
1.  Introduction
Alteration of ultramafic rocks is ubiquitous in near-surface environments, both on land and below the 
seafloor. Mantle olivine and pyroxene are unstable at near-surface conditions and undergo hydration (ser-
pentinization) and carbonation when fluids are present (e.g., Moody, 1976). These reactions result in the 
formation of serpentine minerals, carbonates, brucite, magnetite, and other Fe-oxides and hydroxides. Ser-
pentinization and carbonation reactions are often nearly isochemical apart from the addition of H2O and 
CO2 (e.g., Coleman & Keith, 1971). Both observations and thermodynamic modeling suggest that changes 
in major element ratios such as Si/Mg are minor (e.g., ≤10% for low-temperature reaction with seawater, 
Figure 3 in Malvoisin, 2015; Monnier et al., 2006; Snow & Dick, 1995). However, other studies (e.g., Al-Kh-
irbash, 2015; Auclair et al., 1993; Beinlich et al., 2018; de Obeso & Kelemen, 2018, 2020; Esteban Guzman 
et al., 2011; Hotz, 1964; Nasir et al., 2007; Skarpelis, 2006) have shown that under certain conditions mass 
transfer during serpentinization can lead to larger changes in major element chemistry. In Oman, partially 
serpentinized harzburgites record a ∼2% decrease in Mg compared to the inferred composition of unaltered 
mantle peridotites (Monnier et al., 2006), with examples of heavily altered harzburgite that have lost up to 
30% of their original Mg (de Obeso & Kelemen, 2020).

Magnesium isotope studies show that the composition of the mantle and bulk silicate earth (BSE) is rel-
atively uniform, with δ26Mg values = −0.25 ± 0.04‰ (2σ) (Teng, 2017; Teng et al., 2010). Liu et al. (2017) 
report δ26Mg values of −0.12 ± 0.13‰ (2σ) for altered seafloor peridotites. There are a limited number of 
studies on magnesium isotope compositions of ophiolite peridotites. Peridotites from the Purang ophiolite 
(Tibet) have δ26Mg = −0.20 ± 0.10‰ (2σ), within uncertainty of mantle compositions (Su et al., 2015) and 

Abstract  Alteration of mantle peridotite in the Samail ophiolite forms secondary minerals, mainly 
serpentine and Mg-rich carbonates. Magnesium accounts for ∼25 – 30% of peridotite mass and its mobility 
can be used to trace this alteration. We report the first set of Mg isotope measurements from peridotites 
and their alteration products in Oman. Partially serpentinized peridotites have Mg isotope ratios that are 
indistinguishable from estimates for the average mantle and bulk silicate earth (δ26Mg = −0.25 ± 0.04‰). 
However, more extensively altered peridotite samples show large shifts in Mg isotopic composition. The 
range of δ26Mg values for our suite of alteration products from the mantle section is ∼4.5‰ (from −3.39‰ 
to 1.19‰), or >60% of the total range of terrestrial variability in δ26Mg values. Serpentine veins are 
typically enriched in 26Mg (max δ26Mg value = 0.96‰) whereas Mg-carbonate veins are associated with 
low 26Mg/24Mg ratios (magnesite δ26Mg = −3.3‰, dolomite δ26Mg = −1.91‰). Our preferred explanation 
for the range in δ26Mg values involves coprecipitation of serpentine and carbonates at water-to-rock ratios 
>103. The coincidence of alteration products characterized by δ26Mg values that are both lower and higher 
than bulk silicate Earth and the finite 14C ages of the carbonates suggest that both serpentinization and 
carbonation are ongoing in Oman. Rates of calcite precipitation in travertines inferred from Δ26Mgcal-

fl suggest that travertine formation in Oman sequesters a total of 106–107 kg CO2/yr, consistent with 
previous estimates.
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peridotites from the Feragen and Linnajavri ultramafic bodies (Norway) have mantle-like Mg isotope ratios, 
with δ26Mg values ranging from −0.35‰ to −0.23‰ (Beinlich et al., 2014).

Magnesium isotopes are known to fractionate during precipitation of carbonates and silicates from aque-
ous fluids. This fractionation can be used to constrain alteration processes during serpentinization and 
carbonation. Carbonates preferentially incorporate 24Mg during crystallization, as observed in both experi-
mental and natural samples, which yield large fractionation factors (Higgins & Schrag, 2010; Li et al., 2015; 
Mavromatis et al., 2013; Pearce et al., 2012; Shirokova et al., 2013; Tipper et al., 2006). On the other hand, 
available constraints on Mg fractionation factors associated with formation of serpentine polymorphs are 
equivocal. For example, based on dissolution experiments of San Carlos olivine at low temperature (∼25°C), 
Wimpenny et al. (2010) suggested that chrysotile preferentially removed light Mg from solution. In contrast, 
Ryu et al. (2016) synthetized lizardite from solution and reported that the mineral product was enriched in 
heavy Mg relative to the fluid at experimental temperatures of 90 and 250°C. Following a molecular dynam-
ics approach, Wang et al. (2019) also concluded that lizardite crystallization preferentially removes 26Mg 
from the fluid. These experimental results contrast with fractionation estimates based on natural samples 
that concluded that serpentinization does not fractionate Mg isotopes (Beinlich et al., 2014; Liu et al., 2017; 
Oskierski et al., 2019). Studies of natural samples also suggest that talc and Mg-rich clays formed during 
alteration are enriched in 26Mg (Beinlich et al., 2014; Liu et al., 2017) in contrast with recent experimental 
studies that showed preferential incorporation of 24Mg in stevensite and saponite (Hindshaw et al., 2020). 
In summary, whereas carbonate/water fractionation factors are large, those for serpentine are uncertain 
but close to 1. Thus, Mg isotopes should be sensitive to the conditions of serpentinization and carbonation.

