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ABSTRACT

Machine learning, especially the recent deep learning technique, has aroused significant de-

velopment to various data mining applications, including recommender systems, misinformation

detection, outlier detection, and health informatics. Unfortunately, while complex models have

achieved unprecedented prediction capability, they are often criticized as “black boxes” due to

multiple layers of non-linear transformation and the hardly understandable working mechanism.

To tackle the opacity issue, interpretable machine learning has attracted increasing attentions.

Traditional interpretation methods mainly focus on explaining predictions of classification models

with gradient based methods or local approximation methods. However, the natural characteristics

of data mining applications are not considered, and the internal mechanisms of models are not fully

explored. Meanwhile, it is unknown how to utilize interpretation to improve models. To bridge

the gap, I developed a series of interpretation methods that gradually increase the transparency

of data mining models. First, a fundamental goal of interpretation is providing the attribution of

input features to model outputs. To adapt feature attribution to explaining outlier detection, I pro-

pose Contextual Outlier Interpretation (COIN). Second, to overcome the limitation of attribution

methods that do not explain internal information inside models, I further propose representation

interpretation methods to extract knowledge as a taxonomy. However, these post-hoc methods

may suffer from interpretation accuracy and the inability to directly control model training pro-

cess. Therefore, I propose an interpretable network embedding framework to explicitly control the

meaning of latent dimensions. Finally, besides obtaining explanation, I propose to use interpreta-

tion to discover the vulnerability of models in adversarial circumstances, and then actively prepare

models using adversarial training to improve their robustness against potential threats.

My research of interpretable machine learning enables data scientists to better understand their

models and discover defects for further improvement, as well as improves the experiences of cus-

tomers who benefit from data mining systems. It broadly impacts fields such as Information Re-

trieval, Information Security, Social Computing, and Health Informatics.
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1. INTRODUCTION 1

1.1 Background and Motivation

Data mining techniques are progressing at an astounding rate, powered by the advances of

machine learning techniques such as deep neural networks (DNNs). Data mining covers a broad

range of application scenarios, such as recommender systems, cybersecurity analysis, sentiment

analysis, healthcare and outlier detection. Different applications rely on specific machine learning

models to achieve the fundamental functionalities. For example, recommender systems make use

of embedding models to map users and products into latent space to express their similarities.

Convolutional Neural Networks (CNNs) could also be used to learn the representation of product

appearance or textual descriptions. Healthcare or sentiment analysis utilizes Recurrent Neural

Networks (RNNs) to identify the semantic meaning of texts. Outlier detection may also make use

of deep autoencoders to map instances into more effective low-dimensional representations, which

facilitates subsequent measurement of outlierness degree.

Despite the success, machine learning techniques have been criticized due to their opacity

in information processing and decision making. Such lack of transparency could prevent end

users from trusting the machine learning models, and reduce the potential of further improving

the system. For examples, in healthcare domains, it is difficult for patients and medical doctors

to fully trust the diagnosis from the model if it fails to provide convincing reasons to support the

1Part of this chapter is reprinted with permission from "Contextual outlier interpretation" by Ninghao Liu,
Donghwa Shin, and Xia Hu, Proceedings of the 27th International Joint Conference on Artificial Intelligence, Pages
2461–2467, Copyright 2018 by the IJCAI Organization, "Adversarial detection with model interpretation" by Ninghao
Liu, Hongxia Yang, and Xia Hu, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, Pages 1803–1811, Copyright 2018 by Association for Computing Machinery, "Representation
interpretation with spatial encoding and multimodal analytics" by Ninghao Liu, Mengnan Du, and Xia Hu, Proceed-
ings of the Twelfth ACM International Conference on Web Search and Data Mining, Pages 60–68, Copyright 2019 by
Association for Computing Machinery, "Is a single vector enough? exploring node polysemy for network embedding"
by Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia Hu, Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, Pages 932–940, Copyright 2019 by As-
sociation for Computing Machinery, "Explainable Recommender Systems via Resolving Learning Representations"
by Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, and Soo-Hyun Choi, Proceedings of the 2020 ACM on Con-
ference on Information and Knowledge Management, Pages 895–904, Copyright 2020 by Association for Computing
Machinery.
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diagnosis. In addition, for autonomous vehicles, it is easier to debugging the self-driving system

after accidents if relevant explanations are available towards the history self-driving behaviors.

Interpretation would be an effective tool to mitigate the problems above. It gives machine

learning models the ability to explain or to present their behaviors in human-understandable terms.

However, there is no such a unified definition of interpretation. The definition of interpretation, as

well as the design of interpretation methods, depend on the target scenario and what questions we

would like the interpretation methods to answer. In this thesis, by gradually increasing the level of

modeling transparency, I propose to answer the questions below via interpretation. First, given a

model prediction result, how to attribute the result to the most responsible input features? Second,

besides explaining predictions, what additional insights can we obtain from the internal interme-

diate model states (i.e., representations) of input? Third, besides passively explaining the given

predictions or models, can we actively design models in which interpretability is already taken

into account during its construction and training stages? Additionally, given the interpretations at

hand, can we turn back and utilize interpretations to improve models? The detailed analysis of

each question are as follows.

1.1.1 The Difficulty of Explaining Model Predictions

The existing major efforts paid towards interpretability focus on providing locally discriminat-

ing features for classification models or refining the explanation from readily interpretable models.

For examples, CAM [7] and GradCAM [8] generate saliency maps to input images with respect

to image classification results. Specific neurons in CNNs could be visualized to unveil their per-

ceived patterns [9]. In text classification, existing methods could also provide saliency scores to

text segments [10]. Some interpretation methods, such as LIME [11] and Mimic Learning [12],

are model-agnostic and can be applied to different types of models.

Despite the advances above, we are still facing several challenges. First, besides explaining

classifiers, how to design methods that work on different scenarios such as outlier detection and

clustering? Second, how to evaluate whether the obtained interpretations are accurate? Third, how

to make use of interpretations to improve models in terms of robustness and credibility? We will
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show how to tackle these challenges in this thesis.

1.1.2 The Difficulty of Understanding Latent Representations

Representation learning has a fundamental impact on the performance of downstream machine

learning models, especially when processing raw data inputs such as images [13], texts [14, 15]

and networks [16, 17]. Representation learning is sometimes explicitly pursued by models such

as autoencoders [18] or embedding models [14, 17], while it may also implicitly make an effect

in many applications such as multimodal learning [19], recommender systems [20] and anomaly

detection [21].

Although representation learning lays the foundation of the success of various machine learn-

ing tasks, its interpretability has not been fully exploited. The opacity of representation space

originates from the fact that each of its dimensions may not have any specific meaning. Cur-

rent techniques for evaluating the quality of representation learning focus on the performance of

subsequent tasks such as classification accuracy and recommendation precision. However, how

representation vectors distribute in the latent space, which directly affects the results of subsequent

tasks, is usually opaque to users. The interpretation of representation result could benefit the ap-

plication of machine learning models in several ways. On one hand, since representation learning

encodes various features or different types of information into the same space, we are interested in

which information sources play an important role and which ones are actually useless in the learn-

ing process. It may help us evaluate the validity of representation result and discover the potential

weakness of the learning method. On the other hand, interpretation could help justify the decisions

made by machine learning models. For example, in recommender systems (especially those built

upon deep models [22, 23] that are usually regarded as black boxes), we may want to know why

certain products are recommended to the target user.

1.1.3 The Difficulty of Designing Interpretable Models

Post-hoc interpretation methods, either explaining individual predictions or latent representa-

tions, only work on trained models. There are several limitations of post-hoc methods. First,
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post-hoc interpretation suffers from the issue of explanation accuracy [24], which is undesirable

especially for applications that involve high-stake decisions. Second, it is difficult to explicitly

control the process of model training with only post-hoc interpretation. In many applications, such

as healthcare and financial business, we have accumulated significant amount of domain knowl-

edge that we hope to make them interact with model components. It thus would be more desirable

if we are able to consider interpretability during model establishment.

1.2 Thesis Contributions

The contributions of the thesis are illustrated in Figure 1.1. Several research questions are

addressed towards improving the transparency and reliability of data mining models. (Q1) How to

understand which features are important in a given prediction of models? (Q2) How to understand

intermediate data representations? (Q3) Instead of resorting to post-hoc methods after a black-

box model is given, can we directly build models that are intrinsically interpretable? (Q4) After

obtaining interpretations, how to leverage them towards constructing more reliable data mining

models? The key contributions can be summarized as below.

• We propose a new local feature-level interpretation method, called Contextual Outlier Inter-

pretation (COIN), to explain outlier detection results. We consider neighboring data points

around the target outlier as its context. The interpretation is aggregated by comparing the
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differences between the outlier and each cluster in the context. By clustering contexts, COIN

could handle complex distributions in datasets. COIN is model-agnostic, so it can be applied

to any outlier detection models.

• We propose an interpretation framework for understanding representation vectors. Instead

of performing local interpretation to individual vectors, our method focuses on capturing the

global characteristics of latent space. The interpretation result is presented in the form of a

taxonomy. We first extract the backbone of the taxonomy to know how instances are dis-

tributed in the latent space, and then identify the important attributes in different taxonomy

concepts as the description to them.

• For designing interpretable models, we propose to revise traditional network embedding

models by enabling latent dimensions to encode specific meanings. We develop a polyse-

mous network embedding method to take into account multiple facets of nodes in network

data. Each facet of a node is represented using an embedding segment. The proposed method

is flexible to be applied to various base embedding models without making radical changes

to their base formulation. We first show how to revise Deepwalk to tackle node polysemy,

and then extend our discussion to more base embedding models (e.g., graph convolutional

networks) and more complex application scenarios (e.g., heterogeneous networks).

• As an exploration of utilizing interpretation to improve models, we design a novel training

method for classification models under the malicious accounts detection scenario. We as-

sume that malicious accounts will actively evolve themselves to avoid being detected, which

leads to the adversarial circumstance between the classifier and the malicious accounts. We

proactively simulate adversarial samples based on a set of local interpreters of the target

model. The robustness of ML models is then improved through adversarial training with

the adversarial samples. The efficiency of this interpretation-based attack-defense pipeline

promoted by considering only the low-confidence regions of ML classifiers. Our framework

is model-agnostic as the interpretation technique is general to any type of classifier. Finally,
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we design a data-driven method to estimate the costs of perturbing different features.

1.3 Related Work

The work in this thesis covers several research topics, including model interpretation, outlier

detection, representation learning, and adversarial machine learning.

1.3.1 Traditional Interpretation Methods

The interpretability of machine learning models receives increasing attention recently [25, 26,

27]. The efforts can be divided into two categories, post-hoc interpretation methods and intrinsi-

cally interpretable models. The post-hoc methods can be further divided into subcategories based

on different metrics. For examples, according to the interpretation scope, there are global and local

methods, where the former targets to transform black-box models into understandable structured

systems [28], and the latter tries to explain individual predictions [29, 9]. According to the ap-

plied technique, there are gradient-based methods that measure feature contributions on output or

intermediate neurons through backpropagation [9], perturbation-based methods that examine the

influence of output via input changes [30], approximation-based methods that approximate com-

plex models with simpler ones [29], and entropy-based methods that analyze model inference with

information theories [31]. Intrinsically interpretability focuses on developing transparent model

components. A typical strategy is to pose regularization on parameters to conform with certain

prior, such as promoting independence between latent dimensions in order to let each dimension

learn a unique concept [32]. [33] proposes to incorporate expert knowledge to penalize model

weights. [34] develops disentangled MLP models to explicitly regulate feature interactions be-

tween layers.

1.3.2 Outlier Detection

Many outlier detection approaches have been developed over the past decades. These ap-

proaches can be divided into three categories: density-based, distance-based and model-based

approaches. Some notable density-based detection methods include [35, 36, 37, 38, 39]. Repre-

sentative distance-based approaches include [40, 41, 42, 43, 44]. For model-based approaches,
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some well-known examples are [45, 46, 47]. Varios approaches have been proposed to tackle the

challenges including the curse of dimensionality [36, 48, 49], the massive data volumn [41, 43], and

heterogenous information sources [39, 50]. Ensemble learning, which is widely used in supervised

learning settings, can also be applied for outlier detection with non-trivial improvements in perfor-

mance [51, 52]. [53] combines results from multiple outlier detectors, each of which apply only

a subset of features. In contrast, each individual detector can subsamples data instances to form

a ensemble of detectors [51]. Some recent work starts to realize the importance about the expla-

nations of detection results. In heterogeneous network anomaly detection, [39, 54, 55, 52] utilize

attributes of nodes as auxiliary information for explaining the abnormality of resultant anomaly

nodes. The motivation of this work is different from them, as we try to infer the reasons that why

the given outliers are regarded as outlying, instead of developing new detection methods.

1.3.3 Representation Learning

Representation learning maps data instances into an expressive and usually low-dimensional

latent space, where similar instances are mapped close to each other in the latent space [56]. Rep-

resentation learning is fundamental to the success of the downstream machine learning models,

especially when dealing with data of raw formats such as images [13], texts [14, 15] and net-

works [16, 17]. Some models such as autoencoders [18] or embedding models [14, 17] explicitly

aim at learning the representation of input data, while many applications such as multimodal learn-

ing [19], recommender systems [20] and anomaly detection [21] rely on effective representations

for improving performance although they may not pursue learning representations as the goal.

The diversity of the application scenarios and model structures put forward high request on the

flexibility of the corresponding interpretation framework.

Representation learning on network data is also called network embedding. Network embed-

ding models have received a lot of attention recently. Existing work on network embedding can

be categorized based on various criteria. Many basic models such as Deepwalk [17], LINE [16],

node2vec [3] and SDNE [57] focus on analyzing plain networks, while more recent work starts

tackling more complex networks such as considering attributes [58, 59], community structures [60]
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and node heterogeneity [61, 62]. Many methods solve the embedding problem by resorting to ma-

trix factorization [63], either explicitly [64] or implicitly [17, 16], while recently feed-forward

modules such as graph convolutional networks [65, 66] are attracting more and more attention.

In addition, some challenges that have been tackled in network embedding include model scal-

ability improvement [67], modeling dynamic networks [68], considering human-in-the-loop sce-

narios [69]. Finally, network embedding has been applied in applications such as recommender

systems [70], fraud detection [71] and behavioral modeling [72].

1.3.4 Adversarial Attacks and Defenses

Adversarial classification has been investigated using game theories, where adversaries and the

classifier act as opposite players [73, 74]. Typically, the single-shot version of adversarial classifi-

cation game is considered, and an equilibrium is achieved to obtain the solution [75]. A problem

with these methods is that they are usually designed specifically for certain type of classifiers. As

deep learning (DL) has become popular on many ML problems, recent studies show that DL is

vulnerable to adversarial samples [76, 77, 78]. Fast gradient sign method is one of the most pop-

ular approaches for creating adversarial instances [79, 80]. Some other attacking methods include

box-constrained L-BFGS method [76], iterative least likely method [81], Jacobian-based saliency

map attack [82], adversarial samples generation based on an ensemble of deep models [83]. Some

typical defensive methods include defensive distillation [84], region-based classification [85] and

feature squeezing [86].
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2. LOCAL INTERPRETATION FOR OUTLIER DETECTION 1

Outliers refer to isolated instances with rare patterns in a dataset [87]. Outlier detection is a

crucial fundamental task in many data-driven applications such as misinformation detection [88],

fraud detection [89] and change detection [90]. However, one challenge in deploying outlier detec-

tion systems to real applications is the lack of interpretability in detection results, which will bring

two problems. First, many outlier detection tasks involve high-stake decisions, such as in misin-

formation and fraud detection, where administrators need to decide whether to take actions against

entities recognized as outlying. It is difficult to make reliable decisions without truly understanding

the reasons why these entities are regarded as outliers. Second, it is hard to obtain a large number

of human labels in outlier detection, which will then set obstacles in evaluating outlier detection

performance. The interpretation would provide useful information to help humans decide whether

the detection results are accurate.

One straightforward way for outlier interpretation is to apply feature selection to identify a

subset of features that distinguish outliers from normal instances [91, 92, 93], or to apply existing

post-hoc interpretation methods such as LIME [11]. However, first, it is difficult for some existing

methods to efficiently handle datasets of large size or high dimensions, or effectively obtain in-

terpretations from complex data types and distributions. Second, there is no explicit classification

boundary, so interpretation methods such as LIME cannot be directly applied.

In this work, we propose a novel local interpretation method for outlier detection. The inter-

pretation identifies those important features responsible for making instances to be outliers. Our

method could work for datasets with large sizes or complex distributions.

