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ABSTRACT

Castagno, K.A.; Donnelly, J.P., and Woodruff, J.D., 2021. Grain-size analysis of hurricane-induced event beds in a New
England salt marsh, Massachusetts, USA. Journal of Coastal Research, 37(2), 326–335. Coconut Creek (Florida), ISSN
0749-0208.

Tropical cyclones pose a growing threat to coastal infrastructure and livelihood. Because instrumental and historic
records are too short to help us understand interactions between tropical cyclones and climate on a longer scale, proxy
records are the only means for reconstructing millennia of tropical cyclone impacts. This study determines grain-size
trends in storm-induced overwash deposits along a transect of sediment cores from a salt marsh in Mattapoisett,
Massachusetts, to characterize sorting trends and compare deposits associated with individual storms. The overwash
deposits preserved within the high-marsh peat provide a record spanning the last two millennia. Building on a 2010
study, a different approach was used to accurately determine the grain-size distribution of overwash deposits from cores
in a transect running perpendicular to the adjacent sandy/gravely barrier. Although maximum grain-size values are
expected to decrease as distance from the barrier increases, not all event deposits that were studied follow this trend
within uncertainty. Analysis of the storm event beds reveal a significant difference in settling trends between historic
and prehistoric deposits, with historic deposits largely displaying landward-fining trends and prehistoric deposits largely
displaying landward-coarsening trends. This suggests changes in the hydrodynamic or that geomorphic regime may
have altered the way in which storm beds were deposited at this site. This new in-depth, transect-based approach has
utility for improving the accuracy of future storm reconstructions, particularly for events for which no historic record
exists.

ADDITIONAL INDEX WORDS: Tropical cyclones, sediment transport, paleotempestology.

INTRODUCTION
As coastal population continues to grow in both size and

wealth, hurricanes pose a growing threat to livelihood and

infrastructure along the coast. Recent research has explored

the influence of a changing climate on hurricane frequency,

intensity, genesis location, and track. Whereas most assess-

ments agree that an increase in sea-surface temperatures

should increase the intensity of tropical cyclones (Emanuel,

2008; Holland and Webster, 2007; Sobel et al., 2016; Walsh et

al., 2016), natural variability in climate and tropical cyclones,

as well as several confounding factors, complicate our under-

standing of the connections between hurricanes and climate.

Sobel et al. (2016) suggest that, historically, aerosol cooling

may have dampened the intensifying effect of greenhouse gas

forcing, but increased greenhouse gas emissions may eventu-

ally overtake this dampening, further increasing future

hurricane intensity. Research into the historic and prehistoric

North Atlantic hurricane record provides the opportunity to

further understand future impacts of climate change on these

destructive events.

Quantitative tropical cyclone records for the entire Atlantic

basin date back to the 1850s (Jarvinen and Caso, 1978;

Landsea and Franklin, 2013; McAdie et al., 2009), making it

the most temporally comprehensive tropical cyclone dataset,

though an observational bias exists prior to the advent of

satellite data in the 1960s. Historic records for the Atlantic

extend as far back as 1492 CE (Ludlum, 1963); in New

England, the historic record extends as far back as 1620 CE

(Boose, Chamberlin, and Foster, 2001). Because instrumental

and historic records are too short to understand interactions

between tropical cyclones and climate on a longer (multi-

decadal to centennial to millennial) scale, proxy records provide

valuable insights into climactic influences and are the only

means for reconstructing millennia of tropical cyclone impacts.

Storm-induced overwash deposits in coastal ponds and salt

marshes have been used to augment understanding of

hurricane strikes in SE New England (Boldt et al., 2010;

Donnelly et al., 2015; Donnelly et al., 2001; Woodruff et al.,

2008). Intense storms can produce storm surge and wave

heights significant enough to overtop sandy barriers, trans-

porting and depositing coarse sediment in deep coastal lakes

and lagoons or on top of salt marsh peat. This overwash is then
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covered by finer-grained material or peat, preserving the storm

event as a stratigraphically distinct, allochthonous layer.