To explore the behavior of Mg and Mg isotopes during serpentinization and carbonation, we present the 
first suite of Mg isotope analyses of bulk-rock samples and mineral separates from the Samail ophiolite 
in Oman. Our sample suite consists of 37 samples of harzburgites and dunites with different degrees of 
alteration, as well as products of peridotite alteration (silicates and carbonates). We find that although the 
Mg isotopic compositions of partially serpentinized Oman peridotites (average δ26Mg = −0.25 ± 0.14‰, 
2σ) are indistinguishable from mantle values, serpentine and carbonate samples are 26Mg-enriched (max. 
δ26Mg value = 0.96‰) and 26Mg-depleted (min. δ26Mg value = −3.38‰), respectively, compared to average 
mantle. We explore different hypotheses to explain the co-occurrence of high δ26Mg serpentines and low 
δ26Mg carbonates and discuss results in the context of previously published 14C analyses which indicate that 
serpentinization and carbonation are ongoing during weathering of the Samail ophiolite mantle section.

2.  Geological Background and Sample Selection
The Samail ophiolite in eastern Oman is the best-exposed section of oceanic crust and mantle in the world 
(Figure 1). The mantle section of the ophiolite is composed of highly depleted harzburgites together with 
∼5%–15% dunite (Boudier & Coleman, 1981; Braun, 2004; Braun & Kelemen, 2002; Collier, 2012). These 
peridotites exhibit different degrees of alteration ranging from ∼30% serpentinized in “fresh” rocks to in-
stances of completely serpentinized (Godard et al., 2000; Monnier et al., 2006) and completely carbonated 
peridotites (Falk & Kelemen, 2015; Nasir et al., 2007; Stanger, 1985). There is substantial evidence that alter-
ation occurred throughout the history of the ophiolite. δ18O data suggest that some alteration occurred near 
the axis of the spreading center as seawater interacted with the Samail crust (Gregory & Taylor, 1981), an in-
ternal 87Sr/86Sr isochron on listvenite (carbonated peridotite) shows that alteration continued during obduc-
tion and emplacement (Falk & Kelemen, 2015). The presence of hyperalkaline springs, recently crystallized 
carbonate veins and highly reduced fluids and mineral assemblages indicates that alteration is ongoing 
(e.g., Chavagnac et al., 2013a, 2013b; Clark & Fontes, 1990; Coleman & Keith, 1971; Kelemen et al., 2011; 
Kelemen & Matter, 2008; Mervine et al., 2014; Monnin et al., 2011; Neal & Stanger, 1985; Streit et al., 2012).

Previous studies of low-temperature alteration of the Oman ophiolite propose that it occurs in three steps 
(e.g., Barnes et al., 1978, 1967; Barnes & O'Neil, 1969; Chavagnac et al., 2013a; Kelemen et al., 2011; Neal & 
Stanger, 1985; Noël et al., 2018; Paukert et al., 2012). Step 1 is characterized by formation of Mg2+-HCO3

− 
rich fluids, as atmospheric CO2 bearing rainwater dissolves Mg from peridotite during near-surface weath-
ering. These fluids have exchange with the atmosphere and inferred to be 0–40 years old (Paukert Vanke-
uren et al., 2019). During step 2, this so-called “Type I” water percolates deeper into peridotite leading to 
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precipitation of Mg-rich carbonates, brucite, and serpentine. These reactions remove carbon and Mg2+ from 
the fluid and dissolve Ca2+, which is incompatible in the alteration minerals. The resulting fluids, known 
as “Type II” waters, have low Mg and C, high Ca and pH, and very low oxygen fugacities (Bruni et al., 2002; 
Clark & Fontes, 1990; Neal & Stanger, 1983; Paukert et al., 2012). During step 3, hyperalkaline “Type II” 
fluids are returned to the surface, where disequilibrium with the atmosphere leads to rapid uptake of at-
mospheric CO2 and precipitation of calcite to form travertine deposits (Chavagnac et al., 2013a; Clark & 
Fontes, 1990; Kelemen & Matter, 2008; Kelemen et al., 2011; Mervine et al., 2014; Neal & Stanger, 1985; 
Paukert et al., 2012).

Magnesium fluxes during these three stages of alteration remain poorly constrained but inferences of wa-
ter/rock during alteration have been made for Oman peridotites. Observations in partially serpentinized 
peridotites of sulfide, and in some cases native metals recording low oxygen fugacities, are associated with 
low water/rock ratios (W/R) and incipient serpentinization (de Obeso & Kelemen, 2020; Frost, 1985; Kele-
men et al., 2020; Lorand, 1988). Increased W/R are inferred from changes in accessory sulfide minerals (de 
Obeso & Kelemen, 2020) and the occurrence of diffuse carbonate vein networks in the peridotites (Noël 
et al., 2018). Even higher W/R are expected to have been involved in the formation of massive carbonate-ser-
pentine veins which acted as main fluid paths for fluids interacting with peridotites (de Obeso & Kele-
men, 2018; Noël et al., 2018). Secondary minerals from the three steps formed at variable W/R have differ-
ent aqueous Mg2+-mineral fractionation properties with silicates expected to become enriched in 26Mg and 
carbonates enriched in 24Mg (e.g., Beinlich et al., 2014; Gao et al., 2018; Liu et al., 2017; Pinilla et al., 2015; 
Wang et al., 2019; Wimpenny et al., 2014) suggesting that Mg isotopes can be used as tracers of alteration.

All samples analyzed here were collected from the southern massifs of the ophiolite, within its mantle 
section (Figure  1). Timing of alteration/crystallization of most samples is unknown and samples might 
reflect multiple alteration episodes over the 95 million years since the ophiolite was emplaced. We assume 
that even if some samples record old serpentinization and carbonation reactions they are appropriate 
recorders of ongoing processes. Previously described samples analyzed for this study can be separated into 
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Figure 1.  Simplified geologic map of the Samail ophiolite in Oman and the United Arab Emirates. All samples in 
this study come from the southern massifs (red square) and a small exposure beneath overlying Cretaceous to Eocene 
limestones at Wadi Fins (red star). Modified after Nicolas et al. (2009).
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silicate-bearing and carbonate-bearing groups. Silicate samples include relatively fresh harzburgites (n = 6, 
average ∼40% relict mantle minerals) and dunites (n = 4, ∼23%) from Hanghøj et al. (2010), highly serpen-
tinized harzburgites (n = 2, 37% and 14%) and dunites (n = 1, 0%) from de Obeso and Kelemen (2018), and 
a set of serpentinized harzburgites (n = 3, ∼40%), high-Si harzburgite (n = 3, 0%), and oxidized harzburgite 
(n = 3, 0%) from de Obeso & Kelemen, 2020. We also include four samples not previously described: two 
serpentine veins, one serpentinite, and a material from a vein within a serpentinized body with Mg/Si∼1 
and waxy texture that we refer to as a “waxy vein.”