1Part of this chapter is reprinted with permission from "Contextual outlier interpretation" by Ninghao Liu,
Donghwa Shin, and Xia Hu, Proceedings of the 27th International Joint Conference on Artificial Intelligence, Pages
2461–2467, Copyright 2018 by the IJCAI Organization.
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Figure 2.1: A toy example of outlier interpretation after resolving its context into clusters.
Reprinted from [1].

2.1 Problem Statement

We first introduce the notations and define the outlier interpretation problem. Given a dataset

X = {xi ∈ RM |i ∈ [1, N ]} and the query outliers O detected therefrom, the interpretation for

each outlier oi ∈ O is defined as a composite set: Ei = {Ai, d(oi),Ci = {Ci,l|l ∈ [1, L]} }.

Here Ci denotes the context (i.e., k-nearest normal instances) of the outlier, Ci,1,Ci,2, ...,Ci,L are

clusters in Ci, and L is the number of clusters. Ai represents the abnormal attributes of oi in

contrast to Ci. d(oi) ∈ R≥0 is the outlierness score of oi. The reason for clustering the context

is illustrated in Figure 2.1. There are three clusters, each of which represents images of a digit.

Red points are the detected outliers. Clusters of digit “2” and “5” compose the context of outlier

o1. The interpretation of o1 can be obtained by comparing it with the two clusters respectively.

However, it would be difficult to explain the outlierness of o1 if clusters of digit “2” and “5” are

not differentiated.

2.2 The Contextual Outlier INterpretation (COIN) Framework

We illustrate the overall framework of Contextual Outlier INterpretation (COIN) in Figure 2.2.

Given a dataset X and a set of outliers O, we first map the interpretation task to a classification

problem. Then, the classification problem over the whole dataset is partitioned to a series of re-

gional problems around each outlier query. After that, a collection of simple and local interpreters

g are built around each outlier. Finally, interpretation including the outlying attributes and outlier-
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Figure 2.2: The framework for Contextual Outlier Interpretation. Reprinted from [1].

ness score can be obtained from the parameters of regional classification models. The details of

each step are discussed in the following subsections.

2.2.1 Explaining Outlier Detection With Classification

To begin with, we establish the correlation between outlier detection and traditional supervised

classification problems. Formally, an outlier detector can be denoted as h(x|θ,X), where θ denotes

the parameters. Here X is also treated as parameters since data instances affect the outlierness of

each other. The abnormality of input x is typically represented by either a binary or continuous

score, while the latter case can be easily transformed to the former if a threshold is set to sepa-

rate inliers and outliers. This motivates us to explain outlier detectors using classification models.

Although outlier detection is usually tackled as an unsupervised learning problem, there exists an

imaginary hyperplane specified by certain decision function f(x|θ′) : RM → {0, 1} that sepa-

rates outliers from normal instances. Here θ′ represents the parameters of f . An example can be

found in Step 1 of Figure 2.2. Blue points and red points are normal instances and outliers, respec-

tively, while dotted curves indicate the decision boundaries. The problem of building the decision

function f is formulated as below,

min
f
L(h, f ;O,X− O), (2.1)
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where L is the loss function including classification error and regularization terms. O and X − O

represent outlier class and inlier class, respectively. The difficulty of interpretation is that we

do not have a concrete formula for f , so traditional interpretation methods for classifiers such

as LIME [11] cannot be used. Meanwhile, as the boundary of f could be complex, traditional

methods that linearly approximate functions suffer from interpretation accuracy.

To tackle the challenge, by utilizing the isolation property of outliers, we can further decompose

the problem in Equation (4.1) into multiple regional tasks of explaining individual outliers:

min
f
L(h, f ;O,X− O)⇒ min

f

∑
i

L(h, f ; oi,Ci)

⇒
∑
i

min
gi
L(h, gi; oi,Ci)⇒

∑
i

min
gi
L(h, gi;Oi,Ci).

(2.2)

In this way, the original problem is transformed to explaining each outlier oi with respect to its

context counterpart Ci. Note that it is computationally efficient, given that the number of outliers

is usually small. Here gi represents the local parts of f exclusively for classifying oi and Ci. In

Figure 2.2, for example, gi is highlighted by the bold boundaries around o1 in Step 1, and Ci con-

sists of the normal instances enclosed in the yellow circle in Step 2. Since there is a data imbalance

between the two classes, we adopt synthetic sampling [94] to expand oi to an outlier class Oi with

comparable size to Ci. Local interpretation, encoded in gi, can be obtained by approximating the

local behavior of h between Oi and Ci.

2.2.2 Resolving Context for Outlier Explanations

In this subsection, we focus on interpreting each single outlier oi by solving gi, from which we

can extract interpretation results. Let pOi(x) and pCi(x) denote the probability density functions of

the outlier class and inlier context class, respectively. Since the context Ci may contain complex

cluster structures as shown in Figure 2.1, it is difficult to directly measure the degree of separation

between Oi and Ci or to discover the attributes that discriminate the two classes. Therefore, we

further decompose L(h, gi;Oi,Ci) to a set of simpler problems. According to Bayesian decision
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theory, the error of classifying between Oi and Ci is

P err(Oi,Ci) = P (Oi)

∫
Ci

p(x|Oi)dx + P (Ci)

∫
Oi

p(x|Ci)dx

≈
( ∑
l∈[1,L]

P (Oi)

∫
Ci,l

p(x|Oi)dx
)

+
( ∑
l∈[1,L]

P (Ci,l)

∫
Oi

p(x|Ci,l)dx
)

=
∑
l∈[1,L]

(
P (Oi)

∫
Ci,l

p(x|Oi)dx + P (Ci,l)

∫
Oi

p(x|Ci,l)dx
)

≈
∑
l∈[1,L]

P err(Oi,l,Ci,l). (2.3)

Suppose we can split the context Ci into multiple clusters {Ci,l|l ∈ [1, L]} that are well sep-

arated from each other, then each term in the summation can be treated as an independent sub-

problem without mutual inference. Oi,l is a subset of Oi close to Ci,l. By combining Equation (2.2)

and Equation (2.3), our final interpretation task is formulated as:

min
f
L(h, f ;O,X− O)⇒ min

gi,l

∑
i

∑
l

L(h, gi,l;Oi,l,Ci,l). (2.4)

By now we are able to classify Oi,l and Ci,l with a simple and explainable model gi,l such as

linear models and decision trees, where the abnormal attributes Ai,l can be extracted from model

parameters. The overall interpretation for oi is obtained by integrating the results across all Ci,l, l ∈

[1, L]. The estimated time complexity for implementing the framework above is O(|O| ×L× Tg),

where Tg is the average time cost of constructing gi,l. Due to the scarcity of outliers, |O| is expected

to be small. Each gi,l involves Oi,l and Ci,l. Tg is also expected to be small since Ci,l and Oi,l are

of small sizes. Moreover, the interpretation processes of different outliers are independent of each

other, thus can be implemented in parallel to further reduce the time cost.

2.3 Distilling Interpretation from Classifiers

We have introduced the general framework of COIN as mapping outlier interpretation into

a collection of classification tasks around each individual outlier. In this section, we propose a
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concrete modeling method to explain each outlier, including discovering its abnormal attributes

and measuring the outlierness score.

2.3.1 Context Identification and Clustering

Given an outlier oi spotted by the detector h, first we need to identify its context Ci in the

data space. As introduced in Section 2, Ci consists of the nearest neighbors of oi. Here we use

Euclidean distance as the point-to-point distance measure. The neighbors are chosen only from

normal instances. The instances in Ci are regarded as the representatives for the local background

around the outlier. Although Ci contains only a small number of data instances compared to the

size of the whole dataset, they constitute the border regions of the inlier class and thus are adequate

to discriminate between inlier and outlier classes, as shown in the Step 2 of Figure 2.2.

As local context may indicate some interesting structures (e.g., instances with similar seman-

tics are located close to each other in the attribute space), we further segment Ci into multiple

disjoint clusters. To determine the number of clusters L in Ci, we adopt the measure of prediction

strength [95] which shows good performance even when dealing with high-dimensional data. After

choosing the value of L, common clustering algorithms such as K-means or hierarchical clustering

are applied to divide Ci into multiple clusters as Ci = {Ci,1,Ci,2, · · · ,Ci,L}. Clusters of small size,

i.e., |Ci,l| ≤ 0.03 · |Ci|, are abandoned in subsequent procedures.

2.3.2 Maximal-Margin Linear Explanations

The model gi,l should have the following properties. First, it is desirable to keep g ∈ G

simple in form. For example, we may expect the number of non-zero weights to be small for

linear models, or the rules to be concise in decision trees [11]. Here we let g ∈ G belong to

linear models, i.e., g(x) = wTx. We impose the l1-norm constraint on w, where attributes am that

correspond to large |w[m]| values are regarded as abnormal. Second, since outliers are usually

highly isolated from their context, there could be multiple solutions all of which could classify the

outliers and inliers almost perfectly, but we want to choose the one that best reflects such isolation

property. This motivates us to choose l1 norm support vector machine [96] to build g. The local
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Figure 2.3: Outlier interpretation from SVM parameters. Reprinted from [1].

loss L(h, gi,l;Oi,l,Ci,l) to be minimized in Equation (2.4) is thus as below:

Ni,l∑
n=1

(1− yng(xn)− ξn)+ + c

Ni,l∑
n=1

ξn,

s.t. ξn ≥ 0, ‖w‖1 ≤ b

(2.5)

where Ni,l = |Oi,l ∪ Ci,l|, (.)+ is the hinge loss, ξn is the slack variable, b and c are the parameters.

Here yn = 1 if xn ∈ Ci,l and yn = −1 if xn ∈ Oi,l.

The abnormal attributes and the outlierness score could be estimated from the parameters of

the local model gi,l. Let wi,l denote the weight vector of gi,l, the importance of attribute am with

respect to the context of Ci,l is thus defined as si,l(am) = |wi,l[m]|/γmi,l. Here γmi,l denotes the

resolution of attribute am in Ci,l, i.e., the average distance along the mth axis between an instance

in Ci,l and its closest neighbors. The overall score of am for oi is

si(am) = (1/|Ci|)
∑
l

|Ci,l|si,l(am), (2.6)

which is the weighted average score for am over all L clusters. Attributes am with large si(am)

are regarded as the abnormal attributes for oi (i.e., am ∈ Ai). For the outlierness score d(oi), we

define it as:

dl(oi) = |gi,l(oi)|/‖wi,l‖2. (2.7)

15



This measure is robust to high dimensional data, as w is sparse and dl(oi) is calculated in a low

dimensional space. An example is shown in Figure 2.3, where abnormal attributes are indicated

from weight vector w and the outlierness score is shown. The overall outlierness score for oi across

all context clusters is:

d(oi) = (1/|Ci|)
∑
l

|Ci,l| dl(oi)/γi,l, (2.8)

which is the weighted summation over different context clusters. Here the normalization term γi,l

is the average distance from an instance to its closest neighbor in Ci,l. Now we have obtained all

of the three aspects of interpretation Ei = {Ai, d(oi),Ci = {Ci,l|l ∈ [1, L]} }.

2.3.3 Filtering Outliers with Interpretation and Prior Knowledge

In real-world applications, the importance of different attributes varies according to different

scenarios [97, 98]. Take social network spammer detection as an example. We have two account at-

tributes: the number of followers (Nfer) and the ratio of tweets posted by API (RAPI). A spammer

account tends to have a small Nfer value as it is socially inactive, but large RAPI to conveniently

generate malevolent content. However, it is easy for spammers to intentionally increase their Nfer

by purchasing followers, but manually decreasing RAPI is more difficult due to expensive human

labors. In this sense, RAPI is more robust than Nfer in translating detected outliers as spammers.

Therefore, we introduce two vectors β and p, where βm ∈ R≥0 denotes the prior knowledge about

the robustness of am, and pm ∈ {−1, 0, 1} denotes the expected perturbation direction of a abnor-

mal attribute. pm = −1 means we expect outliers to have small value for am (e.g., Nfer), pm = 1

means the opposite (e.g., RAPI), while pm = 0 means there is no preference. Thus, the outlierness

score of oi with respect to Ci,l is refined as:

dl(oi) = ‖|gi,l(oi)|
‖wi,l‖2

w′i,l
‖wi,l‖2

◦ β‖, (2.9)

where the operator ◦ denotes element-wise multiplication, w′[m] = min(0, w[m]) if pm = 1, and

w′[m] = max(0, w[m]) if pm = −1. If we label outliers with 1 and inliers with −1, the sign of p

is reversed. The reason for introducing w′ is that, if interpretation does not conform with the prior
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knowledge, such as an outlier in spammer detection is interpreted as having low RAPI , then the

outlierness score of the outlier should be deducted.

2.4 Experiments

In this section, we present experiment results to assess the effectiveness of our framework. We

answer the following questions: 1) How accurate is the proposed framework in identifying abnor-

mal attributes of given outliers? 2) Can we accurately measure the outlierness score of outliers? 3)

How effective is the prior knowledge of attributes in refining outlier detection results?

2.4.1 Datasets

We use both real and synthetic datasets in experiments. We follow the procedures in [99] and

create two synthetic datasets with ground-truth abnormal attributes for each outlier. In the first syn-

thetic dataset, each outlier is close to only one normal cluster and far away from the others. In the

second synthetic dataset, each outlier is in the vicinity of several normal clusters simultaneously,

so the scenario is more complicated. The real-world datasets used in our experiments include

Wisconsin Breast Cancer (WBC) dataset [100], MNIST dataset and Twitter spammer dataset [97].

WBC dataset records the measurements for breast cancer cases with two classes, i.e. benign and

malignant. The former class is considered as normal, while we downsampled 25 malignant cases

as the outliers. MNIST dataset includes a collection of 28× 28 images of handwritten digits. Here

we use the training set which contains 42,000 examples. Instead of using raw pixels as attributes,

we build a Restricted Boltzmann Machine (RBM) with 150 latent units to map images to a low-

dimensional space which is more proper for interpretation than raw pixels. A multi-label logistic

classifier is then built to classify digits, and the ground-truth outliers are selected as the misclas-

sified instances downsampled to 1, 000. The Twitter dataset contains information of normal users

and spammers crawled from Twitter. Following [97], we divide attributes into two categories ac-

cording to whether they are robust to the spammers in disguise. Attributes of low robustness refer

to those which can be easily controlled by spammers to avoid being detected, while attributes of

high robustness are the opposite.
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SYN1 SYN2 WBC Twitter MNIST
N 405 405 458 11,000 42,000
M 15 15 9 16 150
|O| 30 30 25 1,000 1,000

Table 2.1: Details of the datasets in experiments. Reprinted from [1].

2.4.2 Baseline Methods

We include several recent interpretation methods for outlier detection or classification as base-

line methods for comparison:

• CA-lasso (CAL) [92]: An interpretation method that analyzes the separability between outlier

and inliers as a linear classification problem solved with LASSO, without further clustering the

context of outliers.

• IPS-BS [101]: An interpretation method that applies isolation path score to measure outlierness.

Beam Search is then applied to look for the abnormal attributes.

• LIME [11]: A global classifier is first constructed to classify outliers and inliers. Then the

abnormal attributes for each outlier is identified by locally interpreting the classification model

around the outlier. A neural network is used as the global classifier for MNIST data, and SVMs

with RBF kernel are used for other datasets.

2.4.3 Abnormal Attributes Evaluation

The goal of this experiment is to measure the correctness of identified attributes in explaining

the outliers. Since ground-truth abnormal attributes of real-world datasets are not available, we

utilize synthetic data generation and append M Gaussian-noise attributes to all real-world data

instances. Noise attributes are not expected to be identified as abnormal as they are of small

magnitudes. In our experiments, we choose 0.08 × N nearest neighbors of an outlier oi as its

context Ci. The radius of synthetic sampling for building the outlier class Oi is set as half of the

average distance to the inlier class Ci to avoid overlap between Oi and Ci. The parameters of
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COIN CAL IPS-BS LIME

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

SYN1 0.97 0.89 0.93 0.89 0.81 0.84 0.87 0.44 0.58 0.82 0.79 0.80
SYN2 0.99 0.90 0.94 0.92 0.70 0.80 1.00 0.37 0.54 0.91 0.70 0.79
WBC 0.86 0.37 0.52 0.84 0.37 0.51 0.90 0.15 0.26 0.35 0.39 0.37
Twitter 0.91 0.33 0.48 0.75 0.34 0.47 0.72 0.29 0.41 0.60 0.67 0.63

Table 2.2: Performance of abnormal attributes identification. Reprinted from [1].

