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Summary 

Salt marshes supply vital ecosystem services (ES), providing material goods and 

recreation space, regulating natural hazards, and supporting diverse wildlife. 

However, increases in the utilisation of one ES can lead to reductions or ‘trade-offs’ 

in others. Because salt marshes are commonly used for grazing livestock, it is 

important to understand how this grazing impacts the saltmarsh ecosystem, and the 

consequences for ES supply. This thesis (i) uses a global meta-analysis to investigate 

the effects of livestock grazing on saltmarsh properties, and finds multiple significant 

changes to soil, vegetation and fauna properties. The meta-analysis reveals that the 

response of soil carbon is context dependent – there is no effect in Europe but a 

reduction in the Americas. (ii) Extensive surveys of soil carbon in grazed and 

ungrazed US marshes, controlling for key covariates, confirm that grazing trades-off 

against carbon storage in US marshes. These observational surveys, together with 

18-month experimental exclusion of horses from a salt marsh in Georgia, show that

grazing also disrupts the plant community in US marshes, but has little effect on

resident invertebrates. (iii) Focussing on bees in salt marshes, a three-year study in

south Wales, UK shows that grazing trades-off against bee habitat by reducing the

flower cover of two key food plants, and that increases in plant diversity with grazing

do not compensate for this negative effect. (iv) Spatial analyses of seven saltmarsh

ES supplied by an estuary complex in south Wales show that marshes are not

achieving their potential as a bee habitat here, due to the predominance of grazing.

These analyses also show that the provision of ES by salt marshes is spatially

heterogeneous, dependent on management, size and location. As a whole, this thesis

adds to the understanding of grazer impacts and ES trade-offs, and supplies crucial

data to support evidence-based management of salt marshes.
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Chapter 1. Introduction: Salt marshes and their ecosystem services 

 

 

 

 

Ecosystem services are the conditions and processes through which 

natural ecosystems, and the species that make them up, sustain and 

fulfil human life. They maintain biodiversity and the production of 

ecosystem goods such as seafood, forage, timber, biomass fuels, 

natural fiber, and many pharmaceuticals, industrial products, and their 

precursors… In addition to the production of goods, ecosystem 

services are the actual life-support functions, such as cleansing, 

recycling, and renewal, and they confer many intangible aesthetic and 

cultural benefits as well. (Daily 1997) 

 

1.1 The ecosystem services concept 

The concept of ecosystem services (ES) - as material and non-material benefits that 

people obtain from ecosystems - has a long history, but the term came to 

prominence in 1997 following the publication of a book titled Nature’s Services (Daily 

1997) and a Nature article assigning an economic value to the world’s ecosystem 

services (Costanza et al. 1997). The concept gained currency with its adoption by the 

Millennium Ecosystem Assessment in 2005 (MA 2005a). The MA was initiated by the 

United Nations and used the ES approach to assess the consequences for human 

well-being of ecosystem change, and to establish a scientific basis for the actions 

needed to improve the conservation and sustainable use of ecosystems. The ES 

paradigm sits at the interface of natural and social science, economics, policy, and 

industry, and allows ecological, sociological and economic concerns to be considered 

together, when taking decisions around the management of natural resources. 
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The ES approach has attracted controversy, with detractors arguing that it 

encourages an anthropocentric approach to nature that does not value it for its own 

sake, prioritises economic considerations above all else, and leaves ecosystems and 

biodiversity vulnerable to market forces (Monbiot 2014; Silvertown 2015; Chan et al. 

2016). Much of this criticism stems from the view that ES analyses are primarily 

concerned with applying an economic valuation to all aspects of nature, and headline 

figures such as the huge economic value of crop pollination services certainly capture 

public attention (France-Presse 2015; Knapton 2015). However, monetisation is not 

inevitable or necessary for the study of ES values (Boerema et al. 2016). A growing 

body of ES literature explores non-monetary values held by individuals and 

communities (Chan et al. 2012; Daniel et al. 2012), and much ES work relates to 

measuring and communicating the importance of nature to people (Potschin et al. 

2016). Applying an economic value to biodiversity can be useful, however, as it 

allows biodiversity to be incorporated into policy and decision-making, where it may 

otherwise be ignored (Seddon et al. 2016).  

Various frameworks exist to value and categorise ES, although there is a general 

recognition of a cascade from ecosystem properties, via ecosystem functions and 

services, to provide goods and benefits that support human well-being (Fig. 1.1). The 

MA recognised four broad ES categories: provisioning services that provide materials 

for consumption (e.g. food, water, fuel), services that regulate environmental media 

or processes (e.g. climate regulation, flood regulation), services that that fulfil 

cultural needs (e.g. aesthetic, spiritual, recreational), and the supporting services 

that underpin these other three (e.g. nutrient cycling, soil formation). Some 

frameworks do not include supporting services in their valuations, classifying these 

as intermediate ES or ecosystem processes, rather than final ES that provide direct 

benefits; they therefore exclude supporting services in economic valuations, to avoid 

double-counting (e.g. Mace et al. 2011). Under different frameworks, biodiversity (or 

habitat supporting biodiversity) is variously considered as a supporting service 

(Boerema et al. 2016; TEEB 2019), as a final ES falling across the cultural and 

provisioning categories (Mace et al. 2011), or as residing outside the four ES 

categories and underpinning the supply of all services (MA 2005a). In this thesis I 

have classified biodiversity as a supporting service, as it feeds into multiple final ES, 
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and also supports long-term sustainability of ES supply (MA 2005a; Cardinale et al. 

2012). This categorisation allows biodiversity and wildlife habitat to be considered as 

ES in their own right, thus negating some of the criticism of the ES concept, and 

facilitates ES assessments, as biodiversity/habitat quality is easier and more practical 

to quantify than many of the final ES that result from biodiversity (e.g. genetic 

resources, pollination, aesthetic appreciation, spiritual wellbeing). 

 

 

Fig. 1.1. The ecosystem service cascade from properties to services to benefits and, ultimately, human 

well-being (adapted from de Groot et al. 2010; Haines-Young and Potschin 2010; Mace et al. 2011; 

Boerema et al. 2016). 

 

1.2 Multifunctional ecosystems and ecosystem service trade-offs 

Following decades of rapid growth, the world population has reached 7.7 billion, and 

is expected to exceed 10 billion by 2100 (United Nations 2019). Over the past half 

century, humans have changed ecosystems more extensively and rapidly than at any 

time in human history, contributing to substantial gains in human well-being and 

economic development (MA 2005a). However, 60% of the ES that humans rely on are 

degenerating or being used unsustainably, and there has been “substantial and 

largely irreversible loss in the diversity of life on Earth” (MA 2005a).  There is 

therefore an urgent need to change current policy and practice in the management 

of natural resources, to secure continuing benefits for future generations and reverse 

the degradation of ecosystems (MA 2005a). Due to huge pressures from human 

populations, there is increasing recognition of the need to manage landscapes to 
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supply multiple ES concurrently to multiple stakeholders (multifunctionality). Much 

research is now focussed into exploring the factors that predict ecosystem 

multifunctionality, particularly biodiversity (Byrnes et al. 2014; Manning et al. 2018). 

These studies generally explore ecosystem function (EF) multifunctionality, where 

functioning has no value judgement, rather than ES-multifunctionality, where 

multifunctionality is valued from an explicitly human perspective (Manning et al. 

2018, see Box 1 for definitions). However, because ES flow from EFs (Fig. 1.1) we 

expect that ES-multifunctionality will relate strongly to EF-multifunctionality, 

although many of the relationships between EFs and ES are yet to be quantified 

(Duncan et al. 2015; Bruins et al. 2016; Nilsson et al. 2017).  

A key feature of predicting ES-multifunctionality is in understanding how ES interact 

with each other. ES can interact due to a direct impact of one ES on another, or due 

to two ES reacting to a common driver (Bennett et al. 2009). Synergies occur where 

two ES can co-exist at a high level, but trade-offs occur where high levels of one ES 

preclude high levels of another, or where two ES respond to the same driver in 

opposite fashions (Bennett et al. 2009). A review of these interactions has shown 

that trade-offs are more common than synergies, and that trade-offs between food 

provisioning services and other ES types are particularly common (Howe et al. 2014; 

Holt et al. 2016). However, the majority of ES publications consider ES in isolation, 

neglecting complex interaction effects (Boerema et al. 2016). There is a clear need 

Box 1. 
 
Definitions of multifunctionality (from Manning 2018) 
 
We propose that studies should clearly differentiate between (1) measures of 

multifunctionality including only ecosystem functions, which therefore constitute a metric 

of the overall performance of an ecosystem, which we term ecosystem function 

multifunctionality (EF-multifunctionality); and (2) measures that include ecosystem 

services and where multifunctionality is defined and valued from a human perspective, 

which we term ecosystem service multifunctionality (ES-multifunctionality). A key 

distinction between these measures is that EF-multifunctionality attempts to objectively 

represent overall ecosystem functioning without any value judgement regarding the 

desired level or types of function, whereas ES-multifunctionality represents the supply of 

ecosystem services relative to human demand.  

 



Chapter 1: Introduction 

6 
 

for more research considering the interactions between multiple ES (Boerema et al. 

2016).  Analysis of spatial concurrence of multiple ES can help to identify trade-offs 

and synergies, although a lack of overlap in space does not necessarily mean that 

trade-offs between ES are inevitable, therefore it is important to also investigate the 

mechanisms underlying these interactions (Bennett et al. 2009). Through 

understanding the interactions between ES, and the mechanisms underpinning 

them, managers can seek to enhance synergies and minimise or accommodate trade-

offs, to increase overall ES-multifunctionality across a landscape.  

 

1.3 Livestock grazing as a driver 

The global demand for livestock products is growing, with accompanying impacts on 

the environment and ecosystem services (MA 2005b). Livestock production is the 

single largest user of land, through direct grazing and the production of fodder and 

feed-grains (MA 2005b). Approximately half of the world’s livestock are grazed on 

dryland rangelands (MA 2005a). Rangelands are natural or semi-natural grazing or 

browsing lands, comprised of predominantly native vegetation, with low input from 

humans (EPA 2019). They cover approximately 25% of the world’s land area, and 10-

60% of existing rangeland (depending on biome) is used for livestock grazing 

(Alkemade et al. 2013). Management of rangelands is primarily concerned with the 

management of rangeland grazing, and grazing has traditionally been considered the 

primary driver of rangeland condition (Quirk 2002). The MA listed overgrazing as one 

of the major concerns related to rangeland degradation, among other threats 

including land conversion and climate change (MA 2005a). Livestock alter rangeland 

ecosystems by removing biomass, trampling soil and replacing wild grazers, generally 

leading to reductions in native biodiversity (Alkemade et al. 2013) and 

multifunctionality (Ren et al. 2018). However, livestock grazing is not always 

negative, and in some circumstances, grazing is used to achieve conservation 

objectives (Lunt et al. 2007). The intermediate-disturbance hypothesis (Grime 1973; 

Connell 1978) predicts that plant diversity will be low in ungrazed conditions (due to 

competitive exclusion by dominant species), high under moderate grazing (due to 

control of dominant species by removal of biomass), and low under heavy grazing 
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(due to physiological stress from intense defoliation). This effect has been confirmed 

in some studies (reviewed by Kershaw and Mallik 2013), and can also cascade to 

higher trophic levels (Lázaro et al. 2016). However, rangelands cover a wide variety 

of habitats, including grassland, savanna, wetlands, deserts, tundra, and forb and 

shrub communities (EPA 2019), each subject to hugely variable biotic and abiotic 

conditions. Responses to grazing are dependent on many variables, including 

rangeland type and climate (McSherry and Ritchie 2013; Daskin and Pringle 2016; 

Hobley et al. 2016; Andriuzzi and Wall 2017). Despite a wealth of research into grazer 

impacts, there is still no clear picture regarding the relative importance of livestock 

grazing as a driver in rangelands, and how to define appropriate grazing 

management within each system. Where rangelands are subject to unique and 

distinct environmental pressures, such as tidal flooding in salt marshes, there is every 

chance they will exhibit distinct responses to the pressure of grazing.  

 

1.4 Salt marshes and their services 

Salt marshes are vegetated wetlands comprised of halophytic grasses, forbs and 

shrubs, regularly inundated by tides and host to overlapping communities of marine 

and terrestrial organisms. They are usually intersected by a network of meandering 

drainage channels and display distinct zonation of plant communities, from those 

that can tolerate daily inundation of saltwater in the lower regions, to those in the 

upper zones that are inundated only on the highest spring tides (Fig. 1.2). Salt 

marshes occur on sheltered coasts across the temperate world, covering 

approximately 5.5 million ha (McOwen et al. 2017, Fig 1.3), although different 

regions have distinct flora, fauna and hydrological regimes (Adam 1990; Bakker et al. 

2015). For example, in northeastern Atlantic (European) marshes, accretion is 

primarily by the deposition of sand and sediment during tidal flooding, plant diversity 

is relatively high, and the dominant top-down control is by domesticated herbivores, 

which can also facilitate grazing by geese, rabbits and hares (Adam 1990; Bakker et 

al. 2015). In contrast, northwestern Atlantic (N. American) marshes primarily accrete 

by the organic accumulation of decaying plant matter, are more expansive, have 

lower plant diversity, with the major intertidal area dominated by Spartina 
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alterniflora, and are subject to strong top-down control by invertebrates (Adam 

1990; Bakker et al. 2015). 

 

 

Fig. 1.2. Salt marsh zonation. Representation of saltmarsh zonation driven by tidal inundation. 

MHWN=mean high water neap tide, MHW=mean high water, MHWS=mean high water spring tide, 

EHWS=extreme high water spring tide (adapted from Kingham 2013).  

 

 

Fig. 1.3. Global salt marsh distribution. Salt marsh extent shown in red (data from McOwen et al. 

2017).  
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In the arts and popular imagination, salt marsh is commonly portrayed as a 

dangerous, hostile, even supernatural environment (e.g. VanderMeer 2014; Perry 

2016), and historically was often considered a bleak wasteland, home only to 

mosquitoes and bad odours (Smith et al. 1989; Weis and Butler 2009). A long 

programme of land ‘reclamation’ and coastal development has reduced their 

historical extent by 25% (McLeod et al. 2011). However, in recent decades, there has 

been increasing recognition of the varied and valuable services supplied by salt 

marshes, and their important role within coastal systems (e.g. Costanza et al. 1997; 

MEA 2005b; Barbier et al. 2011).  

Salt marshes yield multiple provisioning services by supplying pastureland for 

domestic livestock, salt marsh hay, and habitat for wild foods such as Salicornia, 

wildfowl, fish and crustaceans (Jones et al. 2011). Salt marshes also supply regulating 

services that help mitigate climate change and other anthropogenic impacts: they 

sequester and store atmospheric carbon belowground, providing globally important 

‘blue carbon’ sinks (Chmura et al. 2003; McLeod et al. 2011); they offer coastal 

protection from extreme weather events, estimated to be worth $8240 ha-1 yr-1 in 

the US (Costanza et al. 2008); and filter nutrients and pollutants from terrestrial run-

off (Ribeiro and Mucha 2011; Alldred and Baines 2016). The cultural services of salt 

marshes are many and varied: they attract bird-watchers, walkers and wildfowlers, 

offer artistic inspiration, aesthetic beauty and educational opportunities (Jones et al. 

2011). Supporting services such as primary production, nutrient cycling, soil 

formation and biodiversity underly the production of all other services, and the 

unique characteristics of the saltmarsh environment can enhance these services. For 

example, salt marshes have high primary productivity as they are unshaded and 

nutrients are replenished through tidal flooding (Mitsch and Gosselink 2008), 

underpinning their value as grazing land. The anaerobic conditions in salt marsh soils 

slow decomposition of organic matter, high sulphates minimise the production of 

methane, and they continually accrete new sediment and organic matter, maximising 

their utility for long-term carbon storage (Chmura 2009). Additionally, salt marshes 

provide a unique habitat for wildlife, supporting abundant and diverse biota (Adam 

1990), from which much of their cultural value is derived.  
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Salt marshes are subject to multiple anthropogenic pressures, threatening their ES 

provision and long-term survival. These pressures were reviewed by Gedan et al. 

(2009) and include resource exploitation and extraction; land reclamation and 

hydrological alterations such as ditching and the building of roads; industrial and 

agricultural pollution; overharvesting of predators leading to runaway consumer 

control; and the introduction of non-native species. Of major concern are the likely 

impacts of climate change. Rising sea-levels pose an existential threat, potentially 

leading to the drowning of large areas of marsh (Crosby et al. 2016), while alterations 

in macroclimate are likely to drive changes in plant community composition, or 

trigger conversion to mangrove or unvegetated mudflat (Gabler et al. 2017). The 

increased recognition of the high value of salt marsh, and of the myriad threats 

risking their functioning and survival, has led to increased protections of saltmarsh 

habitat, restoration of formerly ‘reclaimed’ marshes, and an increased drive to 

sensitively manage the salt marshes that remain for the benefit of both people and 

nature (Adnitt et al. 2007; Chmura 2009; Roman and Burdick 2012). Livestock grazing 

is of particular interest for conservation management, as it is one of the easiest ways 

that managers can effect change in a salt marsh (Lambert 2000; Adnitt et al. 2007). 

 

1.5 Livestock grazing in salt marshes 

Livestock grazing is the most common resource use of salt marshes (Gedan et al. 

2009). European marshes have been grazed by domestic ungulates since pre-historic 

times (Barr and Bell 2016) and are still widely grazed today (Dijkema 1990), with salt 

marsh meat obtaining a higher market value than standard products (Jones et al. 

2011). However, in some areas, management authorities have excluded livestock for 

conservation purposes (Bakker et al. 2003). In China, many marshes are intensively 

grazed (Greenberg et al. 2014), as are those in South America, although here too 

there is pressure to stop grazing within conservation areas (Costa et al. 2009). In 

North America, salt marsh grazing is less common (Yu and Chmura 2010), but at 

several sites there are concerns over the effects of uncontrolled grazing by feral 

horse populations (Turner 1988; Taggart 2008).  
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In salt marshes, poor-quality, non-specific grazing management advice means 

conservation objectives are often not met (Mason et al. 2019), so there is a clear 

need for an improved evidence base to inform saltmarsh grazing management. A 

review into control of coastal vegetation found that studies investigating the effects 

of wild and domesticated herbivores (top-down effects) are vastly outnumbered by 

studies investigating bottom-up environmental drivers (He and Silliman 2016). In 

spite of this unbalanced research focus, there is a long history of studies investigating 

livestock grazing in salt marshes (Ranwell 1961; Cadwalladr and Morley 1974; 

Reimold et al. 1975). However, the majority of these studies come from Europe, and 

particularly the Wadden sea region, where there are several long-term grazing 

studies (de Vlas et al. 2013). The numerous studies investigating livestock grazing 

have not previously been quantitatively synthesised, making it difficult to identify 

consistent trends, or recognise whether the over-weighting of European studies is 

unduly influencing the general picture that is emerging of livestock impacts. As an 

example, mechanistic studies of grazing in European marshes indicate that grazing 

does not trade-off against climate regulation in salt marshes (Ford, Garbutt, L. Jones, 

et al. 2012; Harvey et al. 2019), but this pattern may not apply in other regions. In 

terms of conservation grazing, there is considerable research investigating the 

impact of grazing on vegetation (e.g. Reimold et al. 1975; Jutila 1997; Bouchard et al. 

2003; Meirland et al. 2013; Lagendijk et al. 2017), birds (e.g. Laursen 1977; Böhme et 

al. 1999; Malpas et al. 2013; Cardoni et al. 2015; Sharps et al. 2015) and terrestrial 

invertebrates (e.g. Armonies 1986; Andresen et al. 1990; Meyer et al. 1995; Böhme 

et al. 1999; Ford et al. 2013). However, several faunal groups are under-represented, 

including mammals (Kuijper et al. 2008; Lagendijk et al. 2018), fish (Laffaille et al. 

2000; Friese et al. 2018), amphibians (Rannap et al. 2017) and pollinators (Meyer et 

al. 1995; Rickert et al. 2012; Rickert et al. 2018). The knowledge gap related to 

saltmarsh pollinators is particularly important from an ES perspective, due to a 

pressing need to recognise, preserve, and sensitively manage flower-rich habitats in 

order to prevent a collapse in crop pollination services (Goulson et al. 2015). 

Where trade-offs between grazing and other ES are explicitly investigated, these 

generally concern trade-offs with carbon storage (Ford, Garbutt, L. Jones, et al. 2012; 

Elschot et al. 2015; Harvey et al. 2019). Investigations into interactions between 
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saltmarsh grazing and more than one other ES are extremely rare (but see Ford 

2012). This ecological, rather than ES focus, means that the broad societal impacts of 

saltmarsh grazing are rarely considered. Given the high value and variety of 

saltmarsh ES, the myriad threats faced by tidal marshes, and the widespread practice 

of saltmarsh grazing, there is a clear need for a better evidence base on the impacts 

of livestock grazing on other services, to inform better management of these unique 

habitats.  

 

1.6 Thesis aims, methods and outline 

The overall aim of this thesis is to investigate how anthropogenic changes to 

ecological communities affect multiple ES, using salt marshes as a focal system. 

Specifically, I will examine the impacts of livestock grazing on saltmarsh properties, 

functioning, and the supply of other saltmarsh ES. To explore these impacts, I use 

multiple approaches, including a meta-analysis of the academic literature (Chapter 

2), experimental study (Chapter 3), observational surveys (Chapters 3 & 4), 

interviews (Chapter 5) and analysis of unpublished secondary data (Chapters 4 & 5). I 

investigate the effects of grazing at a range of scales, from the global (Chapter 2) 

through regional (Chapters 3 & 4) to a local scale (Chapters 3 & 5). 

In Chapter 2 I investigate potential trade-offs and synergies between livestock 

grazing and other ES, using a systematic review of academic literature reporting 

ecosystem properties in grazed and ungrazed salt marshes. This chapter analyses 

data for 29 saltmarsh properties extracted from 89 published studies to obtain, for 

the first time, a global picture of grazer impacts on salt marshes, identify significant 

moderators of grazer impacts, and highlight evidence gaps. 

Because grazing is less common in US marshes, there are few grazing studies from 

this region, and many evidence gaps relating to top-down control by large grazers. 

Chapter 3 uses both experimental exclusion on a grazed island in Georgia, USA, and 

broad-scale observational surveys in 26 marshes conducted along ~1100 km of US 

coastline, to investigate the impacts of large ungulate grazers in US Atlantic coast salt 
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marshes.  Chapter 3 builds on and strengthens the results presented in Chapter 2, 

and adds new data relating to grazer effects on saltmarsh properties and resilience. 

There is much published research regarding the effect of livestock grazing on 

European saltmarsh properties and processes. However, no studies have previously 

explored the impact of grazers on saltmarsh bee communities. In Chapter 4 I use 

extensive vegetation and bee surveys, conducted along 121.6 km of transect in 11 

Welsh marshes over three summers, to investigate the effects of grazing 

management on the quality of foraging habitat for bees, and the mechanisms driving 

these effects. I also compare these results with terrestrial pollinator survey data, to 

establish the importance of salt marsh as a bee habitat within the wider landscape. 

Although many studies have investigated individual saltmarsh ES, very few 

investigate interactions between ES in salt marshes, and none have previously 

mapped multiple services across a saltmarsh landscape. In Chapter 5 I collate and 

analyse data from charities, government, universities and private individuals to map 

the supply of seven ES from 3154 ha of salt marsh in Carmarthen Bay, UK. I use these 

maps to explore the ES-multifunctionality, trade-offs and synergies within this 

system. Finally, in the Discussion, I consolidate the results from each chapter, briefly 

consider the practical applications, and discuss the wider context of my results. 
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2.1 Abstract 

The far-reaching impacts of livestock grazing in terrestrial grasslands are widely 

appreciated, but how livestock affect the structure and functions of sensitive coastal 

ecosystems has hitherto lacked synthesis. Grazing-induced changes in salt marshes 

have the potential to alter the provision of valuable ecosystem services, such as 

coastal protection, blue carbon and biodiversity conservation. To investigate how 

livestock alter soil, vegetation and faunal properties in salt marshes, we conducted a 

global meta-analysis of ungulate grazer impacts on commonly measured ecosystem 

properties (498 individual responses from 89 studies). We also tested stocking 

density, grazing duration, grazer identity, continent and vegetation type as potential 

modifiers of the grazing effect. The majority of studies were conducted in Europe 

(75) or the Americas (12), and investigated cattle (43) or sheep (22) grazing.  

All measures of aboveground plant material (height, cover, aboveground biomass, 

litter) were decreased by grazing, potentially impairing coastal protection through 

diminished wave attenuation. Soil carbon was reduced by grazing in American, but 

not European marshes, indicating a trade-off with climate regulation that varies 

geographically. Additionally, grazing increased soil bulk density, salinity and daytime 

temperature, and reduced redox potential.  Biodiversity responses depended on 
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focal group, with positive effects of grazing on vegetation species richness, but 

negative effects on invertebrate richness. Grazing reduced the abundance of 

herbivorous invertebrates, which may affect fish and crustaceans that feed in the 

marsh. Overall vertebrate abundance was not affected, but there was provisional 

evidence for increases over a longer duration of grazing, potentially increasing 

birdwatching and wildfowling opportunities. 

Synthesis and applications.  Our results reveal that the use of salt marshes for 

livestock production affects multiple ecosystem properties, creating trade-offs and 

synergies with other ecosystem services. Grazing leads to reductions in blue carbon 

in the Americas but not in Europe. Grazing may compromise coastal protection and 

the provision of a nursery habitat for fish while creating provisioning and cultural 

benefits through increased wildfowl abundance. These findings can inform salt marsh 

grazing management, based on local context and desired ecosystem services.  

 

2.2 Introduction 

Livestock are grazed in semi-wild rangelands throughout the world. In terrestrial 

systems, their impacts on biodiversity and ecosystem properties are now well-

established (e.g. Tanentzap and Coomes 2012; Alkemade et al. 2013; Daskin and 

Pringle 2016) together with the determinants of these impacts such as grazer 

density, type and plant composition (O’Rourke and Kramm 2012; McSherry and 

Ritchie 2013). However, livestock are also widely grazed in salt marshes – halophytic 

grasslands distributed along the world’s wave-sheltered temperate shorelines – 

which may respond differently due to their distinct soil properties (e.g. higher 

salinity, lower redox potential), environmental stressors (tidal flooding) and plant 

communities. Although many empirical studies have measured livestock impacts in 

salt marshes, a comprehensive synthesis of these studies is currently lacking. Salt 

marshes are widely recognised for the value of their Ecosystem Services (ES) 

(Costanza et al. 1997; Barbier et al. 2011), but have suffered large losses in extent 

and are subject to multiple anthropogenic threats (Gedan et al. 2009). As such, it is 

vital that remaining areas of salt marsh are managed sensitively to maximise their ES 

value.  
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Livestock pasturage is the most common resource use of salt marshes (Gedan et al. 

2009). Large grazers alter the biophysical structures and processes of an 

environment (ecosystem properties, EPs) via trampling, removal of vegetation, and 

defecation. These alterations will drive changes in ecosystem functioning, with 

consequences for the provision of ecosystem services (Haines-Young and Potschin 

2010). For example, direct removal of plant material, and direct and indirect effects 

on biogeochemical cycling can lead to reduced storage of carbon in soils, diminishing 

the service of climate regulation (Tanentzap and Coomes 2012). These cascading 

effects enable EPs to be used as proxy indicators for ES provision in the absence of 

direct measurements of services (Van Oudenhoven et al. 2012). A recent synthesis 

showed livestock grazing affects salt marsh vegetation properties (He and Silliman 

2016). However, equivalent syntheses of grazer effects on belowground properties 

and faunal biodiversity in salt marshes are missing. To understand how salt marshes 

and their ES are affected by grazing, it is necessary to analyse a broad range of EPs, 

and explore how management decisions and other contextual variables will 

moderate these effects.  

Research from terrestrial rangelands has demonstrated that the direction and 

strength of livestock effects on ecosystem properties is moderated by variables 

relating to grazing management, such as stocking density and grazer species (Rook et 

al. 2004; Stewart and Pullin 2008; Paz-Kagan et al. 2016). Other local contextual 

variables such as climate, soil type and vegetation can moderate the impact of 

herbivory (He and Silliman 2016). European and American marshes differ in their soil 

formation (mainly derived from mineral deposits vs mainly derived from organic 

material, respectively) and vegetation (high diversity vs low diversity) characteristics 

(Cattrijsse and Hampel 2006; Bakker et al. 2015), which may cause grazing responses 

to vary between these continents. European saltmarsh vegetation consists of taxa 

from diverse lineages, with attendant diversity of traits, which may drive differential 

responses to grazing, depending on the dominating species. For example, grasses are 

generally more tolerant of grazing than forbs, due to the location of their growing 

regions (Briske and Richards 1995). Similarly, faunal responses may be moderated by 

trophic level and clade. Herbivorous invertebrates are likely to suffer most strongly 

from livestock grazing, as they are in direct competition for the plant biomass 
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(Tscharntke 1997). Conversely, grazing wildfowl are likely to benefit, as they favour 

nutritious, young plant shoots (Lambert 2000).  

Here, we conduct a global systematic review and meta-analysis of the effects of 

ungulate grazers on salt marsh EPs. We analyse 498 responses from 89 studies to 

identify significant changes in a suite of soil, vegetation and faunal properties. We 

hypothesise that these responses are moderated by stocking density, grazing 

duration, grazer identity, continent, vegetation type and faunal functional group. We 

show that grazing alters 11 out of the 21 EPs tested, and that grazing effects are 

dependent upon the nature of grazing, geography and vegetation. We use the 

observed responses to predict how salt marsh grazing impacts on ecosystem 

functioning and service provision. 

 

2.3 Methods 

2.3.1 Study selection and data extraction 

 We comprehensively searched published literature using standard techniques 

(detailed in Appendix A: Supplementary methods). For inclusion, studies must have 

measured an EP on a grazed and ungrazed area of salt marsh. Only ungulate grazers 

(hereafter ‘livestock’) were considered. Both observational and experimental studies 

were included, as were those that explicitly replicated the effects of livestock by 

clipping or trampling.  

From the figures, tables and text of each study we extracted grazed and ungrazed 

means, sample sizes and measures of variance (standard deviation, SD; standard 

error, SE; 95% confidence intervals, CI) for each EP. The results sections were also 

scanned for descriptions of changes induced by grazing, even if no mean values were 

provided. Often, multiple EPs were measured per study, thereby generating multiple 

grazing outcomes (hereafter referred to as ‘entries’). In total, 498 entries for 29 

properties were extracted from the 89 included studies (Appendix A: Table A1). 

Where possible, study-specific variables were extracted for each entry (detailed fully 

in Appendix A: Supplementary methods). Potential moderating variables relating to 

grazing management were recorded: stocking density (converted to a common 
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metric of livestock units per hectare, LSU/ha), grazer species and grazing duration 

(time in years since introduction/removal of grazers). The dominant vegetation in 

grazed and ungrazed plots was classified as Spartina, other graminoids, or forbs. 

Marsh zone and sediment type were also noted, but were not tested as potential 

moderators due to a lack of data.  

 

2.3.2 Data analysis 

The data were analysed using three different approaches. (i) A weighted meta-

analysis, by inverse of variance (Hedges and Olkin 1985), was used to calculate an 

overall average effect of grazing for every EP that had mean and variance values from 

≥3 separate publications. (ii) A coded meta-analysis (Evans et al. 2011) was used to 

visually summarise all extracted grazing responses, including those that reported 

only a qualitative description, or reported means without sample size and variances. 

While only semi-quantitative, due to its inclusiveness, this method provides a wider 

overview of all studies investigating grazer effects. (iii) For all EPs with ≥10 entries, 

linear regression models were used to investigate potential moderators for their 

influence on the effect of grazing. To increase sample sizes, these meta-regressions 

were unweighted, allowing entries without a reported variance to be included. All 

analyses were performed using R statistical software version 3.1.2 (R Core Team 

2014). 

 

(i) Weighted meta-analysis 

For each individual entry, the effect size of grazing treatment was quantified as the 

log Response Ratio (lnRR) of the mean of the grazed group (𝑋̅𝐺) against the mean of 

the ungrazed group (𝑋̅𝑈) 

ln𝑅𝑅 = 𝑙𝑛
(𝑋̅𝐺)⁡

(𝑋̅𝑈)⁡
                             [Eqn. 1] 

 

The variance for each entry was then calculated as  
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𝑉𝑎𝑟 =
𝑆𝐷𝐺

2

𝑁𝐺𝑋̅𝐺
2 +

𝑆𝐷𝑈
2

𝑁𝑈𝑋̅𝑈
2         [Eqn. 2] 

Where 𝑆𝐷𝐺= SD of grazed group, 𝑆𝐷𝑈= SD of ungrazed group, 𝑁𝐺= sample size of 

grazed group, 𝑁𝑈= sample size of ungrazed group and 𝑆𝐷 = √𝑁 × 𝑆𝐸    or⁡⁡⁡⁡ =

√𝑁 ×
𝐶𝐼

1.96
 . 

 

When the SD could not be derived from the publication, the variance was estimated 

as 

𝑉𝑎𝑟𝑒𝑠𝑡. =⁡ [
𝑁𝐺+𝑁𝑈

𝑁𝐺𝑁𝑈
] + [

𝑙𝑛𝑅𝑅2

2(𝑁𝐺+𝑁𝑈)
]   (Hedges & Olkin 1985).   [Eqn. 3] 

 

For each EP, a random-effects, multilevel linear model was used to combine 

individual effect sizes to estimate an overall mean effect with 95% CI. Models were 

fitted with a restricted maximum likelihood (REML) structure using the rma.mv 

function within the metafor package (Viechtbauer 2010) in R. Study (i.e. publication) 

nested within Site was included as a random factor to account for non-independence 

of multiple entries extracted from the same study, and multiple studies conducted at 

the same site. In addition, we examined funnel plots to assess publication bias 

(Sterne and Egger 2001).  

 

ii. Coded meta-analysis 

Entries were coded by the direction and significance of the effect of grazing as 

causing a statistically significant (P≤0.05) increase in the EP, an increase, no change, a 

decrease, or a statistically significant decrease. Entries were coded as no change 

when the difference between the grazed and ungrazed means was not significant 

and <2%. P-values were not always reported, therefore some changes may be 

recorded as not significant while actually being statistically significant.  
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iii. Regression analyses 

To assess potential moderators of the grazing effect, linear, mixed-effect meta-

regressions were conducted to test whether stocking density (LSU ha-1), grazing 

duration (years), grazer identity (sheep; cattle, including water buffalo; mixed 

species; other), or continent (America; Europe) had a significant effect on the lnRR of 

that EP. Within European studies only, vegetation type (graminoid-dominant; forb-

dominant) was also tested. Spartina spp. were excluded from the graminoid category 

due to physiological differences (C4 vs C3 photosynthesis; Osborne et al. 2014) and 

habitat preference (Spartina are pioneer species found at the seaward edge of 

European marshes; Bakker et al. 2015). There were insufficient European Spartina 

replicates (3 studies) to treat it as a separate category, so this vegetation type was 

not analysed. Because grazing can alter the plant community composition (de Vlas et 

al. 2013), vegetation type was only included when it was consistent across grazed 

and ungrazed plots, to allow it to be treated as a predictor of grazing effects, rather 

than a response to grazing.  

There were missing values for each moderator, and frequent collinearity of 

moderators; as such, each potential moderator was tested for significance in 

separate models and P-values were adjusted for multiple comparisons within that EP 

using the False Discovery Rate (FDR, Benjamini and Hochberg 1995). Unadjusted P-

values were also examined, to gain insight into moderators that may potentially be 

important. All models had Study nested within Site as a random effect. For the EPs of 

invertebrate abundance and vertebrate abundance, functional group (benthos, 

detritivore, herbivore, predator; goose, passerine, wader, hare, fish respectively) was 

included as a random term in each model, to control for varying responses by each 

group. We also tested functional group as a fixed term in separate models. The 

majority of studies were conducted at stocking density 0-2.0 LSU ha-1, but two 

studies were conducted at 6 and 12 LSU ha-1respectively. Similarly, all studies had a 

duration of 0.1-100 years, except a single study reporting 210 years of grazing. In 

these cases, models were run with these outliers (>3 SD from the mean) included 

and excluded, to determine whether this changed the result. Predictions were only 

conducted using the models that excluded the outliers, so that these unusual 

observations did not exert undue influence on the outcomes.  
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Models were fitted with a REML structure using the lmer function within the lme4 

package (Bates et al. 2015) in R. Visual checks of residual plots were used to confirm 

model residuals met assumptions of normality and heteroscedasticity (Pardoe 2012). 

Model predictions were made using the predictInterval command in the merTools 

package (Knowles and Frederick 2016) with 1000 simulations, for an unspecified Site 

and Study. This analysis resamples from the normal distribution of the fixed 

coefficients, incorporating residual variation to simulate new predictions, and 

returning a mean prediction and 95% prediction intervals (PI).  

 

2.4 Results 

The majority of the 89 studies included were conducted in Europe and over 30% 

originated from a single country – the Netherlands (Fig. 2.1a). A variety of grazers 

were investigated: cattle, sheep, horses, deer and water buffalo, with cattle being 

most common (Fig. 2.1b). Several manipulative study designs were used (installation 

of exclosures/enclosures, artificial replication by clipping and trampling, before/after 

comparison, laboratory study), but over half of the studies were observational (Fig. 

2.1c). The duration of grazing ranged from short-term 4-week exclosure experiments, 

to observational studies in marshes grazed for over 200 years.  

 

 

 

Fig. 2.1 Breakdown of the 89 studies by a) Continent and country (number of studies in brackets, 

some European studies encompassed >1 country); b) type of grazer; c) study design. 
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2.4.1. Weighted meta-analysis for mean effects of livestock grazing 

We found that livestock grazing affected 11 of the 21 EPs tested, spanning soil, 

vegetation and faunal response variables (Fig. 2.2, Table A2). Grazing significantly 

altered four of seven soil variables: increasing soil bulk density, salinity and daytime 

temperature, and decreasing redox potential. Mean accretion rate, soil carbon 

content and pH were all unaffected. Grazing also significantly affected five of seven 

vegetation responses: increasing species richness while reducing aboveground 

biomass (AGB), cover, canopy height and litter biomass. There was no effect on 

belowground biomass (BGB) or plant nitrogen content. Grazing was associated with a 

significant reduction in invertebrate richness, but did not affect vertebrate or total 

invertebrate abundance. However, when invertebrate abundance data were 

analysed by functional group, herbivore abundance was significantly reduced by 

grazing. The majority of the vertebrate data were extracted from studies on bird 

abundance (85% of entries) and goose abundance in particular (62%). When goose 

abundance was analysed separately, the mean effect was positive, but not 

significant.  

 

Fig. 2.2 Weighted meta-analysis. Weighted mean effects (Log Response Ratio, lnRR) ±95% confidence 

intervals of livestock grazing on salt marsh properties. An lnRR >0 indicates a positive effect of grazing 

on that property, while an lnRR <0 indicates a negative effect of grazing. Effects are significant 

(P≤0.05) where confidence intervals do not intercept 0. Numbers above points represent number of 

entries (number of studies). See Table A2 for statistics. 
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The ability to detect reporting bias is limited with smaller sample sizes (Sedgwick 

2013), but for most properties, no bias was evident from visual assessment of funnel 

plots (Fig. A1). The exceptions were redox potential, plant cover and plant richness, 

all of which indicated bias towards reporting of negative effects in smaller, less 

precise studies (those with a larger standard error). This indicates that the true 

effects on redox, cover and plant richness may be more positive than our calculated 

values. Exclusion of ‘artificial replication’ entries did not alter the direction or 

significance of the grazing effect for any EP.   

 

2.4.2 Coded meta-analysis of all reported outcomes 

Results from the coded meta-analysis demonstrate that most EPs have displayed 

both positive and negative responses to grazing in different studies (Fig. A2). 

Generally, the balance of responses support the results produced by the weighted 

meta-analysis. However, the weighted meta-analysis for accretion (5 entries) showed 

no significant effect of grazing, whereas the coded meta-analysis reveals that 11 out 

of a total 13 entries for accretion showed a negative effect of grazing. Additional 

patterns were revealed for EPs that could not be analysed statistically in the 

weighted meta-analysis. Grazing had predominantly negative effects on flowering (8 

out of 8 entries) and fish richness/abundance (3 out of 3), but had positive effects on 

stem density (5 out of 6) and hare abundance (2 out of 2). Grazing had generally 

positive effects on wader abundance (8 out of 12) but negative effects on wader nest 

survival (3 out of 3). 

 

2.4.3. What moderates the effect of grazing? 

Regression analyses adjusted for multiple comparisons 

Two moderators that significantly influenced the outcome of grazing were 

highlighted using linear regression analyses with adjusted P-values (Table 2.1). 

Continent moderated the effect of grazing on soil carbon: grazing is predicted to 

reduce soil carbon in American marshes but slightly (non-significantly) increase soil 
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carbon in European marshes (Fig. 2.3a). Stocking density moderated the effect on 

canopy height: a higher density of livestock more strongly reduced canopy height 

(Fig. 2.3b). 

 

 

Fig. 2.3. Regression analyses. Effects of moderators found to be significant in FDR-corrected analyses. 

Predicted effects of a) Continent and b) stocking density on grazing outcomes, with 95% Prediction 

Intervals. Different letters indicate categories are significantly different from each other. LSU/ha = 

livestock units per hectare (see Appendix S1 for calculation). 