Carbonate samples include two groups: completely carbonated peridotites, also known as listvenites, from 
Falk and Kelemen (2015), further classified as dolomite listvenites (n = 2) and magnesite listvenites (n = 2). 
We also analyzed massive carbonate veins from serpentinized peridotite outcrops, including two magnesite 
veins and one dolomite vein (Kelemen et al., 2011). The three carbonate vein samples have 14C contents 
corresponding to ages of 32, 37, and 40 ka (Kelemen et al., 2011). Two travertine samples from Kelemen 
et al. (2011) were also analyzed. These travertines are composed mainly of calcite (XRD calcite contents 
88.3% and 91.4%), with 14C contents corresponding to ages of 1,630 and 18,450 years. We also include two 
carbonate vein samples not previously described: a massive magnesite vein and a huntite (CaMg3(CO3)4) 
vein. Major element compositions and locations for the new samples are reported in Table S1.

3.  Methods
Samples not previously described (four silicates and two carbonates) were processed in Lamont Doherty 
Earth Observatory (LDEO). Samples were chipped using a jaw crusher and powdered using an alumina 
puck mill. Major element analyses and loss on ignition (LOI) were performed at LDEO. Major elements 
were measured on an Agilent 720 Axial ICP-OES calibrated with rock standards (Table S2) following disso-
lution by lithium metaborate fusion and nitric acid.

For Mg isotopic analyses powders of all 37 samples and three USGS rock standards (BCR-2, BHVO-2, BIR-
1A) were digested using a HNO3:HF (3:1) digestion procedure at LDEO. Sample OM17-magnesite was pro-
cessed in multiple digestion batches to check reproducibility (n = 5). Once digested, <1 μg of Mg from each 
sample was purified from the silicate/carbonate matrix using a Thermo Dionex 5000+ ion chromatography 
(IC) system at Princeton University. The procedure for both carbonate and silicate minerals is described in 
more detail in Husson et al. (2015) and Santiago Ramos et al. (2020).

Isotopic analyses were carried out at Princeton University on a Thermo Fisher Scientific Neptune Plus MC-
ICP-MS from purified solutions with Mg concentrations of 150 ppb in low mass resolution using a quartz 
spray chamber. There are no major isobaric interferences in the masses of interest. Standard-sample-stand-
ard bracketing was used to correct for instrumental mass fractionation (Galy et al., 2001) and values were 
normalized to an internal standard (DSM-3). Magnesium isotope ratios are reported using delta notation. 
Long-term external reproducibility is estimated by comparing Mg standard Cambridge-1 against DSM-3 
standard. Measured δ26Mg values for Cambridge-1 yield an average of −2.59 ± 0.05‰ (2σ, n = 7), indistin-
guishable from the published value of −2.62 ± 0.03‰ (2σ) (Galy et al., 2003; Teng et al., 2015). Reported 
uncertainties for each sample depend on the number of times the sample has been separated and analyz-
ed. For a single separation and analysis, we report the long-term external reproducibility of Cambridge-1 
(δ26Mg 2σ  =  ±0.09‰). For multiple chromatographic separations and analyses (n  >  1), we report each 
duplicate. USGS standards ran as unknowns are reported in Table S3. All analyzed samples fall on an iso-
topic mass-dependent fractionation line in three-isotope space with slope of 0.5196 ± 0.0024 (R2 = 0.9992), 
indistinguishable from the value of 0.5210 estimated for equilibrium fractionation (Young & Galy, 2004). 
Given the linear relationship in three-isotope space, we discuss only δ26Mg values.

4.  Results
Measured δ26Mg and δ25Mg values for the sample suite are presented in Table 1 and shown in Figure 2. The 
observed range for this study is ∼4.6‰ (−3.4‰ to +1.2‰), or >60% of the observed variability in δ26Mg 
values on Earth (∼7.5‰, from −5.6‰ to +1.8‰; Teng, 2017), and include δ26Mg values that are both higher 
than and lower than unaltered mantle peridotite.
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Sample Reference Lithology δ26Mg δ25Mg MgO wt% SiO2 wt%