SVMs are tuned by validation, where some samples from Oi and Ci are randomly selected as the

validation set. The same parameter values are used for all outliers in the same dataset. We report

the Precision, Recall and F1 score averaged over all the outliers in Table 2.2. Besides finding that

COIN shows relatively better performance, some observations can be made as follows:

• In general, the Recall value of SYN2 is lower than that of SYN1, because the context of each out-

lier in SYN2 has several clusters, and the true abnormal attributes vary among different clusters.

In this case, retrieving all ground-truth attributes is more challenging.

• IPS-BS is more cautious in making decisions. It tends to stop early if the discovered abnormal

attributes already make the outlier query well isolated. Therefore, IPS-BS has high Precision,

but only a small portion of true attributes are discovered (low Recall).

• The Recall scores are low for real-world data since we treat all original attributes to be the ground

truth, so low Recall values do not necessarily mean bad performances.

2.4.4 Outlierness Score Evaluation

We evaluate if interpretation methods are able to accurately measure the outlierness score of

outlier queries. For each dataset, we randomly sample the same number of inliers as the outliers,

and use them together as queries to interpreters. The label is 1 for each true outlier, and 0 for each

inlier. For each query, interpreters are asked to estimate its outlierness score. After that, we rank

the instances in a descending order with respect to their outlierness scores. Since true outliers are

more isolated, an effective interpreter should convert such isolation degree to larger scores.
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AUC SYN1 SYN2 WBC Twitter MNIST
COIN 0.78 0.93 0.96 0.85 0.87
CAL 0.71 0.63 0.94 0.81 0.76

IPS_BS 0.69 0.91 0.90 0.79 0.82
LIME 0.74 0.62 0.94 0.83 0.78

Table 2.3: Outlierness score ranking performance. Reprinted from [1].

We report the results in Table 2.3 with AUC as the evaluation metric. The proposed method

achieves better performance than the baseline methods especially on SYN2 and MNIST. This can

be explained by the more complex structures in these datasets, where an outlier may be close to

several neighboring clusters. COIN resolves the contextual clusters around each outlier, so it can

better handle such scenario. This also explains why IPS_BS is also more effective in complex

datasets than the other two baseline methods. The isolation tree used in IPS_BS can handle com-

plex cluster structures.

2.4.5 Filtering Outliers with Prior Knowledge

In this experiment, we discuss if interpretations, together with prior knowledge, can help filter-

ing existing outliers to satisfy the demand of specific applications.

The experiment has two parts. In the first part, we append M new noise attributes to data

instances, so each instance is augmented to x ∈ R2M . Different from the noise attributes in Sec-

tion 2.4.3 that are of small magnitude, the attributes here may turn inliers to “outliers". However,

these new outliers are irrelevant to the ground truth. We sample 0.5 × |O| inliers, together with

ground-truth outliers, as queries fed into COIN. We set p to be zero and run COIN with different β

values. The weights corresponding to original attributes are fixed to 1 (βm = 1,m ∈ [1,M ]), and

we only vary the weights of noise attributes (βm = β,m ∈ [M + 1, 2M ]). Similar to Section 2.4.4,

we obtain the outlierness score for all queries and rank them in a descending order according to the

score. Ground-truth outliers are expected to rank higher. The ranking performance is reported in

Figure 2.4a. The plot indicates that as we increase the weights of noise attributes, the performance

of the interpreter degrades for all datasets, because it is more difficult to distinguish between real
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Figure 2.4: The influence of the prior knowledge on outlierness score. Results averaged over 20
runs, bars depict 25-75%. Reprinted from [1].

outliers and noisy instances. From the opposite perspective, assigning large weights to important

attributes will filter out mis-detected outliers.

The second part of the experiment uses the Twitter dataset in which features extracted from

user profiles, posts and graph structures are used as attributes. According to [97], the robustness

level varies for different attributes. Some attributes, such as the number of followers, hashtage

ratio and reply ratio, can be easily controlled by spammers to avoid being captured, so they are

of low robustness, while some other attributes such as account age, API ratio and URL ratio have

high robustness. In this experiment, we fix the weight of low-robustness attributes to 1, and vary

the weight βm of high-robustness attributes. The remaining procedures are the same as first part of

the experiment discussed above. The result of outlierness ranking is reported in Figure 2.4b. The

rising curve shows that as more emphasis is put on high-robust attributes, we are able to refine the

performance of spammer identification. The experiment result indicates that by resorting to the

interpretation of outliers, we can gain more insights on their characteristics, and adaptively select

those that are in accordance with the specific application.

2.4.6 Case Studies

At last, we conduct some case studies to illustrate interpretation results. The MNIST dataset is

used here since images are more intuitive for understanding. The attributes are the hidden features

extracted by the RBM as pre-processing instead of using raw pixels. The latent features learned
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Figure 2.5: Visualization of outlier interpretation on MNIST dataset. Reprinted from [1].

from RBM can be seen as simple primitives that compose more complicated visual patterns. They

are more suitable for interpretation than raw pixels as they are in accordance with the cognitive

habits of humans, where we tend to rely on richer representations for explanation and action.

The case study results are shown in Figure 2.5. There are three query outlier images shown in

the first row. We choose two neighboring clusters for each query, and compute the average image

of each cluster, as shown in the second row. The average images can be seen as part of the contexts

of outliers. Clear handwritten digits can be seen from the average images, so that the clusters are

internally coherent. The third and fourth rows together indicate the noteworthy attributes of the

query image with respect to the corresponding average images. The black strokes enclosed by red

circles in third-row images represent positive abnormal attributes, i.e., the query image is regarded

as an outlier instance because it possesses these attributes. The strokes enclosed by blue circles

in fourth-row images are negative abnormal attributes, as the query outlier digit does not include

them. These negative attributes, however, commonly appear in the neighbor images of the outlier.

The positive and negative attributes together explain why the outlier image is different from its

nearby normal images.
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3. REPRESENTATION INTERPRETATION VIA TAXONOMY INDUCTION 1

The local feature-based interpretation discussed in the last section identifies the end-to-end cor-

relation between output and input features. However, this type of interpretation does not actually

gain insights of the internal working mechanism of the model. A crucial perspective of under-

standing how models work is to examine the latent representations of input fed into the model.

However, latent representations are difficult to be directly understood, since each dimension of

the latent space may not have any concrete meaning. Meanwhile, the existing local feature-based

interpretation methods cannot well solve the problem. First, the interpretation of representations

requires a global understanding of the latent space, which cannot be handled by local interpre-

tation methods. Second, there lacks class label information in representations, while most local

interpretation methods only work on classification models.

In this work, we propose a novel interpretation method for understanding the latent representa-

tions learned by models. The interpretation outcome is a taxonomy. The hierarchical cluster struc-

ture provides a global description of the distribution of representation vectors, while the properties

of each cluster are specified by the representative attributes of the instances within the cluster.

3.1 Problem Statement

We first introduce the notations and the problem definition. We use boldface uppercase alpha-

bets (e.g., A) to denote matrices, boldface lowercase alphabets (e.g., z) as vectors, calligraphic

alphabets (e.g., T ) as sets, and normal characters (e.g., i, K) as scalars. The size of a set T is

denoted as |T |. The i-th row, j-th column and (i, j) entry of matrix A are denoted as Ai,:, A:,j

and Ai,j , respectively. Let X be the matrix of input features fed into models. X ∈ RN×M , where

N is the number of instances and there are M features. The output is a representation matrix

Z ∈ RN×D, where Zi,: ∈ RD denotes the representation vector of the i-th instance. In many appli-

1Part of this chapter is reprinted with permission from "On interpretation of network embedding via taxonomy
induction" by Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu, Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, Pages 1812-1820, Copyright 2018 by Association for
Computing Machinery.
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Clothes

Women Men Children …

Suits Casual …Classics Modern … Jeans Coats …

Figure 3.1: A toy example of taxonomy for “clothes”. Reprinted from [2].

cations, representation learning is also called embedding, so we use representation and embedding

interchangeably throughout this work.

In this work, we tackle the problem of explaining representation learning via taxonomy induc-

tion. A taxonomy is a structured organization of knowledge to facilitate the information searching.

An example of taxonomy for clothes is shown in Figure 3.1, where different classes are organized

in a hierarchical structure, and classes of coarse granularity are gradually split into refined ones.

The backbone of a taxonomy is usually a hierarchy of “concepts”, which correspond to clusters

implicitly contained in Z. Each concept owns certain characteristics shared by the representation

vectors within it. The “hypernym” relation in a hierarchy is modeled by the directed link between

a parent concept and child concept. Based on this, we propose to perform taxonomy induction in

two steps. The first step is to extract the taxonomy backbone to get the hierarchy of concepts. The

second step is to provide description to the extracted concepts. In this work, we also call the first

step as global-view interpretation, as it extracts the overall distribution of representations. We call

the second step as local-view interpretation, as it selects the important attributes of each cluster.

3.2 Taxonomy Backbone Construction

The goal of this section is to extract the backbone of the taxonomy based on the representation

vectors. Concretely, the backbone is represented as a hierarchy of clusters in the representation

space. In this way, we can gain more insights about how instances distribute in the representation

space, and gradually unveil the structural patterns among instances.
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3.2.1 Embedding-based Graph Construction and Clustering

Given the representation matrix Z, we first build a graph G, whose affinity matrix is denoted

as AG, to store the node-to-node similarity in the embedded space. The edge weight between each

pair of nodes is defined as:

AG
i,j = exp(−‖Zi,: − Zj,:‖22/2σ2). (3.1)

Since computing and storing weights for all pairs of instances could be extremely expensive when

the number of instances is large, here we only maintain a sparse affinity matrix defined as follows:

Ai,j =


AG
i,j, if j ∈ Neighbors(i) or i ∈ Neighbors(j)

0, otherwise
, (3.2)

where the number of neighbors is |Neighbors(·)| = bdlog2Ne according to [102], and b is a con-

stant integer. The resultant affinity matrix A is symmetric. The cluster structure of representation

vectors is obtained by solving the problem below:

min
W≥0

‖A−WWT‖2F , (3.3)

where W ∈ RN×C , C is the number of clusters and ‖ · ‖F denotes Frobenius norm. The above

formulation is equivalent to performing kernel K-means clustering on Z with the orthogonality

constraint WTW = I relaxed [103]. A larger value of Wi,c indicates a stronger affiliation of the

instance i to cluster c. It is a nontrivial problem to solve Equation 3.3, since the objective function

is a fourth-order function which is non-convex with respect to W, so we reformulate the problem

as below:

min
W,H≥0

‖A−WHT‖2F + α‖W−H‖2F , (3.4)

where α > 0 controls the tradeoff between approximation error and factor matrices difference.

Traditional iterative optimization methods such as coordinate descent methods [104, 105] can be

applied to solve the problem by updating W and H alternatively. The value of α is gradually
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Figure 3.2: A taxonomy extracted by hierarchical clustering on embeddings from node2vec [3] on
the Les-Misérables network. (a): Visualization of original embedding results. (b): Visualization
of embeddings after clustering where C = 7. (c): Taxonomy represented in a table, where bold
numbers denote leaves. (d): Taxomony represented by a tree. (e): Visualization of the network
with 4 clusters obtained from a subtree. (f): Visualization of the network with 7 clusters obtained
from the taxonomy, which corresponds to the embedding visualization in figure (b). Reprinted
from [2].

increased to reduce the difference between W and H as iterations proceed until convergence.

3.2.2 Hierarchy Establishment from Embedding-based Graph

Instead of performing flat clustering on G, we leverage the hierarchical strategy to resolve the

graph recursively. The reasons are two-fold. First, it is hard to know the optimal number of clusters

in G. By adopting hierarchical clustering, we avoid starting over and exhaustively trying different

K values, which is often time-consuming. Second, multilevel abstraction of concepts naturally

exists in many real-world networks, such as product catalogues in e-commerce networks, and topic

hierarchies in document networks. In addition, practitioners can trim the obtained hierarchical

structure based on their own needs, which is helpful in interpretation where the interactions exist

between users and models.

We adapt the previously mentioned NMF algorithm for clustering G in a hierarchical manner,

as summarized in Algorithm 1. After initialization (line 1∼2), we repeatedly split large clusters
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Algorithm 1: Taxonomy Backbone Extraction from G

Input: Affinity matrix A of G, maximum number of clusters C, parameters α ∈ R+, γ ∈ (0, 1),
I ∈ N+

Output: Tree-structured hierarchy T
1 Create a root clusterM1 = V containing all graph nodes, and let the partition score s(M1)← 0

(Note: 0 ≤ s(·) ≤ 1)
2 Number of leaf node c← 1, time step t← 1
3 while c ≤ C do
4 Choose a clusterMt of the smallest s(Mt) to be partitioned
5 Outliers Ot = ∅
6 for i = 1 : I do
7 Obtain the submatrix At corresponding toMt

8 Run rank-K NMF on At, and create K potential clusters {Mt
k; k ∈ [1,K]} based on Wt (

or Ht)
9 if |Mt

k| < γ|Mt| && s(Mt
k) is the largest among all leaf clusters, ∃k ∈ [1,K], then

10 Mt ←Mt −Mt
k, Ot ← Ot ∪Mt

k

11 else
12 break

13 if i ≤ I then
14 PartitionMt as {Mt

k; k ∈ [1,K]}, and compute s(Mt
k)

15 else
16 Mt ←Mt ∪ Ot, s(Mt)← 1

17 c← c+K, t← t+ 1

into smaller ones. An example can be found in Figure 3.2. The details of the hierarchical clustering

process are introduced as follows.

Partition Score (line 4): At each step t, we need to choose the “best" cluster to be partitioned.

A cluster is suitable for further partitions if it contains several smaller cluster components which

are densely intra-connected and loosely inter-connected. We use the normalized cut (ncut) [106]

as the partition score s(·):

s(Mt) = ncut({Mt
k; k ∈ [1, K]}) =

K∑
k=1

cut(Mt
k,V −Mt

k)

assoc(Mt
k,V)

, (3.5)

where cut(M1,M2) =
∑

i∈M1,j∈M2
Ai,j and assoc(M,V) =

∑
i∈M,j∈V Ai,j. In this way, if each

sub-clusterMt
k is well isolated from other nodes, then cut(Mt

k,V −Mt
k) will be small. Besides,

if the nodes withinMt
k are well connected, then assoc(Mt

k, V) is large, since assoc(Mt
k,V) =

assoc(Mt
k,Mt

k) + cut(Mt
k, V −Mt

k). Therefore, the cluster with smallest partition score s is
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assigned with top priority to be further split.

Rank-K NMF (line 7∼8, 14): Let At ∈ Rn×n denote the affinity matrix of clusterMt which is

selected to be further partitioned at step t. The size ofMt is n. We fix the number of sub-clusters

as K, so each partition step is transformed into a local rank-K NMF problem: minWt,Ht≥0 ‖At −

WtHtT‖2F + α‖Wt −Ht‖2F . For generality, in this work we set K = 2 if no other prior knowledge

is available. After initializing Ht and α, the NMF problem is solved in an iterative manner until

convergence [107]:

Wt ← Ht, α← cscale · α

Ht ← argmin
Ht∈Rn×K≥0

∥∥∥∥∥∥∥
 At

√
αWtT

−
 Wt

√
αIK

HtT

∥∥∥∥∥∥∥
2

F

,
(3.6)

where cscale is slightly larger than 1, so that α keeps increasing throughout iterations to force Ht and

Wt to be gradually close to each other. Here IK is the K ×K identity matrix. After convergence,

we assign each node i to the new sub-cluster ki = argmaxk Wi,k. In the taxonomy tree T , the new

K sub-clusters are appended as the children ofMt.

Outliers Identification (line 9∼12, 16): Outliers adversely affect the clustering quality as

they are likely to be separated as sub-clusters but usually do not contain patterns of interest. We

treat a sub-cluster Mt
k as outliers if it is of extremely small size compared with its parent (i.e.,

|Mt
k| < γ|Mt| and 0 < γ < 1) and has high partition scores (low priority). We keep excluding

outliers for at most I rounds, so thatMt will not be partitioned if its main components are outliers

(i.e., i ≤ I does not hold).

3.3 Cluster Attributes Importance Measurement

After obtaining the backbone of taxonomy through hierarchical clustering, in this subsection,

we concentrate on each cluster in the taxonomy to summarize its unique characteristics. Specif-

ically, we utilize feature importance to delineate the properties of clusters. Typical examples in-

clude user interests in social networks and recommender systems, and research areas of scholars
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Figure 3.3: Left: A toy example of important features associated with each cluster in a subtree of
the taxonomy. Right: The corresponding activated coefficients in the weight matrix U. Reprinted
from [2].

in academic networks. Our goal is to find the important features that significantly contribute to the

representation learning results.

