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Abstract
The Arctic Ocean is a vital component of Earth’s climate system experiencing dra-
matic environmental changes. The changes are reflected in its underwater ambient
soundscape as its origin and propagation are primarily dependent on properties of
the ice cover and water column.

The first component of this work examines the effect on ambient noise character-
istics due to changes to the Beaufort Sea sound speed profile (SSP) and ice cover.
Specifically, the emergence of a warm water intrusion near 70 m depth has altered the
historical Arctic SSP while the ice cover has become thinner and younger due to the
rise in average global temperature. Hypothesized shifts to the ambient soundscape
and surface noise generation due to these changes are verified by comparing the mea-
sured noise data during two experiments to modeled results. These changes include a
broadside notch in noise vertical directionality as well as a shift from uniform surface
noise generation to discrete generation at specific ranges.

Motivated by our data analyses, the second component presents several tools to
facilitate ambient noise characterization and generation monitoring. One is a convo-
lutional neural network (CNN) approach to noise range estimation. Its robustness
to SSP and bottom depth mismatch is compared with conventional matched field
processing. We further explore how the CNN approach achieves its performance by
examining its intermediate outputs. Another tool is a frequency domain, transient
event detection algorithm that leverages image processing and hierarchical clustering
to identify and categorize noise transients in data spectrograms. The spectral content
retained by this method enables insight into the generation mechanism of the detected
events by the ice cover. Lastly, we present the deployment of a seismo-acoustic system
to localize transient events. Two forward approaches that utilize time-difference-of-
arrival are described and compared with a more conventional, inverse technique. The



examination of this system’s performance prompts recommendations for future de-
ployments.

With our ambient noise analysis and algorithm development, we hope these con-
tributions provide a stronger foundation for continued study of the Arctic ambient
soundscape as the region continues to grow in significance.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Although the Arctic Ocean is the smallest of the world’s five main bod-

ies of water, it holds no less climatological, economical, and geopoliti-

cal significance. The region is the most affected by the rise in average

global temperature [1, 2], contains vast amounts of natural resources,

and is an emerging space for economic and military activity. For much of the year,

the Arctic is also unique in that it is covered with a layer of ice, making naval op-

erations both on and below the surface more difficult. This combination of strategic

importance and inaccessible environment has prompted growing interest in Arctic

research in recent decades, both to study how the region is being affected by the

changing climate as well as how to safely and effectively conduct naval missions in its

waters. As with other ocean environments, the application of underwater acoustics

is an essential tool for studying the Arctic as sound propagation depends on various

water properties such as temperature, pressure, and salinity [3]. Acoustics is also

the primary medium for underwater communication and navigation, which enable

under-ice naval operations with both manned and autonomous underwater vehicles

(AUV). A major component of the acoustic environment of any region is the am-

bient soundscape; it is the foundational noise above which other signals propagate.

Thus, an accurate characterization of the passive ambient soundscape leads to more

effective transmission of active signals, which, in turn, contributes to more reliable

signal processing for undersea missions. In the Arctic, the ambient soundscape is also



particularly important because the primary origin of ambient noise is the ice cover

[4]. As a result, changes in ice cover properties also affect the ambient soundscape in

addition to water properties. Inversely, the ambient noise environment can be studied

to better understand shifts in the Arctic ice cover and water column that result from

broader changes in climate.

The earliest studies of Arctic ambient noise were conducted by Milne and Ganton

during the ICE PACK experiments in 1961 and 1963 [5]. Underwater noise mea-

surements were collected in the Canadian Archipelago below 20 kHz and linked to

thermal stress and relative floe motions in the ice cover. Following this, the Arctic

Ice Dynamic Joint Experiment (AIDJEX) in 1975-1976 enabled examination of the

seasonal spatial and temporal scales of ambient noise in the Beaufort Sea below 1000

Hz [6] as well as noise generation mechanisms in the ice cover [6, 7, 8]. Then, during

the four year span between 1979-1982, the Fram experiments collected ambient noise

in the Fram strait below 10 kHz; this dataset led to analyses of the temporal dis-

tribution of transient noise events [9] and environmental correlates to low frequency

ambient noise between 10-20 Hz [10]. The next major Arctic expedition occurred in

1994; as part of the Sea Ice Mechanics Initiative (SIMI), seismo-acoustic emissions of

ice cover cracking [11] and the physics behind ice-induced acoustic events [12] were

studied using a combination of hydrophone and geophone sensors. More recently, the

U.S. Navy has continued to support acoustics research in the Arctic region through

the Ice Exercise (ICEX) experiments (most recently in 2020). These exercises allow

the Navy to test operational strategies in the region while enabling scientists to doc-

ument the effect of environmental changes on underwater ambient noise and develop

new frameworks for under-ice acoustic communication and navigation [13, 14].

This work is a further contribution to the study of Arctic underwater noise and, in

particular, focuses on the Beaufort Sea region (Fig. 1.1), which has been experiencing

dramatic shifts to both its ice cover properties as well as its underwater environment.

This thesis consists of two main components. The first presents a hypothesis for how

environmental changes in the Beaufort Sea have impacted the underwater ambient

soundscape; we further demonstrate using acoustic modeling that our hypothesis is
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consistent with properties of measured ambient noise. The second component de-

scribes various tools that aid in our data analysis and noise processing and showcases

their benefits over more conventional techniques. More broadly, we hope to pro-

mote more accurate characterizations of the Arctic ambient soundscape, which would

enable more successful future underwater operations in this region.

1.1 Significance of the Arctic Region

In this section, we further elaborate on the importance of the Arctic Ocean to global

climate, economy, and geopolitics that motivates its continued study and monitoring.

1.1.1 Climatological Importance

In addition to being more sensitive to changes to the global climate than other regions,

the Arctic Ocean also has critical influence over many components of the climate

system, particularly in the northern hemisphere. For example, the ice cover is a

significant regulator of material flux between the Arctic Ocean and the atmosphere

as it reduces the exchange of heat, momentum, and water vapor [16]. With decreasing

ice cover extent, increased heat flux from the ocean has been linked to a rise in annual

mean air temperature (measured at 2 m) north of 60𝑜N, with the largest increase in

coastal areas surrounding the Arctic [17, 18]. There is also evidence that Arctic sea ice

decline contributes to snowier winters and wetter summers in northern Europe [16, 19].

Circulation patterns within the Arctic Ocean also cause it to be an exporter of water

into the north Atlantic. In recent decades, the movement of water out of the Arctic

basin has become increasingly fresh as a result of greater sea ice melting and runoff

from river tributaries [20, 21, 22]. Consequently, the influx of fresh water has reduced

the north Atlantic deep water formation and the Atlantic thermohaline circulation

[23]. There are also observed effects to the spatial distribution of underwater biota in

both the Arctic and Atlantic Oceans. Specifically, the biogeographic ranges of boreal

plankton and fish species have retreated while those of subtropical and temperate

species in the Northeast Atlantic have expanded northward [24].
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Figure 1.1: Arctic Ocean geography and bathymetry [4, 15].
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1.1.2 Economical Importance

Despite its relative inaccessibility, the Arctic Ocean hosts a non-trivial portion of the

world’s economic activity in the form of aquaculture, resource extraction, and more

recently, shipping. The region contains the world’s largest cod stock in the form of the

Northeast Arctic Cod (Gadus morhua)[25]. With rising ocean temperatures, the re-

cruitment of Arctic cod is expected to increase as well [26], further contributing to the

region’s economic potential. However, this relationship is not linear and the correla-

tion turns negative for water temperatures higher than 9𝑜C [27]. In regards to natural

resources, the Arctic region accounts for 1/10 of the world’s total oil production and

1/4 of the world’s total natural gas production [28]. It also contains an estimated

30% of the world’s undiscovered natural gas and 13% of the undiscovered oil, mostly

offshore under less than 500 m of water [29]. With diminishing ice coverage, these

resources are likely to become increasingly accessable, further bolstering the activity

of extraction industries in the region. Also as a result of diminished ice coverage,

another economic perspective in the Arctic is the opening of new shipping lanes be-

tween Asia and Europe that are 2/3 of the average distance of existing routes [30, 31].

Such shipping lanes would undoubtedly further stimulate international commercial

development and investment in the Arctic.

1.1.3 Geopolitical Importance

The Arctic Ocean is bordered by many of the world’s most influential sovereignties,

namely, the United States, Canada, the European Union, and Russia. As a result,

the region holds immense geopolitical significance. While the nations that surround

the Arctic share many known common interests such as increasing political stability,

scientific cooperation, and environmental protection and assessment [32], there are,

nonetheless, also efforts of military strength projection. In particular, Russia has

increased its investment in military infrastructure in the Arctic by constructing new

bases, manufacturing new icebreakers, as well as establishing two special “Arctic

brigades” [33]. Similarly, the NATO allied nations have established joint military
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training exercises and the Arctic Joint Security Forces round-table meetings [34].

With continued environmental changes and further accessibility of the Arctic Ocean,

the region is bound to attract even more scientific and military activity in the future.

1.2 Common Tools of Signal Processing

As evident by the significance of the Arctic Ocean presented in the previous section,

there will likely be increased scientific, economic, and military activity in the region

in the future. Much of these activities would likely require the use of underwater

acoustics, whether for environmental characterization, sensing, or underwater com-

munication and navigation. In this section, we provide a broad overview of ocean

acoustics and introduce some common tools for acoustic signal processing and model-

ing. This overview also serves as background for later chapters as the presented tools

are used in ambient noise data analysis.

1.2.1 Acoustic Wave Equation

Underwater acoustic propagation is governed by the wave equation, which is derived

following the principles of conservation of mass, Newton’s second law, and the adia-

batic relation between pressure and density [3]. In an ideal fluid, these three principles

manifest, respectively, in the equations below.

𝜕𝜌

𝜕𝑡
= −∇ · 𝜌v, (1.1)

𝜕v
𝜕𝑡

+ (v · ∇)v = −1
𝜌

∇𝑝(𝜌), (1.2)

𝑝 = 𝑝0 + 𝜌′
[︃
𝜕𝑝

𝜕𝜌

]︃
𝑠

+ 1
2(𝜌′)2

[︃
𝜕2𝑝

𝜕𝜌2

]︃
𝑠

+ · · · , (1.3)

where 𝜌 is the density, 𝑝 is the pressure, and v is the particle velocity. Small perturba-

tions to the ambient pressure 𝑝0 and density 𝜌0 are denoted by 𝑝′ and 𝜌′, respectively.

The subscript 𝑠 denotes that thermodynamic derivatives are taken at constant en-
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tropy. We further define the sound speed, 𝑐, in the medium as

𝑐2 ≡
[︃
𝜕𝑝

𝜕𝜌

]︃
𝑠

. (1.4)

By only keeping the first order terms in the equations above and combining together,

the linear acoustic wave equation is derived as

𝜌∇ · (1
𝜌

∇𝑝) − 1
𝑐2
𝜕2𝑝

𝜕𝑡2
= 0. (1.5)

Furthermore, if the density is constant in space, the equation above simplifies to

∇2𝑝− 1
𝑐2
𝜕2𝑝

𝜕𝑡2
= 0. (1.6)

Instead of pressure, Eq. 1.6 is commonly re-formulated in terms of the displacement

potential, defined with regards to the particle displacement, u, as

u = ∇𝜓. (1.7)

The displacement potential relates to the pressure following

𝑝 = −𝜌𝜕
2𝜓

𝜕𝑡2
, (1.8)

which means that it is also governed by the wave equation

∇2𝜓 − 1
𝑐2
𝜕2𝜓

𝜕𝑡2
= 0. (1.9)

With the right-hand side of Eq. 1.9 equal to 0, this equation represents the

scenario where there is no acoustic source in the medium. However, a source can

easily be implemented by including a forcing term on the right-hand side, leading to

the inhomogeneous wave equation

∇2𝜓 − 1
𝑐2
𝜕2𝜓

𝜕𝑡2
= 𝑓(r, 𝑡), (1.10)
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where 𝑓(r, 𝑡) represents a volume injection as a function of space and time. This

equation can be solved analytically for some simple forcing terms in propagation

environments with straight-forward boundary conditions. However, most often, it is

solved numerically. To simplify computation, numerical approaches typically solve the

wave equation in the frequency domain instead of the time domain. This is because

by taking the Fourier transform of Eq. 1.10, the time dependence of the equation can

be removed, forming what is known as the Helmholtz equation

[︁
∇2 + 𝑘2(r)

]︁
𝜓(r, 𝜔) = 𝑓(r, 𝜔), (1.11)

where 𝑘(r) is the medium wavenumber at the radian frequency 𝜔,

𝑘(r) = 𝜔

𝑐(r) . (1.12)

As we will present in Section 1.2.5, one approach to numerically solve the Helmholtz

equation is through wavenumber integration, which is the basis of the modeling soft-

ware OASES [35].

1.2.2 Power Spectral Density and Spectrogram

The power spectral density (PSD) and the spectrogram are both tools that enable

visualization of an acoustic time series’ spectral content. In particular, the PSD

describes a signal’s distribution of power into frequencies. Given a time domain

signal snapshot of the form 𝑥(𝑡), its PSD is computed as

𝑆(𝜔) = 1
𝑇

|𝑋(𝜔)|2, (1.13)

where 𝑇 is the length of 𝑥(𝑡), 𝑋(𝜔) is the Fourier transform of 𝑥(𝑡), and 𝜔 is the

radian frequency. In practice, for a discrete, wide band signal 𝑥 [𝑡], the time series

would be segmented into snapshots of length 𝑇 to calculate the PSD of each snapshot.
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For example, for a snapshot centered at 𝑡 = 𝑡1, the PSD is calculated as

𝑆𝑡1 [𝜔] = 1
𝑇

|𝑋𝑡1 [𝜔] |2, (1.14)

where𝑋𝑡1 [𝜔] is the discrete Fourier transform (DFT) of the snapshot 𝑥
[︁
𝑡1 − 𝑇

2 , . . . , 𝑡1 + 𝑇
2

]︁
.

The choice of 𝑇 , along with the sampling frequency, 𝐹𝑠, of 𝑥 [𝑡], determine the fre-

quency domain resolution of 𝑆𝑡1 [𝜔]. This relationship is described by

𝑑𝑓 = 𝐹𝑠

𝑇
. (1.15)

The spectrogram is simply an extension of the PSD that shows the power distri-

bution of a time series in frequency as well as in time. To generate a spectrogram,

the PSD of consecutive snapshots of 𝑥 [𝑡] are calculated and formed into a matrix

[𝑆𝑡1 [𝜔] , 𝑆𝑡2 [𝜔] , . . .] . (1.16)

Often, 𝑡1, 𝑡2, . . . are selected so that there is some overlap between one snapshot and

the next (50% overlap is a common choice). This step ensures no information is lost

at the boundaries of the snapshots when computing the spectrogram.

1.2.3 Conventional Beamforming

Beamforming is a technique for estimating a signal’s direction of arrival (DOA). From

a set of time series collected with an array of recievers, it generates a distribution of

measurement values over all spatial angles that reflect the most likely arrival direction

of the recorded acoustics data. The conventional approach to beamforming is known

as the delay-and-sum or Bartlett beamformer. Conceptually, it is quite straightfor-

ward. Given an array of receivers, each arbitrarily positioned in space and a plane

wave incident upon the center of the array, the wave’s DOA can be estimated by

leveraging the time at which the wave reaches each receiver [36, 37]. For any incident

acoustic signal, the plane wave assumption is satisfied if the array is located in the

far field of source.
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Figure 1.2: (Top) Beamformer look-angle is not pointing in the opposite direction
of the incoming plane wave. Thus, the filtered signals are not aligned, resulting in
destructive interference and a low output power. (Bottom) Beamformer look-angle
is pointing in the opposite direction of the incoming plane wave. Thus, the filtered
signals are aligned, resulting in constructive interference and a maximum output
power. [37].
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Consider an array of 𝑁 omni-directional receivers at positions p𝑛 subject to an

incoming plane wave (Fig. 1.2). The sensors spatially sample the signal field at their

respective locations p𝑛 : 𝑛 = 1, . . . , 𝑁 , yielding a set of measurements

x(𝑡,p) =

⎛⎜⎜⎜⎜⎜⎝
𝑥1(𝑡,p1)

...

𝑥𝑁(𝑡,p𝑁)

⎞⎟⎟⎟⎟⎟⎠ . (1.17)

The measurements at each sensor are then processed using a linear, time invariant

(LTI) filter with impulse response ℎ𝑛(𝜏). The processed outputs are then summed to

form an array output 𝑦(𝑡) following

𝑦(𝑡) =
𝑁∑︁

𝑛=1

∫︁ ∞

−∞
𝑥𝑛(𝑡,p𝑛)ℎ𝑛(𝑡− 𝜏)𝑑𝜏 =

∫︁ ∞

−∞
h𝑇 (𝑡− 𝜏)x(𝑡,p)𝑑𝜏, (1.18)

where

h(𝜏) =

⎛⎜⎜⎜⎜⎜⎝
ℎ1(𝜏)

...

ℎ𝑁(𝜏)

⎞⎟⎟⎟⎟⎟⎠ . (1.19)

Applying the Fourier transform to both sides of the equality, Eq. 1.18 can be written

in the frequency domain as

𝑌 (𝜔) = H𝑇 (𝜔)X(𝜔). (1.20)

Now, consider a plane wave with radian frequency 𝜔 and propagation direction a

(Fig. 1.2). Working in spherical coordinates, a is a unit vector described by

a =

⎛⎜⎜⎜⎜⎜⎝
−𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜑)

−𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜑)

−𝑐𝑜𝑠(𝜃)

⎞⎟⎟⎟⎟⎟⎠ , (1.21)

where 𝜃 is the inclination (𝜃 = 0 points along the positive z-axis) and 𝜑 is the azimuth

(𝜑 = 0 points along the positive x-axis and positive rotation is around the z-axis

following the right-hand rule). The time series measured at each receiver position,
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𝑥(𝑡,p), relative to measurements at some arbitrary origin of the array, 𝑥(𝑡), can be

written as

x(𝑡,p) =

⎛⎜⎜⎜⎜⎜⎝
𝑥(𝑡− 𝜏1)

...

𝑥(𝑡− 𝜏𝑁)

⎞⎟⎟⎟⎟⎟⎠ , (1.22)

where

𝜏𝑛 = a𝑇 p𝑛

𝑐
(1.23)

and 𝑐 is the propagation speed of the wave. Again, taking the Fourier transform of

every component of Eq. 1.22, x(𝑡,p) is expressed in the frequency domain as

X(𝜔,p) =

⎛⎜⎜⎜⎜⎜⎝
𝑋(𝜔)𝑒−𝑗𝜔𝜏1

...

𝑋(𝜔)𝑒−𝑗𝜔𝜏𝑁

⎞⎟⎟⎟⎟⎟⎠ . (1.24)

Using the relation between the spatial wavenumber of a wave and its radian frequency,

k = 𝜔

𝑐
a, (1.25)

we can see that

𝜔𝜏𝑛 = k𝑇 p𝑛. (1.26)

As a result, we can define the equivalent vectors

v(k) =

⎛⎜⎜⎜⎜⎜⎝
𝑒−𝑗k𝑇 p1

...

𝑒−𝑗k𝑇 p𝑁

⎞⎟⎟⎟⎟⎟⎠ ⇔ v(𝜔) =

⎛⎜⎜⎜⎜⎜⎝
𝑒−𝑗𝜔𝜏1

...

𝑒−𝑗𝜔𝜏𝑁

⎞⎟⎟⎟⎟⎟⎠ . (1.27)

These vectors are known as the array manifold vectors. They contain all relevant

characteristics of the array such as the sensor positions as well as how a plane wave

of a certain frequency 𝜔 and incident direction (described by k) is received by each
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element in the array. Substituting Eq. 1.27 into Eq. 1.24, we can re-write X(𝜔,p) as

X(𝜔,p) = 𝑋(𝜔)v(k) = 𝑋(𝜔)v(𝜔). (1.28)

Now, comparing the form of Eq. 1.28 to the form of 𝑌 (𝜔) = H𝑇 X(𝜔) (Eq. 1.20), it

becomes apparent that the received field on the array due to its geometry is consistent

with processing the array sensors with a set of LTI filters with transfer functions

𝐻𝑛(𝜔) = 𝑒−𝑗𝜔𝜏𝑛 . In other words, the array geometry shifts the signal received on

receiver 𝑛 by 𝜏𝑛 in time, which corresponds to the time difference in signal reception

between receiver 𝑛 and the array origin. This collection of LTI filters is what is referred

to as the conventional beamformer. Consequently, the output of the beamformer for

any look-angle, u, is computed as

B(𝜔,u) = 1
𝑁

H𝑇 v(u), (1.29)

where 1
𝑁

is included as a normalization factor.

As nicely illustrated by Rypkema [37] using Fig. 1.2, applying the set of LTI filters

defined above at the look angle exactly opposite the wave propagation direction (i.e.

u = −a) results in constructive alignment between the received time series on all

array elements, creating a maximum beamformer output. Thus, if we simply loop

through all possible look angles, we can make an estimate of the wave incident angle

by computing

argmax
u

(B(𝜔,u)). (1.30)

1.2.4 Raytracing

Raytracing is one of the earliest methods for modeling underwater acoustic propaga-

tion. Much of the understanding for the behavior of ray propagation was acquired

long before its application to underwater sound, stemming from optics experiments

by figures such as Euclid and Snell [3]. While newer underwater acoustics modeling

tools have gained favor over raytracing over the years due to the latter’s compara-
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tively lower accuracy, particularly at low frequencies, raytracing is still widely used

due to its fast computational speed [3, 38]. Other advantages of raytracing are its

capability to model broadband propagation efficiently and its suitability for range-

dependent environments [38]. In addition, the insight derived from raytracing outputs

is important in corroborating and interpreting the results of other models [3].

The foundational strategy of raytracing as a modeling tool is to simulate the

propagation paths and amplitudes of a fan of rays from an acoustic source out into the

environment. The propagation paths of the rays are governed by the ray equations,

which are derived from the Helmholtz equation (Eq. 1.11) assuming a point source

forcing term and a high frequency approximation [3]:

𝑑𝑟

𝑑𝑠
= 𝑐𝜉(𝑠), 𝑑𝜉

𝑑𝑠
= − 1

𝑐2
𝜕𝑐

𝜕𝑟
,

𝑑𝑧

𝑑𝑠
= 𝑐𝜁(𝑠), 𝑑𝜁

𝑑𝑠
= − 1

𝑐2
𝜕𝑐

𝜕𝑧
,

(1.31)

where 𝑠 is arc-length along a ray, 𝑐(𝑠) is the propagation speed, [𝑟(𝑠), 𝑧(𝑠)] is a ray’s

trajectory in cylindrical coordinates, and [𝜉(𝑠), 𝜁(𝑠)] describes the tangent vector to

the ray (t𝑟𝑎𝑦 = 𝑐 [𝜉(𝑠), 𝜁(𝑠)]). The initial conditions of the ray specify the source

position (𝑟0, 𝑧0) and the starting slope of the ray given a specified take-off angle 𝜃0

(Fig. 1.3):
𝑟 = 𝑟0, 𝜉 = 𝑐𝑜𝑠𝜃0

𝑐(0) ,

𝑧 = 𝑧0, 𝜁 = 𝑠𝑖𝑛𝜃0

𝑐(0) .
(1.32)

With these initial conditions, the propagation path of a ray can be obtained by

solving the ray equations (Eq. 1.31) iteratively. After each step 𝑑𝑠 along the ray

path, the new propagation angle of the ray is calculated by applying Snell’s Law:

𝑐1𝑐𝑜𝑠𝜃1 = 𝑐2𝑐𝑜𝑠𝜃2, (1.33)

where 𝑐1, 𝑐2 are the sound speeds and 𝜃1, 𝜃2 are the ray angles before and after taking

the step along the ray path, respectively.

Along with computing the ray paths, we also need to calculate the acoustic in-
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Figure 1.3: A schematic of 2-D ray tracing geometry [3].

tensity along each ray. The differential equations describing the intensity are the

dynamic ray equations [39]:

𝑑𝑞

𝑑𝑠
= 𝑐𝑝(𝑠), 𝑑𝑝

𝑑𝑠
= − 𝑐𝑛𝑛

𝑐2(𝑠)𝑞(𝑠), (1.34)

where 𝑐𝑛𝑛 is the curvature of sound speed in the direction normal to the ray path and

can be expressed as

𝑐𝑛𝑛 = 𝑐2( 𝜕
𝑐

𝜕𝑟2 𝜁
2 − 2 𝜕2𝑐

𝜕𝑟𝜕𝑧
𝜁𝜉 + 𝜕2𝑐

𝜕𝑧2 𝜉
2). (1.35)

These equations characterize the change in ray path due to general changes to the

ray’s initial condition. For the purpose of tracing a web of rays, we need to perturb

the ray with respect to take-off angle. The appropriate initial conditions for the

dynamic ray equations in this case are:

𝑞(0) = 0, 𝑝(0) = 1
𝑐(0) . (1.36)
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Consequently, the ray amplitude along its path is then given as

𝐴(𝑠) = 1
4𝜋

⃒⃒⃒⃒
⃒𝑐(𝑠)𝑐𝑜𝑠𝜃0

𝑟𝑐(0)𝑞(𝑠)

⃒⃒⃒⃒
⃒
1/2

. (1.37)

Similar to the computation of the ray trajectory before, the intensity along the ray

path can be determined through iterative computation of the dynamic wave equations

(Eq. 1.34) followed by Eq. 1.37. In practice, to calculated the full acoustic field, each

simulated ray is given some “width” through the application of a shape function

(common shapes include triangle or Gaussian). The pressure field at any point in the

environment is then determined by summing the intensity of all rays (eigenrays) that

pass through that point.

To implement raytracing, a popular and publicly available modeling software is

BELLHOP [40]. This tool is used in this thesis to generate raytracing outputs.

1.2.5 Wavenumber Integration

Wavenumber integration is a numerical approach for solving the Helmholtz equa-

tion Eq. 1.11 for a source distribution in horizontally stratified media (environment

varies in depth only) [3]. As a result, it is applied for range-independent propagation

problems. This method divides the water column into many depth layers and then

reduces the Helmholtz equation to a set of one-dimensional differential equations,

one within each layer of the water column. These depth-separated equations are then

solved analytically and the full field can be computed by matching the boundary con-

ditions between the layers. There are no simplifying assumptions in the derivation

of the depth-separated equations; in this sense, the pressure field calculated through

wavenumber integration is exact, in contrast to techniques such as raytracing.

Consider a source distribution along a vertical axis in a horizontally stratified

environment, the acoustic field in layer 𝑚 containing the source is expressed in terms

of the displacement potential following the Helmholtz equation,

[︁
∇2 + 𝑘2

𝑚(𝑧)
]︁
𝜓𝑚(𝑟, 𝑧) = 𝑓𝑠(𝑧, 𝜔)𝛿(𝑟)2𝜋𝑟 , (1.38)
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where 𝑘𝑚(𝑧) = 𝜔/𝑐(𝑧) is the medium wavenumber for layer 𝑚. Similarly, in layers

without sources, the acoustics field satisfies the homogenous Helmholtz equation with

𝑓𝑠(𝑧, 𝜔) = 0. Now, we apply to Eq. 1.38 the forward Hankel transform, defined as

𝑓(𝑘𝑟, 𝑧) =
∫︁ ∞

0
𝑓(𝑟, 𝑧)𝐽0(𝑘𝑟𝑟)𝑟𝑑𝑟, (1.39)

where 𝐽0(·) is zeroth order Bessel function of the first kind. This operation results in

the depth-separated wave equation,

[︃
𝑑2

𝑑𝑧2 −
[︁
𝑘2

𝑟 − 𝑘2
𝑚(𝑧)

]︁]︃
𝜓𝑚(𝑘𝑟, 𝑧) = 𝑓𝑠(𝑧)

2𝜋 , (1.40)

which is an ordinary differential equation in depth. The solution to this type of

differential equation is the sum of a particular solution, 𝜓𝑚(𝑘𝑟, 𝑧), to Eq. 1.40 and a

linear combination of the two independent solutions, 𝜓+
𝑚(𝑘𝑟, 𝑧) and 𝜓−

𝑚(𝑘𝑟, 𝑧), to the

homogeneous equation [3]. Therefore, the total solution of the depth-dependent field

is the, so-called, depth-dependent Green’s function:

𝜓𝑚(𝑘𝑟, 𝑧) = 𝜓𝑚(𝑘𝑟, 𝑧) + 𝐴+
𝑚(𝑘𝑟)𝜓+

𝑚(𝑘𝑟, 𝑧) + 𝐴−
𝑚(𝑘𝑟)𝜓−

𝑚(𝑘𝑟, 𝑧), (1.41)

where 𝐴+
𝑚 and 𝐴−

𝑚 are coefficients to be determined by satisfying the boundary con-

ditions at the interfaces between the layers. For the particular solution, the most

convenient solution is simply the field produced by the source distribution in an en-

vironment absent of any boundary conditions. After the unknown coefficients are

solved for, the last step to compute the full acoustic field is to apply the inverse

Hankel transform, which is defined as

𝑓(𝑟, 𝑧) =
∫︁ ∞

0
𝑓(𝑘𝑟, 𝑧)𝐽0(𝑘𝑟𝑟)𝑘𝑟𝑑𝑘𝑟. (1.42)

As written, this inverse transform is an integration over the wavenumber domain,

which is the namesake for the wavenumber integration approach. To solve for the

coefficients in Eq. 1.41, one technique developed by Schmidt [41, 42] is the global

41



matrix approach. In this method, the local boundary conditions at each interface are

assembled into a global system of equations expressing the boundary conditions at

all interfaces. The numerical solution of the global system then yields the field in

all layers simultaneously. The global matrix approach and the subsequent wavenum-

ber integration is implemented by the publicly available software OASES [35]. This

software is used in this thesis to carry out range independent acoustic modeling.

1.3 Objectives & Contributions

The primary objective of this thesis is to examine changes to the Beaufort Sea am-

bient soundscape and demonstrate that they are indicative of environmental shifts

occurring in the region. This goal is motivated by the significant benefits that a bet-

ter description of ambient noise provides in tracking environmental changes as well

as enabling successful underwater naval operations in the region. To this end, the

contributions of this work include: (i) a comparison of ambient noise characteristics

near the same location at identical times of the year more than 20 years apart. The

earlier ambient noise data was collected in 1994 while the latter in 2016. Differences in

noise characteristics between these two times include spectral content, vertical direc-

tionality, and statistical distribution of transient events. (ii) A demonstration of how

the changed noise features are consistent with modeled effects due to a shift in the

sound speed profile (SSP) and surface noise generation. Specifically, Beaufort Lens

SSP is responsible for a notch near horizontal arrivals in noise vertical directionality

while the peak elevation angles in the noise directionality profile result from discrete

surface noise generation, as expected from a thinner and younger ice cover.

Another objective of this work is to develop noise detection and localization ap-

proaches that aid in our analysis of ambient noise data and compare their perfor-

mances to more conventional methods. To this end, this work makes the following

contributions: (i) a model-based convolutional neural network (CNN) approach to

source range estimation. This approach demonstrates more robustness to SSP and

ocean bottom depth mismatch than conventional matched field processing (MFP).
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(ii) A frequency domain event detection algorithm that identifies transients in the

data spectrograms and categorizes them based on duration and bandwidth. This

approach is an improvement over time domain, amplitude-based detection methods

because the spectral shapes of the detected events provide insight into their generation

mechanisms. (iii) Two forward approaches to localize ice-generated transient events

recorded by a geophone array using time-difference-of-arrival (TDoA) that show sim-

ilar performance to an inverse TDoA matching technique. Together, these methods

demonstrate the importance of array coverage area to localization success. As sec-

ondary contributions in the area of transient localization using geophones, we further

showcase the capability of remote geophone nodes for ice cover transient event mon-

itoring and make suggestions for the deployment of future seismo-acoustic systems

that combine both geophones and hydrophones.

1.4 Thesis Organization

The major components of this thesis are organized into the following chapters:

∙ Chapter 2 - The Historical Arctic Environment: This chapter describes

the historical propagation environment in the Arctic Ocean pertaining to its

underwater SSP and surface ambient noise generation. As a demonstration

of the ambient soundscape of such an environment, noise data collected during

the SIMI-94 experiment are analyzed and compared with modeled outputs. The

temporal distribution of transient noise events within the collected data is also

examined using a time domain, amplitude-based event detection algorithm.

