
Neuron-based Network Pruning Based on Majority
Voting

Ali Alqahtani ∗†, Xianghua Xie∗, Ehab Essa∗‡, and Mark W Jones∗
∗ Department of Computer Science, Swansea University, Swansea, UK

† Department of Computer Science, King Khalid University, Abha, Saudi Arabia
‡ Department of Computer Science, Mansoura University, Mansoura, Egypt

Abstract—The achievement of neural networks in a vari-
ety of applications is accompanied by a dramatic increase in
computational costs and memory requirements. In this paper,
we propose an efficient method to simultaneously identify the
critical neurons and prune the model during training without
involving any pre-training or fine-tuning procedures. Unlike
existing methods, which accomplish this task in a greedy fash-
ion, we propose a majority voting technique to compare the
activation values among neurons and assign a voting score to
quantitatively evaluate their importance. This mechanism helps
to effectively reduce model complexity by eliminating the less
influential neurons and aims to determine a subset of the whole
model that can represent the reference model with much fewer
parameters within the training process. Experimental results
show that majority voting efficiently compresses the network
with no drop in model accuracy, pruning more than 79% of
the original model parameters on CIFAR10 and more than 91%
of the original parameters on MNIST. Moreover, we show that
with our proposed method, sparse models can be further pruned
into even smaller models by removing more than 60% of the
parameters, whilst preserving the reference model accuracy.

I. INTRODUCTION

In recent years, deep learning algorithms have shown their
robust ability in representation learning and achieved con-
siderable success in many tasks. Deep learning utilizes a
hierarchical level of neural networks with respect to different
kinds of neural networks, such as multi-layer perceptron
(MLP), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs), to perform the learning process. This
hierarchical representation allows models to learn features
at multiple levels of abstraction, meaning that complicated
concepts can be learned from simpler ones. Neurons in earlier
layers of a network learn low-level features, while neurons of
later layers learn more complex concepts.

Thanks to large amount of data and advanced computing
power, deep learning models have advanced into wider and
deeper architectures, driving the state-of-the-art performances
in various tasks. However, its significant redundancy in the
parameterization has become a widely-recognized property
of deep learning [1]. The over-parametrized and redundant
nature of deep neural networks present significant challenges
for many applications. For instance, deploying sizeable deep
learning models to a resource-limited device leads to various
constrains, as on-device memory is limited [2]. Moreover,
training with more parameters than necessary incurs expensive
computational costs and high storage requirements.

In an attempt to confront these challenges, several ap-
proaches have been developed to visually understand the
importance of intermediate neurons in neural networks [3],
[4], [5], and measure the influence of hidden units [6], [7],
[8]. Although these approaches provide different ways to
measure the importance of individual hidden units, most of
the focus on gaining a better understanding of the network’s
behavior, with limited attention being paid to pruning studies.
The ways in which neuron-based pruning assist in decreasing
the complexity of large scale networks are not the focus
of the current research. Influential neurons usually identify
essential features or high-level concepts on a trained network.
Recognizing the importance of such neurons can help to
reduce the model complexity by discarding less important
units. Reducing the complexity of models while maintaining
their powerful performance is always desirable.

Pruning approaches can be applied to any part of deep
neural networks, including weights [9], [10], [11], neurons
[12], [13], filters [14], and channels [15]. Most of the existing
methods tend to focus on compressing networks rather than
on discovering informative neurons for effective pruning. The
fact that not all nodes deliver essential information for the
final prediction of the model motivates us to fundamentally
rely on applying the importance method when pruning non-
informative neurons. Most of the existing methods also tend
to compress the networks through the following three-step
procedure: training, pruning, and fine-tuning; in contrast, we
train our models from scratch without the use of any pre-
training or fine-tuning. We integrate the pruning procedure
into the learning process, aiming to find a smaller, well-
suited architecture to the target task at the training phase. The
main goal of pruning algorithms is to obtain a subnetwork
with much fewer parameters without harming accuracy. The
pruned version, a subset of the whole model, can represent the
reference model at a smaller size or much fewer parameters.
Hence, overparameterized networks can be efficiently com-
pressed while maintaining the property of better generalization
[16].