We tackle the problem of characterizing multiple clusters with important features as a multi-

task feature selection problem. Each cluster is then characterized by the important features shared

by the majority of instances in the cluster. The cluster structure identified by the global-view

interpretation provides the discriminative information which supports feature selection to be im-

plemented in a supervised manner. Concretely, let Y ∈ RN×C denote the class label matrix, where

Yn,t = 1 if node n belongs to clusterMt and Yn,t = 0 otherwise. Here C is the number of tasks.

If we want to describe all clusters in the taxonomy, then C equals to the total number of internal

nodes and leaf nodes in the tree T . Let U ∈ RM×C denote the feature weight matrix, where Um,t

indicates the importance of feature m in clusterMt. For a pair of nodes i, j within a certain clus-

terMt, the consistency of node similarity in the embedding space and that in the selected feature

space can be quantified as below:

σ(i, j) =
1

1 + exp(−Ai,jxiTdiag(U:,t)xj)
, (3.7)

where diag(U:,t) turns the column vector U:,t into the diagonal matrix form. xiTdiag(U:,t)xj is the

similarity between features of i and j weighted by U:,t, while Ai,j is the edge strength between
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instance i and j in graph G. Then the objective function with respect to U is given as follows:

max
U

C∑
t=1

( ∑
i,j∈Mt

log(σ(i, j)) +
∑
i−,j−

log(1− σ(i−, j−))
)
. (3.8)

The samples i− and j− are negative samples from other clusters. By optimizing the above objective

function, we obtain U that selects a subset of important features for each clusterMt such that node

proximity in the selected feature space are in line with the proximity in the embedding space.

To take advantage of the hierarchical structures contained in the taxonomy, some constraints

are required to regularize U:,t. Let P = (t0, t1, t2, ..., th) denote the path from the root to a leaf

in the taxonomy tree T , where ti refers to a tree node and ti−1 is the parent of ti. Two clusters

Mti andMtj are expected to share some common characteristics if ti and tj lie on the same path

P . An example is shown in Figure 3.3. ForM5, its important feature is x3, while x3 is also one

of the important features ofM2 andM1 as they are in the same root-to-leaf path. To incorporate

the prior knowledge of tree-based structure in taxonomy, we introduce tree-based group lasso

regularization [108] to the objective function. Therefore, the overall objective function for local-

view interpretation is formulated as:

max
U

C∑
t=1

( ∑
i,j∈Mt

log(σ(i, j)) +
∑
i−,j−

log(1− σ(i−, j−))
)

− λ
∑
m

∑
τ∈T

lτ‖Uτ
m‖2.

(3.9)

For the regularization term, Uτ
m is a vector of weight coefficients {Um,t : t ∈ τ}, where τ refers to

a tree node in taxonomy T . Here t ∈ τ if the clusterMt is part ofMτ . This also implies that if

t ∈ τ , then t ∈ parent(τ). Considering the tree structure, one way for selecting negative samples

i− and j−, w.r.t. i, j ∈Mt, is to sample from clusters that are not in the same path asMt.

The above optimization problem is non-smooth due to the existence of L1/L2-norm regulariza-

tion term and is hence difficult to optimize. Therefore, we use an alternative formulation previously
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Algorithm 2: Optimization algorithm for Equation 3.10.
Input: Affinity matrix A of G, feature matrix X, hierarchical clusters T , λ ∈ R+.
Output: Weight matrix U, coefficients {gm,τ}.

1 Initialize U and {gm,τ}
2 while not converged do
3 for t = 1, 2, ..., C do
4 Collect samples {(i, j)|i, j ∈Mt}, and negative samples {(i−, j−)} from other clusters
5 Update U:,t using mini-batch stochastic gradient descent

6 Update gm,τ = lτ‖Uτm‖2∑
m

∑
τ∈T lτ‖U

τ
m‖2

introduced for group lasso [109]:

max
U

C∑
t=1

( ∑
i,j∈Mt

log(σ(i, j)) +
∑
i−,j−

log(1− σ(i−, j−))
)

− λ
∑
m

∑
τ∈T

l2τ‖Uτ
m‖22

gm,τ

subject to
∑
m

∑
τ∈T

gm,τ = 1, gm,τ ≥ 0,

(3.10)

where additional variables {gm,τ} are introduced. The way of setting lτ is suggested in [108]. The

problem above is then solved by alternatively optimizing U and gm,τ , as shown in Algorithm 2.

In each iteration, we first hold coefficients gm,τ as constant and update each column U:,t using

stochastic gradient descent. Then we fix U and update gm,τ , where the update equation is given in

Line 6 of Algorithm 2.

3.4 Experiments

We evaluate the effectiveness of the proposed interpretation framework quantitatively on real-

world datasets. A case study is also implemented to intuitively show the interpretation results.

3.4.1 Experimental Settings

Datasets. We use three real-world datasets to evaluate the interpretation results. The statistics

of the datasets are in Table 3.1. Detailed descriptions of these datasets are as follows.

• BlogCatalog2: An online community network from which links between users and posts of

2http://people.tamu.edu/∼xhuang/Code.html
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Dataset N M |E| #class
BlogCatalog 5,196 50 343,486 6

Flickr 7,575 60 479,476 9
20NewsGroups 18,774 60 401,108 [6, 20]

Table 3.1: Statistics of the datasets. Reprinted from [2].

users are extracted. Users are represented as nodes, and their associated posts are used as node

attributes. Predefined class labels of users are also available.

• Flickr2: An image and video hosting website. The following relationships among users form a

network, in which the tags of interest are used as node attributes. The groups that users joined

are treated as class labels.

• 20NewsGroups3: A collection of news documents, each of which belongs to one of the twenty

different topics. The topics are used as class labels, and a topic hierarchy is directly available

from the data source. We use a tf-idf vector to represent each document and measure the simi-

larities among documents using cosine similarity. A network is constructed based on document

similarities, and news texts are attached as attributes. The attributes are only used in interpreta-

tion, while for network embedding only link information is considered.

For all of the datasets above, we preprocess the attributes (i.e., word tokens) using LDA [110] to

reduce the number of dimensions.

Alternative Methods for Global-View Interpretation. To evaluate whether the extracted hier-

archical clusters by our approach are reasonable, we introduce two alternative clustering methods

for comparative analysis. The goal is not to defeat these alternatives, since the proposed method

can be seen as a variant of them.

• SymNMF [107]: A flat graph partitioning algorithm based on NMF. It has the same overall loss

function as our method. The input is also the graph G constructed from embedding results.

3http://qwone.com/∼jason/20Newsgroups/
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Figure 3.4: Hierarchical clustering performances for LINE on 20NewsGroup. Reprinted from [2].
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Figure 3.5: Hierarchical clustering performances for node2vec on 20NewsGroup. Reprinted from [2].

• HierKm [111]: A hierarchical clustering method based on the k-means algorithm. Its workflow

is the same as Algorithm 1. It operates directly on embedding instances.

Baseline Methods. We further verify if the description of each cluster, selected from node at-

tributes, correctly reflects its characteristics. The baseline methods are introduced as below.

• MTGL [108]: A multitask classification model also guided by tree-based group lasso. It shares

the same global-view interpretation result as the proposed method.

• NDFS [112]: An unsupervised feature selection algorithm. We use the graph Laplacian built

from embedding vectors and the attribute information of nodes as the input.

• LIME [11]: A model originally designed for interpreting local predictions in classifiers. In our

experiments, we select a number of target embedding instances. For each instance, we select

important attributes of its neighborhood compared with some other distant clusters.
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Figure 3.6: Hierarchical clustering performances for LANE on BlogCatalog and Flickr. Reprinted from [2].
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Figure 3.7: Hierarchical clustering performances for LCMF on BlogCatalog and Flickr. Reprinted from [2].

3.4.2 Evaluation on Global-View Interpretation

3.4.2.1 Evaluation Metric for Global-View Interpretation

The evaluation of global-view interpretation follows the common workflow of clustering evalu-

ation. In particular, we use Normalized Mutual Information (NMI) [113] to measure the hierarchi-

cal clustering quality with respect to the ground-truth clusters. For datasets with defined hierarchy,

we compute the NMI between the clustering results and the ground-truth clusters at each level.

3.4.2.2 Employed Network Embedding Methods

We introduce the employed network mebedding methods to be interpreted. Note that interpre-

tation takes the network embedding results as input rather than the original network. We include

the following embedding methods which: (1) preserve the first-order or high-order node proxim-

ity (e.g., LINE [16], SDNE [57], node2vec [3]); (2) incorporate labels with links and attributes

(e.g., LCMF [114], LANE [58]). In particular, LINE, node2vec and SDNE are used to embed
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Figure 3.8: Local interpretation for LANE on BlogCatalog and Flickr. Reprinted from [2].
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Figure 3.9: Local interpretation for LCMF on BlogCatalog and Flickr. Reprinted from [2].

the 20NewsGroup network, while LANE and LCMF are performed on BlogCatalog and Flickr

networks. For LINE, we set the number of negative samples as 10, the number of samples as 200

millions, ρ = 0.025, and enable second-order proximity. For node2vec, we set p = 1, q = 0.5,

walk length as 80 and the number of walk per node as 15. For SDNE, there are two encoding layers

with 600 and 128 latent factors, respectively. For LANE, we set the balancing parameter of labels

as 300 for BlogCatalog and 150 for Flickr. For LCMF, we set the balancing parameter of attributes

as 3 for BlogCatalog data and 5 for Flickr data.

3.4.2.3 Global-View Interpretation Results and Analysis

The global-view interpretation results are shown in Figures 3.4∼3.7. We omit the results for

SDNE on 20NewsGroup owing to lack of space, as they are similar to those for node2vec. Some

observations are made as follows. First, in general, the proposed method and SymNMF have

more stable clustering performances than HierKm, and even better performances in some cases. It

means that, although we work on the embedding-based graph instead of directly on the embedding
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instances, the clustering results are not significantly affected. In certain cases, we even benefit from

clustering on embedding-based graphs. Second, the proposed method is comparable to SymNMF

as k increases, as they actually share the same original loss function in Equation 3.3. The proposed

method has better performance when k is small. This is probably because a small k is largely

inconsistent with the real number of clusters in the datasets, which hinders the performance of flat

clustering. In this case, hierarchically clustering can more effectively discover the internal struc-

tures of the data. In conclusion, the observations above validate the soundness of the developed

global-view interpretation method.

3.4.3 Evaluation on Local-View Interpretation

The goal of local-view interpretation is to identify the attributes shared by the nodes in the

same cluster obtained from the global-view interpretation. We design two sets of experiments

to verify the correctness of the identified attributes, through adversarial perturbation and network

reconstruction, respectively.

3.4.3.1 Adversarial Perturbation Based on Interpretation

As it is difficult to obtain the ground truth information (e.g., significant attributes), we first

evaluate the accuracy of generated interpretation through adversarial perturbation. After identify-

ing the significant attributes of nodes, we select a number of seed nodes for generating adversarial

samples. We create a copy for each of the seeds, distort the value of their attributes and fed the new

nodes along with the original network into the embedding algorithms. After that, we measure the

relative shift of the new embeddings from the original embeddings of seeds. Let zn and z′n be the

embedding instance of node n before and after perturbation, respectively, the shift is defined as:

shift(n, d) = 1− |Neighbors(zn) ∩ Neighbors(z′n)|
|Neighbors(zn)|

, (3.11)

where Neighbors(zn) denotes the set of neighbor nodes around n in the embedding space, and d

is the amplitude of adversarial perturbation. Large shift is expected if the generated interpretation

faithfully reflects the mechanism of employed embedding models.
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Figure 3.10: Network reconstruction on the 20NewsGroup dataset. Reprinted from [2].

Specifically, the number of seeds is set as 0.03 × N for each network, where N is the total

number of nodes. For each seed’s embedding vector, the number of neighbors is chosen as 0.01×N

for LANE and 0.03×N for LCMF. The parameters settings of LANE and LCMF remain the same

as in the previous experiments. For LCMF, since it outputs several matrices besides the embedding

matrix Z, we fix the values of these matrices and only allow Z to be updated during learning

process. For each seed node in cluster Mt, we identify 4 positively significant attributes and 4

negatively significant ones to be perturbed, corresponding to the largest and smallest entries in

U:,t, respectively. The value of the former ones are decreased, while the value of latter ones are

increased. The L2 norms of both types of perturbation are normalized to d.

The experiments are conducted on BlogCatalog and Flickr. The performance of adversarial

perturbation is shown in Figure 3.8 for LANE and Figure 3.9 for LCMF. The figures show that the

average shift of adversarial samples increases as we increase the perturbation amplitude. The ad-

versarial samples created by the proposed method are more effective, as they are more dramatically

shifted from their original neighborhood prior to adversarial perturbation. The proposed method

has better performance than MTGL. The reason could be that the edge weights contained in A are

more informative than binary class labels used in MTGL. In addition, interpretation approaches

(e.g., Prop, MGTL), which focus on overall embedding instances, have better performances than

LIME which interprets individual embeddings locally. It indicates the importance of considering a

wider range of contexts in solving our problem. The embedding instances in other clusters provide

contrastive information to filter out irrelevant attributes with respect to the current cluster, while
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Figure 3.11: (a): The inducted taxonomy with 7 leaf clusters. (b): The inducted taxonomy with 20
leaf clusters. Reprinted from [2].

instances within the same cluster help filter out noises in attribute selection.

3.4.3.2 Network Reconstruction from Interpretation

In this subsection, we evaluate interpretation results with respect to their capability of network

reconstruction on the 20NewsGroup dataset. The motivation is that, while network embedding

methods encode topological structures into embeddings, interpretation algorithms try to recover

the attribute patterns consistent with the embedding distribution. We build an LDA model with

60 latent topics from the documents, and assign each node with a 60-dimensional attribute vector.

After solving U, in each leaf clusterMt, we predict links based on the similarities between nodes

with respect to attributes, the importance of which is weighted by U:,t. The predicted links corre-

spond to node pairs with large similarity scores. The existing links in the original network serve as

the ground-truth. We use precision@k as the evaluation metric.

The results are presented in Figure 3.10. In general, the proposed method achieves better per-

formance than baseline methods. Its interpretation performances are relatively stable across dif-

ferent network embedding methods. The edge weights in A contain more information than class

labels, which could explain why the proposed method performs better than MTGL. The advan-

tages of NDFS are not reflected via this experiment. The reason is that the attributes information

are already modeled as links and fed into network embedding methods, so jointly considering

embeddings and attributes does not bring additional benefits.
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3.4.4 Case Study

We conduct a case study on 20NewsGroups network using LINE [16] to show the taxonomy

induction result and the characteristics of extracted taxonomy concept (i.e., clusters). We present

the inducted taxonomy with 7 leaf clusters and 20 leaf clusters in Figure 3.11a and Figure 3.11b,

denoted by T 7 and T 20, respectively. The two figures are generated from the same taxonomy, but

with different depths of division. Some clusters in T 20 are obtained by splitting the larger clusters

in T 7. Clusters are indicated with different colors. The visualization of embedding vectors are

obtained using t-SNE [115]. We select several clusters and present the keywords of the documents

in each cluster in the dashed boxes. For each clusterMt, we first find its significant attributes m

corresponding to the large positive entries Um,t, and then identify the keywords associated with

each attribute m. Here the “attributes" are the latent factors extracted by LDA. Keywords of larger

font size in boxes are ranked higher than those of smaller font size. Keywords that belong to the

stop words or email artifacts (e.g., com, edu) are not shown. The bold text prior to the keywords, if

available, represent the manually-identified news topic (named by the dataset provider) which the

majority of the nodes in the cluster belong to. There are 20 such topics in the dataset.

