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In the current work, we study a nonlocal parabolic problem with Robin bound-
ary conditions. The problem arises from the study of an idealized electrically
actuated MEMS (micro-electro-mechanical system) device, when the ends of
the device are attached or pinned to a cantilever. Initially, the steady-state
problem is investigated estimates of the pull-in voltage are derived. In particular,
a Pohožaev's type identity is also obtained, which then facilitates the deriva-
tion of an estimate of the pull-in voltage for radially symmetric N-dimensional
domains. Next a detailed study of the time-dependent problem is delivered and
global-in-time as well as quenching results are obtained for generic and radi-
ally symmetric domains. The current work closes with a numerical investigation
of the presented nonlocal model via an adaptive numerical method. Various
numerical experiments are presented, verifying the previously derived analyti-
cal results as well as providing new insights on the qualitative behavior of the
studied nonlocal model.
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1 INTRODUCTION

In this work we study the following nonlocal parabolic problem:

ut = Δu + 𝜆

(1 − u)2[1 + 𝛼∫Ω1∕(1 − u)dx
]2 , in QT ∶= Ω × (0,T), T > 0, (1.1a)

𝜕u
𝜕𝜈

+ 𝛽u = 0, on fbT ∶= 𝜕Ω × (0,T), (1.1b)

u(x, 0) = u0(x), x ∈ Ω, (1.1c)
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where 𝜆 > 0, 𝛼 > 0, and 𝛽 > 0 are given positive constants. Especially, 𝜆 is proportional to the applied voltage into the
system, called pull-in voltage parameter, and it is actually the controlling parameter for the operation of the considered
micro-electro-mechanical system (MEMS) device. The initial data u0(x) is assumed to be a smooth function such that
0 < u0(x) < 1 for all x ∈ Ω̄ and 𝜕u0

𝜕𝜈
+ 𝛽u0 = 0, for x ∈ 𝜕Ω; here 𝜈 = 𝜈(x) stands for the unit outward normal vector

on the boundary of the N−dimensional domain Ω. Notably, from the applications point of view only the cases N = 1, 2
are viable; however, from the point of view of mathematical analysis cases N ≥ 3 are also interesting and so they will be
investigated. Moreover, here T denotes the maximum existence time of solution u.

When 𝛼 = 0 problem (1.1) reduces to the local parabolic problem

ut = Δu + 𝜆

(1 − u)2 , in QT , (1.2a)

𝜕u
𝜕𝜈

+ 𝛽u = 0, on fbT , (1.2b)

u(x, 0) = u0(x), x ∈ Ω. (1.2c)

It is worth mentioning that for Robin-type boundary conditions, as the ones considered above for 𝛽 > 0, there is a limited
study for the local problem, cf. Guo1 while to the best of our knowledge no published works dealing with the nonlocal
problem (1.1) can be found in the literature. Our motivation for studying (1.1) comes from the fact that it is actually
linked with special applications in MEMS industry, as pointed below. Furthermore, due the imposed Robin-type boundary
conditions extra technical difficulties arise compared to the study of the Dirichlet problem, a fact that is indicated through
the manuscript.

Problem (1.1) arises as a mathematical model which describes the operation of some electrostatic actuated MEMSs.
Those MEMSs are precision devices, which combine mechanical processes with electrical circuits. MEMS devices range
in size from millimeters down to microns and involve precision mechanical components that can be constructed using
semiconductor manufacturing technologies.

In particular, electrostatic actuation is a popular application of MEMS. Various electrostatic actuated MEMS have been
developed and used in a wide variety of devices applied as sensors and have fluid-mechanical, optical, radio frequency
(RF), data-storage, and biotechnology applications. Examples of microdevices of this kind include microphones, temper-
ature sensors, RF switches, resonators, accelerometers, micromirrors, micropumps, microvalves, etc., see for example,
previous works.2–4

In the sequel a derivation for the nonlocal model (1.1), for the one-dimensional case, is presented and also the associ-
ation of that model with applications in MEMS industry is explained. The main body of the derivation is standard (see,
e.g., previous works3,5–7); however, in order to justify the inclusion for the Robin boundary conditions in the model and
for completeness it is presented here as well. The modifications of this modeling approach are presented in detail in the
next section.

1.1 Derivation of the model
We consider an idealized electrostatiaclly MEMS device, which consists of an elastic membrane and a rigid plate placed
parallel to each other as it can be seen in Figure 1. The membrane has two parallel sides usually attached or pinned to a

FIGURE 1 Schematic representation of a micro-electro-mechanical
system (MEMS) device
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cantilever, while the other sides are free. Both membrane and plate have width w and length L, and in the undeformed
state (for the membrane) the distance between the membrane and the plate is l. We assume here that the gap between
the plate and the membrane is small, that is l ≪ L and l ≪ w. Besides, the area between the elastic membrane and
the rigid plate is occupied by some inviscid material with dielectric constant one, so permittivity is that of free space, 𝜖0.
A potential difference V is applied between the top surface and the rigid plate and we further assume that the plate is
earthed. Besides, the small aspect ratio of the gap gives potential

𝜙 = V(l − z′)∕(l − u′), (1.3)

to leading order, where u′ is the displacement of the membrane toward the plate (u′ = l corresponds to touch-down,
i.e., when the top surface touches the rigid plate) and z′ is the distance measured from the undisturbed membrane
position toward the plate. The electrostatic force per unit area on the membrane (in the z′ direction) is then 1

2
×

surface charge density × electric field = 1
2
𝜖0𝜙

2
z′ =

1
2
𝜖0V 2∕(l − u′)2 , recalling that 𝜖0 is the permittivity of the free space.

We take the sides of width w, say at x′ = 0 and x′ = L, to be connected with the support of the device, with those of length
L, say at 𝑦′ = 0 and y′ = w, to be free. We also assume there is no variation in the y′ direction, so u′ = u′(x′, z′, t′) for time
t′. The surface density of the membrane is denoted by 𝜌, while Tm stands for constant surface tension of the membrane.
Then its displacement satisfies the forced wave equation with damping (proportional to the membrane speed),

𝜌u′
t′t′ + au′

t′ = Tmu′
x′x′ +

1
2
𝜖0V 2∕(l − u′)2. (1.4)

In many situations is observed that the damping term is dominant compared with the inertia term. According to this
ansatz, we get the following parabolic equation:

au′
t′ = Tmu′

x′x′ +
1
2
𝜖0V 2∕(l − u′)2. (1.5)

In addition to the derived Equation (1.5), appropriate boundary conditions should be imposed. The standard way to do
so is to assume that since the edges of the membrane or beam are fixed at the support of the device, Dirichlet boundary
conditions, in the case of the flexible membrane or clamped boundary conditions, in the case of a beam should be
considered. Although as it is stated in Younis4, Chapter 6 it is evident that the support or cantilever of MEMS devises might
be nonideal and flexible.

More specifically, cantilever microbeams can tilt upward or downward due to the deformation of their support since
the anchors or supports of them can have some flexibility making the assumption of perfect clamping inaccurate. This
flexibility of the supports of microbeams are accounted for by assuming springs at the beam boundaries and conse-
quently modeling a flexible nonideal support can be done in general by assuming torsional and translational springs at
the membrane or beam edge.

As a first step toward this modeling approach, in this work we will assume that we have a device for which its movable
upper part is thin enough, so that it can be considered to behave as a membrane while its ends are connected with a flexible
nonideal support behaving as a spring moving in the x′ direction, see Figure 2A. Torsional or other kind of behavior is
assumed to be negligible at this occasion.

Therefore, according to the above assumptions, the appropriate boundary conditions should be those of Robin type,
and thus, we set

u′
x′ (−L, t′) = ku′(−L, t′), u′

x′ (L, t
′) = −ku′(L, t′),

where k is the spring constant.