In this paper, the focus is on a neuron-pruning approach that
is carried out according to level of importance. We propose
a majority voting technique which votes for crucial neurons
and removes redundant nodes accordingly. Our activation-
based method aims to compute a measure of relevance that
identifies the most critical neurons by assigning a voting score

to evaluate their importance. In order to gather conclusive
evidence to evaluate the effectiveness of our method, an
experiment based on ablation analysis in trained models was
carried out. By comparing our importance method with several
baselines, we show that our method substantially outperforms
others in terms of neurons’ effective measurement. We also
introduce a network-wide holistic approach to prune neurons
based on our majority voting method during training, with-
out involving any pre-training or fine-tuning procedures. We
have evaluated our pruning model on MNIST and CIFAR10
datasets. The experimental results show that the proposed
method efficiently reduces the number of parameters without
harming the accuracy.

II. RELATED WORK

A. Neuron Importance Methods

Some neuron-based strategies corresponding to different
measures of importance were explored. Their core aim is
to evaluate neuron importance, which provides meaningful
insight into the characteristics of the internal representations
of neural networks. The developed methods have attempted to
visually understand and characterize the deep representations,
mainly focusing on single-neuron properties [4] and pixel-level
annotations [3], [5] in relation to object invariance. Analyzing
individual neurons and looking for an explanation of specific
activation does not help to intuitively quantify the sufficient
associations and decision linkages between neurons with a
massive number of parameters.

The quantitative assessment of neurons’ property has been
successfully adopted to understand neuron property and evalu-
ate neurons’ importance. Such techniques introduce objectives
to measure the activation values of each neuron and assign
to them a score. Dhamdhere et al. [6] utilize integrated
gradients by summing the gradients of the output prediction
with respect to the input, in order to evaluate the importance
of hidden neurons. Amjad et al. [7] also proposed a method
to compute internal neuron importance, utilizing information-
theoretic quantities (i.e. entropy and mutual information) to
understand the outputs of individual neurons of trained neu-
ral networks. Moreover, Morcos et al. [17] investigated the
relationship between the classification performance of neural
networks and the output of individual neurons to estimate
class selectivity and mutual information for the activation of
each neuron. Furthermore, Na et al. [8] have recently used
the highest mean activation to measure the importance of
individual units on language tasks, showing that different units
are selectively responsive to specific morphemes, words and
phrases. Although these methods provide an intuitive process
to determine criteria for neuron selection for effective pruning,
most of the previously mentioned methods focus on gaining a
better understanding of the network’s behaviour, with limited
attention being paid towards pruning methods.

B. Pruning Methods

Pruning approaches have received considerable attention
as a way to tackle over-parameterization and redundancy.

Existing works for the purpose of network compression
can be classified into two categories: weight-based methods
[9], [10], [11], [14], [18] and neuron-based methods [12],
[19], [13]. Weight-based pruning eliminates unnecessary, low-
weight connections between layers of a neural network, while
neuron-based methods remove all weight connections to a
specific neuron, where both income or outgoing weights are
removed.

Several weight-based methods have been proposed to prune
non-informative connections. Recently, Han et al. [11] in-
troduced a pruning method to remove connections whose
absolute values are smaller than a predefined threshold value.
The threshold calculated using the standard deviation of a
layer’s weights. The network is, thereafter, retrained to recover
the dropped accuracy. Although Han’s framework received
significant attention and has become a typical method used
for network pruning, it focuses on weights’ magnitudes, relies
on iterative pruning and fine-tuning, and requires a particular
software/hardware accelerator which is not supported by off-
the-shelf libraries. Moreover, the reliance on a predefined
threshold is less practical and proves too inflexible for some
applications.

Li et al. [14] also proposed a pruning method based on
the absolute weighted sum to judge the importance of the
intermediate weights, where pruning is carried out according
to the lowest scores. The method requires multiple iterations
to regain lost accuracy, which can be time-consuming.

Liu et al. [20] showed the possibility of overriding the re-
training phase by random reinitialization before the retraining
step. This still delivers equal accuracy with comparable train-
ing time. Furthermore, Mocanu et al. [18] replaced the fully-
connected layers with sparsely-connected layers by applying
initial topology based on the Erdős–Rényi random graph. Dur-
ing training, fractions of the smallest weights are iteratively
removed and replaced with the new random weights. Applying
initial topology allows for the finding of a sparse architecture
before training; however, this requires expansive training steps
and obviously benefits from iteratively random initialization.