  

Unadjusted analyses  

Examination of unadjusted P-values allowed the identification of other, potentially 

important moderators (Table 2.1), although these results were considered less 

robust. The effect of grazing management (stocking density, duration and type of 

grazer) was significant for five EPs (Fig. A3). Increased stocking density reduced soil 

salinity and aboveground biomass. Increased grazing duration led to increased 

vertebrate abundance. Additionally, a positive effect of grazing on BGB was stronger 

for cattle relative to sheep or a mixture of domestic grazers. For the BGB subset of 

data, the cattle studies were conducted at a lower stocking density than the sheep or 

mixture studies, so this result could be an artefact of stocking density (although 

stocking density was not found to be a significant moderator for BGB when analysed 

directly). Within European studies, the dominant vegetation type was a significant 

moderator for two EPs (Fig. A4): areas dominated by forbs experienced larger 

reductions in percentage cover and species richness than areas dominated by 

graminoids.  
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Table 2.1. Moderators found to be significant (P<0.05) in regression analyses. n(N) = number of 

entries (number of studies); df, F and P show results of ANOVA; FDR-P = False Discovery Rate-adjusted 

P value; Marginal R2 = proportion of variance explained by fixed moderator. FDR-P values < 0.05 are 

highlighted in bold. Moderators: stocking density (‘LSU’; livestock units per hectare), duration of 

grazing at site (‘Duration’; years), grazer identity (‘Grazer’; artificial, cow, sheep, mixed, other), 

location of study (‘Continent’; America, Europe), dominant vegetation type in European studies 

(‘Vegetation’; forbs, graminoids). Functional group (‘FG’) was also tested for invertebrate abundance 

(benthic invertebrate, herbivore, predator, detritivore) and vertebrate abundance (goose, wader).  

The following EPs were tested but had no significant moderators: bulk density*, redox*†‡, litter 

biomass*, nitrogen content*†‡, invertebrate abundance* and invertebrate richness. Full results of 

regression analyses, including conditional R2 values, model intercepts, estimates and standard errors 

are given in Table A3. 

Ecosystem Property Moderator n(N) df F P FDR-P Marginal R2 

Soil carbon* Continent 27(16) 1,14.8 9.06 0.009 0.036 0.33 

Salinity* LSU 14(7) 1,11.0 5.84 0.034 0.136 0.33 

AGB LSU 18(10) 1,15.4 7.76 0.014 0.070 0.32 

BGB*‡ Grazer 14(9) 2,5.9 6.25 0.035 0.105 0.59 

Vegetation cover Vegetation 10(7) 1,3.3 9.87 0.045 0.225 0.21 

Canopy height‡ LSU 

Duration 

32(16) 

24(12) 

1,22.4 

1,6.6 

12.91 

6.28 

0.002 

0.043 

0.008 

0.086 

0.28 

0.22 

Vegetation richness Vegetation 23(14) 1,21.0 5.05 0.036 0.180 0.19 

Vertebrate 

abundance* 

Duration 13(7) 1,6.5 5.79 0.050 0.250 0.22 

* Vegetation not tested due to lack of data 

† LSU not tested 

‡ Continent not tested 

 

2.5 Discussion 

We have synthesised four decades of individual studies to highlight key salt marsh 

properties affected by livestock grazing, including increased plant richness, reduced 

invertebrate richness and herbivorous invertebrate abundance, reductions in plant 

material and altered soil conditions. We have also identified previously 

unappreciated moderating variables that alter the strength or direction of these 

responses, including an effect of continent on soil carbon and, provisionally, an effect 

of grazing duration on vertebrate abundance. The findings are applicable to 

predicting how grazing affects ecosystem functioning and service provision in salt 

marsh landscapes (see Fig. 2.4 for conceptual diagram).   
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Fig. 2.4 Conceptual diagram of how changes in ecosystem properties predict ecosystem service 

provision. Services categorised as supporting (S), regulating (R), provisioning (P) and cultural (C). 

Examples of studies demonstrating ecosystem property – service link are shown as: 1Husson 2013; 
2Wichern et al. 2006; 3McLeod et al. 2011; 4Möller et al. 2014; 5Paul et al. 2016; 6Levin et al. 2002; 
7Cattrijsse and Hampel 2006; 8Green and Elmberg 2014. *This result was not significant after 

correction for multiple comparisons. 

 

2.5.1 From ecosystem properties to ecosystem services 

Species richness, soil properties and supporting services 

Biodiversity supports many services and high biodiversity appears to promote 

ecosystem stability and resilience (Seddon et al. 2016). Extensive grazing is often 

used as a management method to maintain grassland diversity, as the removal of 

plant biomass prevents highly competitive species from becoming dominant 

(WallisDeVries et al. 1998). Our results reveal that grazing is generally beneficial to 

salt marsh plant richness (Fig. 2.2). However, biodiversity responses were 

inconsistent: provisional results indicate that increases in richness are only achieved 

in graminoid-dominated plots (Fig. A4b). Moreover, the overall increase in plant 

richness was offset by reductions in invertebrate richness and herbivorous 

invertebrate abundance (Fig. 2.2). These results confirm that responses to land 

management vary among taxa, and plant richness cannot be used as a broad 

indicator of biodiversity (Hess et al. 2006).  

 



Chapter 2: Meta-analysis 

27 
 

Altered soil conditions can drive changes to biotic communities and their functioning, 

affecting supporting services such as nutrient cycling (Wichern et al. 2006; Husson 

2013). Soil bulk density, daytime temperature and salinity all increased with grazing, 

while redox potential decreased (Fig. 2.2). The increase in bulk density is expected as 

a direct effect of trampling by large herbivores (Southorn and Cattle 2004; Bell et al. 

2011) and this leads to decreased oxygen diffusion and more reduced conditions 

(Husson 2013). An increase in soil temperature is widely reported from other grazed 

systems (e.g. van der Wal et al. 2001) as a result of reduced shading, compacted soil 

and anaerobic respiration. Increased evaporation from warmer, unshaded soils will 

lead to the observed increase in salinity. Evidence of how these effects will manifest 

and interact in salt marshes is lacking, and direct measurements of ecosystem 

functioning are needed to disentangle their mechanisms. Some studies have begun 

to address grazer impacts on salt marsh biogeochemical cycles (e.g. Olsen et al. 2011; 

Ford et al. 2012; Schrama et al. 2013), although there were insufficient data to 

combine in our meta-analysis.  

Soil formation in a salt marsh occurs by accumulation of sediment and plant biomass, 

and allows marshes to accrete vertically in response to rising sea-levels (Bakker et al. 

2015; Boyd and Sommerfield 2016). Our analyses revealed that grazers compact the 

sediment and reduce aboveground biomass, but this did not translate into a 

significant overall reduction in accretion rates (Fig. 2.2). This may be because grazer-

driven compaction increases the strength of the soil, making it more resistant to 

erosion (Ghebreiyessus et al. 1994). There is also evidence from salt marshes that 

increased plant richness improves sediment stability (Ford et al. 2016). Therefore 

grazers may directly and indirectly stabilise the marsh surface and protect against 

lateral and horizontal erosion. However, accretion rates are highly context-

dependent, driven by local factors such as sediment input (Bakker et al. 2015), which 

may mask the effects of grazing in some studies. In light of the results of our coded 

meta-analysis (11 out of 13 entries presented negative results for accretion), we 

recommend further research on the mechanisms and context-dependency of 

livestock-impacts, as reduced capacity for vertical accretion could lead to 

submergence under rising seas with concomitant loss in the provision of all services. 
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Soil carbon and climate regulation 

In salt marshes, the majority of the carbon stock is stored as soil organic carbon 

(Murray et al. 2011), so reductions in aboveground biomass are of limited relevance 

when assessing this service. Overall, soil carbon content was not affected by livestock 

grazing. However, our analysis revealed that the impact of grazing varied 

geographically; grazing was found to reduce soil carbon in American marshes, with 

no consistent effect in the European studies which dominated the dataset (Fig. 2.3). 

A range of factors could be driving this geographical effect. Reductions in plant 

material are likely to have a stronger impact on soil quality in organogenic American 

marshes compared to minerogenic European marshes, where sediment supply will 

have a stronger effect (Bakker et al. 2015). Moreover, soils in American marshes may 

be more easily degraded by livestock due to more frequent flooding and a lower 

stem density compared to European marshes (Cattrijsse and Hampel 2006). 

American marshes tend to be dominated by Spartina spp., a favoured food plant of 

livestock (Furbish and Albano 1994), whereas European marshes have a higher floral 

diversity (Cattrijsse and Hampel 2006), which may confer an increased capacity for 

grazing resistance (Callaway et al. 2005). The aerial extent of American marshes is an 

order of magnitude higher than that of European marshes (Ouyang and Lee 2014). 

Therefore a negative impact of grazing on soil carbon has potential consequences for 

global storage of ‘blue carbon’. Comparative studies in American and European 

Spartina marshes are needed to determine the variables and mechanisms driving 

grazer impacts on soil carbon.   

 

Vegetation and coastal protection 

Vegetated coastal regions reduce wave energy more effectively than bare mudflats 

(Möller et al. 1999; Shepard et al. 2011), with tall, denser vegetation being most 

effective (Möller et al. 2014; Paul et al. 2016). Unsurprisingly, aboveground biomass, 

canopy height and cover were reduced in the presence of livestock, with a general 

trend of stronger effects at higher stocking density or duration of grazing (Fig. 2.3b, 

Fig. A3) and within forb-dominated plots (Fig. A4a). These alterations could lead to 

reduced wave attenuation in a grazed salt marsh. However, geomorphological 
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characteristics, such as lateral expanse and slope, contribute significantly to wave 

height reduction (Shepard et al. 2011; van Loon-Steensma and Vellinga 2013). 

Therefore, the impact of grazing must be considered alongside these known 

determinants of wave attenuation. Considering the high value of the coastal 

protection service offered by salt marshes (Costanza et al. 2008), it is worthwhile 

addressing this grazer effects on wave attenuation through direct field 

measurements, laboratory study and modelling.  

 

Species abundance and provisioning services 

Provisional results show that vertebrate abundance (predominantly geese) increased 

with grazing duration (Fig. A3d), indicating that livestock grazing supports the 

provision of vertebrate prey for wildfowlers. The benefit of longer-term grazing is 

probably due to the site-fidelity exhibited by migratory birds (Hestbeck et al. 1991). 

However, there are indications of a trade-off with fish populations, as the three fish 

studies included in the coded meta-analysis presented negative outcomes of grazing. 

Decreased herbivorous invertebrate abundance (Fig. 2.2) reduces food resources for 

juvenile fish and crustaceans, while decreased cover (Fig. 2.2) reduces the shelter 

value of salt marshes (Levin et al. 2002; Colclough et al. 2005; Kritzer et al. 2016). 

These effects are likely to be more important in North America than Europe, where 

marshes are larger and play a greater role as nursery habitat for commercially 

important fish and crustaceans (Cattrijsse and Hampel 2006). 

 

Cultural services 

In ES research, cultural services are often undervalued or left out altogether, as they 

are difficult to quantify and are interlinked with both provisioning and regulating 

services (Chan et al. 2016). The present evidence on how grazing alters EPs 

nevertheless informs an assessment of cultural services.  The provision of optimal 

wildfowl habitat will promote the conservation of charismatic species and attract 

birdwatchers (Green and Elmberg 2014). Not all cultural services are likely to benefit 

from grazing. The presence of livestock may impede access to the marsh, and could 

alter aesthetic appreciation through changes to floral diversity and abundance (Clay 
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and Daniel 2000; Ryan 2011). Conversely, the livestock themselves can act as a 

tourist attraction and point of interest (van Zanten et al. 2016). Further 

interdisciplinary research is necessary to assess how appreciation and use of the salt 

marsh environment may be enhanced or degraded by the presence of grazers. 

 

2.5.2 Evidence gaps 

These analyses were dominated by European studies. Only one EP (soil carbon) 

displayed a significantly different response in American marshes. However, there was 

limited power to detect effects across continents due to the small number of 

American studies. Additionally, no Australian studies and only one Chinese study 

were included in this review, despite these countries harbouring a large proportion 

of the global extent of salt marshes (Ouyang and Lee 2014). Addressing this evidence 

gap would lead to a more globally representative understanding of livestock grazing 

impacts in salt marshes. 

Due to collinearity of some moderators, and incomplete reporting of study-specific 

information, we were unable to test for several potentially important moderators 

(e.g. marsh zone, soil type), nor could we test for interactions between moderators. 

We did not analyse the effect of plot scale, although this can influence species 

richness responses in salt marshes (Wanner et al. 2014). We were also unable to 

assess certain services, such as pollution control and water quality regulation - 

among the most important services provided by salt marshes (Adnitt et al. 2007) - 

and recommend that future work investigate how grazing affects bioremediation in 

salt marshes. We have used ecosystem properties to inform an assessment of 

livestock impacts on ES provision, but the links between properties, functions and 

services are not fully understood. Future research to gain a more mechanistic 

understanding would facilitate quantitative predictions of the impacts of livestock 

grazing on ES provision.  
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2.6 Conclusions and management implications 

We have conducted the first meta-analysis of the above- and below-ground effects 

of livestock grazing in a salt marsh, identifying key patterns that can be used to 

inform management and direct future research. Reductions in plant biomass, height 

and cover will diminish coastal defence through reduced wave attenuation, therefore 

grazing should be carefully managed in salt marshes fronting coastal structures at 

risk from storm surges. In general, European marshes can be grazed without 

compromising their blue carbon value. However, we have presented evidence that 

grazing may impair carbon storage in American marshes. Species richness responses 

varied by taxa, therefore managers should not use plant richness as a proxy for 

overall richness. Grazing management for conservation is particularly important as 

the biodiversity of a salt marsh underpins many services. Ultimately, considering the 

high value of salt marsh ecosystem services, and the widespread use of these 

marshes for grazing purposes, further research into the nature of trade-offs and 

synergies between these services, especially in regions outside of Europe, is strongly 

recommended. 

 

2.7 Supporting Information 

The following supplementary material can be found in Appendix A. 

Supplementary methods. Study selection and data extraction. 

Table A1. Ecosystem properties investigated and list of data sources. 

Table A2. Full results of weighted meta-analysis. 

Table A3. Full results of regression analyses. 

Fig. A1. Forest plots and funnel plots for all EPs. 

Fig. A2. Results of coded meta-analysis. 

Fig. A3. Predicted moderating effects of stocking density, duration and identity of 

grazer (significant at P<0.05). 

Fig. A4. Predicted moderating effects of dominant vegetation in Europe (significant at 

P<0.05). 
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Chapter 3. Large grazers disrupt plant community and reduce soil 

carbon in US salt marshes 

 

 

 

 

3.1 Abstract 

Salt marshes of the US east coast provide multiple ecosystem services (ES). However, 

many are grazed by horses and other livestock, which may impact ecosystem 

properties and ES. The majority of grazer-impact studies have been conducted in 

Europe, and there is evidence that responses in US marshes may be different. To 

explore how grazing impacts US marshes, I surveyed 14 long-term grazed (horse, 

cattle) and 12 long-term ungrazed marshes along the US east coast. Long-term 

grazing reduced soil organic carbon (SOC) in saltmarsh sediments. Long-term grazing 

also affected multiple plant properties (reduced plant cover and stem height, 

increased stem density and variation in plant community), but did not impact 

invertebrates. To control for the effect of environmental variables, and allow for 

measurement of a larger suite of responses over time, I excluded horses from 8 

paired experimental plots on Cumberland Island, GA for 18 months. Horse exclusion 

led to increased stem height, plant cover and flowering, and decreased algae 

concentrations. The plant community composition also altered, showing increased 

Spartina dominance in ungrazed plots. Ungrazed plots had higher densities of adult 

fiddler crabs (Uca pugnax) but no changes to other crabs, mussels or snails. Exclusion 

of horses had no clear effect on ecosystem resilience.  

Taken together, these results show that grazing consistently disrupts the saltmarsh 

plant community and structure, but has little effect on resident fauna. Long-term 
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grazing reduces soil carbon, but these effects are not apparent following short-term 

(18 month) changes in grazing regime. Short-term experimental results indicate that 

resilience of these marshes is not substantially harmed by grazing, therefore the 

current levels of grazing may be sustainable. However, due to the significant trade-

offs between grazing and carbon storage, and grazing and ES related to plant 

biomass, horse and livestock grazing should not be practiced on a broad scale in 

these, or functionally similar, marshes. 

 

3.2 Introduction 

Salt marshes are extremely valuable to human society, due to their multiple 

Ecosystem Services (ES) that mitigate environmental hazards, provide material 

goods, recreational opportunities and wildlife habitat (Costanza et al. 1997; Barbier 

et al. 2011). Salt marshes are characterised by low plant diversity, but very high 

primary and secondary production, which drives much of their ES provisioning 

(Barbier et al. 2011). Grazing livestock on salt marshes can drive significant changes 

in soil, vegetation and faunal properties (Table 3.1), leading to trade-offs between 

livestock grazing and other ecosystem services (Chapter 2: Davidson et al. 2017). 

However, the majority of studies investigating livestock effects have been conducted 

in European marshes (Chapter 2). There is much geographical variation in saltmarsh 

flora, fauna, processes and scale (Adam 1990); and as 44% of the global salt marsh 

coverage is in North and South America (McOwen et al. 2017), there is a clear need 

for additional research into livestock effects in American salt marshes. This research 

is particularly necessary, since the limited data available from the Americas (four 

studies, three of them observational) suggests that livestock grazing reduces the 

carbon stored in American saltmarsh soils, in contrast to the neutral effects of 

livestock in European marshes (Chapter 2). Salt marshes are disproportionally 

important natural carbon sinks, accounting for 1-2% of the United States’ total 

carbon sink (Chmura 2009) for 0.21% of its conterminous land area (McOwen et al. 

2017). Sensitive management of this habitat is vital to preserve and enhance this 

‘blue carbon’ service (Chmura 2009; Murray et al. 2011). 
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Table 3.1. Effect of livestock grazing on key abiotic and biotic variables in salt marshes. Data 

summarised from global meta-analysis (Chapter 2). Changes to properties are shown as significantly 

positive (), no significant effect (-), or significantly negative (). 

 Property Response to grazing 

Soil Bulk density   

Salinity   

Daytime temperature   

Organic carbon - ( in Americas) 

pH -  

Accretion -  

Redox   

Vegetation Species richness   

Belowground biomass -  

Leaf nitrogen -  

Cover   

Canopy height   

Aboveground biomass   

Litter   

Fauna Vertebrate abundance -  

Invertebrate abundance - ( for herbivores) 

Invertebrate richness   

 

There is a long history of European settlers grazing horses and other livestock on 

American salt marshes, although this practice is now much declined in the US 

(Reimold et al. 1975; Smith et al. 1989; Gedan et al. 2009; Gruenberg 2015). 

However, along the US east coast there are multiple barrier islands - all of them 

National Seashores, Wildlife Refuges or Reserves - with free-ranging horses 

(Gruenberg 2015). These horses preferentially graze on saltmarsh vegetation, 

particularly Spartina alterniflora (Stevens 1986; Wood et al. 1987; Hay and Wells 

1991; Furbish and Albano 1994) and a number of studies have suggested that feral 

horses are causing damage to the natural environment, and recommended the horse 

populations be reduced (Turner 1987; Turner 1988; Hay and Wells 1991) or removed 

altogether (Dolan 2002; Taggart 2008). The east coast barrier islands provide shelter 

to the mainland from storms (Feagin et al. 2010), support commercially important 

fish (Layman 2000; National Park Service 2014; Baker et al. 2016), and provide 

important habitat for birds and sea turtles (Erwin et al. 2003; National Park Service 

2014). As protected areas, management bodies have a duty to preserve their natural 

ecosystems and native species, and assess non-native species for their potential for 

harm (National Park Service 1991). The free-roaming horses are classified as non-

native, feral animals (although some dispute this definition, see Kirkpatrick and Fazio 

2010), having been brought to America with European settlers, and then abandoned 
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on the islands (Gruenberg 2015). However, removal of the horse populations would 

be extremely controversial, as ‘wild horses’ have a key place in American culture, are 

widely appreciated, have many lobby groups (Gruenberg 2015), and are protected on 

public land under the Wild and Free-Roaming Horses and Burros Act 1971. It is 

therefore crucial that there is a sound evidence base underpinning the management 

of these east coast horse populations.  

Of the US studies investigating grazing by horses, all have recorded effects on 

saltmarsh vegetation (Reimold et al. 1975; Turner 1987; Wood et al. 1987; Hay and 

Wells 1991; Reader and Craft 1999; Dolan 2002), but fewer have queried the impacts 

on fauna (benthic infauna: Reader & Craft 1999; birds, crabs and fish: Levin et al. 

2002; fiddler crabs: Reimold et al. 1975; periwinkle snails: Turner 1987), soil 

properties (C:N:P, bulk density and organic matter: Reader & Craft 1999), or 

ecosystem processes (sedimentation: Hay & Wells 1991). The majority of these 

investigations have been observational studies comparing neighbouring grazed and 

ungrazed islands, making it difficult to disentangle the influence of other 

environmental variables (for example, horses may prefer to graze on firmer, sandier 

soil types). Saltmarsh fauna, particularly crabs, snails and mussels, can have strong 

positive or negative effects on ecosystem functioning and resilience (Bertness 1985; 

McCraith et al. 2003; Silliman et al. 2005; Daleo et al. 2007; Holdredge et al. 2009; 

Gittman and Keller 2013; Hensel and Silliman 2013; Angelini et al. 2016; Vu et al. 

2017; Angelini et al. 2018), so there is a need for further investigation to establish 

whether the effects of livestock on saltmarsh vegetation cascade down to affect the 

invertebrate community, saltmarsh multifunctionality, and saltmarsh resilience (the 

capacity to resist and recover from disturbance, Oliver et al., 2015).  

US salt marshes are subject to various threats and disturbances, such as invasive 

species (e.g. common reed Phragmites australis, feral hogs Sus scrofa), climate 

change (sea-level rise, drought, increased storminess), and runaway consumer 

effects (e.g. snails and crabs released from predation) (Gedan et al. 2009). When 

multiple stressors combine, this can increase the severity of negative effects on 

vegetation and retard recovery (Silliman et al. 2005; Sharp and Angelini 2016; 
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Angelini et al. 2018). If horse-grazing is having strong negative effects on saltmarsh 

vegetation, this could lead to reduced resilience in the face of other stressors.  

In this study, I used a combination of broad-scale observational surveys and 

experimental exclusion to investigate how large ungulate grazers affect US east coast 

salt marshes. To assess the impacts of long-term grazing across a geographic range, I 

measured key biotic and abiotic properties in 14 grazed and 12 ungrazed salt 

marshes over a ~1100 km stretch of coast between Florida and Maryland, southeast 

USA.  To control for the effect of environmental variables, allow for measurement of 

a larger suite of responses, and assess recovery from grazing over time, I established 

eight grazer exclusion plots in S. alterniflora salt marsh on Cumberland Island, GA. 

Here I present the effects on biotic and abiotic properties, and ecosystem resilience, 

after 18 months of grazer exclusion. I predict that: (i) the long-term observational 

responses to grazing will match those responses reported in the global meta-analysis, 

including a negative effect of grazing on soil carbon (Table 3.1); (ii) the short-term 

exclusion plots will display some responses to grazing, but 18 months of exclusion 

may not be long enough for all responses to become evident. 

 

3.3 Methods 

3.3.1 Data collection 

 

Observational study 

To assess the effects of grazing across the southeast Atlantic coast, I sampled in 26 

marshes at nine sites (e.g. islands or nature reserves) in 5 states along a ~1100 km 

stretch of coast between 30.52oN (Florida) and 38.30oN (Maryland) during March and 

October 2017 (Fig. 3.1, see Table 3.2 for site details).  I identified 14 marshes across 

five sites that were grazed by large ungulates, then selected 12 ungrazed marshes 

(across seven sites) with similar geomorphology that could act as ungrazed controls. 

Control, ungrazed marshes were preferably located at the same site, but if this was 

not possible, I selected marshes at a nearby site (<25 km) with similar 

geomorphology. I assessed the grazing level on each marsh as light, moderate or  
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Fig. 3.1. Location of nine observational survey sites along southeast US coast. Each site was surveyed 

within multiple marshes. See Table 3.2 for details. 

 

heavy based on visual assessment (see Appendix B, Table B1) and information 

provided by site managers. All of the grazed marshes were grazed by horses except 

for a single marsh grazed by cattle. I elected to include this cattle-grazed marsh to 

increase sample size, and because horses and cattle are likely have broadly similar 

effects due to their similar body size, energy requirements and grazing habits, 

compared to smaller browsing ungulates and other grazers (Halls 1970; Hubbard and 

Hansen 1976; Cymbaluk 1990; He and Silliman 2016). Visual inspection of data plots 

confirmed that cattle-grazed marshes did not produce outliers for any response.  
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At each marsh I surveyed along two parallel transects, starting 10-20m from the 

creek edge and running inland. Transects were spaced 20m-200m apart, placed to 

obtain the maximum possible transect length (up to 100m), with separation dictated 

by natural features such as creeks, areas of maritime forest, and marsh size. Each 

transect was surveyed within a 1x1 m quadrat at the start, midpoint and end of the 

transect. Within each quadrat I measured the redox potential at 2 cm depth using a 

portable electrode (Orion Star probe and Accumet Portable OrP Meter, Thermo 

Fisher Scientifc, Waltham MA, USA), and extracted sediment porewater from 10cm 

depth using a rhizon sampler (Rhizosphere Research Products, Wageningen, The 

Netherlands) to test for salinity and pH using a refractometer (Extech Instruments, 

Waltham MA, USA) and portable pH probe (Mettler Toledo, Columbus OH, USA). I 

recorded the percentage cover of live vegetation, the proportional cover of all plant 

species present, the stem length of 15 randomly selected Spartina alterniflora 

(hereafter Spartina) stems, and the number of live mussels (Geukensia demissa) 

visible at the surface. Within two 0.3x0.3 m sub-quadrats, I recorded the stem 

density, number of marsh periwinkle snails (Littoria irrorata, only those >5 mm), and 

the number of small (<5 mm), medium (5-15 mm) and large (>15 mm) crab burrows. 

Burrow densities correspond closely to crab densities in the field, and the three 

burrow size classes correspond to juvenile Atlantic marsh fiddler crabs (Uca pugnax), 

adult marsh fiddler crabs and mud/Sesarma crabs (Eurytium limosum, Panopeus 

obesus, Sesarma reticulatum) respectively (Angelini et al. 2015).  

I extracted one soil core (7 cm diameter x 15 cm depth) from each quadrat, divided 

into an upper (0-5cm) and lower portion (5-15 cm) and stored on ice for subsequent 

analysis of root biomass, soil organic carbon, and soil texture in the laboratory. The 

results presented below are for the combined upper and lower portions (i.e. the full 

0-15 cm core), as results for the upper and lower strata did not differ from the full 

core results (see supplementary results, Appendix B). I sampled to a depth of 15 cm, 

as the upper strata are most likely to be affected by grazers, are most relevant for 

carbon accumulation (Chmura et al. 2003), and live roots rarely occur at depths 

below 15-20 cm in Spartina marshes (Blum 1993; Good et al. 1982; Hemminga et al. 

1988).  
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Table 3.2. Location, grazing history and grazing levels at the 26 surveyed marshes. N(n) shows the 

number of transects(number of quadrats) surveyed per marsh. 

Site Herd size and 
access  

Grazing history Marsh Lat, Long Grazing 
level 

Survey 
date(s) 

N(n) 

Amelia Island, 
FL 

- - AI South 30.52, -81.45 - 06.10.17 2(4) 

AI North 30.69, -81.45  - 06.10.17 2(4) 

Cumberland 
Island 
National 
Seashore, GA 

150-160 horses 
in 190 ha 
marsh + 6143 
ha upland 
(most is forest 
with no 
forage)1,2 

Grazed by free-
roaming horses & 
livestock for >200 yrs. 
Cattle removed 20th 
century3. Now only 
horses and wild deer, 
no herd 
management1.  

CI Dock 30.80, -81.47 Light 18.10.17 2(4) 

CI South 30.81, -81.47 Moderate 11.03.17 3(23) 

CI North 30.87, -81.45 Heavy 11.03.17 
18.10.17 

3(23) 
2(6) 

Jekyll Island, 
GA 

- - JI South 31.04, -81.42 - 29.09.17 2(6) 

JI North 31.11, -81.42 - 29.09.17 2(6) 

Creighton 
Island, GA 

Unknown size 
herd of cattle 

Unknown CR East 31.50, -81.32 - 28.09.17 2(6) 

CR Grazed 31.50, -81.32 Moderate 28.09.17 1(3) 

Hoop Pole 
Creek, NC 

- - HP East 34.70, -76.75 - 17.03.17 2(18) 

HP West 34.70, -76.75 - 17.03.17 
02.10.17 

2(18) 
1(3) 

Fort Macon 
Reserve, NC 

- - FM East 34.70, -76.67 - 02.10.17 2(6) 

FM West 34.70, -76.70 - 02.10.17 2(6) 

Rachel 
Carson 
Reserve, NC 

33 horses in 
125 ha upland 
+ 109 ha salt 
marsh4,5 

Grazed by feral horses 
since 1940s when a 
small band swam over 
from a neighbouring 
island. Herd size 
formerly up to 70. 
Contracepted to 
target 304. 

RC Central 34.70, -76.63 Moderate 16.03.17 2(18) 

RC Centralb 34.70, -76.65 Moderate 03.10.17 2(6) 

RC East 34.70, -76.63 Light 16.03.17 2(15) 

RC Beach 34.71, -76.65 Moderate 03.10.17 2(6) 

RC West 34.71, -76.65 Heavy  16.03.17 
03.10.17 

2(18) 
2(6) 

Chincoteague 
National 
Wildlife 
Refuge, VA 

110-140 horses 
in two pens 
totalling 1500 
ha salt marsh6 

Grazed by free-
roaming horses & 
livestock for >300 yrs. 
Livestock removed 
mid 20th century3. 
Horses restricted to 2 
pens, maintained 
<150 adults by annual 
auction. Wild deer 
present6. 

CH South 
Pen 

37.89, -75.36 Light 22.3.17 2(10) 

CH South 37.93, -75.33 - 22.3.17 2(10) 

CH Central 37.94, -75.31 Heavy 22.3.17 2(10) 

CH North 37.99, -75.30 Moderate 22.3.17 2(16) 

Assateague 
Island 
National 
Seashore, MD 

65 horses in 
2267 ha upland 
+ 1296 ha of 
salt marsh5,7 

Grazed by free-
roaming horses & 
livestock for >300 yrs. 
Livestock removed in 
mid 20th century3. 
Contracepted to 
target 80-100. Wild 
deer present7 

AS South  38.22, -75.15 Light 21.3.17 2(18) 

AS West 38.22, -75.19 - 21.3.17 2(18) 

AS North 
Exclosure 

38.30, -75.11 -  21.3.17 2(10) 

AS North 38.30, -75.11 Light 21.3.17 2(10) 

1Doug Hoffman (July 2019), Wildlife Biologist, Cumberland Island National Seashore, pers. comm.; 

2Dolan (2002); 3Gruenberg (2015); 4Brandon Puckett (March 2017), Research Co-ordinator, North 

Carolina Department of Environment and Natural Resources, pers. comm.; 5Taggart (2008); 6Kevin 

Holcomb (March 2017), Wildlife Biologist, Chincoteague National Wildlife Refuge, pers. comm.; 7Bill 

Hulslander (March 2017), Chief Resources Management, Assateague Island National Seashore, pers. 

comm. 
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 In the first round of surveys (March 2017) I also recorded vegetation and 

invertebrate responses (but not sediment responses) in quadrats placed every 10m 

along the transect. On some occasions, due to rising tides, I was unable to sample 

from every quadrat as planned: in total I collected data from 308 quadrats (113 

ungrazed, 57 lightly, 81 moderately, 57 heavily grazed) and 150 soil cores (65, 22, 42, 

21). The total number of quadrats and transects surveyed per marsh is shown in 

Table 3.2.  

  

Experimental study 

Study site 

Cumberland Island is a 29 km long barrier island located off the coast of Georgia, 

southeast USA at 30.85oN, 81.45oW. Cumberland is the largest barrier island in 

Georgia and the majority of the island was designated a National Seashore in 1972 

for its diverse ecology, cultural resources, visitor experience, wilderness, and physical 

isolation (National Park Service 2014). The island comprises 14 743 ha, of which 6 

822 ha are marsh, mud flat and tidal creeks (National Park Service 2014). The 

majority of the National Seashore is accessible to feral horses (Dolan 2002) which 

have free-ranged on the island since at least the 18th century (Goodloe et al. 2000). 

The feral horses are unmanaged, have no natural predators, and currently number 

150-160 (D. Hoffman, personal communication, July 18, 2019). Population size is 

limited by natural death due to starvation, old age, storms and injury. The horses 

predominantly graze on sand dune and saltmarsh habitat (Dolan 2002), and there is 

concern that grazing may be causing damage to the natural, protected habitats 

(Turner 1987; Dolan 2002). The island is also grazed by native white-tailed deer, and 

is home to feral hogs, although populations of both are controlled by hunting.  

I studied the effect of horse grazing on multiple ecosystem properties by excluding 

horses from eight 5x5 m experimental plots (the maximum size permitted by 

regulating authorities). The plots were divided between two marshes lying either 

side of the major creek (Beach Creek) on the southern end of the island (Fig. 3.2a). 

The plots were erected in March 2017 using 2.5 m metal posts driven into the ground 

to 1 m depth, and strung with four strands of high-tensile barbed wire. The plots 
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were positioned 15 m (5) from the nearest drainage creek, in positions with a 

similar elevation, vegetation community and faunal community. All plots were 

positioned in the mid-marsh zone, where short- and medium-form Spartina 

dominates, because this is the dominant species in east coast US marshes (Adam 

1990) and is where the horses predominantly graze. Each 5x5 m experimental plot 

was paired with a 5x5 m control plot, consisting of four corner posts but no barbed 

wire, positioned 8 m away. Each pair was spaced 120 m (60) from each other. I also 

established six unmarked reference points, plotted mid-way between each pair. 

Grazing indicators were assessed at these points and compared with grazing 

indicators at the control plots, to ensure the corner posts were not acting as an 

attractant or repellent to the horses. 

 

 

Fig. 3.2. Experimental design on Cumberland Island. Diagrams illustrating a) the distribution of paired 

plots and reference points in each marsh; b) the location of the study area on Cumberland Island (map 

data ©2019 Google); and c) the sampling regime in each plot in 2018. Not to scale.  
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Plots were sampled at 0, 7, 13 and 18 months after establishment (March 2017, 

October 2017, April 2018, September 2018). At each visit, I collected data on 

sediment properties, plant properties, the invertebrate community, and ecosystem 

processes, as summarised in Table 3.3. At 0 and 7 months, I sampled from three 

quadrats distributed randomly within each plot and used the mean value of every 

variable for each plot. After one year, each plot was divided into four quarters (a-d), 

and each plot quarter was sampled independently (Fig. 3.2c). Within each plot, the 

outer 0.5 m edge was used as a buffer zone and was never sampled.  

 

Biotic and abiotic responses 

I recorded surface elevation using real-time kinematic GPS (Trimble Inc., Sunnyvale, 

CA, USA) at the corners of each plot at 0 months, and at four points within each plot 

quarter at 18 months. From every 1x1m quadrat, I tested for sediment redox 

potential, porewater salinity and pH, as described above.  I extracted one soil core 

(7cm diameter x 15cm depth) from the area just outside each quadrat (so as not to 

affect the other measurements), divided this into upper (0-5cm) and lower (5-15cm) 

strata, and stored in the freezer in ziplock bags for subsequent analysis of root 

biomass, soil organic carbon, and soil texture in the laboratory.  

Within each 1x1m quadrat I recorded the percentage cover of living vegetation, the 

percentage cover of dead vegetation, the proportional live cover of all plant species 

present, the stem length of 15 randomly selected Spartina stems, and the number of 

living mussels visible at the surface. I recorded benthic algal concentration (green, 

blue-green/cyanobacteria, diatoms; three readings of each per quadrat) using 

chlorophyll-a fluorescence (BenthoTorch, bbe Moldaenke GmbH, Schwentinental, 

Germany). Within a 0.3x0.3m sub-quadrat I recorded the density of living Spartina 

stems, the number of flowering Spartina stems, and the number of bitten stems 

(displaying a clean, blunt cut across a leaf). I also counted the number of marsh 

periwinkle snails, and the number of small (<5 mm), medium (5-15 mm) and large 

(>15 mm) crab burrows.  
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Above- and belowground decomposition of primary productivity supports terrestrial 

and marine foodwebs, nutrient cycling and the structural integrity of saltmarsh soils 

(Teal 1962; Good et al. 1982). To measure aboveground decomposition rate, I 

assessed the percentage of mass lost from Spartina ‘plugs’ left in the field for one 

month (Hensel and Silliman 2013). To produce these plugs, I harvested standing dead 

Spartina biomass from both study marshes in April 2018. This biomass was washed 

and dried (air dried for five days at ~25oC then finished in a domestic oven at ~60 oC 

for an hour), then three stems were weighed (5  1.3 g) and cable-tied to a 60 cm 

bamboo pole. I inserted one plug per plot quarter, with the Spartina matter above 

the sediment level. The Spartina plugs were retrieved after 35 days then washed, 

dried at 50oC for 48 h and reweighed. To measure belowground decomposition rate, 

I assessed the percentage of mass lost from teabags buried in the sediment for one 

month (Keuskamp et al. 2013). In each plot quarter I buried two Lipton green teabags 

at 5 cm depth. After 35 days the teabags were retrieved, washed, dried at 50oC for 

48 h and reweighed. I also washed, dried and weighed 10 fresh teabags, and used 

the average value as the pre-decomposition weight. 

On each sampling visit I recorded the number of horses present on the marsh at 

hourly intervals. I assessed grazing intensity by counting hoofprints in each plot, 

although hoofprint clarity was reduced in muddy or sandy soils, and presence was 

dependent on tidal cycles. I attempted to assess accretion using an artificial marker 

horizon (Cahoon and Turner 1989) but the horizon was not visible in soil cores. I also 

attempted to assess sedimentation using deposition on a filter paper (Nolte et al. 

2013a), but many of these filter papers were partially consumed by snails.  

 

Resilience 

After the start of the experiment, some areas of the study marshes were affected by 

salt marsh die-off (sudden death and decomposition of large areas of Spartina, 

reviewed by Alber et al. 2008). Therefore, on every visit, I allocated each plot/plot 

quarter a score of 0-3 for die-off severity (not affected, slightly affected, moderately 

affected, severely affected). This allowed an assessment of saltmarsh 

resilience/resistance to die-off under different grazing treatments. To investigate 
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saltmarsh resilience/capacity for recovery under different grazing treatments, I 

simulated feral hog damage within a 1x1 m area in each plot in October 2017. 

Invasive feral hogs damage standing biomass and soil structure through their 

trampling, rooting, and wallowing activities (Sharp and Angelini 2016; Sharp and 

Angelini 2019). I uprooted and discarded 20 clumps of Spartina to simulate root 

herbivory and vigorously trampled on a square of plastic mesh for 60 s, to simulate 

wallowing. Data collected from these ‘damaged’ quadrats (located in quarter ‘b’ of 

each plot) were analysed separately from data collected in undisturbed quadrats. 

 

Laboratory analyses 

Soil cores were oven dried at 65oC, ground with a pestle and mortar, and sieved 

through a 2 mm mesh sieve, separating the root matter from the soil. Both soil and 

root matter were weighed. I used Loss on Ignition (LOI, ignited at 550oC for 3 hrs, 

Hoogsteen et al. 2015) to determine the organic matter content (% of dry mass lost) 

of a 5g (± 0.01g) subsample of the homogenised soil sample. I converted this value to 

soil organic carbon concentration using the relationship for saltmarsh soils 

established in North Carolina (Craft et al. 1991): 

Organic carbon = 0.40 [LOI] + 0.0025 [LOI]2   [Eqn 1) 

Soil cores collected from October 2017 onwards were analysed for soil texture using 

the United States Department of Agriculture (USDA) soil texture analysis protocol 

(USDA 2017 adapted from Thien 1979). This protocol uses grittiness, stickiness and a 

‘ribbon test’ of a wetted soil sample to allocate soils to one of 11 texture 

classifications. I then used a soil texture triangle (Fig. B1) to assign each texture class 

a value for percentage clay and percentage sand content. All soil cores collected in 

2018 were additionally tested for soil moisture content (% of dry mass) by weighing 

the soil core prior to and after oven drying.  
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3.3.2 Data analysis 

 

Observational study 

To explore how long-term grazing affects ecosystem properties across a wide range 

of sites, I used linear mixed models (LMMs) to test how grazing affects multiple 

sediment (salinity, pH, redox, sand and clay content, soil organic matter), plant (root 

biomass, living plant cover, plant species richness, stem height, stem density) and 

invertebrate (periwinkle, juvenile fiddler crab, adult fiddler crab, mud/Sesarma crab, 

and mussel density) responses in the observational study sites. All LMMs were fitted 

with grazing (present or absent), season, distance from creek and latitude as fixed 

effects, and marsh nested within site as a random effect. I tested whether grazing 

intensity was a significant factor by repeating all models with grazing intensity 

(ungrazed, light, moderate, heavy) instead of grazer presence as a predictor. 

I performed all models on z-transformed data, to allow calculation of standardised 

effect sizes and coefficients, and comparison of each response on the same scale. 

Model assumptions were verified by examining residual plots (scaled residuals versus 

predicted values and versus each covariate in the model) and testing goodness of fit 

(Kologorov-Smirnov) of observed versus expected values. Response variables were 

log-transformed where necessary to meet model assumptions. I used likelihood ratio 

tests (LRTs) using maximum likelihood (ML) estimation to test the significance of 

each fixed effect and used post hoc Tukey tests for pairwise comparison of intensity 

levels when grazing intensity was found to be significant. 

I was unable to test the effect of grazing on the proportional cover of each plant 

species, as the highly skewed data violated model assumptions. Instead, I used a 

binomial generalised LMM to test whether grazing (presence and intensity) 

significantly affected the probability of a quadrat being 100% Spartina, while 

controlling for the fixed effects of season, distance from the creek, and latitude, and 

the random effect of marsh nested in site. To further explore whether grazing 

affected the plant community, I used Permutational Multivariate Analysis of Variance 

(PERMANOVA, Anderson 2001) on pairwise dissimilarity matrices calculated from 

presence-absence species data (Sørensen dissimilarity) and species percentage cover 

data (Bray-Curtis dissimilarity), to test whether grazing caused significant variation in 
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species composition. Because PERMANOVA is sensitive to differences in within-group 

dispersion, I also ran a permutation-based test for homogeneity of multivariate 

dispersions (PERMDISP, Anderson, 2006).  