∙ Chapter 3 - Environmental effects on Beaufort Sea Ambient Noise:

This chapter introduces on-going environmental changes in the Beaufort Sea

region of the Arctic Ocean and their hypothesized effects on ambient noise

directionality and generation. Data from the ICEX-16 experiment are analyzed

and compared with modeling outputs to showcase how the measured ambient

noise characteristics are indicative of the observed Beaufort Sea environment.
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The analysis results are further compared with those of the SIMI-94 data to

identify differences that may be attributed to the changed environment.

∙ Chapter 4 - Noise Generation Range Estimation: This chapter presents

a model-based CNN approach to noise range estimation as a more robust alter-

native to conventional MFP. The CNN method is trained using simulated data

and tested with both simulated and real data against both SSP (using data

from ICEX-16) and ocean bottom depth mismatch (using data from SWellEx-

96). The reason for the CNN approach’s improved performance is explored by

examining the trained networks’ intermediate outputs and comparing against

the template replica vectors of MFP.

∙ Chapter 5 - Transient Ice Noise Detection & Characterization: This

chapter describes a frequency domain, transient event detection algorithm as

a more useful alternative to time domain, amplitude-based methods. By com-

bining image processing techniques with hierarchical clustering (h-clustering),

this method detects and groups transient features in the data spectrogram into

events and then categorizes the events based on their bandwidth and duration.

The spectral properties of the detected events can then aid in hypothesizing

their generation mechanism by the ice cover. This frequency domain method is

applied to ambient noise collected during ICEX-16 to characterize the temporal

distribution of transient noise events during this experiment.

∙ Chapter 6 - Ice Cover Transient Noise Monitoring: This chapter presents

the deployment of a seismo-acoustic system of geophones and hydrophones to

monitor ice cover dynamics and detect transient cracking events during the

SIDEx experiment. As part of the data processing, two forward event localiza-

tion approaches are described that utilize the motion product detector (MPD)

and TDoA between sensor pairs. These methods show similar performance to

an inverse TDoA matching technique. The deployment of the seismo-acoustic

system also demonstrates the utility of remote geophones for ice cover monitor-

ing. Due to their cable-less nature, these remote units can be easily deployed to
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form an array that covers a much larger area than what is feasible with cabled

geophones.
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Chapter 2

The Historical Arctic Environment

Before we highlight the environmental changes occurring in the Arctic

Ocean, we first introduce the historical Arctic propagation environ-

ment in this chapter. As we describe below, the defining signature of

the historical Arctic environment consists of a monotonically increas-

ing sound speed profile (SSP) that promotes upward refraction of sound with a single

surface acoustic duct. While this profile is not an exact description for the entire

Arctic Ocean, it is exemplary of much of the central Arctic. In order to study the

environment-induced effects on the underwater ambient soundscape, we need to first

establish a control description of the noise in the historical Arctic environment. To do

so, underwater ambient sound characteristics during the Sea Ice Mechanics Initiative

(SIMI-94) experiment are analyzed and presented below. We further compare the

measured data with modeling output using traditional assumptions for noise genera-

tion to examine their agreement. We begin with a brief background on the historical

Arctic environment and noise modeling before introducing the SIMI-94 experiment

and presenting noise analysis results.

2.1 Historical Arctic Propagation Environment

The underwater ambient noise soundscape in the ocean is governed by two main com-

ponents - the propagation environment and the noise generation mechanism. The



propagation environment is largely defined by the SSP in the water and any bound-

aries such as the sea surface or bottom. In the deep ocean, the SSP has the most

significant effect on acoustic propagation. Analogous to light refracting in different

media with varying indices of refraction, sound waves refract towards lower sound

speed in accordance to Snell’s law (Eq. 1.33). The sound speed within a medium

varies with the medium’s density and compressibility. In water, these properties are

dependent on temperature, salinity, and static pressure, the latter being a function of

water depth. Thus, sound speed in water can be expressed as an empirical function

of temperature (𝑇 ) in degrees Celsius, salinity (𝑆) in parts per thousand, and depth

(𝑧) in meters [3]. Eq. 2.1 demonstrates that, in general, sound speed increases with

rise in temperature and salinity and with deepening water depth.

𝑐(𝑇, 𝑆, 𝑧) = 1449.2 + 4.6𝑇 − 0.055𝑇 2 + 0.00029𝑇 3

+(1.34 − 0.01𝑇 )(𝑆 − 35) + 0.016𝑧.
(2.1)

In the Arctic region, the existence of ice cover reflects much of the sun’s energy

and prevents it from penetrating into the water column. Consequently, the under-

ice water column is relatively isothermal and the SSP can be typically described as

monotonically increasing with depth (Fig. 2.1). Near the surface (upper ∼200 m), the

increase in sound speed with depth is generally more dramatic because of a steeper

salinity gradient - freshwater from ice cover melt results in lower salinity closer to

the surface. Below this surface layer, the water column is close to isosaline and the

increase in sound speed with depth becomes more gradual and constant. This SSP’s

effect on acoustic propagation is demonstrated in Fig. 2.1. For a near surface source,

acoustic rays emitted at shallow departure angles are trapped within the surface duct

due to the steeper sound speed gradient while steeper rays follow deeper refracted

paths.

Another governing factor of underwater ambient noise is the noise generation

mechanism. In the open ocean, primary contributors of ambient noise include wind-

driven waves and surface vessel traffic [43]. In the Arctic, however, ice cover of
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Figure 2.1: (Left) A historical, monotonically increasing Arctic ocean SSP. (Right)
Propagation paths of acoustic rays emitted by a near surface source at 100 m. Rays
with shallow departure angles are trapped within the surface duct while steeper rays
follow deeper refracted paths [3].

variable thickness and age exists for most of the year [44, 45, 46, 47] and largely

precludes these sources. Instead, the ice cover itself is responsible for much of the

ambient noise generation in this region [4]. Environmental forcings such as wind,

temperature, ocean current, and air pressure can all prompt noise generation through

mechanical deformation in the ice cover [7, 48]. Under a packed or continuous ice

cover, thermal cracking due to atmospheric cooling [48, 49] is a main contributor

of noise between 100-900 Hz [50]. The spatial distribution of these cracking events

is uniform [51] and the overall noise amplitude forms a qausi-Gaussian distribution

[48, 52]. The magnitude of ice-generated noise driven by wind also follows a Gaussian

distribution between 1-10 kHz [48, 49, 50]. Noise level has been demonstrated to be

proportional to average wind speed with an increase of ∼0.5 dB/m/s at 250 Hz [53]

and an increase of 16 dB per doubling of wind speed within the 3.2-6.4 kHz octave

band [49]. At frequencies below 100 Hz, Makris and Dyer [10] found that ambient

noise variations over periods of >1 hour correlate highly with composite measures

49



of stress applied to the ice by wind and current, whereas temperature plays a less

important role.

Near lead openings and pressure ridges in the ice cover, as well as in marginal ice

zones, ice characteristics such as thickness, concentration, and drift also affect ambient

noise. Noise level has been shown to correlate positively with ice concentration [54]

and ice drift [55]. Spectral properties of noise are also tied to different ice motion

mechanisms such as cracking and shearing. For example, large scale lead openings

can lead to broadband transients [56] while rubbing and shearing between different

ice floes can result in pure and varying tonals [56, 57, 58, 59]. Taken all together,

the cacophony of different cryo-acoustic emissions by the ice cover over large areas

results in a mostly stationary Gaussian ambient noise soundscape [60].

2.1.1 Modeling of Historical Arctic Ambient Noise

In the historical Arctic, noise generation is generally uniformly distributed throughout

the ice cover [51, 56]. Thus, to model Arctic ambient noise, one approach is to assume

a uniform distribution of sources near the surface. Such a noise model was first

proposed by Kuperman and Ingenito [61] and its mathematical formulation is briefly

described here. Fig. 2.2 shows the geometry for this model, where an infinite plane of

monopole sources is placed below the surface at depth 𝑧′. Each monopole has random

source strength 𝑠(r, 𝑡), where r is the radial vector in the source plane and 𝑡 is the

time variable. The source distribution is assumed to be radially homogeneous and

isotropic with correlation 𝑁(𝑠), where 𝑠 is the horizontal distance between any two

sources. Following the derivation in [3, 62], the acoustic pressure intensity due to this

source distribution at any frequency 𝜔 is calculated as

|𝑝2
𝜔(𝑧)| = 4𝜋2𝑞2

∫︁
[𝐹 (𝑘𝑟)|𝑔(𝑘𝑟, 𝑧, 𝑧

′)|2]𝑘𝑟𝑑𝑘𝑟, (2.2)

where 𝑘𝑟 is the horizontal component of the wavenumber 𝑘, 𝑔(𝑘𝑟, 𝑧, 𝑧
′) is the depth de-

pendent Green’s function satisfying Helmholtz equation for a single monopole source,

𝑞 is the spectral source level of the monopoles, and 𝐹 (𝑘𝑟) is the spatial wave vector
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spectrum of the distributed noise source, which is defined as the Fourier transform of

the correlation function 𝑁(𝑠). Assuming the monopole sources are uncorrelated and

their far-field radiation pattern follows 𝑐𝑜𝑠(𝜃), with 𝜃 defined from the vertical axis,

the correlation function is derived by [63] as

𝑁(𝑠) = 2𝛿(𝑠)
𝑘2(𝑧′)𝑠. (2.3)

Taking the Fourier transform of this expression and substituting into Eq. 2.2 yields

the noise intensity

|𝑝2
𝜔(𝑧)| = 8𝜋2𝑞2

𝑘2(𝑧′)

∫︁ ∞

0
|𝑔(𝑘𝑟, 𝑧, 𝑧

′)|2𝑘𝑟𝑑𝑘𝑟. (2.4)

This expression depends on the unknown source depth 𝑧′, which is taken to be much

smaller compared to the vertical wavelength. To eliminate this dependence, the

monopole source strength 𝑞 is normalized to yield a pressure level 𝑄 in an infinitely

deep ocean [62] by assigning it the value

𝑞2(𝑧′) = 𝑄2

16𝜋(𝑧′)2 . (2.5)

Given this normalization and a user defined source level 𝑄, Eq. 2.4 can be solved

numerically using wavenumber integration techniques. In practice, OASES [35] is

used to model noise generation by a uniform distribution of sources in this thesis.

2.2 The SIMI-94 Experiment

As part of a larger Arctic initiative by the Office of Naval Research (ONR), the

SIMI-94 experiment was a collective effort between the Massachusetts Institute of

Technology (MIT) and the Woods Hole Oceanographic Institution (WHOI) to study

acoustic emissions from ice fracturing processes during the spring of 1994. Both a

horizontal cross array and a vertical line array (VLA) of hydrophones were deployed in

the Beaufort Sea (approximately 400 km north of Prudhoe Bay, Alaska) below packed

ice conditions to collect ambient noise data. The exact location of the experiment
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Figure 2.2: Source model for uniformly distributed noise generation [3].

camp site on April 22, 1994 was 73𝑜00′56′′𝑁 and 149𝑜53′55′′𝑊 (Fig. 2.3) [11], which

is off of the Alaskan continental shelf and in deep ocean of ∼3000 m depth. Results

presented in this chapter focus specifically on data recorded on the VLA. This array

consist of 32 omni-directional channels with linear 7 m spacing recording continuously

at a sampling rate of 1000 Hz. It was deployed in the water from a depth of 62 to

279 m with the center element positioned at 167 m (Fig. 2.4). The sensitivity of the

hydrophones was -175 dB re 1V/𝜇Pa. The data collected on the array were recorded

with a 16-bit amplitude quantization and bandpass filtered between 1 and 350 Hz (24

dB/octave roll-off at low end, 48 dB/octave roll-off at high end) by the acquisition

system before being stored on tapes. In total, 35 tapes of data were recorded during

the entire experiment; however, the VLA was only active during tapes 23–32 (from

April 18–22 UTC). All tapes had a continuous interference that is consistent at 60 Hz,

caused by the camp generators. Many tapes also included strong noise interference at

70 Hz, 80 Hz and higher frequencies. For our analysis, 6 hours of data on tape 23 were

analyzed because this segment contained lower levels of noise interference compared

to the rest of the data. While this shorter dataset does not allow us to correlate
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Figure 2.3: Location of the SIMI-94 experiment camp site on April 22, 1994 [11].

the ambient noise to longer time-scale environmental parameters such as daily or

seasonal temperature or wind measurements, it is, nonetheless, a useful snapshot of

the ambient soundscape that would allow for a valid study of how features of the

ambient noise can be connected to environmental characteristics during SIMI-94.

The SSP measured at the experiment site during data collection is shown in Fig.

2.5. The upper 800 m of the profile is plotted based on recorded water temperature

data while the values at deeper depths are extrapolated by continuing the profile’s

slope at 800 m to the depth of the ocean bottom. The overall shape of this SSP

matches the description of the historical Arctic profile. The sound speed monoton-

ically increases with depth. The gradient of the increase is steeper above ∼350 m

due to the salinity effect mentioned previously, creating a knee in the profile at that
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Figure 2.4: Deployment configuration of the SIMI-94 VLA.

depth.

2.3 Overall Ambient Noise Soundscape

In this section, we present the spectral and spatial characteristics of ambient noise

collected during SIMI-94. We further compare our measured result with modeling

output computed using the historical, uniform source distribution to model ice cover

noise generation.

2.3.1 Spectral Analysis

The spectrogram and PSD estimate of the ambient noise data are presented in Fig.

2.6. To generate these plots, the time series data from the top hydrophone in the

VLA (62 m depth) are segmented using a 512-point Hanning window with 50% over-

lap before carrying out a fast Fourier transform (FFT). This produces a frequency

resolution of ∼2 Hz. For the PSD estimate, the median of calculated power values

at each frequency bin is plotted. The noise spectrogram (Fig. 2.6(a)) shows many
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Figure 2.5: SSP during SIMI-94. Its monotonically increasing nature matches the
description of the historical Arctic profile.

persistent, high level bands at distinct frequencies that create spikes in the median

PSD estimate (Fig. 2.6(b)). The peak at 60 Hz is caused by interference from the

camp generators; the cause for the higher frequency peaks is unclear but is likely

noise from other man-made sources because of their narrow bandwidth. The absolute

noise level remains between 85-110 dB for all frequencies examined. These values are

high compared to previously published ambient noise measurements from the Arctic

region within this frequency band (Fig. 2.7 [57]) but are similar to the results shown

in a prior study of the same SIMI-94 data by Stamoulis [12]. The general shape of the

calculated noise profile more closely matches the results from previous works shown

in Fig. 2.7. The profile has a peak in noise level near 20 Hz and follows the overall

trend that as frequency increases, the noise level decreases.

To further investigate the high noise level, we estimated the self-noise of the SIMI-

94 VLA. To do so, conventional beamforming is performed using all VLA elements

to produce the wavenumber-frequency (k-f) [64] plot shown in Fig. 2.8. The fre-

quency limit (100 Hz) of this plot corresponds to the spatial aliasing frequency limit

constrained by the VLA dimension. The solid lines in the plot denote an apparent

propagation speed of 1435 m/s, as calculated through division of the frequency and

wavenumber indices along the lines. This speed is equal to the approximate sound

55



(a)

(b)

Figure 2.6: (a) SIMI-94 tape 23 spectrogram. Persistent bands are visible at distinct
frequencies, which are likely caused by anthroprogenic interfering sources due to their
narrow bandwidth. For instances, the consistent spectral band at 60 Hz and its
harmonics are due to the camp generator. (b) SIMI-94 tape 23 median PSD estimates.
Dot-dashed line shows estimated array self noise derived from k–f beamforming; values
for self-noise above 80 Hz are extrapolated.
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Figure 2.7: Median PSD estimate published in previous Arctic ambient noise studies.
The 10% to 90% spectral level interval for May 2013 is shaded. The 5% to 95%
spectral levels interval for April 1975 is also shaded [57].

speed in the water column at the depth of the VLA (Fig. 2.5). All signal arrivals

within the cone outlined by these lines represent realistic arrivals with apparent propa-

gation speeds greater than 1435 m/s. For example, along the zero wavenumber index,

the apparent propagation speed is infinite because this index represents signals that

arrived at the VLA horizontally, thus being received by all elements within the array

at the exact same time. Similarly, the solid lines represent signals that arrived at the

VLA vertically, thus the apparent propagation speed is the same as the actual sound

speed. Signal arrivals outside the cone denote apparent propagation speeds that are

less than the water sound speed, which is unphysical. Thus, they are likely caused by

array self-nose. Using Fig. 2.8, the array self-noise is estimated for frequencies below

80 Hz by calculating the mean noise level outside the cone at each frequency bin.

Above 80 Hz, since there is limited to no data outside the cone, self-noise is extrapo-

lated by setting it equal to the value calculated at 80 Hz. The resultant estimate is

plotted as the dot-dashed line on Fig. 2.6(b). Unsurprisingly, the array self-noise level

is quite high, with values near 75 dB. Thus, this elevated noise floor may explain why
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Figure 2.8: SIMI-94 data k–f beamforming output showing unaliased frequencies
below 100 Hz. The solid lines denote apparent propagation speed of 1435 m/s.

the measured noise level during SIMI-94 was much louder than results from previous

studies.

2.3.2 Vertical Directionality Analysis

As a benefit of using an array to collect ambient noise data, conventional beamforming

can be applied to analyze the spatial distribution of the received data. Specifically,

the VLA allows for insight into the noise vertical directionality. For the SIMI-94 tape

23 data, the noise vertical directionality over time is calculated by beamforming the

data between 20-100 Hz. The frequency averaged output in the 80-100 Hz frequency

interval (center frequency = 90 Hz) is then computed to generate a plot of noise level

at each steering elevation and moment in time (Fig. 2.10). This specific frequency bin

is selected to ensure that the beamformed output has good spatial resolution without

encountering spatial aliasing based on the VLA geometry. Fig. 2.9(a) demonstrates,

for the SIMI-94 VLA, spatial aliasing occurs near 105 Hz when the array is steered

towards endfire and the frequencies leading up to the aliasing frequency have the

best spatial resolution. At lower frequencies, there is still no spatial aliasing but the
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spatial resolution of the output is lower. When steered towards broadside, the array

beampattern at 90 Hz has a 3-dB-down beamwidth of ∼3 degrees (Fig. 2.9(b)). Fig.

2.10 shows that during the entire recording period, noise level peaks at 0 degrees

elevation angle. This means ambient noise arrival was highest at array broadside

(top of the array is +90 degrees, bottom is -90 degrees). To examine noise arrived

from broadside more closely, the beamform output at a specific steering elevation

angle as a function of frequency and time is determined. Fig. 2.11 shows the noise

from broadside contains numerous tonal bands that vary in frequency with time.

Because of the meandering pattern of these tonal bands in frequency, they are likely

not caused by the camp generator or other anthropogenic sources like the peaks

observed in the PSD estimates (Fig. 2.6(a)). Rather, their source is likely the ice

cover. Xie and Farmer [58] have noted that intermittent pure tones are generated

by shearing and rubbing of adjacent ice masses and that ice of different thicknesses

resonate at different frequencies. Since the tones observed here are persistent with

time, one possible explanation for them is the ice cover during SIMI-94 experienced

constant shear stress as ice masses of variable thicknesses persistently rubbed against

each other; furthermore, the ice was thick (up to 8 m [12]) and strong enough during

SIMI-94 to maintain this pressure to generate these tonal bands instead of ridging or

breaking apart.

2.3.3 Surface Noise Generation Modeling

To better understand why ambient noise during SIMI-94 exhibits its vertical direc-

tionality, the time averaged profile at the 80-100 Hz interval (Fig. 2.10 bottom) is

compared with modeled noise vertical directionality profiles. The model assumed for

ice cover noise generation is the historical, distributed source approach presented in

Section 2.1.1. The modeling is carried out using OASES [35]. The modeled environ-

ment consists of a 2 m thick surface ice layer on top of a 3000 m deep water column.

Below that is a solid bottom halfspace. Physical parameters used to model these

layers are presented in Table 2.1. As noted in Section 2.1.1, the only restriction on

the placement of the uniform noise distribution below the surface is that its depth
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(a)

(b)

Figure 2.9: (a) Spatial aliasing for the SIMI-94 VLA occurs at endfire near 105
Hz. Spatial resolution becomes higher as frequency increases towards the aliasing
frequency. (b) The VLA beampattern steered towards broadside at 90 Hz shows
3-dB-down mainlobe width of ∼3 degrees.
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Figure 2.10: Beamform output over time averaged over the 80-100 Hz frequency
interval. Noise level peaks near 0 degrees elevation during the entire recording period.
Bottom plot shows mean vertical directionality profile generated by averaging top plot
in time.

must be small compared to the expected acoustic wavelength. OASES automatically

sets this depth as 𝜆𝑡𝑜𝑝/30, where 𝜆𝑡𝑜𝑝 is the wavelength calculated at the surface

of the water column. We set the modeled source frequency to be 90 Hz, matching

that used to generate the measured vertical directionality profile. Given that the

surface sound speed in the SIMI-94 SSP is 1435 m/s, the depth of uniform source

distribution is calculated to be 0.5 m below the surface. With these settings, the

comparison between the measured and modeled noise vertical directionality profiles

is shown in Fig. 2.12. The noise level of the profiles have been normalized since

we are not concerned about absolute levels, only the location of their peaks. Based

on this metric, the two profiles agree well in that both peak near the horizontal at

0 degrees elevation. Besides the location of the peaks, the two profiles do differ in

their noise levels at certain elevation angles. In particular, the modeled profile has a

broader peak near 0 degrees elevation and a steeper decrease in noise level between

±15-30 degrees compared to the measured profile. These differences may possibly be
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Figure 2.11: Beamform output at 0 degree elevation angle as a function of frequency
and time. Meandering tones that vary with frequency and persist with time are ob-
served. The non-frequency varying, persistent tone at 60 Hz is due to camp generator
noise. Bottom plot shows mean noise level profile generated by averaging top plot in
time. Right plot shows mean vertical directionality profile over time in the 80-100 Hz
frequency interval.
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Table 2.1: Parameters used to model the SIMI-94 environment. 𝐶𝑝 denotes compres-
sional speed, 𝐶𝑠 denotes shear speed, 𝜌 denotes density, 𝜆 denotes spatial wavelength,
ℎ𝑅𝑀𝑆 denotes root-mean-square roughness, 𝜂 denotes roughness correlation length, 𝐷
denotes layer thickness. Parameter values are selected based on discussions in [3, 65].

Layer Parameters

𝐶𝑝 = 3600 m/s, 𝐶𝑠 = 1800 m/s
Ice 𝜌 = 0.9 𝑔/𝑐𝑚3, 𝐷 = 2 m

ℎ𝑅𝑀𝑆 = 0.2 m, 𝜂 = 20 m
Water column 𝜌 = 1.0 𝑔/𝑐𝑚3, 𝐷 = 3000 m

𝐶𝑝 = SIMI-94 SSP (Fig. 2.5)
Bottom halfspace 𝐶𝑝 = 2200 m/s, 𝐶𝑠 = 1500 m/s

𝜌 = 2.9 𝑔/𝑐𝑚3

attributed to slight mismatches between the real and modeled environments relating

to the SSP, the ice cover, the VLA, and even the the surface noise distribution - it

is unrealistic to expect that our model is a perfect replica of the actual environment

during SIMI-94. Nonetheless, the modeled profile appears to capture the essence the

measured profile in regards to its peak location and general shape. This agreement

suggests that our modeling parameters, which includes the historical, uniform surface

source distribution, is a close, albeit not perfect, description of the environment dur-

ing the SIMI-94 experiment. Thus, ice cover noise generation during this experiment

can still be suitably described by the traditional, uniform distribution model.

2.4 Transient Event Characteristics

In addition to spectral and spatial noise analysis, detection and characterization of

transient ambient noise events in the data time series can provide useful information

on the temporal distribution of ice cover activity. One of the earliest studies of tran-

sient ambient noise events is conducted by Manning, which provided insight into the

temporal distribution of noise events below 80 Hz in the central Arctic [9]. Greening

et al. [51] and Zakarauskas et al. [66] conducted similar studies in shallow Arctic
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Figure 2.12: Comparison of measured SIMI-94 noise vertical directionality profile
with modeling result assuming uniform surface noise generation. The two profiles
agree well in that both have peaks near 0 degrees elevation angle, as marked by the
solid black line.
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environments. They extended the analysis to higher frequencies and focused more

exclusively on the spatial distribution and directionality of the detected events. Sta-

moulis [12] also studied acoustic transients recorded during the SIMI-94 experiment

by characterizing the motion of their generation mechanism in the ice cover. Relating

to our study, this work noted the temporal grouping of transient events where multi-

ple arrivals may exist in a single event and multiple events may be grouped to belong

within a combined cluster. In this section, we provide an overview of an amplitude-

based event detection method developed based on an approach by Zakarauskas et

al [66, 67]. We then present results relating to temporal statistical characteristics of

transients detected in the SIMI-94 tape 23 ambient noise data.

2.4.1 Amplitude-based Event Detection Method

An amplitude-based transient event detection algorithm is used to find transient

acoustic emissions in the ambient noise data. This method requires three parameters

(𝑤, 𝑟, 𝑝𝑡ℎ𝑟𝑒𝑠) and searches for improbable clusters of high amplitude peaks within the

data time series. Briefly, it works as follows:

1. Given the input time series 𝜑(𝑡), form a histogram of its absolute peak ampli-

tude 𝜑𝑝𝑒𝑎𝑘𝑠(𝑡), where 𝜑𝑝𝑒𝑎𝑘𝑠(𝑡) is calculated by applying the MATLAB function

findpeaks to |𝜑(𝑡)|.

2. Set the amplitude value exceeded by 𝑟% of the histogram as a threshold value,

𝑚.

3. Partition the time series into adjoining segments of 𝑤 peaks; within each seg-

ment, count the number of peaks, 𝑁 , whose amplitude exceed 𝑚.

4. Calculate the probability of having at least 𝑁 peaks from the top 𝑟% of the

histogram within a window of 𝑤 peaks as a sum of binomial distributions, i.e.

𝑃 = ∑︀ 𝑤
𝑖=𝑁

(︁
𝑤
𝑖

)︁
𝑟𝑖(1 − 𝑟)(𝑤−𝑖).

5. If 𝑃 is less than the chosen threshold probability 𝑝𝑡ℎ𝑟𝑒𝑠, the window contains

an event and the peaks within the window that have amplitude greater than 𝑚
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are identified.

6. Consecutive peaks that are less than 0.05 seconds apart are grouped into a single

composite event. This threshold is set based on the description of transient

event types in previous studies by Chen [68] and Stamoulis [12], where different

arrivals within the same event are typically less than 0.05 seconds apart.

The algorithm parameters used to analyze the SIMI-94 data are 𝑤 = 10, 𝑟 = 1%, and

𝑝𝑡ℎ𝑟𝑒𝑠 = 0.00001. 𝑤 = 10 is chosen because an impulsive transient event contains,

typically, less than 10-20 peaks [12, 68]. If 𝑤 is too large, shorter events may be missed

because the likelihood of having a few large peaks within a long window may still be

fairly high. Thus, to be conservative, a small value of 10 is chosen. However, it is

also unlikely for a transient event to have only 1 or 2 peaks and ideally, 𝑝𝑡ℎ𝑟𝑒𝑠 should

be small so that the number of false alarms is kept to a minimum; 𝑝𝑡ℎ𝑟𝑒𝑠 = 0.00001

seems to be a reasonable threshold through some empirical testing. 𝑟 is chosen in

complement to the other two parameters so that, as shown in Table 2.2, as 𝑁 increases

to more than 2 peaks within a window of 10, the window would be selected to contain

a transient. As another check for false alarms, this method is applied to data on all

32 channels and detected transients are only confirmed to be events if they appear

on at least 3/4 of the channels. After event selection, the beginning and end times of

each event are documented.

Table 2.2: Probability of N or more peaks with amplitude greater than the top 𝑟%
of the PDF in a sample of 10 peaks.

r = 10% r = 5% r = 1% r = 0.5% r = 0.1%
N = 1 0.264 0.086 0.004 0.001 4.476 × 10−5

N = 2 0.070 0.012 1.138 × 10−4 1.461 × 10−5 1.194 × 10−7

N = 3 0.013 0.001 2.001 × 10−6 1.281 × 10−7 2.089 × 10−10

Since ambient noise level generally increases towards lower frequencies, the data

must be bandpass filtered into separate frequency bands before being processed by
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Figure 2.13: Example of two transients detected in the data time series in the 40-80
Hz interval.

the event detector or higher frequency transients may be missed [66, 67]. Accordingly,

the time series are filtered into 3 octave bands between 40-320 Hz (40-80 Hz, 80-160

Hz, 160-320 Hz). The narrow-band interferences observed in Fig. 2.6(a) should not

affect the output of the event detector because they are persistent with time and the

event selector is focused on large amplitude transient events. An example of transient

events detected in the 40-80 Hz interval is shown in Fig. 2.13.

Before we present the results from applying the detection algorithm, it is important

to discuss a limitation of this approach. As with all datasets without ground truth

information regarding the presence of transients events, it is extremely difficult to

quantify the performance of this algorithm applied to the SIMI-94 data. It should

be expected that, with any automated detection system, there will be missed events

as well as false identifications. We specifically chose this algorithm because it has

been applied previously in published literature [66, 67] and its probabilistic approach

provided more confidence that it would detect true transients containing a series of

high amplitude peaks while ignore random noise that may only contain a single peak.

We further selected the parameters to be more conservative with detection, further
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reducing the possibility of false identifications. There are certainly faint events that

are missed by the algorithm, however, we are fairly confident that the algorithm would

detect most of the stronger transient events that are inherently a more significant

component of the ambient soundscape. This first limitation highlights the difficulty

of transient characterization for ambient noise in general . Even if detection is done by

trained human expert (which is incredibly tedious for any substantial dataset), there

would still be some unknown uncertainty regarding the accuracy of the detection

process given that there is no ground truth for ambient noise transient events. Thus,

it is perhaps more apt to view our temporal analysis of the SIMI-94 data in this case

(and in any future applications) as not a means to identify all true transient events

within the ambient noise, but instead, as a way to tabulate high amplitude features

in the noise that are representative of transient events and provide a description for

their temporal distribution. This is still a useful and informative result as, regardless

of their origin, these transients are, nonetheless, part of the ambient soundscape.

2.4.2 Temporal Distribution Analysis

Table 2.3 tallies the number of transient events detected in the dataset in each octave

band. The number of transients increases with frequency. This result suggests as

frequency increases, higher amplitude transient noise events contribute more and

more to the total ambient noise soundscape. This finding is in agreement with the

result of a previous study by Zakarauskas in a shallower Arctic environment [66].

Table 2.3: Number of detected transient events in each frequency band.

40-80 Hz 80-160 Hz 160-320 Hz
173 451 1043

Post event detection, the start and end times of the detected transients are

recorded to gain a better understanding of their temporal density and distribution.

These times are calculated by subtracting the end time of an event from the start
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Figure 2.14: Temporal distribution of transient events during the SIMI-94 experiment
at three octave bands. Examples of a clustering of events and a time gap that separate
the clusters are shown.

time of the next. The only known previous work to have characterized inter-arrival

times between transient events is by Manning [9]. In that study, a J-shaped gamma

distribution is found to best describe the statistical spread of inter-arrival times if very

large outliers (>280 s) are excluded. However, it may be natural to have very large

inter-arrival times if the weather conditions are calm and the ice cover experiences low

environmental forcing. A more natural way to characterize inter-arrival times may be

to view the occurrence of transient events as a clustering process. Within a cluster,

the inter-arrival times are short but large gaps may separate consecutive clusters. To

visualize and verify this clustering process, the data time series are segmented into 1

minute bins and the number of events detected within each bin is counted. The results

are presented in Fig. 2.14. This plot appears to confirm this hypothesis. Transient

events do seem to occur in clusters that are separated by gaps, with a cluster defined

as any period of time during which at least 1 event occurs in each 1 minute bin and

a gap defined as any period of time during which no events occur in each 1 minute

bin.
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Table 2.4: Time gap between successive event clusters (min)

40-80 Hz 80-160 Hz 160-320 Hz
75th Percentile 9 4.5 3

Median 3 2 2
25th Percentile 2 1 1

Table 2.5: Time length of event clusters (min)

40-80 Hz 80-160 Hz 160-320 Hz
75th Percentile 2 2 3

Median 1 1 2
25th Percentile 1 1 1

Table 2.6: Number of events in each event cluster

40-80 Hz 80-160 Hz 160-320 Hz
75th Percentile 5 7 10

Median 3 2 3
25th Percentile 1 1 2
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To better quantify the clustering characteristics of transient activity during SIMI-

94 within each frequency octave, the statistical median and quartile values of the

event gap and cluster lengths, as well as the number of events within each cluster are

presented in Tables 2.4, 2.5, and 2.6, respectively. The time gap between successive

event clusters decreases with frequency. Table 2.4 shows that the 75th percentile value

for the 40-80 Hz interval is 9 min and this value decreases to 3 min for the 160-320

Hz interval. This result is in agreement with the trend that there is more transient

activity at higher frequencies. The lower gap length means that more event clusters

are occurring at higher frequencies. However, while the number of clusters increases

with frequencies, Table 2.5 shows the duration of clusters are fairly consistent over

all frequency intervals - most event clusters last less than ∼3 minutes regardless

of frequency. Lastly, Table 2.6 shows while the median number of events within

any cluster is 2-3 for all frequency intervals, higher frequency clusters have a higher

ceiling for the number of events within any single cluster. This is demonstrated by

the increase in the 75th percentile value with frequency interval.