FIGURE 2 (A) Schematic representation of
a micro-electro-mechanical system (MEMS)
device with nonideal support. (B) Schematic
representation of a MEMS device with radial
symmetry
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Next by introducing the scaling u′ = lu, x′ = Lx, t′ = L2a
Tm

t, we end up with the local equation

ut = uxx + (𝜖0V 2L2∕Tm2l3)∕(1 − u)2, (1.6)

associated with the aforementioned boundary conditions and some appropriate initial deformation 0 < u(x, 0) < 1.
Therefore, we end up in the first place with the following local problem:

ut = uxx +
𝜆

(1 − u)2 ,−1 < x < 1, t > 0, (1.7a)

ux(∓1, t) = ±𝛽u(∓1, t), t > 0, (1.7b)

u(x, 0) = u0(x),−1 < x < 1, (1.7c)

for 𝛽 = Lk and 𝜆 = 𝜖0V 2L2

Tm2l3 .
Since pull-in instability is a ubiquitous feature of electrostatically actuated systems, many researchers have focused on

extending the stable operation of electrostatically actuated systems beyond the pull-in regime. In particular, in previous
works8,9 the basic capacitive control scheme was first proposed by Seeger and Crary to elaborate this kind of stabilization,
see also.10 More precisely, this scheme provides control of the voltage by the addition of a series capacitance to the circuit
containing the MEMS device, since the added capacitance acts as a voltage divider. So in the event the MEMS device,
which has a capacitance C depending on displacement, is connected in series with a capacitor of fixed capacitance Cf and
a source of fixed voltage Vs, we have that

Vs =
Q
Cc

= Q
(

1
C

+ 1
C𝑓

)
,

where Q is the charge on the device and fixed capacitor, and Cc the series capacitance of the two. Then the potential
difference V across the MEMS device, by applying Kirchoff's law is equal to

V = Vs

1 + C∕C𝑓

. (1.8)

In addition, we also have

Q = 𝜖0 ∫
w

0 ∫
L

0
𝜙z′ (x, 𝑦, 0)dx′ d𝑦′ = V wL𝜖0

l ∫
1

0

1
1 − u

dx ,

and by using relation (1.3) we get,

C = C0 ∫
1

0

1
1 − u

dx,

for C0 = wL𝜖0
l

being the capacitance of the undeflected device.
When the latter relation is combined with Equations (1.8) and (1.6), we finally obtain the nonlocal problem

ut = uxx +
𝜆

(1 − u)2
(

1 + 𝛼 ∫ 1
−1

1
1−u

dx
)2 ,−1 < x < 1, t > 0, (1.9a)

ux(∓1, t) = ±𝛽u(∓1, t), t > 0, (1.9b)

u(x, 0) = u0(x),−1 < x < 1, (1.9c)

with 𝛼 = wL𝜖0
lC𝑓

= C0
C𝑓

.
Usually, it is supposed that the elastic membrane is initially in its unforced position, so that u(x, 0) ≡ 0. However, in

this work, we consider more general non-negative initial conditions, reflecting also the situation when the membrane has
an initial displacement.
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It has been experimentally observed that the applied voltage Vs controls the operation of the MEMS device. Indeed,
when Vs exceeds a critical threshold Vcr, called the pull-in voltage, then the phenomenon of touch-down (or pull-in
instability as it is also known in MEMS literature) occurs when the elastic membrane touches the rigid ground plate. The
related mathematical problem has been studied quite extensively in, for example, previous works.2,6,7,11–16

Note that the limiting case 𝛼 = 0 corresponds to the configuration where there is no capacitor in the circuit and then
we end up with the local problem (1.7), which has been studied in Guo.1 A stochastic version of problem (1.7) is treated
in previous works.17,18 Besides, the local problem with Dirichlet boundary conditions (𝛽 = +∞) has been extensively
studied among others in previous works.2,7,11,13 Also, for hyperbolic modifications of the variation of (1.7) an interested
reader can check.6,19

The quenching behavior of the nonlocal Equation (1.1a) associated with Dirichlet boundary (𝛽 = +∞) has been treated
in Kavallaris et al.20 and in references therein as well as in previous works.21–23 Also, non-local alterations of parabolic and
hyperbolic problems arising in MEMS technology were tackled in previous works.5,7,20–22,24,25 However, to the best of our
knowledge, there are not similar studies available in the literature for the Robin problem (0 < 𝛽 < +∞,) so in the current
work we study problem (1.1) and we extend some of the results given in Guo1 for the local problem, but we also deliver
a further investigation related to the steady-state problem and the quenching behavior of the time-dependent problem.
Our mathematical analysis is inspired by ideas developed in previous works;20,22 however, important modifications are
necessary due to the Robin boundary conditions. In particular, a new Pohožaev's type identity for Robin boundary con-
ditions is derived which is then used to derive lower estimates of the pull-in voltage. Moreover, a novel argument, see
Theorem 3.15, is developed to derive an upper estimate of the quenching rate; note that such a reasoning is missing from
the approach used in Kavallaris et al.20 Still, the derivation of a key estimate for the nonlocal term, analogous to the one
derived in Kavallaris et al.20, Lemma 3.3 for the Dirichlet problem, needs more work for Robin problem (1.1) and it is finally
derived under some extra restriction, cf. Lemma 3.10.

The organization of the paper is as follows. In Section 2 a thorough study of the steady-state problem is delivered,
where among other results some estimates of the supremum of its spectrum (pull-in voltage) are derived. Uniqueness and
local-in-time existence results for time-dependent problem (1.1) are discussed in the first part of section 3. The second
part of section 3 deals with the long-time behavior of the solutions of (1.1). In particular, at first a quenching result is
obtained for a genericl domain, while a sharper quenching result is derived for a radially symmetric domain later on. A
numerical treatment of (1.1) via an adaptive method is presented in Section 4. We thus numerically verify all the obtained
analytical results as well as we determine the quenching profile which cannot be derived via our theoretical approach.
We conclude with a discussion of our main results in Section 5.

2 STEADY-STATE PROBLEM: ESTIMATES OF THE PULL-IN VOLTAGE

The main purpose of the current section is to study the steady-state problem of (1.1). In particular, we are interested in
obtaining estimates of the supremum of its spectrum (pull-in voltage) while in the one-dimensional case we are also able
to derive the form of its bifurcation diagram.

2.1 The one-dimensional case
Below we provide a thorough investigation of the steady-state problem in the one-dimensional case. In particular we study
the structure of the solution set of

w′′ + 𝜆

(1 − w)2
[
1 + 𝛼 ∫ 1

−1
dx

1−w

]2 = 0, −1 < x < 1, (2.1a)

w′(−1) − 𝛽w(−1) = 0, w′(1) + 𝛽w(1) = 0, (2.1b)

where we always have 0 ≤ w < 1 in [− 1, 1] for a (classical) solution of (2.1).
For convenience we set W = 1 − w and then (2.1) becomes

W ′′ = 𝜇

W 2 ,−1 < x < 1, (2.2a)

W ′(−1) + 𝛽 (1 − W(−1)) = 0 , W ′(1) − 𝛽 (1 − W(1)) = 0 , (2.2b)
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where

𝜇 = 𝜆[
1 + 𝛼 ∫ 1

−1
1

W
dx

]2 . (2.3)

Note that W is symmetric and thus m = min{W(x), x ∈ [−1.1]} = W(0), cf.25,26 Then multiplying both sides of
Equation (2.2a) by W′ and integrating from m = W(0) to W(x) = W we derive

∫
W ′

0
W ′dW ′ = ∫

x

0
W ′′W ′dx = 𝜇 ∫

x

0

W ′

W 2 dx = 𝜇 ∫
W

m

dW
W 2 ,

hence,

1
2
(W ′)2 = 𝜇

( 1
m

− 1
W

)
. (2.4)

This gives equivalently

dx
dW

=
√

m
2𝜇

√
W

W − m
, (2.5)

which implies (see previous works5,25)

x =
√

m
2𝜇

[√
W(W − m) − 1

2
m ln(m) + m ln

(√
W +

√
W − m

)]
.