It can be argued that the use of weight-based methods
alone suffers from certain limitations. The need to remove
low-weight connections means that important neurons whose
activation does not contribute enough, due to low-magnitude
income or outgoing connections, could be ignored. However,
these methods can be applied in combination with our pro-
posed one.This combination adds extra compression value.
Moreover, the overall impact of weight-based pruning on
network compression can be less compared to neuron-based
ones. Pruning a neuron eliminates entire rows or columns of
the weight matrices from both the former and later layers
connected to that neuron, while weight-based methods only
prune the low-weight connections between layers.

Neuron-based methods represent another pruning approach
that is proposed to eliminate less important neurons. He
et al. [12] propose a simple neuron-based pruning strategy.
They evaluate the importance of a neuron by summing the
output weights of each neuron; based on this, the unimportant

nodes are eliminated. They also apply neuron-based pruning
utilizing neuron activation entropy. Their entropy function
evaluates the activation distribution of each neuron based
on a predefined threshold, which is only suitable with a
sigmoid activation function. Since this method damages the
network’s accuracy, additional fine-tuning is required to obtain
satisfactory performance. Srinivas et al. [19] also introduced
a neuron-based pruning method by evaluating the weights
similarity of neurons in a layer. A neuron is removed when its
weights are similar to that of another in its layer. Moreover,
Mariet et al. [13] introduced Divnet, which selects a subset
of diverse neurons and subsequently merges similar neurons
into one. The subset is selected based on activation patterns
by defining a probability measure over subsets of neurons.
These non-structured pruning methods require a particular
software/hardware accelerator that is not supported by off-
the-shelf libraries. They also require a multi-step procedure
to prune neurons; in contrast, our method prunes the model
during training, leading to better solutions.

Most of the existing methods tend to compress the networks
through multi-step procedures. Undertaking enough retraining
is the only technique which can be used to regain the initial ac-
curacy, as there is no guarantee that accuracy will be preserved
throughout the compression phase. One definite explanation is
that the standard compression approach mainly benefits from
the substantial retraining step, especially when the selection
criteria is simple and does not adequately measure the im-
portance, due to the adoption of less efficient measurement
standards. In order to overcome these issues, our proposed
method involves a mechanism which introduces competent
neuron measurement into the pruning process. This mechanism
helps to reconcile the significant importance measurement and
effective pruning. We train our models from scratch without
involving any pre-training or iterative fine-tuning procedures.
This saves time that is needed for the initial training as well
as the retraining phases; these could require twice the amount
of time that is usually necessary to train a model from scratch.

III. PROPOSED METHOD

Pruning redundant neurons always requires a more careful
approach. There is no standard guidance for choosing the best
network architecture; a model may have a certain level of
redundancy to guarantee excellent quality performance. Most
of the existing methods tend to compress networks by adopting
straightforward selection criteria, such as relying on a prede-
fined threshold [11], calculating absolute summed values [14],
or simply summing the output weights[12]. These methods
seem to focus on compressing networks without discovering
a well-suited architecture or adopting efficient measurement
standards to evaluate importance. In contrast, our neuron
importance measurement method, majority voting, selects a
subset of neurons based on voting scores. It measures the
importance of neurons in each layer and determines a subset
of neurons whose activation patterns are the most influential.
In this paper, we introduce a comprehensive approach to prune
network’s neurons based on our majority voting method during

training, without involving any pre-training or fine-tuning
procedures. The proposed method introduces a mechanism
for measuring the importance of neurons and pruning them
accordingly into the body of the learning phase, aiming to
obtain a subset of the whole model, which represents the
reference model with much fewer parameters. In this section,
we introduce our overall proposed framework, which consists
of two parts. First, the measurement of neuron importance is
discussed; this includes utilizing the majority voting approach
in order to determine the importance of neurons in each layer.
Then, we introduce a network-wide holistic approach which
can be used to prune network neurons during training. The
details are provided below.