2.5 Summary

In this chapter, we examined noise data collected during the SIMI-94 experiment as

an example of the ambient soundscape in the historical Arctic environment. Such

an environment has a monotonically increasing SSP and noise generation from its

ice cover can be modeled by a uniform distribution of sources near the surface. The

spectral shape of ambient noise collected during SIMI-94 is similar to results from

previous studies. Noise level generally decreases with increasing frequency with a

peak near 20 Hz. The absolute noise level during SIMI-94, however, was higher than

previous Arctic recordings. This discrepancy may be caused by higher array self-noise

of the SIMI-94 VLA. The vertical directionality of the recorded noise shows a peak

in noise level arriving broadside to the VLA (0 degrees elevation angle). This result

matches well with modeling output assuming uniform noise generation by the ice

cover. Lastly, an amplitude-based transient event detection algorithm was applied
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to study the temporal distribution of transient noise events during SIMI-94. This

analysis demonstrated that transient occurrence during SIMI-94 may be described as

a clustering process, where events occur in quick succession followed by a gap during

which there are no transients. Furthermore, more events were detected at higher fre-

quency octave bands. This result indicates that transient noise accounts for a larger

portion of the total acoustic soundscape at higher frequencies. A drawback of this

event detection method is the lack of visualization of the detected events in the fre-

quency domain. Performing detections in separate frequency octaves also fragment

broadband transients and does not provide a complete picture for these events. Fur-

thermore, the spectral shapes of the detected transients would provide insight into

their generation mechanisms in the ice cover and can also be used as a means to fur-

ther eliminate false identifications (e.g., a very narrowband, short duration detection

is likely not a true transient event). Motivated by these shortcomings, we propose an

alternative, frequency domain event detection algorithm in Chapter 5 of this thesis.

Further work regarding this algorithm and temporal analysis of transients in general

also include comparing the occurrence of the detected transient against statistical

models such as one that assumes a Poisson distribution (as an example) for event

occurrence. Such comparisons would provide insight into whether the transients’

temporal characteristics follow any known statistical distributions.

Meanwhile, in the following chapter, we present noise analysis results from a more

recent Arctic experiment in comparison to SIMI-94 observations to demonstrate the

effects on the ambient soundscape due to environmental changes. These changes

relate to the two main components that dictate acoustics propagation introduced in

this chapters, which are the SSP and ice cover noise generation.
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Chapter 3

Environmental effects on Beaufort

Sea Ambient Noise

The historical Arctic environment outlined in Chapter 2 has been an apt

description for much of the region in the past. However, the Arctic

ocean is dynamic and has been undergoing significant changes in recent

years. In this chapter, we introduce observed shifts to the underwater

SSP and the surface ice cover and discuss their effects on the ambient soundscape.

We focus our presentation on the Beaufort Sea, where the SIMI-94 experiment was

conducted and where a more recent ambient noise dataset was collected during the

ICEX-16 experiment. We again leverage noise modeling to explain how features

observed in the measured noise data connect to environmental changes in the region.

3.1 Beaufort Sea Environmental Changes

3.1.1 Beaufort Lens SSP

In the Beaufort Sea, an influx of warm Pacific water entering the region from the

Bering Strait, combined with subduction of solar-heated water from the Chukchi Sea

during the summer months, has dramatically altered the underwater SSP by increas-

ing water temperature between ∼40-80 m depth [69, 70, 71]. While this circulation



phenomenon, named the “Beaufort Lens”, has been noted since the 1970s [72], more

recent measurements by the WHOI Ice-Tethered Profiler (ITP) program1 [73, 74]

found the Lens’ intensity has increased and its geographical extent has spread. The

ITP program consists of a sparse network of oceanographic profilers located through-

out the Arctic ocean. Each ITP is deployed by securing it within the surface ice cover;

it then travels with the ice motion and collects data in the water column below along

a wire rope suspended through the ice to a depth of up to 800 m. A conductivity,

temperature, depth (CTD) sensor travels along the wire to measure the water salinity,

temperature, and pressure (depth). These values can then be used to calculate the

SSP. Each ITP performs 2-6 traverses along its wire per day and the data collected is

transmitted to a shore-based data server using an Iridium transmitter in the above-

ice portion of the unit (Fig. 3.1). From data collected using the ITP program, the

presence of the Beaufort Lens has been observed in much of the Canadian Basin and

water temperature at the Lens’ depth can exceed that just outside its depth interval

by > 1𝑜C (Fig. 3.2 [69]).

As the result of the Beaufort Lens, the historical, monotonically increasing Arctic

SSP is disrupted. Due to the increase in temperature, a sound speed maximum now

occurs at the Lens’ depth (Fig. 3.3(b)). This change affects acoustic propagation

in the region by creating a double duct environment - one at the surface as usual

and another just below the sound speed local maximum. In the surface channel,

acoustic waves encounter frequent interactions with the ice-water interface, resulting

in severe attenuation. In contrast, the lower duct has been shown to promote long

range propagation (Fig. 3.3) by effectively trapping sound above 300 Hz [13, 14, 75,

76, 77]. The effect of this ducted environment on acoustic propagation will likely

increase in significance in the future. For instance, with the modeled rise in Arctic

Ocean pH, sound is predicted to propagate even further within the lower duct due to

decreased attenuation [78]. Thus, continued study of this phenomenon and its effects

are of critical importance to improving our ability to characterize the Arctic Ocean
1The ITP program is deployed throughout the Arctic Ocean and the Beaufort Sea is just part of

its coverage area.
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Figure 3.1: Schematic of an Ice-Tethered Profiler. Dimensions are presented in cm,
except where specified. [74]
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Figure 3.2: (Top) Spatial distribution of temperature and salinity profiles acquired by
ITPs from August 2004 to September 2009 analyzed by Toole et al.. Color shading
indicates the depth in meters. Special attention is given to profiles from ITP 6
acquired in summer 2007 (green), ITP 3 from winter 2005–2006 (red), and ITP 4
from winter 2006–2007 (orange). (Bottom) Depth-time contour plot of the observed
upper ocean temperature (𝑜C) for the summer of 2007 as recorded on ITP 6. [69]
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soundscape and successfully conduct underwater acoustic operations in the region.

In addition to the ITP data presented by Toole et al. [69], we also conduct our

own analysis of ITP data collected in the Beaufort Sea in more recent years from

January 2014 to January 2020. The positions of 2331 SSP measurements we examine

are shown in Fig. 3.4(a). They are all located within the Beaufort Sea region of the

Arctic and their collection year is denoted by different markers. Most measurements

were collected in 2014 (1756) while 2018 and 2020 have the least with 20 and 26 mea-

surements, respectively. Fig. 3.4(b) shows the yearly mean of the measured profiles,

as well as the sound speed standard deviation with depth. Similar to Toole et al. [69],

we observe a local sound speed maximum near ∼70 m depth caused by the Beaufort

Lens. Furthermore, in most years, the largest temporal variability in the SSP occurs

around the depth of the local sound speed maximum and just below the lower duct.

This is evident by the slight increase in sound speed standard deviation near those

depths. While the SSP typically has a single, sharp local maximum, it is also possible

for the profile to exhibit a broader peak or even multiple peaks. These features can

be seen in the more recent profile averages from 2018 to 2020 (Fig. 3.4(b)). In fact,

the mean of the 26 measurements collected in January 2020 show two distinct peaks

instead of just one. The observation of these new SSP features demonstrates the

dynamic nature of the Beaufort Sea. The shifting underwater SSP invites continued

monitoring to ensure we can accurately describe the region’s undersea environment

in the future.

3.1.2 Changes to Surface Ice Cover

Over the past 100 years, the global average surface temperature has been steadily

increasing [2] with the most significant increase occurring since 1976 [1, 2]. More

significantly, the Arctic region has experienced more dramatic warming than any

other region on Earth [2]. In the historical Arctic, ice cover exists in most parts

throughout the year [79]. However, with the region’s continued warming, climate

models project that the ocean could be completely ice-free during the summer within

the century [47, 80]. Indeed, a general trend in the Arctic ocean has been the decline in
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(a)

(b)

Figure 3.3: (a) Representative SSP of the historic Arctic profile. Corresponding
transmission loss (dB) plot with a 900 Hz source at 100 m depth. (b) Representative
SSP demonstrating the effect of the Beaufort Lens. The increase in temperature at
the Lens’ depth (∼40-80 m) creates a local sound speed maximum. Corresponding
transmission loss (dB) plot with a 900 Hz source at 100 m depth showing the ability
of the lower sound duct to trap sound and allow propagation to long ranges. [13]
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(b)

Figure 3.4: (a) Locations of measured SSPs as part of the ITP program from 2014
to early 2020 in the Beaufort Sea. (b) Mean (solid lines) and ±2 standard deviations
(dashed-dotted lines) of the measured profiles. The first panel shows all profiles while
the rest show profiles collected in a single year. The 𝑛 value in each panel title denotes
the number of profiles that were collected during that year.
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Figure 3.5: Ice cover age during May and September of 1983-2010 showing the decline
in multi-year ice over time. [45]

ice cover thickness and spatial extent. The mean winter thickness of central Arctic ice

cover declined at more than 10 cm/year between 1993-2007 [81] and Arctic ice extent

has also steadily declined since 1979 [82, 83, 84]. More specifically, the percentage of

the ice cover that consists of multi-year ice, or ice that has existed for longer than 1

year, has dramatically reduced (Fig. 3.5) [45, 85]. Instead, more fragile first-year ice

is more prevalent.

The effect that thinner and younger ice cover has on ambient noise generation has

not been extensively studied. However, a hypothesis is that noise may be produced

at more localized positions in the ice cover such as along ridge formations. Such a

result would be a change from the uniform surface noise generation assumption of the
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historical Arctic. As part of our analysis in this chapter, we examine whether this

hypothesis fits with observed data.

3.2 The ICEX-16 Experiment

In March of 2016, the MIT Laboratory for Autonomous Marine Sensing Systems

(LAMSS), Applied Physical Sciences Corporation, Bluefin Robotics, and GobySoft

jointly participated in the U.S. Navy’s 2016 Ice Exercise (ICEX-16) in the Beaufort

Sea region of the Arctic ocean. Coincidentally, the location of the ICEX-16 camp

site was nearly identical to that of the SIMI-94 experiment more than two decades

earlier (Fig. 3.6). One scientific goal of ICEX-16 was to characterize the effect

that environmental changes, such as that occurring in the SSP and ice cover, have

on the region’s underwater acoustic environment. Continuous ambient noise data

were recorded with a 32 VLA tethered below a suspended Bluefin-21 autonomous

underwater vehicle (AUV) under packed ice conditions. The data sampling rate was

12000 Hz and a 16-bit amplitude quantization was used by the recording system. The

VLA had omni-directional hydrophones with nested spacings of 1.5 and 0.75 m and

its center was 38 m below the AUV during deployment (Fig. 3.7). The sensitivity

of the hydrophones was -176 dB re 1v/𝜇Pa [86]. Two datasets were gathered during

the experiment. First, approximately 8 hours of ambient noise were recorded with

the AUV at the ocean surface (center of the VLA at 38 m depth) in a man-made

ice hole on March 13. Then, on March 14, more ambient noise data were collected

at different water depths by traversing the AUV from 50 m down to 200 m below

the ice hole and back up to 25 m depth at ∼25 m increments (the center of the

VLA varied from 63 to 238 m). At each depth, roughly 15 minutes of data were

collected on each leg of the AUV deployment. Similar to the SIMI-94 dataset, while

the data recordings during ICEX-16 are not long enough for long-term environmental

correlation, they are representative samples of the ambient noise that allows us to

study how the soundscape may be shaped by the specific environmental characteristics

during ICEX-16.

81



Figure 3.6: Location of ICEX-16 experiment camp site compared to SIMI-94. The co-
ordinates of the ICEX-16 camp on March 13, 2016 were 73𝑜02′60”𝑁 and 149𝑜35′60”𝑊 ,
which is only ∼6 nautical miles from the SIMI-94 camp location.

Figure 3.7: The ICEX-16 VLA, deployed with AUV at the surface, compared with
the SIMI-94 VLA. Note the depth scale difference between left and right.
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The underwater SSP measured during the ICEX-16 experiment is shown in Fig.

3.8(a). In comparison to the monotonically increasing profile from SIMI-94, the ICEX-

16 SSP exhibits the effect of the Beaufort Lens, with a local sound speed maximum

near 75 m depth. In addition to the SSP, the ice cover during ICEX-16 also reflects

the broad environmental changes occurring in the region. The camp was positioned

on top of first year ice with thickness of ∼1-2 m. A ridge in the ice cover was present

∼30-50 km to the north-northeast of the camp location; It can be observed on the ice-

temperature satellite imagery on March 13 [87] as a line of higher ice temperature (Fig.

3.8(b)). The presence of this ridge further motivates the hypothesis that ambient

noise generation in the new Arctic, such as the environment during ICEX-16, may be

more localized in the ice cover along such features rather than uniformly distributed

in space. In our later analysis, we test this hypothesis by comparing the measured

data during ICEX-16 with model output assuming discrete surface noise generation

in addition to the conventional, uniform noise generation approach.

3.3 Impacts of Environmental Changes to Overall

Ambient Noise

In this section, we analyze the spectral and spatial properties of ambient noise col-

lected during ICEX-16 to explore characteristics that may be attributed to changes

in the SSP and ice cover. We start with spectral analysis of the noise data, followed

by comparisons of the noise profile and directionality with modeled outputs.

3.3.1 Spectral Analysis

To generate spectrograms of the ICEX-16 data, the recorded time series are segmented

using a 2048-point Hanning window with 50% overlap before applying the FFT. For

the long recording at 38 m depth, spectral information from the lowest hydrophone

in the VLA, at 54 m, is presented in Fig. 3.9(a). This hydrophone is selected because

it was the closest in depth to the hydrophone used to showcase the SIMI-94 spectral
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(a)

(b)

Figure 3.8: (a) SSP during ICEX-16, in comparison with the SIMI-94 profile, exhibits
the effect of the Beaufort Lens with a local sound speed maximum near 75 m. (b) Ice
temperature satellite imagery of the ICEX-16 camp site on March 13, 2016. A line
of higher ice temperature to the north- northeast of the camp indicates the presence
of a ridge formation.
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results in Chapter 2. Its spectrogram demonstrates that noise level decreases with

increasing frequency and this trend is consistent during the entire recording period.

The noise level in the 100-1000 Hz interval varies between ∼75-55 dB. These values are

much lower than the levels measured during SIMI-94 and are more in line with results

from previous studies (Fig. 2.8). Near 3.5 kHz, a periodic, narrowband interference

can be observed. This feature is caused by an acoustic modem used to communicate

with the AUV during deployment. Other faint, narrowband interferences are also

present near 1, 2, and 3 kHz. These are likely man-made noise from the camp site

or AUV noise. Fig. 3.9(c) compares the median PSD estimate of this long recording

with the PSD of the SIMI-94 data in the frequency interval that the two datasets

overlap. It shows noise level measured during SIMI-94 was ∼30 dB higher than the

level during ICEX-16. However, this large increase is likely attributed to the higher

array self-noise of the SIMI-94 VLA and may not be indicative of the actual noise

level difference between the two experiments.

3.3.2 Noise profile with Depth

On March 14, ambient noise data were collected at various depths in the water column

by moving the deployed AUV between 25-200 m depth (the VLA center positioned

between 38-238 m). As a result, this dataset is used to construct a profile of ambient

noise level vs. depth. Fig. 3.10(a) shows the VLA center depth with time during

this recording session as well as the corresponding noise spectrogram at each depth

calculated from the data on the center hydrophone. On the spectrogram, broadband

interferences, which are more prominent at lower frequencies, are observed whenever

the array center depth changes. Thus, these features are likely associated with AUV

or array movement noise as the vehicle changes depth in the water column. Periodic

interferences are also observed near 3.5 kHz. These are again due to the acoustic

modem. Overall, the spectral shape of the noise at each depth is similar to the data

recorded on March 13 - as frequency increases, the noise level diminishes. Fig. 3.10(c)

presents the noise level as a function of depth. This profile is estimated from the

spectrograms of all 32 channels in the array but excluding data that contain artificial
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(a)

(b)

Figure 3.9: (a) Spectrogram of an ∼8 hour recording during ICEX-16 on March 13.
Periodic interference at 3.5 kHz is caused by an acoustic modem used to communicate
with the AUV. Note the frequency axis scale is logarithmic. (b) Median PSD estimate
of this recording up to 6 kHz. The noise level roll-off between the 300-3000 Hz decade
is ∼23 dB. (c) Median PSD estimate of this recording compared with SIMI-94 Tape
23 PSD over the frequency interval that the datasets overlap. The array self-noise
estimates are presented as dot-dashed lines. The ICEX-16 VLA self-noise is estimated
using its k-f beamforming result.

86



(c)

Figure 3.9: (a) Spectrogram of an ∼8 hour recording during ICEX-16 on March 13.
Periodic interference at 3.5 kHz is caused by an acoustic modem used to communicate
with the AUV. Note the frequency axis scale is logarithmic. (b) Median PSD estimate
of this recording up to 6 kHz. The noise level roll-off between the 300-3000 Hz decade
is ∼23 dB. (c) Median PSD estimate of this recording compared with SIMI-94 Tape
23 PSD over the frequency interval that the datasets overlap. The array self-noise
estimates are presented as dot-dashed lines. The ICEX-16 VLA self-noise is estimated
using its k-f beamforming result.
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interferences. Each dot in this plot represents the averaged spectrogram value over

a 15 s snapshot at 850 Hz while the solid line represents the moving average over

every 750 snapshots. 850 Hz is selected as an example here because it aligns with the

frequency interval used in our beamforming analysis later. However, the noise profiles

at other frequencies are similar in shape to the result at 850 Hz. From this profile, we

see that noise level is not uniform in depth. Instead, it peaks just above 75 m, then

decreases with depth to about 225 m. The cause of the noise level variation is likely

the Beaufort Lens. This theory is highlighted by plotting the SSP during ICEX-16

next to the noise profile. The noise level peak aligns with the local sound speed

maximum in the SSP, which indicates much of the noise is trapped within the surface

duct by the positive sound speed gradient. Consequently, less noise propagates into

the lower duct, creating a quieter ambient environment below SSP maximum.

To further study the effect of the Beaufort Lens on ambient noise level vs. depth,

as well as possible effects due to a change in the spatial distribution of noise generation

in the ice cover, we compute modeled noise level under various scenarios to compare

with the measured data. The modeling parameters selected for the ice cover, water

column, and bottom halfspace are similar to those used in Chapter 2. They are

presented in Table 3.1. As before, OASES [35] is used to carry out the modeling.

First, to isolate the effect of the Beaufort Lens, we examine the modeled noise

level vs. depth in two cases. The first uses the historical, monotonically increasing,

Arctic SSP, while the second uses a generic Beaufort Lens SSP, which is taken as the

average of all measured profiles shown in Fig. 3.4(b). For surface noise generation,

both cases use a uniform noise distribution with the source frequency at 850 Hz (the

modeled noise profiles at other frequencies show similar shapes). Here, our goal is not

to model the exact value of noise level at different depths; instead, we are interested

in how the noise level changes, relatively, with depth. Thus, the particular choice of

source strength is not important and we select an arbitrary value. Fig. 3.11(a) shows

the modeled noise level in the top 250 m for these two cases. With the historical

Arctic SSP, noise level decreases consistently with depth (left side of figure). A slight

knee in the SSP at 100 m may trap some acoustic rays that propagate at very shallow
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(a)

(b)

Figure 3.10: (a) Spectrogram of data recorded during ICEX-16 on March 14. Left
plot shows the center depth of VLA with time during data acquisition. Broadband
interferences in the spectrogram are associated with AUV or array movement as they
changed depth. Periodic interference at 3.5 kHz is caused by the acoustic modem.
Note the frequency axis scale is logarithmic. (b) Median PSD estimate during the time
periods that the VLA was not changing depth. The legend denotes the approximate
center times of each of these periods. The noise level roll-off between the 260-2600
Hz decade is between ∼17-22 dB for these PSDs. Again, the increase in noise near
3.5 kHz is caused by the acoustic modem.

89



(c)

Figure 3.10: (c) Noise level vs. depth of the collected data. Dots represent calculated
noise level for individual snapshot windows; solid line represents moving average over
every 750 windows. Plot on the left shows the SSP during ICEX-16 with the red
dashed lines denoting the extent of the lower duct created by the Beaufort Lens.

90



angles near the surface; however, in general, the water column becomes quieter with

depth in a mostly linear trend. In contrast, the right side of Fig. 3.11(a) shows

that with a generic Beaufort Lens SSP, the noise profile generated with a uniform

surface source distribution (black line) has higher noise level above the sound speed

local maximum and the level dips quickly with depth near the top of the lower duct

(outlined by dashed red lines). This result makes sense as the sharp local maximum

in the Beaufort Lens SSP more effectively traps surface generated noise near the

top of the water column than the historical profile. Consequently, less noise is able

to propagate into the lower duct, creating a more distinct drop in noise level in

comparison.

Table 3.1: Parameters used to model the ICEX-16 environment. 𝐶𝑝 denotes compres-
sional speed, 𝐶𝑠 denotes shear speed, 𝜌 denotes density, 𝜆 denotes spatial wavelength,
ℎ𝑅𝑀𝑆 denotes root-mean-square roughness, 𝜂 denotes roughness correlation length, 𝐷
denotes layer thickness. Parameter values are selected based on discussions in [3, 65].

Layer Parameters

𝐶𝑝 = 3600 m/s, 𝐶𝑠 = 1800 m/s
Ice 𝜌 = 0.9 𝑔/𝑐𝑚3, 𝐷 = 1 m

ℎ𝑅𝑀𝑆 = 0.2 m, 𝜂 = 20 m
Water column 𝜌 = 1.0 𝑔/𝑐𝑚3, 𝐷 = 3000 m

𝐶𝑝 = Varies (see text)
Bottom halfspace 𝐶𝑝 = 2200 m/s, 𝐶𝑠 = 1500 m/s

𝜌 = 2.9 𝑔/𝑐𝑚3

In addition to the underwater SSP, we also test the effect of surface noise gen-

eration on noise level vs. depth. As hypothesized, noise generation in the Arctic

may be shifting to occur in more localized areas in the ice cover such as along ridge

formations. Thus, we model a case with discrete surface noise generation to compare

with the uniform noise generation result. For both, the Beaufort Lens SSP is adopted

in the water column. To model discrete surface noise, we follow a similar approach

as the uniform case described in Chapter 2 - we place a single, near surface (𝜆𝑡𝑜𝑝/30
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below the ice), monopole source at the range of expected noise generation. By using

a discrete noise source, the modeled noise level becomes inherently range dependent.

As a result, we plot outputs for various source ranges, shown by the magenta lines on

the right side of Fig. 3.11(a). From this plot, we see that the shapes of the discrete

source noise level profiles are similar to the uniform noise case. Due to the Beaufort

Lens SSP, the noise level is again higher in the surface duct and dips in the lower

duct. However, one key difference between the two is that for the discrete noise case,

depending on the source range, the noise level within the lower duct changes. For

example, at 3.5 km range (solid magenta line), the noise level within the lower duct

shows a larger decrease from the surface noise level than the profiles for the source at

15 and 35 km (dotted and dot-dashed lines). Furthermore, with the discrete source at

5 km, the noise profile shows an increase in noise level about halfway down the lower

duct near 150 m. These features can be explained by examining the transmission loss

plot of a near surface source in an environment with the Beaufort Lens SSP, shown

in Fig. 3.11(b). At 3.5 km, there is a distinct shadow zone in the lower duct. Below

the duct, the noise level increases again near 225 m depth due to shallow convergence

zone propagation. Similarly, at 5 km, the increase in noise level within the lower duct

is due to convergence zone propagation refracting back to the surface. Further out in

range, at 15 and 35 km, the shadow zone in the lower duct becomes less prominent

and the convergence zone propagation is weaker as well due to attenuation, which

is why the decrease in noise level compared to the surface is less dramatic. Conse-

quently, the noise level profiles at these further ranges become more similar to the

profile generated with uniform surface noise.

Given our modeling results, we compare the measured noise profile (Fig. 3.10(b))

to the modeled outputs. As discussed, the measured profile clearly demonstrates the

effect of the Beaufort Lens, with noise level peaking near the depth of the sound

speed maximum. However, it is less evident whether the measured profile more

closely resembles the modeled profiles generated with uniform surface noise or discrete

surface noise (Fig. 3.11(a), right). The reason for this ambiguity is partly because

the modeled profiles in both cases are very similar. Furthermore, if we assume surface
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(a)

(b)

Figure 3.11: (a) Modeled ambient noise level vs. depth with historical Arctic SSP and
uniform surface noise (left); Beaufort Lens SSP and uniform surface noise (right, left-
most profile); Beaufort Lens SSP and discrete surface noise (right, all other profiles).
The distance between the x-axis tick marks on the profile plots denotes a 5 dB change
in noise level. (b) Transmission loss of a discrete near surface source in an environment
with the Beaufort Lens SSP.
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noise generation during ICEX-16 occurred ∼30-50 km away from the VLA along the

ridge formation shown in Fig. 3.8(b), at these distances, the range dependency of

the discrete source noise profiles is much weaker compared to closer ranges. As a

result, the profiles more closely resemble the shape of the uniform source distribution

noise profile. Thus, in regards to underwater ambient noise level during ICEX-16,

the Beaufort Lens SSP appears to be a much more influential factor than the spatial

distribution of noise generation in the ice cover.

3.3.3 Noise Vertical Directionality

Similar to the analysis of the SIMI-94 data, we again apply conventional beamforming

to examine the vertical directionality of noise recorded during ICEX-16. The geometry

of the ICEX-16 VLA constricts the maximum beamforming frequency at 950 Hz.

Below this frequency, there is no spatial aliasing even when the array is steered

towards endfire (Fig. 3.12(a)). The best spatial resolution occurs between 800-900

Hz. Thus, the beamform output within this frequency interval is averaged over time

to create noise level vs. elevation plots. When steered towards broadside, the ICEX-

16 VLA beampattern at 850 Hz has a 3-dB-down beamwidth of ∼2.5 degrees (Fig.

3.12(b)).

Fig. 3.13(a) shows that throughout most of the recording period on March 13,

noise level peaks near -10-15 degrees in elevation angle. When averaged over time, the

mean profile peaks near -10 degrees. This result differs from the noise directionality

during SIMI-94, which peaks at 0 degrees elevation. Fig. 3.13(b) takes a closer

examination of noise arriving from the peak elevation angle. Again, unlike noise

recorded during SIMI-94, no persistent tonal bands exist in the ICEX-16 data. The

beamform output for ambient noise recorded on March 14 shows a similar result.

The noise vertical directionality peaks near ±15 degrees, creating a noise notch near

the horizontal. This feature is consistent with depth, as demonstrated by the mean

profiles at 138 and 238 m (Fig. 3.14(a)). Again, no persistent tonal bands are

observed in the noise that arrives at the peak elevation angle (Fig. 3.14(b)). The

lack of persistent tones in the ICEX-16 data may be indicative of the shift in Arctic
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(b)

Figure 3.12: (a) Spatial aliasing for the ICEX-16 VLA occurs at endfire near 950
Hz. Spatial resolution becomes higher as frequency increases towards the aliasing
frequency. (b) The VLA beampattern steered towards broadside at 850 Hz shows
3-dB-down mainlobe width of ∼2.5 degrees.
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ice cover characteristics. It is possible the thinner and younger ice cover during

ICEX-16 could not sustain the constant shear from rubbing past adjacent floes to

produce the persistent tones observed in the SIMI-94 data. Instead, the ice more

likely fractured or formed ridges, leading to more discrete surface noise generation.

To further investigate this hypothesis and better explain the observed features in the

ICEX-16 noise vertical directionality profiles, we again turn to modeling.

There are two distinct features in the ICEX-16 noise vertical directionality profiles.

One is the existence of a noise notch near horizontal elevation angles. The notch is

not as evident at 38 m depth but is pronounced at deeper depths as seen in the 138

and 238 m profiles. The second feature is the peak in the profiles, which occurs near

-10 to -15 degrees. Here, we take a closer look at how the Beaufort Lens SSP and

discrete surface noise generation by the ice cover can explain these features.

Using raytracing carried out by Bellhop [40], we explain why horizontal noise

notches are observed at 138 and 238 m depths but not so much at 38 m depth. For

our modeling environment, we use the SSP measured during ICEX-16 (Fig. 3.8(a))

and assume discrete noise generation by the ice cover. First, we place a monopole

source at 38 m depth. The raytraces with departure angles between ±7 degrees are

shown in Fig. 3.15(a). Green lines represent rays that interact with the surface, while

red lines represent rays that do not interact with the surface. With the source at 38

m, all shallow angle rays interact with the surface. By reciprocity, this means that

rays generated by a discrete surface noise source at any range can arrive at a receiver

at 38 m depth at very shallow arrival angles. Hence, this is why we do not observe

a strong horizontal noise notch in the data collected at 38 m. With a source placed

at 138 or 238 m depth, however, there are rays with very shallow departure angles

that will never interact with the surface. Again, by reciprocity, this means that fewer

rays generated by a discrete surface noise source would arrive at a receiver at those

depths at shallow angles. In the real environment, this would translate to a reduction

in noise arriving from the horizontal, which is why we observe the noise notches in

the directionality profiles for 138 and 238 m depths.

The second feature in the ICEX-16 directionality profiles is the peak in noise
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(b)

Figure 3.13: (a) Beamform output over time averaged over the 800-900 Hz frequency
interval for data collected on March 13. Noise level peaks near -10 degrees elevation.
Bottom plot shows mean vertical directionality profile generated by averaging top
plot in time. (b) Beamform output at -10 degree elevation angle as a function of
frequency and time. No persistent meandering tones are observed. Bottom plot
shows VLA center depth during the recording session. Right plot shows mean vertical
directionality profile over time in the 800-900 Hz frequency interval.
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(b)

Figure 3.14: (a) Beamform output over time averaged over the 800-900 Hz frequency
interval for data collected on March 14. Noise level peaks near ±16 degrees eleva-
tion. Bottom plot shows mean vertical directionality profiles generated by averaging
the results for 138 and 238 m depth, respectively. (b) Beamform output at -16 de-
gree elevation angle as a function of frequency and time. No persistent meandering
tones are observed. Broadband interferences are present when the array center depth
changes, indicating contamination from AUV or array movement noise. Bottom plot
shows VLA center depth during the recording session. Right plot shows mean vertical
directionality profiles generated by averaging the results for 138 and 238 m depth,
respectively.
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level from near -10 to -15 degrees. This can again be explained using raytracing

and by invoking reciprocity. In Fig. 3.15(b), we show the raytraces for a monopole

source placed at 38, 138, and 238 m depth, respectively, for departure angles between

-8 and -15 degrees. Based on the location of the ridge formation with respect to

the ICEX-16 camp shown in Fig. 3.8(b), we assume that surface noise is generated

between 30-50 km away from the VLA. With this in mind, the rays highlighted by

the dot-dashed purple lines in Fig. 3.15(b) are the ones that arrive at the surface

between 30-50 km away from the VLA via a direct path. The departure angles of

these highlighted rays range from -12 to -15 degrees. Through reciprocity, this result

means that for a discrete surface noise source placed between 30-50 km away from the

origin, the noise level received at 0 km range at 38, 138, and 238 m depths should be

the highest between -12 to -15 degrees because these angles correspond to the arrival

angles of direct paths. For steeper or shallower arrival angles, the noise level would

be weaker because the ray paths would experience at least one surface or bottom

bounce. Thus, these raytracing results suggest that the noise directionality profiles

should peak near -12 to -15 degrees, which is very similar to what we observe in the

ICEX-16 directionality profiles. Thus, our raytracing results are consistent with the

hypothesis that surface noise generation during ICEX-16 was more localized in space,

specifically, noise was predominately generated ∼30-50 km away from the VLA.