Orson and Howes (1992) and Warren and Niering (1993) first

identified this sedimentary pattern in New England salt

marshes, attributing overwash sand and clay layers to known

historic hurricanes. Donnelly et al. (2001) expanded this

analysis to the paleorecord in a salt marsh in southern Rhode

Island. At this salt marsh, aerial photos after major hurricanes

in 1938 and 1954 confirm overwash fans. These overwash fans,

along with four others, were documented in a series of 14

sediment cores, suggesting that several intense hurricanes had

impacted the area since~1350 CE. Boldt et al. (2010) identified

30 distinct event beds spanning 2000 years in a series of eight

sediment cores collected from a salt marsh in Mattapoisett,

Massachusetts. Of the 30 distinct event beds, seven were

attributed to historic severe landfalling hurricanes—1991

(Bob), 1960 (Donna), 1954 (Edna and Carol), 1944/1938, 1815,

1727, and 1638/1635. Boldt et al. (2010) inferred that the

remaining 23 event beds, which predate European settlement

in the region, were likely also deposited by similar hurricane

strikes. Other studies have also identified sequences in the

geologic record as due to intense storms, including deposits in

Florida (Davis, Knowles, and Bland, 1989) and Alabama (Liu

and Fearn, 1993), as well as in southern New England

(Boothroyd, Friedrich, and McGinn, 1985; Emery, 1969).

Storm deposits from tropical cyclones often exhibit landward-

fining trends (Brandon et al., 2014; Wallace and Anderson,

2010; Woodruff et al., 2008). These trends have been explained

by the increasing time required for decreasing grain sizes to

settle out of suspension while being advected landward during

flooding (Woodruff et al., 2008). This advective-settling process

has been explored in the paleorecord, especially in regard to

constraining relative flooding and past magnitudes of both

hurricanes (Brandon et al., 2014; Brandon et al., 2013; Bregy et

al., 2018; Hong et al., 2018; Wallace and Anderson, 2010) and

tsunamis (Baranes et al., 2016; Moore, McAdoo, and Ruffman,

2007). Preliminary research, however, has emphasized the

importance of documenting lateral sorting trends across events

to determine the deposition mechanisms at the site. This is

necessary to adequately determine whether the deposit is

suitable for use in the reconstruction of storm intensity. Here,

the Boldt et al. (2010) study in Mattapoisett Marsh is expanded

through examining grain size distributions of 22 event beds

identified across three cores to examine lateral sorting patterns

and to compare and contrast event beds to one another in an

effort to better understand the nature of event bed deposition at

the site.

METHODS
Mattapoisett Marsh (4183908 00 N, 70847012 00 W) is an 8-acre

marsh system located on Buzzards Bay between New Bedford,

Massachusetts, and Wareham, Massachusetts (Figure 1). The

marsh is separated from western Buzzards Bay by a ~50-m

wide sand/gravel/cobble barrier. LIDAR surveys indicate that

the modern topography of the barrier varies from 1–2.5 m

(elevation based on the NAVD88 vertical datum). Two tidal

creeks bisect the marsh from east to west and north to south

before joining at an inlet at the western edge of the barrier. The

inlet width is approximately 5 m, and the creek spans 5–10 m in

width and more than 350 m in length. The location of the

barrier and the inlet have remained stable throughout the past

century, with U.S. Geological Survey (USGS) topographic

maps showing no changes in position of either in the past 130

years (Boldt et al., 2010). Simulations of waves and storm surge

Figure 1. (A) Schematic interpretation of the study area, including location of study cores (indicated by numbers). The barrier is approximately 1–2.5 m in

elevation. (B) Aerial photo of the study area with 0.5-m contours.
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associated with Hurricane Bob in 1991 provide insight into how

Mattapoisett Marsh is vulnerable during hurricane strikes to

the west of the site. Although substantial sheltering and

dispersion of wave energy that resulted in reduced wave height

along the coast occurred, a focusing effect on the storm surge

associated with the hurricane also occurred (Cheung et al.,

2007). This enhancement of storm surge attributable to the SW

orientation and conical shape of Buzzards Bay leaves Matta-

poisett Marsh particularly vulnerable to coastal flooding

during hurricanes making landfall to the west of the bay

(Boldt et al., 2010; Redfield and Miller, 1957).