Additionally, at the point x = 1 and for W(1) = M ∶= max{W(x), x ∈ [−1, 1]} we deduce

1 =
√

m
2𝜇

[√
M(M − m) − 1

2
m ln(m) + m ln

(√
M +

√
M − m

)]
. (2.6)

Moreover combining the boundary condition, W ′(1) = 𝛽 (1 − W(1)), with Equation (2.4) we obtain

𝛽2(1 − M)2

2
= 𝜇

( 1
m

− 1
M

)
. (2.7)

At this point, recalling that for 𝛼 = 0 we have 𝜇 = 𝜆, we can obtain the bifurcation diagram of the local problem. More
specifically rearranging (2.7), we have

m = 2𝜆M
2𝜆 + M𝛽2(1 − M)2 , (2.8)

which together with (2.6), for 𝜇 = 𝜆, namely

1 =
√

m
2𝜆

[√
M(M − m) − 1

2
m ln(m) + m ln

(√
M +

√
M − m

)]
, (2.9)

forms a system of algebraic equations giving an implicit relation of the form F(𝜆,M) = 0.
Furthermore, in order to obtain the bifurcation diagram for the nonlocal problem (𝛼 > 0) we have to express the

integral of the nonlocal term in terms of 𝜆, m, M.
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That is, on using Equation (2.5)

∫
1

−1

1
W

dx = ∫
1

−1

dx
dW

dW
W

= 2
√

m
2𝜇 ∫

M

m

1√
W(W − m)

dW

= 2 1√
M(M − m) − 1

2
m ln(m) + m ln

(√
M +

√
M − m

) ∫
1

m

1√
W(W − m)

dW

= 2 1√
M(M − m) − 1

2
m ln(m) + m ln

(√
M +

√
M − m

) ln

(
2M − m + 2

√
M(M − m)

m

)
.

Therefore, using also (2.3), (2.7) to eliminate 𝜇, we obtain the following system of algebraic equations for 𝜆, M, m:

1 =
√

m
2𝜇

[√
M(M − m) − 1

2
m ln(m) + m ln

(√
M +

√
M − m

)]
, (2.10a)

𝛽2(M − 1)2

2
mM

M − m
= 𝜆

⎡⎢⎢⎢⎣1 + 𝛼
2 ln

(
2 M−m+2

√
M(M−m)

m

)
√

M(M − m) − 1
2

m ln(m) + m ln
(√

M +
√

M − m
)⎤⎥⎥⎥⎦

−2

, (2.10b)

together with (2.3), which can be solved numerically.

Remark 2.1. Note that by Equation (2.7) for 𝛽 ≫ 1 we have (M − 1) ∼ 0 or M ∼ 1 and we retrive the expression
for 𝜆 and m which gives the bifurcation diagram for the local problem with Dirichlet boundary conditions (see
Kavallaris et al.5), that is,

𝜆 = m
2

[√
1 − m − 1

2
m ln(m) + m ln

(
1 +

√
1 − m

)]2
.

In Figure 3A we plot the bifurcation diagram for the stationary local problem (2.1a) for 𝛼 = 0. We can observe the
existence of a critical value of the parameter 𝜆, say 𝜆*, usually called the pull-in voltage in MEMS literature, above which
we have no solution for the steady problem while for values below 𝜆* we have two solutions. We finally derive that 𝜆∗ =
0.108711900526435 and for this value we have that the maximum of the solution M = W(1) = 0.761.

Regarding the nonlocal stationary problem, Equation (2.1a) with 𝛼 = 1 we present a similar plot of the bifurcation dia-
gram in Figure 4A (line indicated with 𝛼 = 1). In this case the critical value of the parameter 𝜆 is 𝜆∗ = 2.387086785660011.
In both of the above cases the parameter in the boundary conditions is taken to be 𝛽 = 1.

In this set of graphs we can see also the variation of the bifurcation diagram of the local problem with respect to the
parameter 𝛽 in Figure 3B.

A similar graph, see Figure 4, investigates the variation of the bifurcation diagram of the nonlocal problem with respect
to the parameter 𝛼 in Figure 4A and with respect to the parameter 𝛽 in Figure 4B.

FIGURE 3 (A) Bifurcation diagram for the local problem. (B) Variation of the bifurcation diagram of the local problem with respect to the
parameter 𝛽 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 4 (A) Variation of the bifurcation diagramm of the nonlocal problem with respect to the parameter 𝛼 for 𝛽 = 1. (B) Variation of
the bifurcation diagramm of the nonlocal problem with respect to the parameter 𝛽 for 𝛼 = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

For a rigorous bifurcation analysis of nonlocal problem (2.1), we kindly advice the reader to check.25

2.2 The higher dimensional case
In this part we study the steady-state problem of the N-dimensional version of (1.1) for N > 1. In particular, we perform
an investigation of the set of classical solutions 0 ≤ w = w(x) < 1 in Ω̄, satisfying the nonlocal problem

Δw + 𝜆

(1 − w)2
(

1 + 𝛼∫Ω 1
1−w

dx
)2 = 0, x ∈ Ω ⊂ R

N , N ≥ 1, (2.11a)

𝜕w
𝜕𝜈

+ 𝛽w = 0, x ∈ 𝜕Ω. (2.11b)

In the following, we denote

𝜆∗ ∶= sup{𝜆 > 0 ∶ problem (2.11) has a classical solution}, (2.12)

and we recall that 𝜆* in MEMS terminology is called pull-in voltage. By setting

𝜇 ∶= 𝜆

K
= 𝜆(

1 + 𝛼∫Ω 1
1−w

dx
)2 , (2.13)

where

K = K(w) ∶=
(

1 + 𝛼∫Ω

1
1 − w

dx
)2

, (2.14)

then (2.11) can be written as a local problem

Δw + 𝜇

(1 − w)2 = 0, x ∈ Ω, (2.15a)

𝜕w
𝜕𝜈

+ 𝛽w = 0, x ∈ 𝜕Ω, (2.15b)

and we also define

𝜇∗ ∶= sup{𝜇 > 0 ∶ problem (2.15) has a classical solution}. (2.16)

It is readily seen that problems (2.11) and (2.15) are equivalent via relation (2.13). More specifically w is a solution
of (2.11) corresponding to 𝜆 if and only if w satisfies (2.15) for 𝜇 given by (2.13).

Next we introduce the notion of weak solution for the problem (2.11) which will be used in an essential way to our
approach (cf. Kavallaris et al.20) toward the study of the quenching (touching down) phenomenon.

http://wileyonlinelibrary.com
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Definition 2.2. A function w ∈ H1
0(Ω) is called weak finite-energy solution of (2.11) if there exists a sequence

{w𝑗}∞𝑗=1 ∈ C2(Ω) ∩ C(Ω̄) satisfying as j → ∞

w𝑗 → w weakly in H1(Ω), (2.17a)

w𝑗 → w a.e., (2.17b)
1

(1 − w𝑗)2 →
1

(1 − w)2 in L1(Ω), (2.17c)

1
(1 − w𝑗)

→
1

(1 − w)
in L1(Ω), (2.17d)

Δw𝑗 +
𝜆

(1 − w𝑗)2
(

1 + 𝛼∫Ω dx
1−w𝑗

)2 → 0 in L2(Ω). (2.17e)

A weak finite-energy solution of (2.11) satisfies

−∫Ω
∇𝜙 · ∇wdx + ∫

𝜕Ω
𝜙
𝜕w
𝜕𝜈

ds + 𝜆
∫Ω 𝜙

(1−w)2
dx(

1 + 𝛼∫Ω 1
1−w

dx
)2 = 0,

for any 𝜙 ∈ W2, 2(Ω) satisfying 𝜕𝜙

𝜕𝜈
+ 𝛽𝜙 = 0 on 𝜕Ω.