We make the following observations from Figure 3.11a and 3.11b. First, nodes in each cluster

extracted by our interpretation method locate closely to each other. In general, the cluster structures

are consistent with the visualization results, which reflects the effectiveness of the global-view

interpretation method. Second, the keywords of each cluster are consistent with the ground truth

news topics, which validates the effectiveness of the local-view interpretation. Third, we can

observe that some major clusters, such asM6 andM11, contain multiple topics, since they have

not been throughly decomposed in shallow levels of the taxonomy. Different topics are separated

as we continue splitting clusters towards deeper levels. For example, many topics are mixed inM6

which is one of the major clusters in T 7. However, as we splitM6 intoM13,M17,M29 andM36,

each sub-cluster has a coherent topic. Some keywords in these sub-clusters are inherited fromM6,

such as the {god, jesus} inM36, {game, team} inM29 and {government, gun} inM13, so that a

larger and coarser concept is split into smaller but refined ones.
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4. INTERPRETABLE MODELING VIA RESOLVING LATENT REPRESENTATIONS 1

The local feature-based interpretation and representation interpretation are post-hoc methods

that can only be applied to understand trained models. While these techniques have a broad range

of applications, there are also several challenges that prevent us from achieving further model

transparency. First, it is hard to guarantee the accuracy of post-hoc interpretation with respect

to the actual working mechanism of the model. Second, post-hoc interpretation does not help

gain control of the model during its training stage. We have to use other techniques to adjust the

behavior of models if we find undesirable properties after applying post-hoc interpretation.

The above challenges can be tackled through designing models that are inherently interpretable.

In this work, instead of trying to understand latent representations after building the model, we di-

rectly control the semantic meaning of latent dimensions during model establishment. Specifically,

we choose network embedding as the domain scenario. We extend several existing network em-

bedding models, including Deepwalk, PTE and GCN. In the proposed model, each node may have

several embedding vectors, each of which corresponds to one facet/meaning of the dataset. We

call this setting as node polysemy, as motivated by word polysemy in natural language processing,

where each word owns several meanings. Besides obtaining the meanings of latent dimensions,

the proposed new models could also achieve better performances in downstream tasks.

4.1 Polysemous Network Embedding

In this section, we introduce how to explicitly assign meanings to latent dimensions in network

embedding, by using Deepwalk as the base model. Then, we design an optimization algorithm to

train the polysemous embedding model. We will also discuss how to estimate the facet of a node

in different contexts. Finally, we introduce how to combine embedding vectors of different facets

towards downstream tasks such as classification and link prediction.

1Part of this chapter is reprinted with permission from "Is a single vector enough? exploring node polysemy for
network embedding" by Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia Hu, Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Pages 932–940,
Copyright 2019 by Association for Computing Machinery.
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4.1.1 Polysemous Deepwalk

In the setting of polysemous network embedding, for the Deepwalk model, each node vi is

associated with a target embedding matrix Ui ∈ RKi×D and a context embedding matrix Hi ∈

RKi×D. HereKi is the number of embedding vectors possessed by node vi considering its different

possible facets. The traditional Deepwalk model could be seen as a special case where Ki = 1.

The embedding vector for facet k of node vi is denoted as Uk
i ∈ RD or Hk

i ∈ RD, and D is the

dimension of each embedding vector. Different nodes may be associated with different number of

embedding vectors, depending on the diversity of their characteristics in the network. In this work,

for illustration purposes, we simply let all nodes have the same number of embedding vectors, so

that Ki = K and K is a predefined constant integer. In practice, the value of K could be estimated

from data. For examples, K can be approximately set as the number of latent interest categories in

recommender systems, or be estimated as the number of major topics in an academic network. We

will discuss in later sections about how to assign facets to nodes with different probabilities.

Traditional Deepwalk: Deepwalk utilizes the skip-gram model [116] that is trained using the

maximum likelihood estimation, where we try to find the model parameters that maximize the

likelihood of obtained observations. Specifically, let θ be the parameters to be optimized andO be

the set of all observations, the objective function to be maximized is:

LDW (θ) =
∑
o∈O

log p(o|θ) =
∑
o∈O

log p
(
(N (vi), vi)|θ

)
=
∑
o∈O

∑
vj∈N (vi)

log p(vj|vi)

=
∑
o∈O

∑
vj∈N (vi)

log
exp(< Hj,Ui >)∑
v exp(< Hv,Ui >)

,

(4.1)

where each observation o ∈ O is defined as a tuple, o = (N (vi), vi), consisting of a central node

vi and its context N (vi). Each node within the context is denoted as vj so that vj ∈ N (vi). The

model parameters, i.e., the embedding vectors of nodes, are used in computing p(vj|vi) which is

the conditional probability of having vj as one of the contexts given vi.

41



Consideration of Multiple Facets: In our settings where each node owns multiple facets, the

activated facet of a node varies under different contexts. Also, the facet of a given context is deter-

mined by the combination of all facets of the nodes within the context. Suppose the distribution of

node facets are known in advance, and we treat them as prior knowledge denoted as P . Taking the

additional information into account, the objective is reformulated as:

LPolyDW (θ) =
∑
o∈O

log p(o|P , θ) =
∑
o∈O

log [
∑
s(o)

p(o|s(o),P , θ) · p(s(o)|P , θ)]. (4.2)

Here s(o) is defined as one case of activated facets of all nodes within o, so s(o) = {s(v|o) |v ∈

vi∪N (vi)} where s(v|o) is the activated facet of node v in the context of o. In a given observation

o, suppose the activated facet of vi is ki and the facet of each vj ∈ N (vi) is kj , the conditional

probability p(o|s(o),P , θ) is thus defined as:

p(o|s(o),P , θ) =
∏

vj∈N (vi)

p(vj|vi, s(o)), (4.3)

and each product factor is calculated as

p(vj|vi, s(o)) =
exp(< Hkj

j ,U
ki
i >)∑

v,k exp(< Hk
v ,U

ki
i >)

, (4.4)

which is similar to the softmax function in traditional skip-gram models, except that general node

embeddings are replaced by node facet embeddings. Here "< · , · >" denotes the inner product

of two vectors. The denominator acts as normalization over all possible nodes and facets. For

readability, we omit P after the expansion in Equation 4.3, as it is no longer applied in later steps.

Efficient Optimization: It is cumbersome to directly apply gradient descent to optimize the

objective function in Equation 4.2∼ Equation 4.4, due to the summation term inside the logarithm

function. Also, it becomes unclear of how to incorporate negative sampling [116] to approximate

the normalization term for more efficient computation. Therefore, we further derive the objective
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Algorithm 3: Polysemous Deepwalk
Input: Input network G, number of nodes N , facet sampling rate R.
Output: Embedding matrix U, context embedding matrix H.

1 Initialize U and H ;
2 Estimate facet distribution p(vi) for each node, so that P = {p(vi)}, 1 ≤ i ≤ N ;
3 Obtain observations O via random walks and context window sliding ;
4 while not converged do
5 for o ∈ O do
6 Obtain a target-context tuple o = (N (vi), vi) ;
7 for 1 ≤ r ≤ R do
8 Sample a facet ki = s(vi|o) ∼ p(vi|o), defined in Eq. 4.7 ;
9 Sample a facet kj = s(vj |o) ∼ p(vj |o), defined in Eq. 4.7, for each context node

vj ∈ N (vi) ;
10 Obtain negative samples ;

11 Update Uki
i , Hkj

j for vj ∈ N (vi), as well as facet embeddings of negative samples,
using stochastic gradient descent ;

function as below:

LPolyDW (θ) =
∑
o∈O

log [
∑
s(o)

p(o|s(o),P , θ) · p(s(o)|P , θ)]

≥
∑
o∈O

∑
s(o)

p(s(o)|P , θ) · log p(o|s(o),P , θ)

=
∑
o∈O

∑
s(o)

p(s(o)|P) · [
∑

vj∈N (vi)

log p(vj|vi, s(o))]

= L∗PolyDW (θ)

(4.5)

The intuition behind the above transformation is that, instead of maximizing the original objec-

tive function, we turn to maximize its lower bound [117], denoted as L∗PolyDW (θ), by applying

Jensen’s inequality. The final form of the objective function is similar to that of the skip-gram

model, except the external summation over s(o). As a result, we could adopt the same negative

sampling strategy as in the traditional skip-gram model to approximate the normalization term in

p(vj|vi, s(o)). Therefore, one major advantage of the proposed polysemous embedding model is

that the training process can be easily implemented through minimal modification to the existing

learning frameworks, by adding an additional sampling step of assigning activated facets to nodes

in each observation o.
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Figure 4.1: The overall training procedure of Polysemous Deepwalk. Each color refers to one facet
(i.e., cluster in this case) in the input network. Each histogram visualizes a probability distribution.
Note that the above network is only a toy example for illustration purposes, where numerical values
do not reflect real results. Reprinted from [4].

Specifically, the summation over
∑

s(o), following the distribution of p(s(o)|P), is implemented

through facet sampling separately for each node in o. The overall optimization algorithm is speci-

fied in Algorithm 3. After initialization and node-facet distribution estimation (will be introduced

later), a number of random walks are sampled just as in traditional Deepwalk (Line 3). Then, for

each observation o, several rounds of facet sampling are conducted on each node within o (the loop

in Line 7). In each round, each node has one facet activated (Line 8 ∼ 10), so that the embedding

vector corresponding to that facet will be updated using SGD (Line 11). The major additional

computation cost, compared with traditional Deepwalk, comes from the increased size of training

data in O by a factor of sampling rate R.

4.1.2 Node Facets Estimation and Assignment

The overall process of polysemous Deepwalk is illustrated in Figure 4.1. The “Objective Op-

timization” part has been introduced as above, while the other steps related with facet distribution

and facet assignment will be discussed in this subsection.
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Following the process in the figure, we first introduce how the prior knowledge P can be

obtained, and how to determine the facet of nodes given a specific observation o. For now, we limit

the discussion to undirected homogeneous plain networks, and provide one method to obtain the

global distribution of node facets by only leveraging the network adjacency matrix. For networks

with attribute information or heterogeneous information networks, we may resort to other strategies

and we leave it to future work. Let A be the symmetric adjacency matrix of the network, we

perform community discovery on the network [118, 119]:

min
P≥0
‖A− P · PT‖2F + α‖P‖2F , (4.6)

where P can be solved using gradient search algorithms. The probability p(k|v), that node v is

assigned with the k-th facet, can be calculated as p(k|v) =
Pv,k∑

c=1,...,K Pv,c . We define the facet

distribution of a node as p(v) = [p(1|v), ..., p(K|v)]. We treat p(vi), 1 ≤ i ≤ N as the prior

knowledge P , as it encodes the global understanding of the network states. Applying attribute

information could achieve better estimation, but it is beyond the discussion in this work.

After obtaining the prior knowledge P , we are able to estimate the overall facet of each obser-

vation o as well as the facet of nodes within o. Given an observation o = (N (vi), vi), a straight-

forward way to define its facet distribution p(o) is by averaging the facet distributions of nodes

inside the observation, i.e., p(o) =
(
p(vi) +

∑
vj∈N (vi)

p(vj)
)
/(|N (vi)|+ 1). Considering that the

activated facet of a node depends on the specific context where it is observed, given o, the node’s

facet s(v|o) is sampled according to the distribution p(v|o), which is defined heuristically as below

p(v|o) = min(p(v),p(o)), (4.7)

where we include a min(·, ·) operator because it is undesirable to assign a node vi with facet k if

p(k|vi) ≈ 0, even when the k-th entry in p(o) is large. To make it a valid probability distribution,

p(v|o) is further normalized to sum to 1.

Till now, we have introduced the whole training process of polysemous Deepwalk as shown in
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Figure 4.1. Given the input network, we first estimate node facet distributions as prior knowledge

P . Then, random walks are performed to construct node-context observationsO. After that, within

each walk sample o, each node is assigned with an activated facet. Finally, node embeddings of

correspondent facets are updated through optimization.

4.1.3 Aggregation of Multiple Embeddings for Inference

We are able to obtain multiple embedding vectors for each node after training the polysemous

model. Then the question arises that, during inference, how to collectively consider different em-

bedding vectors for subsequent tasks. Here we discuss two major network analysis tasks including

classification and link prediction.

Node Classification: In node classification, for each node, our strategy is to combine multiple

vectors {Uk
i }k=1,...,K into a joint vector Ũi. Specifically, some options include: Ũi = U1

i ⊕ U2
i ⊕

...⊕ UK
i , where we directly concatenate embeddings of different facets, or

Ũi =
(
p(1|vi) · U1

i

)
⊕
(
p(2|vi) · U2

i

)
⊕ ...⊕

(
p(K|vi) · UK

i

)
, (4.8)

where we first scale each embedding vector with the probability of belonging to the corresponding

facet and then concatenate these scaled vectors. Here ⊕ denotes the concatenation operation. The

resultant embedding vectors {Ũi}i=1,...,N can be directly used in node classification. We adopt

Equation 4.8 in experiments.

Link Prediction: For link prediction or network reconstruction tasks, a higher similarity score

between the representations of two nodes indicates greater possibility that a link exist between the

nodes. We can define the similarity between two nodes vi and vj as:

similarity(vi, vj) =
K∑
k=1

K∑
k′=1

p(k|vi) p(k′|vj) < Uk
i ,U

k′

j >, (4.9)

where different facet pairs of embedding vectors contribute to the overall similarity computation,

weighted by the probability that the node belongs to the corresponding facet.
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4.1.4 Discussion

The proposed work may be related to disentangled representation learning [120], since differ-

ent representation dimensions are sensitive to varying factors behind the data. Traditional disen-

tangled representation learning methods in computer vision are based on variational autoencoders

and encourage different latent dimensions to be mutually independent. Different from the tradi-

tional methods where each single dimension encodes one facet in data, our method is more flexible

where dimensions are grouped and several dimensions could encode one facet together. Moreover,

it helps improving the interpretability of representation learning [121], because representation di-

mensions are separated according to node facets that could be associated with concrete meanings

or characteristics of real-world networked objects.

4.2 Models Extended by Polysemous Embedding

The methodology of polysemous embedding can also be applied to extend other fundamental

single-embedding models. In this section, we elaborate two scenarios as examples. First, we show

how polysemous embedding can be used in heterogeneous networks where links exist between

nodes of different types. Second, we show how polysemous embedding can be combined with

graph neural networks, where the embedding look-up tables in Deepwalk is replaced by feedfor-

ward modules.

4.2.1 Polysemous PTE for Heterogeneous Networks

We show how to consider node polysemy when modeling heterogeneous networks. We choose

PTE [62] as the base model to be extended, as it is a fundamental model for tackling the problem.

To simplify the illustration, we only consider bipartite networks during model development. The

discussion can be applied for more complex networks, since the objective function of PTE could

be extended as the sum of several terms considering multiple bipartite or homogeneous networks.

Given a network containing two types of nodes VA and VB, as well as a set of links denoted as

E , each observation o is defined as a link o = (uj, vi) ∈ E where vi ∈ VA, uj ∈ VB. The set of

all observations is thus defined as O = E . Similar to the derivation in Section 4.1.1, the objective
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function is formulated as:

LpolyPTE(θ) =
∑
o∈E

log [
∑
s(o)

p(o|s(o),P , θ)) · p(s(o)|P , θ)]

≥
∑
o∈E

∑
s(o)

p(s(o)|P , θ) · log p(o|s(o),P , θ)

=
∑
o∈E

∑
s(o)

p(s(o)|P) · log p(uj|vi, s(o)),

(4.10)

where

p(uj|vi, s(o)) =
exp(< Hkj

j ,U
ki
i >)∑

v,k exp(< Hk
v ,U

ki
i >)

. (4.11)

According to the original PTE model, the matrix U contains the embedding vectors of nodes in

VA, and H contains the embedding vectors of nodes in VB. The resultant lower bound objective is

denoted as L∗polyPTE , which is to be optimized.

4.2.1.1 Node Facet Assignment

The strategy of determining heterogeneous node facet distribution is similar to that of the pre-

vious section. Given the asymmetric adjacency matrix A, we first solve

min
P≥0,Q≥0

‖A− P ·QT‖2F + α(‖P‖2F + ‖Q‖2F ), (4.12)

where we set α = 0.05 in experiments. The resultant factor matrix P contains the association

intensity between VA and facets, while Q contains the facet association information for nodes in

VB. Then, we normalize P and Q to obtain the probabilities of belonging to different facets for

each node vi ∈ VA and uj ∈ VB [119]. If we denote the facet distribution as p(vi) and p(uj)

respectively for the two types of nodes, then the facet distribution of an observation (i.e., an edge)

is computed as p(o) =
(
p(vi) + p(uj)

)
/2. Different from polysemous Deepwalk, here we simply

let p(v|o) = p(o) be applied for node-facet sampling, because the window size in PTE equals to 1

which is much smaller than Deepwalk.
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4.2.1.2 Engage Multiple Embeddings for Inference

The way of jointly considering a node’s multiple embedding vectors, for downstream tasks,

is similar to what is introduced in Section 4.1.3. The only difference is that the measurement of

similarity between two different types of nodes is adjusted as:

similarity(vi, uj) =
K∑
k=1

K∑
k′=1

p(k|vi) p(k′|uj) < Uk
i ,H

k′

j > . (4.13)

4.2.2 Polysemous Embedding with GCN

Instead of using indexing matrices to store embeddings, polysemous embedding can be applied

to models of other architectures. In this subsection, we consider GCN [66] as an example and show

how it could be extended as PolyGCN to consider node polysemy. Different from PolyDeepwalk

and PolyPTE that keep embedding look-up tables to store embedding vectors, PolyGCN uses a

feedforward network module to generate embedding of each node by gathering information from

neighborhoods.