A series of eight vibracores were collected in 2007. The eight

cores represent two transects: one beach parallel and one beach

perpendicular. The cores (Matt1-Matt8) are primarily com-

prised of organic-rich high-marsh peat, punctuated by coarser-

grained, denser sand layers (Boldt et al., 2010). Variation in the

respective depths of strata between cores can in part be

explained by local changes in the microtopography of the marsh

surface (the potential for up to 15 cm of variation in any

location at any moment in time can occur), as well as

differences in compaction during collection of individual cores

(between 5–20 cm).

For each core, sand layers were identified using high-

resolution (200 lm) digital radiographs, where a sharp contrast

in sediment density indicated the presence of a sand layer

(Boldt et al., 2010). Previous research focused extensively on

grain-size analysis of Matt2, a core in the beach-perpendicular

transect, taken 83 m from the beach. Boldt et al. (2010)

described event layers from Matt2 and traced them across

several cores through particle-size analysis, x-ray fluorescence

elemental analysis (Figure S1) and visual interpretation of

radiographs (Figure 2). Following the inferred correlation

previously published by Boldt et al. (2010), 22 correlative

events from Matt7 were identified in Matt6 and Matt8 (Figure

2). The chronology of these events was constrained in Matt2

and then inferred across cores using a variety of techniques,

including C-14 dating and gamma decay analysis of the cesium-

137 isotope. Here, an updated age model is developed along

with associated 95% uncertainties using these dates and their

uncertainties by employing a Bayesian age-depth modeling

program (Bacon; Blaauw and Christen, 2011).

Boldt et al. (2010) analyzed the grain-size distribution of

events in Matt2 by contiguously sampling the sediment core,

combusting the organic material at 5508C for 1 hour, and

running the resultant ash through a Beckman-Coulter

LS13320 laser diffraction particle-size analyzer. As a result,

the particle-size analysis included ash from combusted peat

and siliciclastic sand grains, which influenced the distribution,

making this kind of analysis inappropriate for accurately

characterizing the transport of sand grains from storm events.

In the current work, a new approach was used to determine

the grain-size distribution of other cores in the beach-

perpendicular transect. Differences between this study’s

approach and that of Boldt et al. (2010) are shown in Figure

3. Using the event correlations established by Boldt et al.

(2010), identified storm events were resampled in three

vibracores: Matt6, Matt7, and Matt8 (50 m, 100 m, and 115

m from shore, respectively). The samples were combusted at

5508C for 1.5 hours to remove organic material and then sieved

at 32 lm to isolate grains coarse silt–sized and larger. The

coarse fraction of each sample was then determined by

comparing the sieved weight of the sample to its original dry

weight. This represents a departure from the 2010 procedure,

where the samples were not sieved prior to grain size analysis:

The sieving removes the fine-grained ash, and analyses on the

remaining coarser grained fraction provided a more robust

quantification of grain size for sands within event beds. Sieved

samples were analyzed using a Horiba Camsizer digital image

Figure 2. Radiographic images of the cores and event beds analyzed in this

study, with inferred correlation lines connecting storm event beds. Lighter

layers indicate areas of increased density; a potential storm event layer.

Figure 3. Flow chart of the differences in methodology used in this study

and those used by Boldt et al. (2010).
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processing particle, size, and shape analyzer at the University

of Massachusetts, Amherst, capable of measuring particle

diameters between 30 lm and 3 cm. Because a potential for

variability in each run occurs, each sample was run three times

and averaged (Figure 4). D90, the size for which 90% of the

particles in the size distribution are smaller, was used as a

metric for the maximum grain size. Only events with a

sufficient number of grains were analyzed for particle size. As

discussed by Brandon et al. (2014), the unadjusted distribution

(which does not consider the fine grains removed by the sieving

process) is best suited for use in sediment transport calcula-

tions because the unadjusted D90 value is more representative

of the largest grains transported during a major flood event.

Differences and similarities between means (both temporally,

i.e. by event, and spatially, i.e. by core) were determined

through one-way analysis of variance.

