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ABSTRACT

Optimum Bit-by-Bit Power Allocation for Minimum Distortion Transmission.

(December 2005)

Arzu Karaer, B.S., Istanbul Technical University

Chair of Advisory Committee: Dr. Costas N. Georghiades

In this thesis, bit-by-bit power allocation in order to minimize mean-squared

error (MSE) distortion of a basic communication system is studied. This communica-

tion system consists of a quantizer. There may or may not be a channel encoder and

a Binary Phase Shift Keying (BPSK) modulator. In the quantizer, natural binary

mapping is made. First, the case where there is no channel coding is considered. In

the uncoded case, hard decision decoding is done at the receiver. It is seen that errors

that occur in the more significant information bits contribute more to the distortion

than less significant bits. For the uncoded case, the optimum power profile for each

bit is determined analytically and through computer-based optimization methods like

differential evolution. For low signal-to-noise ratio (SNR), the less significant bits are

allocated negligible power compared to the more significant bits. For high SNRs, it

is seen that the optimum bit-by-bit power allocation gives constant MSE gain in dB

over the uniform power allocation. Second, the coded case is considered. Linear block

codes like (3,2), (4,3) and (5,4) single parity check codes and (7,4) Hamming codes are

used and soft-decision decoding is done at the receiver. Approximate expressions for

the MSE are considered in order to find a near-optimum power profile for the coded

case. The optimization is done through a computer-based optimization method (dif-

ferential evolution). For a simple code like (7,4) Hamming code simulations show

that up to 3 dB MSE gain can be obtained by changing the power allocation on the

information and parity bits. A systematic method to find the power profile for linear
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block codes is also introduced given the knowledge of input-output weight enumerat-

ing function of the code. The information bits have the same power, and parity bits

have the same power, and the two power levels can be different.
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CHAPTER I

INTRODUCTION

Communications is an important part of everyone’s life. Everyday we use dif-

ferent communication media such as telephone, TV, radio, internet and cell phones

to send and receive information. We owe the speed and accuracy in communication

systems to the contributions of many researchers and scientists. Most of the major

developments in the history of communications has happened in the past century

and the growth in communications systems over the last 50 years has been phenome-

nal. The basic communication system can be described as a system designed to send

messages reliably from a source to a destination.

The functional block diagram of a basic communication system is shown in Fig-

ure 1. The information generated by the source which can be in the form of speech,

images or text files is sent through a channel to the destination or destinations. As it

can be seen from the figure a communication system consists of three main parts- the

transmitter, the channel and the receiver. The transmitter converts the message from

the source to a suitable form so that it can be transmitted on the channel reliably.

The communications channel is the physical medium that is used to send messages

from the transmitter to the receiver. This physical medium might be the atmosphere,

wire lines, optical fiber cables. The important characteristic of the communication

channel is that it corrupts the message sent from the transmitter. The most common

form of corruption is called thermal noise and it is additive in nature. In wireless

transmission, a different kind of corruption occurs due to multipath which results in

This thesis follows the style of IEEE Transactions on Selected Areas of Commu-
nications.
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Fig. 1. Basic communication system

the fluctuation of the received signal amplitude. This phenomenon is known as fading

and is usually very deleterious. The main function of the receiver is to recover the

message signal that is contained in the received signal. The presence of noise must be

taken into account while designing the optimum receiver. The receiver reverses the

operations performed on the message signal by the transmitter.

Communication can be broadly classified into - analog communication and digi-

tal communication. Analog signals can be transmitted directly via carrier modulation

and demodulated accordingly at the receiver. We call this communication system an

analog communication system. Modulation schemes such as Amplitude Modulation

(AM) and Frequency Modulation (FM) are examples of analog modulation. Digital

Communication is another important way of transmitting data from the source to

the destination. Analog signal can either be transmitted by carrier modulation over

a channel or can be converted into a digital signal and transmitted via digital mod-

ulation. Digital communication is used in the transmission of analog and continuous
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time signals such as speech and images or digital signals such as text files. There are

some advantages of transmitting an analog signal by using digital modulation tech-

niques. Some of the main advantages of digital modulation are digital transmission

provides us with better control of signal fidelity, the digital message can be regen-

erated in long distance signal transmission. In practice analog and continuous time

signals are converted to digital signals for transmission. To transmit an analog signal

digitally, the signal is first sampled at Nyquist rate, fs Hz, where fs is greater than or

equal to twice the highest frequency component in the signal. Figure 2 shows a more

functional communication system. Then each sample of the signal is quantized to a

set of discrete levels. A group of bits is usually assigned to each level. These bits are

usually passed through a source encoder which removes all redundancy from the in-

put bits and it outputs information bits. It is then passed through a channel encoder

which adds redundancy in controlled levels to protect against errors that might occur
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in the channel. For example, a channel code might take in K information bits which

are output from the source encoder and output N coded bits thus forming an (N,K)

channel code. The coded bits are passed through a pulse-shaping filter, represented

by pulses and modulated on a carrier and transmitted on the channel. The primary

purpose of the modulator is to convert a digital pulse into an analog signal which is

the only practical signal that can be transmitted.

At the receiver, the demodulator extracts the received signal from the carrier

waveform and obtains a value for each transmitted bit. This might correspond to an

actual magnitude of the bit value transmitted or to a likelihood value of the bit being

’1’ or ’0’. The channel decoder takes in as input the received values corresponding

to the N transmitted coded bits and makes the decision on the K information bits.

Coding helps in better performance over the uncoded case for the same bandwidth

and same power expended, at the cost of increased complexity. Once the information

bits are obtained, the source decoder can decompress them to obtain the original bits

from the output of the sampler. These samples can be used to reconstruct the original

analog signal that was transmitted. Basically, the operations at the transmitter are

inverted at the receiver to obtain the signal that was transmitted. A perfect recon-

struction of the signal is never possible owing to the noise in the channel, presence of

quantizer which is a non-invertible operation and also the presence of a low-pass filter

before the sampler. Each of the above operations is important for a good reproduc-

tion of the transmitted signal at the receiver. The design of a communication system

is generally constrained by one or more of the following three major factors: power

available for transmission of the signal, bandwidth available for transmission and the

complexity of the receiver. The ultimate aim of the digital communication system is

to minimize bit-error probability or block-error probability or mean-squared error of

the system. In this thesis, we are going to look at a joint source-channel coding prob-
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lem which results in an optimum/near optimum bit-by-bit power allocation scheme to

minimize mean-squared error distortion of an uncoded/coded communication system.

A. Previous Work

A modulation technique that is commonly used for the transmission of digital signals

is PCM, pulse code modulation [1]. Conventional PCM transmits all the bits obtained

from the quantizer with the same energy. As will be seen in later sections, this

scheme does not yield the minimum distortion for an uncoded case. Hence, in 1958

Bedrosian [2] proposed “weighted PCM” for an uncoded conventional PCM system.

His work showed that minimization of distortion can be achieved by “weighing” the

PCM pulses. In “weighted PCM”, the relative amplitudes of the pulses within PCM

words are adjusted so as to minimize the distortion between the transmitted and the

received amplitude. Adjusting the amplitudes of the pulses is the same as adjusting

the energy of each bit while keeping the total energy for each PCM word constant.

The energies of the bits are “weighed” differently in order to minimize the mean-

squared error between the transmitted and received amplitudes. “Weighted PCM”

has been studied further by [3]-[6] and they have suggested near optimum methods for

transmitting groups of bits at a particular energy level. For the coded case, providing

different protection to streams with different reliabilities have been considered by

many authors. This falls under the broad topic of unequal error protection (UEP)

[7]. Most of the previous work has approached the problem by allocating different

number of parity bits to each of these streams or in other words allocating a lower

effective code rate to the stream which requires higher reliability [8]. In this work,

we approach the problem differently by allocating different power to different bits of

a block code to minimize mean-squared error of the system. Moreover, it is a near
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optimum power allocation strategy for linear block codes.

B. Proposed Research

In this thesis, we concentrate on a simple communication system which in essence

is very similar to a PCM system. The quantizer is assumed to be uniform and it

outputs levels which are represented by a group of K bits. Since we want to keep

the system simple, there is no source encoder. The presence of the source encoder

complicates matters and since the object of this work is to try to understand a simple

communication system, the source encoder is dropped. Two cases are considered: in

the first case, there is no coding and the output bits of the quantizer are directly

modulated and transmitted on the channel. In the second case, a simple code like

single parity check code or a Hamming code is introduced and the resulting system is

studied. The ultimate objective of this thesis is to minimize the distortion between the

levels obtained at the output of the quantizer in the transmitter and the reconstructed

levels at the input of the dequantizer.

As discussed above, for the uncoded case, “weighted PCM” approach has to be

followed. We look into finding a closed form expression for the optimum power levels

for each bit position that minimize the distortion of the system. In order to solve this

optimization problem, Lagrange Multipliers method is used [9]. Finding a closed form

analytical expression for power profiles is not possible. Therefore, we use a Chernoff

bound [10] on the probability of error expressions in the MSE expression and derive

an optimized power profile for the bit positions in the binary value representing a

level of the quantizer, which minimizes the MSE. This derivation of power profile

values is not explicitly stated in Bedrosian’s paper. We also look into the MSE gain
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which is given by:

MSE gain = MSE/MSEuniform (1.1)

where MSE is the MSE from the optimized power profile and MSEuniform is the

MSE for the case with equal power for each bit position, is constant beyond a certain

SNR. Since Chernoff bound is approximate especially for lower SNRs, we also use a

computer-based optimization which applies the principle of differential evolution [11],

to get the optimum power profiles. For the computer-based optimization, we use exact

probability of error expressions which can be obtained in terms of Q(.) function. We

verify that the computer-based optimization gives power profiles and MSE gain in

the order of the Chernoff bound and not surprisingly, the two are the same for higher

SNRs.