OM94-99 Hanghøj et al. (2010) Dunite −0.22 −0.11 42.76 35.50

OM94-52D* Hanghøj et al. (2010) Dunite −0.25 −0.11 39.84 32.92

OM94-74D Hanghøj et al. (2010) Dunite −0.32 −0.15 44.41 36.77

OM94-110* Hanghøj et al. (2010) Dunite −0.17 −0.06 41.70 37.79

OM94-67 Hanghøj et al. (2010) Harzburgite −0.25 −0.12 40.93 40.43

OM94-103 Hanghøj et al. (2010) Harzburgite −0.22 −0.11 41.39 42.22

OM94-61 Hanghøj et al. (2010) Harzburgite −0.24 −0.09 40.73 38.90

OM94-98 Hanghøj et al. (2010) Harzburgite −0.20 −0.09 41.38 41.30

OM94-101 Hanghøj et al. (2010) Harzburgite −0.29 −0.16 40.63 41.12

OM94-52H Hanghøj et al. (2010) Harzburgite −0.42 −0.22 39.21 38.77

OM13-19 de Obeso and Kelemen (2018) Harzburgite −0.17 −0.09 39.65 38.86

OM13-2 de Obeso and Kelemen (2018) Harzburgite −0.24 −0.14 40.94 39.16

OM13-4 de Obeso and Kelemen (2018) Dunite −0.24 −0.09 28.29 31.97

OM15-5-4 de Obeso and Kelemen (2020) Harzburgite −0.10 −0.07 39.13 41.33

OM15-6-4 de Obeso and Kelemen (2020) Harzburgite −0.09 −0.03 39.96 43.56

OM15-7-4 de Obeso and Kelemen (2020) Harzburgite −0.09 −0.07 37.54 42.49

OM15-5-3 de Obeso and Kelemen (2020) Oxidized harzburgite 0.94 0.49 29.18 39.99

OM15-6-3 de Obeso and Kelemen (2020) Oxidized harzburgite 0.86 0.46 28.60 39.21

OM15-7-3 de Obeso and Kelemen (2020) Oxidized harzburgite 0.77 0.41 28.00 38.18

OM15-5-2 de Obeso and Kelemen (2020) Altered harzburgite 0.74 0.38 28.75 44.81

OM15-6-2 de Obeso and Kelemen (2020) Altered harzburgite 0.74 0.40 29.08 45.54

OM15-7-2 de Obeso and Kelemen (2020) Altered harzburgite 0.70 0.37 28.81 46.43

OM13-15A This study Serpentinite 0.17 0.08 38.23 35.28

OM15-5-5 This study "Waxy" vein 1.19 0.60 46.04 32.05

OM13-15B This study Serpentine vein 0.45 0.20 40.74 37.32

OM13-17A WP This study Serpentine vein 0.96 0.51 41.44 40.28

OM09-11 Falk and Kelemen (2015) Magnesite listvenite −0.33 −0.18 30.53 27.75

OM10-26 Falk and Kelemen (2015) Magnesite listvenite −0.33 −0.16 26.03 34.57

OM10-14 Falk and Kelemen (2015) Dolomite listvenite −1.46 −0.78 16.35 12.30

OM10-15 Falk and Kelemen (2015) Dolomite listvenite −0.89 −0.48 10.72 24.93

OM07-39 Streit et al. (2012) Massive magnesite vein −3.14 −1.64 44.94 1.09

OM07-27 Streit et al. (2012) Massive dolomite vein −1.91 −1.02 21.78 7.82

OM17 magnesite This study (1) Massive magnesite vein −3.38 −1.75 bdl 45.41

OM17 magnesite This study (2) Massive magnesite vein −3.39 −1.76 bdl 45.41

OM17 magnesite This study (3) Massive magnesite vein −3.38 −1.79 bdl 45.41

OM17 magnesite This study (4) Massive magnesite vein −3.38 −1.78 bdl 45.41

OM17 magnesite This study (5) Massive magnesite vein −3.36 −1.74 bdl 45.41

OM07-18 Kelemen et al. (2011) only mineralogy Travertine forming now −1.17 −0.58 2.29 1.80

OM07-18 Kelemen et al. (2011) only mineralogy (2) Travertine forming now −1.11 −0.56 2.29 1.80

OM07-34A Kelemen et al. (2011) only mineralogy Old travertine −0.92 −0.44 3.12 2.5

OM07-34A Kelemen et al. (2011) only mineralogy (2) Old travertine −0.87 −0.45 3.12 2.5

OM07-07 Kelemen et al. (2011) only mineralogy Carbonate vein −3.39 −1.75 47.27 na

BA1B 11-2 17–27 cm This study from mineralogy Huntite vein −3.04 −1.57 34.25 na

Table 1 
Samples Numbers, Reference, Lithology, Mg Isotopic Compositions, MgO, and SiO2 wt%
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Measured δ26Mg values in partially serpentinized harzburgites and dunites are indistinguishable from the 
mantle (−0.25 ± 0.14‰ (2σ) and −0.24 ± 0.10‰ (2σ), respectively, Figure 3). Three samples from Wadi 
Fins (OM15-5-4, OM15-6-4, and OM15-7-4; de Obeso & Kelemen, 2020) are characterized by average δ26Mg 
values higher than the mantle (−0.09 ± 0.01‰, 2σ) are excluded from the harzburgite average as their com-
positions record significant Mg leaching (up to 30% in the most altered samples). Their completely hydrated 
(OM15-5-2, OM15-6-2, and OM15-7-2) and oxidized (OM15-5-3, OM15-6-3, and OM15-7-3) counterparts 
from the same outcrop are characterized by higher δ26Mg values (average of +0.73 ± 0.04‰ for hydrated 
samples and +0.86 ± 0.17‰ for oxidized samples, 2σ) (Figure 2). Silicate mineral separates from veins in the 
Wadi Fins area are also characterized by δ26Mg higher than the mantle. Two serpentine veins (OM13-17A 
WP and OM13-15B) have δ26Mg values of +0.45‰ and +0.96‰ respectively, and a “waxy vein” (OM15-5-5) 
with molar Mg/Si of 1, composed of serpentine + stevensite or talc, has a δ26Mg value of +1.19‰ (Figure 2).

Measured δ26Mg values in two magnesite listvenites (OM09-11 and OM10-26) are identical and indistin-
guishable from mantle values (−0.33‰, Figure 2), suggesting nearly isochemical carbonation as inferred 
from major element ratios by Falk and Kelemen (2015). In contrast, two dolomite listvenites (OM10-14 and 
OM10-15) are characterized by lower δ26Mg values, −1.46‰ and −0.89‰, respectively. Two massive mag-
nesite veins (OM07-39, OM17 Magnesite) record δ26Mg values of −3.14‰ and −3.39‰, or ∼3‰ lower than 
the mantle. Dolomite (OM07-27) and huntite (BA1B 11-2 17–27cm) veins extracted from serpentinized peri-
dotites are also characterized by low δ26Mg values, −1.91‰ and −3.04‰, respectively. Finally, travertines 
with Mg-rich calcite (OM07-18 and OM07-34A) precipitated from Ca2+-rich hyperalkaline springs (type II 
waters) are characterized by higher δ26Mg than the other carbonates (−1.14‰ and −0.89‰).
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Figure 2.  δ26Mg for studied samples from the Oman ophiolite and selected terrestrial reservoirs (colored rectangles 
from Teng [2017]). Black solid line represents the average mantle value, and vertical dashed black lines delineate the 
range of variability of mantle compositions from Teng (2010, 2017). Earth δ26Mg range is ∼7.5‰ (Teng, 2017).
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5.  Discussion
5.1.  δ26Mg Changes Resulting From Magnesium Mobility