We also denote

�̂� ∶= sup{𝜆 > 0 ∶ problem (2.11) has a weak finite-energy solution}.

In addition and in accordance to Kavallaris et al,20, Proposition 2.2 we have the following:

Proposition 2.3. For the radial symmetric case, i.e. when Ω = B1(0) ∶= {x ∈ RN ∶ |x| < 1}, the suprema of the spectra
for classical and weak energy solutions are identical. In particular, 𝜆∗ = �̂�.

The proof of Proposition 2.3 follows closely the proof of Kavallaris et al20, Proposition 2.2 and so it is omitted.
Next we show that 𝜇* defined by (2.16) is well defined and bounded. More precisely,

Lemma 2.4. There exists a finite 𝜇* defined by (2.16) such that

(i) If 𝜇 < 𝜇* then problem (2.15) has at least one (classical) solution.
(ii) If 𝜇 > 𝜇* then problem (2.15) has no (classical) solution.

Proof. We first establish the existence of 𝜇* defined by (2.16). Indeed, implicit function theorem implies that
problem (2.15) has a solution bifurcating from the trivial solution w = 0 at 𝜇 = 0. This solution is positive due to the
maximum principle, hence 𝜇* is well-defined and positive.

Next we prove the boundedness of 𝜇*. Let (𝜆1, 𝜙1(x)) be the principal normalized eigenpair of the Laplacian
associated with Robin boundary conditions, that is, 𝜙1(x) satisfies

−Δ𝜙1 = 𝜆1𝜙1, x ∈ Ω, 𝜕𝜙1

𝜕𝜈
+ 𝛽𝜙1 = 0, x ∈ 𝜕Ω, (2.18)

with

∫Ω
𝜙1 dx = 1. (2.19)

It is known (see, e.g., Amann27, Theorem 4.3) that 𝜆1 is positive and that 𝜙1(x) does not change sign in Ω, so by
condition (2.19) is positive.

Testing (2.15a) by 𝜙1(x) and using second Green's identity in conjunction with (2.19) we obtain for any calssical
solution w

𝜆1∫Ω
w𝜙1 dx = 𝜇∫Ω

𝜙1

(1 − w)2 dx ≥ 𝜇.
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The latter inequality, by virtue of (2.16), implies

𝜇∗ ≤ 𝜆1∫Ω
w𝜙1 dx ≤ 𝜆1 < ∞,

and so 𝜇* is finite.
Next we focus on proving statement (i). We pick 𝜇 ∈ (0, 𝜇*), then thanks to the definition of 𝜇* there exists �̄� ∈

(𝜇, 𝜇∗) such that the minimal solution w�̄� (i.e., the smallest solution corresponding parameter �̄�) of (2.15) satisfies

− Δw�̄� = �̄�

(1 − w�̄�)2 ≥ 𝜇

(1 − w�̄�)2 , x ∈ Ω,

𝜕w�̄�

𝜕𝜈
+ 𝛽w�̄� = 0, x ∈ 𝜕Ω,

since �̄� > 𝜇. The latter implies that w�̄� is an upper solution of (2.15) corresponding to parameter 𝜇. Additionally, it is
easily seen that w ≡ 0 is a lower solution of (2.15) corresponding to 𝜇. Consequently by using comparison arguments,
cf.,28 we can construct a solution of (2.15) corresponding to parameter 𝜇, and this completes the proof of (i). On the
other hand, by the definition of 𝜇*, we deduce that problem (2.15) has no solution for 𝜇 > 𝜇* and statement (ii) is
also proven.

Next we prove the monotonicity of minimal (stable) branch of problem (2.15) with respect to (local) parameter 𝜇.

Lemma 2.5. Let 𝜇1, 𝜇2 ∈ (0, 𝜇*). Assume that w𝜇1 and w𝜇2 are the corresponding minimal solutions of problem (2.15),
then

0 < w𝜇1(x) < w𝜇2(x) < 1 𝑓or x ∈ Ω, if 0 < 𝜇1 < 𝜇2 < 𝜇
∗. (2.20)

Proof. It is known, cf. previous worls,2,22 that w(x; 𝜇) is differentiable with respect to 𝜇 ∈ (0, 𝜇*). Set z = 𝜕w
𝜕𝜇

then
differentiating (2.15a) with respect to 𝜇 we derive

−Δz − 2𝜇
(1 − w)3 z = 1

(1 − w)2 > 0.

In addition due to the boundary conditions, we have similarly 𝜕z
𝜕𝜈

+ 𝛽z > 0. Therefore, by the maximum principle,
since (1 − w)−3 is bounded for a classical solution, cf. Evans,29 we obtain that z > 0, that is, 𝜕w

𝜕𝜇
> 0.

Using the preceding monotonicity result we can also prove, as in Guo and Kavallaris,22 the following.

Theorem 2.6. There exists a classical solution to problem (2.11) for any 𝜆 ∈ (0, (1 + 𝛼|Ω|)2𝜇*), and therefore,

𝜆∗ ≥ sup
(0,𝜇∗)

𝜇K(w𝜇) ≥ (1 + 𝛼|Ω|)2𝜇∗, (2.21)

where 𝜇* is defined by (2.16) and recall that K(w𝜇) =
(

1 + 𝛼∫Ω 1
1−w𝜇

dx
)2

.

Proof. By virtue of (2.20) we have

(1 + 𝛼|Ω|)2 = K(0) < K(w𝜇), i𝑓 0 < 𝜇 < 𝜇∗. (2.22)

Next, for any 𝜆 ∈ (0, (1 + 𝛼|Ω|)2𝜇*) there is a unique 𝜇 ∈ (0, 𝜇*) such that

𝜇 = 𝜆

(1 + 𝛼|Ω|)2 , (2.23)
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and hence, there is a minimal solution w𝜇 for local problem (2.15). Since problems (2.11) and (2.15) are equivalent
through (2.13), there exists 𝜆1 ∈ (0, 𝜆*) with

𝜇 = 𝜆1

K(w𝜇)
. (2.24)

Therefore, (2.23) and (2.24) in conjunction with (2.22) imply that 0 < 𝜆 < 𝜆1 < 𝜆* and thus nonlocal problem (2.11)
has at least one (minimal) solution w𝜆. This completes the proof.

Remark 2.7. One can derive lower estimates of 𝜇* as in the case of Dirichlet boundary conditions, cf.
Esposito et al,2, Proposition 2.2.2 and thus via (2.21) can finally obtain lower estimates of the pull-in voltage 𝜆*.

Next we provide a more delicate lower estimate of 𝜆* in the case of the N−dimensional sphere, that is, when

Ω = BR = BR(0) =∶ {x ∈ R
N ∶ |x| < R}, for R > 0.

Such a radial symmetric case is rather of high importance from applications point of view as it is indicated in previous
works.30–32 In order to prove such a lower estimate of 𝜆* we need to use a Pohožaev's type identity, cf. Pohožaev,33 for the
following problem:

Δv + 𝜇𝑓 (v) = 0, x ∈ Ω, 𝜇 > 0, (2.25a)

𝜕v
𝜕𝜈

+ 𝛽v = 0, 𝑓or x ∈ 𝜕Ω. (2.25b)

Since to the best of our knowledge such an identity is not available in the literature for problem (2.25a)-(2.25b), we provide
a proof of it below.

