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ARTICLE OVERVIEW

One of the beautiful things about science is that many of its main

equations and concepts appear in a multitude of different fields.

Change the medium and the boundary conditions, make a change in

variables, and you have gone from solid state physics to aeroacoustics

or from nuclear physics to underwater acoustics, but within the same

formal, theoretical framework. Rethink the Born–Oppenheimer

approximation of molecular physics and you have the adiabatic

approximation to coupled normal mode theory. This interplay is one

of the hallmarks of Pierce’s 1965 paper.1

Interestingly, while the paper was primarily addressing the

shallow-water acoustics problem, this was not the original inspiration,

but rather a whole different problem—monitoring atmospheric

nuclear tests. Widespread nuclear testing by the United States and

the USSR followed World War II and led to so many above-ground

nuclear tests in Nevada that Las Vegas was nicknamed “Atomic

City.”2
The times were hyper-charged with the possibility of a

nuclear exchange, especially following the Cuban missile crisis.

Estimating the yield of nuclear tests was part of the defense

research being done then (and now). In the early days, physicists like

Enrico Fermi used remarkably simple methods of yield estimation,3

but in 1965, more sophisticated means were needed to deal with larger and more remote tests. At this point, Allan Pierce enters the

story. Both infrasound from nuclear tests and low frequency, shallow-water acoustic propagation, important at the time to anti-

submarine warfare, are amenable to treatment by the method of coupled normal modes, being low frequency propagation in inhomo-

geneous, anisotropic waveguides. Allan’s new work covered both of them.

In both the ocean and atmosphere, the first order description of the low frequency acoustic field is via propagation in a uniform,

horizontally stratified waveguide. In underwater acoustics, this formalism was originally described using normal modes by Chaim

Pekeris.4 With the clear realization that neither the ocean nor the atmosphere is homogeneous and isotropic, the modal method was

soon extended to a coupled normal mode formalism, shown in Eqs. (1) and (2):
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where the un are the coupled mode coefficients; the A, B, and C are mode coupling matrices that depend on the range and azimuthal

variability of the medium; and the Zn are the local vertical mode functions.

The coupled mode equations are significantly harder to solve as compared to the uncoupled case. The simplest thing one might

think of doing to approximate the coupled mode equation solutions is to just turn off the mode coupling, i.e., set the right-hand side

to zero. As long as the medium properties vary slowly with horizontal distance, this should work. Interestingly, this approach does

not eliminate range dependent wave physics, because in formulating the coupled mode equations, we assumed that the sound speed

depends on x and y, as well as z. The boundary conditions can also depend on x and y, such as variable topography.

Mode one paths from Perth to Bermuda calculated with adiabatic mode

theory. Reprinted with permission from Heaney et al., “Perth–Bermuda

sound propagation (1960): Adiabatic mode interpretation,” J. Acoust. Soc.

Am. 90, 2586–2594 (1991).
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The solution of the resulting “adiabatic” equation (each mode conserves its own energy), including horizontal refraction, is done

in simple stages. First, one solves Eq. (2) on an x,y grid, usually near the straight line path (or great circle) connecting the source and

receiver. These solutions give the vertical modes Zn x; y; zð Þ and the horizontal wavenumbers knðx; yÞ. An effective modal horizontal

index of refraction is defined using cn x; yð Þ ¼ xknðx; yÞ, and one uses standard ray tracing techniques to get the modal paths via Eq.

(1). The phase is simply the integral of knðx; yÞ along the paths, and the amplitude of each mode is given by the product of mode func-

tion values at the source and receiver, which avoids solving the full coupled equations.

IMPACT OF THE ARTICLE

Pierce’s paper was a landmark contribution and in ocean acoustics, the adiabatic approximation, sans horizontal refraction, became

widely used, even as Weinberg and Burridge showed a more complete and detailed way to deal with refraction.
5

Only in recent years

have 3D effects have been included more routinely, with one striking example being global modal propagation paths from Perth,

Australia to Bermuda (Fig. 1).
6

Another recent example is the horizontal ducting of energy by nonlinear internal waves on continen-

tal shelves.
7,8

In aeroacoustics, the adiabatic approximation allowed the calculation of modal pulse travel times, including horizontal refraction,

which is important in that problem. This, in turn, allowed an estimation of the explosive yields of nuclear tests.
9
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