The degree of alteration of mantle peridotite can be assessed by look-
ing at deviations from the mantle fractionation produced by melting and 
melt extraction in an MgO/SiO2 vs. Al2O3/SiO2 plot (Figure 4). The man-
tle fractionation trend is a linear fit to theoretical and observed residues 
of mantle melting and melt extraction during adiabatic decompression 
beneath oceanic spreading ridges (Asimow, 1999; Baker & Beckett, 1999; 
Jagoutz et  al.,  1979). Departures from the mantle fractionation trend 
due to alteration and weathering are reflected in deviation toward lower 
MgO/SiO2 values. In Oman, it is estimated that typical partially serpen-
tinized harzburgites might have lost up to 2 wt% MgO on average (Mon-
nier et al., 2006), though in some cases Si gain can also lead to decreased 
MgO/SiO2 ratios (de Obeso & Kelemen, 2018). Heavily weathered sam-
ples within 10  m of a Cretaceous unconformity in Wadi Fins lost 30% 
of their initial Mg to the alteration fluid (de Obeso & Kelemen,  2020) 
and laterites along this unconformity elsewhere in Oman have lost even 
larger proportions of magnesium (Al-Khirbash, 2016, 2015). Nearly iso-
chemical serpentinization of peridotite (other than H2O addition) should 
preserve the MgO/SiO2 ratio of the original protolith, whereas devia-
tions in all of our samples require Mg loss (Monnier et al., 2006; Snow & 
Dick, 1995) and/or Si-addition (de Obeso & Kelemen, 2018). This suggest 
that open system mass transfer of major elements has occurred during 
alteration (Figure 4).

Furthermore, the presence of meter-wide veins of magnesite in the Samail ophiolite mantle section provides 
additional evidence of Mg mobility (Figure 5). However, the veins alone do not indicate if the Mg is derived 
by minor leaching from a large mass of peridotite, or extensive leaching from a smaller mass. Most analyzed 
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Figure 3.  δ26Mg (relative to DSM-3) vs. MgO (wt% anhydrous) for 
harzburgites and dunites. Black solid line represents the mantle average 
and dashed black lines encompass the range of mantle variability 
(Teng, 2017; Teng et al., 2010).

Figure 4.  Whole rock MgO/SiO2 vs Al2O3/SiO2 showing sample deviations associated with peridotite alteration 
from the mantle fractionation trend (bold black line). The mantle fractionation trend is a linear fit to theoretical and 
observed residues of mantle melting and melt extraction during adiabatic decompression beneath oceanic spreading 
ridges (Asimow, 1999; Baker & Beckett, 1999). MgO/SiO2* = 0.12 shown as dashed black line (Equation 1).
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magnesite, dolomite, and calcite veins in Samail ophiolite peridotites re-
cord measurable 14C, corresponding to ages less than ∼50 ka (Kelemen 
& Matter, 2008; Kelemen et al., 2011, 2019; Mervine et al., 2014; Streit 
et al., 2012), suggesting that some of the alteration associated with Mg 
mobility occurred in the Pleistocene and Holocene.

In order to account for serpentinized harzburgite departures from the 
geochemical fractionation trend (Asimow, 1999; Baker & Beckett, 1999) 
during alteration we use MgO/SiO2* (Liu et al., 2017; Snow & Dick, 1995) 
defined as

2 3

2 2 2sample sample

MgO Al O MgO3.15 1.12 .
SiO SiO SiO

                        
� (1)

MgO/SiO2* is a measure of how altered a sample is, either from Mg 
loss (Liu et al., 2017; Snow & Dick, 1995) or Si gain (de Obeso & Kele-
men,  2018). A sample with MgO/SiO2*  =  0 plots along the geochemi-
cal fractionation line (Asimow, 1999; Baker & Beckett, 1999). Increasing 
MgO/SiO2* correlates with higher degrees of alteration indicative of mass 
transfer.

All analyzed harzburgites in this study have 
2

MgO 0
SiO


 

 
 

 indicative of Mg loss (Snow & Dick, 1995) and/

or Si-addition (de Obeso & Kelemen, 2018) (Figure 5). Samples with 
2

MgO 0.12
SiO


 

 
 

 are partially serpenti-

nized harzburgites with δ26Mg indistinguishable from the Earth's mantle and BSE (δ26Mg = −0.25 ± 0.04‰; 

Teng, 2017). As 
2

MgO
SiO


 
 
 

 increases, whole rocks begin to deviate to heavier Mg isotope ratios (Figure 6). 
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Figure 5.  Massive magnesite veins containing angular blocks of 
serpentinized harzburgite in the Oman ophiolite (UTM 40Q E 671274 N 
2536144).

Figure 6.  Bulk-rock MgO/SiO2* vs. δ26Mg for Oman samples, abyssal peridotites (Liu et al., 2017) and serpentinite 
(Oskierski et al., 2019). Black solid line is mantle average and dashed black lines delineate the range of variability of 
mantle compositions (Teng, 2017; Teng et al., 2010).
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Samples with the highest 
2

MgO
SiO


 
 
 

 in this study are the most enriched in 

26Mg and contain Mg-rich clays (de Obeso & Kelemen, 2020). These de-
viations suggest that (1) variable amounts of Mg have been leached from 
the peridotites depending on the degree of alteration at different W/R and 
(2) small Mg depletions are not reflected in δ26Mg of the partially serpen-
tinized harzburgites, which retain mantle-like Mg even at high degrees of 
serpentinization (e.g., OM13-2 and OM13-19).