The fundamental step of embedding generation in GCN is to aggregate information from a

node’s local neighborhood. Let ud(i) denote the intermediate representation of node vi on layer of

depth d, then the forward propagation is

ud(i)← σ

(
Wd ·MEAN(ud−1(i) ∪ {ud−1(j),∀vj ∈ N (vi)})

)
, (4.14)

where Wd is the weight matrix on layer d, MEAN refers to the aggregator based on the pre-

processed adjacency matrix, and N (vi) is the local neighborhood of vi. The final embedding

output for vi is defined as Ui = udmax(i), where dmax denotes the depth of the final layer. After

forward propagation, GCN can be trained in an unsupervised manner similar to Deepwalk or PTE.

We here propose a feasible approach to incorporate node polysemy into GCN-based models,

where each facet of embeddings corresponds to one GCN model, while the internal architecture of

each GCN is unchanged. Specifically, within a certain facet k, we limit the local neighborhood of
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|VA| |VB| |E|
BlogCatalog 5,196 − 171,743

Flickr 7,575 − 239,738
MovieLens 6,040 3,952 1,000,209
Pinterest 55,187 9,916 1,500,809

Table 4.1: Statistics of datasets. Reprinted from [4].

the node as other nodes with the same facet k activated, so that

ukd(i)← σ

(
Wk

d ·MEAN(ukd−1(i) ∪ {ukd−1(j),∀vj ∈ N k(vi)})
)
, (4.15)

where N k(vi) denotes the local neighborhood under facet k. The final embedding output for facet

k of vi is Uk
i = ukdmax(i). The main question to be answered is how to construct the local neighbor-

hood for a specific facet k of node v. Here we still consider bipartite networks as the scenario, so

for each facet there are two GCNs respectively for generating embeddings for each type of nodes.

Following the similar strategy as in Section 4.2.1, the observed links are decomposed into interac-

tion results of different facet pairs. We further relax the problem so that embeddings of different

facets are mutually independent. Specifically, the original observation matrix A =
∑

k Ak, where

Ak ≥ 0 and Ak(i, j) is proportional to P(i, k) · Q(j, k). vj ∈ N k(vi) if both vi and vj connect to

the same node of the other type under facet k. For training each GCN pair, we adopt the similar

unsupervised training strategies as proposed in [65], where nodes are encouraged to have similar

embeddings of facet k if they are connected according to the corresponding observation matrix.

4.3 Experiments

Experiments are conducted on several real-world datasets. We try to answer several questions

through experiments. First, how effective is the proposed polysemous embedding method com-

pared with single-vector embedding counterparts? Second, is considering node polysemy ben-

eficial for network embedding when evaluated on different downstream tasks? Third, how will

polysemous embedding models react to the changes of hyperparameters?
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4.3.1 Experimental Settings

We first introduce the applied datasets as below. The detailed information is shown in Table 4.1.

• BlogCatalog: A social network dataset built based on connections between online bloggers. The

original dataset contains both link and attribute information, while we only keep the links in our

experiments. Each node is also associated with a label determined from some predefined interest

categories of bloggers.

• Flickr: A network dataset constructed from interactions between users on a multimedia hosting

website. Each link corresponds to a following relation between users. The groups that users

joined are regarded as labels.

• MovieLens: A movie rating dataset widely used for evaluating collaborative filtering models.

In our experiments, we treat it as a heterogeneous network where links exist between users and

items (i.e., movies). We transform rating scores into implicit data, so that each entry is either 0

or 1 indicating whether the user rated the movie [122]. In this way, conducting recommendation

on this dataset can also be regarded as performing link prediction.

• Pinterest: An implicit feedback data originally constructed for image recommendation. Users

and images are regarded as nodes. Each link is a pin on an image initiated by a user. Each user

has at least 20 links. Similarly, link prediction can be seen as recommending images to users.

The networks in BlogCatalog and Flickr are homogeneous, and we use them in classification and

link prediction. The networks in MovieLens and Pinterest are heterogeneous, and we will apply

them in link prediction tasks which can also be seen as doing recommendation. The baseline

methods for comparison are as below.

• Deepwalk (DW) [17], PTE [62], GCN [67]: Some commonly used network embedding models

that map each node to a single vector. We include them as baseline methods to analyze whether

their polysemous embedding counterparts achieve better performance. Here GCN is only applied

in heterogeneous link prediction.
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• NMF [118, 123]: A traditional model that learns latent factors from data. We include NMF as

one of the baseline methods because we applied it to estimate the global facets contained in data.

The number of latent factors is the same as the number of facets in the polysemous model.

• MSSG [124]: A multi-sense word embedding model original developed for natural language

processing. Senses of words determined by clustering their average context representations.

Each word has only one embedding vector when it is regarded as context. The model is adapted

for network analysis tasks.

• MNE [125]: A model that factorizes the network proximity matrix into several group of em-

bedding matrices, and adds a diversity constraint to force different matrices focus on different

aspects of nodes.

4.3.2 Node Classification

Node classification is a commonly applied task for evaluating network embedding outcomes.

In this experiment, we compare the performance of the proposed polysemous models compared

with baseline models. We use Deepwalk as the base single-embedding model. The proposed model

is named as PolyDeepwalk. The BlogCatalog and Flickr datasets are applied in this experiment.

Unless specifically stated in each task, the default model hyperparameters are set as follows.

For BlogCatalog dataset, the number of walks generated per node is 110, the length of walk is 11,

the context size is 8, the number of facets is 6 considered for PolyDeepwalk, the embedding of

dimension is 210 for each node in Deepwalk and 210/6 = 35 for each node’s facet in PolyDeep-

walk, the number of negative samples is 5 for Deepwalk and 10 for PolyDeepwalk. For Flickr

dataset, the parameter settings are similar, except that the number of facets is 5 for PolyDeepwalk,

the embedding dimension is 180 for each node in Deepwalk and 180/5 = 36 for each node’s facet

in PolyDeepwalk, and the number of negative samples is 15 for PolyDeepwalk. It is worth noting

that the dimension of polysemous embedding is divided by the number of facets, so that after con-

catenation, the resultant embedding has the same length as the single-embedding counterpart. We

use Support Vector Machine as the classification model, where 80% of data samples are used as
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training data. The performance comparison is illustrated in Figure 4.2 and Figure 4.3. Note that

we do not plot the performance of NMF as its F1 scores are much lower than other models. Some

work includes node attributes as additional information source when using NMF related models

for node classification [58, 126], but this is beyond our experiment setting. From the figures, some

observations are summarized as below:

• In general, PolyDeepwalk achieves better performances than other polysemous embedding mod-

els. Also, by varying the dimensionality, we can observe that polysemous embedding models are

less likely to be affected, while the classification performance of Deepwalk gradually decreases

as dimensionality increases.

• Deepwalk and PolyDeepwalk have different responses to the change of context size. The former

achieves better performances as context size increases, while the latter shows the opposite trend.

A possible reason is that, as the context window enlarges in PolyDeepwalk, random walks from

each node are more likely to reach other network regions of different facets. As a result, the facet

distributions are over smoothed, so it becomes more difficult to decide which facet a context

window belongs to. It could be one of the challenges to be tackled in future work.

Besides making comparisons to baseline models, we also analyze the sensitivity of PolyDeep-

walk to some of the key parameters when modeling node polysemy. The experiment results are

shown in Figure 4.4. Some observations are made as below:

• Increasing the number of facets has positive influence on the classification performance of the

proposed model. It is also worth noting that we keep the total embedding dimension (i.e.,

K × DPolyDeepwalk) to be fixed, where DPolyDeepwalk actually decreases as K increases, so that

the downstream classification task will not be affected by the feature size.

• In this part of experiment, changing the facet sampling rate for each observation (i.e., context

window) does not significantly perturb the results. The possible reason is that many random

walks have been generated from each node, so the facet sampling is also implicitly performed
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Figure 4.2: Node classification evaluation on BlogCatalog dataset. Reprinted from [4].
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Figure 4.3: Node classification evaluation on Flickr dataset. Reprinted from [4].

for each random walk. The training samples are already adequate even when we reduce the facet

sampling rate for each context window.

4.3.3 Link Prediction in Homogeneous Networks

Besides node classification, we also include link prediction as one of the tasks for evaluating the

embedding results. We randomly select one link for each node as test data, and use the remaining

network as training data. The default settings of hyperparameters are similar to those applied in

the last experiment. The main difference lies on the embedding dimensionality, where we let the

embedding dimension to be DDeepwalk = DPolyDeepwalk. In other words, the embedding space of

PolyDeepwalk is the same as that of Deepwalk. The default dimension value, unless otherwise

stated, is chosen as 150. The performance of link prediction is summarized in Table 4.2, from

which we could observe that:

• There is no significant advantage for PolyDeepwalk on BlogCatalog dataset compared with
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Figure 4.4: Parameter analysis for node classification. Reprinted from [4].

Deepwalk. Although PolyDeepwalk achieves better performance in terms of AUC score, Deep-

walk scores higher when evaluated using HR@k and k is small. However, it implicitly indicates

that Deepwalk is gradually surpassed by PolyDeepwalk when k increases, which means Poly-

Deepwalk is better at recovering links that do not match the major connection patterns of a node.

• PolyDeepwalk performs better than NMF, which indicates that the effectiveness of polysemous

embedding is not purely inherited from the matrix factorization step which provides prior knowl-

edge of node facet distribution.

In addition, we analyze the sensitivity of PolyDeepwalk by varying the values of certain hyper-

parameters, including dimensionality, the number of facets (K), and the facet sampling rate (R)

for each context window (Figure 4.5). Some phenomenons are observed as below:

• Network embedding models are sensitive to embedding dimension in link prediction tasks, as

we can observe a clear growth of AUC score when embedding dimension increases.

• Increasing the number of facets K appropriately could boost link prediction performance. How-

ever, increasingK will also augment the embedding storage and inference computation cost. We

should better keep an appropriate K value, in order to balance the performance and efficiency.

• Similar to what we have discussed in node classification, increasing the facet sampling rate does

not bring much benefits. Therefore, when the number of walks per node is large enough, we can

keep the face sampling rate to be low in order to reduce computation costs.

55



BlogCatalog Flickr

HR@10 HR@50 HR@100 HR@200 AUC HR@10 HR@50 HR@100 HR@200 AUC

PolyDW 0.234 0.493 0.615 0.737 0.957 0.210 0.395 0.487 0.590 0.928
DW 0.253 0.512 0.639 0.764 0.950 0.195 0.348 0.430 0.530 0.912

NMF 0.041 0.132 0.196 0.280 0.801 0.048 0.148 0.226 0.335 0.852
MSSG 0.102 0.272 0.376 0.505 0.910 0.071 0.152 0.207 0.268 0.811
MNE 0.208 0.466 0.571 0.684 0.939 0.175 0.318 0.416 0.523 0.901

Table 4.2: Performance of homogeneous link prediction. Reprinted from [4].

MovieLens Pinterest

HR@10 HR@50 HR@100 HR@200 AUC HR@10 HR@50 HR@100 HR@200 AUC

PolyPTE 0.067 0.210 0.334 0.491 0.892 0.062 0.204 0.318 0.460 0.919
PTE 0.040 0.143 0.227 0.336 0.832 0.007 0.030 0.052 0.088 0.703

PolyGCN 0.050 0.158 0.250 0.389 0.863 0.057 0.198 0.251 0.455 0.912
GCN 0.039 0.130 0.204 0.313 0.813 0.051 0.187 0.262 0.430 0.902
NMF 0.051 0.165 0.265 0.404 0.865 0.005 0.021 0.040 0.075 0.654

MSSG 0.060 0.181 0.288 0.427 0.868 0.039 0.128 0.199 0.304 0.838
MNE 0.056 0.195 0.301 0.459 0.880 0.043 0.159 0.262 0.433 0.894

Table 4.3: Performance of heterogeneous link prediction. Reprinted from [4].

4.3.4 Link Prediction in Heterogeneous Networks

In some application scenarios such as recommender systems, each link stretches across two

types of nodes. Here we construct two bipartite networks from two recommendation datasets:

MovieLens and Pinterest. Models such as PTE and unsupervised GCN can handle such scenario,

and we extend them as PolyPTE and PolyGCN to be evaluated.

The default values of hyperparameters are as follows. For both datasets, the number of facets

K is 5, the embedding dimension is set as 30, and the facet sampling rate R for each observation

equals K2. The negative sampling rate is set as 30 for PolyPTE. Different from the last experi-

ment where DPolyDeepwalk = DDeepwalk, the embedding dimension in this experiment is set as D/K.

Performances of heterogeneous link prediction are shown in Table 4.3, where we can observe that:

• Polysemous embedding models achieves better performances than their single-embedding coun-

terparts. It thus suggests that considering node polysemy is beneficial for modeling the associa-
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Figure 4.5: Parameter analysis for link prediction on homogeneous networks. Reprinted from [4].

2 4 6

0.7

0.8

0.9

K

A
U

C

MovieLens
Pinterest

10 20 30
0.8

0.85

0.9

0.95

R

A
U

C

MovieLens
Pinterest

Figure 4.6: Parameter analysis for PolyPTE. Reprinted from [4].

tion relation between different types of node entities.

• Polysemous embedding models in general perform better than NMF, which demonstrates that

the effectiveness of polysemous models comes beyond the prior knowledge obtained from NMF.

• PolyGCN is not as good as PolyPTE in performance boosting. A possible reason is that we

do not consider inter-facet relations in PolyGCN. However, GCN-based models still have much

room for improvement, especially when attribute information is available.

Similar to previous experiment tasks, here we also analyze the sensitivity of PolyPTE to model

hyperparameters, as shown in Figure 4.6 for MovieLens and Pinterest. Besides some similar ob-

servations as in the last experiment, PolyPTE is sensitive to the facet sampling rate, especially

when its value is low. A possible reason for such contrasting observations between PolyDeepwalk

and PolyPTE could be the different forms of observation samples o ∈ O. PolyDeepwalk samples

plenty of random walks from each node (i.e., o = {N (v), v}), while PolyPTE uses edge based

sampling strategy (i.e., o = (vi, vj)). Therefore, if the facet sampling rate is low, PolyPTE could

not fully consider all the possible correlation patterns between different facets of users and items.
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5. ROBUSTIFYING MODELS BY UTILIZING INTERPRETATION 1

Existing work on model interpretability mainly focuses on obtaining interpretation from ma-

chine learning models and developing interpretable components. However, it has not been well

studied on how to exploit the obtained interpretation.

In this work, we explore the relation between interpretation and adversaries in order to improve

model robustness. Specifically, I propose that interpretation is helpful in discovering the vulnera-

bilities in models, which is crucial in security-related applications. I choose spammer detection in

the web security domain as the application scenario, where intelligent spammers (i.e., adversaries)

can adaptively change their behaviors to avoid being detected by the deployed models. I developed

an adversary-resistant model by utilizing interpretation to find model vulnerabilities and prepare

the model in advance against the potential threats from malicious accounts.

5.1 Problem Statement

We first introduce the notations and application scenarios in this work. Let {X ∈ RN×M , y ∈

RN} be the data about user instances without considering adversaries, where N denotes the num-

ber of users and M is the feature dimension. The vector xn = X[n, :] (1 ≤ n ≤ N ) represents

instance n in the feature space, yn = y[n] is the label, and xb denotes the b-th feature. In this work,

we consider social spammer detection [127, 128, 129] as the scenario, but the methodology can be

easily generalized to detection tasks against other malevolent entities. We set yn = 1 for spammers

and yn = 0 for normal users. Then our goal is to build a spammer classifier f(x) : RM → {0, 1},

which is robust to future adversaries that may evolve (i.e., change their features) to evade the

detection of f . We use existing spammer samples to predict the probable perturbation of adver-

saries. Let x∗ be the adversary sample in feature space after behavior shifts of the original x, where

∆x = x∗ − x denotes the perturbation in the feature space corresponding to the evasive actions

1Part of this chapter is reprinted with permission from "Adversarial detection with model interpretation" by Ning-
hao Liu, Hongxia Yang, and Xia Hu, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Pages 1803–1811, Copyright 2018 by Association for Computing Machinery.
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taken by the adversary. An adversary attempts to make the detector classify it as a normal account.