A. Importance of Individual Neuron via Majority voting (MV)

We aim to detect influential neurons in neural networks by
evaluating their activation. Feeding the training data through
the network, each example is represented differently and has
individual activation throughout all neurons in the network. We
apply forward passing through an optimized model to find the
output of each neuron, called activation. This can be viewed as
random variables, and different input images can sample more
instances. To evaluate their importance, a voting technique is
applied; it only votes for a neuron when all the instances
agree, which is what majority voting refers to. Our method
was named majority voting (MV) as it utilizes a majority
voting strategy to measure the importance of neurons. This
measure of importance is discussed in depth below. Each layer
has weights that are multiplied with an input example, x, to
produce an output corresponding n activation. The activation
at j-th neuron is computed as the weighted sum of activations
from all neurons in the i− 1-th layer. The output of the j-th
unit in the i-th layer of the neural network is defined as:

t
(i)
j (xn) = σ

(
b
(i)
j +

∑
p

w
(i−1)
p,j t(i−1)

p (xn)

)
, (1)

where xn denotes the n-th data example at the input, σ is the
activation function, bij denotes the corresponding bias for the
j-th unit in the i-th layer, w(i−1)

p,j is the weight that connects
p-th neuron from the previous layer (i− 1) with the j-th unit
in the i-th layer (existing layer).

After this, the activation matrix is obtained by Eq.(1). For
each row, we set the top l largest activation neurons to 1 and
others to 0 by using the following form:

υ
(i)
j (xn) =

{
1 If argsort (t

(i)
j (xn))[1 : l]

0 Otherwise
(2)

As a result, a binary matrix is obtained with J ∗N dimension
in the i-th layer, where J is the number of neurons and N the
number of input examples. The obtained matrix determines
how important a neuron is for a given example, where 1
indicates the most influential neuron and 0 otherwise. Then,
we sum over columns (examples) to score of the number of
times that the j-th neuron is one of the top neurons for given

Fig. 1: Neuron-based pruning method. (A) The initial state of the fully-connected layers. After training the network for t
epochs, (B) Measuring neuron importance, where the dark circles in the diagram indicate important neurons. (C) Pruning the
less important neurons, based on which the income or outgoing connections are removed.

examples, voting for the crucial neurons. This is given by the
following form:

y
(i)
j =

N∑
n=1

υ
(i)
j (xn) (3)

ψ
(i)
j = y

(i)
j =

{
1 If argsort (y

(i)
j)[1 : k ∗ J]

0 Otherwise
(4)

We set a k percentage of the J neurons, which have the largest
voting scores, to 1 and the remaining to 0. Here, k denotes
the percentage of the largest index of y. For every layer, we
will come up with a binary vector that indicates whether such
neurons are important or not, where 1 denotes that the neuron
is important and 0 otherwise.

Algorithm 1 Pruning algorithm using Majority Voting (MV)
Input: Training set (x, y), Validation set (x̀, ỳ), t, and k
Output: A pruned model
initialization
best accuracy← 0
for e← 1 to E do

Preform standard training procedure
Preform weights update
accuracy← model accuracy
if e mod t = 0 and accuracy > best accuracy then

best accuracy← accuracy
for each layer do

Compute the activation for each neuron Eq.(1)
Vote for largest activations Eq.(2)
Compute the amount of times a neuron has been
voted Eq.(3)
Vote for k% of largest voting-score neurons Eq.(4)
Prune the non-important neurons

end
end

end

B. Pruning algorithm

We introduce a method that measures the importance of
a network’s neurons and prunes them accordingly during
training. Our criterion for measuring the value of individual
neuron and finding less important ones is critical, as it allows
us to effectively identify and prune redundant neurons. As
shown in Fig.1, our pruning algorithm starts with standard
network architecture and preform standard training. After
a certain number of iterations t, we measure the neurons’
importance, applying our majority voting method, as described
in the previous section III-A. For every layer, we come up with
a binary vector that indicates k% of important neurons, which
is a result of the MV method Eq.4. To eliminate the non-
informative neurons, we remove a certain number of neurons
that have the lowest voting scores based on the predefined
percentage. The complete algorithm is given in Algorithm 1.

Starting with standard training, we begin to apply our
pruning algorithm based on certain conditions, including a
certain number t of epochs and the observation of the model’s
accuracy. Pruning neurons at the beginning might lead to the
permanent removal of essential neurons; we therefore start the
pruning after a certain number t of epochs. We continue to
employ our pruning algorithm while surveying the conditions.
If we prune neurons in each epoch, the final number of
neurons would be too small to maintain reasonable accuracy.
This setting allows our model to learn and retain important
parameters which provide our pruning algorithm with valuable
guidance to identify non-important neurons and remove them
accordingly.