We associate the observed Mg mobility with the formation of alteration 
products in high W/R pathways, including serpentine and carbonates 
veins with δ26Mg values that depart dramatically from the canonical 
mantle value. In particular, Mg-carbonates have δ26Mg between −0.64‰ 
and −3.14‰ lower than unaltered peridotite. Serpentine veins from Wadi 

Fins are depleted in Fe (Mg# 97–98) compared to ambient peridotite (Mg# 90), and are interpreted to have 
formed at high water-to-rock ratios at temperatures between 25°C and 60°C (de Obeso & Kelemen, 2018). 
Measured δ26Mg values of these serpentine veins are up to 1.2‰ higher than unaltered peridotite. Little 
or no Mg isotope fractionation, relative to mantle values, has been found in our whole rock samples of 
partially serpentinized peridotites, and in previous studies of similar lithologies (Beinlich et al., 2014; Liu 
et al., 2017). Thus, a different process for the formation of 26Mg-enriched serpentine veins is required. Pos-
sibilities include (1) veins were enriched in 26Mg due to isotopic fractionation associated with serpentine 
precipitation; (2) serpentine precipitated from a fluid enriched in 26Mg due to the removal of 24Mg in other 
alteration minerals (e.g., carbonates); or (3) some combination of (1) and (2).

5.2.  Reaction Path Modeling

5.2.1.  Model Setup

To explore the hypothesis that elevated δ26Mg values in serpentine veins are largely the consequence of 
precipitation from a high δ26Mg fluid, formed by previous fractionation during crystallization of low 26Mg 
carbonates, we developed a simple reactive transport model that simulates dissolution of primary minerals 
together with fractional crystallization of serpentine and carbonates based on the reaction path outlined by 
Barnes and O'Neil (1969) for serpentinization and carbonation systems and modeled by subsequent workers 
(Bruni et al., 2002; Paukert et al., 2012). We used the Paukert et al. (2012) model that reproduces measured 
aqueous solute concentrations in the peridotite-hosted springs via water-rock interaction, including copre-
cipitation of carbonates and serpentine. Model is setup using fluid-centered flow-through physical system. 
The model follows the evolution of a parcel of water (1 kg) reacting with fresh peridotite and forming sec-
ondary minerals. The fresh peridotite reservoir is assumed to be unlimited and inputs into the system are 
controlled by the dissolution of primary minerals. After each reaction step precipitated secondary minerals 
are tallied and removed from the system so they cannot undergo further reactions. The evolved fluid moves 
to the next step and reacts with new peridotite. A conceptual view of the model is shown in Figure 7. δ26Mg 
calculated is computed at each reaction step for fluid and secondary minerals. Most minerals associated 
with Mg mobility are modeled in the reaction path. This allows us to explore whether the evolution of Mg 
isotope compositions in alteration minerals during coprecipitation of carbonates and silicates is plausible 
and consistent with our data.

This model has three stages. In Stage I, rainwater in equilibrium with the atmosphere infiltrates the perid-
otite, forming chrysotile, calcite, hydromagnesite, and magnetite. The fluid formed in Stage I has an Mg2+-
HCO3

− rich composition (Type I). In Stage II, Type I fluid reacts with fresh peridotite isolated from the 
atmosphere to form magnesium-rich carbonates, chrysotile, and brucite, with the fluid evolving to Ca2+-
OH− rich, Mg2+-HCO3

− poor compositions (Type II) until pH reaches 12 (maximum pH measured in the 
field). In Stage III (not explicitly modeled by Paukert et al. [2012]), Type II fluids emerge on the surface and 
react with atmospheric CO2 to form calcite. The model tracks the evolution of δ26Mg in the resulting fluid 
and precipitated minerals during each stage. Important model variables and relevant references are given 
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Figure 7.  Schematic of fluid-centered flow model after Paukert 
et al. (2012).
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in Table  2. They include initial δ26Mg fluid compositions, Mgmineral-fluid fractionation factors (α), and the 
temperature of alteration.

Equilibrium isotope fractionation of Mg isotopes is temperature dependent (Li et  al.,  2015; Pinilla 
et al., 2015; Ryu et al., 2016; Schott et al., 2016; Wang et al., 2019), rendering temperature estimates impor-
tant for understanding alteration. For calculations in this study, we used 30°C, approximately the current 
annual average temperature in the northern Oman mountains (Weyhenmeyer et al., 2002). This temper-
ature is consistent with other constraints established in studies of most of the samples analyzed in this 
study. de Obeso and Kelemen (2018) estimated that alteration in Wadi Fins occurred between 25°C and 
60°C based on clumped isotope thermometry of carbonate veins in peridotite. Carbonate veins in typical, 
partially serpentinized mantle peridotites in the Samail ophiolite also yield crystallization temperatures 
between 25°C and 50°C, calculated using both δ18O exchange and clumped isotope thermometry (Kelemen 
et al., 2011; Streit et al., 2012).

Our model assumes that products of nearly isochemical, olivine serpentinization do not fractionate Mg 
isotopes from the fluid (α = 1.0000 for serpentine and brucite) as concluded in previous studies of natu-
ral samples (Beinlich et al., 2014; Liu et al., 2017). The preferential incorporation of 24Mg in carbonates, 
reported both in experimental and field observations (Higgins & Schrag, 2010; Li et al., 2015; Mavromatis 
et al., 2013; Pearce et al., 2012; Shirokova et al., 2013; Tipper et al., 2006), is a critical factor in our model. 
This isotopic fractionation is largely responsible for producing the fluid with high δ26Mg that then pro-
duces serpentine veins with heavy Mg. We used carbonate-fluid fractionation factors (α) from empirical 
and experimental studies. For hydromagnesite, we used a fractionation factor of α = 0.9990, derived from 
low-temperature precipitation experiments using alkaline natural water of Salda Lake, Turkey (Shirokova 
et al., 2013). We prefer this value to the only other published value for hydromagnesite (Oelkers et al., 2018), 
because the latter group attributed their results to disequilibrium processes. For magnesite and dolomite, 
we used a range of fractionation factors reported in the literature, as listed in Table 2. Precipitation kinetics 
of magnesite and dolomite at low temperatures are poorly understood (Arvidson & Mackenzie, 1999; Saldi 
et al., 2012). Dolomite crystallization has not been achieved in laboratory conditions, even after a 3 decade 
long experiment (Land, 1998), and until 2017 magnesite had not been experimentally crystallized at tem-
peratures below 60°C (e.g., Hänchen et al., 2008; Johnson et al., 2014), though more recent work produced 
magnesite at room temperature from fluids enriched in organic ligands (Power et al., 2017). In our models, 
magnesite-water fractionation factors at 30°C were extrapolated from higher temperature experiments (Li 
et al., 2015; Schott et al., 2016) or derived from first principles estimates and molecular dynamics (Schau-
ble, 2011; Wang et al., 2019). Mg fractionation between calcite and fluid depends on multiple factors in 
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Model parameter Value Reference