Soil organic carbon (SOC) is positively correlated with fine-textured, high-clay soils 

(Hu et al. 2014; Bai et al. 2016; Kelleway et al. 2016) and in the observational soil 

cores there was a significant positive correlation between SOC and clay content 

(Pearson’s r=0.42, t=4.10, df=80, P<0.0001). I hypothesised that large grazers may 

avoid high-clay areas due to the difficulty of walking here, and would instead target 

more sandy areas for grazing. Therefore, to account for the potentially confounding 

co-variance of grazer presence and soil texture I tested competing models to predict 

SOC with (G) grazing, (S) sand content, (C) clay content, (GS) grazing + sand content, 

(GC) grazing + clay content, as well as a null model (0). I tested the significance of 

each predictor using LRTs and compared each model’s AIC value to determine which 

factors are most important to predict SOC. All LMMs predicting SOC additionally 

controlled for the fixed effects of season, distance from the creek, and latitude, and 

the random effect of marsh nested in site. 

 

Experimental study 

Baseline tests 

To test whether control and experimental plots differed at the start of the 

experiment, I used linear regression models (LMs) for every variable recorded at T=0 

(Table 3.3), with treatment (grazed control, ungrazed experimental) and plot pair as 

predictors. I also tested whether the control plots experienced similar grazing levels 

to the rest of the marsh using linear (mixed) models with each vegetation and 

grazing variable (Table 3.3) as the response and treatment (grazed control, unmarked 

reference point) and marsh as the predictors. Each response was tested at the start 

of the experiment (T=0), and after installation of the plots (T=7 & 18 months, with 

plot as a random effect to control for repeated measures at each plot).  
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Effect of grazing on ecosystem properties 

To test whether horse grazing affects saltmarsh ecosystem properties, I used linear 

mixed models (LMMs) to test every variable measured at T=18 months (Table 3.3) 

with treatment (grazed control, ungrazed experimental) as the predictor and plot 

pair as a random effect. For variables that showed a significant difference between 

grazed and ungrazed plots at T=18, I explored how quickly these variables responded 

to the altered grazing regime, using data collected at all time points, and allowing an 

interaction of treatment and time as the predictor and plot pair as a random effect. I 

then performed post hoc comparisons of the effect of grazing treatment at each time 

point, using Tukey’s HSD test (Abdi & Williams 2010). 

 

Effect of grazing on recovery from damage 

To investigate how horse grazing affects the capacity of a salt marsh to recover from 

simulated hog damage, I compared four plant responses in grazed control, grazed 

damaged, ungrazed control and ungrazed damaged quadrats. I used LMMs to test 

the interaction between grazing treatment and damage on living plant cover, dead 

plant cover, stem height, and stem density, while controlling for the random effect of 

plot pair. I tested each of these plant responses 6 months after and 12 months after 

the hog damage was simulated. I used post hoc Tukey tests to compare damaged and 

undamaged quadrats within and across grazing treatments to explore two types of 

recovery: (i) across-grazing recovery (absolute recovery) – has the damaged 

vegetation in grazed plots recovered to the same state as the damaged vegetation in 

the ungrazed plots?; and (ii) within-grazing recovery (relative recovery) – has the 

damaged vegetation recovered to the same state as undamaged vegetation under 

the same grazing treatment?  

 

All statistical analyses were conducted in R Studio running R3.5.2 (R Core Team 

2018). (G)LMMs were fitted using lme4 (Bates et al. 2015) and R2 values were 

calculated using piecewiseSEM (Lefcheck 2016). I used the emmeans package (Lenth 

et al. 2019) to perform post hoc pairwise contrasts of factor levels and calculate 
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predicted means for graphing. Multivariate analyses were conducted using the vegan 

package (Oksanen et al. 2019). 

 

3.4 Results 

3.4.1 Observational study 

I analysed ecosystem properties from 14 grazed and 12 ungrazed marshes spread 

over nine sites. I found that grazing was associated with significant differences in 

three sediment and three plant properties, but not with any invertebrate properties 

(Fig. 3.3, Table B2). Grazing was associated with increased stem density, but reduced 

plant cover and stem height. The effects of grazing on stem density and stem height 

strengthened with increased grazing intensity (Fig. 3.4, Table B3). Raw plant species 

composition data (Fig. B2) indicate that grazing is associated with reduced Spartina 

cover and increased cover of other species (Salicornia, Distichlis, Juncus, Batis), 

although the increased species richness and reduced probability of a grazed quadrat 

being 100% Spartina was not significant (Table B2). Grazing did significantly affect 

the plant community composition, irrespective of whether a presence/absence or 

abundance related community dissimilarity measure was used (PERMANOVA F=3.66, 

P=0.039 and F=4.89, P=0.014 for Sørensen and Bray-Curtis dissimilarity matrices, 

respectively). Multivariate tests of group dispersions indicate that these differences 

are due to increased dispersion within grazed marshes, i.e. the plant communities 

within grazed marshes are more dissimilar than the plant communities within 

ungrazed marshes (PERMDISP F=4.28, P=0.044 and F=6.79, P=0.008 for Sørensen and 

Bray-Curtis dissimilarity matrices, respectively). 
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Fig. 3.3. The relationship between large mammal grazing and ecosystem properties at a landscape 

scale. Points show the standardised coefficients  95% confidence intervals for the effect of grazer 

presence relative to ungrazed control marshes. Models also controlled for season, distance from creek 

and latitude as fixed effects, and marsh nested within site as a random effect. SOC = soil organic 

carbon, Ad. = adult, Juv. = juvenile..  

 

 

Fig. 3.4. The relationship between grazing intensity and a) stem density, and b) stem height.. Models 

also controlled for season, distance from creek and latitude as fixed effects, and marsh nested within 

site as a random effect. Points show the predicted means  95% confidence intervals (all back-

transformed from the log scale) in ungrazed (U), lightly (L), moderately (M) and heavily (H) grazed 

marshes. Different letters indicate grazing levels that are significantly different. Grazing intensity was 

not significant for any other responses tested in our observational study (Table B3). 

 

Grazing was associated with lower SOC, but also with higher sand content and lower 

clay content. As we cannot infer the causation of this grazing-soil texture 

relationship, I tested whether the effect on SOC was still present when I accounted 

for soil texture in the models, and whether soil texture was a better predictor of SOC 

than grazing. I found that grazing was consistently the best predictor out of grazing 
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(G), sand content (S) and clay content (C) – the grazing only model had a lower AIC 

value than any of the models incorporating soil texture (Table 3.4).  

Latitude was a significant predictor of five variables and distance from the creek was 

a significant predictor of seven variables (Tables B2, B3). Increased latitude was 

associated with increases in pH, SOC, root biomass, and stem density, and decreases 

in adult fiddler crab densities. Increased distance from the creek was associated with 

increased sandiness and snail density, and decreased SOC, plant cover, stem height, 

adult fiddler crab density and mud/Sesarma crab density.  

 

Table 3.4. Results of LMMs to predict soil organic matter (SOC) by grazing (grazed or ungrazed), soil 

sand content (%) and soil clay content (%). All models also had season, distance from creek and 

latitude as fixed effects, and marsh nested within site as a random effect. β=standardised coefficient, 

Marg=marginal (i.e. fixed effects only), Cond=conditional (i.e. fixed and random effects). N=82 for all 

models. 

Model Response Predictors χ2 P β df Marg 
R2 

R2 Cond 
R2 

AIC AIC 

G (Log) SOC Grazed   10.60 0.001 -0.64 8 0.502  0.811 159.4  

Null (Log) SOC - - - - 7 0.041 -0.461 0.827 164.3 +4.9 

GC (Log) SOC Grazed 
Clay content  

8.34 
4.58 

0.004 
0.032 

-0.56 
0.19 

9 0.500 -0.002 0.833 165.2 +5.8 

C (Log) SOC Clay content 
 

6.83 0.009 0.22 
 

8 0.102 -0.400 0.833 168.5 +9.1 

GS (Log) SOC Grazed 
Sand content 

9.12 
0.39 

0.003 
0.533 

-0.62 
-0.06 

9 0.489 -0.013 0.814 169.9 +10.5 

S (Log) SOC Sand content 
 

1.86 
 

0.172 
 

-0.11 
 

8 0.050 -0.452 0.825 173.6 +14.2 

 

3.4.2 Experimental study 

 

Baseline tests 

At the start of the experiment, control and experimental plots did not differ in soil 

variables (elevation, pH, salinity, soil organic matter), invertebrate densities 

(periwinkle snails, juvenile fiddler crabs, adult fiddler crabs, mud/Sesarma crabs, 

mussels), root biomass, plant species composition (proportion of Spartina, Salicornia, 

Distichlis), stem density, or hoofprint density (Table B4). The stem height in 
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treatment plots (ungrazed) was significantly shorter, but only by 1.25 ± 0.49cm 

(P=0.038). There was no significant difference between control plots and unmarked 

reference points at the start of the experiment for any variables (elevation, dead 

plant cover, stem height, stem density, hoofprint density), but on subsequent visits I 

found that the stem height in control grazed plots was significantly shorter (5.73 ± 

2.46cm, P=0.031) than the stem height in unmarked reference points (Table B5). 

However, four of the experimental pairs were affected by saltmarsh die-off to 

varying degrees, whereas none of the reference points were. When I excluded the 

affected plots, there was no difference in stem height between grazed control plots 

and unmarked reference points. There was no difference in any other recorded 

variable between control grazed plots and unmarked reference points after the start 

of the experiment (living plant cover, dead plant cover, stem density, proportion of 

stems bitten, hoofprint density). 

 

Effect of grazing on ecosystem properties 

After 18 months of grazer exclusion, there were significant changes to multiple plant 

properties: the removal of horses led to increased stem height, living plant cover, 

dead plant cover, flowering stem density and Spartina cover, but reduced Salicornia 

cover and blue-green algae (Fig. 3.4, Table B6).  However, none of the sediment 

properties were significantly different under different grazing treatments, and fiddler 

crabs were the only invertebrate that exhibited a response to grazing: adult fiddler 

crabs were more common in ungrazed plots, although juvenile fiddler crabs showed 

the opposite (but not significant) response.  

For properties that were significantly different after 18 months, I investigated their 

responses to grazer exclusion at each time point (0, 7, 13, 18 months; contingent on 

data availability, see Fig. B3, Table B7 for results). The increase in stem height and 

stem flowering was significant after just 7 months, but the increase in relative 

Spartina cover, decrease in relative Salicornia cover, and increase in adult fiddler 

crab density was not apparent until 13 months. Percentage cover of living and dead 

vegetation were not recorded at 7 months, but the differences were significant when 
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measured at 13 months. The reduction in blue-green algae was not significant until 

18 months after horse removal.  

 

 

Fig. 3.5. The effect of excluding horses on ecosystem properties after 18 months. Points showed the 

standardised (calculated on z-transformed data) coefficients  95% confidence intervals for the effect 

of grazer exclusion relative to control grazed plots. Note that the direction of this effect is the 

opposite of Fig. 3.3, which showed the effect of horse grazing. SOC = soil organic carbon, AG decomp = 

aboveground decomposition, BG decomp = belowground decomposition, Ad. = adult, Juv. = juvenile. 

 

Effect of grazing on recovery 

I explored whether grazing affected the capacity of saltmarsh vegetation to recover 

from damage by testing the effect of the interaction between grazing and simulated 

hog damage on four vegetation responses (live cover, dead cover, stem height, stem 

density), 6 months after and 12 months after damage (Fig. 3.6, Table B8). I 

considered both absolute, across-grazing recovery (ungrazed damaged vs grazed 

damaged vegetation) and relative, within-grazing recovery (damaged vs undamaged 

vegetation within each grazing category). Across the grazing treatments, all 

vegetation responses were higher in ungrazed damaged quadrats than in grazed 

damaged quadrats, but these differences were not significant for any response at 

either time point; i.e. absolute recovery does not differ between the two grazing 

levels. Within each grazing level, the four vegetation responses were always higher in 

the undamaged quadrats than in the damaged quadrats. Within the ungrazed plots, 

these differences were significant for every response at both 6 and 12 months, i.e. 

relative recovery was not achieved in ungrazed plots for any response. However, in 



Chapter 3: Grazing in US marshes 

53 
 

the grazed plots, the difference in stem height and stem density between damaged 

and undamaged quadrats was no longer significant after 12 months, i.e. relative 

recovery was achieved for these two measures in grazed plots after 12 months.  

 

Fig. 3.6. Recovery from simulated hog damage in grazed and ungrazed plots after 6 months and after 

12 months. Points show predicted means  95% confidence intervals in damaged quadrats and 

undamaged control quadrats positioned in grazed (filled circles) and ungrazed (open circles) plots. See 

Table B8 for pairwise differences between treatments.  

 

3.5 Discussion 

Our observational study showed that long-term large ungulate grazing affects 

multiple plant properties and is associated with significant differences in some 

sediment properties, including reductions in soil organic carbon (SOC). However, 

long-term grazing had no effect on snails, crabs or mussels. Our experimental study 

confirmed that horse exclusion has significant effects on multiple saltmarsh 

vegetation properties, but no changes to sediment properties were apparent after 18 

months. Fiddler crabs were the only invertebrate that responded to grazer exclusion 

in the experimental study. Excluding horses did not increase ecosystem resilience 

either in terms of resistance to die-off or recovery from simulated hog damage. 

However, the experimental data were collected after just two growing seasons under 

the new grazing regime, and a longer time period may be necessary for some effects 

to appear.  
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There were no direct contradictions (i.e. a significant positive effect vs a significant 

negative effect) between the results obtained in these studies and the results 

obtained in the global meta-analysis of Chapter 2, although some properties that 

displayed significant impacts of grazing in the meta-analysis (soil salinity, soil redox, 

plant richness) showed no significant effect of grazing in these studies (Table 3.5). 

However, meta-analyses are used to reveal effects where individual studies may lack 

power (Koricheva et al. 2013), therefore it is not surprising to see smaller or non-

significant changes in these studies. These new studies strengthen several results 

obtained in the meta-analysis (a negative effect of grazing on soil carbon in America, 

plant height and cover), and have added data for multiple properties and processes 

that had insufficient data to analyse in the meta-analysis (Table 3.5). 

 

Table 3.5. Effect of livestock grazing on properties and processes in salt marshes. Results summarised 

from global meta-analysis (MA, Chapter 2), long-term observational study of US salt marshes (OBS, 

this study) and short-term experimental study of US salt marshes (EXP, this study). Changes to 

properties are shown as significantly higher (), no significant effect (-), or significantly lower () 

with grazing. Blank spaces indicate the property was not measured. AG = aboveground, BG = 

belowground, ad. = adult. 

 Property/process MA OBS EXP 

So
il 

Bulk density    

Salinity  - - 

Daytime temperature    

Organic carbon  (in Americas)  - 

pH - - - 

Accretion/elevation -  - 

Redox  - - 

V
eg

et
at

io
n

 

Species richness  -  

BG biomass - - - 

Leaf nitrogen -   

Cover    

Canopy height    

AG biomass    

Litter    

Fa
u

n
a Vertebrate abundance -   

Invertebrate abundance  (herbivores only) -  (ad. fiddler crabs only) 

Invertebrate richness    

N
ew

 r
es

p
o

n
se

s,
 t

h
is

 s
tu

d
y 

Sand content   - 
Stem density   - 
Relative Salicornia cover    

Algae (blue-green)    

Soil moisture   - 

Algae (diatoms)   - 
Algae (green)   - 
Saltmarsh die-off   - 
AG decomposition   - 
BG decomposition   - 
Clay content   - 
Relative Spartina cover    

Flowering    
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Consistent with the results from the global meta-analysis (Chapter 2), both the 

experimental and observational studies exhibited reduced plant biomass (stem 

height, percentage cover) with grazing. Reduced biomass may have consequences for 

ES, such as shoreline stability due to reduced accretion (Turner et al. 2002; Mudd et 

al. 2010; Shepard et al. 2011); storm protection due to reduced wave attenuation 

(Shepard et al. 2011; Möller et al. 2014; Heuner et al. 2015); fisheries support due to 

less detrital biomass entering the marine food chain (Bell 1997; Levin et al. 2002; 

MacKenzie and Dionne 2008; Baker et al. 2016); and reduced diversity and 

abundance of enigmatic wild species such as Clapper Rails (Rallus crepitans) and 

Marsh Wrens (Cistothorus palustris) which need long vegetation for nesting (Sherr 

2015; Valdes et al. 2016), and manatees (Trichechus manatus) that feed in Spartina 

(Baugh et al. 1989).  

The global meta-analysis also revealed a significant increase in plant richness with 

grazing (Chapter 2). The increase in plant richness in the US observational study was 

not significant, perhaps due to lower power in the current study, or due to the lower 

overall species richness in US salt marshes (Adam 1990). However, long-term grazed 

US marshes had significantly wider variation in plant community composition than 

ungrazed marshes, and the experimental study indicates that suppression of biomass 

and cover of the dominant species by grazers allows other plants to colonise: 

Spartina cover was proportionally lower, Salicornia cover was proportionally higher, 

and algae concentrations were higher in grazed than ungrazed experimental plots. 

Often, higher plant diversity is considered a desirable outcome, and much evidence 

supports a link between biodiversity and the magnitude and stability of ecosystem 

functioning and ES (Griffin et al. 2009; Balvanera et al. 2014). However, Spartina is 

the dominant species in east coast US marshes (Adam 1990), so reduction in both its 

absolute and relative cover in grazed marshes is likely to have cascading effects on 

saltmarsh functioning. Spartina has very high productivity - its biomass feeds into 

both terrestrial and marine food chains (Teal 1962) and provides cover from 

predation (Levin et al. 2002); Spartina supports higher rates of soil carbon 

accumulation than other saltmarsh genera (Ouyang and Lee 2014); and as one of the 

tallest saltmarsh plants (Adam 1990), it is particularly effective for wave attenuation 

(Shepard et al. 2011; Narayan et al. 2016). Spartina is a foundation species that 
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facilitates salt marsh establishment (Altieri et al. 2007; Dijkstra et al. 2012; Yando et 

al. 2019), so the reduced Spartina flower production will lead to a smaller seedbank, 

and may lower the capacity to establish new marshes or recolonise following 

disturbance such as saltmarsh die-back. When habitats are disturbed by grazing, it 

not only allows other native species to flourish, it can also open a niche for invasive 

species (Hobbs and Huenneke 1992; Bergelson et al. 1993; Belsky and Gelbard 2000). 

An invasive Eurasian lineage of the common reed Phragmites australis is rapidly 

spreading throughout US tidal wetlands, from the northern Atlantic coast to the Gulf 

of Mexico, and is an increasing management concern due to its impact on wetland 

functions and services (Chambers et al. 1999; Hazelton et al. 2014). P. australis is a 

disturbance specialist (Hazelton et al. 2014), therefore there is a risk that grazing 

disturbance could increase the invasion risk of this reed. 

The long-term grazed marshes were associated with lower SOC, as well as higher 

sand and lower clay content in the sediments. The differences in soil texture could be 

due to lower rates of capture and settling of fine clay particles with the reduced 

aboveground biomass in grazed marshes (Mudd et al. 2010). There is some tentative 

evidence from the experimental study that this may be the case – horse-exclusion 

plots showed slightly higher clay and slightly lower sand contents, although these 

changes were not significant. However, the association could also be driven by grazer 

behaviour, as ungulates prefer drier, firmer soils (Sharps et al. 2017), so may 

preferentially graze on sandier sediments. SOC is generally higher in fine-textured 

soils (Hu et al. 2014; Bai et al. 2016; Kelleway et al. 2016) so I tested whether soil 

texture was driving the apparent reduction in SOC with grazing, but found that SOC 

was much better predicted by grazing than by soil texture. These data confirm and 

strengthen the result presented in Chapter 2 - that soil organic carbon is reduced by 

ungulate grazing in American salt marshes - by using standardised sampling methods 

across multiple sites, and controlling for important covariates (in particular, soil 

texture). The difference between America and Europe (where grazing does not 

impact soil carbon) may be due to the mechanism of soil accretion in the two 

systems: European marsh sediments mostly accrete by deposition of silt during tidal 

flooding, whereas American sediments mostly accrete by accumulation of organic 

matter (Bakker et al. 2015), which is strongly reduced with grazing. The difference 
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may also be due to the different plant communities in the two continents. The higher 

diversity in European marshes (Adam 1990) may confer an increased resistance and 

adaptability of European saltmarsh plant communities to grazing (Callaway et al. 

2005; Meirland et al. 2013), compared to Spartina-dominant US marshes. Although 

the experimental study did not show an effect of excluding horses on SOC, ongoing 

monitoring at this site may reveal changes over the longer term. However, it is likely 

that changes in SOC will not be as strong in the experimental site as in some of the 

more northerly observational sites, as SOC was generally lower at lower latitudes.  

Despite the significant changes to saltmarsh vegetation with grazing, there was little 

observable impact on primary and secondary consumers. In the observational study 

there were no changes to any invertebrates with grazing, suggesting these 

predominantly detritivorous/herbivorous invertebrates are remarkably robust to 

competition and disturbance from large ungulates. This result contrasts with the 

significant negative effect of large ungulates on herbivorous invertebrates seen in 

Chapter 2. It is possible that the extremely high productivity in east coast US 

marshes, and restricted distribution of large grazers, means that Spartina detritus 

from other ungrazed areas of marsh will be redistributed and deposited in the grazed 

areas. Or that more frequent tidal flooding and a flexible diet allows these east coast 

invertebrates to incorporate both terrestrial and marine, aboveground and 

belowground, bacterial, plant and animal matter in their diet (Teal 1962; Alexander 

1979; Coverdale et al. 2012; Soomdat et al. 2014) under competition from large 

herbivores. The experimental horse-exclusion plots had higher densities of adult 

fiddler crabs, although juvenile fiddler crabs showed the opposite (but not 

significant) trend. The reason for the preferences exhibited in this study is not clear. 

It may be related to sediment properties (grazed saltmarsh sediments are more 

compact, Chapter 2) or dietary preferences - adult fiddler crabs may be better able to 

consume the abundant Spartina biomass in ungrazed plots while juvenile fiddler 

crabs may prefer feeding on algae, which was higher in grazed plots. Fiddler crabs 

are important bioturbators, helping to oxygenate sediment and transport nutrients 

and organic matter, which is beneficial for saltmarsh production (Bertness 1985; 

McCraith et al. 2003; Daleo et al. 2007) and can ameliorate the negative effects of 

overgrazing by periwinkle snails (Gittman and Keller 2013). However, the contrasting 



Chapter 3: Grazing in US marshes 

58 
 

responses of adult and juvenile fiddler crabs, and lack of response of other 

invertebrates, indicates that functions predicted by invertebrate biomass such as 

secondary production, bioturbation, and infiltration (Hensel and Silliman 2013; 

Angelini et al. 2015) are not affected by horse grazing. However, periwinkle snails can 

exert strong top-down control of Spartina biomass by direct consumption and 

facilitation of fungal growth (Silliman and Bertness 2002; Silliman and Newell 2003), 

so the fact that there are the same number of periwinkle snails grazing on a reduced 

Spartina biomass may mean that it becomes overstressed and more prone to die-off 

(Silliman et al. 2005), although there was little evidence of that in the experimental 

study results.  

In this study, removal of grazers did not have any clear effect on saltmarsh resilience. 

Grazed plots were not significantly more susceptible to die-off than ungrazed plots 

and recovery from simulated hog damage was not improved by excluding horses. 

One year after damage, stem height and density in damaged grazed quadrats had 

recovered to the level of the undamaged grazed quadrats. However, damaged 

ungrazed quadrats had not recovered to the same level as the undamaged ungrazed 

quadrats for any of the four vegetation measures. Therefore, relative recovery was 

quicker in grazed plots than in ungrazed plots. The ungrazed plots had a higher 

recovery benchmark than the grazed plots, but even in terms of absolute recovery, 

ungrazed damaged plots were not significantly better than grazed damaged plots. 

Chapter 2 provides evidence that grazed saltmarsh plants have greater root biomass, 

which could facilitate recovery following other forms of damage. However, that 

result was dominated by European studies, and was not evident in the US 

experimental study (no change in root biomass) and contradicted by the US 

observational study (non-significant reduction in root biomass). An alternative 

explanation is that reduced resilience of Spartina in grazed plots may be 

compensated by increased cover of Salicornia, which is less susceptible to die-off 

(National Park Service 2019) and, as a sprawling, shrubby plant, may be more 

resistant to hog damage. However, these results follow just 1.5 years of grazer 

exclusion, therefore it is too early to reach conclusions about how long-term 

grazing/absence of grazing may affect saltmarsh resilience. There may be additional 

trade-offs from large ungulate grazing that are outside the scope of this study, such 
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as increased faecal bacteria in marine waters, potentially affecting fisheries and 

bathing water quality (Kershaw et al. 2012; Devane and Gilpin 2015). 

 

3.6 Conclusions and management implications 

The observational surveys build on the results from Chapter 2, providing strong 

evidence that grazing of livestock on American salt marshes trades-off against their 

blue carbon value. However, recovery of soil carbon is not yet evident after 1.5 years 

of experimental grazer exclusion in a Georgia salt marsh. 

Grazing affects multiple plant properties, but has little apparent cascading effect on 

consumers or ecosystem resilience, although additional effects may emerge over the 

longer term in the experimental study. Plant biomass contributes to various 

important functions and services. Reductions in biomass and Spartina dominance 

may negatively affect the marine life that depends on saltmarsh vegetation for food 

and shelter, birds that nest in marshes, saltmarsh accretion rates, and wave 

attenuation capacity. Disturbance by grazers may also increase the risk of invasion 

from non-native species such as Phragmites australis.  

Despite these significant local effects, ungulate grazing is unlikely to have a large 

effect at the landscape scale along the US east coast under current grazing practices: 

salt marshes cover a large area along this coast, and only a small proportion are 

grazed by horses or livestock. With the exception of Cumberland Island, all horse-

grazed barrier islands now manage their horse populations, to keep within 

sustainable numbers. Even on Cumberland, horses have access to only a small 

proportion of the total area of salt marsh, and do not appear to significantly affect 

multifunctionality or resilience in the areas they do graze. Horses also provide 

benefits in the form of enhanced tourism as well as less tangible cultural services 

such as symbolic and aesthetic values, and community identity (Gruenberg 2015). In 

other regions, such as South America, where livestock grazing of Spartina marshes is 

much more common (Costa et al. 2009), grazing is likely to have more important, 

landscape-scale effects on blue carbon, and possibly other ES. However, east coast 

US salt marshes are more under threat from land development, pollution, climate 
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change, and runaway consumer control through over-harvesting of predators (Gedan 

et al. 2009). The strongest argument to reduce the horse population on Cumberland 

Island may be humane reasons, due to horse welfare (Gruenberg 2015) rather than 

ecological reasons. However, livestock grazing should certainly not be widely 

practiced along the US east coast: recommendations that formerly-reclaimed 

marshes can be restored and grazed, without harming carbon-storage, leading to 

win-win situations (Yu and Chmura 2010) do not apply in these marshes.  

 

3.7 Acknowledgements 

Many thanks to Sean Sharp, Kevin James, Rebecca Atkins, Katie Dixon, Lynsey Neilan, 

and Liz Shriver for their help with fieldwork and lab work; to Doug Hoffman for all his 

assistance with the Cumberland Island experiment; and to Brandon Puckett 

(NCDENR), Kevin Holscomb (Chincoteague NWR), Bill Hulslander (Assateague Island 

NS), Joseph Colbert and Ben Carswell (Jekyll Island State Park), and all other Park 

staff who facilitated observational surveys. 

 

3.8 Supporting Information 

The following supplementary material can be found in Appendix B: 
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Table B3. Effect of grazing intensity on ecosystem properties in observational survey 
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Figure B1. Soil texture classes triangle 

Figure B2. Raw species data for observational survey marshes 
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Figure B3. Changes over time 
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4.1 Abstract 

Global declines in pollinator populations and associated services make it imperative 

to identify and sensitively manage valuable habitats. Coastal habitats such as salt 

marshes can support extensive flowering meadows, but their importance for 

pollinators, and how this varies with land-use intensity, is poorly understood. We 

hypothesised that salt marshes provide important bee foraging habitat, and that 

livestock grazing either suppresses or enhances its value by reducing the abundance - 

or increasing the diversity - of flowering plants. To test these hypotheses, we 

surveyed 11 salt marshes in Wales (UK) under varying grazing management (long-

term ungrazed, extensively grazed, intensively grazed) over three summers and 

investigated causal pathways linking grazing intensity with bee abundance and 

diversity using a series of linear mixed models. We also compared observed bee 

abundances to 11 common terrestrial habitats using national survey data.   

Grazing reduced bee abundance and richness via reductions in the flower cover of 

the two key food plants: sea aster Tripolium pannonicum and sea lavender Limonium 

spp.  Grazing also increased flowering plant richness, but the positive effects of 

flower richness did not compensate for the negative effects of reduced flower cover 

on bees. Bee abundances were approximately halved in extensively grazed marshes 
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(relative to ungrazed) and halved again in intensively grazed marshes. Saltmarsh 

flowers were primarily visited by honeybees Apis mellifera and bumblebees Bombus 

spp. in mid and late summer. Compared to other broad habitat types in Wales, 

ungrazed salt marshes ranked highly for honeybees and bumblebees in July-August, 

but were relatively unimportant for solitary bees. Intensively grazed salt marshes 

were amongst the least valuable habitats for all bee types.  

Under appropriate grazing management, salt marshes provide a valuable and 

previously overlooked foraging habitat for bees. The strong effects of livestock 

grazing identified here are likely to extend geographically given that both livestock 

grazing and key grazing-sensitive plants are widespread in European salt marshes. 

We recommend that long-term ungrazed salt marshes are protected from grazing, 

and that grazing is maintained at extensive levels on grazed marshes. In this way, salt 

marshes can provide forage for wild and managed bee populations and support 

ecosystem services.  

 

4.2 Introduction 

Flower-visiting insects, particularly bees, provide a vital ecosystem service by 

pollinating crop plants and wild flowers (Gallai et al. 2009; Garibaldi et al. 2011; 

Hanley et al. 2015). However, pollinators are under threat from habitat loss, 

agrochemicals, disease, invasive species and climate change (Brown and Paxton 

2009; Potts et al. 2010a), leading to long-term declines in wild and managed 

pollinator populations (Potts et al. 2010a; Potts et al. 2010b; Powney et al. 2019). As 

a result of pollinator declines, international, national and regional governing bodies 

have introduced pollinator strategies to promote pollinator conservation and the 

provision of pollinator-friendly habitat (e.g. the EU Pollinators Initiative 2018, the All-

Ireland Pollinator Plan 2015-2020, the Action Plan for Pollinators in Wales 2013). 

Agricultural intensification is a major driver of bee declines (Le Féon et al. 2010; Potts 

et al. 2010a), but appropriate grassland management can yield significant benefits 

for pollinators (Bruppacher et al. 2016; Garrido et al. 2019). However, the 

relationship between livestock grazing and pollinator abundance and diversity is not 

clear or consistent, showing positive (Vulliamy et al. 2006), negative (Kruess and 
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Tscharntke 2002; Kimoto et al. 2012) and non-linear relationships (Lázaro et al. 2016; 

Mu et al. 2016). Difficulty in disentangling the various effects may originate from a 

lack of understanding of the mechanisms by which grazers influence pollinator 

activities and abundances in different habitats. Due to the pressing ecological need, 

and policy drive, to enhance pollinator-friendly habitat cover and quality, it is worth 

exploring less-studied habitats for their potential value (e.g. Baldock et al. 2015) and 

how this may alter under different management. 

Salt marshes are productive grasslands of halophytic herbs, grasses and shrubs that 

form in the intertidal zone of sheltered coastal areas. Salt marshes deliver important 

ecosystem services (Barbier et al. 2011; McKinley et al. 2018), yet are rarely 

considered for their potential value as a pollinator habitat (Rickert et al. 2012; van 

Klink et al. 2016; Rickert et al. 2018). However, salt marshes can be floristically rich 

(Adam 1990), harbouring many flowering plants visited by bees and other pollinators 

(Agassiz 2000; Falk and Lewington 2015). European salt marshes are commonly 

grazed by livestock, with consequences for their ecosystem properties and service 

provision (Chapter 2: Davidson et al. 2017; Pagès et al. 2018). Although European salt 

marshes do not cover a large area - approximately 440,000 ha in mainland Europe 

and the British Isles (McOwen et al. 2017) – they sit within a wider network of semi-

natural coastal habitats, and could act as a vital corridor, increasing ecosystem 

connectivity and facilitating biological flow between crops and bee nesting and 

foraging areas (Viana et al. 2012). It is therefore worthwhile to understand how 

valuable marshes are for pollinators, and how grazing management affects their 

value.  

Little is known about the effect of grazing on saltmarsh pollinator communities. 

Grazing increases saltmarsh plant richness (Chapter 2) which often predicts increased 

pollinator abundance and diversity (Potts et al. 2004; Vulliamy et al. 2006; Lázaro et 

al. 2016).  However, in Wadden Sea marshes, intensive grazing led to reductions in 

flower and pollinator abundance compared to less intensive grazing (van Klink et al. 

2016) and intensive sheep grazing disrupted moth-plant associations (Rickert et al. 

2018). Additionally, livestock alter saltmarsh soil properties and reduce vegetation 

cover (Chapter 2) which may affect the suitability of the habitat as a nesting site for 
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bees (Wuellner 1999; Vulliamy et al. 2006). To understand how and why livestock 

grazing impacts pollinators, we must understand the nature and strength of these 

potentially opposing effects.   

Here, we investigate the effects of grazing on bee communities across multiple salt 

marshes on the south coast of Wales (UK). Marshes in this region hold plant 

communities typical of those in north and western European sites, with a relatively 

high diversity of halophytic herbs (Adam 1990), and a long history of livestock 

grazing. We use field surveys of bee and plant communities to investigate the causal 

pathways linking bee abundance and diversity with grazing. We hypothesised that 

grazing affects bees via three pathways (Fig. 4.1a): (1) by altering the quantity of 

floral resource available, (2) by altering plant diversity, and (3) by modifying 

substrate conditions and directly disturbing bees or their nests; the net effect of 

grazing on bee communities depends on the balance of these positive and negative 

pathways. We further developed this conceptual model and incorporated covariates 

(weather, timing, landscape) (Fig. 4. 1b), before investigating the individual 

hypothesised pathways using linear mixed models. To scale up effects across the 

broader coastal landscape, we investigated the effect of grazing on the β-diversity of 

bees using multivariate analysis of pairwise community distance matrices. Finally, we 

assessed how saltmarsh bee abundances compare to various terrestrial habitats, 

using pollinator survey data collected across Wales for the Glastir Monitoring and 

Evaluation Programme (Emmett and the GMEP team 2017). To the best of our 

knowledge, this is the first study to compare bee communities in grazed and 

ungrazed marshes, and to quantify the importance of salt marshes as a bee foraging 

habitat, relative to terrestrial habitats. 

 

4.3. Methods 

4.3.1 Field surveys 

We surveyed 11 salt marshes in south Wales (UK) every summer from 2016-2018 

(Fig. 4.2, see Appendix C Table C1 for full site details). Sites were selected to cover a 

range of grazing intensities (4 long-term ungrazed, 3 extensive, 4 intensive) and 

livestock species (cattle, ponies, sheep), and to be large enough to allow sampling 
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Fig. 4.1. Mechanisms by which grazing may affect bee communities. a) Simplified system showing 

three hypothesised pathways: (1) changes to insect-pollinated (IP) plant flower cover; (2) changes to 

IP plant diversity, (3) direct disturbance of bees or their nests. b) Theoretical system to be tested using 

linear mixed models, allowing pathway (1) to operate via changes to IP plant cover (occupancy) and 

direct changes to flower cover via defoliation. Temporal and environmental variables in grey will be 

included in models to control for these effects. 

 

along four 200m transects covering multiple inundation zones and vegetation 

communities. It was not possible to calculate accurate grazing levels in livestock units 

per hectare (LUha-1), because several of our study sites were part of much larger 

unfenced grazing lands with extremely clustered livestock distribution. Grazing 

categories (absent, extensive, intensive) were evaluated based on dung counts and 

visual assessments performed at each transect on every visit, then averaged for the 

study site as a whole (see Appendix C Supplementary methods). Ungrazed marshes 

had not been grazed by livestock for a minimum for 30 years. Extensively grazed 

marshes were characterised by having little damage to standing biomass and turf, 

and a relatively complex sward (estimated grazing density of 0.3-0.4 LUha-1 during 

the summer grazing period). Intensively grazed marshes were characterised by 

removal of much of the standing biomass, leaving a relatively short, uniform sward, 

and widespread compaction or cutting up of the turf by animal trampling (estimated 

grazing density >0.8 LUha-1). Variation in sediment type, marsh geomorphology and 
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surrounding landscape was distributed evenly across the grazing categories (Table 

C1). 

Each marsh was surveyed along four 200m fixed transects on seven days over three 

summers, covering the major flowering period in these marshes. Marshes were 

surveyed in mid-summer (12th July – 10th August) in 2016, and in early (9th - 29th 

June), mid (12th July – 10th August) and late (24th August – 19th September) 

summer in 2017 and 2018. Surveys were conducted between 10am and 5pm, 

preferably on warm, calm, dry days (minimum temperature: 15oC, maximum wind 

speed: 7.5 m s-1). Transects were run parallel to the shore and distributed as evenly 

as possible across each marsh (dependent upon safe access and avoidance of major 

creeks), to represent the major vegetation communities present.  

 

 

Fig. 4.2. Location of 11 study sites across south Wales, UK. See Table C1 for details of each site. The 

ungrazed marshes were more widely distributed geographically due to the rarity of long-term 

ungrazed sites. Three sites (WH, LL, CR) are situated on a single contiguous area of salt marsh ~10 km 

long: each site was separated by at least 2.5 km and two major creek channels. However, two of these 

three marshes were under the same grazing management (intensive). As this could be deemed 

pseudoreplication, we repeated our net grazing effect models (described in section 4.3.2) with each of 

these sites excluded, which did not alter results.  
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Bee surveys were conducted using standardised pollinator transect methodologies 

(Pollard and Yates 1993). The surveyor walked each 200m transect at a slow, steady 

pace and noted any bee visiting a flower within a 5x5m area extending either side 

and in front. The flower species was noted and bees were identified to species level 

(with the exception of Bombus terrestris/lucorum workers, which cannot be reliably 

separated morphologically) using Falk and Lewington (2015). Bees that could not be 

identified in the field were captured in a net (a subsample of 5-10 individuals were 

collected when that bee type was abundant), transferred to a plastic vial with ethyl 

acetate, and subsequently identified under a x30 stereo microscope at Swansea 

University. Each transect was walked twice, with a 10 minute gap between walks to 

allow bees to re-settle (Baldock et al. 2015). We used the total number of bees per 

marsh per survey visit (i.e. bees per 1.6 km of transect) in our regression models. 

We assessed the vegetation within a 1x1m quadrat placed every 20m along each 

transect. For each plant species, we took the mean number of quadrats in which it 

was present to obtain an average transect occupancy for each marsh (potential 

range of 0-11). Species composition (present/absent in quadrat) was recorded in 

mid-summer in 2016 and 2017. The mean for each marsh over these two years was 

used as a predictor in regression models. Saltmarsh plant communities in south 

Wales, and more widely, are relatively stable over time under consistent grazing 

management (Taubert and Murphy 2012; Pauls 2017), therefore we expect these 

mean values to be a fair reflection of the plant community across the three years. 

Percentage flower cover of each species and vegetation canopy height were 

recorded on every survey visit. Limonium vulgare and Limonium humile are grouped 

together in the analyses, as these species are difficult to distinguish morphologically 

and can hybridise (Dawson and Ingrouille 1995). We used the mean flower cover per 

species across all 44 quadrats in the marsh (for each visit) in our regression models.  

 

4.3.2 Data analysis 

For our analyses, we were only interested in plants that provide pollen and nectar 

resources for pollinators. Hereafter, when we refer to plants or flower cover, we only 

include insect-pollinated (IP) plants. Spartina grasses are generally considered to be 
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wind-pollinated, but we noted several bees visiting S. anglica during our surveys, so 

included it with the IP plants in our analyses. All statistical analyses were conducted 

in R Studio running R3.5.2. (R Core Team 2018) using packages as detailed in the 

Supplementary methods (Appendix C). 

 

Testing the effect of grazing on bee abundance and α-diversity 

We used Linear Mixed Models (LMMs) to test the net effect of grazing on bee 

abundance, bee species richness, and bee Shannon diversity. We tested the effect of 

grazing at the marsh-scale rather than the transect-scale, as this is the relevant scale 

for managers. Each row in our data was a single survey visit to a marsh (n=76). Each 

model also included year and season as predictors to explore temporal patterns of 

bee foraging. We included wind speed, temperature and surrounding landscape 

(proportion of natural habitat, see Supplementary methods for calculation) where 

their inclusion improved model fit (reduced AIC by >2). Marsh was included as a 

random effect, to control for repeated sampling within each marsh. Model 

assumptions were verified by examining residual plots (scaled residuals versus 

predicted values and versus each covariate in the model) and testing goodness of fit 

(Kologorov-Smirnov) of observed versus expected values. Response variables were 

log-transformed where necessary to meet model assumptions (Ives 2015). We used 

likelihood ratio tests (LRTs) using maximum likelihood (ML) estimation to test the 

significance of grazing, year and season. If significant, we compared different levels 

of these factors using t-tests. Initial and final model terms are presented in the full 

statistical results provided in Appendix C (Table C6). 

To explore the mechanisms of grazing effects, we tested the links proposed in our 

hypothesised network (Fig. 4.1b). For each stage in the network, we built our initial 

model containing all biologically relevant predictors (see Table C7 for full details of 

models), with marsh as a random effect. We used AIC to determine if fit was 

improved by log-transformation of continuous predictors. We used LRTs to test: (1) if 

IP plant diversity (richness) was affected by grazing; (2) if IP plant occupancy was 

affected by grazing; (3) if flower cover was affected by grazing, controlling for IP 

plant occupancy; (4) if bee abundance was affected by grazing, IP plant richness, and 
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flower cover; (5) if bee diversity (richness) was affected by grazing, IP plant richness, 

and flower cover, controlling for bee abundance. Two plants, sea aster Tripolium 

pannonicum (formerly Aster tripolium, hereafter ‘Aster’) and the sea lavenders 

Limonium spp. (hereafter ‘Limonium’) received 95% of all bee visitations. To gain 

further insight, we repeated models (2-5) above with IP plant occupancy and flower 

cover separated into i) Aster, ii) Limonium, and iii) other IP plants (network 

presented in Fig. C2). We repeated all models using Shannon’s H’ as our measure of 

diversity. We also repeated our models with Apis mellifera excluded, to test if results 

are consistent for wild bees only (see Table C8 for full model details).  