Per the Woodruff et al. (2008) advective-settling model, storm

deposits from tropical cyclones should exhibit landward-fining

trends, such that coarser grains are found deposited closer to

the barrier and finer grains are found further from the barrier.

As waves overwash the barrier during large-scale inundation

events, observational and experimental data (Donnelly, Kraus,

and Larson, 2006) suggest that flow behind the barrier becomes

supercritical—the flow velocity is larger than the shallow-

water wave velocity. During extreme inundation conditions,

the sediment transport may also be dominated by suspended

load (Donnelly, Kraus, and Larson, 2006). Given a sizable

reduction in turbulence between the barrier and the area

behind it, it is thought that settling of the sediment plays a

larger role in the ultimate transport of the sediment grains

than turbulent resuspension (Woodruff et al., 2008). Larger

particles in a fluid settle out of suspension faster. Where the

particles settle and how large they are can be related to

maximum wave run-up over the barrier, which can in turn be

related to storm intensity, per the advective-settling equation

presented by Woodruff et al. (2008):

Rmax ¼
x2

L
w2

s

g

� �1
3 þ hb# ð1Þ

where Rmax is the maximum wave-induced run-up over the

barrier, xL is the distance of the particle from the barrier, ws is

the particle fall velocity based on diameter (Ferguson and

Church, 2004), g is gravity, and hb is the height of the barrier

(Figure 4). Thus, the maximum grain sizes in each event along

the transect were analyzed to determine whether they followed

a landward-fining trend, i.e. were deposited directly out of

suspension and not greatly influenced by other processes,

including subsequent erosion and remobilization. To accom-

plish this, a simple linear regression analysis was performed

Figure 4. Grain-size distributions of each run (solid lines), cumulative percentages (dotted lines), and images (middle) of the sediment particles in the event beds

for The Great Atlantic Hurricane, (1944, event 3) across the three study cores. Below: a diagram of the advective-settling model proposed by Woodruff et al. (2008).
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for each event—a negative correlation among points indicated

that the results followed the expected landward-fining trend.

RESULTS
This study analyzed several different components of the

event deposits to gain insights into the dynamics and trends of

sedimentation in the system.

Updated Event Attribution
Boldt et al. (2010) used C-14 ages calibrated using Calib 5.0.1

(Reimer et al., 2009) to determine the ages of overwash deposits

from our study site. Here, a more accurate chronology is

developed through employing a Bayesian age-depth modeling

program (Bacon 2.2; Blaauw and Christen, 2011), which

considers accumulation histories for deposits. This updated

chronology more accurately attributes storm events with

tighter 95% confidence intervals. Whereas Boldt et al. (2010)

attributed the first/upper seven deposits to known historic

storms (1991, 1960, 1954, 1944/1938, 1815, 1727, and 1635/

1638), this chronology adjusts and refines that attribution

(Figure 5).

The study used refined chronology and new simulation

results from the Sea, Lake, and Overland Surges from

Hurricanes model (SLOSH; Jelesnianski, Chen, and Shaffer,

1992) to determine storm surge heights at the Mattapoisett. If a

storm was modeled to produce a surge .1 m—the minimum

height of the current sandy barrier—then it was considered to

have the potential to produce a deposit. Using this metric and

the probability distribution functions generated with the

refined chronology, the first eight events are attributed to

historic hurricanes, beginning with the Great Colonial Hurri-

cane of 1635 and ending with the last documented flood event

at the site (Hurricane Bob in 1991) prior to core collection

(Figure 5, Table 1).

Grain-Size Analysis
The grain-size range analyzed extended from the minimum

sieve size of 32 lm up to the largest observed particle size of 3

mm). Values for D50, the median grain size, and D90 were not

adjusted for the removal of any fine-grained ash that exceeded

32 lm (Figure 6). The D90 values for Matt6, the core closest to

the barrier, averaged 450 lm, with a range from 175 lm to 699

lm for the 14 event samples (Figure 6A). The D90 values for

Matt7 averaged 580 lm, with a range from 193 lm to 1601 lm

for the 30 event samples (Figure 6B). The D90 values for Matt8,

the core farthest from the barrier, averaged 514 lm, with a

range from 194 lm to 832 lm for the 20 event samples (Figure

6C). The variability in D90 among different runs of the same

sample was also considered. Matt6 had the least variability

between individual runs (average standard deviation [SD] 140

lm, likely attributable to a larger sample size), whereas Matt7

had the most (average SD 338 lm).