Temperature 30°C Weyhenmeyer et al. (2002)

Magnesite αmgs-fluid 0.9972 Wang et al. (2019)

0.9954 Schauble et al. (2011)

0.9979 Schott et al. (2016)a

Dolomite αdol-fluid 0.9981 Wang et al. (2019)

0.9965 Schauble et al. (2011)

0.9983 Li et al. (2015)

Hydromagnesite αhmgs-fluid 0.9990 Shirokova et al. (2013)

Initial δ26Mg fluid −2.0‰ Teng (2017)

[Mg]0 fluid 7.7 × 10−5 molal Paukert et al. (2012)

Peridotite δ26Mg −0.25‰ Teng (2017)

[Mg] peridotite 28.4 wt% Paukert et al. (2012)
aSchott is extrapolated from batch reaction data.

Table 2 
Model Parameters
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addition to temperature (Li et al., 2012), including Mg content (Wang et al., 2019) and precipitation rate 
(Mavromatis et al., 2013). Considered these factors and as calcite is only a minor player in the system Mg 
budget (<0.1% by weight) it is not considered in the model.

The first two stages of the reaction path model yield calculated Mg isotope compositions of the fluid and 
precipitated minerals as a function of pH and water/rock ratio (W/R) calculated as remaining water in the 
system/reacted rock by mass. We used the fractionation factors described above, and a model of assimilation 
and fractional crystallization (AFC) (DePaolo, 1981), as the system is similar to a magmatic system where 
water assimilate peridotite and fractionally crystalize secondary minerals. The primary minerals (olivine, 
orthopyroxene, and clinopyroxene) in the model have δ26Mg of −0.25‰. At each step of the model, primary 
minerals are dissolved and secondary minerals (chrysotile + hydromagnesite in Stage I, chrysotile + bru-
cite + dolomite and magnesite in Stage II) are allowed to precipitate. The shallow aquifer that represents the 
first stage fluids are recharged by rainwater contaminated with limestone dust (Paukert et al., 2012) so we 
assume that the starting Mg isotope composition of this fluid is in equilibrium with the late Cretaceous to 
Eocene limestones that locally overlie the ophiolite. For this we use the global average of limestones δ26Mg 
(Teng, 2017) using Δ26Mglimestone-fluid = 2‰ resulting in an initial δ26Mgfluid of −2.0‰, similar to δ26Mg values 
of riverine water in limestone catchments (Tipper et al., 2006). Values for δ26Mgfluid at each model step are 
calculated using the AFC equation (DePaolo, 1981) for stable isotopes:

     
0 0 Δ Δ1 ln 1 ,

1 1 1 1
za a

f f a f
f f

r C D D r CX F F
r zC z r r r zC

                                 
� (2)

where δf and δa are the δ26Mg of the fluid and the primary minerals, respectively, Δ = 1,000 lnαmineral-fluid, r 
is the ratio of mass assimilated over mass precipitated, D is the bulk partition coefficient between second-
ary minerals and fluid, Cf is the Mg concentration in the fluid, Ca is the Mg concentration in the primary 
minerals, z = (r + D − 1)/(r − 1) and F is the ratio of fluid mass to initial fluid mass available to bound to 
secondary minerals. δ26Mg of secondary minerals is calculated in each step using the fluid Mg isotope com-
positions and precipitated minerals fractionation factors (αmineral-fluid).

5.2.2.  Model Results

In Stage I, small extents of water-rock interaction (high W/R) cause fluid evolution from the initial δ26Mg 
of −2‰ to a value of −0.25‰ (Figure 8a) as the dissolved Mg2+ concentration in the fluid increases and 
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Figure 8.  δ26Mg evolution of the fluid in the first stage of reaction, open to gas exchange with the atmosphere as a function of W/R (a), pH (b), and Mg 
molality (c), reaction progress is from left to right as marked with black arrows. Black solid line is mantle average and dashed black lines delineate the range of 
variability of mantle compositions (Teng, 2017; Teng et al., 2010).
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becomes dominated by input from dissolution of primary minerals. This evolution in δ26Mg occurs to-
gether with a drastic increase in pH from its initial value of 6.6–∼8.2 (Figure 8b). The evolved fluid has 
higher final concentrations of Mg (Figure 8c) and HCO3 and becomes slightly enriched in heavy isotopes 
(δ26Mg = −0.15‰) when it gets saturated in hydromagnesite at [Mg] ∼ 3.4 mmol/kg, pH ∼ 8.9 at W/R less 
than 1,000.

In Stage II, the Mg-HCO3 rich fluid evolves to Mg-depleted and C-depleted waters with high Ca2+ and pH 
as well as extremely low fO2. Mineral precipitation is dominated by formation of magnesite and chrysotile 
with minor dolomite, at W/R between 2,000 and 100,000, and constant pH of 7.9 (Figures 9a and 9b). Mg-
rich carbonates begin to precipitate with their lowest δ26Mg values, and evolve to heavier compositions as 
W/R decreases (Figures 9e and 9g) and pH increases after an initial decrease with only serpentine forming 
(Figures 9d, 9f, and 9h). The precipitation of Mg-rich carbonates drives fluid and serpentine to higher δ26Mg 
(Figures 9c and 9d) with the highest achieved at the lowest pH (Figure 9d). Once the system becomes car-
bon-depleted, and magnesite disappears from the crystallizing mineral assemblage at W/R ∼ 1,800 and pH 
9.8, the fluid/serpentine system rapidly evolves to mantle-like isotope ratios (Figures 9c and 9d) with dolo-
mite disappearing from the system but in amounts not impacting δ26Mg (Figures 9g and 9h).