We use X∗ ∈ RN ′×M to denote the data matrix for adversary accounts, and N ′ is the number of

adversaries considered. It is worth noting that, in this paper, “adversaries" and “spammers" both

refer to the malicious accounts in systems, but adversaries are a specific subset of spammers who

actively attempt to evade the inspection of detectors. In practice, adversaries can either poison

the training data before a classifier is established [130, 131] or try to avoid being detected by the

deployed classifier, while in this paper we only focus on the latter scenario.

We use adversarial training [79] as the fundamental defensive technique to improve the robust-

ness of spammer classifiers against adversaries. The classifier is trained with a mixture of original

and adversarial data instances. The overall loss function L̃ is formulated as below:

L̃ = α · L(f,X, y) + (1− α) ·
∑

x∗∈X∗
l(f, x∗, 1), (5.1)

where L and l measure dataset-level and instance-level classification errors, respectively. The

parameter α controls the tradeoff between original and adversarial instances. We set α = 0.5

in our experiments. The labels in the second term are fixed as 1 since they refer to spammers.

In deep neural networks, it has been shown that X∗ acts as the regularization term to increase

model generality [76]. From another perspective, in our problem, X∗ contains additional infor-

mation of malicious instances after evolution, who are likely to reduce the effectiveness of the

existing classifier. Unlike previous adversarial classification models that target certain types of

classifiers [73, 75, 132, 133], the above formulation is independent of the type of the classifier f

to be deployed.

5.2 Interpretation-Based Attack Strategy

The adversarial training of detectors requires speculated adversarial instances as part of the

training data, which however are not directly available. To solve this problem, we develop a frame-

work of interpretation-based adversary strategy to approximate the possible adversarial actions of

spammers. The framework is illustrated in Figure 5.1. Given a classifier f , a special subset of spot-
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Figure 5.1: The framework of interpretation-based attack and defense based on evasion-prone
samples. The dashed instances in the third image represent probing samples to explore the decision
regions of the target classifier. Reprinted from [5].

ted malicious instances are chosen as the seeds (red points in the figure), and a local interpreter is

then built to explain why a seed x is regarded as malicious by f . Adversarial samples x∗ are then

generated by perturbing each seed towards its evasion direction determined by the interpreter. The

perturbation cost is constrained by the capability of adversaries. Finally, adversarial training with

both original and adversarial data is used to obtain the new detector robust to adversaries.

5.2.1 Evasion-Prone Samples Selection

Spammer instances have different chances to evade detection, depending on the decision con-

fidence assigned by the classifier. A classifier becomes vulnerable if many spammer instances

fall into its low-confidence decision regions, since some small perturbation of these instances may

result in misclassification of the detector. We want to pay more attention to the evasion-prone

(EP) samples that are more likely to shift across the decision boundary. From the spammers’ per-

spective, it requires less effort for them to wash the maliciousness off the instances, thus making

it feasible for controlling a large number of accounts. From the classifiers’ perspective, evasion-

prone accounts can provide more information about how to improve the current model against the

adversarial actions of spammers. In this paper, EP samples are used as the seeds for generating

adversarial samples. An example can be found in Figure 5.1, where x1, x2 and x3 are evasion-prone

samples, but not for x4.

We use the uncertainty score un [134] to measure the classification confidence for a given in-

60



Figure 5.2: Left: Gradient descent based evasions targeting an SVM classifier [6]. Right: An
example of decision regions of a three-class decsion tree classifier. Reprinted from [5].

stance xn assigned by f . The concrete form of un varies according to the specific type of classifiers.

For example, un = 1 − P (yn = 1|xn) for probabilistic models or neural networks whose output

range is constrained, and P (yn = 1|xn) could also be the spammer class probability predicted

by decision trees and ensemble models [135]. For linear models, un = −(w · xn + b), where w

and b are model parameters. In this work, we choose instances with high un scores as seeds for

generating adversarial samples.

There are two widely adopted assumptions about whether adversaries have full knowledge of

ML models. In some cybersecurity problems, ML models on the server side are assumed to be

confidential [136, 83, 137]. In this case, attackers build their local substitute model after making

enough queries to the server, generate adversarial samples on the local model, and rely on the

transferability [76] of the adversarial samples to have them still effective on the original server

models. In this paper, however, we aim to solve a classifier-oriented problem, so the full knowledge

of the classifier is assumed to be known [73, 138, 78]. In this setting, the generated adversaries can

target the most critical vulnerabilities of the classifier and initiate more threatening attacks. Note

that our work can also be easily applied in black-box attacks by simply approximating the original

model with the attacker-side substitute.

5.2.2 Local Interpretation Based Attack

For each evasion-prone seed, we need to find out its most sensitive perturbation direction for

crafting the adversarial sample. Most existing methods perturb seeds along the direction of local
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gradients of the loss function [6, 79, 139]. There are two problems for this class of methods.

First, broader conditions of classification regions cannot be perceived by the local gradient, so

gradient-based perturbation may be misled into unsupported regions. For example, on the left side

of Figure 5.2, instances in red and blue regions will be recognized as spammers and normal users,

respectively. The two samples moving along the red arrows will not be correctly directed towards

blue regions to evade detection. Second, for some classifiers such as decision trees and ensemble

methods, we cannot directly compute the gradient of loss function since a continuous prediction

function is not available. As shown on the right side of Figure 5.2, the outputs of a tree-based

model are discrete decisions, where gradients are not directly obtainable.

5.2.2.1 Local Approximation as Interpretation

We now introduce a new adversary samples crafting method based on the interpretation of ML

models. Formally, given a seed instance xs and the global classifier f , we define an explainable

model h ∈ H to locally approximate the prediction mechanism of f around xs. Here H denotes

the class of explainable models, such as decision trees and linear models, or local vector flows con-

structed by Parzen window estimators [140]. The output of h(·) : RM → R measures the malicious

score of the input instance. Let l(f, h, xs) measure how close h is in approximating f in the space

around xs, then the explanatory model h can be obtained by solving argminh∈H l(f, h, xs)+β ·c(h),

where c(h) measures the complexity of h. If h is chosen from linear classifiers, for example, then

we can choose c(h) = ‖w‖1, where w denotes the weight vector of linear models. In this paper,

we define

l(f, h, xs) =
∑

x′∈X ′
exp(
−‖xs − x′‖22

η2
) (f(x′)− h(x′))2, (5.2)

which is a weighted sum of approximation errors over a set of instances x′ sampled around the

seed xs, and η is the parameter controlling weight decay (parameter settings are discussed in ex-

periments) [11]. The evasion-prone seeds introduced before facilitate the interpretation process,

because they are close to the classification boundary so that it is easier when sampling x′ to get

both positive and negative labels for classification problems. The existence of negative samples
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prevents perturbation from going to unsupported regions shown in Figure 5.2. After obtaining the

local explainable model h, we rely on it to provide directions about how to perturb the seed xs.

5.2.2.2 Attack Strategy

With the local explanatory model h that measures the maliciousness of a given instance, the

adversarial sample x∗ corresponding to the seed xs can be obtained by solving:

x∗ = argmin
x

h(x), s.t. x ∈ Ω(xs) , (5.3)

where Ω(xs) restricts the disturbance range around xs. The output h(x∗) is minimized so that

the malicious score of the adversarial sample is maximally suppressed, which means we assume

adversaries will try to stay as safe as possible by spending all of their budget. This strategy is

different from the one applied in [76, 78], where adversaries try to minimize the perturbation

as long as evasions are achieved. It is mainly because: (1) the former strategy considers the

practical situation where adversaries have limited budget but want to achieve long-term survivals;

(2) adversarial spammers assigned with low malicious scores are more threatening to the detector,

so they are more helpful for model adjustment. The motivations of our strategy are that, on one

hand, interpretation-based strategy has a broader understanding of f than gradient-based methods,

so it can effectively lead perturbation into regions of lower maliciousness scores. On the other

hand, the locality of h ensures its proximity to the global model f around xs, so that the adversarial

samples targeting h are likely to be transferred to f [137].

5.2.2.3 Evasion Constraint

The constraint is defined as Ω(xs) = {x : d(x, xs) ≤ ζ}. We will use l2 and l1 norms as two

distance metrics for d().

• l2 norm constraint: We first use the commonly applied l2 norm d(x, xs) = ‖x− xs‖2 to constrain

attacks. Here we do not differentiate among the varying costs in perturbing different features.

We consider this constraint in order to compare with other state-of-the-art attacking methods in
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terms of effectively choosing the perturbation direction. For the l2 norm constraint, we will use

LASSO as the local interpretation model, i.e., h is chosen from linear models and c(h) = ‖w‖1.

• l1 norm constraint: We use l1 norm constraint to model more practical attacking scenarios, where

Ω(xs) = {x : ‖(x− xs) ◦ e‖1 ≤ ζ} and ◦ denotes element-wise multiplication. Here we assume

each adversary is assigned with a universal cost budget ζ . And eb ∈ e denotes the effort cost

for one unit change of feature xb. Adversary workers are constrained by their capability, i.e.,

the maximum total effort they would like to spend in manipulating each instance. The cost

of changing the value of xb can be related to the feature’s robustness [141, 142]. A larger eb

suggests it is effort-consuming to change xb for reversing the classification result. For l1 norm

constraint, we will try two local interpretation models: LASSO and Vector Flow model [140].

Since LASSO is a linear predictor, for each seed and its local interpretation vector w, only the

feature b with the largest |wb|
eb

will be manipulated. For Vector Flow model, it is constructed

with a number of Parzen windows to the samples in decision regions. The problem to solve is

formulated as:

x∗ = argmin
x

∑
i,yi=1

kσ(x− x′i)−
∑
i,yi=0

kσ(x− x′i)∑
i

kσ(x− x′i)

s.t. ‖(x− xs) ◦ e‖1 ≤ ζ,

(5.4)

where kσ(·) is the Gaussian kernel, and x′i denotes the sample for building the local interpretation

model. The only hyper-parameter σ can be determined through validation, where some samples

are chosen to build Parzen windows and some others are generated for validation. We adopt the

iterative gradient descent algorithm [6] to solve for x∗ in Equation 5.4.

5.2.3 Adversary Costs Estimation

In practice, different features have varying costs to be manipulated. The costs refer to the

profit loss of attackers or the efforts paid for initiating adversarial actions. Such costs originate

from several aspects. First, one malicious worker in real world usually controls a large number
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Figure 5.3: CDF of example features for overall non-spammers, lazy spammers and EP spammers
in the Twitter dataset. Reprinted from [5].

of spammer accounts [143, 144]. It is harder to mimic certain aspects of normal users’ behaviors,

such as having diverse content in post streams or creating a lot of reviews recognized as useful by

other customers. Second, spammers have different goals from legitimate users, in terms that they

try to spread malicious or false content to deceive others and gain profit. For example, spammers

seldom interact with other users online and they tend to include many URLs in their posts. Third,

some designed features in traditional spammer detection are simply shallow artifacts extracted

from datasets rather than intrinsic properties or behavior representations of accounts. Spammers

can easily manipulate these features without much effort.

To estimate feature robustness, a straightforward way is to find the closed-form formula for

each feature and explicitly compute the difficulty of changing its value [73, 142], or to unify the

cost to a constant value [74]. These approaches, however, can only be applied to a limited number

of straightforwardly designed features. Therefore, we design an empirical measure by relying

on evasive spammers themselves to indicate the difficulty of controlling different aspects of their

behaviors. We estimate an adversary’s cost of manipulating feature xb as:

eb =


1/|xepb − x

+
b |, if sign(xepb − x

+
b ) = sign(x−b − x

+
b )

eMAX , Otherwise
, (5.5)

where x−b denotes the average value of xb for normal instances, xepb is averaged over evasion-prone

samples, and x+b averages xb for spammers without the evasion-prone samples. The intuition of this

equation is that, if evasion-prone samples have significantly shifted their xb values to make them
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Twitter YelpReview

Prec Recall F1 Prec Recall F1

LR 0.910 (0.867, 0.869) 0.889 (0.914, 0.915) 0.899 (0.890, 0.892) 0.794 (0.788, 0.776) 0.854 (0.890, 0.912) 0.823 (0.836, 0.838)
SVM 0.936 (0.911, 0.907) 0.928 (0.946, 0.944) 0.932 (0.929, 0.925) 0.905 (0.893, 0.887) 0.882 (0.890, 0.898) 0.893 (0.892, 0.893)

RF 0.952 (0.952, 0.952) 0.962 (0.968, 0.965) 0.957 (0.960, 0.959) 0.988 (0.989, 0.985) 0.951 (0.961, 0.964) 0.969 (0.975, 0.974)
NN 0.894 (0.879, 0.890) 0.958 (0.965, 0.968) 0.925 (0.920, 0.927) 0.937 (0.858, 0.905) 0.884 (0.919, 0.950) 0.910 (0.887, 0.927)

ESM 0.944 (0.927, 0.925) 0.943 (0.956, 0.961) 0.944 (0.941, 0.943) 0.970 (0.945, 0.959) 0.940 (0.956, 0.965) 0.955 (0.951, 0.962)

Table 5.1: Spammer detection performance of the proposed framework. Each triple represents:
performance without adversarial training, performance with l2 adversarial training, and perfor-
mance with l1 adversarial training. Reprinted from [5].

less malicious, then it indicates the cost of manipulating xb is small, and vice versa. In addition, if

the change direction of xepb deviates from that of normal users, then we assume spammers are not

willing to manipulate xb and we set eb with a large value eMAX . In our experiments, we simply

set eMAX = ∞. More complex scenarios such as the correlation between features are beyond

our scope in this study. We use evasion-prone samples here because they possess relatively strong

incentives to evade the detection and have already taken some actions, so they provide information

of how spammers may evolve.

Visualizations of the shift of EP instances are depicted in Figure 5.3, where the cumulative dis-

tribution function (CDF) of some example features are plotted. We can observe that, for num_fwer

(number of followers), fwing_change (change speed of followings) and len_name (length of user-

name), EP spammers are more similar to normal users as their CDF curves are closer than the

lazy spammers. Especially, we find that |xepb − x+b |/|x
−
b − x+b | ≈ 85% for xb = fwing_change,

so fwing_change may not be a robust feature with respect to potential attacks. However, for

ratio_reply, the plot shows that the distribution difference becomes more remarkable for EP spam-

mers, so it is not preferred to be manipulated by spammers. The feature manipulation costs are

taken into consideration in our attack strategies under l1 norm constraint. The effectiveness of the

attacks, defenses and the roles of different features will be further discussed in our experiments.

5.3 Experiments

In this section, we evaluate the performance of the proposed method on several real-world

datasets. First, we will introduce the experimental settings. Second, we will measure the effective-

ness of attacks generated by the proposed method compared with other baseline attacking methods.

66



Third, we will measure the performance of adversarial training using the proposed method com-

pared with the baseline defending methods.

5.3.1 Experimental Settings

Here we introduce the datasets extracted from several web platforms applied in our exper-

iments, the basic classifiers as targets of adversaries, and the baseline methods for adversarial

attacks and defenses.

Datasets: We use two public datasets for evaluation, including the Twitter dataset [145] and the

YelpReview dataset [146]. The Twitter dataset, collected via social honeypot techniques, consists

of the profile information and post streams of content polluters and legitimate users. The YelpRe-

view dataset consists of reviewers’ information and review posts about restaurants on Yelp. The

labels of Twitter users and Yelp posts are available. We set Yelp reviewers with more than 10%

spam posts as spammers. After preprocessing, for Twitter dataset, we have 41, 499 users and each

user instance has 28 features, and for YelpReview dataset we have 16, 941 reviewers and each

reviewer has 16 features.

Target Models: Spammer detection using traditional classification models has been extensively

studied [128, 127, 145, 147]. Following previous work, to cover diverse types of models, we apply

Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF), Neural Net-

work (NN) and Ensemble method (ESM) to detect spammers in our datasets. The performances of

different models are shown in Table 5.1 (outside parentheses). The parameters of the models are

determined via 5-fold cross-validation. YelpReview dataset is more complicated than Twitter, so

the resultant classifiers for YelpReview are more complex. For examples, the weights of regular-

ization terms in LR and SVM are set smaller for YelpReview, and the number of layers and the size

of each layer are also larger in NN. These trained classifiers will be targeted by various attacking

strategies, and will be improved by defensive methods.

