of proposed method with NCR, NNR and CR 

Wafer
Unique NNR 

Failures

Unique PM 

Failure vs 

NNR

Unique NCR 

Failures

Unique PM 

Failure vs 

NCR

Unique CR 

Failures

Unique PM 

Failure vs CR

1 3 164 1 121 23 151

2 0 107 9 71 9 84

3 2 29 12 29 4 31

4 0 80 5 77 0 79

5 0 159 0 122 4 144

6 3 45 15 40 9 53

7 3 72 7 53 0 70

8 2 70 0 67 0 72

9 3 28 0 29 0 28

10 8 249 0 230 0 214

11 3 228 1 228 2 230

12 6 187 2 175 5 191

13 11 110 3 110 2 126

14 0 65 0 60 5 64

 

The following analysis for comparison of the different methods concentrates on 

wafer 1 vector 2 because most of the chips identified as defective in the proposed 

method for wafer 1 are because of component 2, which essentially accounts for the 

variance in vector 2. 
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Figure 35. Venn diagram of wafer 1 outliers  

4.10.1 NNR vs. Proposed Method 

NNR analysis, as explained in Section II. Previous Work, was implemented on 

the original IDDQ measurements to identify spatial outliers. After forming the residuals 

using neighbor mean IDDQ information, a Tukey test with a coefficient of k=2 was used 

to identify the outliers. Table V indicates that the proposed idea classified more chips 

defective than NNR. The proposed method has a tighter rejection limit.  
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The main reason than NNR underestimates the number of defective chips is that 

the mean IDDQ at a location can suppress the effect of an outlier IDDQ measurement unless 

the outlier is off by a significant value. This can be observed in Figures 36 and 37 for 

wafer 1 vector 2, where the mean is not representative of the spatial variations in vector 

2 IDDQ values.   
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Figure 36. Surface plot of wafer 1 vector 2  raw IDDQ 

Figure 37 shows that the mean has high IDDQ only when the IDDQ for all test 

vectors are abnormal. The mean of the raw IDDQ data causes the effect of outliers with 

high values only on one vector, to get lost along with the effects of minor variations in 
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IDDQ data. Figure 38 shows the surface plot of wafer 1 vector 2 raw IDDQ values with all 

NNR outliers removed. One can observe that a significant amount of absolute outliers 

still exist in the wafer. Another problem with NNR is that a defective chip in a bad 

neighborhood cannot be detected. These two factors contribute to NNR passing a lot of 

chips that the proposed method rejects. 
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Figure 37. Mean raw IDDQ used during NNR for wafer 1 

4.10.2 NCR and CR vs. Proposed Method 

Both NCR and CR were implemented on the IDDQ data set, to evaluate their 

performance against the proposed method. The details of the implementation are the 
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same as explained in Section II. Previous Work. A Tukey test with coefficient k=2 was 

used to identify and remove outliers from the residual.  
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Figure 38. Surface plot of wafer 1 vector 2 raw IDDQ of chips passing NNR  

The number of chips rejected by NCR and CR is listed in Table V and the 

comparison of NCR/CR with the proposed method is available in Table VI. The 

proposed method has tighter thresholds than NCR. NCR has the problem that a defective 

chip in a bad neighborhood cannot be detected. Figure 39 shows the surface plot of raw 

IDDQ measurements for wafer 1 vector 2 after removing NCR outliers. One can observe 
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that even after removing NCR outliers, there are many absolute outliers that can be 

observed in the plot. Most these outliers are present in a bad neighborhood or they are 

not too high when compared to their neighbors, but they are large in an absolute sense.  

0

10

20

30

40

50

0

10

20

30

40

50

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
-4

Effect of NCR on wafer 1 vector 2

 

Figure 39. Surface plot of wafer 1 vector 2 raw IDDQ with NCR outliers removed 

The main problem with CR is that defective chips with CR approximately equal 

to one are not detected. These are defective chips with passive defects that cause a raise 

in both the minimum and maximum IDDQ values. Figure 40 is a surface plot of the wafer 

1 vector 2 raw IDDQ measurements after removing CR outliers. Another problem with 
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CR is that chips are identified as outliers based on intra-die computations. CR does not 

take any of the spatial information into account. As a result, there are many spatial 

outliers than can be identified in Figure 40. 
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Figure 40. Surface plot of wafer 1 vector 2 raw IDDQ with CR outliers removed 
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4.10.3 Result of Proposed Method on Wafer 1 Vector 2 