Spatial Trends in Deposition
Although no significant difference occurred in the mean D90

value across each core, the mean D50 value for Matt6 was

significantly higher than that of Matt7 and Matt8 (p , 0.001;

Table 2). The D90 values are expected to decrease as distance

from the barrier increases; however, not all study events

followed this trend within uncertainty (defined as 1 SD about

Figure 5. (A) Age estimates and 95% confidence intervals of the different

event beds identified in Matt2 (Figure 2) by depth. Age estimates are

determined using Bayesian age-depth modeling program Bacon. The first

seven events are identified and correlated with historic storms. C-14, cesium-

137, and surface dates used to create the age model are also indicated. (B)

Probability density functions (PDFs) of the historic events (1–8, 1635 CE to

present), used to determine correlative storm events. Vertical dotted lines

indicate known storm events.

Table 1. Updated event chronology for Matt2, taking into consideration PDFs generated from Bacon Bayesian age-depth modeling and SLOSH model results.

Event

(This Study)

Storm (year)

(This Study)

Event

(Boldt et al., 2010)

Storm (year)

(Boldt et al., 2010)

Maximum

Surge (m)

Maximum

Windspeed (m/s)

1 1991 1 1991 2.68 48.11

2 1954 2 1960 2.16 34.24

3 1944 3 1954 1.68 37.94

4 1938 4 1944/1938 3.26 36.51

5 1815 not identified not attributed 3.47 40.99

6 1727 5 1815 2.16 39.54

7 1675 6 1727 1.34 33.63

8 1635 7 1635/1638 4.45 57.49
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the regression; Figure 7). Of the 22 storm event deposits that

were identified in at least two of the three transect cores, eight

events (36.4%) followed a landward-fining trend, eight events

(36.4%) followed a landward-coarsening trend, and six events

(27.2%) did not follow either trend within uncertainty (Figure

7). Coefficients of the regression lines can be found in the

supplemental material.

Temporal Trends in Deposition
To understand how historic events compared to prehistoric

events, the two groups were analyzed. The mean maximum

grain size of the historic events (events 1–8) is significantly

higher (p , 0.01) than the mean maximum grain size of the

prehistoric events (events 9–22). This trend is observed when

averaging events across all three cores in the transect.

Individual cores show no statistically significant difference in

mean maximum grain size between the two temporal frames of

reference.

Spatiotemporal Trends in Deposition
Spatial trends in grain size were also analyzed temporally

(Figure 7). Of the 11 events with data from all three cores, a

statistically significant difference (p , 0.05) occurs between

historic and prehistoric events. Historic events (1–6) follow a

landward-fining trend, whereas prehistoric events (9, 11, 16,

17, 20) follow a landward-coarsening trend. Event 8, which

corresponds to the 1635 hurricane, does not follow either trend

within uncertainty, suggesting a temporal transition.

DISCUSSION
This work represents a reexamination of event beds

documented by Boldt et al. (2010), using new techniques to

(1) obtain more accurate measurements of maximum grain size

of event beds, and (2) apply more advanced age modeling

techniques to improve attribution of historic event beds to

known storms.

As discussed in Boldt et al. (2010), beds of coarser-grained

sediment are likely sourced from hurricane events for several

reasons. The ages of the event beds match well with known

historic hurricane events. This makes sense because of the

coastal geometry of the system. The marsh is small, of low

relief, and adjacent to a sandy barrier, thus conducive to

overwash deposits from storm surge events. The marsh is

protected from NE winds, making overwash events from

nor’easters less likely. The geometry of Buzzards Bay accen-

tuates storm surge for hurricanes, making landfall to the west

(Cheung et al., 2007). All of the attributed hurricanes made

landfall to the west of Mattapoisett marsh, as such they were

likely to produce an overwash event at the site. It is also

important to consider that no false positives occurred within

the historic record, i.e. there are no event beds that cannot be

reasonably attributed to a hurricane event. Tsunamis are

capable of producing coastal inundation and overwash-induced

deposits; however, they are extremely rare along the eastern

coast of the United States, lacking any significant historic

accounts in the region over the last 400 years, and certainly

cannot be the mechanism for a vast majority, if not all of the

event beds over the last 2000 years.