Further evidence of surface noise generation during ICEX-16 being more discrete

in space can be seen by modeling the noise vertical directionality directly. OASES

[35] is used to carry out the modeling here. First, we present the result with uniform

surface noise generation. Fig. 3.16 shows the modeled profiles in this case differ

significantly from the measured ICEX-16 profiles at all 3 examined depths. Peak

elevation angles in the modeled profiles are positioned closer to the horizontal plane.

Furthermore, although the modeled profiles do show a notch at 0 degrees elevation,

the extent of this notch is more confined compared to the measured profiles. Thus,

these differences suggest that the assumed uniform surface noise distribution is not a

valid description of noise generation during ICEX-16.

For a second comparison, we model the noise directionality profiles assuming dis-
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Figure 3.15: Raytraces for monopole sources placed at 38, 138, and 238 m depths
in the ICEX-16 environment. Solid lines denote rays that interact with the surface.
(a) For 138 and 238 m depths, some rays with shallow departure angles would never
interact with the surface (dot-dashed lines). (b) Rays that reach the surface 30-50
km away from the source via direct paths (dot-dashed lines) have departure angles
between -12 to -15 degrees.
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Figure 3.16: Modeled noise vertical directionality profiles with uniform surface noise
generation in the ICEX-16 environment with the center of the array at 38 m, 138
m, and 238 m depths. Peak elevation angles of the modeled profiles do not matches
those of the measured profiles.

Figure 3.17: Modeled noise vertical directionality profiles with discrete surface noise
generation in the ICEX-16 environment with the center of the VLA at 38 m, 138
m, and 238 m depths. Top plot shows the range placement of the surface monopole
source. On the right, modeled vertical directionality is shown with respect to source
distance as a contour plot. On the left, average model output over the indicated
ranges on the contour plot are compared with measured profiles at the respective
depths.
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crete surface noise generation at different ranges. This is accomplished by placing a

single monopole source near the surface (𝜆𝑡𝑜𝑝/30 m depth) at various distances (3-

50 km at 0.5 km increments) from the VLA. The set-up and result for this case is

presented in Fig. 3.17. At each source position, the resultant vertical directionality

profile is shown in the form of a contour plot below. At all three examined depths, as

the source is positioned further away from the VLA, the peak elevation angle of the

modeled output shifts further away from the horizontal and the noise notch becomes

more apparent. Thus, the output of this discrete source model is more similar to the

measured profiles than the uniform noise generation model. Particularly, as shown

on the left side of Fig. 3.17, for 38 m depth, the averaged output between 26-27 km

matches the measured output most closely, suggesting that ambient noise recorded

during this time is dominated by ridging activity at that distance. For 138 and 238

m, the averaged model output between 36-37 km and 46-47 km closely match the

measured outputs, respectively. These results are again consistent with the hypoth-

esis that noise generation during ICEX-16 occurred between ∼30-50 km away from

the VLA.

3.4 Transient Event Characteristics

As noted in Chapter 2, analysis of the temporal distribution of transient ambient

noise events allows for a better understanding of ice activity as a function of time and

the mechanisms by which transient events are generated. In this section, we provide

a complementary analysis of transient event characteristics during ICEX-16 to the

SIMI-94 results. Specifically, we compare the temporal characteristics of transient

occurrences during the two experiments and discuss whether any differences may be

attributed to the shift in the Beaufort Sea environment.

3.4.1 Event Detection Approach

Ambient noise recorded on March 13 is analyzed to detect transient events. This

dataset is selected because, similar to the SIMI-94 Tape 23 data, it is a continuous
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period of recording at a constant depth. The length of the March 13 dataset is about 8

hours. However, as noted, periodic interference exists in the data due to the acoustic

modem. While the frequency of this interference is primarily centered at 3.5 kHz, its

signature is more faintly present at other frequencies as well. Thus, periods of data

that contain the modem noise is excluded from the dataset. This results in a total of

5.65 hours of clean ambient noise data, which is comparable to the 6 hours of data

analyzed for the SIMI-94 experiment.

The algorithm used to detect transient events within the ICEX-16 dataset is the

same, amplitude-based method presented in Chapter 2. The three algorithm param-

eters are again set as 𝑤 = 10, 𝑟 = 1%, and 𝑝𝑡ℎ𝑟𝑒𝑠 = 0.00001. Consistent with the

procedure for the SIMI-94 analysis, the time series data are filtered into three sep-

arate octave bands between 40 and 320 Hz. The detection method is then applied

to data on all 32 channels and detected transients are only confirmed to be events if

they appear on at least 3/4 of the channels. After event selection, the beginning and

end times of each event are documented.

3.4.2 Comparison with SIMI-94 Results

Similar to the results for the SIMI-94 dataset, Table 3.2 shows the number of detected

transient events in the ICEX-16 data increases with frequency. Comparison of the

count within each frequency octave reveals the number of transients is much lower

during ICEX-16 than SIMI-94. This decrease suggests the ice cover during ICEX-16

was less active at producing transients than the ice cover during SIMI-94. However,

this conclusion is incomplete. Fig. 3.18 shows the detected events during ICEX-

Table 3.2: Number of detected transient events in each frequency band.

40-80 Hz 80-160 Hz 160-320 Hz
SIMI-94 173 451 1043
ICEX-16 43 86 260
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Figure 3.18: Temporal distribution of transient events during ICEX-16 and SIMI-94
at three octave bands. Plots show the clustering of events and time gaps that separate
the clusters.

16, as well as during SIMI-94, grouped into clusters, where the y-axis shows the

number of events within each 1-minute time window. The statistical properties of

these clusters, such as the length of the time gap between successive clusters, the

length of each cluster, and the number of events within each cluster, are presented

in Fig. 3.19. The comparison between ICEX-16 and SIMI-94 results in this figure

shows the gap length distribution during the two experiments are similar at all three

frequency octaves. This means event clusters occurred at similar rates during both

experiments. However, event clusters are likely to be longer during SIMI-94 than

ICEX-16 as shown by the distribution of event cluster lengths. The 75th and 99th

percentile values for this metric are higher during SIMI-94 than during ICEX-16 at all

three frequency octaves. The bottom plot of Fig. 3.19 further shows the number of

transient events within each cluster are also likely to be greater during SIMI-94 than

ICEX-16. Combined, these results suggest that if an event cluster can be assumed as

a period of high ice activity, then SIMI-94 and ICEX-16 have comparable statistics

regarding the occurrence of such high activity periods. However, within such a period,
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Figure 3.19: (Top) Statistical distribution of time gap lengths, cluster lengths, and
number of events in each cluster during ICEX-16 and SIMI-94 at three octave bands.
Red lines represent the median, box edges represent the 25th and 75th percentiles,
whiskers extend to the 1st and 99th percentiles, and red crosses signify extreme
values that are much larger than the rest of the distribution. Gap lengths of the two
datasets have comparable distributions. (Middle) Although the median values are
similar, event clusters are more likely to be longer during SIMI-94 than ICEX-16.
(Bottom) The number of transient events within each cluster are also likely to be
greater during SIMI-94 at all three frequency bands.

the ice cover during SIMI-94 was likely more acoustically active and produced more

transient events than the ice cover during ICEX-16. The reason for this difference

may simply be that environmental forces such as wind or temperature were more

prominent during SIMI-94, thus causing the ice cover to produce transient events.

However, another plausible explanation may result from the proposed change in the

surface noise generation between the two experiments. More transient events would

be expected to be generated from a uniform distribution of sources, as is suspected to

be the case during SIMI-94, than from a few distinct sources located along a pressure

ridge, as is suspected to be the case during ICEX-16. Thus, the difference in the

transient noise temporal statistics between the two experiments may reflect a change

in surface noise generation by the ice cover.
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3.5 Summary

In this chapter, we discussed two major areas of change occurring in the Beaufort

Sea region of the Arctic Ocean. One is the underwater SSP, which exhibits a local

sound speed maximum near 70 m depth due to intrusion of warm Pacific water into the

region. This “Beaufort Lens” SSP creates a double ducted propagation environment in

which the lower duct has diminished ambient noise levels and is capable of promoting

long-range acoustic propagation. The overall shape of this SSP is still dynamic as

more recent measurements demonstrate the possibility of two local maxima within

the water column instead of just one. Thus, this component of the Beaufort Sea

environment invites continued observation and study.

Another change ongoing in the Beaufort Sea, as well as much of the Arctic Ocean,

relates to the surface ice cover. The Arctic ice cover is thinning and becoming younger.

The amount of multi-year ice has diminished, replaced by fragile first-year ice that is

more susceptible to ridging. Consequently, ambient noise generation by the ice cover

may no longer be adequately described by a uniform distribution of sources. Instead,

noise generation has become more spatially discrete and better modeled with a single

source positioned at a specific range. Modeling results with discrete surface noise

generation more consistently match measured data from the ICEX-16 experiment.

Specifically, the elevation angle of the peak in noise vertical directionality profiles at

various depths suggests surface noise generation during ICEX-16 may have occurred

∼30-50 km away from the deployed VLA. This range interval matches the distance of

a ridge formation observed during the experiment to the north-northeast of the camp

site.

Lastly, we compared the temporal distribution of transient noise events during

ICEX-16 to results from SIMI-94. Our analysis shows the median time gap length

between consecutive event clusters is comparable during the two experiments; how-

ever, cluster lengths and the number of events in each cluster are greater during

SIMI-94 than ICEX-16. These results demonstrate that when the ice cover was ac-

tive, more transient events occurred during SIMI-94 than ICEX-16. This conclusion
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is consistent with the proposed change in surface noise generation in the ice cover

from uniform to more spatially discrete.
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Chapter 4

Noise Generation Range

Estimation

So far in this thesis, we have analyzed ambient noise data from two prior

experiments to highlight acoustic characteristics that are indicators of

environmental change in the Beaufort Sea. Through our study, we have

come to identify two areas where improved analysis tools would further

aid in ambient noise characterization. In this and the following chapter, we present

these needs for improvement and propose alternative methods to better address them.

One component of the ongoing change in the Arctic Ocean is the shift in ice cover

properties. As we have detailed in Chapter 3, the thinner and younger ice cover

challenges the assumption that surface noise generation is uniformly distributed in

space. Instead, during the ICEX-16 experiment, ambient noise generation was more

spatially localized, likely along a ridge formation ∼30-50 km away from the exper-

iment site. We further demonstrated that this shift has a profound and observable

impact on the ambient noise soundscape. Thus, in order to more comprehensively

describe the noise field in this new Arctic, there is a need for reliable estimation of

surface noise generation range; in other words, how far from the location of interest

is ambient noise generated?

To address this problem, we introduce a model-based convolution neural network

(CNN) approach to surface source range estimation, which maps received noise on



an array to noise generation range through training on simulation data. We compare

this method’s performance against conventional matched field processing (MFP) and

explore how the approach achieves its effectiveness. We begin with an overview of

conventional MFP before presenting the architecture and training process of the CNN

method. We then test this approach with two real datasets from past experiments

and discuss the results.

4.1 Conventional Matched Field Processing

MFP refers to signal processing algorithms which exploit the full field structure of

acoustic propagation to infer parameters of the acoustic source or the propagation

environment [88, 89, 90, 91]. These parameters may be the source range, depth,

or environmental properties such as sub-bottom information [92] or water column

SSP [93]. The conceptual basis behind MFP is quite simple. The measured (true)

acoustics data in an environment is “matched” with simulated data derived from

acoustic modeling of the environment. The parameter of interest is varied during

modeling to generate many iterations of simulated data for matching. The parameter

value that results in the best match is then outputted as the estimate. The literature

on MFP is immense. Bucker was the first to formulate what is now considered

conventional MFP [94]. Since then, numerous variants have emerged such as ones

that are adaptive [95, 96, 97], constrained [98, 99, 100], take a statistical approach

[101, 102, 103, 104], reduce computation load [105], for uncertain [106, 107, 108] or

range-dependent environments [109], and for broadband [110, 111, 112, 113] or moving

sources [114].

In this chapter, we focus solely on the conventional approach. As described in

[89], there are three components of an MFP algorithm. The first is replica generation,

where modeling is used to compute the expected acoustic arrival on the receiving array

in the environment, otherwise known as the replica field. At a specific frequency 𝑓 and

for a particular set of parameters used for modeling, A, the replica field on an array

with 𝐿 sensors is denoted by R(𝑓 ; A) = [𝑅1(𝑓 ; A)), ..., 𝑅𝐿(𝑓 ; A))]𝑇 . This expression
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is complex valued as it involves both the amplitude and phase information of the

modeled field. Typically, R(𝑓 ; A) is normalized so that it represents the relative

pressure values along the array rather than the absolute levels. This normalization is

done according to

Rn(𝑓 ; A)) = R(𝑓 ; A)√︁∑︀𝐿
𝑙=1 |𝑅𝑙(𝑓 ; A))|2

= R(𝑓 ; A))
‖R(𝑓 ; A))‖ . (4.1)

The second component of MFP is the estimation of the sample covariance matrix

(SCM). Measured data from the real environment are used to form an estimate of the

covariance matrix of the true acoustic field. This estimate is obtained at frequency

𝑓 by first taking the FFT of pressure time series snapshots recorded on the array,

denoted as p𝑠(𝑓) = [𝑝1(𝑓), ..., 𝑝𝐿(𝑓)]𝑇 , where 𝑠 represents the 𝑠th snapshot. p(𝑓) is

then normalized through division by its norm in accordance with Eq. 4.1 to compute

pn(𝑓). Following this, the SCM is estimated by averaging over 𝑁 snapshots as

Kn(𝑓) = 1
𝑁

𝑁∑︁
𝑠=1

p𝑠(𝑓)p𝐻
𝑠 (𝑓), (4.2)

where 𝐻 denotes the conjugate transpose operator. Similar to the modeled replica

vectors, Rn, this matrix is complex valued - containing both the amplitude and

phase information of the measured data. Its size is 𝐿 × 𝐿, where 𝐿 is the number

of sensors in the recording array. A few assumptions are made in computing this

matrix. The statistics of the acoustics field are assumed to be Gaussian. This means

p(𝑓) is Gaussian and we further consider it to have a mean of zero. In addition, we

assume that the expected value of Kn equals the true acoustic field covariance matrix.

This is the case if the number of snapshots, 𝑁 , that are averaged is large enough to

adequately capture the temporal variance of the data.

The final component of MFP is the algorithm itself. For conventional MFP, the

output is simply formed as the projection of the measured data onto the normalized
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Figure 4.1: Components of a MFP algorithm [89].

replica vectors. This can be written in a quadratic form in terms of the SCM, Kn, as

B(𝑓 ; A) = Rn
𝐻(𝑓 ; A)KnRn(𝑓 ; A). (4.3)

B(𝑓 ; A) represents an ambiguity plane over the parameters of interest showing the

MFP output value vs. the location/environment prescribed by A. The estimate for

the parameters of interest, A, is then made according to

Aest = argmax
A

(B(𝑓 ; A)). (4.4)

Eq. 4.3 demonstrates how MFP essentially compares the measured acoustic data

with a set of modeled replicas to invert for source or environmental parameters.

Consequently, the accuracy of MFP is inherently sensitive to the exactness of the

modeled environment and mismatch between the modeled and actual propagation
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environments can degrade the algorithm’s performance. With our CNN approach,

we hope to devise a more robust method and improve upon MFP’s sensitivity to

environmental mismatch. In this chapter, conventional MFP is applied to estimate

source range and it serves as a baseline for comparison with our proposed CNN

approach.

4.2 Motivation for Model-based Convolutional Neu-

ral Network

4.2.1 Applications of Machine Learning

Broadly, machine learning (ML) refers to a class of statistical methods that automat-

ically detect and utilize patterns within a dataset to make inferences on future or

unseen data of the same type [115]. By same type, it is assumed that the existing

(training) dataset and the unseen (testing) dataset are from similar statistical distri-

butions. The applications of machine learning have enabled advances in numerous

fields such as computer vision, image and signal processing, and physical sciences

[116, 117, 118, 119, 120, 121, 122, 123].

Relevant to underwater acoustics, machine learning has been utilized to classify

underwater targets [124, 125, 126] and identify marine mammals or other biologics

[127, 128, 129]. It has also been applied extensively for the purpose of acoustic source

localization as an alternative to MFP. Numerous works have proposed data-driven

ML techniques that learn noise field features directly from collected data without the

need for any environmental modeling, thus circumventing the MFP drawback with

respect to modeling mismatch [130, 131, 132, 133]. Results from these studies demon-

strate that data-driven ML methods are capable of performing on par or better than

MFP when given adequate training data under a variety of environments. However,

drawbacks exist as well for this approach; it is often limited by the impracticality of

collecting enough acoustic data over a sampled space of source locations in order to

build the required training dataset. This limitation makes data-driven ML potentially
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costly to implement due to increased ship time and experiment logistics. Thus, in

this study, we present a different ML approach that does not rely on training with

real data.

4.2.2 Model-based Approach

Instead of data-driven ML, model-based ML for underwater source localization hopes

to take advantage of the performance of ML but without the challenge of large scale

data collection. Such an approach is similar to MFP in that it is trained using sim-

ulated data derived from acoustic modeling. This does mean that it, too, requires

a certain degree of accuracy in modeling the propagation environment to perform

well. However, many works that have examined model-based ML for source localiza-

tion found that it can have improved performance compared to conventional MFP

[134, 135, 136, 137, 138, 139, 140]. Thus, this approach shows promise as a compro-

mise between performance and ease of data generation. Nonetheless, some research

questions still remain:

1. How does the performance of model-based ML methods compare to MFP when

tested on simulated environments outside the bounds of the originally modeled

parameters? To what degree do they suffer the same environmental robustness

issue as MFP?

2. Does the performance of model-based ML methods transfer to real data col-

lected in the field? How does their performance compare to MFP in this case?

3. If model-based ML methods show improvement over MFP for questions 1 and

2, how may they be achieving their better performance?

In this chapter, we take an initial step to address these questions. We propose

a model-based CNN approach to source-range estimation and test its performance

against MFP in two separate environments with different types of environmental

mismatch. All environmental modeling is done using OASES [35].
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4.2.3 CNN Overview

Neural Networks

Neural networks (NN) are a type of machine learning algorithm that learns a non-

linear mapping between input data and labeled outputs. They are networks because

they have a graphical structure in which data is processed in a large number of simple

equivalent components (nodes) arranged into successive layers [123, 141]. At the 𝑞th

node within a layer of 𝑄 nodes , the input, typically a vector x ∈ R𝑁 , is modified

according to

𝑧𝑞 = 𝑔(
𝑁∑︁

𝑛=1
𝑊𝑛𝑞𝑥𝑛 +𝑊𝑞0), (4.5)

where 𝑊𝑛𝑞 and 𝑊𝑞0 are the weights and biases applied to the input at this node, 𝑔 is

the activation function of the node (see following section) - which is typically applied

element-wise, and 𝑧𝑞 is the output of the node. Given that there are 𝑄 nodes, the

output of this layer and the input to the next layer is a vector z ∈ R𝑄. Following the

last layer of the network, the output of the NN is denoted as y ∈ R𝑃 . This output

is compared with the true output of the pre-labeled training data using an objective

function 𝐽 (see following section). The weight and bias matrices within all of the

layers are then updated through optimization of 𝐽 using methods such as stochastic

gradient descent [142]. Fig. 4.2 shows an example of a 3-layer, fully connected, NN

[123]. The circles in the figure represent individual node units and the arrows signify

information passage between nodes.

Activation and Objective Functions

There are many choices for the activation function within a network node depending

on the task that the NN is designed to accomplish (e.g. classification, regression) and

where a node is positioned in the NN. Relevant to our study, we present four different

functions. They are the scale-exponential linear unit (SELU), sigmoid, linear, and

softmax (Fig. 4.3).
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Figure 4.2: An example of a 3 layer neural network [123].

The SELU function is defined as:

𝑦(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝜆𝑥, if 𝑥 > 0,

𝜆𝛼(exp(𝑥) − 1), if 𝑥 ≤ 0.
(4.6)

The parameters 𝛼 and 𝜆 are pre-defined constants. Their values are 𝛼 = 1.67326324

and 𝜆 = 1.05070098 and are chosen to help standardize the input between consecu-

tive neural network layers [143]. This is done to decrease the chance of vanishing or

exploding gradients during gradient descent which are detrimental to network train-

ing. This function is typically used within nodes of the hidden (non-input or output)

layers.

The sigmoid function is another popular activation function; it is a logistic function

whose output ranges from 0 to 1. It is also often applied within hidden layers but

can be used in the output layer for binary classification.

𝑦(𝑥) = exp(𝑥)
exp(𝑥) + 1 . (4.7)
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Figure 4.3: Activation functions used in this study for 𝑥 from -5 to 5. The softmax
function has a vector input and is not shown here.

The linear function is commonly used in the output layer of regression NNs. It is

simply defined as:

𝑦(𝑥) = 𝑥. (4.8)

The softmax function is typically used in the output layer of multi-class classi-

fication NNs. It takes in a vector input x of length 𝐾 and outputs a probability

distribution based on the exponential of each entry in the vector.

𝑦𝑘(x) = exp(𝑥𝑘)∑︀𝐾
𝑗=1 exp(𝑥𝑗)

, where 𝑘 = 1, ..., 𝐾. (4.9)

Similar to activation functions, the choice for the objective function, 𝐽 , for a NN

usually depends on the task at-hand. If the network is designed for classification, the

typical objective function is the cross-entropy loss. This function is almost always

used following a softmax activation in the output layer. It applies the probability

distribution generated by the softmax to output a probability for each class in the

classification problem. For example, for a problem with 𝐾 classes, the cross entropy

output for class 𝑘 is

𝐶𝐸𝑘 = −𝑙𝑜𝑔( exp(𝑥𝑘)∑︀𝐾
𝑗=1 exp(𝑥𝑗)

). (4.10)

If the NN is designed to perform regression, the most common choice for 𝐽 is likely
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the mean-squared-error loss function, defined as

𝑀𝑆𝐸 = 1
𝑁

𝑃∑︁
𝑗=1

(𝑦𝑗,𝑡𝑟𝑢𝑒 − 𝑦𝑗)2, (4.11)

where y ∈ R𝑃 is the NN output and y𝑡𝑟𝑢𝑒 ∈ R𝑃 is the true output label of the training

data.

CNN Specialization

CNNs [144, 145] are a special type of NN mainly used for problems involving image

processing. Given the input to a CNN layer (say layer 𝑙) as a stack of 𝑄 images

(feature maps), the 𝑞th feature map is denoted as z𝑙−1
𝑞 . If the 𝑙th layer produces 𝑃

feature maps as output, the relationship between z𝑙−1
𝑞 and the 𝑝th output feature map

at layer 𝑙 is described by

z𝑙
𝑝 = 𝑔(

𝑄∑︁
𝑞=1

W𝑙
𝑝𝑞 * z𝑙−1

𝑞 + 𝑏𝑙
𝑝𝑞), for 𝑝 = 1, ..., 𝑃, (4.12)

where * denotes discrete convolution, W𝑙
𝑝𝑞 are spatial filters of some defined size 𝐾

(e.g. 3×3), 𝑏𝑙
𝑝𝑞 are scalar biases, and 𝑔 is an activation function [123]. The full output

of layer 𝑙 is then the stack of 𝑃 feature maps, each denoted as a channel (Fig. 4.4).

Between successive convolutional layers, special layers are usually inserted into

the network to help increase network robustness and prevent overfitting to training

data. One type of such layer is a pooling layer, where input information is condensed

by reducing the data resolution but preserving the number of channels. The most

common variety of pooling is max pooling with a given filter size 𝑀 , for which the

values in a 𝑀 ×𝑀 grid of the feature map is replaced by their maximum. If the max

pooling filter is applied without overlap, the input information is effectively reduced

by a factor of 𝑀2. The condensation of information helps the network train more

efficiently while focusing on the most pronounced features in the input data.

Other kinds of special layers include dropout [146] and batch normalization [147].

The former randomly prohibits a proportion (𝑟 = 0 to 1) of the inputs from passing
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Figure 4.4: An example of a convolutional layer with 3 channels and a filter size of
𝐾 = 3 × 3 [123].
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onto the next layer by setting them to 0. This essentially shuts down a random

part of the network during each iteration (epoch) of training, forcing the network

to not overly rely on any subset of nodes to make a prediction. The result is that

dropout regularizes the network, helping it generalize better to data unseen in the

training set. The batch normalization layer works by standardizing the input data to

zero mean and unit variance to address the problem of covariate shift. Simply, the

distribution of input values between successive network layers changes over time as the

prior layer’s filter weights change; this shift makes it extra difficult for the network

to learn a mapping between input and output since the distribution of the input

is constantly changing. Batch normalization alleviates this issue while also acting

as another regularization tool. Each standardization procedure mildly perturbs the

input data, which again helps to improve network generalization.

Following convolutional layers, CNNs will typically also include a few layers of

regular neural network nodes before the final output layer. The connection between

the convolutional and regular layers is made through a vectorization step, where the

multi-dimensional output of the convolutional layer is reshaped into a vector in 1-D

containing all of the values in the higher dimensional output before it is passed on to

the regular layer.

For this study, CNN is used for source range estimation because the input data

for this problem are SCMs of the measured field. These are represented as matrices

of size 𝐿×𝐿×2, where 𝐿 is the number of hydrophone sensors in the recording array

and the 2 channels denote the real and imaginary parts of each SCM. Thus, source

range estimation can be reframed into an image processing problem with the SCMs

as input and the source ranges as output. As noted, CNN are specialized for this

type of setup.

4.3 Network Architecture and Training

For both propagation environments that we examine in this chapter, we train two sep-

arate CNNs to perform source range estimation. One takes a classification approach
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(CNN-c), while the other takes a regression approach (CNN-r). The general design

of the two CNNs are the same except in their output layer activation function and

training objective function. For classification, softmax activation is used in the out-

put layer with the cross entropy objective function. For regression, linear activation

is used in the output layer with MSE as the objective function.

The rest of the network architecture for both approaches consists of three convolu-

tional layers with 16, 128, and 256 SELU activated filters in each layer, respectively.

The sizes of the filters in each layer are presented in later sections as they differ

between the two environments we studied. These layers are followed by a fully con-

nected layer of 256 sigmoid activated nodes, and then the output layer. This results

in five total layers in the networks. This configuration is selected after some initial

empirical testing on the performance of various CNN architectures with greater and

fewer layers of different types. Batch normalization is performed after each convolu-

tional layer while dropout is performed after each convolutional (𝑟 = 0.5) and fully

connected layer (𝑟 = 0.25). A schematic of the CNN architectures is shown in Fig.

4.5 (right).

The CNNs are implemented and trained in Python using the Keras and Tensorflow

libraries [148]. Prior to input to the networks, the training dataset is first standardized

to zero mean and unit variance. This pre-processing step helps to speed up network

training [149]. The input data are then randomly segmented by an 80/20 split, where

80% is used for training and 20% is used for validation to see how well the networks

perform on non-training data after each training epoch. To carry out stochastic

gradient descent, the Adam optimizer [150] is used with a batch size of 128 and an

initial learning rate of 𝛾 = 0.0001. 𝛾 subsequently decreases by 90% if the validation

cost does not decrease for 75 epochs. Training stops if the validation cost does not

decrease for 125 epochs to help prevent over-training.

To further optimize the CNN architectures, network pruning [151] is done to strip

away under-activated filters. Such filters have small values for their weights, which

means that the output after applying these filters is small compared to outputs from

other filters. As such, these filters are under-activated because data that they are
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applied to are suppressed within the network and thus do not have a significant effect

in the final network output. We identify and remove these filters by examining the

sum of weight values (i.e. 𝐿1 norm) of all filters. This pruning process is as follows:

1. The original, full network is trained until stoppage.

2. The L1 norms of all filters in each convolutional layer of the trained network

are plotted (example shown in Fig. 4.5, left); all filters whose 𝐿1 norm is small

compared to the largest 𝐿1 norm value are deleted from the network. This can

be done empirically during each training round or by setting a threshold such

as removing filters with 𝐿1 norms in the bottom 10th percentile.

3. Training is continued on the updated, smaller network to re-adjust the weights

of the kept filters, until stoppage again. The initial training rate is set as the

same as when training last stopped.

4. Steps 2 and 3 are repeated until the validation accuracy of the reduced network

decreases from that of the original, full size network.

These pruning steps reduce the trained networks’ complexity by decreasing their

number of parameters, making the final models more lightweight and better opti-

mized. Following this procedure, the final network architectures for the two environ-

ments we examine are different. Thus, they are presented in later sections for each

test case.

4.4 Test Case 1 - ICEX-16 Experiment

4.4.1 Simulated Data Tests

Training and Testing Data Generation

As presented in Chapter 3, the main dynamic factor affecting acoustic propagation in

the region of the ICEX-16 experiment is the SSP, which is primarily dictated by the

form of the Beaufort Lens. As a result, any viable model-based approach for surface
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source range estimation in this region must show robustness to some degree of SSP

mismatch. With this in mind, we begin with a comparison of the CNN approach

performance to MFP under various amounts of simulated SSP mismatch. To model

surface noise generation at various ranges in the ICEX-16 environment, we follow

the setup presented in Table 3.1 and shown again in Fig. 4.6(a). The environment

consists of a 1 m ice cover, 3000 m water column, and a solid bottom half space.

To generate the training data for the CNN approach and the replica vectors for

MFP1, a single monopole source at 850 Hz is placed just below the surface (1.26 m)

at 10 m increments between 3 to 50 km range from a recording VLA. The VLA is

the same as the one deployed during ICEX-16, which consists of 32 omni-directional

elements with nest 0.75 m and 1.5 m spacing. At each source range, the corresponding

simulated SCM/replica vector is normalized and recorded. The SSP used within the

water column is the profile measured during the ICEX-16 experiment, shown as the

“original SSP” in Fig. 4.6(b).

For the CNN and MFP testing data, because we are comparing the two methods’

robustness to SSP mismatch, we generate several testing datasets by applying vari-

ous amounts of deviation to the original SSP in the simulated water column. These

deviations are described by changes to the Beaufort Lens strength, which is defined

as the sound speed difference between the local SSP maximum and the local mini-

mum below. For each testing dataset, 1000 SCMs and replica vectors are simulated

by placing the near surface monopole source at random ranges within the training

interval of 3-50 km.

CNN Architecture

For the ICEX-16 environment, the filter sizes used in the three convolutional layers

of the CNNs (CNN-c and CNN-r) are 3×3, 5×5, and 7×7, respectively. All filters

in each layer are applied with a stride size of 2 to condense information from one

layer to the next. We decided to increase filter size with network depth because some
1Recall the input to the CNNs are the data SCMs, which are equivalent to the replica vectors

given to MFP because the vectors can be used to directly compute the SCMs. Thus, the information
used to train the CNNs are exactly the same as the information given to MFP to perform matching.
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(a)

(b)

Figure 4.6: (a) Simulation setup for generating training and testing datasets in the
ICEX-16 environment. (b) Original, measured ICEX-16 SSP used to generate training
dataset (solid line); SSPs with deviations to the Beaufort Lens strength used to
generate testing datasets (dashed and dotted lines).
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Table 4.1: ICEX-16 CNN architectures after iterative pruning. Table shows number
of filters in each of the three convolutional layers and the total number of parameters
in the trained networks.