Figure 41 shows the surface plot of raw IDDQ data for wafer 1 vector 2, with all 

the outliers identified by the proposed method (PM) removed.  
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Figure 41. Surface plot of wafer 1 vector 2 raw IDDQ with PM outliers removed 

When compared against the surface plot of raw IDDQ data in Figure 36, one can 

observe that almost all of the chips on the outer edge of the wafer, with high absolute 

raw IDDQ values have been identified as defective chips. Additionally most of the spatial 

outliers with low absolute IDDQ have also been rejected as outliers.    
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Figure 42 contains a mesh plot of wafer 1 vector 2 raw IDDQ values of all the 

chips rejected by the proposed method (and values of 0 for IDDQ for all accepted chips to 

improve visibility of rejected chips). Figure 43 is a mesh plot of wafer 1 vector 2 raw I-

DDQ data for all chips in the wafer. The figures are presented at different angles, to enable 

a better view of the different bumps in the smooth surface of wafer 1 vector 2 IDDQ.   

 

Figure 42. Mesh plot of wafer 1 vector 2 raw IDDQ of PM outlier chips 
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Figure 43. Mesh plot of wafer 1 vector 2 raw IDDQ data 

Most of the spikes in Figure 42 are also present in Figure 43. This shows that 

most of the defective chips identified by the proposed method are either spatial or 

absolute outliers in the original raw data. There are some bumps in Figure 42 (about 60), 

which even though not present in Figure 43, are not false negatives because the same 

location was identified as a defective chip by analysis on another vector. There are some 

false negatives with very low absolute IDDQ, which could be avoided by tweaking the 

thresholds used in the implementation. 



 

 

78 

V. SUMMARY AND CONCLUSIONS 

A new methodology using a multivariate statistical analysis technique known as 

principal component analysis has been developed to achieve variance reduction in IDDQ 

data. The components extracted by PCA are used to model the good chip expected IDDQ 

and the residue is calculated using this estimate. The residue is shown to have lower 

variance than the original IDDQ measurements. Outliers are identified by analyzing the 

residual and estimate. The significant components extracted by PCA are shown to 

account for the most variance in the IDDQ data. Theoretically, this can be thought of as 

the effect of transistor gate length variation (SCE) and threshold voltage variation. 

The advantage of this method is that the effects of SCE and other physical effects 

are inherently considered and accounted for by PCA. Significant variance reduction is 

achieved as part of the reduction process. Analyzing the components as well as the 

residual can identify both passive defects and active defects. Any of the already existing 

outlier techniques can be applied to the residual and significant components to identify 

outliers. This method catches many of the defects that were undetected using CR, NCR 

and NNR.  

The main disadvantage of the proposed method is that it is very sensitive to the 

correlation between the IDDQ measurements of different test vectors. PCA extracts 

components that are linear combinations of the original IDDQ measurements. High 

correlation between the vectors assures that the prediction of good chip IDDQ values is 

accurate. The presence of a vector with low correlation causes the prediction for that 

vector to be inaccurate and might result in high yield loss because of inaccurate 
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predictions. If all the vectors have low correlations with each other (Wafer 3), the 

components extracted using PCA do not provide much information and thus variance 

reduction will not be significant.   

The method proposed in this thesis does not detect all possible defects. Every 

method catches some unique defects, while letting other defective chips go undetected.  

5.1 Future Directions for Research  

Future research can concentrate on adding additional data as input of PCA, to 

improve the prediction for good chip IDDQ extracted from the components of PCA. For 

example, 

• A function of the x and y coordinate of a chip can be developed and provided 

as an input to PCA, to extract spatial information. 

• IDDQ measurements across multiple wafers can be an input to PCA, to better 

predict IDDQ across the whole lot. 

• IDDQ measurements at different temperatures and voltages can be used to take 

advantage of the dependence of IDDQ on these parameters. 

• Other parameter data like MINVDD, FMAX can also be used to take advantage 

of their correlation with IDDQ (as they are affected by the same process 

parameters).  

The leakage current was used by itself in this research, because it was the only data 

available. The use of X and Y as separate inputs to PCA did not yield any significant 

improvements in the result. 
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