Proposition 2.8. Let 𝑓 ∶ R → R be continuous with antiderivative F(v) ∶= ∫ v
0 𝑓 (s)ds. Assume that Ω ⊂ RN is open

and bounded. If v ∈ C2(Ω̄) is a smooth solution of problem (2.25) then the following identity holds

𝜇(N − 2)
2 ∫Ω

v𝑓 (v)dx − 𝜇N∫Ω
F(v)dx = (N − 2)

2𝛽 ∫𝜕Ω
(

𝜕v
𝜕𝜈(x)

)2

dS + 1
2∫𝜕Ω|∇v|2 ⟨𝜈(x), x⟩ dS

− ∫
𝜕Ω

𝜕v
𝜕𝜈(x)

⟨∇v, x⟩ dS − 𝜇∫
𝜕Ω

F(v) 𝜕

𝜕𝜈(x)

(1
2
|x|2

)
dS,

(2.26)

where ⟨·, ·⟩ stands for the dot (inner) product in the Euclidean space RN .

Proof. We first multiply (2.25a) by ⟨x,∇v⟩ and integrate over Ω to derive

−∫Ω
Δv ⟨x,∇v⟩ dx = 𝜇∫Ω

𝑓 (v) ⟨x,∇v⟩ dx. (2.27)

The LHS of (2.27) via integration by parts gives

−∫Ω
Δv ⟨x,∇v⟩ dx = ∫Ω

⟨∇v,∇ ⟨x,∇v⟩⟩ dx − ∫
𝜕Ω

𝜕v
𝜕𝜈(x)

⟨x,∇v⟩ dS. (2.28)

Now since

⟨∇v,∇ ⟨x,∇v⟩⟩ = 1
2
⟨
∇
(|∇v|2) , x⟩ + |∇v|2

= 1
2

⟨
∇
(|∇v|2) ,∇(1

2
|x|2

)⟩
+ |∇v|2,
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using again integration by parts we obtain

∫Ω
⟨∇v, ⟨x,∇v⟩⟩ dx = 1

2∫Ω

⟨
∇
(|∇v|2) ,∇(1

2
|x|2

)⟩
dx + ∫Ω

|∇v|2 dx

= 1
2∫𝜕Ω|∇v|2 𝜕

𝜕𝜈(x)

(1
2
|x2|) dS − N

2 ∫Ω
|∇v|2 dx + ∫Ω

|∇v|2 dx

= 2 − N
2 ∫Ω

|∇v|2 dx + 1
2∫𝜕Ω|∇v|2 ⟨𝜈(x), x⟩ dS,

(2.29)

taking also into account that Δ
(

1
2
|x|2

)
= N for any x ∈ Ω.

Next we estimate the first term on the RHS of (2.29) using (2.25a). Indeed multiplying (2.25a) by v, integrating over
Ω and using integration by parts we deduce

∫Ω
|∇v|2 dx = 𝜇∫Ω

v𝑓 (v)dx + ∫
𝜕Ω

v 𝜕v
𝜕𝜈(x)

dS

= 𝜇∫Ω
v𝑓 (v)dx − 1

𝛽 ∫𝜕Ω
(

𝜕v
𝜕𝜈(x)

)2

dS,
(2.30)

where the last equality is a result of boundary condition (2.25b).
Therefore, (2.28) in conjunction with (2.29) and (2.30) implies

−∫Ω
Δv ⟨x,∇v⟩ dx = (2 − N)

2
𝜇∫Ω

v𝑓 (v)dx − (2 − N)
2𝛽 ∫

𝜕Ω

(
𝜕v
𝜕𝜈(x)

)2

dS + 1
2∫𝜕Ω|∇v|2 ⟨𝜈(x), x⟩ dS

− ∫
𝜕Ω

𝜕v
𝜕𝜈(x)

⟨x,∇v⟩ dS.
(2.31)

Furthermore, the RHS of (2.27) by virtue of integration by parts implies

𝜇∫Ω
𝑓 (v) ⟨x,∇v⟩ dx = 𝜇∫Ω

⟨x,∇F(v)⟩ dx = 𝜇∫Ω

⟨
∇
(1

2
|x|2

)
,∇F(v)

⟩
dx

= 𝜇∫
𝜕Ω

F(v) 𝜕

𝜕𝜈(x)

(1
2
|x|2

)
dS − 𝜇N∫Ω

F(v)dx,
(2.32)

using again the fact that Δ
(

1
2
|x|2

)
= N.

Consequently, identity (2.26) arises immediately by (2.31) and (2.32).

Now we are ready to provide a rather measurable (computable) lower estimate of 𝜆* given by the following.

Theorem 2.9. Consider problem (2.11) defined in Ω ∶= BR = {x ∈ RN ∶ |x| < R}, for R > 0. Then if N > 2(1 + 𝛽R)
problem (2.11) has a classical solution for any

𝜆 ≤ 𝜆∗ ∶=
𝛽A (𝜕BR) (N − 2)
[N − 2(1 + 𝛽R)]

(1 + 𝛼𝜔R
N)

2

𝜔R
N

, (2.33)

where A (𝜕BR) and 𝜔R
N stand for the area of the surface and the volume of the N−dimensional sphere BR respectively.

Consequently, by (2.12) there holds 𝜆* ≥ 𝜆*.

Proof. Assume 0 < 𝜆 < 𝜆*, in which case problem (2.11) has a classical solution, and we are working toward the
derivation of estimate (2.33). Taking 𝑓 (w) = 1

(1−w)2
, hence F(w) = w

(1−w)
, then Pohožaev's type identity (2.26), for 𝜇 = 𝜆

K
and K given by (2.14), infers
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𝜆(N − 2)
2K ∫BR

w
(1 − w)2 dx − 𝜆N

K ∫BR

w
1 − w

dx

= N − 2
2𝛽 ∫

𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS + 1
2∫𝜕BR

|∇w|2 ⟨𝜈(x), x⟩ dS − ∫
𝜕BR

𝜕w
𝜕𝜈(x)

⟨∇w, x⟩ dS

− 𝜆

K ∫
𝜕BR

w
1 − w

𝜕

𝜕𝜈(x)

(1
2
|x|2

)
dS

= [N − 2(1 + 𝛽R)]
2𝛽 ∫𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS + R
2 ∫𝜕BR

|∇w|2 dS − 𝜆

K ∫𝜕BR

w
1 − w

⟨x, 𝜈(x)⟩ dS,

(2.34)

using the fact that 𝜕

𝜕𝜈(x)

(
1
2
|x|2

)
= ⟨x, 𝜈(x)⟩ and ⟨𝜈(x), x⟩ = R when Ω = BR. Notably for the case of Dirichlet boundary

conditions the term

𝜆

K ∫
𝜕BR

w
1 − w

⟨x, 𝜈(x)⟩ dS

vanishes and then calculations in that case are simpler, which is not the case for Robin boundary conditions. However,
in the sequel we show that even for Robin boundary conditions this term luckily can be estimated in the right direction.
Indeed, via the divergence theorem we have

∫
𝜕BR

w
1 − w

⟨x, 𝜈(x)⟩ dS = ∫
𝜕BR

⟨
F̂, 𝜈(x)

⟩
dS = ∫BR

div(F̂)dx

where the vector field F̂ is defined by F̂ ∶= w
1−w

x.
Since div(F̂) = 1

(1−w)2
⟨∇w, x⟩ + N w

1−w
then

∫
𝜕BR

w
1 − w

⟨x, 𝜈(x)⟩ dS = ∫BR

1
(1 − w)2 ⟨∇w, x⟩ dx + N∫BR

w
1 − w

dx (2.35)

and thus by virtue of (2.34) we derive

𝜆(N − 2)
2K ∫BR

w
(1 − w)2 dx − 𝜆N

K ∫BR

w
1 − w

dx

≥ [N − 2(1 + 𝛽R)]
2𝛽 ∫

𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS − 𝜆

K ∫BR

1
(1 − w)2 ⟨∇w, x⟩ dx − 𝜆N

K ∫BR

w
1 − w

dx,

or

𝜆(N − 2)
2K ∫BR

1
(1 − w)2 dx ≥ [N − 2(1 + 𝛽R)]