CNN-c CNN-r
# of Conv. Filters 12; 24; 46 12; 108; 206
# of Parameters 275 009 1 968 687

initial testing demonstrated smaller filters in the first layer and larger filters in the

deeper layers performed better than the reverse. We suspect this is because smaller

filters capture more detail in the input SCMs that gets passed on to the later layers

while the larger filters in the later layers help more with condensing information to

pass onto the fully connected layer and generate an output. The rest of the CNN

architectures and the training process follow the presentation in Section 4.3. After

training and pruning, the final number of filters in each convolutional layer of the

CNN-c model is 12, 24, and 46, respectively. These numbers for the CNN-r model

are 12, 108, and 206, respectively, in each layer. The details of the pruned networks

are shown in Table 4.1.

For the networks’ outputs, CNN-c generates a prediction to 1 of 95 “classes”

between 3-50 km range. These classes represent equal range intervals at every 500 m

increment. For CNN-r, the predictions are simply a float number since the method

takes a regression approach.

Performance Comparison

The performance of MFP and the two trained CNNs on the simulated testing datasets

are compared using two metrics. One is the percentage of testing predictions that

are within 1 km of the actual source range. This metric reflects how accurate each

individual prediction is to the corresponding correct range value. The other metric is

mean-absolute-error (MAE) and reflects the averaged error over all predictions for a
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testing dataset. This metric is formally defined as

𝑀𝐴𝐸 = 1
𝑀

𝑀∑︁
𝑖=1

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖|, (4.13)

where 𝑀 denotes the number of entries in a testing dataset and the expression within

the absolute value is the difference between the predicted and actual source range for

entry 𝑖.

Figs. 4.7 and 4.8 show the performances for MFP and the CNNs on testing data

with varying degrees of SSP mismatch. As expected, as the magnitude of Beaufort

Lens strength deviation increases, the performances of all three methods decrease by

both metrics. However, CNN-c and CNN-r show improvement over MFP with SSP

mismatch while performing similarly to MFP with no mismatch (Fig. 4.7). At the

maximum amount of mismatch, the percentage of predictions within 1 km of the

actual distance is ∼3-20 points higher for the CNNs than MFP; meanwhile, the MAE

over all predictions is ∼2.5-5 km lower for the CNNs than MFP.

The panels within Fig. 4.8 further reveal that there is high variability in the MFP

predictions. This means that close-to-correct predictions can often be extremely ac-

curate while for incorrect predictions, the margins of the mistakes can be quite large.

In contrast, the CNN methods, particularly CNN-r, show lower variability in their

predictions. As a result, although the accuracy of any individual CNN prediction may

not be as high as the corresponding MFP prediction, the overall predictions are more

consistent with ground truth. Thus, the CNNs appear to gain robustness to mis-

match over MFP by trading off individual data-point prediction accuracy for overall

prediction consistency. Furthermore, the reason that CNN-r is the more prominent

example of this trade-off over CNN-c is likely because of the difference in the objec-

tive function used during their training. For CNN-r, training focuses on minimizing

the MSE loss, which inherently leads to more consistent predictions and lower overall

error than predictions derived from categorical association, as is the case for CNN-c.

Further discussion on how the CNNs achieve their robustness is presented in Section

4.5. Another point to note is that while the individual predictions of all methods
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could have large errors, in practice, noise range is typically done through a moving

average of predictions (see Fig. 4.9) or through a tracker system [152] that ensures a

smooth, realistic source track.

4.4.2 Real Data Test

Testing Data Generation

The trained CNNs are also applied to real data collected during ICEX-16 to see if

their predictive capabilities transfer and how they perform compared to MFP. The

CNNs are not re-trained with real data in this test; they are the same CNNs from

before, trained using simulated data. As described in Chapter 3, ∼8 hours of ambient

noise data were collected on March 13, 2016 using a 32 element VLA with a sampling

frequency of 12000 Hz; the recorded noise was generated by the ice cover ∼30-50 km

away from the experiment site. To prepare the testing dataset, the collected data is

segmented into 10240-point Hanning windows with 50% overlap. The SCM averaged

over 800-900 Hz is then calculated for each data snapshot. This frequency interval is

selected because the simulated training data were generated for a 850 Hz source. The

SCMs over every 32 snapshots are averaged to form the testing dataset. Although not

shown in the results, longer snapshot averages were tried as well and the prediction

outputs for all approaches were consistent across all averaging lengths.

Performance Comparison

Fig. 4.9 presents the source range estimations of MFP, CNN-c, and CNN-r on the

ICEX-16 ambient noise dataset. The dots show the individual predictions for each

snapshot window while the solid line represents the 10-minute moving average of the

predictions. From the top plot, MFP predictions deviate up to ∼20 km from the

expected range of noise generation (∼30-50 km). In contrast, the CNN-c and CNN-

r predictions are more consistent with the expected range. This is especially true

for CNN-r, whose predictions show very little variability and largely remain between

∼25-40 km. This result matches the observations from the simulated data tests where
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(a)

(b)

Figure 4.7: Performance metric comparison between MPF, CNN-c, and CNN-r with
varying amounts of deviation to the original ICEX-16 SSP. The shaded interval repre-
sents the ±2 standard deviation values of the amount of natural variability observed
in all measured Beaufort Sea SSPs presented in Fig. 3.4(b) - this demonstrates that
the maximum amount of SSP variability introduced to generate the testing datasets
exceeds the amount observed in the measured data. By both metrics, CNNs show
similar performance to MFP without any SSP mismatch but improved performance
with SSP mismatch.
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(a)

(b)

Figure 4.8: Diagonal solid line represents ground truth. Dots show prediction val-
ues. Quivers represent the difference between each prediction and the corresponding
ground truth value. (a) Performance of MFP, CNN-c, and CNN-r on testing data
generated using the original ICEX-16 SSP. (b)–(d) Performance of each approach on
testing data generated with deviations to the original ICEX-16 SSP.
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(c)

(d)

Figure 4.8: Diagonal solid line represents ground truth. Dots show prediction val-
ues. Quivers represent the difference between each prediction and the corresponding
ground truth value. (a) Performance of MFP, CNN-c, and CNN-r on testing data
generated using the original ICEX-16 SSP. (b)–(d) Performance of each approach on
testing data generated with deviations to the original ICEX-16 SSP. (Continued).
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Figure 4.9: Range predictions from MFP, CNN-c, and CNN-r for ambient noise data
collected on March 13, 2016. Dots represent individual predictions; solid lines denote
10-minute moving averages.The expected range of noise generation is ∼30-50 km.

the CNNs’ outputs also show less variability and more robustness to mismatch than

MFP. Consequently, the CNNs performance gain over MFP on simulated data does

indeed transfer to real data. Furthermore, these model-based CNNs do have utility as

an alternative to MFP and data-driven ML approaches. Another interesting observa-

tion from Fig. 4.9 is that for CNN-c, some of the predictions outside of the expected

ground truth range match those made by MFP in that they also cluster around 5

and 15 km. This similarity suggests the CNNs may be arriving at their prediction

outputs in a similar manner as MFP. However, the CNNs have fewer of these incor-

rect, outlier predictions. This means the CNNs are somehow better guarded against

making incorrect predictions than MFP. More discussion on how this may be achieved

is presented in section 4.5.
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4.5 Insight into CNN Robustness

In this section, we explore in more detail how the CNNs achieve their more robust

performance compared to MFP. To do this, it is helpful to examine an intermediate

output of the networks. In MFP, source range predictions are made by essentially

comparing the measured data replica vector (in the form of data SCM) with the tem-

plate of modeled replica vectors. Analogous to the MFP template replica vectors for

the CNN approach would be the pre-prediction output vectors of the fully connected

(FC) layer2 in the trained CNN-c and CNN-r networks. The MFP replica vectors

consist of 32 complex-valued entries while the CNN FC-layer template vectors are

256-element, real-valued vectors3. Both sets of vectors are used in the last calculation

step in their respective approach before a prediction is outputted. We use the ICEX-

16 environment with the source at 33 km as a specific example and demonstrate how

the MFP, CNN-c, and CNN-r vector sets are affected by different amounts of SSP

mismatch. For this demonstration, we first need to define a quantitative measure to

describe how different one vector is from another. We adopt the Euclidean distance

between two vectors, �⃗�𝑖 and �⃗�𝑗, which is defined as

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

[(�⃗�𝑖[𝑛] − �⃗�𝑗[𝑛]) * (�⃗�𝑖[𝑛] − �⃗�𝑗[𝑛])] (4.14)

where denotes the complex conjugate operator and N is the length of the vectors.

Taking a look at MFP first, Fig. 4.10(a) shows the normalized Euclidean distance

between the MFP template replica vectors with a data replica vector simulated with

the source at 33 km under no SSP mismatch (0% change to Beaufort Lens strength).

The normalization is accomplished by dividing by the maximum distance between

the data vector and every vector in the template set. Unsurprisingly, because there is

no SSP mismatch, the data replica vector is exactly the same as the MFP template

replica vector with source at 33 km. Thus, the Euclidean distance between the two

vectors is 0. Away from the correct source distance of 33 km, the Euclidean distance
2The fully connected layer is the last layer before the output layer of the CNNs.
3The length of the vectors match the number of nodes in the FC-layer.
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values increase very rapidly such that there is a sharp and narrow minimum at 33

km4. Because of this steep minimum, it is obvious from this plot that MFP should

output 33 km as the correct prediction, which it does, as shown by the dotted vertical

line in Fig. 4.10(a). However, when SSP mismatch is introduced, the correct output

becomes much less obvious in the Euclidean distance plot. Figure 4.11(a) shows when

the data replica vector is generated under SSP mismatch (again with source at 33

km), the normalized Euclidean distance between the data replica vector and the MFP

template vector for source at 33 km grows to about the same value as that of any

other vector in the template set - nearly all Euclidean distance values in Fig. 4.10(a)

are between 0.75 and 1 and there is no longer a steep and obvious minimum. While

MFP may still output a prediction close to the correct answer in this case (as shown

by plots for 0.1% inc., 0.25% inc., and 0.25% dec. to Beaufort Lens strength), it is

also more likely than the no mismatch case to output a very inaccurate prediction (as

is the case for 0.5% inc., 0.1% dec., and 0.5% dec. to Beaufort Lens strength). Thus,

we can view the Euclidean distance metric as a proxy for predictive confidence. When

there is no SSP mismatch, MFP has much higher confidence that the correct source

range is 33 km than any other range value. However, when mismatch is introduced,

MFP’s predictive confidence for the correct source range decreases significantly more

compared to other range values. As a result, the MFP prediction may become very

inaccurate.

Now we examine the Euclidean distance plots for CNN-c and CNN-r. Similar to

the MFP case, we first plot the distance between the CNN FC-layer template vectors

and the FC-layer output vector when the source is at 33 km under no SSP mismatch.

Fig. 4.10(b) shows that for both CNN-c and CNN-r, the minimum Euclidean distance
4Besides the single minimum, there is an apparent lack of comparable “sidelobes” in this plot

partly because the y-axis in not in dB scale - halving a value in linear scale leads to a decrease
of just 3 dB in log scale. This was done to better showcase the steep minimum in this case.
Furthermore, the metric of Euclidean distance is different than the conventional correlation metric
used when presenting MFP ambiguity maps. Whereas the correlation metric varies between 0 to
1, the Euclidean distance can span a much larger interval prior to normalization. Because of this
greater span, this distance metric is specifically chosen since it better demonstrates the disparity
between the strong match at the correct source range compared to the much weaker match at the
incorrect ranges under the no mismatch case for MFP.
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(a)

(b)

Figure 4.10: Plots are generated from simulated data in the ICEX-16 environment
with no SSP mismatch. (a) Normalized Euclidean distances between replica vectors
in the MFP template set and data replica vector with source at 33 km. By definition,
the normalized distance of the vector with itself is 0 (at 33 km); away from 33 km, the
distance values quickly increase from 0, forming a sharp and narrow minimum. Dotted
line shows MFP prediction for this case. (b) Normalized Euclidean distances between
CNN-c (blue) and CNN-r (red) FC-layer template vectors with their respective FC-
layer output vector with source at 33 km. Note, the normalized distance of the
vector with itself (at 33 km) is not 0 for CNN-c because there are multiple samples in
each output class; the distance shown in the figures represents the averaged distance
between an input with every sample in each output class. The CNN plots show more
gradual increase away from the Euclidean distance minima than the plot for MPF.
Dotted lines show CNN-c and CNN-r predictions for this case.
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(a)

(b)

Figure 4.11: Plots are generated from simulated data in the ICEX-16 environment
with varying amounts of SSP mismatch. (a) Normalized Euclidean distances between
replica vectors in the MFP template set and data replica vector with source at 33 km.
With SSP mismatch, the expected minimum at 33 km increases to around the same
value as at any other range. As a result, the MFP predictions (dotted lines) may
become very inaccurate. (b) Normalized Euclidean distances between CNN-c (blue)
and CNN-r (red) FC-layer template vectors with their respective FC-layer output
vector with source at 33 km. The CNN plots retain their minima near the correct
range (33 km) much better than the MFP plots under mismatch. As a result, their
predictions remain consistent and closer to the correct range value.
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occurs at the correct source range of 33 km. However, different from the MFP plot

(Fig. 4.10(a)), away from the correct range, the increase in Euclidean distance is

more gradual. This is especially true for the CNN-r plot. The more gradual increase

away from the minimum means, unlike MFP template replica vectors, CNN FC-layer

template vectors for neighboring source range inputs are also closer to each other in

Euclidean space. For example, the CNN FC-layer vector for source at 33 km is closer

to the vector for source at 32.5 km in Euclidean space than it is to the vector for

source at 10 km. This neighboring property of the CNN FC-layer template vectors

may be what increases the CNNs’ robustness compared to MFP. Given the same

amount of environmental mismatch which causes a slight change in the data input,

the CNNs are more constrained from outputting a prediction drastically different

from the true value than MFP because their FC-layer template vectors closest to the

correct vector also represent source ranges near the correct range value. Of course,

if the mismatch causes a large enough change to the data input, the CNNs are not

immune from making a very inaccurate prediction (as is the case for CNN-c under

0.5% inc. to Beaufort Lens strength). The CNNs’ increased robustness can be seen

in Fig. 4.11(b), which shows their Euclidean distance plots under varying degrees

of SSP mismatch. These plots retain their minima near the correct range (33 km)

much better than the MFP plots (Fig. 4.10(b)). Although the CNN predictions in

these cases (dotted lines) are not exactly equal to 33 km, they are very close to the

correct value and remain more consistent between different amounts of mismatch than

MFP. However, the more gradual increase from the Euclidean distance minima also

suggests that the CNNs are less certain of the exact correct source range compared to

MFP when the environment is precisely modeled (MFP has a very sharp and narrow

minimum in this case). Thus, this appears to be the trade-off for the CNNs’ improved

performance when mismatch is present.
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4.6 Test Case 2 - SWellEx-96 Experiment

As a second test case for our model-based CNN approach and to further demonstrate

its utility, we apply the method to perform source range estimation in another prop-

agation environment. This environment is modeled after the site of the SWellEx-96

experiment [153] off the coast of Point Loma, CA between May 10-18, 1996. As part

of this experiment, a 109 Hz source was towed below a vessel at 9 m depth while

transmitting and the acoustic data were recorded on a VLA. The modeled environ-

ment of the experiment site consists of a 216.5 m water column on top of three solid

bottom layers with increasing density (Fig. 4.12(a)). The SSP used in the simulated

environment is the average of all profiles collected during the experiment. The sim-

ulated array matches the VLA deployed during SWellEx-96 and contains 21 evenly

spaced, omnidirectional elements between 94.125 − 212.25 m depth (Fig. 4.12(b)).

4.6.1 Simulated Data Tests

Training and Testing Data Generation

At the SWellEx-96 experiment site, the main environmental variability results from

the depth of the ocean bottom as the bathymetry around the VLA varies from ∼150-

270 m. Thus, we use this environment to test the robustness of the CNN approach to

ocean bottom depth mismatch. To generate the training dataset, the ocean bottom

is set at 216.5 m depth in a range-independent model. A 109 Hz monopole source is

placed 9 m below the ocean surface and 0-10 km away from the VLA at 10 m incre-

ments (Fig. 4.12(a)). At each source location, the SCM recorded on the simulated

VLA is normalized and added to the training dataset.

Four testing datasets are generated with ocean bottom depth set to 213.5, 215.5,

217.5, and 219.5 m, respectively. For each, the source is placed at 500 random ranges

within the training interval.
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(a)

(b)

Figure 4.12: (a) Simulation setup for generating training and testing datasets in the
SWellEx-96 environment. To generate the training dataset, ocean bottom depth is set
at 216.5 m. To generate the testing datasets, ocean bottom depth is varied between
213.5-219.5 m at 2 m increments. (b) SSP used to generate training and testing
datasets and VLA element locations.

139



Table 4.2: SWellEx-96 CNN architectures after iterative pruning. Table shows num-
ber of filters in each of the three convolutional layers and the total number of param-
eters in the trained networks.

CNN-c CNN-r
# of Conv. Filters 6; 38; 40 16; 128; 256
# of Parameters 162 433 1 463 025

CNN Architecture

Compared to the data SCMs for the ICEX-16 test case, the SCMs for SWellEX-96

are smaller in size. The former are size 32×32×2 while the latter are 21×21×2. This

reduction is caused by the difference in the number of hydrophone elements in the

VLAs of the two experiments (32 vs. 21). Due to the smaller SCM input dimensions,

we chose a slightly smaller filter size for the last convolutional layer in the CNNs for

the SWellEx-96 case; the filter sizes for the layers are set to 3×3, 5×5, and 5×5,

respectively, for the three convolutional layers. The rest of the CNN architectures

and the training process follow the presentation in Section 4.3. After the training and

pruning process, the final number of filters in each convolutional layer of the CNN-c

model is 6, 38, and 40, respectively. These numbers for the CNN-r model are 16, 128,

and 256, respectively, in each layer. Note, for CNN-r, the network architecture did

not decrease after pruning as any reduction in the number of filters caused a decrease

in performance. The details of the pruned networks are shown in Table 4.2.

For the networks’ outputs, CNN-c generates a prediction to 1 of 101 “classes”

between 0-10 km range. These classes represent equal range intervals at every 100 m

increment. For CNN-r, the predictions are simply a float number since the method

takes a regression approach.

Performance Comparison

Figs. 4.13 and 4.14 compare the performance of MFP to CNN-c and CNN-r based

on the two metrics introduced in Section 4.4.1. These plots show a similar trend
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compared to the simulated data test results from the ICEX-16 environment. However,

in this case, the CNN-c approach shows a clear improvement in performance compared

to the other two methods by both metrics for all bottom depths (Fig. 4.13). At the

maximum amount of mismatch, the percentage of predictions within 1 km of the

actual distance is ∼15-20 points higher for CNN-c than MFP; meanwhile, the MAE

over all predictions is ∼0.75-1 km lower for CNN-c than MFP.

Comparing CNN-r to MFP, the results again demonstrate CNN-r trades off accu-

racy of individual predictions for lower overall error. However, for this environment,

this trade-off may be overdone. While the MAE of CNN-r is lower than MFP for all

bottom depths (Fig. 4.13), Fig. 4.14 shows CNN-r typically has a larger error margin

than MFP when comparing individual predictions, especially as the bottom depth

mismatch increases from 216.5 m. Thus, for this environment, the CNN-r approach

may not be a more robust alternative to MFP while CNN-c shows promise.

4.6.2 Real Data Test

Testing Data Generation

Acoustic recording by the 21 element VLA (sampling frequency = 1500 Hz) from

the SWellEx-96 experiment is used to test the performance of our trained CNNs

on real data from this environment. Again, the CNNs are trained with simulated

data generated with ocean bottom depth equal to 216.5 m. As part of the SWellEx-

96 experiment, a 9 m deep source emitting at 109Hz was towed by a vessel along

the blue track shown in Fig. 4.15(a). While the recording VLA was deployed at a

location with ocean bottom depth of 216.5 m, the bathymetry along the source track

varied between ∼180-220m depth. Thus, there is mismatch between the simulated

training environment and the real testing environment. Similar to the processing of

the ICEX-16 data, the SWellEx-96 dataset is segmented into Hanning windows, in

this case of size 512, with 50% overlap. The SCM averaged over 108.5-109.5Hz is then

calculated for each data snapshot. Following this, the SCMs over every 25 snapshots

are averaged to create the testing dataset.
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(a)

(b)

Figure 4.13: Performance metric comparison between MFP, CNN-c, and CNN-r with
various bottom depths. CNN-c shows improved performance to MFP in all cases by
both metrics. CNN-r shows similar or improved performance over MFP in all cases
by both metrics; however, it still may not be preferable to MFP based on results
shown in Fig. 4.14.
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(a)

Figure 4.14: Diagonal solid line represents ground truth. Dots show prediction val-
ues. Quivers represent the difference between each prediction and the corresponding
ground truth value. (a)–(c) Performance of each approach on testing data generated
with different bottom depths.

The ground truth range of the towed source with time is calculated from recorded

GPS coordinates of the VLA and the source during the experiment; this is shown as

the solid line in Fig. 4.15(b).

Performance Comparison

Fig. 4.15(b) shows the range predictions by MFP, CNN-c, and CNN-r. From this

plot, it appears that MFP and CNN-c have similar performances, while CNN-r does

worse in comparison. Table 4.3 shows that based on the two performance metrics

introduced, CNN-c has the highest percentage of predictions within 1 km of ground

truth with 70.7%, followed by MFP at 57.5%, and last, CNN-r with 37.8%. How-

ever, comparing their MAEs, CNN-r and CNN-c have similar performances by this

metric, with 1.4 and 1.41 km, respectively. Both out-perform MFP, which has a

MAE of 1.73 km. These results match the observations from the simulated testing

cases, where CNN-c had the best performance of the three methods and CNN-r had

lower MAE than MFP but lacked accuracy in individual predictions. This similarity
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(b)

(c)

Figure 4.14: Diagonal solid line represents ground truth. Dots show prediction val-
ues. Quivers represent the difference between each prediction and the corresponding
ground truth value. (a)–(c) Performance of each approach on testing data generated
with different bottom depths. (Continued).
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Table 4.3: Performance of MFP, CNN-c, and CNN-r on real data collected during
SWellEx-96.

MFP CNN-c CNN-r
% within 1 km of Actual 57.5 70.7 37.8

MAE (km) 1.73 1.41 1.40

again demonstrates the performance of our model-based CNN approach does indeed

transfer to real data. Here, as with the simulated testing cases, CNN-r appears to

over-compensate for lowering overall error at the expense of less accurate individual

predictions.

In contrast, CNN-c shows better performance than MFP but is not immune to

environmental mismatch, as demonstrated by its prediction errors at similar source

ranges as MFP shown in Fig. 4.15(b). Furthermore this plot shows a consistent

overestimation of ∼1 km or more in the MFP and CNN-c predictions from ground

truth after the ∼10-minutes mark along the source track. The CNN-r predictions also

greatly overestimate the source range during this part of the track. This overestima-

tion may be attributed to the mirage effect in shallow water [154] - as a source moves

over shallower bathymetry than what is modeled, the mismatch leads to the appear-

ance of the source at a greater range than ground truth. Fig. 4.15(a) shows that,

indeed, after around the 10 minutes mark, the bathymetry along the source track

begins to become shallower than the modeled bottom depth of 216.5 m. Evidence

of the mirage effect on the CNN predictions again demonstrates that although this

approach may achieve more robust performance than MFP (CNN-c in this case), it is,

nonetheless, subject to the same mismatch challenges that exist for all model-based

methods.

145



(a)

(b)

Figure 4.15: (a) Left plot shows source track (solid line with dots) and the location
of the VLA during the SWellEx-96 experiment [153]. Right plot shows the bottom
depth along the source track; the bottom depth at the VLA is 216.5 m. (b) Range
prediction outputs from MFP, CNN-c, and CNN-r. Solid lines represent ground truth
of source range to VLA with time. Dots show individual predictions. Quivers show
difference between individual predictions and corresponding ground truth values.
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4.7 Summary

In this chapter, we explored the feasibility of using a model-based CNN approach for

surface source range estimation. Specifically, we set out to answer three questions.

The first is whether the CNN method would show more robustness to environmen-

tal mismatch than MFP on simulated testing data. To this end, we proposed two

CNNs (CNN-c and CNN-r) and compared their performance to MFP under SSP

and ocean bottom mismatch, respectively, in two separate simulated environments.

CNN-c showed improvements over MFP in both cases. On the other hand, CNN-r

performed better than MFP against SSP mismatch but less so against ocean bottom

mismatch. The reason for CNN-r’s inconsistent performance is likely due to its goal

of lowering the overall MSE cost during training. This specification causes CNN-r to

have less variability in its predictions, which lowered the overall error of the estimates

but increased error on individual predictions compared to MFP.

Second, we used real field data collected in the two presented environments to

test whether the performances of our model-based CNN-c and CNN-r transfer to real

data. Our results confirm this to be the case. For the ICEX-16 dataset, both CNNs

returned predictions consistent with the expected source range. For the SWellEx-96

dataset, CNN-c outperformed MFP by both of the metrics examined while CNN-r

showed better overall MAE than MFP but was less accurate on individual predictions.

These results are consistent with our simulated data test results.

Lastly, we discussed how our model-based CNNs may be achieving their perfor-

mance by examining their intermediate outputs. Using the ICEX-16 environment as

an example, we compared the Euclidean distance plots of MFP’s template replica

vectors to those of the CNNs’ FC-layer (pre-prediction) output vectors (Figs. 4.10

and 4.11). For MFP, these plots show a sharp and narrow minimum when there is no

SSP mismatch; the steep minimum disappears when mismatch is introduced. This

result demonstrates that MFP can make very accurate predictions under no mismatch

but can become very inaccurate with mismatch. In comparison, Euclidean distance

plots for CNN-c and CNN-r show more gradual increases away from their respec-
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tive minimum. This result means that CNN FC-layer output vectors for neighboring

source ranges are also near each other in Euclidean space. Thus, any slight change to

the FC-layer vectors as a result of environmental mismatch is less likely to cause the

CNNs to output a prediction that is drastically different from the correct output, as

would be the case with MFP.
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Chapter 5

Transient Ice Noise Detection &

Characterization

Within the overall underwater ambient soundscape, there typically

lies a cacophony of transient noise events. In the Arctic region,

these transients usually result from various physical mechanisms

in the ice cover such as fracturing and shearing [58]. Thus, de-

tection and characterization of transient events in ambient noise can provide useful

information on the temporal distribution of ice cover activity and mechanisms by

which noise is generated. As we mentioned in Chapter 2, amplitude-based event

detection algorithms in the time domain has a significant drawback in that the spec-

tral content of the transients are fragmented. To improve upon such approaches, we

propose a frequency domain transient detection algorithm in this chapter. We first

discuss the benefit of this approach to previous time domain methods before dissect-

ing into how various components of the algorithm work together to identify transients.

We then apply it to data collected during ICEX-16 to demonstrate how it can better

characterize transient distribution and their possible generation mechanisms during

the experiment. We conclude by providing a quantification for the performance of

our approach by applying it to two datasets with ground-truth transient labels.



5.1 Drawbacks of Amplitude-based Detection Ap-

proach

In Chapter 2, we presented a time domain transient detection algorithm by Zaka-

rauskas et al. [66] that searches for improbable clusters of large amplitude peaks

in the time series. Such an amplitude-based approach is commonly used for event

detection not only in the field of underwater acoustics, but other areas such as seis-

mology. For example, several studies [11, 155, 156, 157] have used the ratio of short

and long-term averages over time series windows as a threshold to detect transient

occurrences in geophone data. The benefit of time domain algorithms is that they

are straightforward to implement and their detection sensitivity can often be easily

tuned by adjusting the ratio threshold. However, the drawback is that they do not

provide a complete description of the detected events’ frequency characteristics. Of-

tentimes, the data time series are processed in separate frequency bands so that, in

particular, weaker, narrowband transients at high frequencies are not obscured by

the general background noise [67]. As a result of the lack of spectral information,

time domain methods are less helpful in hypothesizing the mechanisms by which the

detected transients may have been generated, as different ice cover mechanics can

produce different spectral signatures [56, 58].

5.2 Frequency Domain Transient Detection Algo-

rithm

As an alternative to time domain, amplitude-based methods, we present an algorithm

for transient detection in the frequency domain. This method takes an image pro-

cessing approach to identify transients within the noise spectrograms. It then easily

allows the user to categorize the detected events based on their bandwidth and du-

ration. We apply this method to ambient noise data collected during ICEX-16 on

March 13. Because this dataset is only an ∼8 hour snapshot of the Beaufort Sea noise
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environment, we design our analysis to detect shorter time scale transient events (on

the order of seconds to tens of seconds) that result from ice cracking or floe interac-

tions. These types of events commonly occur near pressure ridges where weaker ice

readily fractures and breaks off into floes due to temperature, wind, or current stress.

5.2.1 Data Pre-processing

As noted, the input to our detection algorithm is the spectrogram of a data snapshot.

For the ICEX-16 data, spectrograms of data on each hydrophone channel in the VLA

are computed using a 4096-point Hanning window with 50% overlap. All channels

are then averaged to form a composite spectrogram. We focus our analysis to below

2048 Hz and place more emphasis on lower frequencies by transforming the frequency

axis to Mel scale with 128 bins. The conversion from Hertz to Mel scale is linear for

frequencies <1 kHz and logarithmic above 1 kHz (Fig. 5.1). This step serves three

purposes. First, noise generated by ice cover activity has most of its spectral energy

below 2 kHz, with much of that focused below 1 kHz [158, 159]. The use of the

Mel scale conveniently places more focus on lower frequencies during event detection.

Second, while the ICEX-16 VLA has the best beamforming spatial resolution between

800-900 Hz, it would not encounter any aliasing between ±30 degrees for frequencies

up to ∼2048 Hz1. Since much of the ambient noise arrives at the VLA between

±30 degrees (Fig. 3.13), we can safely perform beamforming on any transient event

that we detect to determine its vertical directionality. The final purpose is that the

decreased number of frequency bins as the result of using the Mel scale decreases

the total number of pixels in the input spectrograms. This allows our algorithm to

process the data more efficiently.

5.2.2 Image Processing Tools

Before presenting the transient detection algorithm, we first introduce a few operators

that are commonly used in computer vision and image processing for the purpose of
1Spatial aliasing occurs first at VLA endfire and last at broadside.
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Figure 5.1: Conversion from linear frequency to Mel scale is linear below 1 kHz and
logarithmic otherwise.

noise reduction and edge detection. These operators are all applied to the input image

via discrete convolution (*) with a kernel matrix. For notation, we define the input to

an operator as the source matrix, 𝑆(𝑥, 𝑦), and the output as the destination matrix,

𝐷(𝑥, 𝑦), where (𝑥, 𝑦) denote indices of a 2-D matrix.

Gaussian Blurring

Gaussian blurring is an effective way of removing random, Gaussian noise from an

input image. In this method, a 2-D discrete, Gaussian kernel, 𝐺(𝑥, 𝑦), is defined using

two variance parameters, 𝜎𝑥 and 𝜎𝑦. The size of this kernel is user defined, but is

typically a positive, odd number. The output of the blurring process is calculated as

𝐷(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) * 𝑆(𝑥, 𝑦). (5.1)
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Erosion and Dilation

In images where there are foreground objects against a background, erosion thins the

boundaries of the foreground objects and gets rid of very small features, or “salt”

noise. Contrarily, dilation expands the boundaries of the foreground objects and

eliminates small gaps between objects, or “pepper” noise. When used together, they

help diminish the amount of “salt and pepper” noise. The erosion operator is defined

as

𝐷(𝑥, 𝑦) = min
(𝑥′,𝑦′)

(𝑆(𝑥+ 𝑥′, 𝑦 + 𝑦′)), (5.2)

where (𝑥′, 𝑦′) denote the indices around (𝑥, 𝑦) that are included in the convolution

with the operator kernel and thus depend on the kernel size. Similarly, the dilation

operator is defined as

𝐷(𝑥, 𝑦) = max
(𝑥′,𝑦′)

(𝑆(𝑥+ 𝑥′, 𝑦 + 𝑦′)). (5.3)

Edge Detection

Edge detectors identify the edges of objects in an image by computing the gradient of

the image in both the 𝑥 and 𝑦 directions. One common approach for calculating the

derivative is with the Sobel filter [160], which is a discrete differentiation operator.