Previous research into tropical cyclone event deposits has

identified a fining-landward trend, consistent with an inunda-

tion/run-up overwash regime (Brandon et al., 2014; Donnelly,

Kraus, and Larson, 2006; Woodruff et al., 2008). The fall

velocity of a given grain determines the sorting trends seen in

deposition. Fall velocity is dependent on several factors. Stokes’

Law applies to small particles, where the settling is impeded by

the drag associated with the laminar flow surrounding the

grain (Ferguson and Church, 2004). Settling of small particles

is slow, and fall velocity increases with the square of the

diameter of the particle. Larger particles settle far more rapidly

because their settling is impeded by the drag associated with

the wake behind each particle. As such, their fall velocity

increases with the square root of the diameter (Ferguson and

Figure 6. The D50 and D90 values and associated D90 standard deviation for

(A) Matt6, (B) Matt7, (C) Matt8.

Table 2. Average and standard deviation of maximum grain size (as

described by D90) and median grain size (D50) for event deposits in primary

cores shown in Figure 1.

Matt6 Matt7 Matt8

D90 (lm) 450 580 514

Standard deviation (lm) 140 338 211

D50 (lm) 191 98 108

Standard deviation (lm) 70 20 14
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Church, 2004). In both cases, larger particles have larger fall

velocities and settle sooner, resulting in a landward-fining

overwash deposit. This trend, however, is present in only 36.4%

of the 22 events identified, suggesting a more complicated

sediment transport and deposition relationship.

A landward-fining model assumes that sediment is sourced

primarily from the sandy barrier and deposited directly onto

the marsh surface. In reality, several potential factors

influence the perceived settling trends (Figure 8). Salt marsh

vegetation has well-documented abilities to trap sediment

(Fagherazzi et al., 2012; Gleason et al., 1979), which may

enhance lateral sorting such that much of the deposition occurs

close to the barrier. The ability of marsh plants to trap

sediment is dependent on a variety of factors—including plant

distribution, stem density, and stem height relative to wave

height and water depth—thus when these factors are domi-

nant, a transport model that does not consider them will not

accurately predict sediment settling trends on a marsh

platform. Turbulent mixing/resuspension and erosion of re-

cently deposited or previously trapped sediment may further

influence settling trends (Booth et al., 2000). A storm may also

deposit sediment through aeolian processes (Rodriguez et al.,

2013), which would also change the signature of the storm,

though the grain size of the deposits at Mattapoisett are likely

too coarse to be exclusively sourced from aeolian processes.

Sediment may also be sourced from channel banks, as opposed

to the sandy barrier to the south. The geomorphology of the

marsh suggests that the furthest cores in the study transect,

bordered on the south and west by an established tidal channel,

may be more influenced by sediment deposition from overtop-

ping of the creek-channel banks than deposition from barrier-

beach overwash.

Another proposed source of sediment is from ice rafting

during particularly cold winters. Argow, Hughes, and FitzGer-

ald (2011) determined that ice rafts have the potential to

transport sediment loads more than 100 m from the source and

that 97% of ice rafts carry sizeable sediment loads. Whereas ice

rafts presently tend to form further north in New England

(FitzGerald et al., 2020; Hardwick-Witman, 1986; Wood,

Kelley, and Belknap, 1989), it is possible that cooler climates

may have extended their range in the past. It is important to

consider, however, that ice rafting is often patchy and is not

wholly likely to contribute to traceable, widespread layers of

sediment across .100 m of marsh. For example, while an

intense extratropical cyclone in 2018 led to the ice-rafting of

18,000 m3 of sediment across the Great Marsh in northern

Massachusetts, deposits—while spread throughout the

marsh—were relatively patchy, particularly deposits of sub-

stantial thickness (FitzGerald et al., 2020).