For the coded case, however, things are trickier. This system applies a simple

code like single parity check code or Hamming code to the output of the bits from

the quantizer and then transmits them over the channel. The problem is the same as

above - to obtain the optimal power profiles to minimize the distortion given by MSE.

Analytical solutions for this case are extremely difficult owing to the intractability of

the resulting probability of error expressions. Hence we have applied the computer-

based optimization to solve this problem. In this case too, we show that a constant

MSE gain can be obtained for high SNRs. In the coded case, we first consider knowing

all the codewords. Then we try generalizing the MSE expression for different codes.

In order to do this, some simplifications need to be made. First, it is assumed that

Input-Output Weight enumerating function (IOWEF) of the code is known and the

power profiles of the information bits are the same and the power profiles of the parity

bits are the same whereas the two power profiles can be different from each other.

This approach is used to find a generalization for the MSE expression without the
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need to know all the codewords in the code. In the proposed research, we do not try

to optimize the quantizer and instead a uniform quantizer is assumed.

C. Organization of the Thesis

This thesis is organized as follows: in Chapter II, we give a brief description of a

PCM system and the system description. We define distortion and make a statement

of the problem. In Chapter III, we consider power allocation for different bits for

the uncoded case. We look into the actual expression and derive Chernoff bounds to

the exact expression. We then derive the power profiles and show the performance

of the system through simulations. In Chapter IV, we extend the power allocation

to a coded case. We consider two different codes, namely, Single Parity Check (SPC)

code and Hamming code. We carry out the analysis and derive the optimum power

profiles. We later verify these analytical results with simulations. In Chapter V, we

derive a more general analytical expression for the coded case based on the Input

Output Weight enumerating function of the code under consideration. We verify the

power profiles with simulation results.
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CHAPTER II

PULSE CODE MODULATION (PCM) AND SYSTEM DESCRIPTION

A modulation technique that is commonly used for the transmission of a digital signal

is PCM, pulse code modulation. In this section we will briefly describe a PCM system.

In PCM, the continuous time signal is first sampled at a rate fs Hz, where fs is greater

than or equal to twice the highest frequency component in the signal. Since most

signals have a large number of harmonics, in practice, the analog signal is usually

low pass filtered to half the frequency of sampling and then sampled. Each sample

of the signal is quantized to a set of discrete levels. The quantizer can be uniform or

non-uniform. In conventional PCM, it is usually uniform. Each of these quantized

levels are represented by a group of K bits (2K levels). A conventional PCM system

transmits these bits directly or might apply a channel code to these bits and then

transmit them. Different modulation schemes such as PSK or QAM can be used to

transmit the bits through the channel. When binary phase shift keying is used as

the modulation scheme, usually equal amplitude pulses are used to represent each of

the bits that are transmitted from the transmitter to the receiver. This means that

the probability of error is the same for all bit positions. However, in the design of a

PCM system, distortion is an important criterion. PCM system is usually designed

to reproduce the waveform at the output of the receiver with as small a distortion

as possible. In a conventional PCM system, when the digital data are quantized to

K-bit signal amplitudes, the amplitude can be represented as:

s =
K−1
∑

k=0

bk2
k (2.1)
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in terms of bk which is the k
th bit and it can take values from {0, 1}. The mean squared

distortion between the transmitted and received amplitude can be represented as:

MSE =
K−1
∑

k=0

P (k)
e 22k (2.2)

where P
(k)
e is the probability the kth received bit is in error. If the error probabilities

were all equal, the most significant bit contributes 22(K−1) more to the mean squared

error than the least significant bit. In other words, errors that occur due to charac-

teristics of the channel in the more significant bits make a bigger contribution to the

distortion than the less significant bits. A smaller mean-squared error can result if

the error probability of the most significant bit is decreased and the probability of

error of the least significant bit is increased. Based on this approach, it appears that

in PCM an improved performance can be obtained by “weighting” the various pulses.

This scheme is a modified form of PCM which is called the “weighted PCM”.

A. System Description

The continuous time analog signal is first sampled and then quantized uniformly to

a set of equally likely signal amplitudes as shown in Figure 3. The output of the

quantizer is naturally mapped to K-bits. Then it is BPSK modulated and transmit-

ted over the channel. The channel is assumed to be additive white Gaussian noise

(AWGN) channel with two-sided power spectral density of N0/2. Between the quan-

tizer and the modulator channel coding may or may not be used. As will become

obvious in the next section, the amplitudes of the transmitted bits in the PCM signals

are weighted by different factors depending on the position of the bit to reduce the
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Quantizer
 Channel

encoder


Digital

modulator


Digital

demodulator


Channel

decoder
Dequantizer
Output


signal


Channel


Information

Source


Fig. 3. System description

MSE. At the receiver, the received values rk can be represented as:

rk =
√

Esakck + nk k = 0, . . . , K − 1 (2.3)

where Es is the energy of the PCM symbol, ak are the “weighing factors”
∑K−1

k=0 ak = 1

and nk is the AWGN of variance N0/2. Here ck is the BPSK symbol which can be

represented as

ck = 2bk − 1 (2.4)

and takes values from {−1, 1}.

B. Distortion

As stated before, the analog signal from the source is quantized into 2K = M levels.

These M levels are mapped onto binary numbers and either encoded with a channel

code and modulated or directly modulated. Let i denote the level that is transmitted
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and let j denote the level that is reconstructed after the demodulator and/or channel

decoder. Then, distortion between received and transmitted amplitudes, D, can be

expressed as:

D =
∑

i,j

πiCi,jP[j|i], (2.5)

where πi is the a priori probability of the transmitted level i, Ci,j is the cost function,

and P[j|i] is the probability that j is received given that i is transmitted. In this

thesis, cost function Ci,j is defined as:

Ci,j = (i− j)2, (2.6)

and the distortion with this cost function is usually defined as the mean-squared error

(MSE) distortion. The distortion in (2.5) should be minimized. It can be done by

finding the power for each bit that minimizes the distortion given in (2.5). Therefore,

the optimization problem can be stated as:

D* = min{ak}
∑

i,j

πjCi,jP [i|j] (2.7)

subject to

K−1
∑

k=0

ak = 1, ak ≥ 0 (2.8)

In (2.7), D* is the minimum distortion possible over all power profiles, {ak}s. To

minimize the distortion, we need to minimize the probability of symbol error which

can be done through choosing the decision regions for the received amplitudes appro-

priately and also finding the best aks. Minimization of (2.7) over the power profile is

a hard problem for the exact probability of error expression for BPSK modulation.

Therefore, we resort to using a Chernoff bound approximation on the Pe expression.



13

As it will become clearer in the next section, this makes it easier to find a closed form

analytical expression for the uncoded case. The Chernoff bound is loose for lower

SNRs but becomes very tight at higher SNRs as we show through computer-based

optimization of the exact expression using differential evolution for distortion. This

will become obvious in the next chapter.
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CHAPTER III

UNCODED CASE

In this chapter, we discuss the minimization of distortion for the uncoded PCM

system. Figure 4 shows the basic communication system for the uncoded case. Similar

to the system described in Chapter II, we assume a quantizer, BPSK modulation on

AWGN channel and a hard decision decoder at the receiver.

Source
 Quantizer
 Modulation


Channel


Demodulation
Dequantizer

Output signal


Fig. 4. Block diagram for uncoded communication system

The equation for distortion can be given by (2.5). For an uncoded case with

hard-decision decoding, the decision regions can be explicitly determined, as each

transmitted bit is independent of the others. Therefore, an exact expression for the

probability of bit error can be determined in terms of Q(.) functions. This enables us

to find an exact MSE expression for the uncoded case. Then the MSE expression is

optimized in order to find the optimum power profile for each bit. This can be done

in two ways. First, optimization can also be done analytically by using a Chernoff
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bound on the probability of error expression and the power profiles can be determined

analytically. Second, optimization of the MSE expression can be done by using a

computer-based optimization algorithm called the differential evolution and this way

the optimum power profile for each bit and the optimum MSE can be determined.

These will be explained in detail in the next sections. It will also be shown that

there is always a gain in MSE if an optimal power profile is chosen for transmission of

each of the bit positions. This gain is a non-increasing function of SNR and becomes

constant at high SNRs.