2𝛽 ∫𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS − 𝜆

K ∫BR

1
(1 − w)2 ⟨∇w, x⟩ dx, (2.36)

since 0 ≤ w < 1 for any classical solution of (2.11).
Hölder's inequality infers

0 ≤ −∫𝜕BR

𝜕w
𝜕𝜈(x)

dS ≤
(
∫𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS

)1∕2(
∫𝜕BR

dS
)1∕2

,
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and so (2.15a) and divergence theorem imply

∫
𝜕BR

(
𝜕w
𝜕𝜈(x)

)2

dS ≥ 1
A (𝜕BR)

(
∫
𝜕BR

− 𝜕w
𝜕𝜈(x)

dS
)2

= 1
A (𝜕BR)

(
∫BR

− Δwdx
)2

= 𝜆2

K2A (𝜕BR)

(
∫BR

1
(1 − w)2 dx

)2

,

(2.37)

where

A (𝜕BR) ∶=
2𝜋(N+1)∕2RN−1

fb
(

N+1
2

) ,

and 𝛤 (·) is the Eüler's gamma function.
On the other hand, ⟨∇w, x⟩ = 𝜕w

𝜕x
= wr

𝜕r
𝜕x

= wr|x|, for r = |x|, (2.38)

where 𝜕w
𝜕x

is the directional derivative in the x direction and where w(r) satisfies

− wrr −
N − 1

r
wr =

𝜆

(1 − w(r))2K
, 0 < r < R,

wr(0) = 0, wr(R) + 𝛽w(R) = 0.

Let 𝜓 ∶= wr, then 𝜃 satisfies

− 𝜓rr −
N − 1

r
𝜓r + 𝜒(r)𝜓 = 0, 0 < r < R,

𝜓(0) = 0, 𝜓(R) = −𝛽w(R) ≤ 0,

where 𝜒(r) ∶=
(

N−1
r2 − 2𝜆

(1−w(r))3K

)
is bounded since w(r) is a classical solution. Thus, maximum principle29 infers that

𝜓(r) ≤ 0 in [0, R]; hence, via (2.38) we obtain

𝜆

K ∫BR

1
(1 − w)2 ⟨∇w, x⟩ dx ≤ 0. (2.39)

Therefore, (2.36) in conjunction with (2.37) and (2.39) implies

𝜆(N − 2)
2

∫BR

1
(1−w)2

dx(
1 + 𝛼∫BR

1
(1−w)

dx
)2 ≥ 𝜆2[N − 2(1 + 𝛽R)]

2𝛽A (𝜕BR)

⎛⎜⎜⎜⎝
∫BR

1
(1−w)2

dx(
1 + 𝛼∫BR

1
(1−w)

dx
)2

⎞⎟⎟⎟⎠
2

,

or

(N − 2)
2

≥ 𝜆[N − 2(1 + 𝛽R)]
2𝛽A (𝜕BR)

∫BR

1
(1−w)2

dx(
1 + 𝛼∫BR

1
(1−w)

dx
)2 ,

since N > 2(1 + 𝛽R). Then Hölder's inequality suggests that

(
∫BR

1
(1 − w)

dx
)2

≤ 𝜔R
N∫BR

1
(1 − w)2 dx,
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and thus,

(N − 2)
2

≥ 𝜆[N − 2(1 + 𝛽R)]
2𝛽𝜔R

N A (𝜕BR)

⎡⎢⎢⎢⎣
(∫BR

1
(1−w)

dx
)2

(
1 + 𝛼∫BR

1
(1−w)

dx
)2

⎤⎥⎥⎥⎦
= 𝜆[N − 2(1 + 𝛽R)]

2𝛽𝜔R
N A (𝜕BR)

⎡⎢⎢⎣
∫BR

1
(1−w)

dx

1 + 𝛼∫BR

1
(1−w)

dx

⎤⎥⎥⎦
2

,

(2.40)

where

𝜔R
N = |BR| ∶= 𝜋N∕2RN

fb
(

N
2
+ 1

) .
Note that for a classical solution w of (2.11) holds

∫BR

1
(1 − w)

dx ≥ 𝜔R
N ,

so using that g(𝑦) = 𝑦

𝛼𝑦+1
is increasing in (0, +∞), and thus, g(𝑦) ≥ 𝜔R

N∕(1 + 𝛼𝜔R
N) for any 𝑦 ≥ 𝜔R

N > 0, then
inequality (2.40) yields

N − 2 ≥ 𝜆

𝛽A (𝜕BR)
𝜔R

N

(1 + 𝛼𝜔R
N)2

.

The latter inequality finally gives the desired estimate

𝜆 ≤ 𝜆∗ ∶=
𝛽A (𝜕BR) (N − 2)
[N − 2(1 + 𝛽R)]

(1 + 𝛼𝜔R
N)

2

𝜔R
N

,

and thus,

𝜆∗ ≥ 𝛽A (𝜕BR) (N − 2)
[N − 2(1 + 𝛽R)]

(1 + 𝛼𝜔R
N)

2

𝜔R
N

, (2.41)

by the definition of 𝜆*.

Remark 2.10. Estimate (2.33) in the case of the N-dimensional unit sphere B1 = {x ∈ RN ∶ |x| < 1}, takes the form

𝜆 ≤ 𝜆∗ ∶=
𝛽A (𝜕B1) (N − 2)(1 + 𝛼𝜔N)2

[N − 2(1 + 𝛽)]𝜔N
,

provided that N > 2(1 + 𝛽) where

A (𝜕B1) =
2𝜋(N+1)∕2

fb
(

N+1
2

)
and

𝜔N = |B1| = 𝜋N∕2

fb
(

N
2
+ 1

) .
Remark 2.11. Let Ω be a bounded domain with the same volume as the N−dimensional ball BR, then we can get
a lower estimate of 𝜆*(Ω) by virtue of (2.41). Indeed, one can adapt the proof of the well known isoperimetric
inequality34, Theorem 4.10 holding for regular inequalities to the case of the singular MEMS nonlinearity 𝑓 (u) = 1

(1−u)2
,

cf.2, Proposition 2.2.1 Therefore,

𝜆∗(Ω) ≥ 𝜆∗(BR),
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hence by virtue of Theorem 2.9 we finally derive

𝜆∗(Ω) ≥ 𝜆∗(BR) ∶=
𝛽A (𝜕BR) (N − 2)
[N − 2(1 + 𝛽R)]

(1 + 𝛼𝜔R
N)

2

𝜔R
N

.

Next we present an upper estimate of the pull-in voltage 𝜆* for a general bounded domain Ω. In particular it holds.

Proposition 2.12. For a general domain Ω the following upper estimate of the pull-in voltage 𝜆* holds

𝜆∗ ≤ 2𝜆1
(
1 + 𝛼2|Ω|2)
m1|Ω| < ∞, (2.42)

where (𝜆1, 𝜙1) is the principal eigenpair of the Laplacian associated with Robin boundary conditions, given by (2.18), and
m1 ∶= minΩ̄𝜙1(x) > 0.