Figure 7. Plot of the slope of the regression line of D90 values for individual events across the transect of cores. A negative slope indicates a landward-fining trend,

whereas a positive slope indicates a landward-coarsening trend. Filled points have a regression with all three cores in the transect. Empty points have data from

,3 cores. The boundary between historic and prehistoric values is indicated by a dashed vertical line. Inset: the filled points, historic values (events 1–4, 6, 8) are

statistically different (p , 0.05) from prehistoric values (events 9, 11, 16, 17, 20).
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Complete inundation of the barrier during intense, surge-

dominated storms also influences sediment transport dynam-

ics. Modeling of the effects of Hurricane Bob (1991) on southern

New England suggests that Mattapoisett, along with other

areas in Buzzards Bay, may have experienced an inundation

regime during the event (Cheung et al., 2007), where the storm

surge alone is greater than the height of the barrier (Donnelly,

Kraus, and Larson, 2006). The SLOSH (Jelesnianski, Chen,

and Shaffer, 1992) modeled storm-surge estimates for Matta-

poisett during Hurricane Bob exceeded 2.5 m, which is above

the LIDAR-recorded barrier height of 1–2.5 m (Table 1). The

SLOSH model results for the Great New England Hurricane of

1938 and the Great Colonial Hurricane of 1635 also indicate

surges of .3 m and .4 m, respectively (Table 1). Extreme

inundation effectively negates the influence of the barrier

because water and sediment can flow unimpeded over the

barrier, depositing sediment only as the sheet flow slows

(Donnelly, Kraus, and Larson, 2006). As such, it is important to

consider that in these cases, the time of greatest sediment

transport may not be at the point of maximum inundation.

Of particular interest is the difference between historic and

prehistoric deposits. The first seven events identified in the

study sediment cores are correlated to hurricanes dating from

the Great Colonial Hurricane of 1635 to present. Of those

events, all five events with data from all three cores follow a

landward-fining trend, where, at the very least, the maximum

grain size of the event bed closest to the barrier is larger than

the maximum grain size of the event bed furthest from the

barrier. The mean maximum grain size of the historic events is

also significantly higher than the mean maximum grain size of

the prehistoric events. The prehistoric events, however, in

general display a landward-coarsening trend, which is seem-

ingly at odds with processes proposed by the advective-settling

model.

The simplest way to explain an increase in grain size toward

present, particularly for the core closest to the barrier (Matt6;

Figure 4A), is a migration of the barrier separating the marsh

from the ocean. Landward migration of a barrier beach is most

often linked to sea-level rise. A sea-level reconstruction from

Barn Island, Connecticut, indicates a linear increase in mean

sea level of approximately 1.0 6 0.2 mm/yr from ~1300 CE to

~1850 CE, with that rate increasing almost threefold in the

mid-19th century (Donnelly et al., 2004). Tide gauge data from

Woods Hole, Massachusetts (NOAA tide gauge 8447930),

indicates an increase in sea level of approximately 2.81 6

0.18 mm/yr over the past 83 years, with similar temporal

patterns in accelerated sea-level rise in New York and Boston

(Talke, Kemp, and Woodruff, 2018). As sea level rises, barriers

tend to migrate landward, with research indicating that

barriers less than 200 m in width migrate landward primarily

through overwash (Bruun, 1988; Hennessy and Zarillo, 1987;

Leatherman, 1983; Lorenzo-Trueba and Ashton, 2014). Barrier

migration is controlled largely by two primary factors: sea-level

change and sediment budget (Curray, 1964), though more

recent studies have expanded on this list of governing factors

(McBride et al., 2013). Overwash in particular contributes to

migration by removing sediment at the front of the barrier and

depositing it landward (Donnelly, Kraus, and Larson, 2006).

Given the record of at least 30 overwash-deposited event beds

over the past 2000 years, it is highly probable that these

events—often several within the same century—played a role

in barrier migration.