Plant diversity and plant occupancy were not measured in 2018, therefore models (1) 

and (2) test only 2016/7 data (when plant diversity and plant occupancy were used 

as predictors in models (3)-(5) we used the average value from 2016/7 for each 

marsh). In south Wales, Aster blooms in late summer and Limonium blooms in mid-

summer. Therefore, the models to predict Aster flower cover (3.i) and Limonium 

flower cover (3.ii) only include late and mid-summer survey results respectively to 

avoid zero-inflated distributions. Sub-setting our dataset in this way precluded 

analysis using a structural equation modelling approach. Instead, we conducted 

separate LMMs for each stage of the network and have presented the results for 

these in a single network diagram, to allow analysis of the relative importance of 

each pathway.  

 

Testing the effect of grazing on β-diversity 

We explored how grazing affected three components of β-diversity (Baselga 2010) 

based on respective distance matrices of bee composition across sites: total β-

diversity (Sørensen index, βsor), the turnover component of β-diversity (Simpson 

index, βsim) and the nestedness component of β-diversity (βnes = βsor - βsim). Based on 

these matrices, we used Permutational Multivariate Analysis of Variance 

(PERMANOVA, Anderson, 2001) to test whether grazing was a significant source of 

variation in species composition. As the PERMANOVA test is sensitive to differences 

in group dispersions, we also ran a permutation-based test for homogeneity of 

multivariate dispersions (PERMDISP, Anderson, 2006).  



Chapter 4: Bees in salt marshes 

71 
 

Comparing salt marshes with terrestrial habitats 

We compared our saltmarsh transect counts with transect counts from other 

habitats by integrating our July-August saltmarsh survey data with pollinator survey 

data collected in July-August 2013-2016 in all terrestrial broad habitat types 

(classified as JNCC 2019) for the Welsh Government under the Glastir Monitoring & 

Evaluation Programme (Emmett and the GMEP team 2017). These data were 

collected from 1km squares across Wales under a stratified random sampling design. 

Each 1km square was visited in July and August during one year of the period 2013-

2016 and surveyed for bees along ten 200m transect sections (see Supplementary 

methods for full details). The surveys noted all bees present on the transect, 

compared with only foraging bees in the saltmarsh surveys, therefore comparisons 

are likely to be conservative towards saltmarsh abundances. We used negative 

binomial mixed effects models to predict the number of honeybees, bumblebees, 

and solitary bees in each of 14 habitat types (11 main terrestrial habitats, ungrazed, 

extensively, and intensively grazed salt marsh) while controlling for the fixed effects 

of wind and temperature and the random effects of observer and transect nested in 

site. We tested whether habitat was a significant predictor of bee counts using LRTs. 

We were unable to control for the effect of year in our models, as year covaried with 

habitat type. However, each survey block (terrestrial, salt marsh) spanned ≥3 years, 

which should minimise any effect of year. 

 

4.4 Results 

In total we recorded 1594 foraging bees across the 11 sites, averaging 13.1  4.0 

(S.E.) bees per km of transect, and comprising 19 species across 10 genera (see 

Tables C4-C5 and Figs C3-C4 for bee species data, flower cover and flower visitation 

data). Most individuals were either honeybees (52%) or bumblebees Bombus spp. 

(47%). We observed bees foraging on just nine plant species, although we recorded 

17 species of insect-pollinated plants in the marshes. Two plants in particular, Aster 

(Tripolium pannonicum) and Limonium (L. vulgare, L. humile), received the great 

majority of bee visits (52 and 43% of observed visits, respectively) and were 
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disproportionately preferred relative to their flower cover (33% and 30% of total 

flower cover).  

 

4.4.1 Grazing, bee abundance and α-diversity 

Grazing intensity had a significant effect on bee abundance and bee richness, but not 

on Shannon (H’) diversity (Fig. 4.3a-c, Table C6). Intensively grazed marshes had 

significantly lower bee abundance and bee richness than ungrazed marshes, while 

extensively grazed marshes were intermediate and not significantly different from 

the other two categories. Bee abundance, richness and H’ diversity were significantly 

higher in mid and late summer, compared to early summer (Fig. 4.3d-f) but were 

unaffected by survey year (Table C6). 

 

 

Fig. 4.3. Model predictions (blue lines) and partial residuals (points) for net grazing effects (a-c) and 

seasonal effects (d-f) on bees. Means are predicted for mid-summer, 2017 in (a-c) and for ungrazed 

marshes, 2017 in (d-f). Factor levels that are significantly different (t-test) are indicated by different 

letters. 95% confidence intervals (shaded boxes), calculated by bootstrapping. Abundance and 

richness values were calculated on the log scale, but have been back-transformed for presentation.  
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Grazing affected bee communities via two pathways: negative effects on flower 

cover and positive effects on plant richness. When all plant species are combined 

(Fig. 4.4a, Table C7), intensive grazing reduced flower cover, which had negative 

effects on bee abundance, leading to reduced bee richness. However, this negative 

effect on bee richness was mitigated by a positive effect of extensive and intensive 

grazing on plant richness, and a positive effect of plant richness on bee richness.  

Separating out key plant species (Fig. 4.4b, Table C8) highlights how grazing 

predominantly affected the flower cover of Aster and Limonium (Fig. B.1), and these 

plants had the strongest effects on bee abundance and therefore richness (Fig. B.2). 

Grazing reduced both the occupancy (i.e. coverage across the marsh) and flower 

cover of Limonium. Grazing had no effect on Aster occupancy, but increased grazing 

intensity directly reduced Aster flower cover. Grazing had no effect on other plant 

occupancy or flower cover. Increasing both Limonium and Aster flower cover 

strongly increased bee abundance. While flower cover of other plants had no 

significant effect, plant richness had a positive effect on bee abundance. Bee richness 

was predominantly affected by bee abundance, although there was a small negative 

effect of Aster flower cover on bee richness. When analysed with key plant species 

separated, the positive effect of plant richness on bee richness was no longer 

significant (P=0.056, Fig. C6e). When honeybees were excluded from the models, the 

effect of Aster cover on bee richness became positive, but otherwise results for wild 

bees did not differ from the models including honeybees (Table C8). When Shannon’s 

(H’) index was used as the diversity measure instead of species richness, all trends 

remained the same, although some predictors were no longer significant (Table C8 

and Figs C5-C6).  

 

4.4.2 Grazing and β-diversity 

We observed 16 bee species in ungrazed marshes (eight of these being unique to 

ungrazed marshes, Fig. 4.5), 10 species with extensive grazing (one unique), and six 

species with intensive grazing (one unique). Total β-diversity (pairwise Sørensen 

dissimilarity) did not differ between grazing levels, either in terms of centroid 

location in multivariate space (PERMANOVA), or in terms of within-group dispersion 
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Fig. 4.4. The mechanisms of grazing effects investigated via a series of LMMs for a) all insect-

pollinated (IP) plant species combined and b) key plant species separated out. Significance was tested 

using likelihood ratio test (LRT): blue lines indicate significant positive effects, red lines indicate 

significant negative effects, grey lines indicate P>0.05. When grazing was significant by LRT, each 

grazing level was compared against absent grazing by t-test: a solid line represents P<0.05, a dashed 

line represents P>0.05. Line thickness for significant effects is weighted by standardised coefficient, 

which is also shown above the line (coefficients for grazing levels are relative to absent). Marginal R2 

values are for the full model, including the effect of time and weather variables, which have not been 

drawn: see Tables C7 and C8 for full model results. 

 

 (PERMDISP). However, when β-diversity was partitioned into turnover and 

nestedness components, there were differences between grazing levels.  

Grazing significantly affected nestedness-resultant dissimilarity (PERMANOVA F=4.5, 

P=0.042; pairwise comparisons not significant) but had no effect on turnover-

resultant dissimilarity (Table C9, Fig. C7), indicating that differences between bee 

communities at different grazing levels were driven by nestedness, rather than 
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turnover. The effect of grazing on nestedness was not driven by differences in within-

group dispersion of nestedness (PERMDISP F=1.7, P=0.232). Within-group dispersion 

due to turnover was lower in intensively grazed marshes than for other grazing levels 

(PERMDISP F=10.1, P<0.001; pairwise comparisons P<0.05), indicating there was little 

species replacement across intensively-grazed marshes. These results did not change 

when only wild bees were considered.  

 

 

Fig. 4.5. Plant-pollinator network at each grazing level. Green circles are plant species (diameter 

proportional to flower cover), blue circles are bee species (weight of connector proportional to the 

square root of bee visits). See Tables B.1 and B.2 for species names. 

 

4.4.3 Comparing salt marshes with terrestrial habitats 

In July and August, the contribution of honeybees, bumblebees and solitary bees 

were 48%, 51% and <1% in salt marshes, compared to 18%, 78% and 4% in terrestrial 

habitats. Habitat had a significant effect on the abundances of all bee types in July-

August (Table C10). When ranked with other habitats (Fig. 4.6), ungrazed salt 

marshes were the highest-ranked habitat for honeybee abundances, and the fifth 

highest-ranked habitat for bumblebees, but were less important for solitary bees. 

Grazed marshes were amongst the lowest-ranked habitats for wild bees, but 

extensively grazed marshes were the third highest-ranked habitat for honeybees. 

However, there was high variability within many habitat types, and habitat and 

weather predicted only a small proportion of the observed variation in bee 

abundance (marginal R2=0.25, 0.06, 0.08 for honeybee, bumblebee and solitary bee 

models).  
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Fig. 4.6. Bee abundances in different habitats. Predicted abundances (per 200m transect) and 95% CIs 

of honeybees, bumblebees and solitary bees in July-August in different habitats.  

 

4.5 Discussion 

This study shows for the first time that salt marshes provide important foraging 

grounds for high numbers of honeybees and bumblebees, and that just two 

flowering plants account for practically all of this habitat provisioning service:  Aster 

Tripolium pannonicum and Limonium spp. Livestock grazing reduces bee abundance 

and alpha diversity, and the effects are strongest with intensive grazing. There is a 

pattern of high species loss and low species replacement as grazing intensity 

increases.   

Grazing impacts on bees principally operated via changes to the cover of two 

flowering plants (pathway 1, Fig. 4.1). Grazing reduced Limonium flower cover both 

directly and indirectly via reduced Limonium occupancy. Intensive grazing reduced 

Aster flower cover but did not affect Aster occupancy. Aster’s higher grazing 

tolerance may be partly due to its occurrence in lower, wetter areas of the marsh 

(Adam 1981) which are less used by livestock (Sharps et al. 2017). Additionally, 

although Aster is highly palatable, Aster plants rarely die as a result of grazing (Nolte 

et al. 2013b), whereas Limonium is extremely susceptible to trampling and 

defoliation of young buds (Boorman 1967; Adnitt et al. 2007).  
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Limonium and Aster were the two plants with the highest flower cover (30 and 33% 

of total flower cover, respectively) but were disproportionately preferred by bees, 

accounting for 95% of total bee foraging visits. Both plants have high densities of 

flowers/florets, due to their dense clusters of small flowers (Limonium) and 

composite flowers (Aster), making them a good food source (Kirk and Howes 2012). 

Bees prefer to visit only one or two flower types to maximise foraging efficiency, and 

will target flowers that are abundant and have high food rewards (Free 1963; Gegear 

and Laverty 1998). Surprisingly, increasing Aster cover had a slight negative impact 

on bee richness. This is likely a result of controlling for bee abundance in our model: 

high Aster cover led to a large increase in bee abundance (predominantly 

honeybees), without a corresponding increase in bee richness.  

Grazing had a positive effect on plant richness (pathway 2, Fig. 4.1), which in turn 

had a positive effect on bee abundance. However, combined ‘other’ flower cover had 

no effect on bee abundance, and only supported 5% of all observed bee visits for 

37% of total flower cover. This may be because ‘other’ flower cover was dominated 

by Armeria maritima, which is rarely visited by bees on salt marshes (Eisikowitch and 

Woodell 1975), obscuring the effect of rarer flowering species. Our plant-pollinator 

networks indicate that these rarer species become more important in grazed 

marshes, where Aster and Limonium cover is reduced. Despite the benefits of 

increased plant richness, the positive effect of plant richness on bee abundance did 

not compensate for the negative effect of reduced flower cover. This result may be 

driven by the relatively limited flower and bee community of a salt marsh. We 

recommend similar investigation of the relative importance of flower richness and 

flower cover in other habitats to explore the universality of this process, as this could 

determine appropriate grazing management. 

There was no evidence that grazed salt marshes harbour distinct assemblages of 

bees. Beta diversity between grazing levels was driven by nestedness rather than 

turnover. Two of the observed species (B. humilis, B. muscorum) are listed under the 

Environment (Wales) Act 2016 Section 7, which sets priority species for biodiversity 

conservation. Priority species were present on three ungrazed marshes, one 

extensively grazed, and no intensively grazed marshes. Due to the very low numbers 
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of individuals observed for most species, we cannot make predictions about how 

individual species respond to grazing, but a general pattern of species loss with 

increased grazing is clear.  

The number of bees foraging in salt marshes in July/August was not systematically 

higher or lower than numbers in terrestrial habitats, despite being surveyed in 

different years, covering a different range of latitudes and altitudes, and having 

slightly different survey methodology (only foraging bees recorded in salt marshes vs 

all bees in terrestrial habitats). However, the relative ranking of salt marshes varied 

depending on grazing management and bee guild. Compared to terrestrial habitats, 

ungrazed and extensively grazed marshes were well used by honeybees, with 

ungrazed marshes ranking as the top habitat. The presence of honeybees is strongly 

reliant on the presence of managed colonies in a location. Since coastal areas are 

more densely populated by humans than inland areas, this may partly explain the 

dominance of a domesticated bee species in saltmarsh habitats. Additionally, some 

beekeepers move hives around the landscape and may target salt marshes in late 

summer. Ungrazed marshes were in the top five habitats for bumblebees, but all 

saltmarsh categories were in the lower half of habitats for solitary bees. The scarcity 

of solitary bees on salt marshes may be due to their shorter foraging range 

(Greenleaf et al. 2007), limiting them to foraging areas close to their nest (which 

cannot be located on mid-low areas of a salt marsh due to tidal inundation). 

The comparisons with terrestrial habitats were for July-August only, when Aster and 

Limonium are in bloom, but saltmarsh bee abundances were much lower in June. 

British bees are active from February to October (Falk and Lewington 2015) and need 

forage throughout this period. However, forage for honeybees and bumblebees 

more generally is low in mid-late summer (Couvillon et al. 2014; Timberlake et al. 

2019), so the floral resources on salt marshes during this time may be particularly 

valuable to help fill this ‘hunger gap’.  The plant communities on British salt marshes 

are present across north-west Europe (Adam 1990), therefore the patterns from this 

study are likely to apply across temperate Europe. We have identified two 

consistently important plants for bees, meaning that European salt marshes can be 

rapidly assessed for their value to bees. American marshes also contain Limonium 
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spp. and Asian marshes harbour Aster and Limonium spp. (Adam 1990), so the value 

of salt marshes for pollinators is likely to extend more widely. 

 

4.6 Conclusions and management implications 

Pollinator declines are primarily driven by habitat loss and agricultural intensification 

(Potts et al. 2010a). We have demonstrated that salt marshes can provide a vital 

resource for wild and managed bees during the ‘hunger gap’ of mid-late summer, 

contingent on appropriate management. Grazing, particularly intensive grazing, 

reduces the cover of key food plants, and the increase in plant diversity does not 

compensate for these reductions. Sensitively-managed salt marshes have the 

potential to contribute an important foraging habitat in a coastal landscape, 

enhancing the levels and reliability of pollination services (Garibaldi et al. 2011; Viana 

et al. 2012), and supporting wild species conservation. 

This research provides evidence for three key management recommendations. 

Firstly, that to maximise pollinator presence salt marshes should manage for 

extensive or no grazing. We do not recommend abandonment of grazing, as this can 

lead to a homogenous grass-dominated habitat (Adam 1990). Therefore, grazed 

marshes should be maintained at - or reduced to - extensive levels, to encourage 

increased flower cover of preferred species. Secondly, that grazing management 

targeted towards high plant diversity does not necessarily benefit pollinators. 

Thirdly, that for both local and landscape diversity of bees, and conservation of 

priority species, long-term ungrazed marshes are optimal and intensively grazed 

marshes have little value. 
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Chapter 5: Mapping ecosystem services, trade-offs and 

multifunctionality in salt marshes: a case study in south Wales 

 

 

 

 

5.1 Abstract 

Managers of multi-use ecosystems face conflicting demands from ecosystem service 

(ES) stakeholders and conservation objectives. To make decisions, managers require 

reliable information about the distribution of ES, factors affecting ES functioning, and 

potential trade-offs or synergies between ES. ES assessments often use land cover as 

a proxy for ES provision, but ES supply can vary widely within a single habitat. Here, I 

have used primary data to map the supply of seven ES for salt marshes in 

Carmarthen Bay, south Wales. I mapped a range of supporting/biodiversity, 

provisioning, regulating and cultural services for 67 marshes covering 3154 ha. I 

calculated ES multifunctionality for each marsh and tested whether marsh 

management, size, or location affects individual ES and multifunctionality measures. I 

explored potential trade-offs and synergies between ES using correlation analysis 

and ES bundles. I found that larger marshes had the highest levels of provisioning 

and cultural services, and the highest multifunctionality values. Salt marsh managed 

as common land for multiple graziers had the highest values for grazing and winter 

bird habitat, and the highest average ES functioning values. Carbon was highest in 

private/tenant farmed marshes and marshes further upriver, whereas bee habitat 

was highest in marshes managed by conservation bodies/local councils and marshes 

closer to the river mouth. Only 4% of the total saltmarsh area achieves moderate 

levels of bee habitat. Bee habitat trades-off against grazing, due to a direct influence 

of livestock on bee habitat quality. Birdwatching is precluded in many marshes, due 
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to lack of public access. I recommend that cultural services can be increased across 

the landscape by increasing access and facilities for birdwatchers, and that 

biodiversity/supporting services should be increased by incentivising reduced grazing 

levels in some marshes to increase the cover of quality bee habitat. These results can 

feed into ES assessments across the wider landscape, and demonstrate that salt 

marshes cannot be treated as a homogeneous habitat, but must be differentiated by 

management, size and location. 

 

5.2 Introduction 

A major challenge facing managers of multi-use ecosystems is how to balance 

competing demands for ecosystem services (ES) and conservation objectives. Often, 

maximising the provision of one ES can drive declines in others (e.g. Allen 2015, Kim 

et al. 2016, Turner et al. 2014). In particular, increasing the supply of provisioning 

services, such as agricultural production, commonly leads to declines in regulating, 

cultural and supporting services (MA 2005a; Allan et al. 2015; Cavender-bares et al. 

2015; Holt et al. 2016). Provisioning services often have clearly defined economic 

benefits (e.g. livestock production) so are commonly favoured by landowners over ES 

with less tangible benefits (MA 2005a; Rodríguez et al. 2006; Nilsson et al. 2017). To 

sensitively manage a landscape supplying multiple supporting, provisioning, 

regulating and cultural services, it is necessary to understand what ES perform well 

or poorly, the factors that drive good or poor supply of multiple ES, and identify any 

interactions (trade-offs and synergies) among ES. 

ES maps are an important and widely applied tool, used to display and evaluate ES 

provision across a landscape, and to support policy and environmental resource 

management (Maes et al. 2012). ES maps can efficiently communicate complex 

spatial information and identify patterns in ES supply and demand across a range of 

spatial scales (Burkhard and Maes 2017). Mapping of ES bundles (coherent sets of ES 

that repeatedly appear together across space or time, Raudsepp-Hearne et al. 2010) 

can help predict synergies and trade-offs between ES (Spake et al. 2017). However, 

spatial analysis does also have some disadvantages. ES maps can be used to detect 

pattern-based multifunctionality and ES associations, but do not resolve the 
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processes underpinning these patterns (Mastrangelo et al. 2014): spatial interaction 

between ES may result from one ES directly impacting on others, or from multiple ES 

reacting to a common driver (Bennett et al. 2009).  Maps of ES represent only a 

snapshot in time, but ES supply can change within and across years (Renard et al. 

2015), and there may be lags in time between the changing of a driver and the supply 

of an ES (Spake et al. 2017). Often, spatial analysis is hindered by lack of data about 

ES provision. Scientists commonly use land use/land cover (LULC) as a proxy to model 

ES provision, where each type of LULC is allocated an estimated ES value (Bennett et 

al. 2009; Broekx et al. 2013). However, the ES supplied by a particular habitat can 

vary widely depending on habitat quality and management (Gos et al. 2016; Soliveres 

et al. 2016). For example, salt marshes may be grazed or not grazed by livestock, with 

significant consequences for the ecosystem properties of the marsh and therefore 

for ES provision (Chapter 2: Davidson et al. 2017). To gain a more accurate picture of 

ES supply, drivers and interactions, it is therefore necessary to examine how ES 

provision changes within a LULC category using primary data (Bennett et al. 2009; 

Spake et al. 2017). These types of ES relationships (within a LULC class) remain much 

less studied than ES relationships across LULC types (Spake et al. 2017).  

Here, I have investigated the provision of, and relationships among, ES in salt 

marshes, using a case study system in south Wales, UK. UK salt marshes supply a 

variety of ES to multiple stakeholders, from a local to a global scale. These ES include 

the provision of grazing land for local farmers, recreational space for local residents 

and visitors, the capture and long-term storage of atmospheric carbon, and the 

provision of diverse habitat to support wildlife such as insects and birds (Jones et al. 

2011). The high variety and quality of benefits accruing from salt marshes has led to 

increasing recognition of their value to society (Costanza et al. 1997; Woodward and 

Wui 2001; Barbier et al. 2011). However, because these multiple ES can trade-off 

against each other (e.g. van Loon-Steensma & Vellinga 2013; Sharps et al. 2015), 

governance bodies are left with conflicting management requirements, making it 

difficult to set priorities and desired outcomes for a site.  To the best of my 

knowledge, multiple ES have not been previously been mapped in salt marshes. 
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I have gathered, analysed and mapped data from a variety of academic, public, 

charitable and private bodies to evaluate seven ES supplied by salt marshes in 

Carmarthen Bay in south Wales. The study site, which covers two estuaries 

containing over a third of the total area of salt marsh in Wales, was selected because 

it is representative of salt marsh vegetation across temperature Europe (Adam 1990), 

because a wide variety of ecological data have been collected across the site, and 

because there are many potential conflicts due to the multiple sensitive ecological 

features present and widespread agriculture in the area. I mapped the seven 

individual ES as well as multiple measures of ES multifunctionality (based on 

averaging, diversity, and threshold approaches) to assess the spatial distribution of 

ES and determine what variables (marsh management, size and location) drive high 

ES provision and multifunctionality. I also investigated potential trade-offs and 

synergies between ES using correlation analysis, and by identifying and mapping ES 

bundles using cluster analysis.  

 

5.3 Methods 

5.3.1 Case study location 

Carmarthen Bay in South Wales comprises two estuaries – the Three Rivers Estuary 

and the Loughor Estuary – and holds 3154 ha salt marsh, making up 34.5% of the 

total saltmarsh area in Wales (Fig. 5.1). The bay and estuaries are designated as a 

Special Area of Conservation (SAC) as they contain multiple Annex I habitats 

protected under the 1992 EC Habitats Directive (European Council Directive 

92/43/EEC). The site also contains two Special Protected Areas (areas protected for 

rare and vulnerable birds under European Council Directive 2009/147/EC), a Ramsar 

Wetland of International Importance, and multiple Nature Reserves and Sites of 

Special Scientific Interest. Natural Resources Wales (NRW) have overall responsibility 

for monitoring the site and maintaining  it in a favourable conservation status. 

However, NRW have identified several evidence gaps relating to current grazing 

management, required management relating to the conservation interest in different 

parts of the site, and the distribution of ES provided by the salt marsh (Davidson and 

Griffin 2018).  By collating and analysing data from various sources I aim to highlight 



Chapter 5: Mapping ecosystem services 

85 
 

areas of high and low ES provision, identify the key factors affecting ES 

multifunctionality, and recognise potential ES trade-offs. This will allow the most 

important marshes to be recognised, and help target management intervention 

toward marshes that can be improved. 

I assessed ES provision at the scale of individual salt marshes. Each salt marsh was 

defined and named as described in the NRW 2012 Carmarthen Bay and Estuaries 

condition monitoring report (Pauls 2017) so as to be relevant for the management 

body. Where a salt marsh fell under multiple ownership, I further divided it into 

subsections. Salt marshes and salt marsh subsections are hereafter referred to as 

‘marshes’. I assessed ES provision for 67 marshes in total, although data were not 

available for all ES for every marsh. Because marshes vary widely in size (0.1 – 573.5 

ha) I normalised ES for area, and tested whether marsh area had a significant effect 

on individual ES supply and ES multifunctionality. 

 

 

Fig. 5.1. a) Location of case-study site (Carmarthen Bay) in South Wales, UK, and b) protected 

designations at study site (not including Sites of Special Scientific Interest). Carmarthen Bay contains 

the Three Rivers Estuary to the northwest and the Loughor Estuary to the southeast. SAC = Special 

Area of Conservation, SPA = Special Protected Area, NNR/LNR = National/Local Nature Reserve. 
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5.3.2 Ecosystem service selection and quantification 

I assessed seven ES across the study area, including biodiversity/supporting services 

(n=3), provisioning (n=1), regulating (n=1) and cultural (n=2) services. ES were 

selected based on their importance at a local or global level, and data availability for 

the study area. Measurable ES proxies were selected as an indicator of supply, and 

the ES value for each marsh was calculated using published and unpublished data 

sourced from various private, public, charitable and academic institutions. All ES 

proxies were rescaled as a percentage of maximum functioning (0-100%) to allow 

meaningful comparisons between ES measured on different scales (Table 5.1). I also 

allocated a confidence level of low, medium and high for each ES value. Methods 

used to calculate each ES proxy and confidence levels are described in full in 

Appendix D, and each ES is described in brief below.  

 

Biodiversity/supporting services 

Supporting services (variously termed intermediate services, ecosystem processes, or 

habitat services under different frameworks) are those that underpin the production 

of all other services. Here I assessed three biodiversity measures: plant diversity, the 

provision of overwintering habitat for saltmarsh-specialist birds and the provision of 

foraging habitat for bees. Biodiversity measures were selected because high 

biodiversity directly supports other services (e.g. bird diversity supports 

birdwatching, pollinator diversity supports crop pollination), maintenance of high 

diversity provides an ‘option’ value for the future (Gascon et al. 2015), and the study 

area contains multiple protected areas, conferring a management duty to preserve 

biodiversity. ‘Plant diversity’ was selected because high plant diversity can support 

high multifunctionality in grasslands (Allan et al. 2015; Meyer et al. 2016). There are 

many definitions of diversity (e.g. diversity within sites, diversity between sites, 

genetic diversity); here I mapped the simplest measure – plant species richness per 

transect, which was obtained from extensive vegetation surveys conducted by NRW 

under the Water Framework Directive (WFD) in 2013 and 2015. ‘Bird habitat’ was 

selected because salt marshes are an important feeding ground for many species of 

overwintering birds and also provide high tide roosts (Adnitt et al. 2007). The Special 
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Protected Area designations within the study site relate to the overwintering bird 

populations, therefore this service is very relevant to site management 

considerations. Here I mapped the number of saltmarsh-specialist overwintering 

birds that regularly occur on each marsh, weighted by the conservation status (Red, 

Amber, Green) of each species. Data were obtained from monthly surveys conducted 

for the British Trust for Ornithology’s Wetland Bird Survey (WeBS) from 2007/2008 – 

2016/2017. ‘Bee habitat’ was mapped because salt marshes can provide high-value 

bee-foraging habitat (Chapter 4) and under the Action Plan for Pollinators in Wales 

(Welsh Government 2013a), Wales has a duty to provide diverse and connected 

flower rich habitats to support pollinators. I used the estimated grazing level in each 

marsh (see below), and plant community data from WFD surveys to predict the 

average number of bees per 1km transect in each marsh.  

 

Provisioning services 

Provisioning services provide material goods. This is where overexploitation can 

occur and where there is a risk of strong trade-offs with other services: high values of 

provisioning services can have detrimental impacts on overall habitat health and 

functioning (MA 2005a; Cavender-bares et al. 2015; Holt et al. 2016). ‘Livestock 

grazing’ is one of the most common uses of saltmarsh land (Adam 1990). It is 

important to understand the distribution of livestock because grazing can affect 

other ES (Chapter 2) and can be relatively easily influenced and controlled by 

management. I estimated grazing levels as ungrazed, lightly, moderately or heavily 

grazed based on observations from Carmarthen Bay condition monitoring in 2012, 

sward height and descriptions from 2013/2015 WFD surveys, and self-reported 

grazing levels from owner/occupier interviews conducted in 2017 (Appendix E). 

 

Regulating services 

Regulating services provide benefits by regulating ecosystem processes such as 

climate regulation, natural hazard regulation or waste management. I mapped 

‘Carbon storage’ which contributes to climate regulation. Salt marshes store most 

carbon below ground, and can be an extremely effective carbon sink because the 
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anaerobic conditions slow decomposition of organic material, high sulphates inhibit 

methane-producing bacteria, and continual accretion allows ongoing accumulation 

of carbon without reaching equilibrium (Chmura 2009). I used existing survey data 

from Welsh saltmarsh soils (Skov et al. 2016, D. de Battisti unpublished data) to 

estimate the carbon stored in the top 10cm of each marsh (tonnes C ha-1) based on 

vegetation community and soil type.  

 

Cultural services 

Cultural services are non-material benefits obtained from ecosystems. Because they 

can be difficult to quantify, they are often left out of ES assessments (Chan et al. 

2011). Cultural services can have negative effects on a habitat due to, for example, 

human disturbance of wildlife, trampling of plants and soils, pollution, or 

construction of infrastructure. Therefore, while high levels of cultural services are 

generally positive, care must be taken that they do not inadvertently degrade the 

habitat and wildlife they are there to enjoy (Stigner et al. 2016). ‘Birdwatching’ has 

been mapped because salt marshes attract high numbers of diverse birds, and are 

therefore a favoured spot for birdwatchers (Adnitt et al. 2007; Green and Elmberg 

2014). I mapped the potential value for winter birdwatching based on winter bird 

diversity and abundance, and other valued features of the marsh, such as 

accessibility. This does not necessarily reflect the realised ES value in terms of 

number of visits, but does reflect the traits that are most desired by birdwatchers, as 

assessed by an expert opinion survey (Appendix F). I mapped ‘Wildfowling’ because 

of the availability of comprehensive data for the entire site, and because of the 

potential to conflict with conservation priorities. I have classed wildfowling as a 

recreational pursuit, under cultural services, but it could also be considered a 

provisioning service for providing wild food.  

 

Salt marshes provide many other important services not represented here (e.g. 

coastal protection, supporting coastal fisheries, water quality regulation, breeding 

bird habitat) but it was not possible to map these due to limitations in data 

availability or the complexity of modelling. 
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Table 5.1. Summary of ecosystem services mapped for the project and upper and lower boundaries 

used to rescale values. Full details of methods used to assign values for each ES are given in Appendix 

D.  

ES 
category 

Service Proxy 0% boundary 100% boundary 
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Plant 
diversity 

Average number of plant species per 
transect 

Minimum number of 
species recorded on 
a single transect in 
the study area (10) 

Maximum score 
recorded in study 
area (34.5) 

Bird habitat 

Number of saltmarsh-specialist 
overwintering bird species regularly 
recorded in the area, weighted by 
conservation status 

0 species 
Maximum score 
recorded in CBE 
(29) 

Bee habitat 
Predicted average number of bees 
foraging on a 1km transect, based on 
plant composition and grazing levels 

Minimum prediction 
for study area (0) 

Maximum 
prediction for 
study area (40.7) 

P
ro

v
is
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n
in

g
 

(f
o
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g
e
) 

Livestock 
grazing 

Estimate of ungrazed, lightly, 
moderately or heavily grazed 

Ungrazed Heavy grazing 

R
e
g
u
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g
 

(c
lim

a
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) 

Carbon 
storage 

Tonnes of organic carbon per hectare 
(top 10cm of soil) 

Minimum value 
recorded in the 
study area (22) 

Maximum value 
calculated for 
study area (53.7) 

C
u
lt
u
ra

l 
(r

e
c
re

a
ti
o

n
) Birdwatching 

Combined score based on public 
access, bird diversity, bird 
abundance, accessibility, availability 
of bird hide, tranquillity 

Score of 0 (no 
public access) 

Maximum 
potential score 
(100)  

Wildfowling 
Number of birds shot per km of 
foreshore 

Minimum value 
recorded in the 
study area (0) 

Maximum value 
recorded in study 
area (47) 

 

 

5.3.3 Multifunctionality and interactions among services 

Calculating multifunctionality 

ES multifunctionality is the capacity of a landscape or ecosystem to simultaneously 

provide multiple ES (Manning et al. 2018). There is no universally agreed measure of 

ES multifunctionality, so I used three approaches to assess the level of 

multifunctionality for each marsh. I (i) calculated the average function level across 

the seven ES; (ii) calculated ES diversity as the Simpson’s diversity index to give a 

measure of ES evenness across marshes (Raudsepp-Hearne et al. 2010); and (iii) 

calculated the number of ES exceeding multiple supply thresholds (Byrnes et al. 

2014) which I defined as ≥30% (at least a low supply), ≥50% (at least a moderate 

supply) and ≥70% (a high supply).  
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I used linear regression analysis to test whether individual ES and the various 

measures of ES multifunctionality were significantly affected by marsh management 

(common land with multiple graziers, private owner or tenant farmer, under 

conservation body or local council management), marsh size (area in ha), or marsh 

location (distance from river mouth).  

 

Investigating interactions among ecosystem services 

To identify potential trade-offs and synergies between ES, I calculated the Pearson’s 

correlation coefficient between pairs of ES. I also assessed whether individual ES 

significantly correlated with the multifunctionality measures, and whether 

multifunctionality measures correlated with each other. I further investigated spatial 

relationships among ES by identifying groups of marshes with similar sets of ES (ES 

bundles) using K-means cluster analysis (Raudsepp-Hearne et al. 2010). The optimum 

number of bundles were estimated using the fpc package (Henning 2019), which 

calculates the optimum average silhouette width (i.e. distance between clusters). 

Principal Component Analysis was used to analyse the variation in the seven ES, and 

help identify the dominant ES characteristics of each bundle (Raudsepp-Hearne et al. 

2010). ES bundles were mapped to assess the spatial distribution of bundles, and the 

total area covered by each bundle was calculated, to determine whether any bundles 

were strongly over- or under-represented within the study area.  

I only assessed multifunctionality and ES bundles for marshes that had valuations for 

all seven ES. However, 38 of the 67 study marshes, covering 505 ha (16% of the total 

salt marsh area), did not fall within a Wetland Bird Survey (WeBS) sector. To increase 

the sample size, I assumed that all marshes that were not within a WeBS sector had 

low value for wetland bird abundance and diversity, as WeBS surveys prioritise areas 

that are well-used by waterbirds (British Trust for Ornithology 2019). Therefore, all 

marshes that fell outside WeBS sectors were allocated a value of 20% for bird habitat 

value (to fall under the ‘low’ supply threshold, the lowest recorded value within a 

WeBS sector was 31%), and were allocated scores equal to the lowest recorded 

values for abundance and diversity when calculating birdwatching value. This gave a 

sample size of 51 marshes covering 98% of the total salt marsh area for the 
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multifunctionality/ES bundle analysis. I did not use these estimated values when 

testing individual ES (effect of management, size and location on individual ES; 

correlations between ES-ES and ES-multifunctionality). Each marsh was allocated an 

overall confidence level for the calculated multifunctionality values and ES bundle by 

averaging across the confidence values for each individual ES, where 0=assumed 

value, 1=low, 2=medium, 3=high confidence. All graphical analyses were conducted 

in ArcGIS Desktop 10.5.1 and all statistical analyses were conducted in R Studio 

running R3.5.2 (R Core Team 2018).  

 

5.4 Results and Discussion 

I assessed seven ES for 67 marshes within Carmarthen Bay and Estuaries. However, 

data were not available for all marshes, particularly the smallest marshes, and the 

number of services assessed per marsh ranged from 1-7 (mean=5.2, mode=7). I was 

able to assess all seven ES for 26 marshes, covering 2620 ha (83% of the total salt 

marsh area). The majority of marshes were managed by a private owner or tenant 

(27), with far fewer being run by conservation bodies/local councils (6) or grazed by 

multiple graziers as common land (5; management details not obtained for 29 of the 

smallest marshes). However, marsh management covaries with marsh size (ANOVA, 

df=2,35, F=4.28, P=0.02): common land is significantly larger than marshes managed 

by private or tenant farmers (Tukey’s HSD, t=2.92, P=0.02), with marshes managed 

by conservation bodies/local councils being of intermediate size. The average (range) 

marsh size is 47.1 ha (0.1 – 573.5) and distance to the river mouth is 7.8 km (1.1 – 

14.7). Marshes upriver are generally smaller than those close to the river mouth, but 

the correlation between area and distance was not significant (r=-0.13, P=0.29). 

 

5.4.1 Individual ecosystem services 

Biodiversity/Supporting services 

The raw and rescaled ES values for each marsh are presented in Appendix D (Tables 

D4-D5), along with heat maps and confidence levels (Figs D1-D2). Plant diversity 

ranged from 14 to 34.5 species per transect, and marshes closer to the river mouth 



Chapter 5: Mapping ecosystem services 

92 
 

had significantly higher diversity than those upriver (Table 5.2). In the decade for 

which bird habitat value was assessed (2007/8 – 2016/17), there were 22 species of 

overwintering saltmarsh-specialist birds recorded across the study area, with an 

average of 13 species per WeBS sector. The two highest performing sectors each had 

2 regularly occurring red species, 15 regularly occurring amber species, and 2 

regularly occurring green species. These two high-value sectors were allocated 

confidence levels of low and medium, as they were surveyed in just 3 and 5 years 

during the survey decade, respectively. Nevertheless, the results indicate these 

sectors provide vital habitat for overwintering saltmarsh birds. The survey sector 

with the lowest value was regularly visited by five overwintering saltmarsh species (1 

red, 2 amber, 2 green), highlighting how even ‘low value’ salt marshes are important 

for overwintering birds. There was no clear pattern to the distribution of low- and 

high-ranking marshes for bird habitat.  

Predicted bee abundance ranged from 0 to 40.7 bees per transect km, but only 2 of 

the marshes achieved a high value (≥70% of maximum), and just 9 of the 51 assessed 

marshes achieved at least a low value (≥30%) for bee habitat provision. These results 

clearly indicate that the majority of salt marshes within the study area are strongly 

under-performing in terms of their potential as a bee foraging habitat. Bee habitat 

value decreased with increasing distance from the river mouth, which is likely related 

to the decreasing plant diversity and increasing grazing intensity further from the 

river mouth (Table 5.2). Bee habitat values were highest in conservation 

body/council managed marshes, and lowest in common land, which again is likely 

due to the grazing levels within these respective marshes (Table 5.2) 

 

Provisioning services 

Across the study site, the majority of marsh area was classified as heavily (29% of 

total area, 911 ha) or moderately grazed (50%, 1581 ha). Only 11% (225 ha) was 

ungrazed, and the remaining 10% (306 ha) was lightly grazed. Salt marshes are 

valuable as grazing land, because they are self-fertilizing and highly-productive 

(nutrients brought in on incoming tides), and low in pathogens (organic material 

washed away on ebbing tides; Lambert 2000). Owner/occupier interviews revealed 
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that saltmarsh grazing can be very important to overall farm income (Appendix E). 

The marshes of the north Gower have been grazed by commoners for many 

generations, and the saltmarsh lamb reared there are sold as a prized seasonal 

delicacy (Prince 2011; Gower Salt Marsh Lamb 2019). The grazing across Carmarthen 

Bay therefore has both heritage and economic value. Grazing levels were heaviest on 

common land and lightest on land managed by conservation bodies/councils (Table 

5.2). Grazing intensity increased with increasing marsh area, perhaps due to 

increased accessibility and practicality of grazing large marsh areas (or simply 

because common grazing marshes tend to be very large and also heavily grazed). 

Grazing intensity also increased with increasing distance from the river mouth.  

 

Regulating services 

The total organic carbon stock for Carmarthen Bay salt marshes was estimated at 

125,165 tonnes C in the upper 10cm. Carbon stocks increased with increasing 

distance from the river mouth (Table 5.2), as the vegetation community changes 

from high coverage of Spartina anglica (which has high salinity tolerance and lower 

associated carbon stocks) to marshes with high coverage of Juncus maritimus and J. 

gerardii (lower salinity tolerance, higher associated carbon stocks). Carbon stocks 

were highest in privately owned marshes and lowest in those managed by 

conservation bodies/councils, which is likely because privately owned marshes tend 

to be located further upriver. Similar patterns of increasing carbon storage with 

increased freshwater influence are seen in Australian and US tidal marshes (Loomis 

and Craft 2010; Macreadie et al. 2017). 

 

Cultural services 

The top four marshes for birdwatching value were located along a large, contiguous 

expanse of salt marsh on the southern shore of the Loughor Estuary. These marshes 

all had high bird diversity (at least 9 of a potential 22 species of saltmarsh-specialist 

overwintering birds). Three benefitted from very high accessibility, as there is a road 

and carparking immediately adjacent to the marshes, while the fourth benefitted 

from a bird hide. Where birdwatching value was low, this was generally due to a lack 



Chapter 5: Mapping ecosystem services 

94 
 

of public access onto the land. Larger marshes had higher birdwatching value, as did 

common land and conservation body/council-managed marshes, which is likely due 

to the higher accessibility of these marshes and presence of hides. There are three 

licenced wildfowling clubs operating across five shooting grounds (covering 21 

marshes) in Carmarthen Bay. Shooting is prohibited outside these areas. Mallard, 

Teal and Wigeon were the most commonly shot birds, and each active wildfowler 

averaged 5.0 birds per season, although this varied from ground-to-ground (ranging 

from 2.7 – 9.9). One club in particular was responsible for the majority of birds shot 

(averaging 47 birds km-1 foreshore yr-1), with the next highest value shooting ground 

achieving less than half of this value. Wildfowling value increased with increasing 

marsh size (Table 5.2). 