IV. EXPERIMENTS AND DISCUSSION

We empirically study the performance of our proposed
method using two different datasets: MNIST and Cifar10. For
fully-connected models, the network architecture consists of
three fully-connected layers, which is adopted by the base
architecture proposed in [18]. Specifications of the datasets
and their architecture are presented in Table. I. We first com-
pare our evaluative importance method with several baselines,

using an ablation study. The experimental results on both
datasets show that our method substantially outperforms the
baselines. After this, we apply the proposed method to remove
redundant nodes and compress the neuron network during
training. Then, we integrate our neuron-pruning method with
existing sparsely-connected network models. Experimental re-
sults show that our method adds substantial compression and
further reduces the number of parameters, without harming
the accuracy. Lastly, we empirically study our method with
convolutional neural networks architecture. The details are
described below.

Dataset Examples Image Size FC Architecture
MNIST 70000 28x28x1 784-1000-1000-1000-10

CIFAR10 60000 32x32x3 3072-4000-1000-4000-10

TABLE I: Details of Datasets and their FC Architectures used
in our experiments.

A. Measuring Neuron Importance via Ablation

Classification performance was used in order to evaluate the
impact of our majority voting method. An ablation study, as
a commonly used technique, allows for the evaluation of the
effectiveness of measuring neuron importance quantitatively.
This procedure typically refers to the removal of some parts of
the model and the study of its performance, as crucial neurons
capture meaningful information and contribute substantially to
the model’s final performance [21]. We ablate unimportant
neurons by forcing the activation to be zero and compute
the classification accuracy on the test-set. Quantifying the
effect of the ablation on the classification performance allows
for an impartial evaluation in order to measure a neuron’s
importance and distinguish the most important neurons in a
neural network, allowing for layer-wise and whole-network
comparisons. This method not only enables the evaluation
of neurons’ importance, but can also detect the unimportant,
redundant neurons, which can be removed while compressing
the network during training.

To evaluate the effectiveness of our proposed importance
method, it was compared with several baseline methods. These
methods are briefly summarized as follows:

• Random. Neurons are randomly ablated.
• Weights sum [12], [14]. Neurons (p) with lowest absolute

weights sum values are ablated: ψp =
∑

p | wp,j |.
• Activation Mean[14]. ψp = 1

N

∑
mean(tp), where tp is

the activation values for neuron p, and N denotes the size
of data.

• Activation standard deviation (SD) [14]. ψp =
1
N

∑
std(tp).

• Activation l1-norms[14]. ψp = 1
N

∑
‖tp‖1.

• Activation l2-norms[14]. ψp = 1
N

∑
‖tp‖2.

All these baseline methods consider neurons with higher
values as more important, which is motivated by the intuition
that unimportant activation has influential outputs to the final
prediction of a model. Following [14], we calculate neurons’

importance measure on the activation of the neurons before
batch normalization or non-linear activation.

Table. II and Table.III summarize the classification results
on CIFAR10 and MNIST test-sets respectively. These tables
provide layer-wise comparisons, where neuron importance was
evaluated using different selection criteria in a fully trained
model utilizing the ablation approach. A compression ratio
of 0.7 was set, where 70% of the important neurons in each
layer are preserved. The tables show layer-wise results for
each layer, where we ablate layer by layer and calculate the
accuracy for each layer separately. We also examine the whole
network cumulative ablation, where the same ratio from all
layers in the whole network are ablated. For random selection
criteria, the mean value of three runs are reported.

Our ablation study has shown that MV achieves higher
classification performance compared with other baselines, es-
pecially in the case of the whole network cumulative ablation.
In CIFAR, Table. II, MV achieves 68.28% when having
compression ratio of 0.7 for each layer of the reference model.
This shows that MV has less impact on the dropping of model
accuracy compared with the second place method, which
used activation standard deviation, where it achieves 66.33%.
This demonstrates the robustness of our proposed method in
identifying the most important neurons.