Given the range of model variables listed in Table 2, our model does not capture the absolute values meas-
ured in our samples although it is able to explain three aspects of our Mg isotope data: (1) low δ26Mg in mas-
sive carbonate veins, (2) high δ26Mg in serpentine veins and some heavily weathered bulk-rock samples, and 
(3) δ26Mg of partially altered ultramafic rocks that are indistinguishable from mantle values. The low-values 
reflect coprecipitation of serpentine and carbonate at high W/R ratios. As W/R decreases, carbonates dis-
appear from the crystallizing assemblage, the fluid evolves to δ26Mg = –0.25‰, and precipitated serpentine 
also has mantle-like Mg isotope ratios, consistent with observed values in this and other studies (Beinlich 
et al., 2014; Liu et al., 2017). Although the carbonate and serpentine samples in this study come from a 
broad region, and are not specifically cogenetic, our measurements and modeling show how serpentine 
veins can have magnesium isotopic ratios different from those of the protolith, even when serpentine-water 
exchange itself does not fractionate Mg isotopes.

In the natural system, the Type II hyperalkaline Ca-rich fluid comes in contact with the atmosphere in 
springs, where it combines with CO2 from air to form extensive travertine deposits (Chavagnac et al., 2013a; 
Clark & Fontes, 1990; Kelemen & Matter, 2008; Kelemen et al., 2011; Mervine et al., 2014; Neal & Stan-
ger, 1985). Travertines analyzed in this study have δ26Mg of −1.14‰ and −0.89‰. In our modeling, at pH 
12, the fluid has an isotope ratio identical to mantle values, δ26Mg = −0.25‰. If calcite in travertines pre-
cipitated from this fluid, then the inferred Δ26Mgcal-fl of the travertine must have been lower than the value 
of ∼3‰ expected for equilibrium fractionation with such a fluid (Li et al., 2012; Mavromatis et al., 2017; 
Wang et al., 2019). Indeed, Mavromatis et al.  (2013) showed that Δ26Mgcal-fl is dependent on the growth 
rate of calcite, with Δ26Mgcal-fl = (δ26Mgcal – δ26Mgfl) decreasing with increasing growth rate. (This type of 
growth rate dependence has not been reported for magnesite or dolomite.) Extrapolating from Mavroma-
tis et al. (2013) best-fit correlation the inferred Δ26Mgcal-fl for calcite in Oman travertines suggests calcite 
growth rates between 10−5.4 and 10−4.7 mol/(m2 s). Such rapid growth is consistent with the nonequilibrium, 
high Mg contents in peridotite-hosted travertines in the Samail ophiolite and other massifs (e.g., Barnes & 
O’Neil, 1971, 1969; Chavagnac et al., 2013; Kelemen & Matter, 2008; Kelemen et al., 2011; Streit et al., 2012). 
Assuming that 1–10% of the total estimated travertine area in the Samail ophiolite (∼107 m2 (Kelemen & 
Matter, 2008)) is actively precipitating, this rate yields a total uptake of 103–104 tons atmospheric CO2/yr, 
similar to previous estimates of surface carbon uptake to form travertine in the ophiolite (Kelemen & Mat-
ter, 2008; Kelemen et al., 2011; Mervine et al., 2014), as shown schematically in Figure 10.

6.  Conclusions
Most partially serpentinized dunites and harzburgites in the mantle section of the Samail ophiolite have 
δ26Mg indistinguishable from average mantle values. Serpentinization at low W/R does not fractionate Mg 
isotopes. However, deviations from mantle δ26Mg are observed in rocks which have undergone extensive 
Mg leaching at higher W/R. Heavily altered peridotites recording up to 30% Mg loss, and containing Mg-
clay minerals, have the heaviest δ26Mg ever reported for ultramafic rocks. We model a mechanism in which 
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Figure 9.  Results from the second stage of the reaction path model, closed to exchange with the atmosphere as a function of W/R and pH, illustrating 
mineral products (a and b), δ26Mg of fluid and serpentine (c and d), magnesite (e and f), and dolomite (g and h) using different fractionation factors from 
Wang et al. (2019), Shauble et al. (2011), Schott et al. (2016), and Li et al. (2015). Gray squares illustrate the observed range of sample values for each mineral. 
Reaction progress goes generally from left to right except in Figure 9d where arrow illustrates reaction progress direction and dot initial start point.
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Mg-rich carbonates precipitate at high W/R, preferentially incorporating 24Mg and producing 26Mg-rich 
fluids that then precipitate serpentine veins with heavy Mg. When carbonates disappear from the crystalliz-
ing assemblage at lower W/R, serpentine evolves to mantle-like δ26Mg. The modeled δ26Mg for serpentine 
formed along with carbonates is similar to observed δ26Mg in serpentine vein samples and although does 
not capture the absolute values perfectly it explains the trend observed in the samples. The fact that most 
peridotite-hosted carbonate veins have finite 14C ages, along with our modeling results, is consistent with 
other observations indicating that serpentinization and carbonation are ongoing in the mantle section of 
the Oman ophiolite. The proposed mechanism can be further explored using cogenetic carbonate-serpen-
tine veins from the newly drilled cores from the Oman Drilling Project and fluids from boreholes and/or 
springs. δ26Mg in calcite forming travertine deposits at peridotite-hosted alkaline springs is heavier than 
expected from equilibrium fractionation between calcite and fluid with mantle-like Mg isotope ratios, sug-
gesting rapid, disequilibrium crystallization. We infer calcite growth rates of 10−5 mol/m2s, corresponding 
to uptake of atmospheric CO2 at a rate of 106–107 kg CO2/yr to form travertine in Oman.

Data Availability Statement
All new geochemical data for this work are available in the EarthChem Library at https://doi.org/10.26022/
IEDA/111748 and https://doi.org/10.26022/IEDA/111749.
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Figure 10.  Conceptual model of Mg isotope systematics in the modern alteration system in Oman (after Dewandel 
et al., 2005; Neal & Stanger, 1985).

https://doi.org/10.26022/IEDA/111748
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