 

Table 5.2. Results of linear regression analysis testing the effect of marsh management, area and 

location on individual ecosystem service (ES) and multifunctionality measures (MF). Where 

management was found to be significant, we used Tukey’s HSD to test for significant differences 

between each management type (C=common land with multiple graziers, PT=private owner or tenant 

farmer, CC=conservation body or council). < indicates significantly less than, ≤ indicates not 

significantly less than. Pla=plant diversity, Bir=bird habitat, Bee=bee habitat, Gra=grazing, Car=carbon 

storage, Wat=birdwatching, Wil=wildfowling, β=standardised regression coefficient. Significant effects 

(P≤0.05) are highlighted in bold. β shows standardised β coefficients. 

 
Management Area (ha, log transformed) Distance from river mouth (m) 

 
df F P R2 Contrasts df F P β R2 df F P β R2 

ES 
   

 
     

 
    

 

Pla 2,31 0.91 0.413 .06 
 

1,49 0.00 0.950 -0.01 .00 1,49 5.33 0.025 -0.31 .10 

Bir 2,25 0.11 0.897 .01 
 

1,27 0.20 0.661 -0.09 .01 1,27 0.03 0.870 -0.03 .00 

Bee 2,31 4.82 0.015 .24 C≤PT<CC 1,49 0.09 0.766 0.04 .00 1,49 9.49 0.003 -0.40 .16 

Gra 2,35 9.62 <.001 .35 CC<PT<C 1,53 10.7 0.002 0.41 .17 1,53 5.84 0.019 0.32 .10 

Car 2,35 3.99 0.028 .19 CC≤C≤PT 1,48 2.52 0.119 0.22 .05 1,48 5.42 0.024 0.31 .10 

Wat 2,27 9.41 <.001 .41 PT<CC≤C 1,41 23.1 <.0001 0.60 .36 1,41 1.06 0.310 -0.16 .03 

Wil 2,35 0.61 0.550 .03 
 

1,65 11.8 0.001 0.39 .15 1,65 2.09 0.153 0.18 .03 

MF 
   

 
     

 
    

 

Average 2,31 4.05 0.027 .21 CC<PT≤C 1,49 47.5 <.0001 0.70 .49 1,49 0.64 0.429 0.11 .01 

Diversity 2,31 0.20 0.820 .01 
 

1,49 14.5 <.001 0.48 .23 1,49 0.04 0.850 -0.03 .00 

ES ≥ 30% 2,31 0.41 0.669 .03 
 

1,49 24.7 <.0001 0.58 .34 1,49 1.57 0.216 0.18 .03 

ES ≥ 50% 2,31 2.92 0.069 .16 
 

1,49 18.6 <.0001 0.53 .28 1,49 1.46 0.233 0.17 .03 

ES ≥ 70% 2,31 2.48 0.100 .14 
 

1,49 24.5 <.0001 0.58 .33 1,49 0.03 0.868 -0.02 .00 
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5.4.2 Multifunctionality and interactions among services 

Patterns in ecosystem service multifunctionality 

The use of multiple measures of multifunctionality (averaging, diversity and 

threshold approaches; Figs 5.2-5.6) helps to clarify different concepts of 

multifunctionality, and identify how they vary from marsh-to-marsh, as well as 

highlighting common patterns. One marsh in particular (highlighted with an arrow in 

Figs 5.2-5.5) shows as a multifunctionality hotspot for all multifunctionality measures 

except ‘no. services ≥70%’. This large marsh is moderately grazed by a tenant farmer, 

supplies high levels of carbon storage and wildfowling, moderate levels of plant 

diversity, bird habitat and birdwatching, but very poor levels (<30%) of bee habitat, 

achieving an average ES supply of 62% (Fig. 5.2). Although average ES value is a 

simple measure to assess multifunctionality, it cannot differentiate between sites 

offering many ES at a moderate level, or just one or two ES at a high level. Using 

Simpson’s diversity index to assess ES evenness allows these effects to be 

disentangled, and highlights marshes offering multiple services evenly rather than 

one or two at high levels (Fig. 5.3). An alternative way to highlight these differences 

is to investigate multiple thresholds of ES delivery (Figs 5.4-5.6). These maps show 

that the vast majority of marshes offer at least three ES at a low level, but only one 

marsh offers three ES at a high level (grazing, bird habitat and birdwatching).  

For all multifunctionality measures, larger marshes achieve higher values (Table 5.2), 

but there is no effect of distance from river mouth. These relationships are 

consistent with the results that marsh area has either a positive, or no effect on 

individual ES function, but estuary position has contrasting effects on different ES. 

Management type only has an association with average multifunctionality: common 

land and private/tenant managed land achieved higher average values than 

conservation/council managed marshes. All measures of multifunctionality are 

positively correlated with each other, with the exception of Simpson’s diversity and 

ES ≥70% (Fig. 5.7), indicating that marshes can either supply a small number of 

services at a high level, or many services more evenly. By examining correlations 

between individual ES and multifunctionality measures, one can gain insight into 

which ES most strongly drive multifunctionality. The three ES that displayed the most 

significant positive correlations with multifunctionality (Fig. 5.7; grazing, 
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birdwatching, wildfowling) were the three ES with the most zero values (due to no 

grazing, lack of public access, and prohibited shooting, respectively). ES 

multifunctionality could be easily increased, therefore, by targeting these 0 values, 

although there may be compelling reasons to keep these ES at 0 in certain marshes, 

such as trade-offs with other ES, or conservation or political reasons. Carbon storage 

exhibited a negative correlation with the Simpson’s diversity measure of ES 

multifunctionality (Fig. 5.7), indicating that marshes high in carbon rarely provide an 

even supply across all ES. This correlation is perhaps due to the contrasting 

responses of different ES to marsh location – with some ES affected positively 

(including carbon storage) by distance to the river mouth, and some affected 

negatively (Table 5.2). 

The multifunctionality measures were all analysed at the marsh scale, but because 

marshes have widely varying sizes, it is instructive to examine the total marsh area 

supplying each ES at low, moderate and high thresholds (see inserts in Figs. 5.4-5.6). 

From these data it is apparent that both bee habitat and wildfowling have a relatively 

small area of marsh supplying even low levels (≥30%) of these two ES (Fig. 5.4 insert). 

As the threshold increases to a moderate (≥50%) level, supply of bee habitat is 

particularly poor: only 138 ha of salt marsh (4% of assessed marsh area) offers at 

least moderate bee habitat provision. Conversely, the majority (>75%) of assessed 

salt marsh area offers at least moderate provision of bird habitat, grazing and carbon 

storage (Fig. 5.5 insert). Plant diversity and cultural services lie intermediate between 

these ES, with 20-50% of the total salt marsh area offering at least a moderate 

supply.  These data reveal that bee habitat is a particularly under-represented ES 

within Carmarthen Bay, with the majority of salt marsh falling well below its 

maximum potential functioning level.  
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Fig. 5.2. ES multifunctionality as average ES level. The mean ES functioning level across all seven ES 

(after rescaling each ES as a percentage of maximum function). The arrow highlights one marsh 

(Penclawdd: Dalton’s Point, see Tables D4-D5 for details) which is consistently amongst the top 

marshes for multifunctionality measures. See Fig. D3 for confidence levels.  

 

 
Fig. 5.3. ES multifunctionality as Simpson’s diversity. The evenness of ES functioning, calculated as the 

Simpson’s diversity index across all seven ES (after rescaling each ES as a percentage of maximum 

function. The arrow highlights one marsh (Penclawdd: Dalton’s Point, see Tables D4-D5 for details) 

which is consistently amongst the top marshes for multifunctionality measures. See Fig. D3 for 

confidence levels. 
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Fig. 5.4. ES multifunctionality over a low supply threshold. The total number of services (out of seven) 

achieving at least 30% of maximum supply. The arrow highlights one marsh (Penclawdd: Dalton’s 

Point, see Tables D4-D5 for details) which is consistently amongst the top marshes for 

multifunctionality measures. Inset figure shows the total area of marsh achieving at least 30% supply 

level for each service: the area of slice is proportional to the area of marsh, with guides at 20, 40, 60, 

80 and 100% of total assessed salt marsh area (3099 ha). See Table 5.2 legend for ES abbreviations. 

See Fig. D3 for confidence levels. 

 



Chapter 5: Mapping ecosystem services 

99 
 

 
Fig. 5.5. ES multifunctionality over a moderate supply threshold. The total number of services (out of 

seven) achieving at least 50% of maximum supply. The arrow highlights one marsh (Penclawdd: 

Dalton’s Point, see Tables D4-D5 for details) which is consistently amongst the top marshes for 

multifunctionality measures. Inset figure shows the total area of marsh achieving at least 50% supply 

level for each service: the area of slice is proportional to the area of marsh, with guides at 20, 40, 60, 

80 and 100% of total assessed salt marsh area (3099 ha). See Table 5.2 legend for ES abbreviations. 

See Fig. D3 for confidence levels. 
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Fig. 5.6. ES multifunctionality over a high supply threshold. The total number of services (out of seven) 

achieving at least 70% of maximum supply. Inset figure shows the total area of marsh achieving at 

least 70% supply level for each service: the area of slice is proportional to the area of marsh, with 

guides at 20, 40, 60, 80 and 100% of total assessed salt marsh area (3099 ha). See Table 5.2 legend for 

ES abbreviations. See Fig. D3 for confidence levels. 

 

Interactions among services and ecosystem service bundles 

I tested the spatial correlation between pairs of ES, to gain insight into potential 

trade-offs and synergies (Fig. 5.7). There were no significant positive correlations 

between any pairs of ES (indicative of synergies) but two significant negative 

correlations (indicative of trade-offs). This result accords with a meta-analysis of ES 

interactions that showed ES trade-offs are three times more common than ES 

synergies (Howe et al. 2014). Grazing and bee habitat exhibit spatial trade-offs, 

which is unsurprising, as grazing level was a key variable used to predict bee habitat 

value. Grazing directly drives a reduction in bee habitat value via reductions in the 

flower cover of key food plants (Chapter 4). Bird habitat and carbon also exhibited 
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spatial trade-offs, although the reason for this is not obvious. This is likely to be a 

result of both ES responding in contrasting ways to a common driver, such as plant 

community: one of the plant communities with the highest carbon values – SM18 – is 

dominated by the long, unpalatable Juncus maritimus, whereas grazing saltmarsh 

birds prefer a short, palatable sward (Bos et al. 2005).  

 

 

Fig. 5.7. Correlations between ES and multifunctionality measures. Ellipses show positive (blue) and 

negative (red) correlations between pairs of ES (pink box), between pairs of multifunctionality (MF) 

measures (yellow box), and between individual ES and MF measures (green box). The narrowness of 

the ellipse and depth of the colour indicates the size of the correlation coefficient. Significant results 

from Pearson’s correlation tests are indicated with asterisks, with significance levels of 0.05 (*), 0.01 

(**), and 0.001 (***). Pla=plant diversity, Bir=bird habitat, Bee=bee habitat, Gra=grazing, Car=carbon 

storage, Wat=birdwatching, Wil=wildfowling. 
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I identified six ES bundles across Carmarthen Bay salt marshes, representing marshes 

displaying similar type and magnitude of ES. Six was the optimum number of bundles 

identified by silhouette analysis (i.e. analysis of the distance between clusters), which 

is high but not unusual compared to other studies, which typically produce 3–7 

bundles (e.g. Raudsepp-Hearne et al. 2010; Martín-López et al. 2012; Turner et al. 

2014; Renard et al. 2015; Spake et al. 2017; Lin et al. 2018). I used Principal 

Components Analysis (PCA) to explore patterns in ES provision (Fig. 5.8a). Four PCs 

are required to describe >80% of cumulative variance, indicating fairly high 

dimensionality. PC1 explained 32% and corresponded to an axis that varied from high 

value bee habitat to high value grazing land. This axis aligns with the most highly 

significant ES trade-off that was identified via correlation analysis (i.e. between 

grazing and bee habitat). PC2 explained 24% and corresponded to an axis that varied 

from high value grazing and carbon to high value bird habitat, wildfowling and 

birdwatching. The trade-off between carbon and bird habitat was also identified via 

correlation analysis.  

Where trade-offs and synergies between ES are strong, one would expect to see 

many significant correlations between services (e.g. Raudsepp-Hearne et al. 2010) 

and low dimensionality of ES producing a low number of bundles, each dominated by 

a small number of ES (e.g. Spake et al. 2017). The small number of significant 

correlations between ES, high dimensionality and high number of bundles identified 

here, indicates that strong trade-offs or synergies are not common within this 

system. This may make the system complex to manage, as there are few 

opportunities to drive changes in ES provision. However, examination of the levels of 

ES supplied by each bundle (Fig. 5.8b), the marsh area providing each bundle (Fig. 

5.9), and the characteristics of the marshes providing each bundle (Table 5.3), allows 

an understanding of the types of ES supply within Carmarthen Bay salt marshes, and 

highlights any over- or under-representation of bundles.  
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Fig. 5.8. Ecosystem service (ES) bundles within the study area. a) Clustering of the six ES bundles along 

the first two axes obtained from Principal Components Analysis. b) The average ES supply within each 

bundle: the area of slice is proportional to the percentage of maximum functioning for each ES, with 

guides at 30 (low supply), 50 (moderate supply), 70 (high supply) and 100% of maximum functioning. 

See Table 5.2 legend for ES abbreviations. Pla=plant diversity, Bir=bird habitat, Bee=bee habitat, 

Gra=grazing, Car=carbon storage, Wat=birdwatching, Wil=wildfowling. 
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Fig. 5.9. Distribution of ecosystem service bundles across the study area. The inset figure shows the 

total area of salt marsh falling within each bundle. See Fig. D3 for confidence levels. 

 

Bundle 1 is the most common bundle, and comprises marshes that offer fairly high 

values for grazing, but extremely low values for recreation in the form of 

birdwatching or wildfowling. Bundle 2 contains the most heavily-grazed marshes, 

providing high value habitat for overwintering birds and also moderate birdwatching 

values. The large marshes in this bundle cover 43% of the total marsh area. Bundle 3 

represents the six marshes that are ungrazed and offer good bee-habitat, and covers 

just 6% of the salt marsh area. Bundle 4 contains marshes that offer moderate and 

high supplies of plant diversity and bird habitat. Bundle 5 contains marshes that offer 

five of the seven ES at moderate or high levels, so I have classified these marshes as 

multi-use. Both plant diversity and carbon are fairly equitably spread across all the 

bundles: neither service falls short of a low supply threshold in any bundle. However, 

plant diversity is highest in bundle 6, which also offers moderate supply of carbon 
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storage but poor supply of all other ES. The nine small marshes within bundle 6 

covers just 5% of the total area.   

Bundles that offer high (≥70%) or moderate (≥50%) levels of grazing are particularly 

well-represented in terms of total salt marsh area (bundles 1,2,5: 82% of assessed 

area). However, only a single bundle offers bee habitat exceeding a low supply 

threshold (bundle 3) and this covers just 6% of the salt marsh area. These two ES 

display the clearest spatial trade-off, and the strong over-representation of livestock 

grazing is resulting in an under-representation of good quality bee habitat. In 

contrast, moderate or high levels of grazing can co-exist with moderate or high levels 

of plant diversity (bundle 1), bird habitat (2 and 5), carbon storage (1, 2, 5), 

birdwatching (2), and wildfowling (5). Although birdwatching and wildfowling only 

exceed low levels within one bundle each (2 and 5, respectively), these bundles cover 

large areas of salt marsh (43 and 23% of total area, respectively) so these ES are not 

as under-represented as bee habitat. However, both these cultural services have 

better supply/availability within the Loughor estuary than the Three Rivers estuary. 

Correlation analysis indicated a spatial trade-off between bird habitat and carbon 

storage. However, two bundles (2 and 5) supply both bird habitat and carbon storage 

at moderate levels or higher, showing that trade-offs between these services are not 

inevitable. 

 
Table 5.3. Marsh characteristics for each ES bundle. Total area shows the summed area of all marshes 

supplying each ES bundle. Management shows the count of marshes falling under each management 

type: C=common land with multiple graziers, CC=conservation body or council, PT=private owner or 

tenant farmer, NK=not known. 
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Management 

C CC PT NK 

1 Grazing, no recreation 19 463 15 8.5 24.4 0 0 10 9 

2 Heavy grazing & birds 5 1345 43 6.5 269.8 3 0 2 - 

3 Bee friendly 6 183 6 4.4 30.6 0 3 1 2 

4 Biodiversity 6 234 8 6.6 38.9 0 2 4 - 

5 Multi-use 6 716 23 11.8 119.3 1 0 5 - 

6 Plant diversity 9 154 5 5.5 17.1 1 1 1 6 
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5.4.3 Data limitations and recommendations for future study 

Each ES map layer has its own limitations, which are described in Appendix D. More 

general limitations also apply. ES were selected based on the availability of site-

specific, relevant data. It was not within the scope of this project to map several 

important services such as coastal protection and breeding bird habitat. Coastal 

protection is an important service provided by salt marshes, derived from wave 

attenuation caused by aboveground biomass (Möller et al. 1999; Arkema et al. 2013). 

Wave attenuation may be impaired by grazing, due to reduction in the canopy height 

(Möller et al. 2014), but modelling this ES is complex and requires accurate 

bathymetry data. Breeding birds generally prefer a structurally diverse sward with 

longer vegetation, and their nests are at risk from trampling by grazers (Norris 2000; 

Sharps et al. 2015). Because the Special Protected Areas were designated for 

overwintering birds, the overwintering bird populations are more relevant for this 

case study, but the lack of ungrazed and lightly-grazed marshes within the study area 

may severely limit its potential as a breeding bird habitat, so spatial analysis of this 

ES would be desirable. There is the potential for grazing livestock and waterfowl to 

have strong negative effects on coastal water quality, via contamination by faecal 

matter washed off on ebbing tides (Jones and Obiri-Danso 1998). This could create a 

trade-off between livestock grazing/bird habitat and cockle fisheries/bathers within 

Carmarthen Bay. Field investigations and modelling are needed to assess and 

quantify this trade-off. 

Several of the assessed ES are linked, but this is a natural consequence of a complex 

system, and each ES is also influenced by other variables and used by different 

stakeholders: high value bird habitat supports both birdwatching and wildfowling, 

but each of these end user groups is affected by other factors (e.g. the presence of a 

hide for birdwatchers; the availability of licenced shooting for wildfowlers). Bee 

habitat was predicted by grazing levels and plant diversity, but also by the presence 

of key bee-friendly plant species. Some of the measures used here are for realised 

benefits (e.g. bag counts for wildfowling) so take account of both supply and demand 

for the service, while some are for potential supply (e.g. birdwatching) and do not 

account for demand, but the valuation measures selected were the best available, 

considering time and data constraints. For the purpose of normalising different 
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measures of ES supply, I assumed that the maximum value scored within the study 

area is the maximum potential value, and, for ES where 0 is never achievable (carbon 

storage, plant diversity), that the minimum recorded score is the minimum potential 

value. However, these figures are relevant at the site level only, so cannot be used to 

infer ES delivery at a national or international scale. Extending this work to other 

Welsh and European estuaries would allow an understanding of saltmarsh ES 

provision within a national and international context. The multifunctionality 

assessments present each ES as having equal importance and desirability, but this 

does not represent different stakeholder interests. Stakeholder engagement work is 

necessary to allow ES to be weighted by importance, so that the performance of 

each marsh, and the entire landscape, can be assessed in relation to different 

stakeholder priorities and conservation objectives (Manning et al. 2018). 

 

5.5 Conclusions and management implications 

Here, for the first time, multiple ES have been mapped for salt marshes, allowing 

identification of trade-offs, highlighting areas of concern, and informing 

management of a complex site that serves multiple stakeholders. I have shown that 

different forms of management are associated with different ES: grazing and 

birdwatching values are highest on common land, bee habitat is highest on 

conservation body/local council managed marshes, and carbon storage is highest on 

private/tenant managed marshes. These varying responses of individual ES mean 

that no single management type is clearly optimal for overall ES multifunctionality, 

although common land does produce the highest average ES function level. Three of 

the seven ES (grazing, birdwatching, wildfowling) increase with increasing marsh 

area, leading to marsh area having a positive effect on ES multifunctionality. 

Different ES exhibit different responses to estuary position: displaying both positive 

(grazing, carbon storage) and negative (plant diversity, bee habitat) relationships 

with distance from river mouth.  

There were few correlations between services. The clearest ES trade-off is between a 

provisioning service - grazing - and a biodiversity/supporting service - bee habitat. 

This trade-off is due to a direct effect of grazing on bee habitat quality (Chapter 4). 
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Analysis of ES exceeding multiple thresholds revealed that only a small area of marsh 

(4% of total) provides even a low supply of bee habitat, and analysis of ES bundles 

showed that a moderate supply of bee habitat is only achieved when grazing is 

absent. Due to the economic incentive for livestock grazing, it is not surprising that it 

is primarily conservation body/council managed marshes that are maintained 

without grazers, to the benefit of bees. In order to increase the coverage of bee-

friendly habitat, land managers are likely to need economic incentives to reduce 

grazing levels, in the form of Agri-Environment Scheme payments. Correlation 

analysis showed that bird habitat trades-off against carbon, but both services co-

occur at moderate levels in multiple bundles, indicating that this trade-off is not 

strong or inevitable, and is likely due to both ES reacting differently to a common 

driver, such as plant community. 

Apart from bee habitat, the most spatially-restricted ES are the cultural services of 

birdwatching and wildfowling, which can have values of zero due to a lack of public 

access or a lack of licenced shooting, respectively. High values of birdwatching and 

wildfowling are generally found in larger marshes, meaning that the total area of 

marsh providing these ES is relatively high. However, because the largest marshes 

are found to the southeast of the study area, stakeholders in the northwest have a 

lower supply of these cultural services. There are licenced shooting grounds along all 

rivers in the study area, so the lower supply of wildfowling in the northwest may be 

partly due to lower demand. Due to possible conflicts between wildfowlers and 

conservation objectives and other marsh users (Owen 1990), there is little incentive 

to increase the coverage of licenced shooting areas. However, the lower supply of 

birdwatching in the northwest is primarily due to restricted access. Birdwatching 

value could be increased here by increasing accessibility to sites with footpaths, and 

increasing the availability of bird hides, which are valued by birdwatchers and would 

minimise the impact to wildlife of increasing visitor numbers.  

Through this case study, i have shown that a single land cover type – salt marsh – 

cannot be considered a homogenous ES provider. Within this habitat, variation in 

management, size, location, and vegetation community is associated with varying 

provision of ES and ES multifunctionality, leading to the supply of multiple distinct ES 
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bundles. Land cover type is commonly used to predict ES provision, due to the ready 

availability of land cover maps, and is the most convenient way to assess multiple ES 

across landscapes. This is the first study to explicitly map multiple ES in salt marshes, 

and the values are transferrable to other ES assessments covering temperate 

European salt marshes. Due to the wide variation exhibited within this study, I 

recommend increased research into the true range of ES supply from individual 

habitats, and the factors that influence this. This will allow increased accuracy in the 

assessment of ES trade-offs and the likely impact of land-use or land-cover changes 

across landscapes. 
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5.7 Supporting Information 

The following supplementary material can be found in Appendices D-F. 

Appendix D: Supporting information for Chapter 5: 

Supplementary methods - Calculating Ecosystem Service values. 

Table D1. Linear model results for optimal predictive model of bee habitat value. 

Table D2. Predicted carbon stock in top 10 cm of saltmarsh sediment by NVC class. 

Table D3. Features contributing to overall birdwatching value. 

Table D4. Marsh attributes and raw ecosystem service (ES) values for all assessed 

marshes. 

Table D5. Rescaled ecosystem service values, multifunctionality scores and ES 

bundles for all marshes. 

Fig. D1. Heat maps of individual ES provision. 
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Fig. D2. Confidence in each ES map layer. 

Fig. D3. Confidence levels for ES multifunctionality values and ES bundles. 

Appendix E: Owner/occupier interviews of saltmarsh management. 

Appendix F: Expert opinion birdwatching survey. 
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Chapter 6. Thesis discussion 

 

 

 

6.1 Overview of results 

Ecosystem service (ES) studies that consider multiple services, and their interactions, 

are relatively rare (Boerema et al. 2016). In this thesis I have used a variety of 

approaches to investigate the impacts of livestock grazing on multiple saltmarsh ES 

(see Table 6.1 for a summary of the results). A systematic review of the academic 

literature (Chapter 2) revealed that research into grazer impacts on salt marshes is 

dominated by European studies. Although grazing is extremely common in Europe, 

this heavy weighting of European studies creates a risk that a consensus of grazer 

impacts is reached based on studies from a single region, highlighting a need for 

more data from outside Europe. The meta-analysis revealed some consistent effects 

of grazers on soil, vegetation, and fauna properties. The largest effect sizes were 

seen with vegetation responses (reduced height, aboveground biomass and litter) 

and herbivorous insects (reduced abundance). ‘Conservation grazing’ is commonly 

applied to salt marshes, and this meta-analysis confirmed that grazing increases 

plant richness, but there were also reductions in invertebrate richness with grazing. 

Grazing did not impact the carbon in European salt marshes, but it did reduce the 

carbon stored in American salt marshes.  

Surveys of grazed and ungrazed marshes along the southeast US coast (Chapter 3) 

strengthened this result, using standardised survey techniques and accounting for 

soil texture and other covariates to show that soil carbon is significantly reduced in 

grazed marshes in America. The observational results indicate that grazing shifts the 

plant community to a more diverse community with reduced Spartina dominance. 

The experimental study on Cumberland Island (Chapter 3) showed that this change in 
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plant community is relatively rapid – significant differences appeared after just 13 

months of grazer exclusion. However, effects of grazing on soil carbon were not yet 

apparent after 18 months of exclusion. The US study concurred with the meta-

analysis in showing strong effects of grazing on vegetation properties. In contrast to 

the meta-analysis, there were no significant changes to soil salinity or redox, and 

primary consumers in southeast ES salt marshes were robust to competition from 

large herbivores – only adult fiddler crabs benefitted from horse exclusion in the 

experimental study and long-term grazing had no effect on snails, crabs or mussels in 

US marshes. The experimental study showed no clear impact of grazing on saltmarsh 

resilience, although a longer period of grazer exclusion may be necessary for changes 

to take effect. 

The meta-analysis in Chapter 2 showed that invertebrates are generally 

disadvantaged by grazing, both in terms of abundance and diversity. In Chapter 4 I 

focussed on one specific interaction, between grazing and bee habitat value, allowing 

an understanding of the precise mechanisms underpinning this trade-off. Surveys of 

11 Welsh marshes showed that grazing reduced flower cover of the two most 

important plants for foraging bees, and that increases in plant diversity with grazing 

did not compensate for these negative effects. Comparisons with terrestrial surveys 

revealed that when not grazed, salt marshes can be a highly valuable foraging ground 

for honeybees and bumblebees, providing vital nectar and pollen resources in mid to 

late summer.  

Through mapping the spatial distribution of multiple saltmarsh ES in a UK estuary 

complex (Chapter 5), I showed that the supply of some saltmarsh ES can be highly 

variable, and supplies vary with saltmarsh management, size and location. Spatial 

analysis revealed that strong interactions between ES are rare, and it is possible for a 

marsh to supply six out of seven assessed services over a moderate supply threshold. 

The only strong trade-off associated with grazing was the one revealed in Chapter 4, 

between grazing and bee habitat. Spatial analysis revealed that, within Carmarthen 

Bay, salt marshes are not realising their potential as a bee foraging habitat, due to 

the prioritisation and predominance of grazing in this area. However, due to a lack of 

available spatial data, several important ES services that may conflict with grazing, 
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such as breeding bird habitat, coastal protection and water quality, were not 

assessed.  

 

Table 6.1 Summary of major grazer effects on ecosystem properties and their related services (ES). 

Arrows show whether the property increases or decreases with grazing, and how these changes are 

likely to impact on ES provision. In general, I have not included properties that do not change with 

grazing (↔), except where the results from different studies or regions are inconsistent. 

Property Ecosystem service Chapter(s) 

↑ Plant richness ↑ Biodiversity (S) 2,3,4 

↓ Invertebrate richness ↓ Biodiversity (S) 2 

↑ Salinity, temperature, bulk density 
↓ Redox 

↕ Nutrient cycling (S) 2 

↔ Salinity, redox ↔ Nutrient cycling (S) 3 

↓ Cover of Aster and Limonium ↓ Bee habitat (S) 4 

↔ Soil carbon (Europe) ↔ Carbon storage (R) 2 

↓ Soil carbon (America) ↓ Carbon storage (R) 2,3 

↓ Plant biomass, height, cover ↓ Coastal protection (R) 
↓ Fisheries (P) 

2,3 

↓ Invertebrate abundance (global) ↓ Fisheries (P) 2 

↔ Invertebrate abundance (US)* ↔ Fisheries (P) 3 

↑ Vertebrate abundance (long-term grazing) ↑ Wildfowling (P,C) 
↑ Birdwatching (C) 

2 

↔ Vertebrate abundance ↔ Wildfowling (P,C) 
↔ Birdwatching (C) 

5 

*Response from adult fiddler crabs in experimental plots only 

 

Management implications 

These results provide evidence for four main management recommendations. 

1. There is no one-size-fits-all optimal grazing regime for salt marshes. Managers 

must take account of local ES demands and conservation priorities. 

2. Plant diversity should not be used as a proxy for overall ecosystem diversity. 

3. Long-term ungrazed marshes are a rare habitat in the UK, and are a valuable 

habitat for bees, therefore these marshes should be protected from any grazing. The 

cover of bee-friendly habitat could be increased by reducing grazing levels in 

intensively grazed marshes. 

4. Grazing in American salt marshes should not be widely practiced, due to the 

impact on globally important stores of ‘blue carbon’. However, the current horse and 

cattle grazing in southeast US is not a major concern, due to its restricted 
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distribution, and apparently minimal impact on saltmarsh fauna, multifunctionality 

and resilience. 

 

6.2 Saltmarsh grazing in context 

Salt marshes are unique as grazing lands, due to their liminal quality – sometimes 

land, sometimes sea. The necessity of removing livestock during spring tides means 

that graziers cannot rely on salt marshes exclusively. Salt marshes can be fickle, 

expanding or contracting over time, and shifting from one side of an estuary to the 

other (Ladd et al. in press). There are natural limits on livestock density: networks of 

creeks often restrict access to large areas of marsh, and the high soil moisture would 

cause soils to become completely churned up under very heavy grazing. Therefore, 

the heaviest levels of grazing recorded in salt marshes (all except two studies in my 

meta-analysis reported ≤2 livestock units ha-1) are lower than levels in other systems 

(2 LSU ha-1 is the average for lowland grazing in England, Natural England 2009; Finch 

et al. 2014 consider >3 LSU ha-1 to be heavy grazing). These relatively limited grazing 

levels may explain why I discovered few trade-offs in Chapter 5, compared to the 

frequent, strong trade-offs between agriculture and other ES reported from 

terrestrial systems (e.g. Alkemade et al. 2013; Petz et al. 2014; Chillo et al. 2016; Holt 

et al. 2016; Johansen et al. 2019). However, it is difficult to fully assess this, as most 

studies report descriptive, relative levels (e.g. extensive and intensive, under-grazed 

and over-grazed) rather than absolute quantitative values such as LSU ha-1. The 

difficulty of quantifying grazing levels in an unfenced rangeland was described in 

Chapter 4, and besides, the carrying capacity of a rangeland will vary depending on 

habitat productivity (Ebrahimi et al. 2010).  

Another factor limiting the impact of grazing on other ES in salt marshes may be the 

lack of agrochemicals in this system. Agrochemicals drive many of the trade-offs 

between agriculture and ES (Holt et al. 2016), but in salt marshes, regular tidal 

flooding contributes to soil fertility and washes off pathogens, meaning 

agrochemicals are rarely applied (Chatters 2004). However, tidal flooding may drive 

negative impacts of saltmarsh grazing on neighbouring coastal waters, by washing off 

animal excrement (S. Thomas, Natural Resources Wales, 16 May 2017, personal 
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communication). Faecal contamination of rivers from terrestrial grazing lands is fairly 

well understood (reviewed by Murphy et al. 2015), but contamination pathways and 

severity for grazed salt marshes have not yet been investigated.  

It is difficult to make generalisations about the effects of grazing on terrestrial 

rangelands, as grazer impacts are moderated by many variables, including grazer 

type and intensity, evolutionary history of grazing, plant diversity, productivity and 

functional traits (Török et al. 2018). Many of the results found in my meta-analysis 

(Chapter 2) – reductions in plant biomass, cover and litter, shifting plant community 

composition, changes to soil structure and function - are consistent with results from 

terrestrial studies (reviewed by Török et al. 2018) and other coastal grasslands (Ford 

et al. 2012b). Terrestrial studies have also shown that the effect of grazers on carbon 

storage is complex, moderated by variables including climate, sediment type and 

plant type (McSherry and Ritchie 2013; Abdalla et al. 2018). However, a clear 

understanding of the factors moderating grazer impacts will only be gained by 

mechanistic study of the processes operating in each system. 

A study of multiple ES supplied by semi-natural grasslands in Norway found that 

sheep grazing had a significant effect on all six measured ES except pollination 

(Johansen et al. 2019). This contrasts with my studies, where the clearest trade-off I 

identified was between grazing and bee habitat (Chapter 4). Studies in terrestrial 

habitats have displayed mixed results of grazing on pollinators (reviewed by Lázaro et 

al. 2016). The strong trade-off in salt marshes may be driven by the functional 

composition of salt marsh plant communities. I found that just two plants supplied 

the vast majority of bee foraging resource – these were both reduced by grazing and 

there were no functionally similar plants to take their place. Usually, plant-pollinator 

networks are more complex, with pollinators relying on a much broader suite of 

flowering plants (Memmott 1999) and this higher diversity in terrestrial systems may 

confer increased functional resilience (Griffin et al. 2009). 

Terrestrial rangelands may gain benefits from grazing that are not present for salt 

marshes. Grazing can suppress encroachment by shrubs and trees (Newton et al. 

2009), and the subsequent loss of the ES associated with open habitats. However, 

the environmental stress of regular tidal flooding restricts the plants that can grow 
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on a salt marsh (Adam 1990), so grazing is not needed to arrest succession here. In 

other circumstances, tidal flooding may mitigate the effects of grazing on salt 

marshes: as well as restricting grazer densities, flooding helps to introduce and 

redistribute organic matter around a salt marsh (Adam 1990). This may explain why 

herbivorous invertebrates are so robust to grazer impacts in highly productive US 

marshes (Chapter 3), while consumers in terrestrial systems are generally suppressed 

by the presence of large herbivores (Daskin and Pringle 2016). 

Environmental stress from tidal flooding will increase with rising sea levels (Gedan et 

al. 2009). Although salt marshes can accrete vertically as sea-levels rise, this capacity 

is dependent on sufficient sediment supply (Kirwan et al. 2016; Schuerch et al. 2018). 

Livestock may interact with this accretion via soil compaction (Chapter 2), but there 

is mixed evidence as to whether this is overall harmful for saltmarsh accretion, by 

reducing elevation (Elschot et al. 2013), or beneficial, by reducing erosion (Pagès et 

al. 2018). The relative importance of grazers relative to sediment supply is unknown, 

but may differ between minerogenic European marshes and organogenic American 

marshes (Bakker et al. 2015). A potentially greater problem is the limited capacity for 

horizontal expansion – many salt marshes may be unable to migrate inland due to 

steep shorelines or coastal infrastructure such as roads and sea walls (Gedan et al. 

2009; Schuerch et al. 2018). This ‘coastal squeeze’ between rising seas and inland 

boundaries will reduce the supply of all saltmarsh ES, including livestock grazing. 

However, the economic value of salt marsh as pastureland provides an extra weapon 

in the armoury to persuade policy-makers to allow inland migration of salt marshes - 

if farmers and landowners can use these tidal lands profitably, they are less likely to 

oppose managed retreat of landward boundaries (Scholte et al. 2016).  

Global warming creates other pressures on salt marshes. Increased storminess, 

precipitation and drought will impact saltmarsh properties, community composition 

and functioning (Gedan et al. 2009; Gabler et al. 2017). It is possible that livestock 

impacts will interact with these other drivers. For example, the increased soil salinity 

with grazing (Chapter 2) may exacerbate the negative effects of drought. As 

temperatures increase, salt marshes at lower latitudes will be replaced by mangroves  

(Gabler et al. 2017). Mangroves are functionally similar for some ES, including carbon 
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sequestration and storage (Chmura et al. 2003; Pidgeon 2009), but offer reduced 

coastal protection (Narayan et al. 2016), and are not useful as grazing land. 

Conversion of mangrove to cattle pasture results in huge reductions in carbon stocks 

(Kauffman et al. 2015), whereas salt marshes can be used for grazing with less severe 

(US) or no (Europe) reductions in carbon stock (Chapters 2 and 3).  

In this thesis I have reported significant impacts of livestock on multiple saltmarsh 

properties. However, there are no reports of a complete loss of saltmarsh vegetation 

with livestock grazing, such as can occur with stress from droughts (McKee et al. 

2004; Silliman et al. 2005), runaway consumer control caused by overharvesting of 

predators (reviewed by Gedan et al. 2009), hydrologic alteration and conversion of 

land (reviewed by Gedan et al. 2009), or natural dynamic processes (Ladd et al. in 

press). Graziers have an invested interest in ensuring that their pastures are not 

overexploited to the point of ecosystem collapse, and livestock grazing does not 

appear to pose such a serious risk to salt marshes and their services as other 

anthropogenic threats. However, questions remain as to whether livestock grazing 

may interact with, and exacerbate, other threats to saltmarsh functioning and 

resilience. 

 

6.3 Reflections on the ecosystem services approach 

Ecologists are increasingly aligning their research with the ES framework, but Root-

Bernstein and Jaksic (2017) argue that this is rarely appropriate, artificially restricts 

questions and methodology, and obscures the interpretation of ecological data. For 

example, due to the ES focus of this thesis, and the intention to study anthropogenic 

impacts, I have considered only domesticated, or formerly domesticated, livestock as 

drivers. I have considered other grazers (e.g. geese, crabs, snails) as responders only 

and have not controlled for or considered them as drivers. However, these smaller 

wild herbivores may have similar, and significant, impacts on saltmarsh properties 

and functioning (He and Silliman 2016). The relative importance of these grazers 

relative to livestock, and potential synergistic effects (e.g. by livestock grazing 

facilitating other forms of grazing), will not be revealed by an ES-focussed approach 

such as this.  
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The ES paradigm brings other challenges for the ecologist. ES are commonly 

categorised into provisioning, regulating, cultural, and, depending on the framework, 

supporting (or habitat) services (MA 2005a; Mace et al. 2011; Boerema et al. 2016; 

Haines-Young and Potschin 2018; TEEB 2019). These categories help to communicate 

the broad variety of ES supplied by nature, and allow analysis of whether some types 

of ES (usually provisioning) are commonly trading-off against other types (e.g. Howe 

et al. 2014). However, these categories oversimply a complex and inter-related 

system. For example, activities such as wildfowling provide meat, but are primarily 

undertaken as recreational pursuits (Paul Leyshon, Morlais Valley Shooting Club, 5 

Dec 2017, personal communication), making them more cultural than provisioning, 

although the balance may change from person-to-person and region-to-region. 

Limitation of ES to a single category (in order to prevent double-counting, for 

example) underplays the myriad benefits that can accrue from a single ES. Cultural 

services, in particular, commonly overlap and interact with other ES categories, 

prompting suggestions to rethink the current approach and introducing new 

terminologies and frameworks such as ‘relational values’ (Chan et al. 2016), ‘non-

material services’ (Small et al. 2017) and ‘nature’s contributions to people’ (Ellis et al. 

2019). There is also the question of how to incorporate biodiversity within the ES 

framework, as I described in the thesis Introduction (Chapter 1). It has been my 

experience that pursuing an ES approach, and the consequent negotiation of 

multiple frameworks, critiques, and conflicting and newly arising terminologies, can 

lead to the expenditure of much intellectual effort considering arbitrary and often 

unnecessary questions of semantics. 

Quantifying ES adequately is particularly challenging. The limitations of economic 

valuation methods have been covered elsewhere (Silvertown 2015; Root-Bernstein 

and Jaksic 2017) and I have demonstrated high variability in the provision of 

individual ES from salt marshes, calling into question the accuracy of land use/land 

cover as a proxy for ES supply. In this thesis I have used various approaches to 

measure or value ES, falling along multiple points of the ES cascade (Fig. 1.1). I have 

variously measured properties (e.g. biomass, soil organic matter), functions (e.g. 

decomposition), potential ES supply (e.g. potential birdwatching value), and realised 

ES supply (number of wildfowl shot). These measures were selected based on the 



Chapter 6: Discussion 

119 
 

availability of data or the ease of collecting primary data, and may not be the most 

accurate or appropriate measures. For example, I classified wildfowling as a 

recreational ES, so the number of wildfowl shot may not be the best measure of this 

service - the number of man hours spent on the marsh, or the number of active club 

members may be more appropriate measures. Due to limited time and resources, ES 

assessments will always be biased towards services that are easily quantified and 

have readily-available data, meaning that some ES are likely to be over-emphasised 

while others with less tangible benefits are neglected (Small et al. 2017). 

Additionally, relating each ecosystem property or function to an ES requires one to 

make assumptions about how these aspects are related, based on relatively limited 

understanding of the underlying ecological and socio-cultural mechanisms. Each 

property or function is likely to feed into multiple ES, and each ES may rely on 

multiple properties or functions (Duncan et al. 2015). Furthermore, the relationships 

between elements on the ES cascade may not be linear – there may be thresholds of 

properties or functions under which no service is delivered (e.g. below a particular 

density of flower cover, it may be inefficient for bees to visit a habitat patch), or 

thresholds of services under which no benefit is delivered (e.g. below a particular 

grazing density, it may be uneconomical for a farmer to keep stock at all). For a true 

assessment of ES trade-offs and ES multifunctionality, the property-function-supply-

benefit relationship, and relevant thresholds, must be derived for every ES (Manning 

et al. 2018). My results have demonstrated that impacts of grazing are clearly 

evident when properties are measured (Chapter 2), but impacts on functions and 

services are harder to detect (Chapters 3 and 5).  