One interesting finding is that ablating neurons with random
selection shows the first layer has stronger negative effects and
has more synergistic neurons compared with higher hidden
layers. It can also be seen that the higher hidden layers are
significantly redundant and more class-specific. This observa-
tion is consistent with a previous theoretical proposal [22]. One
reasonable explanation is that the neuron networks hierarchi-
cally learn representations. Hence, the first layer is not relevant
to a specific object. Still, it builds feature representations of
all input images that are joined to form more relevant object
features in the later layers. By ablating these fundamental
features, deeper layers fail to produce class-specific features
and have more negative impacts on the overall accuracy.

Although a random selection is not robust and not appli-
cable in practice [15], it presents insight and demonstrates
that the detection of principal neurons is a critical approach
when pruning redundant neurons. The experiment empirically
confirms that our importance method is sufficient, given that
ablating neurons with low values in the layers only has the
most negligible impact on the overall accuracy compared
with all baselines. As shown in Table.II and Table. III, the
experimental results on both datasets show that the method
substantially outperforms the baselines. Our proposed method
to measure neuron importance helps not only to remove
redundant nodes and compress the neuron network, but also
to understand their inter-relationships and how said neurons
impact the model. The experiment confirms that selecting the
right criteria to evaluate neurons’ importance throughout all
layers can guarantee a successful pruning approach.

1st Layer 2nd Layer 3rd Layer Cumulative Ablation
Random 45.46% 61.84% 65.07% 21.39%

Weights Sum 63.75% 67.47% 67.04% 48.62%
Activation Mean 68.97% 68.47% 68.48% 64.75%

Activation SD 69.49% 68.90% 69.22% 66.33%
Activation l1-norms 69.39% 68.71% 69.32% 65.94%
Activation l2-norms 69.45% 68.73% 69.31% 65.81%

MV 69.77% 69.39% 69.66% 68.28%

TABLE II: Examining neuron importance via ablation study with different selection criteria on CIFAR10.Note. the compression
ratio=0.7 i.e., 70% of the importance neurons in each layer are preserved.

1st Layer 2nd Layer 3rd Layer Cumulative Ablation
Random 95.4% 97.96% 98.41% 85.32%

Weights Sum 95.00% 98.39% 98.57% 94.63%
Activation Mean 97.88% 98.52% 98.58% 97.98%

Activation SD 98.58% 98.73% 98.68% 98.44%
Activation l1-norms 98.56% 98.72% 98.65% 98.40%
Activation l2-norms 98.51% 98.73% 98.67% 98.37%

MV 98.68% 98.75% 98.76% 98.68%

TABLE III: Examining neuron importance via ablation study with different selection criteria on MNIST. Note. the compression
ratio=0.7 i.e., 70% of the importance neurons in each layer are preserved.

B. Pruning redundant Neurons during Training

The proposed method was implemented using Keras and
Tensorflow in Python and evaluated on two computer vision
benchmark datasets: MNIST and CIFAR10. The models were
trained end-to-end from scratch without involving any pre-
training and fine-tuning procedures. All weights were ini-
tialized randomly. Stochastic gradient descent optimizer was
used, where each batch contained 100 random shuffled images.
An initial learning rate of 0.006 with a momentum of 0.9 and
weight decay of 0.0002 were used. For our experiments, the
value of t is set to be 20, and the value of k is set to be 0.05
as a large value of k leads to the removal of many neurons
and the remaining neurons would be too small to maintain
reasonable accuracy.

During training, we pruned the network’s neurons, after
having applied our method to measure the importance of each
neuron independently. Consequently, we extended the Tensor-
Flow framework to prune the neurons of a network during
training. TensorFlow allows us to apply a constraint function
to the weights matrix, which in turn means that constraints
can be set on network parameters during optimization. For
every pruned layer, we utilized the output binary vector, which
is obtained via the importance measure method (MV) Eq.4,
for the constraint function. The binary vector contributes to
generating a binary mask variable which has the same size
as the layer’s weight matrix. The binary mask determines the
participation of the weights in the forward procedure.In the
back-propagation, gradients pass through the binary masks,
and the masked weights in the forward-propagation are not
updated in the back-propagation phase.