For a kernel size of 3×3, the horizontal derivative is calculated as

𝐺𝑥(𝑥, 𝑦) =

⎡⎢⎢⎢⎢⎢⎣
−1 0 +1

−2 0 +2

−1 0 +1

⎤⎥⎥⎥⎥⎥⎦ * 𝑆(𝑥, 𝑦), (5.4)

and the vertical derivative as

𝐺𝑦(𝑥, 𝑦) =

⎡⎢⎢⎢⎢⎢⎣
−1 −2 −1

0 0 0

+1 +2 +1

⎤⎥⎥⎥⎥⎥⎦ * 𝑆(𝑥, 𝑦). (5.5)
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For our application, we combine the two directional derivatives to compute the total

derivative of the input as

𝐷(𝑥, 𝑦) = 𝑚𝑎𝑥(𝐺𝑥(𝑥, 𝑦), 𝐺𝑦(𝑥, 𝑦)). (5.6)

5.2.3 Feature Detection

With the input spectrograms formed, the detection algorithm is applied to identify

high SNR features that may be part of transient events. This algorithm is regulated

by three threshold parameters - 𝑇𝑚𝑎𝑠𝑘, 𝑇𝑑𝑖𝑠𝑡, and 𝑇𝑎𝑟𝑒𝑎. 𝑇𝑚𝑎𝑠𝑘 is a threshold that

controls which pixels in the spectrogram are kept based on how much higher their

values are compared to the background noise estimate. As shown in Eq. 5.7, it is a

unit-less measure of linear SNR.

𝐴𝑚𝑎𝑠𝑘 = 𝐴𝑝𝑖𝑥𝑒𝑙

𝜂𝑏

, (5.7)

where 𝐴𝑚𝑎𝑠𝑘 is the mask value for a pixel that is compared to the threshold 𝑇𝑚𝑎𝑠𝑘,

𝐴𝑝𝑖𝑥𝑒𝑙 is the spectrogram amplitude of that pixel, and 𝜂𝑏 is the background noise

estimate for the input spectrogram (more on this below). The decision for the value

of 𝑇𝑚𝑎𝑠𝑘 depends on the expected loudness of the events. If the transients of interest

are fairly faint compared to the general background noise, then 𝑇𝑚𝑎𝑠𝑘 should be set

small, and vise versa. However, there is a positive correlation between true detection

rate and false detection rate - a smaller 𝑇𝑚𝑎𝑠𝑘 value leads to increased detection of

fainter transients but also more mis-classifications of random noise as events. Thus,

some initial empirical testing is recommended when setting this parameter.

𝑇𝑑𝑖𝑠𝑡 is a measure of distance between features based on their positions in the

spectrogram. The distance between two features is computed using a custom metric

shown in Eq. 5.9 (see Section 5.2.4). It is used to determine whether two or more

features should be grouped together as a single transient event or be counted sepa-

rately. Thus, it is a parameter that controls the amount of over- or under-counting

that may occur. 𝑇𝑎𝑟𝑒𝑎 is simply a measure of the number of pixels in a feature. Its
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purpose is to eliminate features with very few pixels that are likely random noise. In

this sense, it sets a minimum pixel count requirement for the definition of a feature.

With these threshold values, the detection algorithm works as follows:

1. The background noise level at each frequency (𝜂𝑏), defined as the noise level

when no transient events are occurring, is estimated for the first input data

snapshot by calculating the spectrogram of a data window much longer than

the duration of the first snapshot and then averaging the spectrogram values

over time. For the analysis of the ICEX-16 data, the individual input snapshot

lengths are set to 30 seconds while the duration of data used to estimate the

background noise is 30 minutes. This approach for estimating the background

noise level works off of two assumptions. One is that for any sufficiently long

window of data, there are no transient events during a large majority of the time.

The other is that there is enough total data available for such a sufficiently long

window. In our testing with the ICEX-16 dataset, a 30-minute long window

was adequate for us to detect even very low SNR transients in the first input

snapshot. An example of an input spectrogram is shown in Fig. 5.2 (top left).

2. The frequency-normalized spectrogram (Fig. 5.2, top middle) is calculated for

the current data snapshot by dividing the original spectrogram values at each

frequency by the estimated background noise level at the corresponding fre-

quency. This step helps to mitigate the issue that noise level is typically higher

at lower frequencies, which can mask transient events at higher frequencies if

the spectrogram is not normalized.

3. Smoothing, dilation, and erosion are applied to the frequency-normalized spec-

trogram to filter out noise in the image that may be mistaken for transient

events. Smoothing is done by applying a 3×3 Gaussian blurring filter over

the spectrogram. Dilation and erosion are performed using the Python library

OpenCV [161], also with a 3×3 kernel. After noise reduction, edge detection is

done using the Sobel filter to construct a gradient map of the input (Fig. 5.2,

top right).
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4. A mask is created by thresholding the gradient map - all pixel values in the

map that are less than 𝑇𝑚𝑎𝑠𝑘 are set to 0 while the rest are set to 1 (Fig. 5.2,

bottom left). The mask is then applied to the filtered spectrogram through

multiplication and all zero-value pixels are removed from the output. This

results in a post-processed image with disconnected pixel groups that we call

features (Fig. 5.2, bottom middle).

5. The features in the post-processed image are further grouped together using

hierarchical clustering (h-clustering) with a custom distance metric that is de-

signed to conjoin separate features that are likely to be part of a single transient

event (see Section 5.2.4). Two features are conjoined if the distance between

them is less than 𝑇𝑑𝑖𝑠𝑡. At the end of the clustering process, very small features

with less than 𝑇𝑎𝑟𝑒𝑎 number of pixels are deleted to further eliminate noise.

The detected transients are then labeled by type based on their bandwidth and

duration (Fig. 5.2, bottom right, see below for type definitions).

6. After transient detection within the current snapshot, background noise is esti-

mated for the next snapshot. Pixels in the detected transients are deleted from

the current input spectrogram to create a “noise-only” image. An update to

the background noise level (𝜂𝑏,𝛿) is calculated by averaging this “noise-only" im-

age over time. The new background noise level is then calculated by averaging

together the previous background noise level and this new update following

𝜂𝑏,𝑛𝑒𝑤 = 𝜂𝑏,𝑜𝑙𝑑 + 𝜂𝑏,𝛿

2 . (5.8)

7. Repeat steps 2-6 on the spectrogram of the next data snapshot window.

For analysis of the ICEX-16 data, the three threshold parameters are set as

𝑇𝑚𝑎𝑠𝑘 = 17, 𝑇𝑑𝑖𝑠𝑡 = 5.5, 𝑇𝑎𝑟𝑒𝑎 = 20. These values are selected empirically after

some testing on a small subset of the data to check the algorithm is detecting all

transients that are observed by a human analyst.

Based on the bandwidth and duration of the detected transients, we define four
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types of events: short-time-narrowband (stnb, duration <5 s, bandwidth <200 Hz),

long-time-narrowband (ltnb, duration >5 s, bandwidth >200 Hz), short-time-broadband

(stbb, duration <5 s, bandwidth >200 Hz), and long-time-broadband (ltbb, duration

>5 s, bandwidth >200 Hz). Examples of each event type are shown in Fig. 5.3.

We believe the stnb events mostly encompass high SNR background noise within the

spectrogram that have been falsely detected as events or perhaps small features that

may have been part of another event but were incorrectly clustered. Thus, the stnb

category serves as another noise removal procedure. The representation of the other

three categories is discussed in Section 5.3.

5.2.4 Hierarchical Clustering and Distance Metric Design

h-clustering

Hierarchical clustering (h-clustering) [162] is used in our event detection method to

group together features that may be part of the same transient event. We take an

agglomerative or “bottom-up” approach, which means that each feature in the post-

processed image starts off as an individual cluster of one. Then, starting with the

largest cluster by the number of pixels, we iterate through each cluster and combine

that cluster with its closest neighbor as defined by a distance metric (Fig. 5.4). We

stop the clustering process once all remaining clusters are at least 𝑇𝑑𝑖𝑠𝑡 apart from

each other.

Distance Metric

The distance metric used in our h-clustering procedure is designed based on two

principles. The first is that, intuitively, features that occur at or near the same

time are more likely to be part of the same transient event. To implement this

principle, we elect to use an average of the absolute pixel distance and the pixel

distance along the time axis only as the distance metric between two features (Eq.

5.9). The absolute pixel distance between two features is further defined as the

minimum distance between all pixels in one feature to all pixels in the other feature
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(a)

(b)

Figure 5.3: Examples of different transient event categories detected in ICEX-16 data
from March 13. (a) A ltbb event followed by a stbb event. (b) A stbb event. (c) A
ltnb event. (d) Some stnb noise followed by a stbb event.
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(c)

(d)

Figure 5.3: Examples of different transient event categories detected in ICEX-16 data
from March 13. (a) A ltbb event followed by a stbb event. (b) A stbb event. (c) A
ltnb event. (d) Some stnb noise followed by a stbb event. (Continued).
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Figure 5.4: Demonstration of agglomerative h-clustering. Green dots represent in-
dividual starting clusters, larger ovals represent output clusters following grouping,
dashed line represents the clustering hierarchy at which the stop condition is met.

(Eq. 5.10). Similarly, the pixel distance along the time axis between two features is

defined as the minimum distance between the time indices of all pixels in one feature

and the time indices of all pixels in the other feature (Eq. 5.11). This custom distance

metric represents a balance between grouping together features that are close together

in terms of relative proximity, while also combining more distant features that are

close in time only - some more distant features may be part of a single broadband

event and would not otherwise be grouped.

The second design principle places a constraint on the first and holds that it is

unlikely for a horizontal and a vertical feature to be part of the same transient event.

This is because a horizontal feature is more likely to be part of a narrowband tonal

while a vertical feature is more likely to be part of a broadband impulse. Thus, as

part of our distance metric calculation, we first determine the slopes of the features.

If the slope is greater than 1.2, we classify that feature as vertical. If the slope is

less than 0.8, we classify the feature as horizontal. Otherwise, we do not assign an

orientation label. Note, a slope of 1 means a feature has an equal number of pixels

in height and width. In calculating the distance between two features, if one has

vertical orientation while the other has horizontal orientation, we manually assign
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their distance to be infinite so that they are never clustered together. This ensures

that tonals and broadband events are not grouped as a single event, even if they occur

closely in time.

Formally, the distance metric between two features 𝑓1 and 𝑓2, is computed as

𝑑(𝑓1, 𝑓2) =

⎧⎪⎪⎨⎪⎪⎩
∞, if 𝑓1⊥𝑓2

𝑑𝑝+𝑑𝑡

2 , otherwise,
(5.9)

where, ⊥ signifies that 𝑓1 and 𝑓2 have opposing orientations. 𝑑𝑝 and 𝑑𝑡 denote the

absolute pixel distance and the pixel distance along the time axis between 𝑓1 and

𝑓2, respectively. Given the pixels in 𝑓1 and 𝑓2 are indexed by (𝑥1, 𝑦1) and (𝑥2, 𝑦2),

respectively, where 𝑥 represents the time axis and 𝑦 represents the frequency axis,

the two distances are calculated as

𝑑𝑝 = 𝑚𝑖𝑛(
√︁

(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2), (5.10)

𝑑𝑡 = 𝑚𝑖𝑛(|𝑥2 − 𝑥1|). (5.11)

5.3 Characteristics of Transients detected in ICEX-

16 Dataset

A total of 3178 transient events are detected by applying our algorithm to the ∼8

hours of ICEX-16 data collected on March 13. Of these, 2081 are stnb events, which,

as we noted, are likely background noise that are not ice-generated transients. Thus,

we do not consider these in our discussion and instead focus on the other three event

categories.

Details of the 1097 non-stnb events are shown in Table 5.1. stbb events are the most

common event type, with 773 occurrences accounting for 70.5% of the detections. We

believe this event type is indicative of small, impulsive ice fractures that may occur

in the periphery of larger cracking events. As described by Xie and Farmer [58], ice
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Table 5.1: Detected transient events by category.

# of % of Combined % of Recor- Mean Peak
Detections Total Duration (s) ding Time Elevation (Deg.)

stbb 773 70.5 1800.5 6.3 -10.7
ltnb 82 7.5 691.9 2.4 -11.0
ltbb 242 22.0 2366.4 8.3 -10.5

breaking can be partitioned into three phases. First, environmental forcing initiates

ice breaking near weakened locations such as ridge formations. This process emits

short, impulsive, sound pulses, similar to the stbb events that we observe. Second,

the initial fractures promote more failures and further cracking. In turn, a positive

feedback loop develops and leads to a more extended period of broadband noise

generation. We believe this second phase is descriptive of the ltbb events. They

are the most prevalent event type with 2366.4 s of total combined duration over 242

detections. This accounts for ∼8.3% of the total data recording time. The third phase

of ice breaking accounts for ice floe interactions. As small ice floes break off and rub

past each other, pure tones are emitted into the water column. We believe the ltnb

events are representative of these tonal features. They are the rarest event type from

our analysis. Only 82 are detected and their combined duration accounts for less

than 2.5% of the total data recording time. The distribution of event durations for

the detected events is shown in Fig. 5.5. From this plot, we see that the majority

of stbb events have durations less than 3 s. For ltnb and ltbb events, their durations

are longer than 5 s by definition but the majority last no longer than 10 s. These

relatively shorter event durations compared to findings from previous studies [56, 57]

suggest that ice cracking during ICEX-16 was likely occurring on a small temporal

and spatial scale, absent of any prolonged major activity in the ice cover (e.g., no

large lead openings).

After event detection, the peak vertical directionality arrival angle at the VLA is

determined for each transient. This step is done by segmenting the portion of data
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Figure 5.5: Distribution of transient event durations by type.

that contains the event using a 512-point Hanning window and then beamforming

over the frequency range of the event. The beamformed output is then averaged over

frequency and time to derive its directionality profile. From there, the peak elevation

angle is determined. As shown in Fig. 5.6, these peak angles mostly cluster near

-10 degrees and are fairly consistent over time for all event types. The mean peak

elevation angles for different event types are all between -10 and -11 degrees (Table

5.1). These results agree with that of the overall ambient noise presented in Chapter

3. Thus, in accordance with our previous discussion in Chapter 3, the peak arrival

angle values support the claim that the detected events are generated by the ridge

formation ∼30-50 km away from the ICEX-16 camp.

Table 5.2 shows the frequency content of the detected events. Five frequency

intervals are defined at octave ranges (<160, 160-320, 320-640, 640-1280, and 1280-

2048 Hz). Of these intervals, 640-1280 Hz and 320-640 Hz are the most active with

79.8% and 70.9% of events having some frequency content within these two octaves,

respectively. In addition, the distribution of the event bandwidths is shown in Fig.

5.7. For ltnb events, most have a bandwidth of less than 150 Hz. For broadband

events of both types, most have bandwidths of less than 750 Hz. Of course, the

event bandwidths are capped by our choice of the analysis frequency limit at 2048

Hz. However, the values in Fig. 5.7 are reasonable compared with transient events
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Figure 5.6: Peak arrival angles of detected events mostly cluster near -10 degrees, in
agreement with that of the overall ambient noise. This plot also shows the temporal
distribution of detected events by category.

Table 5.2: Percentage of events that are at least partly within a frequency interval
(excludes stnb events).

Frequency Interval (Hz) <160 160-320 320-640 640-1280 1280-2048
% of Events 8.8 22.3 70.9 79.8 19.3

presented in previous studies [56, 57, 58].

The final noise characteristic that we present is the time gap between the starts of

consecutive transients. Fig. 5.8 (left) shows the majority of events occurred less than

50 s from the previous. This result suggests transient events were occurring quite

consistently throughout the data recording session. If we examine the time between

consecutive events of the same type, Fig. 5.8 (right) shows the time gaps can be

much longer, especially for ltnb and ltbb events. This makes intuitive sense as these

events are rarer than stbb events. However, their rarity does not mean that they can

not occur in quick succession of one another. The majority of the ltnb and ltbb events
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Figure 5.7: Distribution of event bandwidths by category.

nonetheless occurred within 100 s of the previous event of their respective type. Fig.

5.6 shows the temporal distribution of detected events by category. For ltnb and ltbb

events, we observe times when they happen in clusters (e.g., near 08:24:00) and times

when there is a longer gap in their occurrence (e.g., after 13:12:00). In contrast, the

occurrence of stbb events appears to be more consistent over time. These observations

suggest small fractures may have occurred fairly regularly during ICEX-16, whereas

larger cracking events and the subsequent ice floe interactions were more sparse in

time. However, when larger cracking events did occur, they tend to have happened in

clusters, resulting in a sudden increase in transient noise generation. This clustering

result is in agreement with our previous temporal analysis of the ICEX-16 data in

Chapter 3.

5.4 Case Studies to Assess Algorithm Performance

In this section, we present more information on the performance of our frequency

domain transient event detection algorithm by applying it to two datasets with ground

truth transient event labels. We evaluate our algorithm with two metrics. The first

is the true positive rate (TPR), which is the percentage of detected transients that

are known to be true events based on the ground truth labels. It is formally defined

166



Figure 5.8: Distribution of time gaps between successive event start times (left) for
all events and (right) for events of the same category.

as

𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100, (5.12)

where, 𝑇𝑃 is the number of true positives - transient events correctly identified as

transients, and 𝐹𝑁 is the number of false negatives - transient events that are not

detected.

A complementary metric to TPR is the false positive rate (FPR), which is the

percentage of detected transients that are incorrectly identified as transients based

on the ground truth labels. It is computed as

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100, (5.13)

where, 𝐹𝑃 is the number of false positives - non-events incorrectly identified as tran-

sients, and 𝑇𝑁 is the number of true negatives - non-events that are correctly not

identified as transients. Typically, for a detection problem, TPR and FPR are pos-

itively correlated - as the TPR increases, FPR increases as well. The goal of any

detection algorithm is to maximize TPR while minimizing FPR. In practice, for the

user, this means setting the parameters of the algorithm appropriately so that there

is a balance between an adequately large TPR and acceptable FPR. For our exam-
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ples below, we have selected the algorithm parameters such that there is diminishing

returns on TPR, i.e., changing the parameter values further to boost FPR does not

lead to an equivalently large increase in TPR.

5.4.1 HICEAS Bioacoustics Dataset

The first dataset is a subset of the acoustic data collected during the Hawaiian Islands

Cetacean and Ecosystem Assessment Survey (HICEAS) in 2017 [163]. It was collected

using a multi-channel towed hydrophone array [164] with a sampling frequency of

500 kHz. For our analysis, we focus on detecting Minke whale “boing” vocalizations

within a ∼3.5 hour segment of data collected on December 1, 2017. The ground truth

labels for these calls were annotated using the software program PAMGuard between

1100 and 1800 Hz [163]. To generate the input spectrograms, a Hanning window of

length 51200 is applied to 1-minute long data snapshots with 50% overlap. The initial

background noise estimate is calculated using 10 minutes of data. The application

of our algorithm is the same as described in Section 5.2 but with some parameters

changed to suit this dataset. Most notably, we set 𝑇𝑚𝑎𝑠𝑘 = 50, 𝑇𝑑𝑖𝑠𝑡 = 5.5, and

𝑇𝑎𝑟𝑒𝑎 = 75. These values are again empirically chosen after some testing on a subset

of the dataset. The major cause of false predictions in this dataset is the presence of

short, impulsive noise (Fig. 5.9). Thus, we devise two event categories: short-time

(duration <1.25 s) and long-time (duration >1.25 s). Only events classified as long-

time are considered whale call detections. With this set-up, our algorithm achieves a

TPR of 70.9% and a FPR of 13.9% compared to ground truth annotations.

A brief note of our algorithm’s performance on this dataset compared to other

whale call detection methods presented in the Bioacoustics literature. We do not

expect our algorithm to achieve the same level of accuracy as other methods that are

dedicated to whale call detection [165, 166]. This is because such methods typically

incorporate and leverage common features of the whale calls’ spectral signatures to aid

detection. In its current state, our algorithm is designed as a tool that would allow the

user to detect all transient features in a dataset regardless of spectral signature and

then categorize them to gain a better understanding of the entire soundscape. In this
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Figure 5.9: Examples of whale call detections (near 00:12:48 and 00:13:40) and im-
pulsive noise (all others) in the HICEAS dataset. The x-axes denote UTC time on
December 1, 2017.

sense, the algorithm provides more utility in situations where the spectral shape of

the transients of interest are not well known or may vary (such as for characterizing

ambient noise generated by ice cover). The algorithm’s categorization metrics can

certainly be designed based on the user’s need to specialize detection of a certain

type of transient. Thus, this is an area for improvement for this approach.

5.4.2 SIDEx Dataset

The second dataset is collected during the Sea Ice Dynamics Experiment (SIDEx),

which deployed a geophone array to monitor transient cracking events in the surface

ice cover just north of Utqiagvik, AK in January, 2020. As part of this experiment, a

series of calibration events were generated by the field team by synchronously jumping

and landing at various locations on the ice cover. At each location, four calibration

events are generated in quick succession. These events were recorded by four, 3-axes,

cabled geophones sampling at 1000 Hz and their generation times were noted for

ground truth comparison. The calibration events appear as impulsive, broadband

signals in the data spectrogram, with much of their energy below 100 Hz. For more

information on the SIDEx experiment and data, please see Chapter 6.

For our analysis here, we focus on detecting these calibration events using data
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Figure 5.10: Examples of calibration event detections (between 19:46:07 and 19:46:16)
and noise (all others) in the SIDEx dataset. The x-axes denote UTC time on January
25, 2020.

from the vertical component of the geophones. To generate the input spectrograms,

a Hanning window of length 512 is applied to 1-minute long data snapshots with 50%

overlap. The initial background noise estimate is calculated using 10 minutes of data.

After some initial testing, we set the threshold parameters as 𝑇𝑚𝑎𝑠𝑘 = 200, 𝑇𝑑𝑖𝑠𝑡 = 3,

and 𝑇𝑎𝑟𝑒𝑎 = 25. The major cause of false predictions in this dataset is the presence of

longer, impulsive noise greater than 2 s in duration (Fig. 5.10). Thus, we again devise

two event categories: short-time (duration <2 s) and long-time (duration >2 s). Only

events classified as short-time are considered calibration event detections. With this

set-up, our algorithm achieves a TPR of 73.9% and a FPR of 21.7% compared to

ground truth annotations.

Fig. 5.10 shows the spectral shape of the calibration events are very similar to

the noise in this case. This undoubtedly diminishes the ability of our algorithm to

accurately separate the two into different categories. Thus, this is a limitation of

our current algorithm. As noted in the previous example, for future improvement,

less empirical metrics for event categorization may be developed by leveraging known

characteristics of the transients of interest. For example, in this case, the fact that

calibration events occur in groups of four may have been incorporated to more accu-

rately separate them from other noise transients.
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5.5 Summary

In this chapter, we presented a frequency domain transient event detection algorithm

which leverages image processing techniques and h-clustering to identify transients in

data spectrograms. This approach is an improvement over amplitude-based methods

in the time domain in that it retains the spectral information of the detected tran-

sients, which can then be used to further categorize the event and hypothesize their

generation mechanisms. Using this method, we characterized transient events that oc-

curred during the ICEX-16 experiment based on their duration and bandwidth. Our

results suggest that ice cracking during this time likely happened on small temporal

and spatial scales. Small fractures occurred regularly, whereas larger cracking events

and ice floe interactions were more rare. When larger cracking events did occur, they

tend to have happened in clusters, resulting in a sudden increase in transient noise

generation.

We further tested our algorithm on two datasets with known ground truth labels.

It achieved a TPR (FPR) of 70.9 (13.9)% and 73.9 (21.7)%, respectively. For future

improvement, less empirical metrics for event categorization can be developed based

on knowledge of the spectral signature of the transients of interest. This would allow

for more specialized identification of events and further improvement of detection

accuracy.
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Chapter 6

Ice Cover Transient Noise

Monitoring

In the previous chapters, we have analyzed experiment data and presented

methods for characterizing underwater ambient noise that facilitate a broad

description of noise generation range and mechanisms by which transient noise

events are produced in the ice cover. Combined, these two components form

an overall description of the far field ambient noise-scape and how changes to the

soundscape are indicative of environmental changes. In addition to the work presented

so far, another approach to monitor Arctic ambient noise activity, specifically its

generation in the ice cover, is through the deployment of geophone arrays on the ice

surface. Such a system can document transient events generated by sea ice dynamics

as well as enable localization of the events to study their spatial distribution over an

area of interest. Specific focus on the recorded waveforms of these transient events

also means a closer examination of near field noise propagation that contributes to the

overall soundscape. This aspect of ice generated noise was not a focus of the previous

chapters but, nonetheless, an interesting part of the ambient soundscape worthy of

study.

With these motivations in mind, in this chapter, we outline a seismo-acoustic sys-

tem consisting of geophones and hydrophones to monitor ice cover dynamics and the

resulting transient noise activity. This system was deployed on Elson Lagoon, north of



Utqiagvic, AK, as part of the Sea Ice Dynamics Experiment (SIDEx) during January

to March of 2020. We first provide some background on wave propagation in the ice

cover before presenting the deployed array and an example of a recorded event during

the experiment. Then, continuing with our presentation of data analysis algorithms,

we describe two forward approaches for event localization that primarily leverage

time-difference-of-arrival (TDoA) of the event signal on different receiver elements.

We test the performance of these approaches using a calibration dataset collected

during the experiment and compare with a more conventional, inverse method. We

further investigate the utility of remote node geophones for ice cover seismo-acoustic

monitoring. Because of their cable-less nature, these units can be easily deployed

to form an array that covers a much larger area than what is possible with cabled

geophones. Using the remote geophones deployed, we provide a localization estimate

for a natural event that occurred during the experiment. We conclude by suggesting

improvements for the next iteration of this system based on lessons learned during

this deployment.

6.1 Background

6.1.1 Sea Ice Dynamics Studies

The toolkit for studying sea ice dynamics is quite abundant. For example, stress

and strain sensors [167, 168, 169], ice buoys [170, 171, 172, 173], and satellite-based

observations or radar interferometry [174, 175, 176, 177, 178] are the standard. In

addition to these, other works describe another tool - using passive acoustic and

seismic measurements on and below the ice cover to characterize ice properties and

localize transient events [179, 180, 181, 182, 183, 184, 185, 186]. The challenges

associated with deploying and maintaining a seismo-acoustic system in the Arctic are

significant. The extreme environment, processing and storing of large amounts of

data, and the interdisciplinary knowledge required for data analysis all contribute to

the difficulty of long-term monitoring of ice dynamics. One recent deployment of this
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type was actually during the SIMI-94 experiment, in which an array of geophones

and hydrophones was deployed on and under the Beaufort sea ice cover to localize

transient noise events caused by ice cracking [11]. In the SIDEx experiment, the

goal is to again deploy a system based on the SIMI-94 arrays and further explore the

capability of such a system to localize transient noise events in the ice cover, which

would construct a more complete picture of ice dynamics and noise generation.

6.1.2 Wave Propagation in the Ice Cover

Due to its elastic nature, wave propagation in the ice cover is much more complex than

in water. Three fundamental wave types are observed to propagate in the ice cover -

longitudinal (P), horizontally polarized transverse (SH), and flexural waves [187, 188,

189, 190, 191]. The longitudinal and transverse waves travel at the compressional and

shear speeds in the ice cover, respectively. They are faster than the flexural wave,

which propagates as the result of bending of the ice over. In terms of amplitude,

the flexural wave is the most prominent in the time series and thus commonly the

focus of analysis. One property of the flexural wave is frequency dispersion, meaning

the wave’s propagation speed depends on frequency. In a time series, the resultant

waveform shows high frequencies arriving first, followed by lower frequencies. Another

flexural wave property is elliptical particle motion - its vertical and radial components

are 𝜋/2 out of phase and vertically polarized in the plane containing the source and

receiver. Fig. 6.1(a) shows an example of wave arrivals at various ranges in both

the vertical and radial directions for a simulated source at the surface of a 1 m thick

ice cover. The first arrival is the P wave, followed by the SH wave, and then the

dispersive flexural wave. Fig. 6.1(b) shows the particle motion of the flexural wave

arrival, which exhibits an elliptical shape. Theses figures are generated using OASES

[35] with the parameters shown in Table 6.1.
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(a)

(b)

Figure 6.1: (a) Simulated time series move-out of a vertically forced source on the
surface of a 1 m thick ice cover with parameters presented in Table 6.1. Dashed-
dot line marks the move-out of the P wave, dashed line marks the SH wave, solid
line marks the flexural wave. (b) Particle motion of the flexural wave component
of the simulated event showing complex elliptical polarization (horizontal ellipses for
early, higher frequency arrivals turning to vertical ellipses for later, lower frequency
arrivals).
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Table 6.1: Parameters used to model example wave arrivals in an ice cover. 𝐶𝑝

denotes compressional speed, 𝐶𝑠 denotes shear speed, 𝜌 denotes density, 𝜂𝑟𝑚𝑠 denotes
root-mean-square roughness, 𝜂𝑐𝑙 denotes roughness correlation length.

Medium 𝐶𝑝 𝐶𝑠 𝜌 𝜂𝑟𝑚𝑠 𝜂𝑐𝑙

Vacuum halfspace - - - - -
Ice layer (top) 3000 m/s 1200 m/s 0.9 g/cm3 - -

Ice layer (bottom) 2400 m/s 600 m/s 0.9 g/cm3 0.2 m 19.1 m
Water halfspace 1435 m/s - 1.0 g/cm3 - -

6.2 Experiment Setup

6.2.1 System Overview

The seismo-acoustic system deployed during SIDEx consists of two parts: a central

cabled array with four 3-axis geophones and two hydrophones, plus an un-cabled array

with four independent seismic recording units (Figure 6.2). The geophones (both

cabled and stand-alone) were frozen onto the surface of the ice cover using a bit of

water. For the two hydrophone units, one was deployed on the surface of the ice (in air

and covered by snow) while the other was lowered into the water column ∼1 m below

the ice cover. The purpose of this configuration was to test whether we can detect

transient event arrivals at the air and water propagation speeds, respectively. Each of

the 3-axis geophones measure the velocity of the ice motion in a Cartesian coordinate

system to form recorded time series. These measurements can be represented as

𝑣𝑖 = [𝑣𝑥𝑖, 𝑣𝑦𝑖, 𝑣𝑧𝑖]′ and 𝑣𝑥𝑖 = [𝑣𝑥𝑖[0], 𝑣𝑥𝑖[1], ...], where 𝑖 denotes the numbering for each

element and 𝑥, 𝑦, 𝑧 denote the three axes. The geophones were oriented with the

longitudinal axis pointed approximately East-West and the transverse axis pointed

approximately North-South.

At the Elson Lagoon deployment site, the ice cover was thin during the experiment,

∼1 m thick. The water depth beneath the ice is quite shallow, approximately 3-4 m

deep. Below the water column, the sub-bottom consists of mostly muddy sediment.

A crack in the ice cover was observed at the site, which ran diagonally through the
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deployed system (Fig. 6.2).

Cabled Array

The cabled geophone array and hydrophones were deployed near the center of the

overall system. They are denoted as G0-G3 and H0-H1, respectively, in Fig. 6.2.

The geophone array was configured as a center unit (G3) with three peripheral units

(G0-G2), each approximately 50 m away from the center unit. The hydrophone ele-

ments were co-located with the center geophone. All elements recorded at a sampling

rate of 1000 Hz. The collected data were transmitted wirelessly via long-range wi-fi

to a shore-side laptop, which automatically backed-up the data to a dedicated online

drive. The entire cabled system was powered using eight batteries that were peri-

odically recharged by a 600 W wind turbine. The power requirements for wireless

communications and data transfer were significant (10 W); as a result, the wireless

link time was limited to 1 hour per day. Thus, the recorded data was also stored

locally on a SD card in the system.

Remote Array

The remote, un-cabled array also consisted of four 3-axis geophone units, labeled

S0-S3 in Fig. 6.2. Because the units are not tethered by cables, they were able to be

more easily deployed to form a larger array. Similar to the cabled array, the remote

array was again configured as a central unit (S3) with three peripheral units (S0-S2),

each approximately 1000 m away from the center. The center S3 unit was positioned

immediately next to unit G3 from the cabled array. Each remote unit is a Sigicom

INFRA C22 wireless vibration monitor, which recorded at 4096 Hz and was powered

by an external battery. The data recorded at each unit was stored locally on a SD

card. To our knowledge, this was the first time that these units have ever been used

for ice cover seismo-acoustic measurements; they are generally used for monitoring

building vibrations. Thus, testing the viability of these units for deployment on the

ice was an important function of this experiment.
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Figure 6.2: GPS locations of the cabled geophones, hydrophones, and stand-alone
geophones in the deployed system. The location of the experiment site and an ob-
served crack in the ice cover are also shown.
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6.2.2 Calibration Dataset

A calibration dataset was recorded after system deployment. This dataset serves three

purposes: first, it allows us to estimate the flexural wave propagation speed in the ice

cover by analyzing the TDoA of the calibration events at each geophone unit. Second,

it provides ground truth for testing our localization algorithms presented in later

sections. Finally, this dataset can also demonstrate any limitations of the deployed

system itself and help inform improvements for future system design. To carry out

the calibration, the field team created impulsive events on the ice by synchronously

jumping and landing at various locations (Fig. 6.3(a)). An accelerometer and GPS

combination was used to record the location and timing of the jumps. This calibration

method was selected as it was the most feasible way to impart a large force into the

ice cover to simulate a transient event without having to transport weights to the site

or arrange for explosives permits.