Though analysis of USGS topographic maps indicated no

change in the location of the barrier at Mattapoisett for the last

125 years (Boldt et al., 2010), additional state assessments

indicate that shoreline retreat rates in front of Mattapoisett

Marsh average 0.06 m/yr (ranging from 0.04–0.15 m/yr; Thieler

et al., 2013). The barrier may have moved landward; however,

the position of the cores, taken in 2007, remains static. This

suggests that deeper events may actually have been deposited

further from the barrier than present. The mean maximum

grain size for the historic events is significantly higher than the

mean maximum grain size for the prehistoric events, further

bolstering this hypothesis.

The transition from landward-coarsening to landward-fining

deposition occurs by 1679 CE, when the town of Rochester,

which originally included the town of Mattapoisett, was settled.

This suggests that anthropogenic changes in sediment supply

and coastal stabilization may be influential. The transition also

occurs not long after the Great Colonial Hurricane of 1635,

which devastated SE New England with category 3 winds

(Jarvinen, 2006) and modeled surge at Mattapoisett of .4.5 m.

It is possible that surge and winds associated with this massive

storm substantially changed the geomorphic layout of the area.

For example, a shift in the course of the creek system could

result in greater sediment supply and transport from that

source prior to 1635, particularly if, as estimated, the barrier

was several meters further oceanward than present. These

shifts would preferentially influence deposition within study

cores closest to the creek.

Figure 8. Additional potential sources of sediment to the system.
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The changes in settling trends could be representative of

shifts in the relative contributions of several sediment sources,

particularly for the cores further from the barrier. The

advective-settling model assumes that the vast majority of

sediment is sourced directly from the sandy barrier, but shifts

in event magnitude and storm direction attributable to larger-

scale climatic or geomorphologic changes may also play a role

in the observed deposition patterns. For example, a shift in the

direction of approach, i.e. waves approaching from the west as

opposed to the south, would emphasize potential channel

diversion by the main tidal inlet. The lack of a sandy barrier on

the western side of the marsh would reduce the surge necessary

for overwash and subsequent deposition, resulting in larger-

diameter grains deposited at the core locations closer to the

western border of the marsh.

Ultimately, this study has implications for future attempts to

use the advective-settling model by Woodruff et al. (2008) to

inversely model storm intensity metrics from grain-size

distributions. Whereas the model may accurately predict the

intensity of storms in a simple system where the majority of

sediment is sourced directly from an adjacent barrier, systems

with more complex geomorphology and resultant flood process-

es are less suited for its application. The settling trends and

larger spatiotemporal dynamics of most systems are often

subtle until explored in greater depth. A site-wide approach to

sampling, along with potential coupling with high-resolution,

three-dimensional wave modeling, is necessary to adequately

capture the dynamics of these systems. It is recommended that

several sediment cores be evenly spaced in a grid pattern

throughout the study area, spatially encompassing the area of

interest. Distribution of sediment cores will vary by the total

study area based on areas of interest and to maximize returns

(e.g., in a marsh the size of Mattapoisett, a core every 10–20 m

would likely be sufficient to effectively capture spatial variation

in sedimentation, but areas of particular interest, such as the

tidal channel and its influence on sediment source, would be

sampled more extensively). Though this study is limited by

preexisting sediment cores, an even more expansive approach

in sampling—unlike the traditional transect-based approach to

paleo-hurricane research—would provide an even clearer

picture of depositional patterns and predominant associated

flood mechanisms.

CONCLUSIONS
Mattapoisett Marsh presents a unique environment to study

grain-size trends in hurricane-induced storm deposits. Previ-

ous reconstructions of storm frequency have assumed relative-

ly straightforward overwash and deposition dynamics, but a

deeper look into the intricacies of spatial and temporal grain-

size trends requires a more nuanced approach. Whereas many

reconstructions focus on one core from one location, a whole-

site analysis is necessary to properly constrain the sediment

dynamics of past flood events. The strong incongruity between

historic and prehistoric deposits may be unique to Mattapoisett

Marsh, but the breadth of variation in grain-size trends likely

apply to back-barrier marshes throughout New England. Back-

barrier marshes provide a valuable location for preserving

storm-induced overwash events, but the complexity of deposi-

tion dynamics must be considered in future reconstructions.
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