A. Distortion

In an uncoded PCM system with a uniform quantizer and natural binary mapping,

the transmitted signal i is given by:

i =
K−1
∑

k=0

bk2
k. (3.1)

whereM = 2K and bk are the bits in the binary representation of i which takes values

from {0, 1}. Note that πi P[j|i]=P[i, j] in (2.5) can be stated as the expected value

of (2.6). Substituting (3.1) for i and j into MSE distortion,

MSE = E[(
K−1
∑

k=0

(b
(i)
k − b

(j)
k )2

k)2] (3.2)

The terms inside the expected value will be nonzero only when the corresponding bit

positions in the transmitted and received disagree. The cross-terms in the differing

bits disappear since the channel is additive white Gaussian and the receiver makes a

decision on each bit independent of the others. Then (3.2) can be simplified to:

MSE =
∑

k

P [b
(i)
k 6= b

(j)
k ]2

2k (3.3)
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The probability of error expression in (3.3) is the probability of error for each

bit. Then, the MSE distortion between the transmitted and received amplitude can

be derived from (3.3) as

MSE =
K−1
∑

k=0

P (k)
e 22k (3.4)

Since the most significant bit contributes more to the MSE distortion, a smaller

minimum MSE distortion can be obtained by decreasing the probability of error for

the more significant bits. If the modulation used is BPSK and the channel is additive

white Gaussian noise (AWGN), probability of error is given by:

Pe = Q
(

√

2Es

N0

)

, (3.5)

where Q(.) is the Q function related to the Gaussian pdf and Es/N0 is the signal

to noise ratio (SNR) of the received BPSK signal. From Eqn. (3.5), it can be seen

that the probability of error can be decreased by increasing the energy of the pulse

which is equivalent to increasing the amplitude of the pulse. Going back to Eqn.

(2.2), the amplitudes of the more significant bits should be increased to reduce their

probability of error and hence the overall MSE. From (2.2) and (3.5) it can be seen

that the amplitudes of the pulses of the PCM signal can be optimized to get the

minimum MSE. Therefore the optimization problem for the uncoded case can be

stated as

min
a

K−1
∑

k=0

22kQ
(

√

(2SNRak)
)

(3.6)

subject to :

K−1
∑

k=0

ak = 1, ak ≥ 0 (3.7)
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where the total energy for any PCM codeword is taken to be Es and SNR=
Es

N0
and

ak are nonnegative weights that add up to 1. Lagrange multipliers can be used to

find an analytical solution of this optimization problem. Therefore, solving (3.6) is

enough to find the optimum energies for the bit positions. But finding a closed form

exact solution through Lagrange multipliers is not possible. Therefore, it is easier

to look for a numerical solution to the problem or to find an approximation to the

distortion expression given in (3.6).

B. Chernoff Bound

A good approximation to the solution of (3.6) is given in [2]. Another way of find-

ing a good analytical approximation is to use Chernoff bound instead of the exact

probability of error expression to bound the probability of error and thus the mean

squared error. Q(x) can be upper bounded as

Q(x) ≤ 1
2
e
−x2

2 (3.8)

Using the Chernoff bound given in (A.1) on the probability of error, the problem in

(3.6) becomes

min
a

1

2

K−1
∑

k=0

22ke−SNRak (3.9)

subject to:

K−1
∑

k=0

ak = 1, ak ≥ 0 (3.10)

which admits an analytical solution:

âk =
(2k + 1−K) ln(2)

SNR
+
1

K
k = 0, 1, . . . , K − 1 (3.11)
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where K is the total number of bits and âk ≥0. The detailed solution is given in

Appendix A. The positiveness condition for all k is satisfied for

SNR ≥ K(K − 1) ln(2) (3.12)

In this case the resulting MSE is

MSE =
K

4
2Ke

−SNR
K (3.13)

If the condition in (3.12) is not satisfied, then some ak will be calculated to be negative.

Then as in computing the capacity through “waterfilling” these ak will be set to 0.

Now the constraint is for the remaining âks to add up to 1. This procedure can be

summarized as

• Calculate âk by using (3.11).

• If âk ≥ 0, the value of âk is set to the calculated value.

• If âk < 0, then the value of âk is set to 0. Then the sum of the remaining âks

must equal 1.

The above procedure is repeated for all k where k=0, 1, . . . , K-1. The optimization

problem is solved for 4, 6, 8 bits and the plots are given in Subsection D.

C. Differential Evolution

In order to find a numerical solution to the problem stated in (3.6), computer-based

optimization techniques have to be used. In order to solve the problem given in (3.6),

fmincon in MATLAB is a possible program which can be used. However, there are

some problems in using this optimization tool. It was seen that it converged to a local

minimum. Therefore, we used a different optimization algorithm called Differential
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Evolution (DE) . DE is a simple, population-based algorithm which can minimize

a stochastic function. In DE, the initial population is randomly generated. A new

parameter is generated by adding the difference between two population members

to a third member. After these operations are performed, the function is evaluated

at the newly generated parameter and the predetermined population vector. If the

resulting vector gives a lower objective function value than the original population

member, the new vector is kept in place of the original population member. Because

of this property, it almost always can end up in the global minimum.

D. Results

The results for the uncoded case is obtained by using the analytical method given

in Section B and the differential evolution method on the exact MSE expression.

These include the MSE plots, MSE gain plots and the power profiles for K=4, 6, 8

bits. The plot for the MSE for K=4, 6, 8 bits is shown in the Figure 5. This figure

shows the optimum MSE that is calculated from the exact MSE expression and the

upper bound on MSE that is calculated from the Chernoff bound expression given in

(3.13). As can be seen from Figure 5, Chernoff bound is a close upper bound on the

MSE expression and the Chernoff bound curves behave the same way as the MSE

curves found from the exact MSE expression. Power profiles that are found by using

the differential evolution on the exact MSE expression and the analytical method

described in Section B are plotted. In these plots the most significant bit is the lowest

one on the histogram chart whereas the least significant bit is the highest. Figure 6,

Figure 7, Figure 8 show the energy profile distribution for K=4, 6, 8 respectively

determined by using the differential evolution on the exact MSE expression. As can

be seen from these plots, for lower SNRs more power is given to the more significant
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Fig. 5. Optimum MSE found by using the DE method and Chernoff for uncoded case
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bits whereas the less significant bits get less energy. When the channel is noisy, more

power is allocated to the more significant bit in order to protect it more against the

errors introduced by the channel. As SNR increases, the power profiles tend towards

uniform power profile for each bit. As can be seen from Figure 6, for K=4 for SNRs
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Fig. 6. Optimum power profiles found by using the DE method for the K=4 in uncoded

case

lower than 8 dB, the power on the less significant bit is negligible compared to the

power allocation on the more significant bit.

Therefore, for lower SNRs you do not need to transmit all the bits. For K=6,

all the bits are allocated power only at 12 dB. For SNRs lower than 12dB, you can

transmit a smaller number of bits.

As can be seen from Figure 8 for K=8, all the bits have power allocation only at
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16 dB. For SNRs lower than 16 dB, you do not need to transmit all the bits. But for

higher SNRs all the bits need to be transmitted with nearly equal power allocation.

The power profile graphs found by using the Chernoff bound method described

in Section B and the differential evolution method for K=4, 6, 8 are compared. The

power profile graphs generated by using the Chernoff bound is given in Figure 9,

Figure 10, Figure 11 respectively. From the inspection of the power profile figures,

it can be said that Chernoff bound also gives a close approximation on the power

profiles for higher SNRs, especially for SNR greater than 10 dB. This shows that the

analytical results are more consistent with the results obtained from the exact MSE

expression for higher SNRs.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
ow

er
 P

ro
fil

e

Fig. 9. Optimum power profiles found by using Chernoff bound for K=4 in uncoded

case
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The MSE gain over the uniform power profile for K=4, 6, 8 is given in Figure 12.

This gives a good insight into how much MSE gain can be achieved over the uniform

power profile. As can be seen from this plot, the MSE gain for each of the cases

(K=4,6,8 bits) increases and it reaches a level where the increase is so small that

it seems to be constant for high SNRs. This behavior suggests that MSE gain will

reach a certain level and stay constant as SNR increases. This can be shown through

analytical expressions too. Looking at the power profiles, it is seen that as SNR

increases the power profile approaches a uniform power profile. Although it is not

easy to see form the plots it does not equal the uniform power profile exactly. There

is still some small deviation from the uniform power profile. Even a small deviation

causes a MSE gain in dB over the MSEuniform. This can also be shown by using

analytical expression given in (3.13). As had been mentioned earlier, MSE gain is

the ratio of the optimum MSE to the MSE for the uniform power case. To find an

analytical expression for the optimum MSE, (3.11) is substituted for ak in (3.9). To

find the MSE when the power profile is uniform

ak =
1

K
(3.14)

is substituted for ak in (3.9). Then, the ratio of these two MSEs are found which

yields the MSE gain expression which is found as

4K − 1
3K2(K−1)

(3.15)

which is independent of SNR. For K = 8 the MSE gain can be calculated as 13.29

dB, for K = 6 MSE gain is 8.51 dB and for K = 4 it is 4.24 dB. These match the

values obtained by using the differential evolution for high SNRs (greater than 10

dB). These values agree with the values in Figure 12. In this figure solid lines show

the MSE gain obtained from optimization of the exact MSE expression whereas the
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dotted lines show the MSE gain obtained by using the power profile obtained from

the Chernoff bound.
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Fig. 12. MSE gain of the optimum energy over the uniform energy with exact expres-

sion (bold) and Chernoff bound (dotted)

Our results suggest that as SNR increases the MSE gain reaches a level where it

stays constant.

The uncoded system is simulated for K=4 by using the optimum power profile

found from differential evolution and the uniform power profile. As can be seen from

Figure 13, the plot from the simulation results falls on top of the exact MSE which

is determined by using the differential evolution. As it was shown before, Chernoff

bound is an upper bound which closely approximates the behavior of the exact MSE

and the MSE found from the simulations. MSE gain is also calculated from the
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simulation results and plotted against the MSE gain found from the MSE expression.