Proof. Testing Equation (2.11a) by 𝜙1 over the domain Ω we obtain

𝜆1∫Ω
w𝜙1dx =

𝜆∫Ω 𝜙1
(1−w)2

dx(
1 + 𝛼∫Ω 1

(1−w)
dx

)2 >
𝜆m1∫Ω 1

(1−w)2
dx(

1 + 𝛼∫Ω 1
(1−w)

dx
)2 . (2.43)

Next Hölder's and Young's inequality suggest that

(
1 + 𝛼∫Ω

1
(1 − w)

dx
)2

≤ 2 + 2𝛼2|Ω|∫Ω

1
(1 − w)2 dx. (2.44)

Then inequalities (2.43) and (2.44), and for a classical solution 0 ≤ w < 1, imply

𝜆1 = 𝜆1∫Ω
𝜙1dx ≥ ∫Ω

w𝜙1dx ≥
𝜆m1
𝛼2 𝛼

2∫Ω dx
(1−w)2

2 + 2𝛼2|Ω|∫Ω dx
(1−w)2

= 𝜆m1

𝛼2 fk(I𝛼(w)) (2.45)

where fk(s) = s
2+2𝛼2|Ω|s , taking also into account (2.19). Note that 𝛹 (s) is increasing and thus

fk(I𝛼(w)) > fk(𝛼2|Ω|) = 𝛼2|Ω|
2 + 2𝛼2|Ω|2

for I𝛼(w) ∶= 𝛼2∫Ω dx
(1−w)2

.
The latter by virtue of (2.44) implies

𝜆1 ≥ 𝜆m1|Ω|
2(1 + 𝛼2|Ω|2)

and thus via the definition of 𝜆* we derive the desired upper bound (2.42).

3 THE TIME DEPENDENT PROBLEM: LOCAL, GLOBAL EXISTENCE, AND
QUENCHING

3.1 Local existence and uniqueness
In this subsection we study the local existence and uniqueness of solutions of problem (1.1). Initially we define the notion
of lower-upper solution pairs which will be applied for comparison purposes, cf. previous works.22,35,36
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Definition 3.1. A pair of functions 0 ≤ v(x, t), z(x, t) < 1 with v, z ∈ C2,1(QT) ∩ C(Q̄T) is called a lower- upper
solution pair of problem (1.1), if v(x, t) ≤ z(x, t) for (x, t) ∈ QT, 0 < v(x, 0) ≤ u0(x) ≤ z(x, 0) < 1 in Ω̄, 𝜕v

𝜕𝜈
(x, t) +

𝛽v(x, t) ≤ 0 ≤ 𝜕z
𝜕𝜈
(x, t) + 𝛽z(x, t) for (x, t) ∈ 𝜕Ω × [0, T], and

vt ≤ Δv + 𝜆

(1 − v)2
(

1 + 𝛼∫Ω dx
1−z

)2 , in QT ,

zt ≥ Δz + 𝜆

(1 − z)2
(

1 + 𝛼∫Ω dx
1−v

)2 , in QT .

Then local-in-time existence and uniqueness of problem (1.1) is then established by the following.

Proposition 3.2. Let (v, z) is a lower- upper solution pair to problem (1.1) in QT for some T > 0. There is a unique
solution u to problem (1.1) such that 0 < v ≤ u ≤ z < 1 in QT.

Proof. We define ū0 = z,u0 = v and we construct a sequence of lower-upper solutions of problem (1.1) in the
following way:

unt = Δun + 𝜆

(1 − un−1)2
(

1 + 𝛼∫Ω dx
1−ūn−1

)2 , in QTn ∶= Ω × (0,Tn),

ūnt = Δūn + 𝜆

(1 − ūn−1)2
(

1 + 𝛼∫Ω dx
1−un−1

)2 in QTn ,

𝜕un

𝜕𝜈
+ 𝛽un = 0, on fbTn ∶= 𝜕Ω × (0,Tn),

𝜕ūn

𝜕𝜈
+ 𝛽ūn = 0, on fbTn ,

un(x, 0) = ūn(x, 0) = u0(x), for x ∈ Ω̄,

for n = 1, 2, … where Tn is the maximum existence time for the pair (un, ūn). Note that by the previous definition we
have that the pair (un, ūn) exist as long as the pair (un−1, ūn−1) does so, and thus Tn− 1 ≤ Tn. for n = 2, 3, … .

The above problems are local and linear and so we can get local-in-time solutions for them via the classical parabolic
theory. Furthermore using Definition 3.1 and standard comparison arguments for parabolic problems (see37), we
deduce that the sequences {un}

∞
n=1, {ūn}∞n=1 ∈ C2,1(QT) ∩ C(Q̄T), for T =∶ min{Tn|n ∈ N} = T1, are positive and

satisfy the ordering

v ≤ un−1 ≤ un ≤ … ≤ ūn ≤ ūn−1 ≤ z.

Let u1 ∶= limn→∞un and u2 ∶= limn→∞ūn then u1, u2 satisfy

u1t = Δu1 +
𝜆

(1 − u1)2
(

1 + 𝛼∫Ω dx
1−u2

)2 , in QT ,

u2t = Δu2 +
𝜆

(1 − u2)2
(

1 + 𝛼∫Ω dx
1−u1

)2 , in QT ,

𝜕u1

𝜕𝜈
+ 𝛽u1 = 0, on fbT ,

𝜕u2

𝜕𝜈
+ 𝛽u2 = 0 on fbT ,

u1(x, 0) = u2(x, 0) = u0(x), for x ∈ Ω̄.
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Set 𝜓(x, t) = u1(x, t) − u2(x, t) then

𝜓t = Δ𝜓 + A(x, t)𝜓 + B(x, t)∫Ω ∫
1

0

d𝜃
[1 − 𝜃u1 − (1 − 𝜃)u2]2𝜓dx, in QT ,

𝜕𝜓

𝜕𝜈
+ 𝛽𝜓 = 0, on fbT ,

𝜓(x) = 0, x ∈ Ω̄,

where

A(x, t) ∶= 2𝜆
∫ 1

0
d𝜃

[1−𝜃u1−(1−𝜃)u2]3(
1 + 𝛼∫Ω dx

1−u2

)2 > 0, (3.1)

and

B(x, t) ∶= 𝜆

(1 − u2)2

2 + ∫Ω dx
1−u1

+ ∫Ω dx
1−u2(

1 + 𝛼∫Ω dx
1−u1

)2(
1 + 𝛼∫Ω dx

1−u2

)2 > 0, (3.2)

cf. Guo and Kavallaris.22 Applying now38, Proposition 52.24 we obtain that 𝜓(x, t) = 0 and therefore u1 = u2 ∶= u in Q̄T .
Now assume there is a second solution U which satisfies v ≤ U ≤ z. Subsequently by the preceding iteration

scheme we have that un ≤ U ≤ ūn for every n = 1, 2, … . and by taking the limit as n → ∞ we finally deduce that
U = u by the uniqueness of the limit.

Remark 3.3. By the above result we obtain that the solution of (1.1) continues to exist as long as it remains less than
or equal to B for some B < 1. In this case we say that u ceases to exist only by quenching, if there is a sequence
(xn, tn) → (x*, t*) as n → ∞ with t* ≤ ∞ such that u(xn, tn) → 1 as n → ∞, cf. Definition 3.6.

Next we provide a local-in-time existence result for (1.1) using comparison arguments. To this end we first note that the
following (local) problem

zt = Δz + 𝜆

(1 − z)2(1 + 𝛼|Ω|)2 on QT , (3.3a)

𝜕z
𝜕𝜈

+ 𝛽z = 0 on fbT , (3.3b)

0 ≤ z(x, 0) = z0(x) < 1 for x ∈ Ω̄. (3.3c)

has a unique solution, see Guo.1 Therefore, the following holds:

Proposition 3.4. If z0(x) ≥ u0(x) for each x ∈ Ω, then the problem (1.1) has a unique solution u on Ω × [0, T), where
[0, T) is the maximal existence time interval for the solution z(x, t) of the problem (3.3), and 0 ≤ u(x, t) ≤ z(x, t) < 1
on Ω × [0, T).