Calibration events were generated at 50 locations around and within the cabled

array perimeter, at ranges of up to 400 m from the array center (Fig. 6.3(b)). At

each location, 4 impulses (jumps) were generated. Unfortunately, since most of the

events were near the cabled array and far away from the remote units, many events

are only present on the cabled array units. Thus, only the cabled array calibration

data were analyzed. In addition, while the jump method of calibration may not fully

replicate the form or intensity of the signals seen in natural cracking events, it does

provide a clean, clear signal that can be used to estimate the propagation speed of

flexural waves through the ice cover.

Of the 200 calibration events, 188 are clearly visible on the cabled array recordings.

As an example, calibration event 1’s location and time domain move-out on the cabled

array geophones are shown in Fig. 6.4(a,b). On the time series plot, we see only the

flexural wave component is clearly observable. As noted previously, this component

is much more prominent than the P and SH waves. Furthermore, the signals on the

vertical axes are much stronger than the arrivals on the radial axes. This is likely

due to the fact that the calibration events impart much more vertical energy into
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(a)

(b)

Figure 6.3: (a) Method for generating calibration events - 3 members of the field
team jumped up and down 4 times at each of the 50 locations. (b) Locations of all
calibration events.
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(a) (b)

(c) (d)

Figure 6.4: (a) Calibration event 1’s location with respect to the cabled array center.
(b) Time domain move-out on each cabled geophone element; the radial component
is a combination of the x-y axes data. (c) Event spectrogram from the vertical axis of
each element showing the dispersive nature of the flexural wave arrival. (d) Particle
motion on each element showing close-to-elliptical polarization.

the ice cover than in the radial direction. We can confirm the waves observed in the

time series are flexural by plotting their spectrograms (Fig. 6.4(c)), which highlight

the signals’ dispersive nature. Similarly, the particle motion of the arrivals on all

channels are close to elliptical (Fig. 6.4(d)). Although, the ellipses are less well

defined compared to the modeled event shown in Fig. 6.1(b).
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6.3 Hydrophone Data

The motivation for deploying two hydrophones along with the geophone arrays was

to test whether we would observe the airborne and waterborne arrivals of transient

events in addition to waves propagating in the ice cover. Accordingly, one hydrophone

was placed on the surface of the ice cover while the other was lowered into the water

column, 1 m below the ice. Although we were skeptical about seeing airborne arrivals

on the surface hydrophone, we did expect to observe waterborne arrivals, propagating

at the speed of sound in the water (∼1430 m/s), in the lowered hydrophone. However,

upon inspection of the recorded calibration events on the hydrophones, we find that,

similar to the time series recorded on the geophones, only the ice cover flexural wave

is prominently visible. Fig. 6.5 demonstrates this by showing the time series of

calibration event 1 recorded on the hydrophones and the co-located G3 geophone. As

we mentioned, only the dispersive flexural wave is observed on all three units. The

in-air, surface hydrophone time series contain significantly more high frequency noise

than the in-water hydrophone data. This is expected as the hydrophones were not

designed to be deployed in air and the surface unit was likely more affected by other

environmental noise such as from wind.

Faced with this result, we suspect the reason only the ice cover flexural wave is

observed on the hydrophones is because they were deployed too close to the ice cover.

As a result, the flexural wave arrival is much stronger than the air or waterborne

arrivals and effectively obscures them in the time series. Particularly, if we were

able to deploy the in-water hydrophone lower in the water column, the increased

distance from the ice cover would have allowed the flexural wave to dissipate and

we would then be able to observe the waterborne pressure wave arrival. To test this

theory, we modeled received time series caused by a surface source at 200 m range on

hydrophones placed at various depths in an environment with a 1 m thick ice cover,

1000 m deep water column, and a muddy bottom halfspace (Table 6.2). The modeling

results are shown in Fig. 6.6 and they confirm our hypothesis. At depths within ∼10

m of the ice cover, only the flexural wave is observed in the hydrophone time series;
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Figure 6.5: Calibration event 1 time series recorded on the hydrophones and the co-
located G3 geophone. Only the flexural wave arrival is clearly observed on all three
elements.

not until below 10 m depth do we start to observe the waterborne pressure wave

arrival. Thus, in order to make use of waterborne propagation in our data analysis,

we needed to deploy the in-water hydrophone deeper in the water column. This was

not possible at the Elson Lagoon experiment site as the water depth is only ∼3-4 m.

However, this finding will help inform the design of future system deployments.

Table 6.2: Parameters used to model example wave arrivals at hydrophones. 𝐶𝑝

denotes compressional speed, 𝐶𝑠 denotes shear speed, 𝜌 denotes density, 𝜂𝑟𝑚𝑠 denotes
root-mean-square roughness, 𝜂𝑐𝑙 denotes roughness correlation length.

Medium 𝐶𝑝 𝐶𝑠 𝜌 𝜂𝑟𝑚𝑠 𝜂𝑐𝑙

Vacuum halfspace - - - - -
Ice layer (top) 3000 m/s 1200 m/s 0.9 g/cm3 - -

Ice layer (bottom) 2400 m/s 600 m/s 0.9 g/cm3 0.2 m 19.1 m
Water column 1435 m/s - 1.0 g/cm3 - -

Bottom halfspace 1550 m/s 100 m/s 1.6 g/cm3 - -
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Figure 6.6: Modeled time series recorded on hydrophones at various depths for a
surface source in the ice cover at 200 m range. For hydrophones near the surface,
only flexural waves are clearly observed. The waterborne pressure wave is not visible
until below 10 m depth. Note, the time series amplitudes are normalized.

6.4 Propagation Speed Estimation

As mentioned previously, one purpose of collecting the calibration dataset is to esti-

mate the flexural wave propagation speed (i.e. group speed) in the ice cover. This

information will then allow us to apply our localization algorithms later. Since flex-

ural waves are dispersive, we need to make group speed estimates as a function of

frequency. To do so, we first pass each calibration event through a bank of bandpass

filters. We selected the center frequency of these filters at 2 Hz increments between

2-50 Hz and set the bandwidth of the filters equal to 8 Hz. This frequency interval

was selected after computing the PSD of each calibration event arrival on each of the

three axes of the cabled geophone elements. The PSDs are calculated by segment-

ing the data into snapshots of 128 samples with 50% overlap and then performing a

FFT. Fig. 6.7(a) presents the results. The colored dots denote the PSDs for individ-

ual events while the solid lines show the mean PSD of all events on each of the three

axes. From this plot, we observe the events have most of their energy below 50 Hz
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with a peak near 16 Hz. As a result, we limit our bandpass filters to below 50 Hz.

After filtering, the Hilbert transform of each event is calculated, which provides the

complex envelope of the filtered time series. The absolute maximum of this envelope

is then used to denote the arrival time of an event at a geophone element. Following

this, a group speed estimate at the filtered frequency band can be calculated for each

geophone pair in the cabled array by dividing the distance between the geophones

by the event’s TDoA at the elements. For example, for two geophones 𝑖 and 𝑗 and

a filtered calibration event on the vertical axis, 𝑧𝑓 (𝑡), where 𝑓 denotes frequency, the

group speed estimate is computed as

𝑣(𝑖, 𝑗, 𝑓) = 𝐷𝑖𝑗

𝜏(𝑖, 𝑗, 𝑓) . (6.1)

Here, 𝐷𝑖𝑗 is the distance in meters between geophones 𝑖 and 𝑗. 𝜏(𝑖, 𝑗, 𝑓) is the TDoA

of 𝑧𝑓 (𝑡) at the two geophones in seconds. It, as noted, is calculated as

𝜏(𝑖, 𝑗, 𝑓) = |max
𝑡

(|𝐻(𝑧𝑖,𝑓 (𝑡)|) − max
𝑡

(|𝐻(𝑧𝑗,𝑓 (𝑡)|)|, (6.2)

where 𝐻 denotes the Hilbert transform and 𝑧𝑖,𝑓 (𝑡) and 𝑧𝑗,𝑓 (𝑡) represent the arrival

waveform of 𝑧𝑓 (𝑡) on geophones 𝑖 and 𝑗, respectively.

Repeating this calculation for all calibration events on all three axes results in a

distribution of group speed estimates for each frequency bin. Fig. 6.7(b) shows the

median of this distribution plotted as a function of frequency; this plot also displays

the 25th and 75th percentiles in dashed-dot lines. As expected, the group speed varies

with frequency. Below 10 Hz, the speed is low (<100 m/s). Above 10 Hz, the median

estimate increases to between 200-300 m/s. At the PSD peak frequency of 16 Hz, the

middle 50% of group speed estimates vary between ∼100-400 m/s. With this result,

we now have an estimated interval of group speeds to use for event localization.
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(b)

Figure 6.7: (a) PSD estimates of all calibration event arrivals. Colored dots represent
estimates for individual events, solid line denotes the mean estimate with a peak in
power near 16 Hz. (b) Flexural wave group speed estimates vs. frequencies. Solid
line denotes median and dashed-dot lines denote the 25th and 75th percentiles.

187



6.5 Localization Algorithm

In this section, we introduce the components of our transient event localization al-

gorithm. We again use calibration event 1 as an example to demonstrate the output

of each component. We then present how the components are combined to form a

location estimate. First, a note regarding input data pre-processing. Because the

flexural wave is dispersive, we need to analyze the data in a narrow frequency inter-

val when using TDoA. Thus, we choose to bandpass filter the input data to between

12-20 Hz prior to applying our algorithm. The reason for this selection is because, as

demonstrated in the previous section, the peak power in the signal arrivals occurs at

16 Hz, the center frequency of this interval.

6.5.1 Motion Product Detector

One component of our event localization approach is the application of the motion

product detector (MPD). First described by White [192], MPD enhances waves with

a specified particle motion while also indicating the bearing of arrival for that wave

type. Recall that for transient events recorded by the geophone array, flexural waves

are the predominant arrival and they have elliptical particle motion with 𝜋/2 phase

difference between the vertical and radial axes. Thus, we can apply MPD to further

enhance flexural wave arrivals within each event and estimate the event’s direction of

arrival. We follow the method described by Dudko [11] in their previous analysis of

geophone data collected during SIMI-94. Briefly, it works as follows:

1. Given an event arrival, for each geophone element, shift the vertical component

(𝑍) of the signal time series in phase by 𝜋/2 radians. This is done by taking

the imaginary component of the signal’s Hilbert transform:

𝑍
𝜋
2 = ℑ(𝐻(𝑍)). (6.3)

2. Multiply each of the horizontal time series components (𝑋, 𝑌 ) by the shifted

vertical component (𝑍 𝜋
2 ). This step enhances the flexural wave arrival.
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3. The product of each horizontal component with the shifted vertical component is

then averaged through integration over a short time window. The window length

was selected empirically as 0.2 s. The averaged result of the 𝑋𝑍 𝜋
2 component

product is denoted as 𝑋𝐻𝑖𝑉 while that for the 𝑌 𝑍
𝜋
2 component product is

denoted as 𝑌𝐻𝑖𝑉 . Formally, these two terms are expressed at time 𝑡 as:

𝑋𝐻𝑖𝑉 (𝑡) = 1
𝑇1

∫︁ 𝑡+ 𝑇1
2

𝑡− 𝑇1
2

𝑋𝑍
𝜋
2 𝑑𝑡, (6.4)

𝑌𝐻𝑖𝑉 (𝑡) = 1
𝑇1

∫︁ 𝑡+ 𝑇1
2

𝑡− 𝑇1
2

𝑌 𝑍
𝜋
2 𝑑𝑡, (6.5)

where 𝑇1 is the averaging interval.

4. To estimate the bearing from a geophone element to the source of the event,

plot 𝑌𝐻𝑖𝑉 against 𝑋𝐻𝑖𝑉 for unit. Since the flexural wave is vertically polarized

in the plane containing the source and receiver, the line of best fit of this scatter

plot naturally denotes the direction of arrival estimate for the event. This is

done using the method of least squares [193].

By applying MPD, a series of bearing lines can be plotted for an event, one for

each geophone element in the array. Examples of these lines plotted for calibration

event 1 are shown in Fig 6.8. These MPD lines are incorporated into our localization

algorithm to make a final localization estimate for each calibration event.

6.5.2 Time Difference of Arrival

The second component of our event localization algorithm makes use of the TDoA

of an event between each unique geophone pair in the array to estimate the event’s

origin. As before, the TDoA of an event between any geophone pair is calculated

following Eq. 6.2. For analysis of the calibration events, we use the z-axis time

series to determine the TDoAs for each event since the signal arrivals are the most

prominent on the vertical axis.

For each event, as before, we denote the TDoA calculated for each geophone pair
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Figure 6.8: MPD bearing lines for all four geophone elements in the cabled array.
Red dot denotes the true location of calibration event 1.

as 𝜏 . To localize an event, we need to find the locus of points, 𝒫 , in Euclidean space

such that for any point 𝑃 within the locus, the absolute difference in distance from 𝑃

to the locations of the two geophones (𝑁1, 𝑁2) is equal to 𝑐0𝜏 , where 𝑐0 is the assumed

propagation speed. Formally, this is defined as

𝒫 = {𝑃 : |𝑃𝑁1 − 𝑃𝑁2| = 𝑐0𝜏}, (6.6)

where 𝑃𝑁1 and 𝑃𝑁2 are the distances from 𝑃 to 𝑁1 and 𝑁2, respectively. This locus

of points is exactly the definition of a hyperbola in R2. Thus, for each geophone

pair in the array, we can plot a hyperbola that represents the set of possible source

locations.

For our purpose, the equation for a hyperbola in the geophone-centric coordinate

frame (𝑥′, 𝑦′), where the midpoint between a pair of geophones is the origin and both

geophones are positioned along the 𝑥′-axis can be written as

𝑥′2

𝑎2 − 𝑦′2

𝑐2 − 𝑎2 = 1. (6.7)
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Figure 6.9: Process for plotting a hyperbola for a geophone pair in the geophone frame
(𝑥′, 𝑦′) and transformation to the array frame (𝑥, 𝑦). Red dots denote the location of
the geophones.

By definition, 𝑎 = 1
2𝑐0𝜏 and 𝑐 is the distance between each geophone in the pair to

the midpoint along the 𝑥′-axis. Naturally, this equation results in two hyperbolas.

However, the correct hyperbola can be determined by examining at which geophone

the event first arrived. Furthermore, because the resultant hyperbola is in the frame

of the geophone pair, a coordinate rotation and translation must also be performed

to correctly plot the hyperbola in the array-centered frame. This transformation is

demonstrated in Fig. 6.9.

Similar to the MPD bearing lines, the resultant hyperbola for each geophone pair

in the array is incorporated in the localization algorithm to make an event location

estimate. As an example, the plotted hyperbolas for calibration event 1 are shown in

Fig. 6.10. The four geophones in the cabled array form 10 unique pairs; thus, there

are 10 hyperbolas. The method for selecting the propagation speed, 𝑐0 when forming

the hyperbolas for an event is discussed in the following section.
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Figure 6.10: TDoA hyperbolas for all unique geophone pairs in the cabled array
assuming a propagation speed of 242 m/s. Red dot denotes the true location of
calibration event 1.

6.5.3 Localization using Intersections

Intersections Method

With the MPD lines and TDoA hyperbolas, a natural approach to making a localiza-

tion estimate is to consider all of their intersections. To do so, we identify all inter-

sections of the lines and hyperbolas following a method described by Schwarz [194].

Consider two curve segments 𝐶1 and 𝐶2 with endpoints [(𝑥1(1), 𝑦1(1)), (𝑥1(2), 𝑦1(2))]

and [(𝑥2(1), 𝑦2(1)), (𝑥2(2), 𝑦2(2))], respectively. To find any intersections of the two

curves, one can compose four equations with four unknowns. The four unknowns

are 𝑡1, 𝑡2, 𝑥𝑖𝑛𝑡, and 𝑦𝑖𝑛𝑡, where (𝑥𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡) is the intersection of 𝐶1 and 𝐶2, 𝑡1 is the

distance from an end point of 𝐶1 to the intersection point relative to the length of

𝐶1, and 𝑡2 is the distance from an end point of 𝐶2 to the intersection point relative
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to the length of 𝐶2. Accordingly, the four equations are

(𝑥1(2) − 𝑥1(1))𝑡1 = 𝑥𝑖𝑛𝑡 − 𝑥1(1),

(𝑥2(2) − 𝑥2(1))𝑡2 = 𝑥𝑖𝑛𝑡 − 𝑥2(1),

(𝑦1(2) − 𝑦1(1))𝑡1 = 𝑦𝑖𝑛𝑡 − 𝑦1(1),

(𝑦2(2) − 𝑦2(1))𝑡2 = 𝑦𝑖𝑛𝑡 − 𝑦2(1).

(6.8)

These equations can be written in matrix form, 𝐴𝑇 = 𝐵, as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(2) − 𝑥1(1) 0 −1 0

0 𝑥2(2) − 𝑥2(1) −1 0

𝑦1(2) − 𝑦1(1) 0 0 −1

0 𝑦2(2) − 𝑦2(1) 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1

𝑡2

𝑥𝑖𝑛𝑡

𝑦𝑖𝑛𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑥1(1)

−𝑥2(1)

−𝑦1(1)

−𝑦2(1).

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.9)

𝑇 can be solved as 𝐴∖𝐵 and the values of 𝑡1 and 𝑡2 can be examined to determine

whether 𝐶1 and 𝐶2 intersect. If 0 ≤ 𝑡1 < 1 and 0 ≤ 𝑡2 < 1, then their definitions

are satisfied, which means (𝑥𝑖𝑛𝑡, 𝑦𝑖𝑛𝑡) is indeed an intersection point. Following this

approach, we can identify all intersections of two curves by incrementally marching

along one of the curves and performing this test at each point along the curve.

We apply this technique to all unique pairings of MPD lines and TDoA hyperbolas

to find all intersection points. To derive a localization estimate from these points,

we first fit a non-parametric, kernel distribution to their X and Y position values,

respectively. We denote these as 𝐾𝑋(𝑠) and 𝐾𝑌 (𝑠). The formulation of the kernel

distribution that we use is given by

𝐾(𝑠) = 1
𝑁

𝑁∑︁
𝑖=1

𝜑(𝑠− 𝑠𝑖), (6.10)

where [𝑠1, ..., 𝑠𝑁 ] are the data samples being fit and 𝜑(·) is the standardized normal

distribution. Following this, we compute the localization estimate as

[�̂�, 𝑦] = [max
𝑠

(𝐾𝑋(𝑠)),max
𝑠

(𝐾𝑌 (𝑠))]. (6.11)
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Fig. 6.11 shows a demonstration of this approach for calibration event 1. Again,

the TDoA hyperbolas are formed in this plot assuming a propagation speed of 242

m/s. The reason for this choice is discussed below.

Refinement of Propagation Speed Estimate

Recall in Section 6.4, we estimated the flexural wave group speed in the ice cover at

the experiment site to be between 200-400 m/s at 16 Hz. In this section, we explain

how we use our localization algorithm to further refine this estimate. Quite simply,

we iterate through the group speed interval at 1 m/s increments and compare our

localization estimate using the intersections method at each speed value with ground

truth. We then select the propagation speed for each event that results in the lowest

estimation error. Using this approach, the propagation speed estimate for calibration

1 is determined as 242 m/s. While performing this iteration does not explicitly help

us localize natural events for which we do not have ground truth, it does help to

build a better sense of the general propagation speed in the area that the calibration

events took place. It is important to note that the propagation speed is likely not

spatially uniform in the ice cover. Thus, the speed estimates for these events represent

an overall average speed from the event location to the geophone units. Fig. 6.12

shows a histogram of propagation speeds estimates for the calibration events as well

as a fitted kernel distribution. For the majority of the events, the propagation speed

value is closer to the higher end of the 200-400 m/s interval. The peak of the kernel

distribution occurs at 378 m/s while the mean of all speed estimates is 336 m/s.

6.5.4 Ambiguity Map Generation

While the intersections method is an effective approach for transient event localiza-

tion, it does have some noticeable drawbacks. The first is that it is indiscriminate to

the quality of data used to form the MPD lines and TDoA hyperbolas. High SNR

signal arrivals, for which the MPD bearing and TDoA estimates are likely more ac-

curate, are weighted the same as lower SNR signals. As a result, the algorithm may
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Figure 6.11: Calibration event 1 localization estimate generated using the intersec-
tions method. The TDoA hyperbolas are formed assuming a propagation speed of 242
m/s. The distributions along the x and y axes are fitted using the kernel approach.
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Figure 6.12: Histogram of estimated propagation speeds for all calibration events.
Red line denotes a fitted kernel distribution, the solid line denotes the mean of the
histogram, the dashed line denotes the peak of the fitted kernel distribution.

be biased by low quality data to make less accurate localization estimates. Another

drawback is that the intersections method outputs an estimate without a measure

of how good that estimate may be compared to other locations. Ideally, the algo-

rithm’s output would be an ambiguity map over an area that shows, by some metric,

the likelihood of each position being the event location. With these drawbacks in

mind, we present an another approach in addition to the intersections method that

combines the MPD lines and TDoA hyperbola to generate an ambiguity map of the

event location. This method further weighs the lines and hyperbolas by the SNR of

the data used to compute them and is thus more selective on data quality.

To enact this ambiguity map approach, we convert each MPD line and TDoA

hyperbola into a 2-D surface. The values of each surface are determined by summing

over a Gaussian function formed around each point (𝑥0, 𝑦0) in the line or hyperbola

following

𝐺(𝑥, 𝑦) =
∑︁

(𝑥0,𝑦0)
𝐴0𝑒𝑥𝑝(−((𝑥− 𝑥0)2

2𝜎 + (𝑦 − 𝑦0)2

2𝜎 )). (6.12)

Two parameters control this Gaussian surface. The variance, 𝜎, is controlled by the
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SNR of the recorded event used to generate the line or hyperbola. It is calculated as

SNR = 10𝑙𝑜𝑔10(𝑆/𝑁), (6.13)

where 𝑆 is the maximum amplitude of the event arrival and 𝑁 is the noise amplitude

estimate computed by taking the average over the entire data time series recorded on

a geophone. This definition of SNR is adequate for the bearing lines. However, for the

hyperbolas, which are generated from data on a pair of geophones, the SNR is taken

as the lesser of the two event SNRs calculated from both geophones. Fig. 6.13 (left)

shows the relationship between SNR and variance; it is defined empirically using a

logistic function with the design of having high variance at low SNR and vise versa.

The parameters of the function are selected after some initial testing with localizing

the calibration events.

𝜎 = −50
1 + 20𝑒𝑥𝑝(−0.16SNR) + 53. (6.14)

The other parameter of the Gaussian surface is the amplitude, 𝐴0, which is inversely

related to variance as shown in Fig. 6.13. This relationship is again determined

empirically to ensure event arrivals with high SNR have smaller variances and thus

larger amplitudes in their Gaussian surfaces.

𝐴0 = −1
1 + 10𝑒𝑥𝑝(−0.077𝜎) + 1. (6.15)

After forming a Gaussian surface for each MPD line and TDoA hyperbola, the

final ambiguity map (𝐴(𝑥, 𝑦)) is generated by summing all Gaussian surfaces. A

localization estimate is made by finding the maximum of the ambiguity map,

[�̂�, 𝑦] = max
(𝑥,𝑦)

(𝐴(𝑥, 𝑦)). (6.16)

Fig. 6.14 shows the ambiguity map for calibration event 1. Following the intersections
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Figure 6.13: (Left) The variance of a Gaussian surface depends on the SNR of the
event(s) used to compute the MPD line or TDoA hyperbola. (Right) The amplitude
of a Gaussian surface depends on its variance.

approach, the propagation speed is set as 242 m/s. The amplitude values in the

plot are normalized by the mean of the surface and then converted to dB scale.

The resultant localization estimate in this case is similar to that of the intersections

method because the two follow the same underlying approach of using the MPD lines

and TDoA hyperbolas. However, the ambiguity map output is beneficial in that it

returns a comparative measure between selecting any position on the map as the

event location in addition to a single position estimate.

6.6 Calibration Event Localization Results

6.6.1 Performance Analysis

Applying both the intersections and ambiguity map methods to the SIDEx calibration

dataset, Fig. 6.15 shows the localization outcome for the events. The propagation

speed assumed for each event is determined through iterative application of the inter-

sections method as described in Section 6.5.3. As expected, the localization estimates

from both methods are comparable. A notable feature on both plots is that the algo-

rithm’s performance is good within the perimeter of the cabled array. The majority
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Figure 6.14: Ambiguity map and localization estimate for calibration event 1.

of estimates have less than 20 m error for events within 50 m from the array center

(Fig. 6.17). However, localization accuracy degrades severely for events outside the

cabled array perimeter. This result makes intuitive sense as the further away an event

is from the array center, the more precise its bearing and TDoA estimate must be

in order to have the MPD lines and TDoA hyperbolas intersect at the correct loca-

tion. Thus, this result demonstrates that both algorithms are only effective within

the perimeter of the deployed array and highlights the importance of array coverage

area in localizing transient events.

6.6.2 Comparison with TDoA Matching Approach

As a comparison to our intersections and ambiguity map methods, we present a

conventional, inverse approach to transient event localization that we call TDoA

Matching. As the name suggests, this technique again utilizes TDoA for localization.

However, it is an inverse approach because instead of using the measured TDoAs

between all geophone pairs to directly infer event location, we generate a set of simu-

lated TDoA vectors (each vector contains the TDoAs between all geophone pairs) for
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(a)

(b)

Figure 6.15: Calibration event localization estimates by (a) the intersections method
and (b) the ambiguity map method. The algorithms are most effective within the
perimeter of the deployed array.

200



a grid of event locations and then match the simulated TDoA vectors to the measured

values.

For the calibration events, we choose an area outlined by 𝑥 = [−350, 350] and 𝑦 =

[−150, 350]. These bounds are selected because all calibration events were generated

within this region. We set the increment of our grid to 1 × 1 m; this also inherently

defines the localization resolution of this approach. For each point, 𝑝, in this grid,

we compute the expected TDoA between a pair of geophones, 𝑖 and 𝑗, of an event

originating from point 𝑝 as

𝜏𝑖𝑗 = |𝐷𝑖 −𝐷𝑗|
𝑐0

, (6.17)

where 𝐷𝑖 and 𝐷𝑗 are the distances from point 𝑝 to geophones 𝑖 and 𝑗, respectively

and 𝑐0 is the assumed flexural wave propagation speed in the ice cover. Repeating

this calculation for every unique geophone pair in the cabled array gives us a vector of

simulated TDoAs for every point in the grid. For each calibration event, we assume

the propagation speed as the refined estimate for that event using the intersections

method in Section 6.5.3. We then calculate the mean squared error between the

simulated TDoA vectors for each point and the measured TDoA vector computed

from the recorded data. Finally, we select the point within the grid with the lowest

error as the output localization estimate for the event.

The benefit of this method is that, similar to the previous ambiguity map ap-

proach, it also produces an ambiguity map. This result is shown for calibration event

1 in Fig. 6.16(a). The localization estimates for all calibration events are shown in

Fig. 6.16(b). Here, as with before, localization accuracy is good within the perimeter

of the array but degrades for further events. A comparison of localization error of the

three methods is presented in Fig. 6.17. The performances are essentially identical

with mean error values near 60 m for all calibration events. Thus, unfortunately, our

forward approaches do not show an improvement over the inverse method in localizing

the calibration events. While this result is disappointing, it does further affirm the

importance of array coverage area to localization performance. For all three meth-

ods, the localization error is reasonable within the array perimeter. So, to apply the
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(a)

(b)

Figure 6.16: (a) Ambiguity map generated for calibration event 1 using TDoA match-
ing approach. (b) Localization estimates for all calibration events using TDoA match-
ing method. Similar to the forward approach, the algorithm is most effective within
the perimeter of the deployed array.
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algorithms we have presented, the array deployed should ideally cover the entire area

of interest to enable accurate event localization.

Given the result above, is there any advantage to using the forward approaches

over the TDoA matching method? To this point, we do want to highlight that,

in particular, the intersections method can have a much lower computational cost

than the TDoA matching approach. Specifically, the slowest step in the intersections

method is finding the intersections, which is essentially 𝑁 4×4 matrix divisions, where

𝑁 is the number of points we use to segment the MPD lines and TDoA hyperbolas.

We then repeat this calculation for all unique geophone pairs, which for 𝑚 geophones,

equal (𝑚 − 1)2 + 1. Thus, the total computation complexity for the intersections

method is 𝒪((𝑚 − 1)2𝑁). For the TDoA matching method, the slowest step is

calculating the TDoA vector for each simulated event location. On its own, this step

is only one division for every unique geophone pair for a total of (𝑚−1)2 +1 divisions

for all unique pairs. However, we must repeat this calculation for every point in

our designated grid. Assuming a grid size of 𝐿 × 𝐿, the computation cost for this

approach is 𝒪((𝑚 − 1)2𝐿2). In practice, 𝑁 is typically much smaller than 𝐿2. For

example, in our analysis of the calibration dataset, 𝑁 was set as 1000 while 𝐿2 was

equal to 351201. Thus, the computation cost of the inverse technique can be much

higher, especially if we want finer resolution in the designated grid. In addition, while

having lower computational cost is good in general, it is especially useful when the

propagation speed in the ice cover is uncertain. As demonstrated in Section 6.5.3,

with the intersections method, one can quickly try an interval of propagation speeds

to see which gives the best localization result. Doing so with the TDoA matching

approach would require much longer computation time.
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Figure 6.17: Localization error as a function of calibration event distance for the three
methods presented. The dashed lines represent the mean error of all estimates for
the three methods.

6.7 Example of a Natural Event on both the Ca-

bled and Stand-alone Geophone Arrays

The main objective of deploying an array of remote geophone nodes in addition to

the cabled geophones was to test whether the remote units can be utilized in the

same manner as the cabled units to record events generated by the ice cover. As

mentioned, this is the first instance that we are aware of that these remote geophones

have been used for this purpose. Because the calibration events were not powerful

enough to be observed on the further away remote nodes, we present an example

of a stronger, natural event that was recorded by all cabled and remote geophones.

We then demonstrate the capability of the stand-alone geophone array in localizing

this event. Because we do not have ground truth information on the location of this

event’s origin, we instead show that the estimated location is at least consistent with

modeling results.
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6.7.1 The January 26 Event

On January 26, 2020, a natural event occurred in the ice cover which was recorded

by all cabled and remote geophones. The time series of this event is shown in Fig.

6.18(a). The first four panels in this plot show the recordings on the cabled geophones

(G0-G3). The event arrives on each unit at around the same time, before 09:00:01.

The bottom four panels show the recording on the stand-alone geophones (S0-S3).

Since S3 is approximately co-located with G3, the event arrival on S3 aligns with

the arrival time on G3. On S1, the event arrives much earlier, before 09:00:00. This

indicates the event occurred at a location closest to S1. On the S0 and S2 time

series, the event is barely observable. The only evidence of its existence is a faint,

very low frequency waveform near 09:00:02 on both channels. We suspect the signal

amplitude is much lower on these nodes because they were the furthest away from the

event location. Consequently, the higher frequency portion of the event dissipated

before reaching these geophones. Fig. 6.18(b) shows the spectrogram of the time

series recorded on every geophone. On the top four panels, the arrivals on the cabled

geophones show the expected flexural wave dispersion. We observe a similar pattern

on the S1 and S3 spectrograms. For S0 and S2, since their time series consist of a

very faint waveform, their spectrograms correspondingly lack a strong flexural wave

feature. Nonetheless, the similar time and frequency domains features between the

recorded data on G0-G3 and S1 & S3 demonstrate the remote geophones can indeed

be utilized for seismo-acoustic monitoring of the ice cover, provided that they are

deployed close enough to the locations of transient event sources.