In this thesis I have not undertaken any stakeholder engagement to assess the 

demand for particular ES. Stakeholder engagement is strongly recommended to gain 

a complete understanding of ES provision, accounting for both supply and demand 

(Bennett 2016; Manning et al. 2018). However, it is rarely used in practice (Boerema 

et al. 2016), probably because it is time-consuming and requires inter-disciplinary 

expertise, incorporating social science methods into natural science research. When 

it is undertaken, stakeholder engagement allows services to be weighted according 

to their value for different groups, allowing more meaningful ES-multifunctionality 

measures to be derived (Manning et al. 2018) and recognition of trade-offs and 
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power imbalances between different groups (Howe et al. 2014; Cavender-bares et al. 

2015). However, while stakeholder weightings are informative, they cannot be the 

only means of prioritising ES, as this risks prioritisation of tangible or visible ES over 

intangible or invisible ES, charismatic species over uncharismatic species, local 

benefits over global benefits, and immediate benefits over sustainable supply. For 

these reasons, stakeholder weightings must be used in conjunction with strong 

scientific guidance (Rassweiler et al. 2014). A key value of stakeholder engagement is 

in promoting a two-way flow of information and knowledge between researchers, 

policy-makers and stakeholders (Rassweiler et al. 2014; Beaumont et al. 2017; 

McKinley et al. 2019). This engagement can reduce conflicts, and produce integrated 

management plants with broad stakeholder support (Arkema et al. 2015).  

As described above, the ES approach imposes many restrictions and challenges when 

used for ecological research, and may not always be the best approach when 

addressing ecological questions. However, it does force a consideration of the wider 

social, cultural and economic forces that both react to, and impact on, the natural 

world. Despite criticisms of it encouraging a human-centric view of nature (Monbiot 

2014), a real success of the ES concept has been in communicating the huge benefits 

that all people gain from nature, and in engaging people who do not, and perhaps 

never will, value nature for its own sake. Nature and biodiversity are now recognised 

by world governments as key forces promoting human wellbeing (e.g. in the United 

Nations Sustainable Development Goals and the Well-being of Future Generations 

(Wales) Act 2015). The ES approach can therefore be a very useful tool in engaging 

policy makers and the public in environmental matters. However, the ES approach 

should be used as one tool among many when determining optimal environmental 

management, as human interests - specifically, easily defined and quantified human 

interests - cannot be the only force driving our management of the natural world.  

 

6.4 Future research questions 

This thesis has highlighted many evidence gaps, and a better understanding of 

grazing impacts, saltmarsh ES, and ES in general, would be reached by addressing the 

following key research questions. 
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Ecological questions 

1. What are the linkages between ecosystem properties, ecosystem functions (EFs) 

and ES in US and UK salt marshes? What properties and EFs (or bundles of EFs) are 

required, and at what levels, to provide each ES? A better understanding of these 

links would facilitate better predictions of how alterations to saltmarsh properties, 

including via grazing management, will impact ES supply.  

2. What are the consequences of the observed grazer-driven changes to plant 

community composition for ES provisioning in US and UK salt marshes? This requires 

an assessment of functional traits–EF relationships, rather than simply biodiversity-

EF relationships. 

3. What are the effects of saltmarsh grazing on the marine ecosystem, particularly 

aquatic food-webs and coastal water quality? 

4. What are the effects of saltmarsh grazing on wave attenuation and the provision 

of coastal protection from storms?  

5. How does livestock grazing interact with other stressors, such as sea-level rise, 

drought, and herbivory from wild animals? How will this impact on the long-term 

stability of salt marshes and their ES supply? 

6. How does ES provision vary within (rather than between) other land use/land 

cover (LULC) types? What is the range of variation in ES supply within different LULC 

classes compared to the variation between classes, and are there any consistent 

factors that predict changing provision within a LULC? This knowledge would 

facilitate mapping and modelling of ES across wider landscapes, and provide a 

deeper understanding of the mechanisms driving trade-offs and synergies.  

 

Sociological questions 

1. What is the demand for various saltmarsh ES from stakeholders, and do current 

levels of supply meet demand? Do different groups of stakeholders have differing 

priorities, and do all groups of stakeholders have a voice in shaping management 

priorities and policies? 
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2. Here I have considered grazing exclusively as a provisioning service. To what 

extent does grazing also provide cultural services e.g. heritage value for successive 

generations of farmers, contribution to ‘sense-of-place’, aesthetic appreciation of an 

agricultural landscape (UK) or free-roaming horses (US)? 
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Supplementary methods – Study selection and data extraction 

 

Study selection 

Keyword searches in Scopus and Web of Science were used to identify peer-reviewed 

literature quantifying the effects of livestock grazing on the EPs of salt marshes. We 

retrieved papers published from 1950 to November 2015 containing the terms 

(saltmarsh* OR “salt marsh*” OR salt-marsh OR “salt meadow” OR “coastal marsh”) 

AND (graz* OR herbivor* OR livestock OR cow* OR cattle OR sheep OR horse* OR 

deer) in their title, abstract or keywords. Additionally, the doctoral thesis repository 

EThOS was searched in November 2015 for PhD theses containing these terms.  

 

Only papers published in English, or with a comprehensive English summary, were 

included. Properties were not fixed a priori, to allow the available data to dictate 

what information was extracted. We broadly searched for ecosystem properties 

(EPs) relating to the abiotic (accretion, sedimentation, soil properties, water quality) 

and biotic (vegetation properties, any measure of species richness or abundance) 

environment that may affect ecosystem functioning and service provision. The 

search yielded 1300 records from Scopus and Web of Science and 15 theses from 

EThOS. The title and abstract of each record was examined to determine if they met 

the inclusion criteria. Where this could not be determined from the title and 

abstract, the paper was retained until the next stage of analysis. Following filtration, 

290 references remained which we attempted to retrieve. Where papers were not 

available through institutional subscriptions or inter-library loans, the corresponding 

author was contacted by email. Of these filtered results, 201 were excluded; 150 did 

not meet the inclusion criteria, 26 were published in a foreign language and 25 could 

not be obtained. 

 

The inclusion of grey literature is recommended for systematic reviews, to minimise 

publication bias (Pullin and Stewart 2006; Koricheva et al. 2013). Due to limited 

resources, we were not able to include it here. Many properties assessed in this 

review were reported as contextual environmental data, rather than being the 

primary outcome for their respective studies, so are less likely to be subject to 

reporting bias.  

 

 

Data extraction 

We extracted grazing outcomes (entries) from the figures, tables and text of each 

study. Where the authors investigated EPs at several grazing intensities, data from all 

intensities were included as separate entries, to allow stocking density to be 



Appendix A 

125 
 

investigated as a potential moderator of the grazing effect. Where responses from 

different marsh zones (i.e. pioneer, low, middle, upper) were presented separately, 

and where biotic data were presented separately per functional group (e.g. 

herbivorous invertebrates), these were added as separate entries. Where data were 

collected from multiple depths belowground, and no average value was provided, 

the data from the uppermost layer of soil was included, as this is closest to the 

activity of the grazing livestock. Where EPs were measured over an extended time 

period, and no overall average was provided, only the final measurement was 

extracted. However, when results were presented separately by season, and no year 

average was provided, an overall average and SD for the year was calculated using 

successive iterations of Equation S1 via the StatsToDo computer program (StatsToDo 

2016).  

𝑆𝐷1,2 = √
𝑁1𝑆𝐷1

2+𝑁2𝑆𝐷2
2+𝑁1(𝑋̅1−𝑋̅12)2+𝑁2(𝑋̅2−𝑋̅12)2

𝑁1+𝑁2
   [Eqn. A1] 

Where SD = standard deviation, N = sample size, 𝑋̅= mean, 1 = first dataset, 2 = 

second dataset and 1,2 = combined datasets. 

 

In total, 498 entries for 26 properties were extracted from the 89 included studies 

(Table A1). There were insufficient entries for accretion rate, sedimentation rate and 

vertical elevation change to analyse each separately, so these were grouped together 

under the EP of ‘accretion’. The values for soil carbon included measures of carbon 

concentration, carbon density and soil organic matter. Values for redox potential can 

be negative or positive, making the raw data unsuitable for conversion to an effect 

size using ratios. We therefore rescaled this variable above 0 by adding 300 to each 

mean value (-300 mV is the minimum redox potential in wetland soils, DeLaune and 

Reddy 2005) before calculating the log response ratio (lnRR). 

 

Where possible, study-specific variables were recorded for each entry. Study location 

was noted by site name and country. Moderators related to grazing management 

were recorded: the species of the grazer, the time (in years) since 

introduction/exclusion of grazing and the stocking density (most often reported as 

animals per hectare). Where plots were described as being grazed ‘long term’, this 

was estimated at 100 years. To allow a comparison of stocking density for different 

species, the reported stocking rate was converted into a common metric of livestock 

units per hectare (LSU/ha) using conversion factors (1 cow or horse = 1, 1 pony = 0.5, 

1 deer = 0.3, 1 sheep or goat = 0.12 LSU) based on UK government classifications 

(Welsh Government 2013b; Scottish Government 2016). The dominant plant species 

in ungrazed and grazed areas were noted and classified as Spartina, C3 graminoids, or 

forbs (using Bruhl and Wilson 2007; Atia et al. 2014; Osborne et al. 2014). No plots 
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were dominated by shrubs. Marsh zone was recorded as pioneer, low, middle or 

high. Soil type was recorded as sand or clay. The study type was classified as: artificial 

replication of grazing by clipping or trampling, grazing exclosure, grazing enclosure, 

laboratory study, observation of existing grazed and ungrazed areas, or paired plots 

on either side of a boundary fence. Study type was not tested as a potential 

moderator, as it was strongly correlated with grazing duration: experimental results 

were recorded after a significantly shorter duration of grazing (median=4 y) than 

observational results (median=30 y; Mann-Whitney U test: W=2037.5, p<0.0001). 
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Table A1. Ecosystem properties investigated and list of data sources. CMA = coded meta-analysis, 

WMA = weighted meta-analysis, UMR=unweighted meta-regression. Sources shown in bold were used 

only in the weighted meta-analysis and coded meta-analysis, sources in italics were used only in the 

unweighted meta-regression and coded meta-analysis, sources in square brackets were used only in 

the coded meta-analysis.  

Ecosystem property Entries (studies) Sources 

CMA WMA UMR 

Accretion 

(Inc. elevation change, 

sedimentation) 

13(6) 5(3)  [1], 25, [54], 56, 71, [82] 

Bulk density 27(16) 21(13) 21(13) [5], 20, 25, 28, [33], 40, 50, 52, 56, 

57, 59, 63, 65, 69, [78], 89  

Creek stability 1(1)   [32] 

Redox 

(Values adjusted by +300 to 

rescale above 0) 

12(6) 12(6) 12(6) 18, 24, 33, 65, 78, 85 

pH 9(7) 8(6)  20, [23], 27, 28, 57, 63, 89 

Salinity 23(12) 17(9) 17(9) [6], 19, 21, 26, 28, 33, 50, 58, [78], 

[82], 85, 89 

Soil carbon 

(Inc. soil carbon density, 

concentration & organic matter) 

29(18) 23(14) 27(16) [5], 20, [23], 24, 27, 28, 40, 41, 50, 

52, 56, 57, 59, 63, 65, 69, 85, 89  

Soil strength 4(2)   [41], [64] 

Surface heterogeneity 4(1)   [8] 

Daytime temperature 6(5) 5(4)  28, 57, 58, 85, [89] 

Aboveground biomass 36(20) 26(15) 35(19) 5, 9, 19, 22, 24, 28, 30, 31, [35], 40, 

41, 51, 52, 57, 59, 60, 74, 77, 86, 89 

Belowground biomass 17(12) 14(11) 17(12) 22, 24, 28, 30, 31, 40, 41, 52, 57, 59, 

64, 89 

Canopy height 42(23) 22(14) 54(19) 1, [2], 8, [10], 12, 14, 16, 25, 28, 30, 

33, [35], 39, 41, 49, 58, 61, 63, 67, 

[69], 76, 79, 87 

Flower production 8(2)   [9], [55] 

Litter biomass 17(9) 11(6) 17(9) 5, 19, 24, 28, 52, 60, 61, 74, 89 

Nitrogen content 11(6) 4(3) 11(6) 12, 51, 60, 63, 76, 77 

Percentage cover 

(Or 100% - bare ground) 

28(17) 14(10) 23(15) [1], 4, 6, 21, 22, 31, 32, [34], [35], 41, 

49, 51, 58, 61, 63, 75, 84, 87 

Primary production 5(3)   [28], [52], [74] 

Reproduction 

(Includes number, emergence, 

survival of seedlings) 

3(3)   [6], [9], [37] 

Species richness 64(34) 30(17) 54(26) [5], 6, 7, 8, 9, [10], 11, 15, 21, [23], 

[26], 29, 31, [34], 36, 37, 38, 41, [42], 

49, 51, 57, 60, 61, [62], 63, 66, 72, 75, 

79, [80], 81, 83, 84 

Stem density 6(3)   [10], [14], [76] 

Invertebrate abundance 56(19) 37(13) 42(15) [1], 2, 3, [10], 19, 22, 31, 33, 46, 50, 

59, 60, 61, [65], 69, 73, 79, [78], 85 

Invertebrate richness 19(10) 16(9) 19(10) 1, 2, 29, 46, 58, 59, 61, 73, 79, 85 

Vertebrate abundance 31(15) 13(8) 26(12) [10], 12, 13, 14, 16, 17, 43, [44], [45], 

47, 48, 67, 69, [70], 76, 77 

Vertebrate richness 4(2)   [17], [47] 

Wader nest survival 3(3)   [10], [68], [88] 
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Table A2. Results of weighted meta-analysis of the effect of livestock grazing on Ecosystem Properties. 

n(N) = number of entries (number of studies). 

  

Ecosystem Property n(N) Mean effect 

(lnRR) 

P Cochrane’s 

Q 

Inconsistency 

index (I2) 

Soil properties      

Accretion 5 (3) -0.326 0.318 89.5 95.5 

Bulk density 21 (13) 0.374 0.018 257.2 92.2 

Carbon 23 (14) 0.014 0.907 712.5 96.9 

pH 8 (6) -0.005 0.919 59.0 88.1 

Redox potential 12 (6) -0.438 0.028 154.7 92.9 

Salinity 17 (9) 0.219 0.017 38.4 58.3 

Daytime temperature 5 (4) 0.122 <0.001 34.0 88.2 

Vegetation properties    

AGB 26 (15) -1.113 <0.0001 2717.7 99.1 

BGB 14 (11) 0.318 0.194 191.9 93.2 

Cover 14 (10) -0.141 0.028 191.4 93.2 

Height 22 (14) -0.957 <0.0001 2913.4 99.3 

Litter 10 (5) -1.403 0.028 76.2 88.2 

Nitrogen content 4 (3) 0.116 0.205 11.6 74.1 

Richness 30 (17) 0.299 0.013 1187.6 97.6 

Fauna properties    

Invertebrate abundance 37 (13) -0.319 0.204 436.2 91.7 

- Benthos only 12 (6) -0.166 0.722 219.3 95.0 

- Detritivores only 11 (4) -0.312 0.504 110.9 91.0 

- Herbivores only 9 (3) -1.429 0.030 92.7 91.4 

- Predators only 10 (5) -0.071 0.579 16.4 45.3 

Invertebrate richness 16 (9) -0.153 <0.0001 71.2 78.9 

Vertebrate abundance 13 (8) 0.334 0.209 210.9 94.3 

- Goose 

abundance 

8 (4) 0.388 0.339 108.9 93.6 
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Table A3. Results of all regression analyses.  n(N) = number of entries (number of studies); df, F and P 

show results of ANOVA; FDR-P = False Discovery Rate-adjusted P value; Marg R2 = proportion of 

variance explained by fixed moderator; Cond R2 = proportion of variance explained by fixed moderator 

and random terms. P values < 0.05 are highlighted in bold. For continuous moderators, the model 

intercept (b), estimate (m) and standard error (SE) are given. Moderators (‘Mod’): stocking density 

(‘LSU’; livestock units per hectare), duration of grazing at site (‘D’; years), grazer identity (‘G’; artificial, 

cow, sheep, mixed, other), location of study (‘C’; America, Europe); dominant vegetation type tested 

for European studies (‘V’; forbs, graminoids). Functional group (‘FG’) was also tested for invertebrate 

abundance (benthic invertebrate, herbivore, predator, detritivore) and vertebrate abundance (goose, 

wader).   

Ecosystem 

Property 

Mod n(N) df F P FDR-P Marg 

R2 

Cond 

R2 

b m (SE) 

Bulk 

density* 

LSU 

D 

G 

C 

18(10) 

20(13) 

20(13) 

21(13) 

1,7.0 

1,10. 

3,6.4 

1,7.6 

0.00 

0.18 

2.31 

0.06 

0.957 

0.677 

0.170 

0.820 

0.957 

0.957 

0.680 

0.957 

0.00 

0.02 

0.40 

0.00 

0.98 

0.98 

0.98 

0.98 

0.42 

0.29 

 

 

-0.00 (0.09) 

0.01 (0.01) 

 

 

Soil carbon* LSU 

D 

G 

C 

19(11) 

23(14) 

24(14) 

27(16) 

1,15.1 

1,8.9 

2,4.9 

1,14.8 

0.36 

0.27 

1.31 

9.06 

0.555 

0.618 

0.349 

0.009 

0.618 

0.618 

0.618 

0.036 

0.01 

0.02 

0.20 

0.33 

0.76 

0.73 

0.73 

0.87 

-0.07 

0.08 

0.08 (0.14) 

-0.00 (0.00) 

Redox* 

 

D 

G 

12(6) 

10(5) 

1,3.7 

2,4.9 

0.02 

3.81 

0.898 

0.100 

0.898 

0.200 

0.00 

0.54 

0.90 

0.86 

-0.45 

 

-0.00 (0.02) 

Salinity* 

 

LSU 

D 

G 

C 

14(7) 

16(8) 

15(8) 

17(9) 

1,11.0 

1,7.1 

1,7.5 

1,7.1 

5.84 

0.04 

0.15 

4.61 

0.034 

0.846 

0.713 

0.068 

0.136 

0.846 

0.846 

0.136 

0.33 

0.00 

0.01 

0.25 

0.32 

0.35 

0.37 

0.33 

0.78 

0.21 

-0.63 (0.26) 

-0.00 (0.01) 

AGB LSU 

D 

G 

C 

V 

18(10) 

29(15) 

32(17) 

35(19) 

14(7) 

1,15.4 

1,17.2 

4,16.7 

1,21.8 

1,12.0 

7.76 

1.56 

0.79 

0.56 

1.56 

0.014 

0.229 

0.550 

0.462 

0.236 

0.070 

0.393 

0.550 

0.550 

0.393 

0.32 

0.06 

0.12 

0.02 

0.11 

0.81 

0.19 

0.31 

0.18 

0.11 

-0.43 

-0.86 

-0.70 (0.25) 

-0.02 (0.01) 

BGB* LSU 

D 

G 

10(7) 

11(8) 

14(9) 

1,2.0 

1,6.0 

2,5.9 

10.14 

2.24 

6.25 

0.085 

0.186 

0.035 

0.128 

0.186 

0.105 

0.01 

0.27 

0.59 

0.99 

0.99 

0.95 

0.65 

0.14 

-0.11 (0.03) 

0.02 (0.02) 

 

Vegetation 

cover 

LSU 

D 

G 

C 

V 

14(8) 

14(8) 

23(15) 

22(14) 

10(7) 

1,11.0 

1,3.6 

2,7.8 

1,11.5 

1,3.3 

3.31 

2.57 

2.45 

0.09 

9.87 

0.096 

0.193 

0.149 

0.771 

0.045 

0.240 

0.241 

0.241 

0.771 

0.225 

0.18 

0.21 

0.48 

0.01 

0.21 

0.79 

0.98 

0.97 

0.97 

0.95 

0.00 

0.08 

-0.17 (0.10) 

-0.02 (0.01) 

Canopy 

height* 

LSU 

D 

G 

V 

32(16) 

24(12) 

37(18) 

19(10) 

1,22.4 

1,6.6 

2,9.3 

1,7.7 

12.91 

6.28 

0.41 

0.19 

0.002 

0.043 

0.674 

0.679 

0.008 

0.086 

0.679 

0.679 

0.28 

0.22 

0.04 

0.03 

0.50 

0.32 

0.52 

0.88 

-0.14 

-0.43 

-1.00 (0.28) 

-0.03 (0.01) 

Litter 

biomass* 

 

LSU 

D 

G 

C 

12(7) 

16(8) 

14(7) 

17(9) 

1,8.9 

1,6.6 

2,2.4 

1,6.3 

0.19 

5.73 

1.08 

1.84 

0.677 

0.051 

0.463 

0.222 

0.677 

0.204 

0.617 

0.444 

0.01 

0.37 

0.25 

0.18 

0.57 

0.66 

0.72 

0.69 

-1.33 

-0.52 

-0.32 (0.73) 

-0.05 (0.02) 

Nitrogen 

content* 

D 

G 

11(6) 

11(6) 

1,9.0 

2,2.3 

0.63 

0.01 

0.446 

0.994 

0.892 

0.994 

0.06 

0.00 

0.06 

0.66 

0.12 -0.00 (0.00) 

Vegetation 

richness 

LSU 

D 

G 

C 

V 

29(16) 

46(20) 

52(24) 

54(26) 

23(14) 

1,25.3 

1,12.5 

2,15.6 

1,31.3 

1,21.0 

0.91 

1.69 

0.40 

0.77 

5.05 

0.350 

0.217 

0.678 

0.388 

0.036 

0.485 

0.485 

0.678 

0.485 

0.180 

0.02 

0.05 

0.02 

0.02 

0.19 

0.59 

0.18 

0.68 

0.15 

0.19 

0.31 

0.24 

-0.15 (0.16) 

-0.00 (0.00) 
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Invert 

abundance* 

LSU 

D 

G 

C  

FG 

30(9) 

31(10) 

39(13) 

42(15) 

34(12) 

1,12.9 

1,13.6 

2,9.1 

1,10.3 

3,21.6 

0.55 

4.60 

2.18 

0.05 

0.15 

0.472 

0.051 

0.169 

0.827 

0.135 

0.590 

0.255 

0.282 

0.827 

0.282 

0.01 

0.15 

0.13 

0.00 

0.15 

0.55 

0.44 

0.51 

0.42 

0.15 

-0.50 

-0.13 

-0.27 (0.36) 

-0.04 (0.02) 

Invert 

richness 

LSU 

D 

G 

C 

V 

15(7) 

11(5) 

16(8) 

19(10) 

10(6) 

1,10.0 

1,9.0 

1,4.9 

1,17.0 

1,8.0 

0.29 

0.00 

0.15 

0.36 

1.31 

0.603 

0.963 

0.712 

0.556 

0.286 

0.890 

0.963 

0.890 

0.890 

0.890 

0.03 

0.00 

0.01 

0.02 

0.13 

0.03 

0.00 

0.05 

0.02 

0.13 

-0.22 

-0.37 

-0.11 (0.21) 

0.00 (0.01) 

Vertebrate 

abundance* 

LSU 

D 

G 

C 

FG 

15(7) 

13(7) 

22(10) 

26(12) 

18(7) 

1,11.0 

1,6.5 

1,3.9 

1,3.7 

1,4.3 

0.35 

5.79 

0.98 

0.59 

0.58 

0.568 

0.050 

0.381 

0.488 

0.486 

0.568 

0.250 

0.568 

0.568 

0.568 

0.03 

0.22 

0.08 

0.03 

0.05 

0.03 

0.70 

0.31 

0.27 

0.28 

0.99 

0.13 

-0.49 (0.82) 

0.04 (0.01) 

* Some moderators not tested due to lack of data 
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Figure A1.  

Forest plots and funnel plots for all ecosystem properties. In funnel plots, larger, 

more precise studies (i.e. with a small standard error) appear towards the top of the 

graph. Where there is pronounced asymmetry, e.g. all small studies report strongly 

negative effects, this indicates publication bias, perhaps because smaller studies 

without statistically significant effects were not published. In these analyses, there 

were indications that the smaller studies (those with a larger standard error) had a 

bias towards reporting negative results for plant cover, plant richness and redox.  
 

a) Aboveground biomass 

 
b) Belowground biomass 

 
c) Plant cover 
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d) Canopy height 

 
e) Litter 

 
f) Nitrogen content 

 
g) Plant richness 

 
h) Accretion 
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i) Bulk density 

 
j) Soil carbon 

 
k) pH  

 
l) Redox 
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m) Salinity 

 
n) Soil temperature 

 
o) Invertebrate abundance  

 
p) Invertebrate richness 

 
q) Benthos abundance 
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r) Predator abundance  

 
s) Detritivore abundance 

 
t) Herbivore abundance 

 
u) Vertebrate abundance 

 
 

Fig. A1. Forest plots (left) and funnel plots (right) for each Ecosystem Property (a – u, indicated above 

graph). 
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Figure A2.  

Results of coded meta-analysis. 

 

 

 
 

 

 

a) 

b) 

c) 
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Fig. A2. Count of entries reporting response of ecosystem properties to grazing for a) soil properties, 

b) vegetation properties, c) fauna properties, d) invertebrates by functional group and e) vertebrates 

by clade. Changes classified as significantly (sig.) positive, positive, no change, negative or sig. 

negative.  

  

e) 

d) 
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Figure A3.  

Ecosystem Properties for which the grazing effect is moderated by grazing 

management (stocking density, duration, identity of grazer), identified using linear 

regression analysis (moderators significant at P<0.05). 
 

 
Fig. A3. Predicted moderating effects of stocking density (livestock units per hectare) on a) salinity and 

b) aboveground biomass; duration of grazing on c) canopy height and d) vertebrate abundance; and e) 

grazer identity on belowground biomass, with 95% Prediction Intervals.  
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Figure A4 

Ecosystem Properties for which the grazing effect is moderated by dominant 

vegetation type (analysed for European studies only), identified using linear 

regression analysis (moderators significant at P<0.05). 

 

 
Fig. A4. Predicted moderating effects of grazing on a) percentage cover, and b) plant richness in 

different vegetation types in European salt marshes, with 95% Prediction Intervals.  
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Table B1. Visual indicators used to allocate qualitative grazing levels. Each descriptor is not absolute, 

but was used in combination and alongside information from site managers to allocate the best 

representative grazing level to each marsh. 

Indicator 0: Ungrazed 1: Lightly grazed 2: Moderately grazed 3: Heavily grazed 

Animal presence None Area accessible to animals 

but no more than a few 

animals present 

Small band (e.g. 5-10) 

present 

Many animals (>10 

horses) present 

Droppings None Infrequently seen Commonly seen Abundant across area 

Damage to 

ground 

None Hoofprints rarely seen. 

Very little bare ground 

Hoofprints/poaching 

commonly seen. Some 

bare ground 

Ground is badly 

poached. Areas of bare 

ground common 

Sward height and 

damage to 

vegetation 

Sward is long with 

complex structure, 

no visible cropping 

Majority of sward is long 

with complex structure, 

little visible cropping (i.e. 

few blunt ends to grass) 

Sward is moderate 

length, or a matrix of 

short and longer areas, 

with some visibly 

cropped areas 

Majority of vegetation 

cropped to a short, 

uniform sward 
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Table B2. Effect of grazing on ecosystem properties in observational survey. Results of (generalised) 

linear mixed models to test the effect grazing on multiple ecosystem properties. Coefficients (coef) 

and standard errors (SE) are given both for the original modelled scale and for models using 

standardised Z-transformed data (Z-coef). Coefficients for ‘Grazed’ and ‘Season’ show the effect of 

grazing relative to ungrazed, and spring relative to fall. All models were fitted with a random effect of 

marsh nested in site. Marginal (Marg) R2 values relate to fixed effects only, Conditional (Cond) R2 

values relate to fixed + random effects. 

M
o

d
e

l Response Fixed effects χ2 df P Coef ± SE Z-coef ± SE n Marg 

R2 

Cond 

R2 

1 Salinity Grazed (U, G) 

Creek distance 

Latitude 

0.27 

1.17 

1.19 

1 

1 

1 

0.603 

0.249 

0.275 

0.06 ± 2.96 

0.02 ± .02 

0.75 ± .89 

0.009  .446 

0.099  .085 

0.316  .377 

71 0.059 0.534 

2 pH Grazed (U, G) 

Creek distance 

Latitude 

0.45 

0.42 

4.88 

1 

1 

1 

0.500 

0.517 

0.027 

0.08 ± .13 

0.001 ± .001 

0.08 ± .04 

0.220  .347 

0.062  .099 

0.583  .283 

71 0.170 0.334 

3 (Log) Redox 

(+400 to make 

+ve) 

Grazed (U, G) 

Season 

Creek distance 

Latitude 

0.04 

12.66 

0.25 

0.27 

1 

1 

1 

1 

0.851 

<0.001 

0.619 

0.606 

0.13 ± .21 

-0.82 ± .21 

-0.001 ± .001 

-0.01 ± .05 

0.182  .287 

-1.123  .286 

-0.030  .052 

-0.035  .206 

141 0.291 0.653 

4 (Log) Soil 

organic carbon 

0-15cm 

(% by mass) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

5.90 

0.21 

6.84 

3.67 

1 

1 

1 

1 

0.016 

0.650 

0.009 

0.055 

-0.80 ± .330 

0.07 ± .179 

-0.003 ± .001 

0.123 ± .068 

-0.744  .307 

0.065  .167 

-0.100  .039 

0.311  .171 

150 0.254 0.793 

4.i (Log) Soil 

organic carbon 

0-5cm 

(% by mass) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

2.73 
0.10 
1.02 
3.40 

1 
1 
1 
1 

0.099 
0.752 
0.312 
0.065 

-0.45 ± .292 
0.05 ± .171 
-0.00 ± .001 
0.123 ± .070 

 150 0.190 0.746 

4.ii (Log) Soil 

organic carbon 

5-15cm 

(% by mass) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

7.54 
0.05 
13.5 
1.11 
 

1 
1 
1 
1 

0.006 
0.816 
<0.001 
0.292 
 

-0.81 ± .291 
0.03 ± .158 
-0.00 ± 0.001 
0.05 ± 0.054 

 150 0.223 0.804 

5 Sand content in 

soil 

(%) 

Grazed (U, G) 

Season 

Creek distance 

Latitude 

5.98 

2.25 

6.17 

2.02 

1 

1 

1 

1 

0.014 

0.133 

0.013 

0.155 

16.73 ± 7.02 

-10.10 ± 6.64 

0.10 ± .04 

2.60 ± 1.97 

0.922  .387 

-0.556  .365 

0.206  .079 

0.388  .295 

82 0.281 0.695 

6 Clay content in 

soil 

(%) 

Grazed (U, G) 

Season 

Creek distance 

Latitude 

4.56 

7.33 

3.70 

1.54 

1 

1 

1 

1 

0.033 

0.007 

0.055 

0.214 

-13.21 ± 6.62 

15.23 ± 4.95 

-0.05 ± .03 

-2.28 ± 1.99 

-0.902  .452 

1.039  .338 

-0.141  .073 

-0.423  .368 

82 0.274 0.757 

7 Living veg cover 

(%) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

6.61 

2.31 

6.07 

3.34 

1 

1 

1 

1 

0.010 

0.128 

0.014 

0.068 

-18.47 ± 7.23 

-6.66 ± 4.47 

-0.07 ± .03 

2.93 ± 1.65 

-0.707  .277 

-0.255  .171 

-0.089  .036 

0.314  .177 

300 0.236 0.666 

8 Veg richness Grazed (U, G) 

Season 

Creek distance 

Latitude 

1.20 

0.20 

0.37 

0.47 

1 

1 

1 

1 

0.274 

0.655 

0.546 

0.492 

0.14 ± .11 

-0.04 ± .10 

0.001 ± .001 

-0.02 ± .03 

0.301  .230 

-0.085  .205 

0.041  .053 

-0.097  .183 

308 0.034 0.280 
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Table B2 cont. 

M
o

d
e

l Response Fixed effects χ2 df P Coef ± SE Z-coef ± SE n Marg 

R2 

Cond 

R2 

9
 

Spartina cover 

(Binomial 

GLMM:  

1 = 100% 

Spartina,  

0 = <100% 

Spartina) 

Grazed (U, G) 

Season 

Creek distance 

Latitude 

1.48 

0.11 

1.43 

0.35 

1 

1 

1 

1 

0.224 

0.736 

0.232 

0.556 

-0.84 ± .65 

0.22 ± .62 

-0.006 ± .005 

0.11 ± .19 

 306 0.043 0.344 

10 (Log) Stem 

height 

(cm) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

14.87 

17.03 

14.25 

0.27 

1 

1 

1 

1 

<0.001 

<0.0001 

<0.001 

0.601 

-0.84 ± .21 

-0.47 ± .11 

-0.003 ± .001 

-0.02 ± .04 

-1.081  .262 

-0.603  .144 

-0.114  .030 

-0.072  .157 

301 0.389 0.782 

11 (Log) Stem 

density 

(stems per 

0.09m2) 

Grazed (U, G) 

Creek distance 

Latitude 

12.65 

3.64 

13.08 

1 

1 

1 

<0.001 

0.056 

<0.001 

0.60 ± .15 

0.003 ± .001 

0.19 ± .04 

0.864  .223 

0.128  .068 

0.771  .174 

72 0.554 0.664 

12 (Log) Root 

biomass 

0-15cm 

(% by mass) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

3.13 

0.90 

1.84 

14.62 

1 

1 

1 

1 

0.077 

0.343 

0.175 

<0.001 

-0.41 ± .24 

0.12 ± .13 

-0.001 ± .001 

0.24 ± .05 

-0.390  .231 

0.113  .128 

-0.040  .030 

0.616  .133 

150 0.501 0.869 

13 (Log) 

Periwinkle 

density 

(snails per 

0.09m2) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

0.14 

1.13 

17.70 

0.97 

1 

1 

1 

1 

0.712 

0.287 

<0.0001 

0.325 

0.08 ± .26 

-0.19 ± .19 

0.005 ± .001 

-0.05 ± .05 

0.087  .274 

-0.195  .197 

0.181  .043 

-0.137  .146 

302 0.071 0.516 

14 (Log) Juvenile 

fiddler crab 

density 

(burrows per 

0.09m2) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

0.02 

1.31 

1.50 

1.70 

1 

1 

1 

1 

0.887 

0.252 

0.221 

0.192 

0.04 ± .31 

-0.29 ± .21 

-0.002 ± .001 

-0.08 ± .07 

0.032  .275 

-0.260  .190 

-0.053   

.042 

-0.209  .183 

302 0.079 0.525 

15 (Log) Adult 

fiddler crab 

density 

(burrows per 

0.09m2) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

1.51 

1.02 

16.02 

20.08 

1 

1 

1 

1 

0.219 

0.313 

<0.0001 

<0.0001 

-0.19 ± .17 

-0.17 ± .15 

-0.004 ± .001 

-0.19 ± .03 

-0.217  .185 

-0.189  .164 

-0.161  .040 

-0.603  .102 

302 0.416 0.586 

16 (Log) 

Mud/sesarma 

crab density 

(burrows per 

0.09m2) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

0.28 

0.61 

13.51 

0.02 

1 

1 

1 

1 

0.595 

0.434 

<0.001 

0.899 

-0.06 ± .11 

-0.08 ± .09 

-0.002 ±  

.001 

-0.001 ± .021 

-0.132  .264 

-0.194  .214 

-0.182  .049 

-0.008  .143 

302 0.045 0.663 

17 (Log) Mussel 

density 

(mussels per 

m2) 

Grazed (U, G) 

Season  

Creek distance 

Latitude 

0.14 

0.45 

0.63 

0.23 

1 

1 

1 

1 

0.705 

0.501 

0.428 

0.635 

-0.10 ± .28 

-0.14 ± .24 

-0.001 ± .002 

0.03 ± .05 

-0.096  .261 

-0.136  .219 

-0.042  .051 

0.066  .142 

303 0.010 0.347 
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Table B3. Effect of grazing intensity on ecosystem properties in observational survey. Results of 

(generalised) linear mixed models to test the effect grazing intensity on multiple ecosystem 

properties. Pairwise P-values were calculated using Tukeys HSD test. In pairwise comparisons of 

ungrazed (U), lightly (L), moderately (M) and heavily (H) grazed marshes, ‘>’ and ‘<’ indicate that the 

direction of effect was significant, whereas ‘≥’ and ‘≤’ indicate that the direction of effect was not 

significant. Significant predictors and contrasts are highlighted in bold. All models were fitted with a 

random effect of marsh nested in site. Marginal (Marg) R2 values relate to fixed effects only, 

Conditional (Cond) R2 values relate to fixed + random effects. 

M
o

d
e

l 

Response Fixed effects χ2 df P n Marg 
R2 

Cond 
R2 

Pairwise contrasts 

Effect  P   

1 Salinity Grazing intensity  
Creek distance 
Latitude 

0.45 
1.58 
1.03 

3 
1 
1 

0.930 
0.208 
0.311 

71 0.060 0.568 
 

  

2 pH Grazing intensity 
Creek distance 
Latitude 

1.92 
0.22 
3.63 

3 
1 
1 

0.590 
0.636 
0.057 

71 0.192 0.384 
 

  

3 (Log) Redox 
(+400 to make 
positive) 

Grazing intensity  
Season 
Creek distance 
Latitude 

0.67 
12.25 
0.25 
0.33 

3 
1 
1 
1 

0.879 
<.001 
0.619 
0.564 

141 0.295 0.656 
 

  

4 (Log) Soil organic 
carbon 
0-15cm 
(% by mass) 

Grazing intensity  
Season  
Creek distance 
Latitude 

7.14 
0.05 
6.92 
4.28 

3 
1 
1 
1 

0.068 
0.827 
0.009 
0.039 

150 0.269 0.814 
  

4.i (Log) Soil organic 
carbon 
0-5cm 
(% by mass) 

Grazing intensity  
Season  
Creek distance 
Latitude 

2.92 
0.09 
1.02 
3.38 

3 
1 
1 
1 

0.404 
0.768 
0.313 
0.066 

150 0.203 0.752   

4.ii (Log) Soil organic 
carbon 
5-15cm 
(% by mass) 

Grazing intensity  
Season  
Creek distance 
Latitude 

8.09 
0.09 
13.62 
1.33 

3 
1 
1 
1 

0.044 
0.768 
<.001 
0.250 

150 0.207 0.822 U ≥ L 
U ≥ M 
U ≥ H 
L ≥ M 
L ≤ H 
M ≤ H 

0.329 
0.213 
0.618 
0.999 
0.976 
0.798 

5 Sand content in 
soil 
(%) 

Grazing intensity 
Season  
Creek distance 
Latitude 

7.24 
1.72 
6.01 
2.70 

3 
1 
1 
1 

0.065 
0.190 
0.014 
0.100 

82 0.282 0.712 
 

  

6 Clay content in 
soil 
(%) 

Grazing intensity 
Season 
Creek distance 
Latitude 

6.06 
5.97 
3.55 
1.91 

3 
1 
1 
1 

0.109 
0.015 
0.060 
0.167 

82 0.277 0.768 
 

  

7 Living veg cover 
(%) 

Grazing intensity 
Season  
Creek distance 
Latitude 

6.71 
0.97 
6.04 
2.98 

3 
1 
1 
1 

0.082 
0.326 
0.014 
0.084 

300 0.231 0.671 
 

  

8 Veg richness Grazing intensity 
Season 
Creek distance 
Latitude 

2.39 
0.02 
0.37 
0.80 

3 
1 
1 
1 

0.495 
0.886 
0.546 
0.371 

308 0.031 0.282 
 

  

9 Spartina cover 
(Binomial model: 
100%, not 100%) 

Grazing intensity 
Season 
Creek distance 
Latitude 

2.34 
0.04 
1.33 
0.57 

3 
1 
1 
1 

0.506 
0.845 
0.249 
0.451 

306 0.047 0.346 
 

  

  



Appendix B 

150 
 

Table B3 cont. 