Determining and eliminating the non-informative neurons
results in a significant additional increment into the body of
the learning process. This approach is aimed at forming a kind
of structure that enhances the identification of non-informative
neurons and removes any redundant parts of the model during

training. The comparative results are shown in Table. IV, and
supports our hypothesis that significantly fewer parameters can
add enough discriminative ability without harming the original
accuracy of the baseline dense models. These are considered
a solution to overcoming the over-parametrized and redundant
nature of deep learning models. It can be observed that the
models’ accuracy were maintained or even improved after the
removal of unimportant neurons.

Table. IV demonstrates how the pruned version of models
outperform the original, fully-connected models with only
significantly fewer parameters. With regards to the CIFAR10
dataset, it has been shown that a significant gain can be
obtained with only 20% of the weights of the original fully-
connected model. Based on CIFAR10-related literature, [23] is
considered as one of the state-of-the-art fully-connected mod-
els, which achieves a classification accuracy of 74.1% with
31, 600K parameters, while our model reached a comparable
accuracy of 74.21% with only around 4, 245K parameters.

FC MV Pruning
Dataset Accuracy nW Accuracy nW

MNIST 98.78% 2,794K 98.88% 232K
CIFAR10 71.90% 20,328K 74.21% 4,245K

TABLE IV: Summarization of our experimental results with
fully-connected networks.

C. Integrating our Pruning Method to Existing Sparse Neural
Network

To thoroughly investigate the abilities of our proposed
method, we also evaluated its performance with sparsely-
connected networks (SC). SC by Mocanu et al. [18] is an
interesting approach that replaces fully-connected layers with
sparsely-connected ones. They have introduced a way to
connect nodes in neural networks before training by applying
an initial sparse topology based on the Erdős–Rényi random

graph and by starting training using standard optimization
techniques. They iteratively remove the weakest connections
and replace them with the new random initialization, which
leads to a substantial reduction in connections and, therefore,
to increased memory and computational efficiency.

A massive number of neurons is still a significant challenge,
as it can lead to significant redundancy. Although sparsely-
connected layers remove unnecessary connections without
significant performance degradation, neuron-pruning methods
are much more beneficial. This is because unimportant neurons
do not contribute much to the final model performance, as
shown in the previous section, therefore, all of their income or
outcome connections (weights) are trivial and non-informative.
Eliminating unimportant neurons can guarantee the removal
of extra parameters, as pruning a neuron removes entire rows
or columns of the weight matrices from the former and later
layers.

Fig. 2: The architecture of the CNN model.

Our experiment began with sparse topology random graph,
after which [18] the weakest connections were iteratively
replaced with new initialized ones in the training phase. In the
meantime, we computed a measure of relevance that identified
the less critical neurons and pruned them accordingly. Table.
V demonstrates that on the MNIST dataset, with our neuron-
pruning method, we can prune up to 60% of parameters
from the original sparsely-connected models without harming
the performance. This supports our hypothesis that pruning
unimportant neurons is just as essential as pruning unimportant
weights, and that combining both can lead to competitive
results, as shown in our findings.

SC [18] MV Pruning
Dataset Accuracy nW Accuracy nW

MNIST 98.74% 89K 98.84% 34K
CIFAR10 74.84% 278K 75.05% 214K

TABLE V: Summarization of our experimental results with
sparsely-connected networks.

D. Extension to Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [24] are one of the
most famous kinds of neural networks. They replace fully-
connected layers with convolution and pooling layers, which
significantly decreases the number of parameters. CNN archi-
tecture usually comprises convolutional layers for spatially-
related feature extraction and fully-connected layers used
for classification. However, while CNNs still maintain fully-
connected layers, they can additionally benefit from our prun-
ing method.

We studied our pruning method with CNN architectures,
where we compressed their fully-connected layers, as they
form the majority of the CNN parameters. For instance,
VGG16 [25] comprises 90% of its parameters in fully-
connected layers. Our model architecture consists of three
convolutional blocks, where each block has two convolutional
layers with a filter size of 3 x 3 with 32 kernels in the first
block, 64 kernels in the second block, and 128 kernels in
the third block. Each block ends with a max-pooling layer.
This is followed by three fully-connected layers consisting
of 2000, 2000, and 10 neurons respectively. A standard Relu
activation function was utilized. The detailed architecture of
the CNN model is presented in Fig. 2. Because the fully-
connected layers form 96.6% of the overall parameters of our
architecture, it justifies our focus on the fully-connected layers
in the convolutional neural networks.