This is given in Figure 14. As it can be seen from this plot, the simulation gives the

same result as the exact MSE gain up to 14 dB. It is very hard to run the simulations

for higher SNRs since MSE value and hence bit error rate is very small. Figure 13

and Figure 14 show that simulation results are the same as the MSE and MSE gain

values calculated from the MSE expression as expected.
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Fig. 13. MSE plot for K=4 from simulation, Chernoff bound and the exact expression
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CHAPTER IV

CODED CASE

The system assumed for the coded case is similar to the one for the uncoded case

except for the presence of a channel code. Before BPSK modulation, all the resulting

bits from the quantizer are passed through a channel coder which mapsK information

bits to N bits. In this chapter, the code assumed is a Single Parity Check (SPC)

code and a (7,4) Hamming code. The coded bits are then BPSK modulated and

transmitted. At the receiver, they are demodulated and a soft-decision decoder is

used for obtaining the information bits. With soft-decision decoding, the decision

regions for each codeword are very difficult to obtain. Hence, an upper bound on

the probability of error is usually sought which is not very exact especially at low

SNRs. Finding an exact MSE expression for the coded case is not possible. In order

to find a closed-form expression for the power profiles Chernoff bound can be used on

the probability of error expressions, but this does not ultimately yield a closed-form

analytical solution for the power profiles. Hence, in the first part of this chapter

we obtain the power profile from an approximate MSE expression which is an upper

bound by using DE optimization. As it will become clear, the derivation of this

MSE expression requires the knowledge of all the codewords. In the next chapter,

we extend the DE optimization to a more general distortion expression which only

requires knowledge of the input output weight enumerating function (IOWEF). In the

coded case, similar to the uncoded case, we obtain a constant gain in MSE asymptotic

in SNR.
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A. Optimum Receiver

Assume that the N bits of the codeword are modulated over BPSK (ck) and trans-

mitted over the AWGN channel to obtain:

rk =
√

Esakck + nk k = 0, . . . , N − 1 (4.1)

r = [r0r1 . . . rN−1] (4.2)

c = [c0c1 . . . cN−1]

(4.3)

where nk is the AWGN noise with two-sided power spectral density N0/2.

The decision rule for the optimum receiver is

max
cm

p(r|cm) (4.4)

where m shows the mth codeword and m = 0, 1, 2, . . . , 2K − 1. From 4.2, it can be

seen that p(rk|ck) is Gaussian with mean
√
Esakck and variance N0/2. Since they are

statistically independent from each other (4.4) can be expressed in terms of p(rk|ck)

as

max
cm

N−1
∏

k=0

p(rk|cm,k) (4.5)

which is equivalent to

max
cm

N−1
∑

k=0

ln p(rk|cm,k) (4.6)

If the Gaussian pdf is substituted for p(rk|cm,k) in (4.6) then

max
cm

N−1
∑

k=0

ln
1√
2πσ

exp−
(rk−

√
Esakcm,k)2

2σ2 (4.7)
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can be found. Maximizing (4.7) is equivalent to minimizing

min
cm

∑

k

‖(rk −
√

Esakcm,k)‖2 (4.8)

=min
cm

∑

k

(−2Re[rk

√

Esakc
∗
m,k] + ‖rk‖2 + Esak‖cm,k‖2) (4.9)

The term r2
k in (4.9) is common to all the signals, so it can be ignored. The term

∑

k Esak‖cm,k‖2 is constant and can be ignored. * shows conjugation. Then the

decision rule becomes

min
cm

−
∑

k

(2Re[rk

√

Esakc
∗
m,k]) (4.10)

In the case of BPSK, (4.10) is equivalent to

min
cm

−
∑

k

(2rk

√

Esakcm,k) (4.11)

This is also equivalent to

max
cm

∑

k

rk

√

Esakcm,k (4.12)

B. Analysis of the MSE Expression for Coded Case

As mentioned in the system description, between the quantizer and modulator channel

coding may be present. The channel codes that are used in this system are (K +

1, K) single parity check codes and (7,4) Hamming code. The difference between the

uncoded and the channel coded system is in the receiver. In the coded case, soft-

decision decoding is made. Also in the coded case unlike the uncoded case, there is no

closed form expression for optimizing MSE. The probability of error Pr[j|i] in (2.5)

can be derived from the soft-decision decoding. The decision rule for the optimum

decoder is given in the subsection on optimum decoder. Let us assume that the
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codeword, ci, corresponding to the quantizer level i is transmitted. The receiver will

decide on the codeword, cj representing the quantizer level j if correlation metric given

in (4.12) for the codeword, cj, corresponding to the quantizer level j is maximum.

Instead of trying to derive the exact probability of error for P [j|i] we resort to an

upper bound for the soft decision decoding. There will be a codeword error if

N−1
∑

k=0

(

√

Esakci,k + nk

)√
akcj,k >

N−1
∑

k=0

(

√

Esakci,k + nk

)√
akci,k (4.13)

If the right-hand side of (4.13) is subtracted from the left side of (4.13), the only

terms that are left will be the terms that differ in bit positions.

∑

ci,k 6=cj,k

(

√

Esak(ci,k)
2 −

√

Esakci,kcj,k +
√
aknkci,k −

√
aknkcj,k

)

> 0 (4.14)

After simplifications, (4.14) is a Gaussian random variable with mean
√
Es

∑

ci,k 6=cj,k
ak

and variance N0

2

∑

ci,k 6=cj,k
ak. P[j|i] can be upper-bounded by:

Q





√

2Es

∑

ci,k 6=cj,k
ak

N0



 . (4.15)

Since SNR = Es

N0
, (4.15) can be written as

Q





√

2SNR
∑

ci,k 6=cj,k

ak



 (4.16)

As can be seen from (4.15) and (4.16) the probability of codeword error depends on

the positions of the bits that are different.

C. MSE Expression for (K + 1, K) Single Parity Check (SPC) Code

(3,2),(4,3) and (5,4) Single Parity Check codes are considered and (2.5) is calculated

for these codes. As mentioned earlier, the mapping in the quantizer is natural binary.
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As an example the mapping of the codewords for (4,3) SPC codeword is given in

Table I. In (2.5) the probability of error expression is calculated by using (4.16) for

Table I. Mapping for (4,3) SPC code

i natural mapping parity bits

0 000 0

1 001 1

2 010 1

3 011 0

4 100 1

5 101 0

6 110 0

7 111 1

each of the codewords in the code. As it is given in (4.15) and (4.16), the probability

of a codeword error depends on the positions that the two codewords differ. Since we

are looking at linear block codes, each error pattern corresponds to a codeword in the

code. Therefore to calculate MSE, each codeword can be treated as an error pattern

and the terms of the MSE distortion expression can be grouped in terms of these

l = 1, 2, . . . , 2K − 1 error patterns. When the error pattern is fixed as the l-th one in

(2.7) and all the terms are grouped according to the error pattern, Cl =
∑

i,j πi(i−j)2

can be calculated as follows: sum up all (i − j)2 corresponding to adding this error

pattern to the i-th codeword which results in the j-th codeword. Here i and j are

the transmitted and received codewords respectively. This method of grouping the
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terms with the same error pattern leads to

D =
2K−1
∑

l=1

ClPl (4.17)

The following MSE expressions for (3,2),(4,3) and (5,4) single parity check codes are

found this way. The coefficients of Q functions are given in Table II.

The MSE expression can be found as for (3,2) SPC code:

MSE = B1Q
(

√

2Es(a2 + a3)

N0

)

+B2Q
(

√

2Es(a1 + a3)

N0

)

+B3Q
(

√

2Es(a1 + a2)

N0

)

(4.18)

for (4,3) SPC code:

MSE = B1Q
(

√

2Es(a3 + a4)

N0

)

+B2Q
(

√

2Es(a2 + a4)

N0

)

+B3Q
(

√

2Es(a2 + a3)

N0

)

+B4Q
(

√

2Es(a1 + a4)

N0

)

+B5Q
(

√

2Es(a1 + a3)

N0

)

+B6Q
(

√

2Es(a1 + a2)

N0

)

+B7Q
(

√

2Es(a1 + a2 + a3 + a4)

N0

)

(4.19)
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Table II. Coefficients for the MSE expressions

Input Weight B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

2 1 4 5 - - - - - - - - - - - -

3 1 4 5 16 17 20 21 - - - - - - - -

4 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85
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for (5,4) SPC code:

MSE = B1Q
(

√

2Es(a4 + a5)

N0

)

+B2Q
(

√

2Es(a3 + a5)

N0

)

+B3Q
(

√

2Es(a3 + a4)

N0

)

+B4Q
(

√

2Es(a2 + a5)

N0

)

+B5Q
(

√

2Es(a2 + a4)

N0

)

+B6Q
(

√

2Es(a2 + a3)

N0

)

+B7Q
(

√

2Es(a2 + a3 + a4 + a5)

N0

)

+B8Q
(

√

2Es(a1 + a5)

N0

)

+B9Q
(

√

2Es(a1 + a4)

N0

)

+B10Q
(

√

2Es(a1 + a3)

N0

)

+B11Q
(

√

2Es(a1 + a3 + a4 + a5)

N0

)

+B12Q
(

√

2Es(a1 + a2)

N0

)

+B13Q
(

√

2Es(a1 + a2 + a4 + a5)

N0

)

+B14Q
(

√

2Es(a1 + a2 + a3 + a5)