M
o

d
e

l 

Response Fixed effects χ2 df P n Marg 
R2 

Cond 
R2 

Pairwise contrasts 

Effect  P   

10 (Log) Stem height 
(cm) 

Grazing intensity 
Season  
Creek distance 
Latitude 

19.3
1 
3.66 
13.2
7 
1.40 

3 
1 
1 
1 

<.001 
0.056 
<.001 
0.237 

301 0.389 0.782 U ≥ L 
U > M 
U > H 
L ≥ M 
L ≥ H 
M ≥ H 

0.081 
0.001 
<0.001 
0.461 
0.133 
0.543 

11 (Log) Stem 
density 
(stems per 
0.09m2) 

Grazing intensity 
Creek distance 
Latitude 

14.8 
3.33 
7.72 

3 
1 
1 

0.002 
0.068 
0.005 

72 0.595 0.711 U ≤ L 
U < M 
U ≤ H 
L ≤ M 
L < H 
M ≤ H 

0.992 
0.041 
0.052 
0.353 
0.238 
0.621 

12 (Log) Root 
biomass 
0-15cm 
(% by mass) 

Grazing intensity 
Season  
Creek distance 
Latitude 

3.81 
1.35 
1.84 
14.6 

3 
1 
1 
1 

0.282 
0.246 
0.175 
<.001 

150 0.502 0.867 
 

  

13 (Log) Periwinkle 
density 
(snails per 
0.09m2) 

Grazing intensity  
Season  
Creek distance 
Latitude 

0.28 
0.84 
17.6 
0.69 

3 
1 
1 
1 

0.965 
0.361 
<.0001 
0.406 

302 0.072 0.532 
 

  

14 (Log) Juvenile 
fiddler crab 
density 
(burrows per 
0.09m2) 

Grazing intensity 
Season  
Creek distance 
Latitude 

1.39 
1.10 
1.40 
1.91 

3 
1 
1 
1 

0.708 
0.294 
0.237 
0.168 

302 0.086 0.539 
 

  

15 (Log) Adult fiddler 
crab density 
(burrows per 
0.09m2) 

Grazing intensity 
Season  
Creek distance 
Latitude 

6.37 
0.15 
14.5 
23.4 

3 
1 
1 
1 

0.095 
0.697 
<.001 
<.0001 

302 0.436 0.574 
 

  

16 (Log) 
Mud/sesarma 
crab density 
(burrows per 
0.09m2) 

Grazing intensity 
Season  
Creek distance 
Latitude 

6.64 
0.21 
13.2 
1.20 

3 
1 
1 
1 

0.084 
0.643 
<.001 
0.274 

302 0.137 0.424 
 

  

17 (Log) Mussel 
density 
(mussels per m2) 

Grazing intensity 
Season 
Creek distance 
Latitude 

0.21 
0.48 
0.63 
0.28 

3 
1 
1 
1 

0.975 
0.488 
0.427 
0.597 

303 0.011 0.366 
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Table B4. Baseline comparisons, control vs experimental plots. Results of linear (mixed) models to test 

whether control (grazed) and experimental (ungrazed) plots differed at T=0. Significant predictors are 

highlighted in bold. Where treatment was found to be significant, I have shown the coefficient (coef) 

of the effect of treatment relative to a baseline value of control grazed. 
M

o
d

e
l 

Response T Predictors F df P n Coef ± S.E. 

i Elevation (cm) 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.815 

2.998 

1 

7 

0.397 

0.085 

16 
 

ii Salinity (ppt) 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.750 

8.234 

1 

7 

0.227 

0.006 

16 
 

iii pH 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.452 

5.743 

1 

7 

0.523 

0.017 

16 
 

iv (Log) Soil organic 

carbon (%) 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.187 

47.829 

1 

7 

0.312 

<.0001 

16 
 

v Proportion of 

Spartina 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.595 

12.795 

1 

7 

0.247 

0.002 

16 
 

vi Proportion of 

Salicornia 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

3.755 

15.146 

1 

7 

0.094 

0.001 

16 
 

vii Proportion of 

Distichlis 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.000 

9.143 

1 

7 

0.351 

0.005 

16 
 

viii Stem height (cm) 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

6.503 

33.214 

1 

7 

0.038 

<.0001 

16 -1.25 ± 0.49 

ix Stem density 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.026 

1.706 

1 

7 

0.875 

0.249 

16 
 

x (Log) Root biomass 

(%) 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.285 

18.176 

1 

7 

0.294 

0.001 

16 
 

xi Periwinkle snail 

density 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.668 

7.908 

1 

7 

0.441 

0.007 

16 
 

xii Juvenile fiddler 

crab density 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.046 

7.917 

1 

7 

0.836 

0.007 

16 
 

xiii Adult fiddler crab 

density 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

1.939 

0.943 

1 

7 

0.206 

0.530 

16 
 

xiv Large crab density 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.180 

2.231 

1 

7 

0.685 

0.156 

16 
 

xv Mussel mound 

density 

0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.368 

9.053 

1 

7 

0.536 

0.005 

16 
 

xvi Hoofprint density 0 Treatment (grazed, ungrazed) 

Pair (8 pairs) 

0.059 

7.656 

1 

8 

0.815 

0.008 

16 
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Table B5. Baseline comparisons, control vs reference points. Results of linear (mixed) models to test 

whether control (grazed) plots and unmarked reference points (grazed ref) differed at T=0 and T=7/18 

months. For models that combined data from T=7 and T=18 months, I used plot as a random effect to 

control for repeated measures. Significant predictors are highlighted in bold. Where treatment was 

found to be significant, I have shown the coefficient (coef) of the effect of treatment relative to a 

baseline value of control grazed. 

M
o

d
e

l 

Response T Predictors F df P n Coef ± SE 

I Elevation (cm) 0 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.000 

0.169 

1 

1 

0.989 

0.689 

14 
 

II Living plant cover 

(%) 

18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

1.000 

0.042 

1 

1 

0.335 

0.843 

38 
 

IIIa Dead plant cover 

(%) 

0 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.224 

2.045 

1 

1 

0.645 

0.181 

14 
 

IIIb Dead plant cover 

(%) 

18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.010 

0.217 

1 

1 

0.924 

0.650 

38 
 

IVa Stem height (cm) 0 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.061 

2.862 

1 

1 

0.810 

0.120 

14 
 

IVb Stem height (cm) 7+18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

5.435 

5.116 

1 

1 

0.031 

0.043 

52 +5.73 ± 2.46 

IVc Stem height (cm) 

(excluding die-off) 

7+18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

3.977 

14.977 

1 

1 

0.064 

0.002 

42 
 

Va Stem density 0 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.138 

19.297 

1 

1 

0.718 

0.001 

14 
 

Vb Stem density 7+18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

0.781 

0.478 

1 

1 

0.394 

0.503 

52 
 

VI Proportion of 

stems bitten 

7+18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

1.934 

1.636 

1 

1 

0.171 

0.208 

48 
 

VIIa Hoofprint density 0 Treatment (grazed, grazed ref) 

Site (DM, RK) 

1.040 

0.462 

1 

1 

0.330 

0.511 

14 
 

VIIb (Log) Hoofprint 

density 

7+18 Treatment (grazed, grazed ref) 

Site (DM, RK) 

2.190 

10.106 

1 

1 

0.161 

0.010 

52 
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Table B6. Effect of grazing on ecosystem properties after 18 months. Results of linear mixed models to 

test whether control (grazed) and experimental (ungrazed) plots differed at T=18. Significant 

predictors are highlighted in bold. FDR-P shows P-values that have been adjusted for multiple 

comparisons using the false discovery rate (Benjamini and Hochberg 1995). Coefficients are for the 

effect of removing grazers relative to the grazed control. We give coefficients (coef) and standard 

errors (SE) both for the original modelled scale and for models using standardised Z-transformed data 

(Z-coef). Marginal (Marg) R2 values relate to fixed effects only, Conditional (Cond) R2 values relate to 

fixed + random effects. All models were fitted with the fixed effect of treatment (grazed, ungrazed) 

and a random effect of pair. All models had n=48 and df=1,39. 

M
o

d
e

l 

Response F P FDR-P Coef ± SE Z-coef ± SE Marg 

R2 

Cond 

R2 

1 Elevation 2.211 0.145 0.350 -1.280 ± 0.861 -0.242 ± 0.163 0.015 0.691 

3 Salinity 0.104 0.749 0.862 -0.208 ± 0.646 -0.045 ± 0.138 0.001 0.556 

4 pH 2.125 0.153 0.350 0.179 ± 0.123 0.378 ± 0.26 0.026 0.416 

5 Redox 1.846 0.182 0.364 26.06 ± 19.18 0.258 ± 0.19 0.025 0.369 

6 (Log) SOC 1.127 0.295 0.459 -0.065 ± 0.061 -0.104 ± 0.098 0.003 0.890 

6a (Log) SOC (0-5cm) 3.767 0.060 0.177 -0.125 ± 0.065 -0.234 ± 0.121 0.013 0.835 

6b (Log) SOC (5-15cm) 0.041 0.840 0.862 0.016 ± 0.077 0.021 ± 0.104 0.000 0.877 

7 Sand content 1.518 0.225 0.381 -2.917  2.367 -0.182 ± 0.148 0.007 0.797 

8 Clay content 0.226 0.637 0.784 1.042  2.192 0.098 ± 0.207 0.002 0.573 

9 (Log) Soil moisture  1.971 0.168 0.358 -0.069 ± 0.049 -0.15 ± 0.107 0.005 0.877 

9a (Log) Soil moisture (0-5) 3.769 0.059 0.177 -0.102 ± 0.052 -0.23 ± 0.119 0.012 0.847 

9b (Log) Soil moisture (5-15) 0.061 0.806 0.862 -0.013 ± 0.054 -0.027 ± 0.109 0.000 0.872 

10 Living vegetative cover 9.081 0.005 0.053 12.917 ± 4.286 0.569 ± 0.189 0.080 0.586 

11 Dead vegetative cover 5.281 0.026 0.123 1.125 ± 0.490 0.123 ± 0.053 0.101 0.101 

12 Proportion Spartina  6.804 0.013 0.090 0.166 ± 0.063 0.611 ± 0.234 0.102 0.295 

13 Proportion Salicornia  11.319 0.002 0.032 -0.197 ± 0.059 -0.758 ± 0.225 0.151 0.374 

14 Proportion Distichlis  3.905 0.055 0.177 0.031 ± 0.015 0.357 ± 0.181 0.053 0.362 

15 Stem height 18.817 <.0001 0.003 8.792 ± 2.027 0.96 ± 0.221 0.268 0.331 

16 Stem density 1.682 0.202 0.380 7.958 ± 6.137 0.298 ± 0.23 0.013 0.629 

17 (Log) Stems flowering 6.640 0.014 0.090 0.343 ± 0.133 0.559 ± 0.217 0.076 0.464 

18 Root biomass 0.794 0.379 0.532 -0.058 ± 0.065 -0.063 ± 0.07 0.004 0.743 

19 Root biomass (0-5cm) 0.015 0.903 0.903 -0.017 ± 0.138 -0.029 ± 0.232 0.001 0.304 

20 Root biomass (5-15cm) 1.385 0.246 0.393 -0.100 ± 0.085 -0.067 ± 0.057 0.007 0.756 

21 Die-off 1.511 0.226 0.381 -0.120 ± 0.098 -0.301 ± 0.245 0.022 0.315 

22 Benthic algae (green) 0.548 0.464 0.619 -0.004 ± 0.005 -0.17 ± 0.229 0.006 0.447 

23 Benthic algae (blue-green) 5.310 0.027 0.123 -0.033 ± 0.014 -0.558 ± 0.242 0.055 0.515 

24 Benthic algae (diatoms) 0.780 0.383 0.533 -0.010 ± 0.011 -0.148 ± 0.167 0.006 0.648 



Appendix B 

154 
 

25 (Log) Periwinkle density 0.437 0.512 0.655 -0.122 ± 0.185 -0.12 ± 0.182 0.003 0.633 

26 Juvenile fiddler crab 

density 

2.686 0.109 0.291 -4.375 ± 2.670 -0.406 ± 0.248 0.035 0.380 

27 (Log) Adult fiddler crab 

density 

4.582 0.039 0.156 0.505 ± 0.236 0.552 ± 0.258 0.075 0.228 

28 Marsh/mud crab density 0.044 0.835 0.862 -0.042 ± 0.199 -0.044 ± 0.212 0.001 0.237 

29 (Log) Mussel density 0.059 0.809 0.862 -0.080 ± 0.328 -0.059 ± 0.241 0.001 0.338 
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Table B7. Effect of grazing on ecosystem properties at each time point. Results of linear mixed models 

to test whether control (grazed, G) and experimental (ungrazed, U) plots differed at each time point. 

In pairwise comparisons, ‘>’ and ‘<’ indicate that the response was significantly higher or lower in 

grazed plots, whereas ‘≥’ and ‘≤’ show the response was higher or lower but not significantly different. 

Pairwise P-values were calculated using Tukeys HSD test. Significant predictors and contrasts are 

highlighted in bold. All models were fitted with a random effect of pair. 

M
o

d
e

l 

Response Fixed effect F df P n Pairwise contrasts 

Time Effect P 

1 Living vegetative 

cover 

Treatment x 

Time 

31.81 3,85 <0.0001 96 13 

18 

G < U 

G < U 

<0.0001 

<0.001 

2 Dead vegetative 

cover 

Treatment x 

Time 

22.38 5,99 <0.0001 112 0 

13 

18 

G ≥ U 

G > U 

G ≥ U 

0.316 

<0.0001 

0.562 

3 Proportion 

Spartina cover 

Treatment x 

Time 

3.59 7,113 0.002 128 0 

7 

13 

18 

G ≤ U 

G ≤ U 

G < U 

G < U 

0.711 

0.711 

0.001 

0.007 

4 Proportion 

Salicornia cover 

Treatment x 

Time 

4.93 7,113 <0.0001 128 0 

7 

13 

18 

G ≥ U 

G ≥ U 

G > U 

G > U 

0.599 

0.529 

<0.001 

<0.001 

5 Stem height Treatment x 

Time 

15.39 7,113 <0.0001 128 0 

7 

13 

18 

G ≥ U 

G < U 

G < U 

G < U 

0.694 

0.002 

<0.001 

<0.0001 

6 (Log) Stems 

flowering 

Treatment x 

Time 

7.88 3,53 <0.001 64 7 

18 

G < U 

G ≤ U 

0.006 

0.058 

7 Benthic algae 

(blue-green) 

Treatment x 

Time 

25.03 3,85 <0.0001 96 13 

18 

G ≥ U 

G > U 

0.408 

0.008 

8 (Log) Adult fiddler 

crab density 

Treatment x 

Time 

7.23 7,113 <0.0001 128 0 

7 

13 

18 

G ≥ U 

G ≤ U 

G < U 

G < U 

0.373 

0.765 

<0.0001 

0.013 
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Table B8. Effect of grazing on recovery from damage. Results of linear mixed models to test the effect 

of an interaction between grazing treatment and simulated hog damage, 6 months and 12 months 

after damage. Pairwise P-values were calculated using Tukeys HSD test. Significant predictors are 

highlighted in bold. The contrast between grazed damaged (GD) and ungrazed damaged (UD) relates 

to ‘absolute’ (across-grazing) recovery. The contrasts between grazed control (GC) and grazed 

damaged (GD), and between ungrazed control (UC) and ungrazed damaged (UD) relate to ‘relative’ 

(within-grazing) recovery. In pairwise comparisons, ‘>’ and ‘<’ indicate that the direction of effect was 

significant, whereas ‘≥’ and ‘≤’ indicate that the direction of effect was not significant. All models were 

fitted with a random effect of pair. Marginal (Marg) R2 values relate to fixed effects only, Conditional 

(Cond) R2 values relate to fixed + random effects. N=64 for all models. 

M
o

d
e

l 

Response Time  Treatment x Damage Pairwise contrasts of 

factor levels 

Marg 

R2 

Cond 

R2 

F df P Effect P  
  

1a Living plant cover 

(%) 

6 26.21 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC > GD 

UC > UD 

<0.0001 

0.052 

<0.001 

<0.0001 

0.361 0.703 

1b Living plant cover 

(%) 

12 13.22 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC > GD 

UC > UD 

0.006 

0.688 

0.003 

<0.0001 

0.256 0.594 

2a Dead plant cover 

(%) 

6 28.23 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC ≥ GD 

UC > UD 

<0.0001 

0.767 

0.157 

<0.0001 

0.414 0.692 

2b Dead plant cover 

(%) 

12 14.56 3,53 0.001 GC < UC 

GD ≤ UD 

GC > GD 

UC > UD 

0.014 

0.331 

0.043 

0.010 

0.222 0.251 

3a Stem height 

(cm) 

6 13.03 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC > GD 

UC > UD 

0.0001 

0.332 

0.021 

0.0001 

0.312 0.498 

3b Stem height 

(cm) 

12 8.67 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC ≥ GD 

UC > UD 

<0.0001 

0.308 

0.927 

0.034 

0.269 0.347 

4a Stem density 

(stems per 0.09m2) 

6 9.52 3,53 <0.0001 GC < UC 

GD ≤ UD 

GC > GD 

UC > UD 

0.038 

0.104 

<0.001 

0.004 

0.231 0.497 

4b Stem density 

(stems per 0.09m2) 

12 3.04 3,53 0.037 GC ≤ UC 

GD ≤ UD 

GC ≥ GD 

UC > UD 

0.224 

0.625 

0.080 

0.045 

0.066 0.541 
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Fig. B1. Soil texture classes triangle (adapted from Soil Classification Working Group, 1998). Red circles 

show the allocated sand and clay percentages for each observed soil texture class (the remainder of 

each class is silt).  Abbreviations for the texture classes are: HC, heavy clay; C, clay; SiC, silty clay; SiCL, 

silty clay loam; CL, clay loam; SC, sandy clay; SiL, silt loam; L, loam; SCL, sandy clay loam; SL, sandy 

loam; Si, silt; LS, loamy sand; S, sand.  

 

 

 

 

Fig. B2. Raw species data for observational survey marshes. Kernel density plots of percentage of live 

plant cover that is Spartina alterniflora, Salicornia spp., Distichlis spicata, Juncus roemerianus, Batis 

maritima and Limonium spp. in grazed (G) and ungrazed (U) quadrats. Black points = mean. 
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Fig. B3. Changes over time for all responses for which grazing treatment was significant at 18 months. 

Points show predicted means  95% confidence intervals. Spartina and Salicornia cover were recorded 

as proportion of total live plant cover. Benthic algae concentrations = μg chl-a cm-2. The densities of 

flowering stems and fiddler crabs were recorded in a 0.3x0.3m quadrat (although predictions here are 

on the log scale).  
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Supplementary methods: Allocation of grazing levels quantitatively and 

qualitatively 

Grazing levels were allocated both quantitatively and qualitatively to every transect 

on every visit, and combined to obtain an overall relative grazing level for each 

marsh. The grazing level was assessed quantitatively at each transect by counting the 

number of dung piles per grazer species lying 1m to either side of the transect line. 

For each species (cattle, pony, sheep), we rescaled the dung counts on a scale of 0-1, 

based on the maximum observed value across all surveys, and summed them to get a 

total for the transect (potential range 0-3).  

Rescaled⁡dung⁡count⁡=⁡
no.⁡⁡cattle⁡droppings

max ⁡no.⁡cattle⁡droppings
+⁡

no.⁡⁡pony⁡droppings

max ⁡no.⁡pony⁡droppings
+⁡

no.⁡⁡sheep⁡droppings

max ⁡no.⁡sheep⁡droppings
 

We averaged these dung counts across every transect and visit to get a single dung 

count value for the surveyed areas of the marsh. Due to tidal action, dung may be 

washed off or deposited on the marsh, depending on the stage in the spring-neap 

tidal cycle. Therefore, we also made a qualitative assessment of the grazing level at 

each transect on every visit (0: ungrazed, 1: lightly, 2: moderately, 3: heavily) based 

on visual indicators such as animal presence, droppings, damage to ground and 

vegetation (Table C2). We averaged the qualitative grazing levels across every 

transect and visit to obtain a single qualitative grazing level for the surveyed areas of 

the marsh (potential range 0-3). 

There was a strong positive correlation between the grazing level assessed dung 

counts and the grazing level assessed qualitatively (Kendall’s tau correlation test, 

tau=0.88, p<.001). We allocated each marsh to one of three grazing categories 

(absent, extensive, intensive grazing) based on these scores (Fig. C1). The allocated 

grazing levels are relative and not defined in terms of livestock units (LUs). Where 

LUs could be reasonably estimated for the entire marsh (e.g. on enclosed marsh 

areas) we have noted these in Table C1. Intensively grazed marshes were 

characterised by having more damage to the ground, more visible droppings, and 

more areas of vegetation that had been closely and uniformly cropped by grazers: in 

the intensively grazed marshes at least a quarter of all quadrats (ranging 29-74% in 

the four marshes) had a sward height of <8cm, whereas fewer than a quarter of 

quadrats (15-24% per marsh) in extensively grazed marshes had such a short sward. 

In the four ungrazed marshes, the percentage of quadrats with this short sward 

ranged from 0-11%.  
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Supplementary methods: Calculating surrounding landscape - proportion of natural 

habitat 

Surrounding landscape can affect bee visitation rates and diversity, both responses 

declining with increasing distance from natural habitat (Ricketts et al. 2008; Viana et 

al. 2012). Species sensitivity to land use is dependent on species traits such as 

foraging range and sociality (De Palma et al. 2015) and different guilds are affected 

by landscape context at different spatial scales (Steffan-Dewenter et al. 2002). To 

allow us to account for landscape effects in our models of bee abundance and bee 

diversity, we calculated the proportion of natural habitat surrounding each transect 

at a range of scales. We used a 2015 land cover map (Rowland et al. 2017) which 

provides classification of UK land cover based on UK BAP broad habitat types at 25m 

resolution. We classified each broad habitat type as either semi-natural vegetated 

habitat (hereafter ‘natural habitat’) or not, as defined in Table C3. We then 

calculated the proportion of surrounding landscape that is natural habitat for each 

marsh at a range of radii from 250m to 3km (250, 500, 750, 1000, 1500, 2000, 

3000m). Each radius was tested individually in our LMMs, and assessed on the basis 

of AIC compared with no landscape term. Inclusion of the landscape variable did 

not improve any of our models. This may be due to the dominance of honeybees and 

bumblebees in our data: multiple studies have shown that these guilds are less 

affected by landscape context than non-Bombus wild bees (Steffan-Dewenter et al. 

2002; Garibaldi et al. 2011; Murray et al. 2012; Bennett et al. 2014). 

All GIS analyses were conducted in ArcGIS 10.5.1.  
 

Supplementary methods: Terrestrial surveys for GMEP 

Pollinator surveys were conducted by the Centre for Ecology and Hydrology as part 

of the Glastir Monitoring & Evaluation Programme (GMEP) for the Welsh 

Government (Emmett et al. 2017). GMEP included two pollinator surveys - one in 

July and one in August - in each of 300 1km squares in Wales. Each square was visited 

only once from 2013 to 2016, in the first round of a rolling environmental survey. Of 

the 300 squares, 150 comprised a stratified random sample to represent land classes 

across Wales, and 150 comprised a “targeted component” and were selected based 

on various criteria associated with the Glastir agri-environment scheme.  Within each 

site, two 1km transects, divided into roughly 200m sections, were surveyed for bees 

between 10am and 4pm on warm, dry, calm days following the UK Wider 

Countryside Butterfly Survey (UKBMS 2019) method. Transects were walked at an 

even pace, and all bees that were observed within a 5m box around the observer 

were recorded and identified as honeybee, bumblebee or ‘solitary bee’ (i.e. non-

Bombus wild bee). Temperature and wind speed (Beaufort scale) were recorded for 

each transect. For more information on square selection and survey methodology, 

see the GMEP reports and appendices (GMEP 2019). 



Appendix C 

162 
 

A habitats survey was carried out in the GMEP squares during the same years as the 

pollinator surveys. Every accessible land parcel in the square was assigned a broad 

habitat type according to UK Biodiversity Action Plant broad habitat types (JNCC 

2019). We extracted the underlying broad habitat throughout every ~200m 

pollinator transect section by intersecting with habitat polygons in ArcGIS Desktop 

10.6 (ESRI, Redlands, California). The broad habitat which accounted for the greatest 

proportion of each 200m transect section was allocated as the dominant underlying 

habitat. Transect sections were only included in these analyses if >100m intersected 

the allocated habitat type. Furthermore, we only assessed habitats with >50 transect 

sections.  

 

Supplementary methods: Statistical packages 

LMMs were fitted using lme4 (Bates et al. 2015). We used lmerTest (Kuznetsova et 

al. 2017) to calculate t-test P-values for comparison of different factor levels, and 

piecewiseSEM (Lefcheck 2016) to calculate R2 values. Negative binomial GLMMs 

were fitted using glmmTMB (Brooks et al. 2017) and sjsstats (Lüdecke 2019) was 

used to calculate R2 values. We used the DHARMa package (Hartig 2019) for residual 

checks and tests for goodness of fit and zero-inflation. (G)LMM graphs were plotted 

using visreg (Breheny and Burchett 2017) and ggplot2 (Wickham 2016) and 95% 

confidence intervals were estimated by parametric bootstrapping using the 

bootpredictlme4 package (Duursma 2019) which implements the lme4 bootMer 

function in visreg. For beta-diversity analyses, pairwise distance matrices were 

calculated from presence-absence species data using the betapart package in R 

(Baselga and Orme 2012). PERMANOVA tests were conducted using the adonis 

command in the vegan package (Oksanen et al. 2019) in R. Post-hoc tests for 

PERMANOVA were performed using pairwise.perm.manova in RVAideMemoire 

(Hervé 2019) with fdr-adjusted P-values. PERMDISP tests were conducted using 

betadisper and permutest in vegan. All permutational tests were performed with 

9999 permutations. 
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Table C1.(overleaf). Study site details . Grazing management and environmental characteristics for the 

11 study sites. Livestock Units per hectare (LUha-1) estimated for the entire marsh (not only the 

surveyed areas) during the main summer grazing period, where possible, based on information from 

landowners or animal head counts. Cattle=1, ponies=0.5, sheep=0.12 LU (Welsh Government 2013b). 

National Vegetation Classification (NVC, a systemic catalogue of the plant communities of Great 

Britain, Rodwell 2006) based on 1998 NVC Survey data (GIS shapefile provided by Natural Resources 

Wales) and confirmed by field observations. Marsh geomorphology was classified according to Allen 

(2000) and estuary position according to Adam (1990). Duration of current grazing levels was obtained 

from land managers/owners, but several had no knowledge of grazing management prior to their 

tenancy, therefore figures shown are a minimum. Sediment types defined as L-CL (loam-clay) or S 

(sandy). Adjacent habitat is shown for surrounding 1km, calculated from a 2015 land cover map 

(Rowland et al. 2017) and classified according to Table C2: Ag=agricultural land, Bu=built-up areas, 

Na=natural or semi-natural areas, Op=open water or littoral zone. 

*LW not surveyed in mid-summer 2016. Both LW & PM had extremely large low marsh zones, and it 

was not safe or practical to distribute transects evenly across these marshes due to dense creek 

networks in the lower marsh areas. However, we did sample within the low marsh vegetation 

community at both these sites.  

§ Intensively-grazed marshes were, on average, larger than marshes of the other grazing categories, 

possibly because larger marsh areas are more convenient for graziers. This could influence bee use 

(e.g. due to longer flight distances to the lower regions of these marshes). However, the smallest 

intensive marsh (TR) was also the least-foraged (Table C4), and the majority of bee visits in the most 

foraged intensive marsh (PM, Table C4) were recorded on the most seaward transect, therefore we do 

not believe this was a factor. 

†Sediment-type from Skov et al. (2016) 

‡ Sediment-type from field survey following methods in Skov et al. (2016) 
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Table C2. Visual indicators used to allocate qualitative grazing levels. Each descriptor is not absolute, 

but was used in combination to allocate the best representative grazing level to the area immediately 

surrounding each transect (within a few hundred metres, approx. 5 ha). 

Indicator 0: Ungrazed 1: Lightly grazed 2: Moderately grazed 3: Heavily grazed 

Animal 

presence 

None Area accessible to 

animals but no 

more than a few 

animals present 

Small herd (e.g. 5-10 

cattle/ponies, 15-30 

sheep) present 

Many animals (e.g. >20 

cattle/ponies, >50 

sheep) present 

Droppings 

 

None Infrequently seen Commonly seen Abundant across area 

Damage to 

ground 

None Hoofprints rarely 

seen. Very little 

bare ground. 

Hoofprints/poaching 

commonly seen. 

Some bare ground. 

Ground is badly 

poached or extremely 

compacted. Areas of 

bare ground common. 

Sward height 

and damage to 

vegetation 

Majority of sward 

longer than 15cm, 

complex structure, 

no visible cropping 

Majority of sward 

longer than 

~15cm, complex 

structure, little 

visible cropping 

Some areas shortly 

cropped (<~10 cm) 

interspersed with 

longer, more tussocky 

areas 

Majority of vegetation 

cropped to a short, 

uniform sward; only 

unpalatable species are 

above ~10cm 

 

Table C3. Simplification of broad habitat types. 

Broad habitat type Classification Natural habitat 

Broadleaved woodland Natural or semi-natural vegetated habitat ✓ 

Coniferous woodland Natural or semi-natural vegetated habitat ✓ 

Arable and horticulture Agricultural land - 

Improved grassland Agricultural land - 

Neutral grassland Natural or semi-natural vegetated habitat ✓ 

Calcareous grassland Natural or semi-natural vegetated habitat ✓ 

Acid grassland Natural or semi-natural vegetated habitat ✓ 

Fen, Marsh and Swamp Natural or semi-natural vegetated habitat ✓ 

Heather Natural or semi-natural vegetated habitat ✓ 

Heather grassland Natural or semi-natural vegetated habitat ✓ 

Bog Natural or semi-natural vegetated habitat ✓ 

Inland rock Natural or semi-natural vegetated habitat ✓ 

Saltwater Open water or littoral zone - 

Freshwater Open water or littoral zone - 

Supra-littoral rock Natural or semi-natural vegetated habitat - 

Supra-littoral sediment Natural or semi-natural vegetated habitat - 

Littoral rock Open water or littoral zone - 

Littoral sediment Open water or littoral zone - 

Saltmarsh Natural or semi-natural vegetated habitat ✓ 

Urban Built-up areas - 

Suburban Built-up areas - 

Wetland* Natural or semi-natural vegetated habitat ✓ 

*Land managed by RSPB Newport Wetlands was classified as Arable and Horticultural in the Land 

Cover 2015 map which is incorrect. We renamed these areas as Wetland in our GIS maps, classified 

under Natural or semi-natural vegetated habitat. 
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Table C4. Bee abundance data for each marsh. Average number of foraging bees observed per km on 

each marsh, by species. The Andrena specimen could not be identified to species level due to the 

quality of the specimen.  

 
* Species unique to ungrazed marshes; † Species unique to extensively-grazed marshes; ‡ Species 

unique to intensively-grazed marshes; § Section 7 Species, Environment (Wales) Act 2016 
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Table C5. Insect-pollinated plant species on study saltmarshes. Flower cover per plant species, and 

bee visits per plant species for each marsh.  

 
*Formerly Aster tripolium 
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Table C6. Net effect of grazing on bee community. Results of LMMs to test net effect of grazing on bee 

abundance, bee species richness, and bee Shannon H diversity. Initial models were simplified where 

possible by removing weather (wind speed, temperature, temperature2) and landscape (natural 

habitat) terms if this did not increase AIC. Significant predictors in the final model are highlighted in 

bold. Coefficients of categorical predictors relative to baseline values are arranged as follows. Grazing: 

ext vs abs, int vs abs; Year: 2017 vs 2016, 2018 vs 2016; Season: mid vs early, late vs early. Pairwise 

comparisons of factor levels were conducted only if that factor was significant in the likelihood ratio 

(LR) test. Marginal (Marg) R2 values relate to fixed effects only, Conditional (Cond) R2 values relate to 

fixed + random effects. 
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Table C7. Mechanism of grazing effects on bee community, all insect-pollinated plant (IPP) combined. 

Results of LMMs to test mechanisms of grazing effect on bee community. Initial models were 

simplified where possible by removing weather (wind speed, temperature, temperature2) and 

landscape (natural habitat) terms if this did not increase AIC. Significant predictors in the final model 

are highlighted in bold. Coefficients of categorical predictors relative to baseline values are arranged 

as follows. Grazing: ext vs abs, int vs abs; Year: 2017 vs 2016, 2018 vs 2016, 2018 vs 2017; Season: mid 

vs early, late vs early. Pairwise comparisons of factor levels were conducted only if that factor was 

significant in the likelihood ratio (LR) test. Marginal (Marg) R2 values relate to fixed effects only, 

Conditional (Cond) R2 values relate to fixed + random effects.  
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Table C7 cont. 
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Table C8. Mechanism of grazing effects on bee community via key plant species. Results of LMMs to 

test mechanisms of grazing effect on bee community with Aster and Limonium separated from the 

other insect-pollinated plant (IPP) species. Initial models were simplified where possible by removing 

weather (wind speed, temperature, temperature2) and landscape (natural habitat) terms if this did 

not increase AIC. Significant predictors in the final model are highlighted in bold. Coefficients of 

categorical predictors relative to baseline values are arranged as follows. Grazing: ext vs abs, int vs 

abs; Year: 2017 vs 2016, 2018 vs 2016, 2018 vs 2017; Season: mid vs early, late vs early. Pairwise 

comparisons of factor levels were conducted by t-test, only if that factor was significant in the 

likelihood ratio test. Marginal (Marg) R2 values relate to fixed effects only, Conditional (Cond) R2 

values relate to fixed + random effects.  
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Table C8 cont. 
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Table C9. β-diversity analyses. Results of PERMANOVA and PERMDISP analysis of partitioned β-

diversity, for all bees and wild bees only. 
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Table C10. Comparison with terrestrial habitats. Results of negative binomial GLMMs to explore how 

bee counts along a transect vary with habitat. All models included weather as fixed effects and 

observer and site as random effects to control for these variables, but we did not test for their 

significance. Marginal (Marg) R2 values relate to fixed effects only, Conditional (Cond) R2 values relate 

to fixed + random effects. Habitat types (n) = Acid grassland (628), Arable and horticulture (122), Bog 

(242), Bracken (96), Broadleaved mixed and yew woodland (151), Coniferous woodland (98), Dwarf 

shrub heath (316), Fen, marsh and swamp (156), Improved grassland (1418), Neutral grassland (1418), 

Salt marsh ungrazed (104), Salt marsh extensively grazed (72), Salt marsh intensively grazed (104), 

Urban (166). 

 
Model Response Random 

effects 
Fixed effects Likelihood ratio test for 

effect of habitat 
Marg R2 
(Cond 
R2) 

n 

χ2 df P-value   
  

1 Honeybee 
count 

Observer 
Site/Transect 

Habitat 
Wind 
Temperature 
Temperature2 

101.24 13 <0.0001 0.250 
(0.682) 

4817 

2 Bumblebee 
count 

Observer 
Site/Transect 

Habitat 
Wind 
Temperature 
Temperature3 

45.26 13 <0.0001 0.060 
(0.622) 

4817 

3 Solitary 
bee count 

Observer 
Site/Transect 

Habitat 
Wind 
Temperature 
Temperature4 

38.98 13 <0.001 0.082 
(0.489) 

4817 
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Fig. C1. Allocation of grazing levels based on dung counts and qualitative assessment. 

 

 

 
 

Fig. C2. Network tested using LMMs with key plant species separated. We also repeated the tests 

using Shannon’s H’ index as the measure of diversity and for wild bees only (i.e. Apis mellifera 

excluded). Weather (wind, temperature) and landscape predictors were only included where AIC 

values indicated model improvement. 
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Fig. C3. Bee species by abundance and prevalence. Total number of foraging bees observed over all 

surveys. 

 

 
Fig. C4. Flower cover and bee visits, as a proportion of total. See Table C5 for species names of plants. 
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Fig. C5. Model predictions for plant responses to grazing. The effect of grazing on: insect-pollinated 

plant richness (a), and H diversity (b); the occupancy of Aster (c), Limonium (d), and other plants (e); 

and the flower cover of Aster (f), Limonium (g), and other plants (h). Significant predictors (likelihood-

ratio test) are indicated with an asterisk. Factor levels that are significantly different from each other 

(t-test) are indicated by different letters. 95% confidence intervals calculated by bootstrapping. All 

predictions have been backtransformed to the original scale. 

  



Appendix C 

178 
 

 
Fig. C6. Model predictions for bee responses to grazing and vegetation. The effect of grazing (a), plant 

richness (b), and flower cover (c) on bee abundance. The effect of grazing (d), plant richness (e), 

flower cover (f), and bee abundance (g) on bee richness. The effect of grazing (h), plant Shannon 

diversity (i), flower cover (j) and bee abundance (k), on bee Shannon diversity. Significant predictors 

(likelihood-ratio test) are indicated with an asterisk. 95% confidence intervals calculated by 

bootstrapping using the bootMer function. All predictions have been backtransformed to the original 

scale. 
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Fig. C7. β-diversity analyses. A two-dimensional MDS representation of the effect of grazing on 

pairwise dissimilarity of marshes for all bee species (a-c) and wild bee species (d-f). Pairwise distances 

are shown for total β-diversity (a,d), the turnover partition (b,e) and the nestedness partition (c,f). 
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Supplementary methods - Calculating Ecosystem Service values 

 

D1 Plant diversity 

The Plant diversity map layer displays the average plant richness for each marsh. 

Water Framework Directive (WFD) sampling data from 2013 and 2015 were obtained 

from Natural Resources Wales (NRW) and used to calculate the average number of 

plant species per transect for each marsh. For WFD field surveys, transects are run 

from landward to seaward extent approximately every 500-1000m along a marsh. 

Species composition (species present and percentage cover) and sward height (five 

measures per transect) is recorded in two 2x2m quadrats at stations along the 

transect, with stations positioned to sample all major communities within the marsh.  

As well as taxa recorded in each quadrat, any additional species noted along the 

transect are recorded. Each WFD transect was allocated to a marsh based on the 

location of its landward GPS co-ordinate. Some of the smaller marshes had only one 

transect per marsh, whereas larger marshes had up to six. We would expect to see 

more species when more transects have been surveyed, therefore the plant diversity 

measure was calculated as the average number of species per transect for each 

marsh. Plant diversity was rescaled from 0-100% with 0% set as the minimum 

number of species recorded on any transect (10) and 100% set as the maximum 

value recorded within the study area (34.5). 

 

Limitations and confidence levels 

For WFD surveys, each transect is assessed in two quadrats within each zone. 

Although additional species observed along the transect are noted, these can be 

easily missed, especially in heavily grazed marshes where the sward is short and 

some species become miniaturised. Diversity levels may therefore be 

underestimated in intensively-grazed marshes. The survey effort was consistent 

across all surveyed marshes i.e. surveyed from landward to seaward extent every 

500-100m by trained field ecologists. For this reason, I have allocated all surveyed 

marshes a high confidence level. 

 

D2 Bird habitat 

The Bird habitat layer displays the habitat value for overwintering birds, based on 

Wetland Bird Survey (WeBS) data. The habitat value is calculated from the number of 

regularly occurring, saltmarsh-dependent, overwintering bird species present, and 

the UK conservation status of those species. Historical WeBS Core Count data for 18 

survey sectors covering marshes in the focal area were obtained from NRW. WeBS is 

a long-term monitoring scheme for non-breeding waterbirds in the UK co-ordinated 

by the British Trust for Ornithology (BTO). Volunteer surveyors conduct synchronised 
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monthly counts at wetlands, mainly during the winter months. Only resident and 

winter bird species (defined by RSPB 2018) were included here, as some marshes are 

only surveyed during winter months. Including summer birds would therefore 

strongly skew the results towards marshes that are surveyed during more months 

throughout the year. WeBS survey sectors cover many habitat types, including salt 

marsh, mudflat, sand dune and beach. To isolate the effect of the salt marsh, I only 

considered bird species that are mainly saltmarsh users. These species were 

identified through consultation with NRW ornithologists and included all geese and 

swan species, little egret, grey heron, all plovers and lapwing, teal, pintail, mallard, 

wigeon, pochard and gadwall (22 species in total). A habitat score for overwintering 

saltmarsh birds was calculated as follows. I examined the 10 years of data from 

2007/8 to 2016/17. Years surveyed <3 months were discounted. Each species was 

given a weighting based on its UK conservation status under the Red List for Birds 

(Eaton et al. 2015); Red species = 3, Amber species = 2, Green or Introduced species 

= 1. Pintail were given an additional point on their weighting in Burry Inlet sites, as 

they are a feature of Burry Inlet SPA. Each species was only counted if it was present 

on the marsh regularly, i.e. noted as present for > 30% of the years that sector was 

surveyed. The scores were then totalled for that sector. For example, a sector that 

had 3 green bird species, 6 amber bird species, and 1 red bird species noted as 

present during at least 30% of the survey years would be given a conservation score 

of: 3×1 + 6×2 + 1×3 = 18 

The sector score was then rescaled between 0-100%, with 0% set as a conservation 

score of 0 and 100% set as the maximum score obtained in the study area (29). 

Generally, a single WeBS sector covers multiple marshes, and each marsh falling 

within the sector was allocated the habitat value of the sector. When a marsh was 

overlapped by two or more WeBS sectors, it was allocated the average habitat value 

across the represented sectors.  

 

Limitations and confidence levels 

Each WeBS sector received varying levels of survey effort, which may affect the 

results. I have attempted to control for this by only using data from years surveyed 

≥3 months, only investigating overwintering birds (winter is the core survey period), 

and only assessing species diversity rather than species abundance (which would be 

more heavily influenced by the number of months surveyed). One may expect to see 

more species in larger sectors, but there was no correlation between marsh size and 

bird habitat value, so we were unable to correct for this. Not all marshes are covered 

by a WeBS sector. In particular, most marshes on the River Taf are unrepresented.  

Each WeBS sector was given a confidence level based on the survey effort within that 

sector. For each sector, years that were surveyed through 10 or more months were 

given a weighting of 3, years surveyed through 6-9 months were given a weighting of 

2, years that were surveyed through 3-5 months were given a weighting of 1, and 
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years surveyed for 0 - 2 months were given a weighting of 0. This produced a 

theoretical overall confidence rating of between 0 (a sector surveyed for 0 -2 months 

per year for 10 years) and 30 (a sector surveyed for over 10 months per year over 10 

years). Confidence levels were defined as: 0-10 = low, 11-20 = medium, 21-30 = high.  

 

D3 Bee habitat 

The Bee habitat layer displays the predicted bee abundance per km of transect, 

based on the grazing level in each marsh (as calculated in section A1.4 below) and 

plant community composition (from WFD survey data). I used bee survey data 

collected from 11 salt marshes across South Wales in 2016-2018 (see Chapter 4 for 

methodology) to calculate the predicted relationship between bee abundance, 

grazing intensity, the occupancy of two key plants (‘Aster’ Tripolium pannonicum and 

Limonium spp.), and plant species richness. I used linear mixed models (with marsh 

as a random effect to control for repeated sampling) to test the predictive capacity of 

these variables, with interactions between variables included and excluded, to 

produce an optimum predictive model (based on AIC) using grazing and plant 

community data that are available across the study area. For the 11 surveyed salt 

marshes, I found that grazing intensity (on a scale of 0-2 where 0=ungrazed, 

1=extensively grazed, 2=intensively grazed), plant species richness, an interaction of 

season (early, mid, late summer) and Aster occupancy (proportional presence in all 

surveyed quadrats), and an interaction of season and Limonium occupancy explained 

60% of the variance in our observed bee abundances (see Table A1 for model 

results). I used this model to predict bee abundance for each marsh in early, mid and 

late summer, then took the average of these 3 values as our bee habitat value. 

Grazing levels for each marsh were calculated as ungrazed, lightly, moderately and 

heavily grazed, as described in A1.4 below. These grazing levels were assigned values 

of 0, 1, 1.5 and 2, respectively, for these predictive models. Plant richness and Aster 

and Limonium occupancy were extracted from WFD survey data (see section A1.1). 

The Aster and Limonium occupancy values were weighted by the relative coverage of 

each zone in each marsh, where: 

Aster occupancy for marsh =  

Aster occ. in pioneer quadrats x proportion of marsh that is pioneer zone  

+ Aster occ. in low/mid quadrats x proportion of marsh that is low/mid zone  

+ Aster occ. in upper/reedbed quadrats x proportion of marsh that is upper/reedbed zone. 