Fig. 3: Changing of accuracy during training for three different
models.

Our experiments were performed on the CIFAR10 dataset.
To quantify this, it should be noted that our experiment reached
a maximum of 90.12% accuracy, SC achieves a maximum of
89.30% accuracy, while standard CNN achieves a maximum
of 87.65% accuracy. Each model has 8,407,018, 456,077, and
393,549 weights for CNN, SC and our method, respectively.
Our pruned model has shown better accuracy than standard
CNN, having removed more than 95% of its parameters. In
other words, with only less than 5% of the CNN weights,
our method can achieve better accuracy. Fig. 3 also shows
the changes in validation accuracy in classification tasks
with the number of training cycles, which clearly indicates

that classification stably converges using an iterative pruning
scheme.

V. CONCLUSION

In this paper, we propose a pruning framework which
simultaneously identifies the most critical neurons and re-
moves redundant nodes accordingly. The experimental results
have demonstrated the effectiveness of our pruning method
in maintaining or even improving accuracy after removing
unimportant neurons. The results also demonstrate that our
proposed method is applicable to weight-based pruning meth-
ods and adds extra compression. Our potential future work
is to extend this framework to filters in convolutional neural
networks and experiment with more difficult datasets.

ACKNOWLEDGMENT

This work was supported by The Engineering and Physical
Sciences Research Council (EP/N028139/1) and a Sêr Cyrum
II Fellowship (663830-SU158).

REFERENCES

[1] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Pre-
dicting parameters in deep learning,” in Advances in neural information
processing systems, 2013, pp. 2148–2156.

[2] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4820–4828.

[3] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 6541–6549.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[5] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Free-
man, and A. Torralba, “Gan dissection: Visualizing and understanding
generative adversarial networks,” International Conference on Learning
Representations, 2019.

[6] K. Dhamdhere, M. Sundararajan, and Q. Yan, “How important is a
neuron?” International Conference on Learning Representations, 2019.

[7] R. A. Amjad, K. Liu, and B. C. Geiger, “Understanding indi-
vidual neuron importance using information theory,” arXiv preprint
arXiv:1804.06679, 2018.

[8] S. Na, Y. J. Choe, D.-H. Lee, and G. Kim, “Discovery of natural
language concepts in individual units of cnns,” International Conference
on Learning Representations, 2019.

[9] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[10] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[11] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[12] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep neural
network for fast decoding by node-pruning,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 245–249.

[13] Z. Mariet and S. Sra, “Diversity networks: Neural network compres-
sion using determinantal point processes,” International Conference on
Learning Representations, 2016.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” International Conference on Learning
Representations, 2017.

[15] J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, and W. Lin, “Thinet: Pruning
cnn filters for a thinner net,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 10, pp. 2525–2538, Oct 2019.

[16] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization
bounds for deep nets via a compression approach,” arXiv preprint
arXiv:1802.05296, 2018.

[17] A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, and M. Botvinick, “On
the importance of single directions for generalization,” International
Conference on Learning Representations, 2018.

[18] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science,” Nature communica-
tions, vol. 9, no. 1, p. 2383, 2018.

[19] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep
neural networks,” in Proceedings of the British Machine Vision
Conference (BMVC), M. W. J. Xianghua Xie and G. K. L. Tam, Eds.
BMVA Press, September 2015, pp. 31.1–31.12. [Online]. Available:
https://dx.doi.org/10.5244/C.29.31

[20] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking
the value of network pruning,” International Conference on Learning
Representations, 2019.

[21] A. Alqahtani, X. Xie, J. Deng, and M. W. Jones, “Learning discrimina-
tory deep clustering models,” in International Conference on Computer
Analysis of Images and Patterns. Springer, 2019, pp. 224–233.

[22] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein,
“On the expressive power of deep neural networks,” in International
Conference on Machine Learning. JMLR. org, 2017, pp. 2847–2854.

[23] G. Urban, K. J. Geras, S. E. Kahou, O. Aslan, S. Wang, R. Caruana,
A. Mohamed, M. Philipose, and M. Richardson, “Do deep convolutional
nets really need to be deep and convolutional?” International Conference
on Learning Representations, 2017.

[24] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations, 2015.