N0

)

+B15Q
(

√

2Es(a1 + a2 + a3 + a4)

N0

)

(4.20)

D. MSE Expression for (7,4) Hamming Code

In Table III, the mapping of the Hamming codewords are given. The MSE expression
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Table III. The mapping of (7,4) Hamming codewords

i natural mapping parity bits

0 0000 000

1 0001 011

2 0010 110

3 0011 101

4 0100 111

5 0101 100

6 0110 001

7 0111 010

8 1000 101

9 1001 110

10 1010 011

11 1011 000

12 1100 010

13 1101 001

14 1110 100

15 1111 111
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can be derived as

MSE = B1Q
(

√

2Es(a4 + a6 + a7)

N0

)

+B2Q
(

√

2Es(a3 + a5 + a6)

N0

)

+B3Q
(

√

2Es(a3 + a4 + a5 + a7)

N0

)

+B4Q
(

√

2Es(a2 + a5 + a6 + a7)

N0

)

+B5Q
(

√

2Es(a2 + a4 + a5)

N0

)

+B6Q
(

√

2Es(a2 + a3 + a7)

N0

)

+B7Q
(

√

2Es(a2 + a3 + a4 + a6)

N0

)

+B8Q
(

√

2Es(a1 + a5 + a7)

N0

)

+B9Q
(

√

2Es(a1 + a4 + a5 + a6)

N0

)

+B10Q
(

√

2Es(a1 + a3 + a6 + a7)

N0

)

+B11Q
(

√

2Es(a1 + a3 + a4)

N0

)

+B12Q
(

√

2Es(a1 + a2 + a6)

N0

)

+B13Q
(

√

2Es(a1 + a2 + a4 + a7)

N0

)

+B14Q
(

√

2Es(a1 + a2 + a3 + a5)

N0

)

+B15Q
(

√

2Es(a1 + a2 + a3 + a4 + a5 + a6 + a7)

N0

)

(4.21)

Note that the coefficients do not depend on the code but rather on the mapping

of information bits. This is due to the fact that only the mapping of information bits

determine the coefficients
∑

i,j(i− j)2 for a given error-codeword. The expression in

(4.21) is optimized by using the DE optimization. As it can be seen from (4.21), as

the number of codewords increases the MSE expression will become very untractable.

(4.21) can be well approximated by taking only the codewords with minimum Ham-

ming distance, dmin into account. Therefore, from (4.21) only the codewords with
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dmin are taken into account. Then the simplified expression becomes

MSE = B1Q
(

√

2Es(a4 + a6 + a7)

N0

)

+B2Q
(

√

2Es(a3 + a5 + a6)

N0

)

+B5Q
(

√

2Es(a2 + a4 + a5)

N0

)

+B6Q
(

√

2Es(a2 + a3 + a7)

N0

)

+B8Q
(

√

2Es(a1 + a5 + a7)

N0

)

+B11Q
(

√

2Es(a1 + a3 + a4)

N0

)

+B12Q
(

√

2Es(a1 + a2 + a6)

N0

)

(4.22)

(4.22) is optimized using DE.

E. Results

1. Results for SPC Codes

Results for the coded case with (3,2), (4,3) and (5,4) SPC codes are given in this

section. These include the plots of MSE obtained by using the differential evolution

method and plots of the results from the simulation of the actual systems. The

simulations are done by using the power profiles determined by optimizing the MSE

expressions given in (4.18), (4.19) and (4.20) by using differential evolution. The plots

of these power profiles from the optimization of (4.18), (4.19) and (4.20) are given in

Figure 15, Figure 16 and Figure 17 respectively. As can be seen from these graphs,

as SNR increases the power profile approaches the uniform power profile.

Plots of MSE obtained from the differential evolution and MSE obtained from

the simulation of the actual system are given in Figure 18, Figure 19 and Figure 20.

As can be seen from these results, the MSE expressions are upper bounds on the

actual MSE values obtained from the simulation of the system. This upper bound

is very loose at the lower SNRs. It becomes tighter as the SNR increases. For (3,2)
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Fig. 15. Power profile for (3,2) SPC code
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Fig. 16. Power profile for (4,3) SPC code
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Fig. 17. Power profile for (5,4) SPC code

SPC code, it can be seen from Figure 18 that the upper bound is very close to the

actual MSE found from the simulations at 10 dB. For (4,3) and (5,4) SPC codes, from

Figure 19 and Figure 20 it is seen that the MSE values are very close to each other at

12 dB. For SNRs higher than 12 dB, the simulation results are hard to obtain since

the MSE hence the probability of bit error are very small. Beyond these SNRs, it

appears that the MSE expressions are very close to the actual MSE.

In order to see how much MSE gain is obtained by using the optimum power

profile from differential evolution, MSE gain graphs are plotted. In the MSE gain

plots, MSE gain is calculated from the MSE expressions and from the results of the

simulations. For (3,2), (4,3) and (5,4) SPC codes the MSE gain graphs are shown in

Figure 21, Figure 22 and Figure 23 respectively. As can be seen from these graphs,

the power profiles obtained from differential evolution give reasonable gain in MSE

in dB over the uniform power profile. The MSE expressions are upper bounds on the
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Fig. 18. MSE from expression (4.18) and simulation of the system for (3,2) SPC code
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Fig. 19. MSE from expression (4.19) and simulation of the system for (4,3) SPC code
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Fig. 20. MSE from expression (4.20) and simulation of the system for (5,4) SPC code

actual MSE of the system which get tighter as SNR increases. In all the MSE gain

graphs, MSE gain obtained from simulations approaches MSE gain obtained from the

expressions as SNR increases.

As the number of codewords in the code increases, the number of terms in the

MSE expression also increases and the MSE expression becomes intractable. A sim-

plification to the MSE expression is to use the dmin codewords. This is a good

simplification for finding the power profiles since the number of terms is less than or

equal to the number of terms in the complete MSE expression and this is particularly

advantageous as the length of the code increases. For (3,2) SPC code, all the code-

words have weight 2 except for the all zero codeword. Therefore, looking at only the

dmin codewords does not simplify the expressions. For (4,3), there is only one term

which can be omitted from the MSE expression. This is the last term in (4.19). Since
∑4

i=1 ai = 1, this term does not make any difference in the optimization problem. The

MSE plot for (4,3) SPC code with only the dmin weight codewords is the same as the
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Fig. 21. MSE gain obtained from MSE expression for (3,2) SPC code and from the

simulations

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

SNR(dB)

M
S

E
 g

ai
n(

dB
)

MSE expression
MSE simulation

Fig. 22. MSE gain obtained from MSE expression for (4,3) SPC code and from simu-

lations
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Fig. 23. MSE gain obtained from MSE expression for (5,4) SPC code and from simu-

lations

MSE plot given in Figure 19 and the MSE gain is the same as the plot in Figure 22.

For (5,4) code, MSE gain plot is shown in Figure 23. When only the dmin codewords

are considered in the MSE expression, the power profile that is found is close to the

power profile found from the optimization of (4.20). Actually as SNR increases, the

power profile from the optimization of the expression with dmin terms gets even more

close to the power profile from the optimization of (4.20). This power profile is given

in Figure 24. The MSE gain plot for (5,4) is nearly the same as the plot shown in

Figure 23 so it is not shown again. This suggests that dmin approximation is a very

robust one in spite of being much simpler.

2. Results for (7,4) Hamming Code

Similar results for the Hamming code is obtained for (7,4) Hamming code by optimiz-

ing the expression given in (4.21). The power profile obtained from the optimization
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Fig. 24. Power profile for (5,4) SPC code from MSE expression with dmin codewords

of (4.21) is plotted in Figure 25.

The system is simulated with the optimum power profile given in Figure 25.

The actual MSE found from the simulation of the system is plotted with the MSE

obtained from the optimization of (4.21) in Figure 26.

As can be seen from Figure 26, as SNR increases the upper bound determined

from the expression given in (4.21) becomes a tighter bound on the actual MSE of the

system. MSE gain of the system is also plotted in Figure 27 against the MSE gain

determined from expression (4.21). Using a power profile different from the uniform

power profile on the simulation of the system gives a gain up to 3 dB.

For (7,4) Hamming code, the MSE expression (4.21) has 15 terms. In order

to simplify (4.21) only the codewords with weight dmin are taken into account and

a simpler expression is optimized. This expression has only 7 terms as it is given

in (4.22). The power profile obtained from the optimization of (4.22) is plotted in

Figure 28. It can be seen that this power profile is a close approximation to the power
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Fig. 25. Power profile for (7,4) Hamming code
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Fig. 26. MSE from MSE expression for (7,4) Hamming code and simulation of the

system
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Fig. 27. MSE gain from MSE expression for (7,4) Hamming code and simulation of

the system over the uniform power profile

profile given in Figure 25 for SNRs higher than 10 dB. This is due to the fact that as

SNR increases the MSE terms with the dmin codewords contribute more to the total

MSE than the other terms. The MSE obtained from optimizing (4.22) are plotted in

Figure 29 with the MSE obtained from the simulation of the actual system.