Next, we demonstrate that, similar to the localization of the calibration events

using the cabled array data, we can localize this natural event using the data collected

by the remote geophones. We use the forward ambiguity map method here and assume

a propagation speed of 336 m/s, which is the average of all calibration event speed

estimates shown in Fig. 6.12. The resultant localization estimate is presented in Fig.

6.19. Consistent with our expectation from examining the time series, the estimated

event location is closer to S1 and S3 and further from S0 and S2. Furthermore, this
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(a)

(b)

Figure 6.18: Time series and spectrograms of the natural event on January 26. (a)
Time series recorded on the cabled (G0-G3) and stand-alone (S0-S3) geophones ver-
tical axes; the y-axes of the panels are unnormalized amplitude values. (b) Spectro-
grams of the event on every geophone unit (vertical axis); the y-axes of the panels
are frequency in Hz.
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Figure 6.19: Localization estimate for the January 26 event using data from the
remote geophones. Consistent with expectation, the event is closer to S1 and S3 and
further from S0 and S2.

location is not far from the crack in the ice cover observed during system deployment,

which may be the source of the event.

6.7.2 Comparison with Modeling

Although we do not have ground truth on where the January 26 event occurred, we

can loosely verify the accuracy of its localization estimate by comparing the stand-

alone geophone data with modeling results. To do so, we assume in our model that

the source of the event is located at the estimated position. We then simulate the

recorded time series on geophones at the four ranges indicated in Fig. 6.19. To model

the SIDEx experiment site, we assumed an environment consisting of a 1 m thick ice

layer, a 4 m deep water column, and a muddy bottom halfspace. The parameters

used in these layers are presented in Table 6.3. For the event source, a vertically

207



Table 6.3: Parameters used to model the January 26 Event. 𝐶𝑝 denotes compressional
speed, 𝐶𝑠 denotes shear speed, 𝜌 denotes density, 𝜂𝑟𝑚𝑠 denotes root-mean-square
roughness, 𝜂𝑐𝑙 denotes roughness correlation length.

Medium 𝐶𝑝 𝐶𝑠 𝜌 𝜂𝑟𝑚𝑠 𝜂𝑐𝑙

Vacuum halfspace - - - - -
Ice layer (top) 3000 m/s 1200 m/s 0.9 g/cm3 - -

Ice layer (bottom) 2400 m/s 600 m/s 0.9 g/cm3 0.2 m 19.1 m
Water column 1435 m/s - 1.0 g/cm3 - -

Bottom halfspace 1550 m/s 100 m/s 1.6 g/cm3 - -

forced impulse is used with a center frequency of 16 Hz1 and placed 0.1 m within the

ice cover. The simulation is carried out using OASES [35].

The modeled time series are shown in Fig. 6.20(a). Assuming there is minimal

mismatch between the simulated and real environments and sources, if the modeled

time series are similar to the measured time series in terms of their arrival times,

then the localization estimate should be accurate because the simulated source was

placed at the estimate location. While the no mismatch assumption is unlikely to

hold given the complexity of ice cover properties and noise generation, comparison

with the simulated time series is still helpful because it allows us to confirm whether

our localization estimate is consistent with the physics of a simplified propagation

environment. However, we do caution that a match between the simulated and mea-

sured time series is not conclusive verification of localization accuracy, it only suggests

the estimate is consistent with our modeling of the event. Comparing Fig. 6.20(a)

with Fig. 6.18(a), the arrival order at the four simulated geophones matches the

measured data, which means the bearing of the localization estimate should be close

to correct. The simulated time series appear to arrive slightly too early on S0 while

the simulated S3 arrival is more attenuated at the higher frequencies (Fig. 6.20(b)).

These differences suggest that, based on our modeling, the estimated source location

should have been closer to S3 and further away from S0. Despite this, the simulated
1This frequency is chosen based on the calibration data PSD (Fig. 6.7(a)).
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time series are, in general, consistent with the measured data.

As a final check that the application of our localization algorithm on simulated

data produces a localization estimate that is consistent with expectation, we apply

the forward ambiguity map method to the simulated time series. Again, assuming

our model is an accurate enough representation of the real environment, the local-

ization estimate made from simulated data should return a position close to where

the simulated source was placed (i.e., [402, -246]). Such a result would verify that

our localization algorithm is at least accurate for events simulated in our modeled en-

vironment. To apply the algorithm, we again assume the flexural wave propagation

speed in the ice cover as 336 m/s at 16 Hz. Fig. 6.21 shows the localization result

for this case. With the simulated data, the position estimate is [383, -209], which

is only 41.6 m from the simulated source placement. This relatively small difference

suggests our localization algorithm can indeed return a close-to-correct estimate for

events generated in our modeled environment.

6.8 Summary & Lessons Learned

6.8.1 Main Results

In this chapter, we presented the deployment of a seismo-acoustic system of geo-

phones and hydrophones to monitor ice cover activity and localize transient events.

The system consists of two geophone arrays (one cabled, one stand-alone) and two

hydrophone units. We primarily focused our analysis on the cabled array. As a

demonstration of the array’s capability to localize events, we applied three localiza-

tion algorithms to a calibration dataset and compared their performances. The first

two methods are forward algorithms that utilize MPD lines and TDoA hyperbolas to

output a localization estimate or generate an ambiguity map for the event location.

The third approach is an inverse method that predicts the event location by match-

ing the measured TDoAs against a set of simulated templates. All three algorithms

showed similar performance in localizing the calibration events. Localization error
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(a)

(b)

Figure 6.20: Simulated time series and spectrograms of the January 26 Event. (a)
Simulated time series on stand-alone (S0-S3) geophones; the y-axes are unnormalized
amplitude values. (b) Simulated spectrograms on S0-S3; the y-axes are frequency in
Hz.
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Figure 6.21: Localization estimate for the simulated January 26 event using modeled
time series at the remote geophone locations. The location estimate produced with
simulated data is relatively close to the estimate produced with measured data, which
is where the simulated source is placed.

is typically less than 20 m within the perimeter of the deployed array but grows to

much larger values outside of the array perimeter. This result demonstrates the im-

portance of array coverage area to localization success as regardless of the method,

the localization accuracy was much better within the array perimeter than outside of

the perimeter.

We further demonstrated the utility of remote geophones for ice cover seismo-

acoustic monitoring. Because of their cable-less nature, these units can be easily

deployed to form an array that covers a much larger area than what is possible

with cabled geophones. Using the four remote geophones deployed, we were able to

provide a localization estimate for a natural event that occurred on January 26, 2020.

While we do not have ground truth for this event, the modeled time series at the

remote geophone locations assuming the event occurred at the estimated location are

agreeable with the measured time series data. This result provides some support that

the estimate for the natural event is fairly accurate.
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6.8.2 Recommendations for Future Deployment

For future deployments of similar seismo-acoustics systems, we make the following

recommendations based on lessons learned from our experiment. First, in order to

have high accuracy in event localization, a large grid of geophones with less than 500

m spacing between each unit should be deployed to cover the entire area of interest.

This spacing is selected so that an event occurring anywhere in the coverage area

should be well recorded by at least 3 of the geophones in the array. To create such

a large array, remote geophone nodes can be used as we have demonstrated their

utility. In deploying the geophones, it is important to ensure that the orientation

of the x-y-z axes are well documented if the MPD lines are to be used for localizing

detected transient events. Second, if in-water hydrophones are also deployed as part of

a system, they should be lowered to at least 10 m below the ice cover. Doing so would

allow the ice cover flexural waves from transient events to dissipate so that waterborne

pressure wave arrivals may be observed in the time series. The pressure wave arrivals

can then be utilized in a combined processing of the hydrophone and geophone data,

where they can provide a range estimate to further improve the localization of an

event. Lastly, other approaches for event localization should be explored. Namely,

machine learning may be a useful application here. For example, a calibration dataset

can be used as a training set to condition the machine learning model. This approach

could be beneficial in alleviating errors due to estimating TDoAs between geophone

pairs and the flexural wave propagation speed in the ice cover. For higher quality

dataset where the P and SH wave arrivals can be clearly observed in addition to

the flexural wave arrival, both the arrival time differences between the different wave

types and the time varying polarization property of the dispersive flexural wave can

be leveraged to aid localization. For instance, if accurate modeling is accessible, both

can be used in a “matched field” approach to invert for event locations.

Many of the above suggestions have been incorporated into the next SIDEx ex-

periment, scheduled to take place in the Spring of 2021 in the Beaufort Sea. These

include a larger remote geophone array and deeper hydrophone placements. Thus,
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the lessons learned through our analysis in this chapter were valuable in driving the

design of the next experiment.
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Chapter 7

Conclusions and Future Work

The body of work presented in this thesis characterizes changes in the

Beaufort Sea ambient soundscape and demonstrates how the changes

are indicative of broader environmental shifts in the region. Along

with data analysis, we have also developed approaches for noise range

estimation, transient event detection & characterization, and seismo-acoustic event

localization. In this chapter, we reiterate the main results of the thesis and outline

some directions for future work.

7.1 Conclusions

7.1.1 Ambient Noise during the SIMI-94 Experiment

The environment during the SIMI-94 experiment is a representation of the historical

Arctic environment. The underwater SSP monotonically increases with depth while

the ice cover consists more of thicker, multi-year ice. The spectral shape of the ambi-

ent noise shows noise level generally decreases with increasing frequency with a peak

near 20 Hz. The measured noise level is higher than previous Arctic recordings [57],

although this discrepancy is likely caused by higher self-noise of the SIMI-94 array.

The vertical directionality of the recorded noise shows a peak in noise level arriving

from broadside. This result matches well with modeled noise directionality assuming



uniform noise generation by the ice cover, demonstrating that such a model is still

a fitting description of ice cover noise generation during SIMI-94. A time domain,

amplitude-based transient event detection algorithm is applied to study the temporal

distribution of transient noise events during SIMI-94. This analysis demonstrates

that transient occurrences may be described as a clustering process, where events oc-

cur in quick succession followed by a gap during which there are no transients. More

events are detected at higher frequency octave bands, which indicates transient noise

accounts for a larger portion of the total acoustic soundscape at higher frequencies.

7.1.2 Environmental Changes in the Beaufort Sea

More recently, the Arctic Ocean environment has undergone significant environmen-

tal changes, which are still continuing presently. These changes are observed in the

Beaufort Sea in two forms. The first is a shift in the underwater SSP. An influx of

warm Pacific water entering the region from the Bering Strait has increased water

temperature between ∼40-80 m depth [69, 71], creating the “Beaufort Lens”. Conse-

quently, the traditional, monotonically increasing SSP is disrupted and a sound speed

maximum now occurs at near 70 m depth. This change affects acoustic propagation

in the region by creating a double duct environment - one at the surface as usual and

another just below the sound speed local maximum. In the surface channel, acoustic

waves encounter frequent interactions with the ice-water interface, resulting in severe

attenuation. In contrast, the lower duct has been shown to promote long range prop-

agation by effectively trapping sound above 300 Hz [13, 14, 75, 76, 77]. The form of

the Beaufort Lens SSP is continuously evolving as new sound speed measurements

from the region have demonstrated the possibility of two local maxima within the

water column instead of just one.

The second component of environmental change is a shift in ice cover thickness and

age. As a result of increasing average global temperature, the mean winter thickness

of central Arctic ice cover has declined more than 10 cm/year between 1993-2007

[81]. Furthermore, the percentage of multi-year ice has dramatically reduced [45, 85],

replaced by first-year ice that is more fragile and susceptible to ridging. Consequently,

216



ambient noise generation by the ice cover may no longer be adequately described by

a uniform distribution of sources. Instead, we present the hypothesis that noise

generation has become more spatially discrete and is better modeled with a single

source positioned at a specific range.

7.1.3 Environment Induced Effects on Ambient Noise during

the ICEX-16 Experiment

The environment during the ICEX-16 experiment exhibits the new Beaufort Sea en-

vironment with the double-ducted SSP and thinner, first-year ice cover. While the

spectral shape of ambient noise during ICEX-16 remains similar to previous mea-

surements - noise level decreases with increasing frequency, its spatial characteristics

have changed. Specifically, the peak in noise vertical directionality occurs near ±10-15

degrees with a noise notch at broadside. Comparisons with modeling results demon-

strate the Beaufort Lens SSP is primarily responsible for the noise notch while discrete

surface noise generation ∼30-50 km away from the experiment site explains the peak

noise directionality angles. This noise generation range aligns with the location of a

ridge formation in the ice cover, further supporting our hypothesis that noise during

ICEX-16 was generated at discrete ranges.

The change in surface noise generation also affects the temporal characteristics of

transient noise events during ICEX-16. Compared to event clusters during SIMI-94,

the median time gaps between consecutive event clusters for the two datasets are

similar; however, cluster lengths and the number of events in each cluster are greater

during SIMI-94 than ICEX-16. These results demonstrate that when the ice cover

was active, more transient events occurred during SIMI-94 than ICEX-16.

7.1.4 Model-based CNN Approach to Noise Range Estima-

tion

As a more robust alternative for estimating the range of surface noise generation

than conventional MFP, we present a model-based CNN approach. The advantage of
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model-based machine learning instead of the usual data-driven framework is in the

ease of generating a large quantity of training data, which may be difficult or costly

to collect for underwater acoustics applications. We design two CNNs, one performs

range estimation by classification (CNN-c) while the other by regression (CNN-r).

These models are trained using simulated data and tested with both simulated and

real data from experiments against mismatches in SSP and bottom depth. Compared

with MFP, CNN-c shows performance improvements in both cases. On the other

hand, CNN-r performs better than MFP against SSP mismatch but less so against

bottom depth mismatch. The reason for CNN-r’s inconsistent performance is likely

due to its goal of lowering the overall MSE cost during training. This specification

causes CNN-r to have less variability in its predictions, which lowers the overall error

of the estimates but increases error on individual predictions compared to MFP.

We further explore how the model-based CNNs may be achieving their robustness

by examining their intermediate outputs. We find that the CNN pre-prediction output

vectors for neighboring source ranges are also near each other in Euclidean space. As a

result, any slight change to the pre-prediction vectors due to environmental mismatch

is less likely to cause the CNNs to output a prediction that is drastically different

from the correct output. In contrast, MFP does not share this property.

7.1.5 Frequency Domain Transient Event Detection

While time domain, amplitude-based transient event detection algorithms are simple

to implement and tune, they lack in providing a complete description of the detected

events’ spectral characteristics. As a result, time domain methods are less helpful

in hypothesizing the mechanisms by which the detected transients may have been

generated, as different ice cover mechanics can produce different spectral signatures

[56, 58]. To address this issue, we present a frequency domain event detection al-

gorithm which leverages image processing and h-clustering to identify transients in

data spectrograms. Applying this method to noise data collected during ICEX-16, we

are able to identify 1097 events and categorize them based on their bandwidth and

duration. Of these, 773 are stbb transients, which are indicative of small, impulsive
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ice fractures that may occur in the periphery of larger cracking events. 242 detections

are ltbb events, which represent more prolonged periods of ice cracking. Lastly, 82

detections are ltnb events, which result from rubbing or shearing interactions between

ice floes of different sizes. By examining the temporal distribution of the detected

transients, we conclude that ice cracking during ICEX-16 likely happened on small

temporal and spatial scales. Small fractures occurred regularly, whereas larger crack-

ing events and ice floe interactions were more rare. When larger cracking events

did occur, they tend to have happened in clusters, resulting in a sudden increase in

transient noise generation.

7.1.6 Ice Cover Seismo-acoustic Monitoring during the SIDEx

Experiment

Another approach to monitor ambient noise generated by ice cover activity is through

a seismo-acoustic system consisting of both geophones and hydrophones. We describe

such a system deployed during the SIDEx experiment in 2020. The two main com-

ponents of the system are a cabled geophone array (∼50 m aperture) and a larger

(∼1000 m aperture) remote geophone array. To localize a set of calibration events

recorded on the cabled array, we present two localization algorithms. These methods

utilize MPD lines and TDoA hyperbolas to output a localization estimate or generate

an ambiguity map for the event location. They show similar performance in local-

izing the calibration events to an inverse TDoA matching technique. Localization

error is typically less than 20 m within the perimeter of the deployed cabled array

but grows to much larger values outside of the array perimeter. This result re-affirms

the importance of array coverage area to localization success.

We also demonstrate the utility of remote geophones for ice cover seismo-acoustic

monitoring. Because of their cable-less nature, these units can be easily deployed

to form an array that covers a much larger area than what is feasible with cabled

geophones. Using the remote geophone array, we provide a localization estimate

for a natural event that occurred on January 26, 2020. Through comparison with
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modeled time series at the remote geophone locations generated by assuming the event

occurred at the estimated location, we find supporting evidence that the estimate for

the natural event is fairly accurate.

7.2 Future Work

Based on the experiences and lessons learned from our work, we provide some intrigu-

ing avenues for future studies in this section.

7.2.1 Continued Monitoring of Beaufort Sea Environment

As noted, the Beaufort Sea environment, particularly its SSP, remains dynamic and

thus invites continued observation. Newer measurements of the underwater sound

speed may be obtained through the WHOI ITP program [73] to further document

the rate and extent of its change. Noise modeling can also be used to investigate

the effects of more recently observed shifts in the SSP, such as the emergence of two

sound speed local maxima in the water column.

Another aspect of the Beaufort Sea SSP that should be examined is how slight

variations to the profile would impact the modeling results presented in Chapter 3.

When modeling the expected ambient noise vertical directionality to estimate the

noise generation range, the SSP measured during the ICEX-16 experiment was used.

However, while the timescale of the data recording period is relatively short, it is

certainly possible that during that time, the actual SSP in the environment deviates

from the measured profile, creating a mismatch when modeling. Thus, an important

task for future work is to examine how slight variations to the measured ICEX-16 SSP

would affect the modeling results. Doing so would establish an interval of acceptable

SSP variability over which the conclusions for noise range generation from Chapter

3 are valid. In addition to temporal variation, the effect that the spatial variability

of the SSP has on the ambient soundscape should also be studied. Noise modeling

can be expanded from the range-independent assumption to a 3-D, range-dependent,

environment. Using measured SSP data (from ITP, for example), an estimate of
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the typical spatial variability of the Beaufort Lens can be made and included in

modeling to investigate how its spatial variation affects the ambient noisefield. Then,

comparison of the modeled results with measured noise data would provide insight

into the amount of SSP variability present during the period of data recording.

More and longer ambient noise collections in the Beaufort Sea would also be

instrumental in determining whether the results from the ICEX-16 data analysis

are the norm or more specific to the experiment. Combining underwater ambient

noise recording with ice cover dynamics monitoring using a seismo-acoustic system

presented in Chapter 6 would be helpful in further verifying the connection between

ice cover noise generation and observed ambient noise features.

Further information on ice cover properties such as thickness and roughness would

further improve the modeling of the ice cover in simulation. In addition to physical

properties, the inclusion of a slush layer between the ice and water column that is

neither completely solid or liquid should be considered as such a layer can have an

effect on acoustic propagation at higher frequencies.

7.2.2 Further Examination of CNN Approach

The CNN approach should be compared with more advanced MFP methods that

extend beyond a simple matching between the observed data and the modeled replicas.

Further insight into how the CNN approach achieves its performance can be gained by

exploring whether there are underlying similarities between CNN and more advanced

MFP approaches such as the multiple constraints method (MCM) [99], which also

achieves more robustness to mismatch by broadening the mainlobe of the processor.

The performance of the CNN approach to noise range estimation may be improved

by employing more sophisticated network architectures such as a deep residual net-

work [195]. Such networks contain many more layers and parameters than the net-

works presented in this thesis; consequently, they are more computationally intensive

to train and more care must be taken to prevent overfitting. One training method

that may aid in the application of these networks is transfer learning [196], which

partially pre-trains a network on a separate, widely available, general dataset to re-
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fine some of the network’s weights before transitioning the network to train on data

relevant to the problem at hand. One can imagine a hybrid model where the network

is initially trained using a large simulated dataset before being refined with a smaller

real dataset if such data exist. The use of more sophisticated networks would also

enable greater source and environmental estimate capabilities such as source depth,

radiation pattern, or ocean bottom properties.

7.2.3 Less Empirical Parameters for Transient Categoriza-

tion

Our frequency domain, transient event detection algorithm can be improved by de-

signing a less empirical categorization metric for grouping features. For example, the

metric can incorporate feature properties such as slope in addition to bandwidth and

duration. The categorization metric can also be devised based on knowledge of the

transients of interest’s specific spectral signature, e.g, if it has the form of a chirp or

follows certain characteristic specifications. Applying these improvements would al-

low for more specialized identification of events and further improvement of detection

accuracy.

7.2.4 SIDEx Experiment in the Beaufort Sea

The next iteration of the SIDEx experiment has been planned for Spring of 2021

in the Beaufort Sea. Incorporating our recommendations for seismo-acoustic system

deployment, this experiment will collect more ice motion data using a more compre-

hensive array of geophones and hydrophones. Thus, future work regarding this project

includes continued data processing from the new experiment to localize transient ice

cracking events. Furthermore, the application of machine learning approaches for

event localization and ice characterization should be explored. For example, a model

could be trained using collected calibration data to construct a mapping between

arrivals on the deployed sensors to source location or other variables of interest. For

datasets where the P and SH wave arrivals can be clearly observed in addition to
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the flexural wave arrival, both the arrival time differences between the different wave

types and the time varying polarization property of the dispersive flexural wave can

be leveraged to aid localization. For instance, if accurate modeling is accessible, both

can be used in a “matched field” approach to invert for event locations.

7.3 Concluding Remarks

Detailed characterization of ambient noise is an ever-growing need in the Arctic

Ocean, particularly as the region grows even more in significance in the future. With

the data analyses conducted in this thesis, we hope to have demonstrated the intrinsic

link between its underwater ambient soundscape and the Arctic’s rapidly changing

environment. The region remains highly dynamic and thus invites continued obser-

vation and study. Through the noise characterization methods we proposed, we hope

to have contributed to building a strong foundation for future work in this field.

223



224



Appendix A

Templates for Environmental

Modeling using OASES

Here, we present a couple of input templates for environmental modeling with OASES,

particularly with the OASN and OASP modules. These modules have a great deal of

capability and their input files vary depending on the desired simulated environment

and sources. Consequently, the reader should refer to [35] to have a full overview

of the modules. Below, we present a template for generating the covariance matrix

upon a line array using OASN and a template for generating the recorded time domain

move-out on geophones using OASP. We also provide some MATLAB code for parsing

in the modeled outputs from the two modules.

A.1 Template for Running OASN

The OASN module models the seismo-acoustic field on an arbitrary 3-dimensional

array of hydrophones and geophones in the presence of surface noise and discrete

sources in the water column. One option for the form of the resultant field output

is the signal covariance matrix upon the recording array. To simulate surface noise,

OASN applies the Kuperman-Ingenito model [61] presented in Chapter 2. Below is a

template for the input to this module in the case of modeling the field recorded on a

hydrophone line array due to surface noise and a single discrete source.
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OASN Template

# Block I: Title - can be a descriptor to help identify what is modeled.

SIMI-94 Environment, Surface + Discrete Source, VLA

# Block II: Options

N J 0

#N - outputs the covariance matrix

#J - wavenumber integration contour offset

#0 - uncorrelated surface sources

# Block III: Frequency Sampling

80 100 3 0 #3 frequencies between 80-100 Hz, sampled equally.

# Block IV: Environment

13 #number of layers

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 3600 1800 0.216 0.648 0.9 0

2 3600 1800 0.216 0.648 0.9 -0.6 19.1 2.5

2 1431.5 0.0 0.0 0 1 0

100 1443 -999.999 0.0 0 1 0

200 1450 -999.999 0.0 0 1 0

300 1458 -999.999 0.0 0 1 0

450 1460 -999.999 0.0 0 1 0

600 1460.5 -999.999 0.0 0 1 0

700 1462 -999.999 0.0 0 1 0

750 1463 -999.999 0.0 0 1 0

3000 1500 -999.999 0.0 0 1 0

3000 2200 1500 0.5 0.5 2.9 0

#D; CC; CS; AC; AS; RO; RG; CL

#D - depth (m); CC - compressional speed (m/s); CS - shear speed (m/s); AC
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- compressional attenuation (dB/wavelength); AS - shear attenuation

(dB/wavelength); RO - density (g/cm^3); RG - RMS interface roughness

(m); CL - roughness correlation length (m)

#if a field is empty, it is assumed as 0.0

#setting CS = -999.999 is a flag for continuous SSP which sets the sound

speed at the bottom of the layer equal to the speed specified for the

top of the next layer below

# Block V: Receiver Array

32 #number of receivers

63 0 0 1 -1

70 0 0 1 -1

77 0 0 1 -1

84 0 0 1 -1

91 0 0 1 -1

98 0 0 1 -1

105 0 0 1 -1

112 0 0 1 -1

119 0 0 1 -1

126 0 0 1 -1

133 0 0 1 -1

140 0 0 1 -1

147 0 0 1 -1

154 0 0 1 -1

161 0 0 1 -1

168 0 0 1 -1

175 0 0 1 -1

182 0 0 1 -1

189 0 0 1 -1

196 0 0 1 -1

203 0 0 1 -1

210 0 0 1 -1
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217 0 0 1 -1

224 0 0 1 -1

231 0 0 1 -1

238 0 0 1 -1

245 0 0 1 -1

252 0 0 1 -1

259 0 0 1 -1

266 0 0 1 -1

273 0 0 1 -1

280 0 0 1 -1

#Z; X; Y; T; G

#Z - depth (m); X - x-location (m); Y - y-location (m); T - receiver type

(1 = hydrophone); G - receiver gain (dB)

# Block VI: Sources

60 0 0 1

#SL WL DL ND

#SL - surface source level (dB); WL - white noise level (dB); DL - deep

noise level (dB); ND - number of discrete sources

# Surface Noise

1300 1E8 #phase velocity interval [cmin, cmax] (m/s)

-1 0 0 #wavenumber sampling in continuous, discrete, evanescent spectrum;

-1 0 0 for automatic sampling.

# Discrete Sources

10 5 0 155 #source depth (m), x-range (km), y-range (km), strength (dB)

1300 1500 #phase velocity interval [cmin, cmax] (m/s)

-1 0 0 #wavenumber sampling in continuous, discrete, evanescent spectrum;

-1 0 0 for automatic sampling.
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A.2 MATLAB Code for Parsing .chk Files

The output covariance matrices from OASN are written in .chk files, one for each run

of the module. The MATLAB code below can be used to parse in a directory of .chk

files.

chkReader.m

array_size = 32; # number of receivers in array, change as needed

prefix = ’INSERT PATH TO .chk FILES HERE’;

directory = dir([prefix ’*.chk’]); # directory of all .chk files

# initialize empty covariance matrix

oasn_cov = zeros(array_size, array_size, length(sorted_directory));

# read in each .chk file in directory

for k = 1:length(directory)

filename = [prefix directory(k).name];

fileID = fopen(filename);

C =

textscan(fileID,’\%*s\%s\%s\%s\%*s\%*s\%*s’,’HeaderLines’,array_size+9);

for i = 1:length(C{1,1})

num(i) = str2double(C{1,1}(i));

re(i) = str2double(C{1,2}(i));

im(i) = str2double(C{1,3}(i));

end

# get rid of any potential NaNs

keep = ~isnan(num);

re = re(keep);

im = im(keep);

data = complex(re,im);
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# build covariance matrix

counter = 1;

for i = 1:array_size

for j = i:array_size

oasn_cov(i,j,k) = data(counter);

if i ~= j

oasn_cov(j,i,k) = conj(data(counter));

end

counter = counter + 1;

end

end

fclose(fileID);

end

A.3 Template for Running OASP

The OASP module calculates the depth-dependent Green’s function and determines

the transfer function at any receiver position by evaluating the wavenumber integral.

Once the transfer function is determined, the stress or particle velocity at any receiver

due to sources in the modeled media can be calculated.

OASP Template

# Block I: Title - can be a descriptor to help identify what is modeled.

SIDEx Environment

# Block II: Options

J f V H 2

#J - wavenumber integration contour offset
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#f - full Hankel function integration scheme, recommended for cases where

nearfield is needed

#V - calculates vertical particle velocity

#H - calculates horizontal (radial) particle velocity

#2 - vertical point source with amplitude of 1 Newton

# Block III: Source Frequency

16 0 # source spectrum centered at 16 Hz

# Block IV: Environment

7 #number of layers

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3000.0 1200.0 0.216 0.648 0.9 0.0

0.5 2700.0 900.0 0.216 0.648 0.9 0.0

1.0 2400.0 600.0 0.216 0.648 0.9 -0.2 19.1 2.5

1.0 1435.0 0 0.0 0.0 1.0 0.0

5.0 1435.0 0 0.0 0.0 1.0 0.0

5.0 1550.0 100.0 0.75 1.25 1.6 0.0

#D; CC; CS; AC; AS; RO; RG; CL

#D - depth (m); CC - compressional speed (m/s); CS - shear speed (m/s); AC

- compressional attenuation (dB/wavelength); AS - shear attenuation

(dB/wavelength); RO - density (g/cm^3); RG - RMS interface roughness

(m); CL - roughness correlation length (m)

#if a field is empty, it is assumed as 0.0

# Block V: Source

0.1 #source depth (m)

# Block VI: Receiver Depths

0 0.5 3

#depth of first receiver (m); depth of last receiver (m); number of

receivers
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# Block VII: Wavenumber Sampling

100 1e8 #phase velocity interval [cmin, cmax] (m/s)

-1 1 1 -1 #number of wavenumber samples; first sampling point; last

sampling point; frequency sample increment; (-1 1 1 -1) for auto

# Block VIII: Frequency and Range Samping

2048 5 500 0.001 0.2 0.01 81

#NT; FR1; FR2; DT; R1; DR; NR

#NT - number of time samples; FR1 - lower limit of frequency band; FR2 -

upper limit of frequency band; DT - time sampling increment; R1 -

first range; DR - range increment; NR - number of ranges

A.4 MATLAB Code for Parsing .asc Files

The output particle velocities from OASP are written in a single .asc file. The MAT-

LAB code below can be used to parse in this file. Note, prior to running the code, it

is necessary to rename the .asc as a .txt file. The result of running the code is a time

table of particle velocities at each receiver location.

ascReader.m

filename = ’INSERT NAME OF FILE HERE.txt’;

FS = 1024; # sampling frequency used for OASP, change as needed

ts_len = 2048; # length of time series simulated using OASP, change as

needed

num_rec = 81; # number of receivers simulated using OASP, change as needed

# read in .asc file

fout = readASC(filename);

TT = array2timetable(fout,’SampleRate’,FS);
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for i = 1:length(TT.Properties.VariableNames)

TT.Properties.VariableNames(i) = {[num2str((i-1)*10) ’m’]};

end

# function for reading in .asc file

function [fout] = readASC(filename, ts_len, num_rec)

f = readmatrix(filename,’NumHeaderLines’,6,’CommentStyle’,{’/#’});

f(:,6:end) = [];

f(any(isnan(f),2),:) = [];

fout = reshape(transpose(f),ts_len, num_rec);

end
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Appendix B

Code for Parsing ICEX-16 Data

Among the data analyzed in this thesis, all are stored in a file formate that can be

easily parsed into MATLAB. The exception is data from ICEX-16, which are recorded

into binary .DAT files. The code for reading in a directory of these files is presented

below.

ICEXdataParse.m

# Set path to data

prefix = ’INSERT PATH TO DATA FOLDER HERE’;

directory = dir([prefix ’ACO*.DAT’]);

FS = 12000; # sampling frequency

NUM_SAMPLES = FS*2; # number of samples per .DAT file

NUM_CHANNELS = 32; # number of channels in ICEX-16 array

# first and last files to read in (change as needed)

first_file = 1;

last_file = 100;

# looping over ACO*.DAT files

counter=0;
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for i = first_file:last_file

counter=counter+1;

filename = [prefix directory(i).name];

fid = fopen (filename, ’r’, ’ieee-le’);

if (fid <= 0)

continue;

end

# read in single precision float acoustic data [samples X chn]

for j = 1:NUM_CHANNELS

data(((counter-1)*NUM_SAMPLES+1):(counter*NUM_SAMPLES),j) =

fread(fid, NUM_SAMPLES, ’float32’);

end

fclose(fid);

end
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