 

Predicted bee habitat values were rescaled between 0-100%, with 0% set as the 

minimum predicted value (0) and 100% set as the maximum predicted value (40.7) in 

the study area. 

 

Limitations and confidence levels 
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The allocated bee habitat values are based on model predictions following field 

surveys within a subsample of marshes. The model explains 60% of variance in the 

observed bee abundances, but has not been tested with new data. The accuracy of 

the predictions depends on the accuracy of  the vegetation data and the accuracy of 

the grazing levels. Vegetation monitoring effort was consistent across the survey site, 

therefore confidence levels for bee habitat values were the same as the confidence 

levels assigned for grazing levels (described in A1.4 below). 

 
Table D1 Linear model results for optimal predictive model pf bee habitat value. Response is log (bee 

abundance +1). Predictions were back-transformed to the original density scale for mapping. ‘Marsh’ 

was included as a random effect. Marginal r2=0.604, conditional r2=0.604. 

 Estimate Std. Error df t P 

(Intercept) 0.953 0.953 76 1.000 0.320 

Grazing intensity -0.867 0.209 76 -4.158 <0.0001 

Plant richness 0.151 0.082 76 1.842 0.069 

Early summer:Aster occ. -1.246 0.872 76 -1.429 0.157 

Mid summer:Aster occ. 0.708 0.836 76 0.848 0.399 

Late summer:Aster occ. 2.363 0.872 76 2.709 0.008 

Early summer:Limonium occ. -3.663 1.509 76 -2.427 0.018 

Mid summer:Limonium occ. 4.782 1.386 76 3.450 <0.001 

Late summer:Limonium occ. -1.154 1.509 76 -0.765 0.447 

 

 

D4 Livestock grazing 

The Grazing layer displays the estimated grazing intensity on each marsh. Currently, 

there is no accurate information on livestock grazing levels in these marshes. Grazing 

levels can fluctuate strongly throughout the year and from year to year. Additionally, 

grazing intensity is not evenly distributed across a marsh as livestock favour higher, 

drier ground (Sharps et al. 2017), avoid grazing some types of vegetation (e.g. Juncus 

maritimus) and large areas of marsh can be totally inaccessible due to large creeks. 

Due to these complications, I have used 3 sources of information to determine 

grazing intensity: observations of grazing activity from Carmarthen Bay & Estuaries 

Estuarine Marine Site (CBEEMS) condition monitoring in 2012, sward height and 

descriptions from WFD surveys in 2013/2015, and self-reported grazing levels from 

owner/occupier interviews in 2017. 

 

Indicator 1: CBEEMS survey (2012) descriptions of grazing levels 

Saltmarsh surveys were conducted in 2012 by NRW for CBEEMS monitoring, and the 

grazing level at each survey point was noted. From these data I calculated, for each 

marsh, the proportion of survey points that were marked as ungrazed, lightly grazed, 

moderately grazed and heavily grazed. I then calculated a weighted average grazing 

intensity between 0 (entirely ungrazed) and 1 (entirely heavily grazed) as: 

CBEEMS grazing level = ((proportion ungrazed x 0) + (proportion lightly grazed x 1) + 

(proportion moderately grazed x 2) + (proportion heavily grazed x 3)) / 3. 
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Indicator 2: WFD survey (2013 & 2015) sward height data and descriptions of grazing 

levels 

From WFD 2013/5 data I calculated the average sward height for each zone within 

each marsh and plotted this onto an adapted saltmarsh zonation shapefile (WFD 

Cycle 3 zonation shapefile provided by NRW). Some quadrats within the WFD plant 

survey data were assigned a zone description of ‘mixed’. For these quadrats, I 

examined the species composition and marsh position to allocate those height data 

to the most appropriate zone. I then calculated an overall average sward height 

(weighted by the area of each zone) for each marsh. Vegetation height can be used 

as an indicator of grazing activity, as it is negatively and linearly correlated with 

livestock density (Chapter 2). However, sward height is also affected by vegetation 

composition, marsh zonation, and grazing by wild animals, so this measure cannot be 

used as a direct proxy of livestock grazing intensity. I considered that an overall 

average marsh sward height of <15cm, or the two shortest quadrats having average 

sward heights <2cm was indicative of heavy grazing. I considered that an overall 

average marsh sward height of <25cm, or the two shortest quadrats having average 

sward heights height <8cm to be indicative of moderate grazing. I also examined 

descriptions of grazing levels for each quadrat. 

 

Indicator 3: Owner/occupier interviews (2017) 

Questionnaire-based interviews of saltmarsh owner/occupiers were conducted in 

December 2017 as part of a collaborative research project into Welsh salt marshes by 

the Resilcoast research cluster (http://www.nrn-lcee.ac.uk/resilcoast/). I contacted 

owner/occupiers of 28 of the largest marshes in the study area by telephone and 

email, and received responses from 19. These interviews were undertaken in 

accordance with the Research Ethics Guidelines of Cardiff University and approved 

by the Research Ethics Committee of the School of Earth and Ocean Sciences. The 

questionnaires covered current and historical grazing practices, as well as areas of 

farm income and subsidies, and any other uses or benefits of the salt marshes. The 

questionnaire and summarised results are presented in Appendix E. From these data 

I calculated the stocking rate in livestock units (LSU) per hectare per year for each 

marsh subsection. LSUs were calculated as cattle=1LSU, young cattle=0.6, 

sheep=0.12, pony=0.5 (Welsh Government 2013b).  

 

Calculation of overall grazing level 

Using the CBEEMS grazing scores, I categorised each marsh as 0=ungrazed, 0.01-

0.25=lightly grazed 0.26-0.49=moderately grazed, >0.50=heavily grazed. I then 

examined the WFD data to determine whether there was good reason to change the 

http://www.nrn-lcee.ac.uk/resilcoast/
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CBEEMS grazing levels based on these more recent surveys. Where CBEEMS or WFD 

data were inconsistent or absent, I examined interview data to help allocate a 

grazing level. Marshes were never allocated a grazing level based solely on interview 

data. Grazing intensity levels were rescaled from 0-100% as: ungrazed = 0%, lightly 

grazed = 30%, moderately grazed = 60%, heavily grazed = 100%. 

 

Limitations and confidence levels 

Grazing levels can change from year to year and season to season. Therefore, the 

information presented here is temporally-limited based on when surveys were 

conducted. Descriptions in CBEEMS and WFD surveys are subjective and depend on 

the area where quadrats were located. Final decisions on grazing levels were also 

subjective, although confidence levels were allocated to demonstrate the weight of 

evidence supporting that grazing level. The grazing levels are presented at the marsh 

scale. In reality, grazing levels will be highly variable within each marsh, with grazers 

concentrated around watering holes and drier areas, avoiding areas with unfavoured 

vegetation (e.g. Juncus maritimus, Atriplex portulacoides) and completely absent 

from inaccessible or very wet areas. Grazing by wild animals (e.g. geese, rabbits) is 

not considered here, although it may have an effect on indicators such as sward 

height. Where at least 2 indicators were in agreement, we allocated a high 

confidence rating. Marshes were allocated a medium confidence rating where there 

was only 1 indicator, or where WFD grazing levels differed from CBEEMS grazing 

levels. Marshes were given a low confidence rating where the only indicator was 

WFD data and grazing levels were borderline (best guess taken) or no grazing was 

noted (assumed to be ungrazed).  

 

D5 Carbon storage 

The Carbon storage layer presents the predicted carbon stock (tonnes of carbon per 

ha of marsh) in the top 10cm of saltmarsh sediment. Carbon stock is predicted by soil 

type and plant community (Table A2) using field survey data collected by Bangor and 

Swansea Universities. Predictions for National Vegetation Classification types SM13, 

SM14, SM15, SM16 and SM18 are based on data collected in 23 Welsh saltmarshes 

by Bangor University in July 2015 (see Skov et al. 2016 for full methods). Each 

saltmarsh was sampled in 1-4 NVC types, depending on availability at the site. Four 

1x1m quadrats were sampled per NVC type. In each quadrat, a soil sample from the 

top 10cm was removed to test for bulk density, organic matter content and grain 

size. Soil texture was determined in the field using the British Columbia ‘Estimating 

soil texture in the field’ protocol  

(https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf). Organic matter content in the 

soil was estimated using loss-on-ignition (375oC, 16h) and was converted to soil 
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organic carbon content using a conversion factor of 0.55 (Emmett et al. 2010). 

Carbon content was converted to carbon density: 

 
Carbon density (gC cm-3) = carbon content (g C 100g-1 soil) ÷ 100 × bulk density (g soil cm-3) 

 

Then to tonnes carbon in the top 10cm soil per hectare: 

 

Carbon stock (tC ha-1) = Carbon density (gC cm-3) × 1000 

 

A mixed effects model was used to predict soil carbon using NVC type and soil type 

(sandy or clay-loam). This model accounts for 44% of the observed variation in soil 

carbon. Currently, no reliable maps of saltmarsh soil types exist. However, existing 

field measures (Skov et al. 2016) indicate that all soil types in the study area fall 

within clay-loam soil types, or a mix of sand and clay-loam. Therefore I have assumed 

a soil type of clay-loam for all sites when making predictions. 

Predictions for SM6 are based on soil carbon data collected across the study area by 

Swansea University in 2017 (D. de Battisti, unpublished data). Six marshes within the 

study area were sampled in two vegetation types – Spartina anglica and Atriplex 

portulacoides. Each vegetation type was sampled 7 times per marsh following the 

methods described above. Using dominant vegetation type accounts for 37% of the 

observed variation in soil carbon.  

 

Table D2. Predicted carbon stock in top 10cm of saltmarsh sediment by NVC class. 

NVC class Dominant species C stock  

(t ha-1) 

St.error 

(t ha-1) 

Source 

SM6 Spartina anglica 26 1.7 D. de Battisti, Swansea University, 

unpublished data 

SM13 Puccinellia maritima 40 3.3 Skov et al. 2016 

SM14 Atriplex portulacoides 33 3.7 Skov et al. 2016 

SM15 Juncus maritimus-Triglochin 

maritima 

43 5.2 Skov et al. 2016 

SM16 Juncus gerardii 50 3.4 Skov et al. 2016 

SM18 Juncus maritimus 50 3.3 Skov et al. 2016 

 

I estimated the carbon stock per marsh as follows. Using NVC maps from 1998/1999 

surveys I plotted the carbon stock as measured in the field for all marshes that were 

sampled during the survey (covering 41% of total marsh area). For marshes not 

sampled in the field, we plotted the predicted carbon stock for that NVC class (37% 

of total marsh area). Any marsh area with unknown NVC class, or with a class not 

listed in Table 2 (22% of study area) was estimated as having the average C stock 

value for the study area (40 tC ha-1). Finally, I calculated the total carbon stock in 

each marsh (tonnes) and divided by the area of the marsh, to obtain the average 

carbon stock per marsh (tonnes C ha-1). This value was then rescaled between 0-

100%, with 0% set as the minimum value recorded in the study area (22) and 100% 

set as the maximum value calculated for the study area (53.7). 
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Limitations and confidence levels 

The carbon stocks were calculated using NVC data from 1998/1999 surveys. Although 

these data are out of date, surveys conducted in 2012 as part of CBE condition 

monitoring indicate that these communities have not changed significantly; the only 

major changes were found in the lower marsh Spartina zone. Predictions based on 

NVC class only account for ~40% of the variation in soil carbon. Not all NVC classes 

have been sampled for carbon stock, so approximately one fifth of the saltmarsh 

area has been allocated an average carbon value. I have assumed a clay-loam soil 

type for the estuary, based on field surveys, but this is likely to vary within each 

marsh. Confidence levels are based on the source of carbon data, weighted by the 

coverage per marsh. A confidence score of 0 represents a marsh where all the data is 

based on an estimate of 40 tC ha-1 (in this situation, the carbon value was mapped as 

‘no data’). A confidence score of 50 represents a marsh where all the C data is 

predicted based on NVC class. A confidence score of 100 represents a marsh where 

all the C data is based on field measurement. A marsh with a confidence level of 0 

was mapped with an ES value of ‘no data’. Confidence scores below 33 are 

considered low, scores between 33 and 66 are considered medium and scores above 

66 are considered high. 

 

D6 Birdwatching 

The Birdwatching layer shows the value attributed to each marsh for winter 

birdwatching. The values are informed by bird diversity and abundance, as well as 

other features of the marsh that may improve the birdwatching experience. I sought 

expert opinion from staff members in relevant public, academic and conservation 

bodies in Wales to determine what biotic and abiotic features of a marsh are most 

important for birdwatchers. I obtained responses from the Royal Society for the 

Protection of Birds (n=1), the Wildfowl and Wetland Trust (1), the British Trust for 

Ornithology (1), the Wildlife Trust of South and West Wales (3), Cardiff University (1) 

and NRW (2). The questionnaire and summarised responses are presented in 

Appendix F. The features were ranked in order of importance (high to low) as bird 

diversity, bird abundance, car parking, easy access, presence of a bird hide, proximity 

to home, presence of a particular species, other feature. Under ‘other feature’, low 

human disturbance was stated by 3 respondents and toilets/facilities was stated by 2 

respondents. I also asked respondents to rate each of the possible bird sightings in 

terms of desirability, from high to low, and to state any preferred species, but there 

was no consistency of response. Therefore, I concluded that overall bird diversity is 

more important than the presence of any particular species. I scored each marsh for 

every feature, with more highly desired features weighted more heavily (Table A3). I 

then summed the scores to give an overall birdwatching value, with a theoretical 

maximum of 100. Marshes that do not have a public right of way onto or 
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immediately adjacent to the marsh were given an overall score of 0, irrespective of 

other features. As birdwatching values fall in a potential range from 0-100, I did not 

rescale these values. 

 

Limitations and confidence levels 

The limitations of WeBS survey data described in Section A1.2 also apply here, and 

the diversity and abundance values only apply to winter birds. The birdwatching 

score is heavily dependent on the weighting given to each feature. Most of the score 

(55%) is accounted by bird diversity and abundance, which is commonly important to 

all bird watchers, but other features may be very important for some but not at all 

important to others. For example, some birdwatchers with mobility issues may put a 

premium on close parking, whereas others may enjoy a long walk as an intrinsic part 

of their birdwatching trip. The birdwatching values presented here are for the 

potential value, whereas an extensive survey would be required to reveal the 

realised value. I have allocated confidence levels based on survey effort per WeBS 

sector, as described in Section A1.2. 

 
Table D3. Features contributing to overall birdwatching value. Average rank per feature, as assessed 

by 9 relevant experts from various public, conservation and academic institutions in Wales. Scores 

were weighted more heavily towards more highly ranked features, to produce a maximum total score 

of 100. 

Rank Feature Measure of feature Max.  

score 

1 Bird diversity Average winter saltmarsh-specialist bird diversity per year over previous 10 

years* (rescaled from 0-30 with 30 being maximum recorded diversity). 
30 

2 Bird abundance Average winter saltmarsh-specialist bird abundance per year over previous 10 

years* (rescaled from 0-25 with 25 being maximum recorded abundance). 
25 

3 Car parking Car parking & easy access measured as walking distance to nearest car-parking 

spot (rescaled out of 15 with maximum score being a 0km walk) + walking 

distance to nearest bus stop (rescaled out of 5 with maximum score being 0km 

walk). 

20 

4 Easy access 

5 Bird hide present Presence of bird hide overlooking marsh (present=15, absent=0). 15 

6 Proximity to home Not included in assessment. NA 

7 Presence of 

particular species 

Not included as the only species specified by >1 respondent was bittern, which 

is not regularly present in any marsh. 
NA 

8a Other: low 

disturbance 

Tranquillity rating from NRW Tranquil Areas Wales shapefile. Urban (or a road 

directly adjacent to marsh)=0, Zone C=6.5, Zone B=3.5, Undisturbed=10. 
10 

8b Other: toilets/ 

facilities 

Not included as none of the study marshes have public toilets in immediate 

vicinity. 
NA 

Sum all scores to obtain Birdwatching value 

(Or 0 if no public right of way onto or immediately adjacent to the marsh ) 
100 

*WeBS survey data: Only overwintering bird species included. Only saltmarsh-specialist species included (22 species defined by 

NRW ornithologist). Only years surveyed ≥3 months included. Where a marsh is overlapped by multiple WeBS survey sectors, 

the average value for these sectors was taken. 
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D7 Wildfowling 

The Wildfowling layer shows the average number of wildfowl shot per km of 

foreshore per year. Shooting grounds were drawn using maps available in Shooting 

and Conservation Management Plans 2011/2 – 2026/7 for the relevant associations, 

provided by NRW. Wildfowling bag counts were obtained from Carmarthenshire 

Wildfowlers Association, Llanybri Wildfowling and Conservation Association and 

Morlais Valley Gun Club. Numbers were averaged for the three most recent reported 

shooting seasons (2013/14 – 2015/16) and were standardised by the length of the 

shooting ground in km (excluding any no-shoot refuge areas) as site length, rather 

than area, is the most relevant scale for wildfowlers. The number of wildfowl shot 

per km was rescaled from 0-100% with 0% set as 0 wildfowl (no shooting permitted) 

and 100% set as the maximum value recorded within the study area (47). Generally, 

a single shooting ground covers multiple marshes, and each marsh falling within the 

shooting ground was allocated the wildfowling value of the shooting ground. When a 

marsh was overlapped by two or more shooting grounds, it was allocated the 

average wildfowling value across the represented shooting grounds. 

 

Limitations and confidence levels 

All shooting associations are required to report their bag returns to NRW each year. 

For this reason, all numbers should be accurate, and all marshes have been allocated 

a high confidence level. However, any unlicensed shooting will not be reported here.  
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Table D4. Marsh attributes and raw ecosystem service (ES) values for all assessed marshes. Under 

management type C=common land with multiple graziers, PT=private owner or tenant farmer, 

CC=conservation body or local council. Distance shows the distance from the centre of the marsh to 

the estuary mouth (i.e. where the river opens onto Carmarthen Bay). See Appendix A for ES 

calculation. Plant diversity = average number of species per transect; bird habitat = no. red species x 3 

+ no. amber species x 2 + no. green species x 1; bee habitat = predicted bee abundance per transect 

km; U = ungrazed, L = lightly grazed, M= moderately grazed, H = heavily grazed; Carbon = tonnes C ha-1 

in the top 10cm of sediment; Birdwatching = potential score out of 100 based on diversity, abundance, 

access, facilities and tranquillity; Wildfowling = average no. birds shot per km foreshore per year. 

ID Marsh name 
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A Whiteford  C 4.0 272.9 7 20.2 18 9.4 H 40.8 62 0 

B Llanrhidian  C 6.0 573.5 7 16.0 21 3.3 H 37.9 79 0 

C Crofty  C 8.0 282.7 7 20.2 20 9.7 M 40.7 63 47 

D1 Penclawdd Dalton's Point PT 10.8 208.7 7 23.7 19 10.0 M 44.8 57 47 

D2 Penclawdd Berthlwyd PT 12.3 137.4 7 24.5 12 3.0 M 47.3 0 47 

D3 Penclawdd Island Ho PT 13.5 17.2 5 - 12 - H 46.4 33 0 

D4 Penclawdd Railway PT 12.6 37.3 7 22.5 12 9.7 M 46.0 29 0 

E1 Loughor Bwlchymynydd PT 13.0 6.09 5 - 19 - M 35.2 37 0 

E2 Loughor Gwynfaen PT 13.0 23.6 7 18.5 19 6.8 M 39.5 0 0 

E3 Loughor Cwrt-y-carne PT 12.9 59.8 7 15.5 19 2.1 M 39.1 0 0 

F1 Morfa Mawr Grove Farm PT 14.1 5.18 5 - 19 - U 32.1 0 0 

F2 Morfa Mawr Llwynadam C 14.2 29.8 7 21.5 19 1.6 H 40.2 23 0 

G1 Llangennech North PT 13.9 29.4 7 22.0 19 4.7 L 44.4 0 22.3 

G2 Llangennech Central PT 13.1 40.8 7 19.0 19 5.5 M 43.9 0 22.3 

G3 Llangennech South PT 12.9 17.0 7 21.0 19 1.7 M 45.7 0 22.3 

H Bynea  PT 11.8 41.7 7 27.0 19 4.5 U 40.4 33 22.3 

I Morfa Bacas  PT 11.0 3.96 7 18.0 29 14.4 U 42.1 48 5.3 

J1 Penrhyn Gwyn WWT CC 8.7 74.8 7 24.7 29 1.7 L 31.7 44 5.3 

J2 Penrhyn Gwyn West CC 7.8 44.9 7 22.5 15 18.0 U 30.9 32 5.3 

K Pembrey  CC 2.5 98.6 7 24.3 9 40.7 U 38.8 56 0 

L Gwendraeth  PT 3.2 464.8 7 24.0 20 18.3 M 44.5 49 9.1 

M1 
Gwendraeth 

North 

Commissioner's 

Bridge 
PT 5.0 7.84 7 25.0 24 10.9 M 36.2 37 9.1 

M2 
Gwendraeth 

North 
Kidwelly Quay CC 4.0 43.1 7 20.3 24 12.5 L 34.6 40 9.1 

M3 
Gwendraeth 

North 
Penallt PT 3.0 26.7 7 21.5 18 7.2 L 31.9 0 9.1 

N1 Morfa Uchaf Cwmburry PT 3.9 5.26 3 - - - L 48.3 - 0 

N2 Morfa Uchaf Commons C 3.9 34.7 5 34.5 - 3.7 L 41.5 - 9.1 

N3 Morfa Uchaf Coed Marsh PT 5.5 17.9 7 25.0 16 1.4 M 44.4 0 0 

O1 Clomendy East PT 6.5 16.3 7 27.0 16 1.8 L 43.0 0 0 

O2 Clomendy West PT 6.1 7.04 7 24.0 16 7.1 M 45.2 0 0 

P Morfa Bach  NA 4.9 16.2 7 17.0 13 38.8 U 41.4 0 0 

Q1 Mwche Black Scar PT 2.7 61.6 5 29.0 - 6.7 L 35.7 - 13.3 
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Q2 Mwche Cwm-celyn PT 3.7 14.1 5 26.3 - 11.4 M 29.4 - 13.3 

R1 Trefenty East PT 5.2 42.0 5 29.0 - 1.1 M 42.1 - 13.3 

R2 Trefenty West PT 5.3 42.3 6 21.0 - 1.8 M 53.7 0 0 

S Brixtarw  PT 4.6 12.9 6 24.0 - 20.9 U 38.9 0 0 

T1 Laugharne North CC 3.6 8.11 5 14.0 - 8.3 U 39.2 - 0 

T2 Laugharne Town CC 3.4 6.91 5 19.0 - 20.6 U 31.4 - 0 

U1 Laugharne South Upper PT 2.1 49.0 5 22.5 - 5.7 M 34.3 - 0 

U2 Laugharne South Lower PT 1.1 43.3 7 29.0 19 11.8 U 35.8 0 0 

V1 Upper Taf 1 NA 5.9 4.83 3 - - - - 42.0 0 0 

V2 Upper Taf 2 NA 6.4 15.2 6 26.0 - 1.7 M 48.2 0 0 

V3 Upper Taf 3 NA 6.8 12.1 4 27.0 - 5.8 U - - 0 

V4 Upper Taf 4 NA 7.7 2.63 5 21.0 - 10.3 U - 0 0 

V5 Upper Taf 5 NA 7.7 29.8 5 18.3 - 2.6 M - 0 0 

V6 Upper Taf 6 NA 8.5 10.1 2 - - - - - 0 0 

V7 Upper Taf 7 NA 8.9 8.35 5 16.0 - 0.5 M - 0 0 

W1 Upper Towy 1 NA 7.7 11.4 6 23.5 - 4.9 M 45.1 0 0 

W2 Upper Towy 2 NA 8.4 11.7 6 21.0 - 9.0 U 47.4 0 0 

W3 Upper Towy 3 NA 9.6 45.5 6 24.0 - 2.1 M 46.3 0 0 

W4 Upper Towy 4 NA 10.3 13.9 6 22.0 - 1.3 L 48.9 0 0 

W5 Upper Towy 5 NA 10.7 15.0 4 22.0 - 5.2 U - - 0 

W6 Upper Towy 6 NA 11.2 17.3 5 18.0 - 0.1 H - 0 0 

W7 Upper Towy 7 NA 11.2 8.55 4 20.0 - 0.3 M - - 0 

X1 Unnamed marsh 1 NA 12.2 0.23 1 - - - - - - 0 

X2 Unnamed marsh 2 NA 12.5 0.08 1 - - - - - - 0 

X3 Unnamed marsh 3 NA 12.7 0.07 1 - - - - - - 0 

X4 Unnamed marsh 4 NA 12.8 0.19 1 - - - - - - 0 

X5 Unnamed marsh 5 NA 14.7 4.08 5 24.0 - 1.1 0 - 0 0 

X6 Unnamed marsh 6 NA 6.9 0.3 1 - - - 0 - - 5.3 

X7 Unnamed marsh 7 NA 6.5 0.54 1 - - - - - - 5.3 

X8 Unnamed marsh 8 NA 6.3 0.77 1 - - - 0 - - 5.3 

X9 Unnamed marsh 9 NA 6.0 1.27 1 - - - - - - 0 

X10 Unnamed marsh 10 NA 4.1 5.01 5 20.0 - 5.5 - 39.3 - 0 

X11 Unnamed marsh 11 NA 1.9 3.43 5 33.0 - 2.8 - 41.5 - 0 

X12 Unnamed marsh 12 NA 2.5 0.58 2 - - - - 26.0 - 0 

X13 Unnamed marsh 12 NA 3.3 3.86 5 23.0 - 21.6 M 41.3 - 0 

X14 Unnamed marsh 14 NA 2.9 1.75 2 - - - - 26.0 - 0 
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Table D5. Rescaled ecosystem service values, multifunctionality scores and ES bundles for all marshes. 

Values shown in brackets were estimated (as described in methods) when calculating 

multifunctionality scores and ES bundles to increase the sample size. ES bundles: 1 = Grazing, no 

recreation, 2 = Heavy grazing & birds, 3 = Bee-friendly, 4 = Biodiversity, 5 = Multi-use, 6 = Plant 

diversity. Confidence levels: 1 = low, 2 = medium, 3 = high.  

ID 
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A 42 62 23 100 59 62 0 49.7 0.81 5 4 1 2 3 

B 24 71 8 100 50 79 0 47.4 0.78 4 4 3 2 3 

C 41 68 24 60 59 63 100 59.2 0.84 6 5 1 5 2 

D1 56 66 25 60 72 57 100 62.2 0.84 6 6 2 5 3 

D2 59 41 7 60 80 0 100 49.6 0.79 5 4 2 5 3 

D3 NA 41 NA 100 77 33 0 NA NA NA NA NA NA NA 

D4 51 41 24 60 76 29 0 40.0 0.81 4 3 1 1 3 

E1 NA 66 NA 60 42 37 0 NA NA NA NA NA NA NA 

E2 35 66 17 60 55 0 0 33.3 0.77 4 3 0 1 2 

E3 22 66 5 60 54 0 0 29.6 0.73 3 3 0 1 3 

F1 NA 66 NA 0 32 0 0 NA NA NA NA NA NA NA 

F2 47 66 4 100 57 23 0 42.5 0.77 4 3 1 2 3 

G1 49 66 12 30 71 0 48 39.3 0.80 5 2 1 5 2 

G2 37 66 14 60 69 0 48 41.9 0.81 5 3 0 5 3 

G3 45 66 4 60 75 0 48 42.6 0.80 5 3 1 5 3 

H 69 66 11 0 58 33 48 40.7 0.80 5 3 0 4 3 

I 33 100 35 0 63 48 11 41.6 0.78 5 2 1 4 2 

J1 60 100 4 30 31 44 11 40.1 0.78 5 2 1 4 2 

J2 51 52 44 0 28 32 11 31.1 0.81 4 2 0 3 3 

K 59 31 100 0 53 56 0 42.7 0.77 5 4 1 3 3 

L 57 72.5 45 60 71 49 19 53.4 0.84 6 4 2 2 2 

M1 61 86 27 60 45 37 19 47.8 0.83 5 3 1 2 2 

M2 42 86 31 30 40 40 19 41.0 0.82 6 1 1 4 2 

M3 47 65.5 18 30 31 0 19 30.1 0.80 4 1 0 4 2 

N1 NA (20) NA 30 83 (48) 0 NA NA NA NA NA NA NA 

N2 100 (20) 9 30 62 (48) 19 41.0 0.78 4 2 1 6 2 

N3 61 55 4 60 71 0 0 35.7 0.75 4 4 1 1 3 

O1 69 55 4 30 66 0 0 32.1 0.74 4 3 0 1 2 

O2 57 55 17 60 73 0 0 37.5 0.77 4 4 1 1 2 

P 29 46.5 95 0 61 0 0 33.2 0.71 3 2 1 3 2 

Q1 78 (20) 16 30 43 (25) 28 34.4 0.81 3 1 1 6 2 

Q2 67 (20) 28 60 23 (19) 28 35.0 0.82 2 2 0 1 2 

R1 78 (20) 3 60 63 (17) 28 38.4 0.79 3 3 1 1 2 

R2 45 (20) 4 60 100 0 0 32.8 0.70 3 2 1 1 2 

S 57 (20) 51 0 53 0 0 26.0 0.72 3 3 0 3 2 

T1 16 (20) 20 0 54 (38) 0 21.2 0.75 2 1 0 6 2 
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T2 37 (20) 51 0 30 (50) 0 26.8 0.78 4 2 0 3 2 

U1 51 (20) 14 60 39 (43) 0 32.3 0.80 4 2 0 1 2 

U2 78 69 29 0 44 0 0 31.4 0.72 3 2 1 4 3 

V1 NA NA NA NA 63 0 0 NA NA NA NA NA NA NA 

V2 65 (20) 4 60 83 0 0 33.1 0.72 3 3 1 1 2 

V3 69 (20) 14 0 (57) (47) 0 29.5 0.75 3 2 0 6 1 

V4 45 (20) 25 0 (57) 0 0 21.0 0.71 2 1 0 6 1 

V5 34 (20) 6 60 (57) 0 0 25.3 0.73 3 2 0 1 2 

V6 NA NA NA NA NA 0 0 NA NA NA NA NA NA NA 

V7 24 (20) 1 60 (57) 0 0 23.1 0.70 2 2 0 1 1 

W1 55 (20) 12 60 73 0 0 31.4 0.74 3 3 1 1 2 

W2 45 (20) 22 0 80 0 0 23.9 0.67 2 1 1 6 2 

W3 57 (20) 5 60 77 0 0 31.3 0.73 3 3 1 1 1 

W4 49 (20) 3 30 85 0 0 26.7 0.69 3 1 1 1 2 

W5 49 (20) 13 0 (57) (42) 0 25.7 0.76 3 1 0 6 1 

W6 33 (20) 0 100 (57) 0 0 30.0 0.67 3 2 1 1 2 

W7 41 (20) 1 60 (57) (47) 0 32.2 0.78 4 2 0 1 1 

X1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA 

X2 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA 

X3 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA 

X4 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA 

X5 57 NA 3 60 NA 0 0 28.1 0.73 3 3 0 1 2 

X6 NA NA NA NA NA NA 11 NA NA NA NA NA NA NA 

X7 NA NA NA NA NA NA 11 NA NA NA NA NA NA NA 

X8 NA NA NA NA NA NA 11 NA NA NA NA NA NA NA 

X9 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA 

X10 41 (20) 14 0 55 (30) 0 22.7 0.76 3 1 0 6 1 

X11 94 (20) 7 0 62 (28) 0 30.1 0.69 2 2 1 6 1 

X12 NA NA NA NA 13 NA 0 NA NA NA NA NA NA NA 

X13 53 (20) 53 0 61 (29) 0 30.9 0.77 3 3 0 3 1 

X14 NA NA NA NA 13 NA 0 NA NA NA NA NA NA NA 
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Fig. D1. Heat maps of individual ES provision.  
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Fig. D1 cont. 
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Fig. D2. Confidence in each ES map layer. 
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Fig. D2 cont. Confidence in each ES map layer. 
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Fig. D3. Confidence levels for ES multifunctionality values and ES bundles. The confidence level was 

calculated by averaging across the confidence levels for each of the seven ES, where 0=assumed based 

on no WeBS survey (see section 2.3.2), 1=low, 2=medium, 3=high confidence. The mean value was 

then rounded to the nearest whole number, to be assigned a confidence level of low (1), medium (2), 

or high (3).
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Questionnaire 

Grazing Questionnaire 

 

This survey is being carried out as part of a research project on Welsh Saltmarshes 

(RESILCOAST, http://www.nrn-lcee.ac.uk/resilcoast/research.php.en). The project is 

investigating the role salt marshes play in supporting coastal communities, and how they are 

managed and used.  One of the aspects of this is understanding how salt marshes are used for 

agriculture in Wales.  

We would like to talk to you about your use of the marsh, through this short questionnaire. It 

should take approximately 15 minutes of your time.   

The questionnaire is being undertaken in accordance with the Research Ethics Guidelines of 

Cardiff University, and has been approved by the Research Ethics Committee of the School of 

Earth and Ocean Sciences. Your participation in this questionnaire is entirely voluntary, and 

you can stop your participation at any time. All data you provide, including any personal data, 

will be treated with confidentiality, and will only be used for the purpose of this research 

study.  The data will never be sold on and will not be individually attributable to you. The 

information you provide will be stored securely and used for research purposes only. 

If you have any questions or concerns about this research, you can contact the researchers 

using the following e-mail address: mckinleye1@cardiff.ac.uk  

 

Please confirm you accept this and are willing to proceed with the survey by checking 

the box below.  

 

I confirm, by checking this box, that I am over 18 and I allow you to use, anonymously, the 

information I provide in this questionnaire.     ☐ 

 

 

Location of the farm:   

Date of interview:  

 

1. How long have you or your family been farming this land?  

 

2. Do you currently farm saltmarsh land in any way?  

Yes  ☐  No  ☐ 

 

3. If yes, what type of farming activity? (what type(s) of livestock/ species/ age of 

animals farmed) 

a. Livestock type:  

b. Breed:  

c. Age of animals:  

 

4. How many animals do you stock on the saltmarsh? 

 

5. What is the approximate size of the saltmarsh area that you farm?  

 

6. Is the area you farm one area or is it split across multiple marshes? 

 

http://www.nrn-lcee.ac.uk/resilcoast/research.php.en
mailto:mckinleye1@cardiff.ac.uk
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7. What months of year do you graze the marsh? Please check all that apply.  

January  ☐ February  ☐ March   ☐ April 

 ☐ 

May  ☐ June  ☐ July   ☐ August 

 ☐ 

September ☐ October  ☐ November ☐ December

 ☐ 

 

8. Do you rotate use of the salt marsh land?  

Yes  ☐  No  ☐ 

If yes, please explain if possible:  

 

9. How important is the salt marsh to your general farming income?  

Very Important   ☐ 

Important  ☐ 

Slightly important  ☐ 

Unimportant   ☐ 

 

10. Do you sell your meat as ‘salt marsh’ lamb/beef etc.? 

Yes  ☐   No  ☐ 

 

11. Is the salt marsh land that you use farmed by anyone else?  

Yes  ☐   No  ☐ 

 

12. Is there a right of way access on the saltmarsh that you use?  

Yes  ☐   No  ☐ 

 

13. Are you a tenant or the landowner of the salt marsh that you use?  

Tenant ☐   Landowner ☐ 

 

14. If not owned by you, do the land owners require you to use the land in a certain way? 

Please explain:  

 

15. Are you engaged in any kind of management scheme? E.g. Glastir, RSPB grazing 

regimes, etc  

Yes  ☐  No  ☐ 

If yes, please provide details if possible: 

 

16. What other activities, if any, take place on the salt marsh that you farm?  

 

17. What benefits do you think people can get from Welsh salt marshes?  
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Table E1. Summarised responses to grazing questionnaire. Owner/occupier responses to questions 

related to grazing management and farm income. For grazing management, C=cattle, C2=young cattle 

(<2 yrs), S=sheep, P=ponies, ha=hectares, y=year. Farm income indicates how important the saltmarsh 

grazing land is to overall income, where VI=very important, I=important, SI=slightly important, 

U=unimportant. Salt marsh indicates whether the meat is marketed with a ‘salt marsh’ designation.  
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F1 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0 U 
 

A 0 0 603 29 0 0 12 12 0.00 0.00 2.22 0.11 0.3 I yes 

B 0 0 1270 61 0 0 12 12 0.00 0.00 2.22 0.11 0.3 I yes 

C 0 0 627 30 0 0 12 12 0.00 0.00 2.22 0.11 0.3 I yes 

D1 0 0 1320 0 0 0 9 0 0.00 0.00 4.50 0.00 0.54 VI yes 

D2 0 0 480 0 0 0 9 0 0.00 0.00 4.50 0.00 0.54 VI yes 

D3 25 0 0 0 5 0 0 0 0.80 0.00 0.00 0.00 0.8 VI no 

G1 ? 0 ? 0 12 0 12 0   0.00   0.00 (2)? I yes 

G2 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0 U 
 

J1 0 35 0 0 0 7 0 0 0.00   0.00 0.00 0.2 VI no 

L 150 50 0 0 7 7 0 0 0.16 0.05 0.00 0.00 0.2 VI no 

M3 10 0 0 0 6 0 0 0 0.10 0.00 0.00 0.00 0.1 SI no 

N1 3 0 0 0 12 0 0 0 0.30 0.00 0.00 0.00 0.3 VI no 

N2 15 0 0 0 12 0 0 0 0.30 0.00 0.00 0.00 0.3 VI no 

O1 18 0 18 0 3 0 3 0 0.28 0.00 0.28 0.00 0.3 I no 

O2 0 ? ? 0 0 5 5 0 0.00     0.00 0.6 SI no 

R1 80 0 0 0 3 0 0 0 0.57 0.00 0.00 0.00 0.6 I no 

R2 65 0 50 0 6 0 6 0 0.90 0.00 0.69 0.00 1 VI no 

U1 60 60 150 0 7 7 1.5 0 0.31 0.31 0.16 0.00 0.5 VI no 
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Expert opinion survey. 

 

 

Expert opinion survey – winter birdwatching on Welsh salt marshes 

 

This survey is being conducted as part of a study by Swansea University into the 

Ecosystem Services (the ways nature benefits people) provided by the salt marshes of 

South Wales. The end result will be the production of Ecosystem Service maps for the 

Carmarthen Bay and Estuaries Special Area of Conservation (SAC), to aid NRW in 

their management of the site. In order to predict what marshes are best for 

birdwatching, we need to understand the factors that will influence a visit, and the bird 

sightings that are most desired.  

 

Please complete the two sections below. If you have any further thoughts or insights, 

we would be very happy to hear them. Please return the form to 

DavidsonKE@hotmail.co.uk. 

 

1. We would like to understand what features of a salt marsh are most influential in 

encouraging visits from birdwatchers. Please rank the following features from 1 - 8 in 

terms of how likely they are to influence a visit to a particular salt marsh. 

 

Rank from 1 (most important) - 8 (least important) 

 

Proximity to home/work 

Car parking nearby 

Easy access onto site 

The presence of a bird hide 

Large numbers of birds present 

High diversity of birds present 

The presence of particular species. Please state: 

______________________________ 

Other features. Please state: 

______________________________________________ 
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2. We would like to know what bird sightings are the most preferred for a birdwatcher 

– i.e. those species that would most encourage you to visit a salt marsh for the purpose 

of birdwatching. The following species can all be seen during winter in the 

Carmarthen Bay and Estuaries SAC. Please give each species a rating of 1 – 3 in 

terms of how desirable a sighting is. 

 

 Most highly preferred  Less highly preferred 

 1 2 3 

Bar-tailed Godwit  ☐ ☐ ☐ 
Black-tailed Godwit ☐ ☐ ☐ 
Brent Goose ☐ ☐ ☐ 
Common Gull ☐ ☐ ☐ 
Common Scoter ☒ ☐ ☐ 
Curlew ☐ ☐ ☐ 
Dunlin ☐ ☐ ☐ 
Eider ☐ ☐ ☐ 
Golden Plover ☐ ☐ ☐ 
Goldeneye ☐ ☐ ☐ 
Great White Egret ☐ ☐ ☐ 
Green Sandpiper ☐ ☐ ☐ 
Greenshank ☐ ☐ ☐ 
Grey Plover ☐ ☐ ☐ 
Knot ☐ ☐ ☐ 
Lapwing ☐ ☐ ☐ 
Marsh Harrier ☐ ☐ ☐ 
Mediterranean Gull ☐ ☐ ☐ 
Merlin ☐ ☐ ☐ 
Pintail ☐ ☐ ☐ 
Pochard ☐ ☐ ☐ 
Red-breasted Merganser ☐ ☐ ☐ 
Red-throated Diver ☐ ☐ ☐ 
Redshank ☐ ☐ ☐ 
Ruff ☐ ☐ ☐ 
Sanderling ☐ ☐ ☐ 
Shoveler ☐ ☐ ☐ 
Slavonian Grebe ☐ ☐ ☐ 
Snipe ☐ ☐ ☐ 
Snow Goose ☐ ☐ ☐ 
Spotted Redshank ☐ ☐ ☐ 
Turnstone ☐ ☐ ☐ 
Whooper Swan ☐ ☐ ☐ 
Wigeon ☐ ☐ ☐ 
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Table F2. Summarised responses to expert opinion survey. Responders were as follows. A: Alistair 

Wilson, Natural Resources Wales, B: Ed O’Connor, Wildfowl & Wetland Trust; C: Rachel Taylor, British 

Trust for Ornithology; D: Tracey Dunford, Natural Resources Wales; E: Frank Sengpiel, Cardiff 

University; F: Lizzie Wilberforce, Wildlife Trust of South and West Wales; G: Vaughn Matthews, 

Wildlife Trust of South and West Wales; H: Rich Brown, Wildlife Trust of South and West Wales. 
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Diversity 2 1 1 5 1 2 1 2 1.9 1 5 1.5 
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Access 4 3 4 2 5 5 6 5 4.3 2 6 4.5 

Hide 5 8 2 3 2 6 5 4 4.4 2 8 4.5 
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