As can be seen from Figure 29, (4.22) is an upper bound on the actual MSE

obtained from the simulation for low SNRs. As SNR increases, the bound becomes

tighter and it is very close to the actual value at 12 dB. MSE gain over the uniform

power profile is given in Figure 30. It can be seen that the MSE gain obtained from

using dmin error codewords is around 3 dB for SNRs around 10 dB. This shows that

using only the error codewords with weight dmin gives reasonable MSE gain over the

uniform power profile.
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Fig. 28. Power profile for (7,4) Hamming code from MSE expression with dmin code-

words
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Fig. 29. MSE from bounding expression with dmin codewords and simulation results

for the system
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CHAPTER V

GENERALIZATION OF MSE EXPRESSION TO ALL LINEAR BLOCK CODES

In the previous section, we discussed how to derive MSE expressions for SPC and

Hamming codes and looked into a possible way to simplify the MSE expressions. In

this section, we will try to generalize and simplify the MSE expressions for the coded

case further. One possible way to achieve this end is to use the input-output weight

enumerating function of the code. We also assume that the parity bits have the same

energy and all the information bits have the same energy. At the encoder the mapping

is assumed to be natural binary. The approximations made to the MSE expression

give a way to find the power profiles without the knowledge of all the codewords in

the code. We will show that with this method you can still get reasonable MSE gain

over uniform power profile.

A. Approximation to the General MSE Expression

As it is given in (4.15) and (4.16), the probability of a codeword error depend on the

positions that the two codewords differ. Since we are looking at linear block codes,

each error pattern corresponds to a codeword in the code. Therefore to calculate (2.7),

each codeword can be treated as an error pattern and the terms of the MSE distortion

expression can be grouped in terms of these l = 1, 2, . . . , 2K − 1 error patterns. This

method of grouping the terms with the same error pattern leads to

D =
2K−1
∑

l=1

ClPl (5.1)

Now, assume that a1 is the energy of the information bits (they all have same energy)

and a2 is the energy of each of the parity bits (same energy). Further, the input-
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output weight enumerating function (IOWEF) for a (N,K) linear block code can be

written as

A(X,Y ) =
n
∑

b=1

k
∑

a=1

Aa,bX
aY b (5.2)

where Aa,b is the number of codewords in the code with an output weight b that

correspond to an input weight a. The IOWEF of a given code can be easily obtained.

(4.16) can be easily written in terms of the input and the output weight. Let’s

assume that for each error pattern level m (which corresponds to one of 2K codewords

in the code), nmi is the input weight and nmo is the output weight of the codeword.

Since it is a systematic code, nmi represents the number of information bits that have

the value 1 and nmo − nmi is the number of parity bits that have the value 1. Then

(4.16) can be expressed as

Q
(

√

2Es(nmia1 + (nmo − nmi)a2)

N0

)

(5.3)

As stated earlier, there are l = 1, 2, . . . , 2K−1 error patterns for the case with distinct

energy for each of the bits. If this requirement is relaxed and information bits have

the same energy and parity bits have the same energy, then the number of distinct

Pr[j|i] terms further comes down to the number of distinct terms in the IOWEF.

This is so because with this energy constraint, only the input and output weights of

a codeword are significant. The coefficients of the new expression C ′
h with a given

input weight and output weight is then the sum of the coefficients of error patterns

which have these parameters. That is, (5.1) reduces to:

D =
H
∑

h=1

C ′
hP

′
h (5.4)

where H is the number of distinct terms in IOWEF and P ′
h is of a similar form as
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(5.3). However, looking at the coefficients of these distinct terms (definition of Cl)

carefully, it becomes evident that they are dependent only on the information bits or

in other words the mapping of the quantizer. We will group all the error patterns

which have an input weight a and different output weights. Assume that there are

na distinct error patterns of input weight a in the IOWEF. Then the distortion can

be approximated as:

D ≈
k
∑

a=1

C(a)(
na
∑

t=1

Aa,btP
′
ht
)

C(a) =

∑na
t=1 C

′
ht

∑na
t=1 Aa,bt

(5.5)

where bts correspond to different output weights possible for the same input weight

a and P ′
ht
s correspond to the probability of error expression for error patterns with

those output weights and input weight a. C (a) is the sum of the coefficients Cl of error

patterns (codewords) of input weight a divided by the total number of error patterns

of input weight a. For mappings such as natural binary mapping, C (a) is a sequence

with some good properties which make them easily determinable for any input length

k.

B. Coefficients for Natural Binary Mapping

It is known that the mapping at the transmitter is natural binary. To calculate the

coefficients without going through all the codewords, a more general way is sought.

Since all the information bits have the same energy, this gives us a good way to find an

approximateMSE expression which can be generalized. To calculate the coefficients,

C(a), the following can be done. Table IV shows how the coefficients relate to the

input weight. In this table, a row represents a fixed K which is the number of

information bits, and a column represents a fixed t which is the input weight(number
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Table IV. Coefficients from natural binary mapping for any (N,K) code

K input weight 1 input weight 2 input weight 3 input weight 4

1 1 - - -

2 1[12 + 22] 12+32

2
- -

3 1[12 + 22 + 42] 12+32

2
[12 + 22] + 52+32

2
12+32+52+72

4
-

4 1[12 + 22 12+32

2
[12 + 22 + 42] 12+32+52+72

4
[12 + 22] 12+32+52+72+92+112+132+152

8

+42 + 82] +52+32

2
[12 + 22] + 72+92

2
+112+92+72+52

4
+ 132+112+32+52

4
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of 1s in the information bits). For a fixed input weight, as the number of information

bits increases there is a relationship between the subsequent coefficients. That is, the

coefficients of a fixed input weight t forK information bits is related to the coefficients

of the same input weight t for K−1 information bits and input weight t−1 for K−1

input weight. A input weight t codeword with K information bits can result from

1. Appending 0s either to the left (more significant side) or to the right (less

significant side) of a weight t codeword with information bits K − 1.

2. Appending a 1 to the right (less significant side) of the weight t − 1 codeword

with information bits K − 1.

Using these facts, for any length K information bits the coefficients can be calculated

for any fixed given input weight , t where t = 1, 2, . . . , K. Once the IOWEF of a code

is also known, these can be put together in (5.5) to obtain the approximate expression

for MSE distortion.

The coefficients can be found by using a simple algorithm. Finding the coeffi-

cients for a certain length mapping requires calculation of all the coefficients starting

from length 1. In this algorithm, the input weight is fixed and the length of the map-

ping varies. You can generate a matrix B which has the known length of the mapping

(number of information bits) as its rows and the input weight as its columns. In this

algorithm let ii represent a row of the matrix and jj represent a column of the matrix

and K the fixed length of the mapping for which the coefficients need to be found.

1. Initialize a coefficient matrix of K rows, K columns, B and set all the elements

to 0. Rows correspond to number of information bits and columns to weight of

the word.

2. Initialize B(1, 1) = 1.
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3. For jj = 2 to K, B(jj, 1) = 22 ∗B(jj − 1, 1) + 1 (wt. 1 coefficients) End Loop

4. For ii = 2 to K, Initialize wtprev to wtpres and wtpres to empty set. Equate

numc = 1 (number of different coefficients) and numprev = 2
ii−2

(a) for jj = ii to K, Set B(jj, ii) = B(jj − 1, ii) ∗ 22 and numpres = 2
jj−1

i. for kk = 1 to numc, wtpres = [wtpresnumpres − wtprev((kk − 1) ∗

numprev + 1 : kk ∗ numprev)numpres + wtprev((kk − 1) ∗ numprev + 1 :

kk ∗ numprev)] Endloop

ii. for kk = 1 to length(wtpres)/(2 ∗ numprev), B(jj, ii) = B(jj, ii) +

sum([wtpres((kk−1)∗2∗numprev+1 : kk∗2∗numprev)]
2)/(numprev∗2)

Endloop

(b) numc = numc+ ii− 2 End Loop

5. End Loop

In the next section, the above explained method is used and explained in detail

for (7,4) Hamming code and the results are given for (3,2), (4,3) and (5,4) SPC code

as well as the Hamming code.

C. Approximate Expression for (7,4) Hamming Code

In Table III the mapping of the Hamming codewords are given. The input-output

weight enumerating function for (7,4) Hamming code can be written as

A(X,Y ) = 3XY 3 +XY 4 + 3X2Y 4 + 3X2Y 3 +X3Y 3 + 3X3Y 4 +X4Y 7 (5.6)

From (5.6), the number of codewords with a given input-output weight is known. If

the exact coefficients are calculated by going through all the different input and output
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weight codewords, the distortion expression can be written as a sum of following

terms:

1. A1,3 = 3

(12 + 22 + 82)Q
(

√

2Es(a1 + 2a2)

N0

)

(5.7)

2. A1,4 = 1

42Q
(

√

2Es(a1 + 3a2)

N0

)

(5.8)

3. A2,3 = 3

(52 + 32

2
+
62 + 22

2
+
122 + 42

2

)

Q
(

√

2Es(2a1 + a2)

N0

)

(5.9)

4. A2,4 = 3

(92 + 72

2
+
102 + 62

2
+
32 + 12

2

)

Q
(

√

2Es(2a1 + 2a2

N0

)

(5.10)

5. A3,3 = 1

(112 + 92 + 72 + 52

4

)

Q
(

√

2Es(3a1)

N0

)

(5.11)

6. A3,4 = 3

(72 + 52 + 32 + 12

4
+

132 + 112 + 52 + 32

4
+
142 + 102 + 62 + 22

4

)

Q
(

√

2Es(3a1 + a2)

N0

)

(5.12)