Baseline Methods: The methods applied in our experiments can be categorized into two classes,

i.e., attacking methods and defensive methods, as introduced below.

• Gradient Descent Attacking method (GDA) [6]: An attacking method moving samples along the
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Figure 5.4: Attack effectiveness evaluation with different percentage of evasion-prone samples.
Reprinted from [5].

direction of gradient vectors. The gradients or subgradients of the loss function are needed. The

well-known Fast Gradient Sign method [79] can be seen as an special case of GDA applied on

image data, where the input space is discrete.

• DeepFool [148]: A more effective attacking method by applying gradient-based attacks multiple

times within the perturbation constraint.

• Defensive Distillation (DD) [84]: A defensive method by transfering the knowledge learned by

a complex model f to a compact model f ′. The soft labels generated from complex models f are

used to train the new models [149]. It has been shown that, by making f ′ have the same model

structure with f , the distilled model f ′ is more robust to adversarial samples than f .

However, it is hard to directly apply gradient-based methods (e.g., GDA and DeepFool) to attack

tree-based models or ensemble models. Motivated by the black-box attacking strategy introduced

in [150], we first approximate RF and ESM classifiers with a neural network as the substitute and

then apply GDA and DeepFool for attacking.

5.3.2 Effectiveness of the Attacking Strategy

We evaluate the effectiveness of the proposed method by checking whether the crafted adver-

sarial samples could successfully evade the detection of target classifiers. For local interpretation,

we set dpos−neg/
√
M as the variance of multivariate Gaussian distributions for sampling x′ around
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Attack Success Rate Method LR SVM RF NN ESM

Twitter
GDA 0.814 0.961 0.702 0.860 0.716

DeepFool 0.814 0.968 0.686 0.893 0.702
Prop 0.803 0.958 0.925 0.878 0.863

YelpReview
GDA 1.000 0.964 0.769 0.902 0.798

DeepFool 1.000 0.970 0.748 0.947 0.761
Prop 0.996 0.961 0.972 0.905 0.909

Table 5.2: l2 attack effectiveness evaluation on different types of classifiers. Reprinted from [5].
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Figure 5.5: L1 attack effectiveness evaluation with different perturbation distances on different
types of classifiers. Reprinted from [5].

each seed, where dpos−neg is the seed’s distance to the closest non-spammer instance and M is the

number of features. The weight decay η is set as +∞ in all experiments, so we treat all samples x′

equally. The baseline attacking methods are implemented for comparison.

5.3.2.1 Effect of evasion-prone samples selection

To show the effect of applying evasion-prone samples, we measure the effectiveness of attacks

with and without using evasion-prone samples as the seeds. The results averaged on five runs are

shown in Figure 5.4. The x axis represents the portion of top spammers used as seeds for generating

adversarial samples, and the y axis shows the detection rates of the target classifier. Data instances

of high uncertainty scores are regarded as evasion-prone. Instances are ranked according to the
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uncertainty score, where the top ones have higher scores. For better visualization, the adversarial

perturbation distance is fixed as 0.1× davgpos−neg for Twitter data and 0.2× davgpos−neg for YelpReview

data (except 0.04 × davgpos−neg in SVM), where davgpos−neg is the average of distance from seeds to

their closest non-spammer neighbors. The figures show that, as we include more instances whose

labels are more certain to the classifier, the success rate of evasion by the adversarial samples

decreases (i.e., the detection accuracy of the classifier increases). If we randomly choose seeds for

adversaries crafting, the evasion rate (not shown in figures) is usually less than 50%. Therefore,

carefully choosing the seeds for generating adversarial samples will increase the effectiveness of

attacks, thus providing more information about the weakness of the classifier.

5.3.2.2 Attack Effectiveness Under the l2 Constraint

In this part, we explore how effectively the interpretation-based attack strategy under l2 norm

constraint would impair the performance of classifiers. Here feature manipulation costs are not

considered. We will compare the proposed method with baseline methods on different classifiers.

We choose top 4% evasion-prone samples as seeds for SVM and RF, 6% for ESM, 9% for NN and

LR, which are applied to all attacking methods. The perturbation distance is fixed at 0.15×davgpos−neg.

The results are shown in Table 5.2. In general, the proposed method significantly outperforms the

baseline methods on RF and ESM models. The probable reason is that gradient-based methods

cannot directly attack the original classifiers but the substitute models, which reduces their ef-

fectiveness. On LR, SVM and NN models where gradients are directly obtainable, the proposed

method does not perform as well as gradient-based baseline methods, but the gap is small. Deep-

Fool performs better than GDA on these models since DeepFool is an iterative algorithm. The

overall evaluation thus shows the adaptability of the proposed method.

5.3.2.3 Attack Effectiveness Under the l1 Constraint

We evaluate the attack performance of the proposed method with different local interpretation

models under the l1 norm constraint. Here feature manipulation costs are considered. The results

are shown in Figure 5.5. Here the “l1-l2" method first generates adversarial samples under l2
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Figure 5.6: Defense effectiveness evaluation of proposed methods compared to Defensive Distil-
lation. Reprinted from [5].

constraint, and then normalize the samples with respect to the costs specified by ζ . It is not a

surprise that l1-lasso and l1-VF significantly outperform l1-l2, since the former ones select features

of small costs to manipulate while the latter wastes effort in perturbing robust features which are

of little reward. In general, the attack effectiveness of l1-lasso is greater than that of l1-VF as l1-

lasso achieves lower detection rates on more classifiers. Though not shown in the figures, l1-lasso

is more “concentrated" than l1-VF in terms that it is more focused on manipulating only a small

number of features, and these features have low cost eb. Let pb denote the probability that feature

b is perturbed by adversaries and p = [p1, ..., pB], entropy(plasso) = 0.11 and 1.3 respectively in

Twitter and YelpReview data, while entropy(pV F ) = 1.28 and 1.87 for the two datasets. After

inspecting the adversarial samples, we found that for Twitter data, nearly all adversaries choose

to perturb the fwing_change feature. This is because its eb is small (i.e., the feature is easy to

be manipulated) and the gradient with respect to this feature is large (i.e., classifiers heavily rely

on this feature to make decisions). In practice, slowing down the speed of following more users

will not significantly affect the malevolent activities of spammers, and this feature tends to be

controlled by adversaries. For YelpReview data, the manipulated features are relatively diverse

across different samples. Some examples include speedReviews and reviewCount. It indicates that

71



spammers can suppress their activities to a safety zone, which is easier than changing other features

such as usefulCount and scoreDeviation as these features are not fully under spammers’ control.

5.3.3 Effectiveness of the Defensive Strategy

To evaluate the effectiveness of defense against adversaries, we will check whether the ad-

versarial samples can be captured by the new classifiers after applying defensive strategies, and

whether the classification results on the original data are not negatively affected by the shift of

decision boundary. We use Defensive Distillation as the baseline method.

We first re-evaluate the performance of new models on the old test data, to check whether the

prediction results are affected after adversarial training. The results are shown in Table 5.1. The

performances before and after using adversarial training are shown inside and outside parenthe-

ses, respectively. Compared with the original classifiers, the new classifiers have higher Recall

and lower Precision, because the adversarial samples used in training expand the region where an

instance is classified as a spammer. The F1 scores do not significantly change. RF has the best

detection performance and shows good compatibility to adversarial training. In addition, the in-

creases in Recall and F1 score using l1 adversarial samples are greater than using l2 samples. The

possible reason is that the consideration of feature manipulation costs leads the attacks towards the

distribution of crafty spammer instances missed by the old classifiers.

We then compare the proposed method to Defensive Distillation concerning the ability to cap-

ture adversarial samples. Both l2 and l1 norms are involved. The results are shown in Figure 5.6.

The perturbation distance in l2 attack is 0.1×davgpos_neg for Twitter and 0.3×davgpos_neg for YelpReview,

while the perturbation cost in l1 attack is 0.4 for Twitter and 0.7 for YelpReview, except that the

perturbation in SVM is further multiplied by 0.2 for visualization. In general, the capture rate of

adversarial samples increases after applying defensive methods. The proposed method has better

overall performance than Defensive Distillation. DD has good performance in NN and LR (could

be seen as a one-layer NN), while it does not perform well in RF and ensemble methods. The pro-

posed method is well adapted to a wide range of classification models, so it is helpful to proactively

predict the evolution of malevolent entities and take it into consideration to train classifiers.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we develop a series of interpretation techniques towards improving model trans-

parency of increasing levels, from unraveling feature-output relations, to understanding internal

data representations inside models, developing inherently interpretable models, as well as utilizing

interpretation towards building more robust models against adversaries.

First, we extend traditional feature-level interpretation to resolve local context of target predic-

tions. Specifically, we apply the new method for model-agnostic outlier interpretation. We define

the interpretation of an outlier from three aspects including the abnormal attributes, outlierness

score and the outlier’s context. For each outlier, we divide its neighbor data instances into several

clusters. Interpretation is distilled and aggregated from the weight coefficients of a series of SVM

classifiers between the outlier and each of the clusters. Prior knowledge in different applications

can be incorporated with interpretation results to refine the outlier detection result.

Then, to complement feature-level interpretation that does not check the internal information of

models, we propose a post-hoc interpretation framework to understand representations after feed-

ing data into models. We formulate the problem as taxonomy induction from representation vec-

tors. Specifically, the backbone of the taxonomy is constructed as a tree by performing hierarchical

clustering all the representation vectors. We adopt spectral clustering to deal with the non-linearity

in manifold. The characteristics of the clusters in taxonomy, i.e., the important attributes, are iden-

tified through multitask feature selection with tree-based regularization. Quantitative evaluations

and case studies on real-world datasets demonstrate the effectiveness of the proposed framework.

However, post-hoc interpretation methods does not help gain control of model establishment.

As an exploration of building interpretable models, we propose a polysemous network embedding

method for considering multiple facets of nodes in network data. Each facet of a node owns an

embedding segment, so that we could control the meaning of latent dimensions. The proposed

73



method is flexible as it can be used to extend various existing network embedding models. Before

training embeddings, a clustering step is conducted and we assume each cluster corresponds to

one facet. During the training process, different embedding segments are updated depending on

which facet is activated in training samples. We also discuss how to combine multiple embedding

segments during classification and link prediction. Experiments on real-world datasets comprehen-

sively evaluate when we benefit from considering node polysemy compared with single-segment

embedding baseline methods.

Finally, after obtaining interpretation, we propose an adversarial training based method to im-

prove model robustness against adversaries. We consider malicious account detection on social

media as the application scenario. The detection is modeled as a binary classification problem. We

assume that malicious users will evolve in the future to avoid been detected by classifiers, which

leads to the adversarial competition between malicious accounts and classifiers. We simulate prob-

able adversarial attacks by utilizing the local interpretation of classifiers. The adversarial samples

unveil the weakness of existing classifiers. The adversarial samples are added to normal data sam-

ples as data augmentation. Experiments show that models trained with the augmented data will

be more robust to evolution of malicious accounts. Such an adversarial simulation method is bet-

ter than traditional gradient-based methods as it can be applied to any type of classifiers such as

tree-based models, where gradient is not directly available.

6.2 Future Work

My current research on interpretable machine learning poses a wealth of fascinating and chal-

lenging research questions that I plan to address in the short-term (first 3-5 years). My long-term

goal is to create a human-machine ecosystem with responsible artificial intelligence and the ability

to conduct causality learning.

6.2.1 Short-Term Plan

Interpretation Evaluation. Research on interpretable machine learning is growing rapidly in

recent years, but not without growing pains. One such pain is the challenge of how to evaluate
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the faithfulness (i.e., correctness) of interpretation, because there is no ground truth of “correct

explanation". Some of my preliminary work [151, 152] tackle this problem via perturbation sensi-

tivity analysis, but it is not a general solution. I will follow two principles in metric design. First,

I will distinguish interpretation faithfulness from other properties such as intuitiveness, so human

judgment should be excluded from the process. Second, I will propose rigorous quantitative def-

initions, so that an explicit goal is set for evaluation. In light of these, I plan to investigate two

directions: (1) manually insert interpretation via backdoor techniques [153] as ground-truth and

perform standard quantitative evaluations. (2) leverage causal inference as the unified framework

to define interpretation.

Graph-Based Interpretable Model Design. Deep models are challenging to interpret, not

only due to the large number of parameters and intricate feature interactions, but also because they

operate on low-level features, rather than high-level, discrete, human-comprehensible concepts.

To tackle this challenge, I will investigate using graph data as the foundation for interpretable

model design. The investigation will be in two folds: (1) how to automatically construct an effec-

tive graph (i.e., nodes, edges, attributes) for a given application task? (2) how to jump out of the

paradigm of end-to-end training, which is universal in the deep learning era, to accomplish knowl-

edge extraction and model parameter training simultaneously? This research direction would have

broad application scenarios, including visual understanding, natural language comprehension, in-

terpretable recommender systems, and multi-modal learning.

User-Friendly Interface for Human-Computer Interaction. Most existing efforts on inter-

pretable machine learning are devoted to developing more accurate interpretation methods, while

the human experience aspect is usually overlooked. For end-users, friendly interpretation can help

them make better and faster decisions, promote user experience, and gain trust to the system. For

domain experts without machine learning background, an intuitive interface helps integrate them

into the system improvement loop. To improve user-friendliness, I plan to borrow the experiences

from the human-computer interaction (HCI) domain to design a desirable interpretation format.

To better involve domain experts for human-in-the-loop learning, I plan to develop an interactive
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interface, where models would utilize domain knowledge from experts for improvement.

6.2.2 Long-Term Plan

Responsible AI. Before being widely adopted in daily applications and production as replace-

ment of human labor and decision-makers, it is necessary to guarantee that AI systems could take

responsibility in terms of security assurance, and compliance to the law as well as code of ethics.

However, recent studies have unveiled several vulnerable aspects of state-of-the-art AI models.

For example, the security of deep models could be challenged by adversarial attacks and backdoor

attacks. Also, it has been found that deep models sometimes capture unwanted bias (e.g., race,

age, and gender) mainly due to its purely data-driven training paradigm. To tackle these issues,

I will investigate using model interpretability to improve AI system transparency and strengthen

regulation on models. I have done some preliminary work on adversarial defense [154], backdoor

detection [153] and NLP model credibility promotion [155]. I will continue to investigate: (1) how

to develop a comprehensive diagnosis tool with interpretation and visualization interface to iden-

tify model vulnerability? (2) how to effectively regularize a model by enforcing its interpretation

to align with human-specified stipulation? (3) how to get rid of the end-to-end learning/inference

paradigm of deep models, and use a more controllable strategy to learn more robust systems?

Bridging the Gap between Deep Learning and Reasoning. Will the popularity of one prod-

uct drive the sales of another product? Will the traffic congestion of one region in a city affect

the traffic flows of other regions? The answers to these questions require causal reasoning among

entities, which goes beyond the conventional machine learning tasks that mainly focus on learning

correlation. The ability to learn causality is considered as a significant component of human-level

intelligence and serves as the foundation of AI. Existing deep learning models cannot well handle

causal reasoning because they process data in continuous representation space, which is opaque

and hard to interfere with human knowledge. In this research, I will explore several aspects of

how to conduct reasoning with interpretable machine learning. First, can we transform data into

knowledge base such as graphs and use desirable neural architectures for effective and interpretable

inference? Second, can we revise adversarial attacks into meaningful perturbation for counterfac-
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tual analysis in causal inference? I have done some preliminary work on graph-based interpretable

modeling [152] and connecting adversarial learning with interpretation [154].

Promoting Interdisciplinary Research. I had very successful interdisciplinary collaboration

experiences with researchers from both academia and industry, which not only broaden my vi-

sions but also inspired novel research ideas, as well as enabled the broad impact of my research.

For example, with staffs of the Phoenix Veterans Affairs Health Care System, we studied how

to apply machine learning to identifying impaired glucose tolerance participants who developed

rapid carotid plaque progression. Model interpretation is a crucial building block in healthcare

and medication-related domains, because high-stakes decisions are usually involved and knowl-

edge from domain experts is abundant. I have also worked with engineers from Alibaba DAMO

Academy to develop practical systems against fraudsters in online shopping websites. Specifically,

we consider an adversarial context where the competition exists between fraudsters and system

maintainers. Model interpretation can not only provide information to maintainers about why an

account is regarded as malicious to avoid false positives, but it also indicates the possible actions

taken by fraudsters to avoid being captured to provide direction of model improvement. Given the

demand for developing transparent AI systems in healthcare, intelligent cities and cyber-security,

in the future, I will seek opportunities for collaboration with industry in these domains.
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