7. A4,7 = 1

(152 + 132 + 112 + 92 + 72 + 52 + 32 + 12

8

)

Q
(

√

2Es(4a1 + 3a2)

N0

)

(5.13)
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The approximation discussed earlier to this expression can be written as follows:

For input weight1 : C(1)
(

3Q
(

√

2Es(a1 + 2a2)

N0

)

+Q
(

√

2Es(a1 + 3a2)

N0

))

For input weight 2 : C(2)
(

3Q
(

√

2Es(2a1 + 2a2)

N0

)

+ 3Q
(

√

2Es(2a1 + a2)

N0

))

For input weight 3 : C(3)
(

Q
(

√

2Es(3a1)

N0

)

+ 3Q
(

√

2Es(3a1 + a2)

N0

))

For input weight 4 : C(4)Q
(

√

2Es(4a1 + 3a2)

N0

)

(5.14)

where C(1), C(2), C(3), C(4) are coefficients that come from Table IV. These coefficients

are the total of the coefficients for the given input. Thus, they need to be averaged

over the total number of codewords with the given input weight. Therefore from

Table IV

C(1) =
(12 + 22 + 42 + 82)

(A1,3 + A1,4)
(5.15)

=
(12 + 22 + 42 + 82)

4

C(2) =

(

12+32

2
[12 + 22 + 42] + 52+32

2
[12 + 22] + 72+92

2

)

(A2,3 + A2,4)
(5.16)

=

(

12+32

2
[12 + 22 + 42] + 52+32

2
[12 + 22] + 72+92

2

)

6

C(3) =

(

12+32+52+72

4
[12 + 22] + 112+92+72+52

4
+ 132+112+32+52

4

)

(A3,3 + A3,4)
(5.17)

=

(

12+32+52+72

4
[12 + 22] + 112+92+72+52

4
+ 132+112+32+52

4

)

4

C(4) =
12 + 32 + 52 + 72 + 92 + 112 + 132 + 152

8
(5.18)
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A simple MATLAB program can be used to generate the coefficients starting with

k = 1 going up to k = 4 for this case by using the algorithm described.

D. Generalization of the MSE Expression

Table IV gives a good way to generalize the approximate expression for all linear

block codes. If the IOWEF of the code is known and the assumption that all the

information bits have the same energy and parity bits have the same energyis made,

then the above described method can be used to get the MSE expression which can

be optimized to find the energy profile of the information and parity bits.

E. Results

Results obtained from MSE expression for the (3,2), (4,3) and (5,4) SPC codes with

the above method are shown in Figure 31. Since all the information bits are con-

strained to have the same energy and all the parity bits are constrained to have the

same energy, this scheme cannot perform as well as the scheme with power allocation

available for each of the information bits.

The power profile graphs are shown in Figure 32, Figure 33 and Figure 34. As it

can be seen from these graphs, the power profile converges close to the uniform power

profile fast.

Similar results for the (7,4) Hamming code are shown in Figure 35. Figure 36

shows the power profiles of information and parity bits for different SNRs. The

magnitude of the gain is smaller compared to the MSE gain that can be obtained by

changing the power profiles of each bit.

These system have also been simulated to see how much the actual MSE gain

over the uniform power profile for (7,4) Hamming code is. The MSE graph given in
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Fig. 31. Optimum MSE found by using the DE method for the SPC coded cases (3,2),

(4,3), (5,4)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er
 P

ro
fil

e

SNR(dB)

Fig. 32. Power profile for (3,2) SPC code found from DE
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Fig. 33. Power profile for (4,3) SPC code found from DE

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er
 P

ro
fil

e

SNR(dB)

Fig. 34. Power profile for (5,4) SPC code found from DE
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Fig. 35. Optimum MSE found by using the DE method for the (7,4) Hamming coded

case
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Fig. 36. Optimum power profiles found by using the DE method for the (7,4) Hamming

coded case with the approximation
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Fig. 37. Actual MSE from the simulation and the MSE from the expression

Figure 37 shows that the actual MSE is very close to the MSE calculated from the

expression and as SNR increases it becomes nearly equal. Since the power profile

approaches the uniform power profile faster than the cases when all the bits are

assigned different energies, MSE of the actual system approaches the MSE found

from the expressions faster.

In Figure 38, actual MSE obtained from the simulation of the system for uniform

power profile and the MSE obtained from the expression is shown. As can be seen

from this figure, the two MSE values are very close for SNRs higher than 10 dB.

The MSE gain of this system is shown in Figure 39. The simulation of the system

shows 0.6-0.8 dB for low SNRs and 0.2 dB for higher SNRs (10 dB).
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Fig. 38. Actual MSE from the simulation and the MSE from the expression for uniform

power profile
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Fig. 39. MSE gain determined from the expression and the simulation of the system

for (7,4) Hamming code
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CHAPTER VI

CONCLUSION

In this thesis, we studied how to determine the optimum bit power profile in order to

minimize the MSE of a basic communication system. At transmitter, the signal gen-

erated by the analog signal source was sampled, passed through a uniform quantizer

where the signal samples were naturally mapped to 2k levels and BPSK modulated

and transmitted through the AWGN channel. At the receiver, the received signal

was demodulated and the transmitted signal was reconstructed. We looked into two

cases:

• uncoded

• coded

For the uncoded system, the communication system was the same as described above,

but for the coded case, the system was modified by adding channel encoding before

BPSK modulation at the transmitter and channel decoding at the receiver after de-

modulation. The MSE of the system was derived between the output of the quantizer

at the transmitter and the reconstructed signal levels at the input of the dequantizer

at the receiver for both cases. By using Chernoff bound we were able to obtain a

closed form expression for the power profiles which gives minimum MSE. The analyt-

ical results for the uncoded case showed that by changing the power of each bit, the

MSE of the system can be minimized. This was also shown by using computer-based

optimization. Actually for low SNRs (less than 10 dB), the less significant bit is as-

signed negligible amount of power compared to the most significant bit. This means

that for low SNRs using different power allocation for each bit and not transmitting

the less significant bits gives nearly optimum MSE for the system. Therefore, for
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very noisy channels only the more important bits need to be transmitted with more

power instead of transmitting all the bits and still obtain gain in terms of MSE in dB.

It was also shown that as SNR increases the power profile approaches the uniform

power profile. The MSE gain results obtained from the closed form expression and

the computer-based optimization also showed that as SNR increases, a constant gain

in dB is achieved even though the power profile approaches uniform. The simulation

results could only be obtained up to 12 dB, but these results closely matched the

MSE gain obtained from MSE expressions.

For the coded case, it is not possible to obtain an exact expression for MSE. Instead

a bound was derived from the soft-decision decoding rule and computer-based opti-

mization was used to see how power was allocated between the information bits and

the parity bits. The codes considered in this work were linear block codes such as

(3,2), (4,3) and (5,4) SPC codes and (7,4) Hamming code. This work can be extended

to longer length codes too. The optimization of the approximate MSE expressions

gave power profiles where the parity bits had negligible power for low SNRs (less

than 8 dB). For very noisy channels, the information bits need to be protected more

than the parity bits. As SNR increases all the power profiles tend to the uniform

power profile. The simulations of the actual system with these power profiles showed

a positive MSE gain in dB over the uniform power profile in all the codes considered

here.

The MSE expressions determined for the coded case had the same number of

terms as the codewords in the code. Therefore, as the number of codewords in the

code increased, the MSE expression became intractable. Simplifications to the MSE

expression were sought. One of them was to consider the terms with dmin weight

codewords. This gave a good approximation for higher SNRs since the dmin weight

codewords dominate the probability of bit error for high SNRs. However, it is also
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observed that the power profiles obtained from dmin expression for lower SNRs are

also close to the power profiles obtained from exact MSE expression. We also looked

into ways to find a generalized MSE expression where we do not need to go through

all the codewords of the code. We assumed that input-output weight enumerating

function (IOWEF) of the code is known and that the information bits have the same

energy whereas the parity bits also have the same energy. Natural binary mapping

was used at the quantizer. These assumptions led to a generalized expression which

was used for the SPC codes and the Hamming code. Since all the information bits

are allocated the same power and all the parity bits are allocated the same power, the

MSE gain of the system decreased drastically compared to allocating different power

to each bit, but still gave reasonable gain over the uniform power allocation.
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APPENDIX A

CHERNOFF BOUND FOR UNCODED CASE

The problem is:

min
ak

1

2

K−1
∑

k=0

22ke−SNRak (A.1)

subject to:

K−1
∑

k=0

ak = 1 (A.2)

Lagrange multipliers can be applied (A.1). Therefore

J =
1

2

K−1
∑

k=0

22ke−SNRak + λ

K−1
∑

k=0

ak (A.3)

Taking derivatives with respect to ak

∂J

∂ak

=
−1
2
SNR22ke−SNRak + λ (A.4)

From here ak can be found to be

ak =
1

SNR

(

lnSNR + 2k ln 2− ln 2λ
)

(A.5)

If this is substituted into the (A.2) equation λ can be found in terms of ak . Therefore

λ comes out to be

λ = e(−SNR
K

+ln SNR+(K−1) ln 2) (A.6)

Substituting this back to (A.5) gives the solution to the minimization problem as

âk =
(2k + 1−K) ln(2)

SNR
+
1

K
k = 0, 1, . . . , K − 1 (A.7)
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APPENDIX B

MATLAB CODE

Here is the main MATLAB code used for this thesis. DE algorithm (devec3.m)

has been modified from http://www.icsi.berkeley.edu/ storn/code.html#matl

%Uncoded case

%calculation of ak values by using the iterative method (Chernoff Bound)

%SNR is fixed

format long

K = 4

for ss = 0 : 2 : 30

SNR = 10(̂ss/10)

K1 = K;

flag = 1; c = [1 : 1 : K1]; b = 0;

while (flag == 1)K1 = length(c); b = b+ 1;

for k = length(c) : −1 : 1

ak(c(k)) = ((2 ∗ (k − 1) + 1−K1) ∗ log(2)/(SNR)) + (1/K1);

end;

c1 = find(ak > 0);

if (length(c1) == K1)

break;

else

ak(b) = 0;

end;

c2 = [b+ 1 : K];
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c = [ ]; c = c2;

end;

MSE(ss+ 1) = 0.5 ∗ dot(2.(2 ∗ [0 : K − 1]), exp(−SNR ∗ ak))

AK(ss+ 1, :) = ak

end;

%Example of DE optimization for Hamming code for the approximate MSE expres-

sion

%DE optimization for Hamming code

format long;

rand(′state′, sum(100 ∗ clock));

K = 7;

XL = zeros(1, K);XU = ones(1, K);

fprintf(′EXACT HAMMING EXPRESSION DE ′);

X = ones(1, K)/K

% Initialization and run of differential evolution optimizer.

% A simpler version with fewer explicit parameters is in run0.m

%

% Here for Rosenbrock’s function

% Change relevant entries to adapt to your personal applications

%

% The file ofunc.m must also be changed

% to return the objective function

%

% VTR “Value To Reach” (stop when ofunc < VTR)

% D number of parameters of the objective function

D = K;
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% XVmin,XVmax vector of lower and bounds of initial population

% the algorithm seems to work well only if [XVmin,XVmax]

% covers the region where the global minimum is expected

% *** note: these are no bound constraints!! ***

XVmin = [0, 0];

XVmax = [1, 1];

% y problem data vector (remains fixed during optimization)

% NP number of population members

NP = 30;

% itermax maximum number of iterations (generations)

itermax = 1.e3;

% F DE-stepsize F ex [0, 2]

F = 0.8;

% CR crossover probability constant ex [0, 1]

CR = 0.8;

%strategy

%1−− > DE/best/1/exp

%2−− > DE/rand/1/exp

%3−− > DE/rand− to− best/1/exp

%4−− > DE/best/2/exp

%5−− > DE/rand/2/exp

%6−− > DE/best/1/bin

%7−− > DE/rand/1/bin

%8−− > DE/rand− to− best/1/bin

%9−− > DE/best/2/bin

%else DE/rand/2/bin
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strategy = 7

% refresh intermediate output will be produced after “refresh”

% iterations. No intermediate output will be produced

% if refresh is < 1

refresh = 1000;

MSE = zeros(1, 21);

for ss = 0 : 2 : 40

MSE(ss+ 1) = inf ;

AK(ss+ 1, :) = zeros(1, K);V TR = 1.e− 1000;

y = [K ss];

[p, fval, fiter]= devec3(′msehamming de1′, V TR,D,XL,XU, y, . . .

. . . , NP, itermax, F, CR, strategy, refresh);

if (MSE(ss+ 1) fval)

MSE(ss+ 1) = fval

PP (ss+ 1, :) = p

end

end;

MSE, PP

function solution = msehamming de1(p, y)

K = y(1); ss = y(2);

if (length(find(p < 0)) + length(find(p > 1)) < 1)

solution=0.5*[erfc(10(̂ss/20)*sqrt(p(4)+p(6)+p(7)))+4*erfc(10(̂ss/20)*sqrt(p(3)

+p(5)+p(6)))+16*erfc(10(̂ss/20)*sqrt(p(2)+p(5)+p(6)+p(7)))+64*erfc(10(̂ss/20)

sqrt(p(1)+p(5)+p(7)))+5*erfc(10(̂ss/20)*sqrt(p(3)+p(4)+p(5)+p(7)))+17*erfc



78

(10(̂ss/20)*sqrt(p(2)+p(4)+p(5)))+20*erfc(10(̂ss/20)*sqrt(p(2)+p(3)+p(7)))+21

erfc(10(̂ss/20)*sqrt(p(2)+p(3)+p(4)+p(6)))+65*erfc(10(̂ss/20)*sqrt(p(1)+p(4)

+p(5)+p(6)))+68*erfc(10(̂ss/20)*sqrt(p(1)+p(3)+p(6)+p(7)))+69*erfc(10(̂ss/20)

sqrt(p(1)+p(3)+p(4)))+80*erfc(10(̂ss/20)*sqrt(p(1)+p(2)+p(6)))+81*erfc(10ˆ

(ss/20)*sqrt(p(1)+p(2)+p(4)+p(7)))+84*erfc(10(̂ss/20)*sqrt(p(1)+p(2)+p(3)+p(5)))+

85*erfc(10(̂ss/20)*sqrt(sum(p)))];

else

solution=1.e10;

end;

%simulation of the communication system with near optimum power profiles for

Hamming code

%generation of the (7,4) Hamming code

no bits = 1000;

quantizer(no bits, 7) = 0;

for ii = 0 : 15

bits(ii+ 1, 1 : 4) = bitget(ii, 4 : −1 : 1);

end

for ii = 1 : 16

bits(ii, 5) = mod((bits(ii, 1) + bits(ii, 2) + bits(ii, 3)), 2);

bits(ii, 6) = mod((bits(ii, 2) + bits(ii, 3) + bits(ii, 4)), 2);

bits(ii, 7) = mod((bits(ii, 1) + bits(ii, 2) + bits(ii, 4)), 2);

end

codewords = 2 ∗ bits− 1;

%power allocation for Hamming code

dummy = PP (1 : 2 : end, :); dummy(find(dummy < 0)) = 0; %generation of the

random code words ss = [0 : 2 : 32]; count1 = zeros(1, length(ss));
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count2 = zeros(1, length(ss)); count3 = zeros(1, length(ss));

count4 = zeros(1, length(ss)); MSE = zeros(1, length(ss));

for mm = 1 : length(ss)

p = dummy(mm, :);

frame = 0; frame1 = 0;

while (frame<200)

frame1 = frame1 + 1;

samples = round(15 ∗ rand(1, no bits));

for ii = 1 : no bits

quantizer(ii, 1 : 4) = bitget(samples(1, ii), 4 : −1 : 1);

end

for ii = 1 : no bits

quantizer(ii, 5) = mod((quantizer(ii, 1) + quantizer(ii, 2) + quantizer(ii, 3)), 2);

quantizer(ii, 6) = mod((quantizer(ii, 2) + quantizer(ii, 3) + quantizer(ii, 4)), 2);

quantizer(ii, 7) = mod((quantizer(ii, 1) + quantizer(ii, 2) + quantizer(ii, 4)), 2);

end

quantizer = 2 ∗ quantizer − 1;

for ii = 1 : no bits

transmitted(ii, :) = sqrt(p(1, :)). ∗ quantizer (ii, :);

end

noise = (sqrt(0.5 ∗ 10(̂− ss(mm)/10)) ∗ randn(no bits, 7));

received = transmitted+ noise;

for ii = 1 : no bits

for jj = 1 : 16

temp(ii, jj) = sum(sqrt(p(1, :)). ∗ codewords(jj, :). ∗ received(ii, :));

%temp1(ii, jj) = sum(sqrt(p(1, :)). ∗ bits(jj, :). ∗ received1(ii, :));
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%temp(ii, jj) = sum(codewords(jj, :). ∗ received(ii, :));

end

end

(C, Y ) = max(temp′);

for ii = 1 : no bits

decoded(ii, :) = bits(Y (ii), :);

end

MSE1 = 0;

for ii = 1 : no bits

MSE1 = MSE1 + (samples(1, ii) − (8 ∗ decoded(ii, 1) + 4 ∗ decoded(ii, 2) + 2 ∗

decoded(ii, 3) + decoded(ii, 4)))2̂;

end;MSE1;

MSE(mm) =MSE(mm) +MSE1/no bits;

count11 = 0; count22 = 0; count33 = 0; count44 = 0;

count11 = length(find(decoded(:, 1) = quantizer(:, 1)));

count22 = length(find(decoded(:, 2) = quantizer(:, 2)));

count33 = length(find(decoded(:, 3) = quantizer(:, 3)));

count44 = length(find(decoded(:, 4) = quantizer(:, 4)));

if (count11 > 0&count22 > 0&count33 > 0&count44 > 0)

frame = frame+ 1;

end;

count1(mm) = count1(mm) + count11;

count2(mm) = count2(mm) + count22;

count3(mm) = count3(mm) + count33;

count4(mm) = count4(mm) + count44;
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save simhamming de3 count1 count2 count3 count4 MSE frame frame1 no bits ss;

end;

count1(mm) = count1(mm)/(frame1 ∗ no bits); count1(mm)

count2(mm) = count2(mm)/(frame1 ∗ no bits); count2(mm)

count3(mm) = count3(mm)/(frame1 ∗ no bits); count3(mm)

count4(mm) = count4(mm)/(frame1 ∗ no bits); count4(mm)

MSE(mm) =MSE(mm)/frame1;

save simhamming de4 p count1 count2 count3 count4 MSE frame frame1 no bits ss

end
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