Proof. Let v(x, t) = 0, then it is readily seen that

zt = Δz + 𝜆

(1 − z)2(1 + 𝛼|Ω|)2 ≥ Δz + 𝜆

(1 − z)2
(

1 + 𝛼∫Ω dx
1−v

)2 in QT ,

𝜕z
𝜕𝜈

+ 𝛽z = 0, on fbT ,

z(x, 0) = z0(x) for x ∈ Ω̄,
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while v satisfies
vt − Δv = 0 ≤ 𝜆

(1 − v)2
(

1 + 𝛼∫Ω dx
1−z

)2 on QT ,

𝜕v
𝜕𝜈

+ 𝛽v = 0, on fbT ,

v(x, 0) = 0 for x ∈ Ω̄.
Therefore, according to Definition 3.1 (v, z) is a lower-upper solution pair for the problem (1.1) and thus the result

is an immediate consequence of Proposition 3.2.

3.2 Global existence and quenching for general domain
In the current subsection we investigate the global existence and quenching of the solutions of problem (1.1).

We first show the following global existence result.

Theorem 3.5. Assume that 𝜆 ∈ (0, (1 + 𝛼|Ω|)2𝜇*), recalling that 𝜇* defined by (2.16). Then problem (1.1) with initial
condition u0(x) ≤ w𝜆(x) has a global-in-time solution converging as t → ∞ to the minimal steady state solution w𝜆(x)
of (2.11), corresponding to 𝜆.

Proof. By Proposition 3.4 we have that (0, z) is a lower-upper pair for problem (1.1), where z is the unique solution of
local problem (3.3) with initial data 0 ≤ z0 = u0 ≤ w𝜆 < 1. Then Proposition 3.2 infers that 0 ≤ u ≤ z. Moreover,
due to Theorem 2.6 problem (2.11) has a minimal solution w𝜆 for any 𝜆 ∈ (0, (1 + 𝛼|Ω|)2𝜇*) and thus (2.15) has also
a minimal solution w𝜇 for any

0 < 𝜇 = 𝜆

K(w𝜇)
< 𝜇∗. (3.4)

On the other hand, we can find 𝜇1 ∈ (0, 𝜇*) such that

𝜇1 = 𝜆

(1 + 𝛼|Ω|)2 . (3.5)

Using now (2.22), then by virtue of (3.4) and (3.5) we get that 𝜇 < 𝜇1 and so Lemma 2.5 finally implies that w𝜇 ≤ w𝜇1 .
Then via comparison, cf. Proposiition 3.2, 0 ≤ z ≤ w𝜇1 since z0 = u0 ≤ w𝜆 = w𝜇 ≤ w𝜇1 and thus we finally deduce that

0 < u(x, t) ≤ z(x, t) ≤ w𝜇1(x) < ∞, for any x ∈ Ω, and t > 0,

and therefore, a global-in-time solution for problem (1.1) exists. Using the dissipative property (3.6) of energy E(t), see
also,39 we can prove convergence of u(x, t) toward the steady-state solution w𝜆(x), since u0(x) ≤ w𝜆(x).

Next we define the notion of finite time quenching, which is closely related to the mechanical phenomenon of
touching down.

Definition 3.6. The solution u(x, t) of problem (1.1) quenches at some point x* ∈ Ω in finite time 0 < Tq < ∞ if
there exist sequences {xn}∞n=1 ∈ Ω and {tn}∞n=1 ∈ (0,∞) with xn → x* and tn → Tq as n → ∞ such that u(xn, tn) → 1
as n → ∞. When Tq = ∞ we say that u(x, t) quenches in infinite time at x*. Moreover,

Q = {x∗ ∈ Ω̄|∃(xk, tk)k∈N ⊂ Ω × (0,Tq) ∶ xk → x∗, tk → Tq and u(xk, tk) → 1 as k → ∞},

is called the quenching set of u.

Now we determine the energy of the problem (1.1). Accordingly we multiply (1.1a) by ut and integrating over Ω to derive

∫Ω
u2

t dx = −∫Ω
∇ut∇udx − 𝛽∫

𝜕Ω
utudS + 𝜆

𝛼

d
dt

(
− 1

1 + 𝛼∫Ω 1
1−u

dx

)

= −1
2

d
dt∫Ω

|∇u|2dx − 𝛽

2
d
dt∫𝜕Ωu2dS + 𝜆

𝛼

d
dt

(
− 1

1 + 𝛼∫Ω 1
1−u

dx

)
,
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taking also into account boundary condition (1.1b).
Therefore, we obtain

d
dt

[
1
2∫Ω

|∇u|2dx + 𝛽

2∫𝜕Ωu2dS +
𝜆∕𝛼

1 + 𝛼∫Ω 1
1−u

dx

]
= −∫Ω

u2
t dx, (3.6)

which implies that the energy functional

E(t) ∶= 1
2∫Ω

|∇u|2dx + 𝛽

2∫𝜕Ωu2dS +
𝜆∕𝛼

1 + 𝛼∫Ω 1
1−u

dx
≤ E(0) ∶= E0 < ∞, (3.7)

decreases in time along any solution of (1.1).
Below, we present a quenching result for a general domain Ω following an approach introduced in Guo and Kavallaris22

see also.40

Theorem 3.7. For any fixed 𝜆 > 0, there exist initial data such that the solution of problem (1.1) quenches in finite time
provided the associated initial energy

E0 ∶= 1
2∫Ω

|∇u0|2dx + 𝛽

2∫𝜕Ωu2
0dS +

𝜆∕𝛼
1 + 𝛼∫Ω 1

1−u0
dx

is chosen sufficiently small, that is,

E0 <
𝜆q𝛼 (|Ω|)

2𝛼
, (3.8)

where

q𝛼 (|Ω|) ∶= {
1, |Ω| ≤ 1

3𝛼
,

1
3𝛼|Ω| , |Ω| ≥ 1

3𝛼
.

(3.9)

Proof. The proof follows closely that of Kavallaris and Suzuki,7, Theorem 1.2.17 which deals with Dirichlet boundary
conditions, however for the sake of completeness a sketch of the proof is provided here.

Assume that problem (1.1) has a global-in-time (classical) solution u, that is, 0 < u(x, t) < 1 for any (x, t) ∈
Ω × (0, ∞) and so

Z(t) ∶= ∫Ω
u2(x, t)dx < |Ω|, for any t > 0. (3.10)

Multiplying Equation (1.1a) by u and integrating by parts over Ω, we deduce

1
2

dZ
dt

= −∫Ω
|∇u|2dx − 𝛽∫𝜕Ωu2 ds + 𝜆

∫Ω u
(1−u)2

dx(
1 + 𝛼∫Ω(1 − u)−1dx

)2 . (3.11)

Using (3.6) then (3.11) reads

1
2

dZ
dt

= −2E(t) + 2𝜆
𝛼

1(
1 + 𝛼∫Ω(1 − u)−1dx

) + 𝜆
∫Ω u

(1−u)2
dx(

1 + 𝛼∫Ω(1 − u)−1dx
)2

≥ −2E0 +
𝜆

𝛼

2 + 𝛼∫Ω 2−u
(1−u)2

dx(
1 + 𝛼∫Ω(1 − u)−1dx

)2 .

(3.12)

Besides, Hölder's and Young's inequalities imply

(
1 + 𝛼∫Ω

dx
1 − u

)2

≤ 2 + 3𝛼2|Ω|∫Ω

dx
(1 − u)2 ,
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and thus, by virtue of (3.12) we obtain

1
2

dZ
dt

≥ −2E0 +
𝜆

𝛼
q𝛼 (|Ω|) ,

or

Z(t) ≥ 2
[

q𝛼 (|Ω|) 𝜆
𝛼
− 2E0

]
t + Z(0),

for q𝛼 (|Ω|) given by (3.9). The latter implies that Z(t) → ∞ as t → ∞provided that E0 satisfies (3.8), which contradicts
to (3.10). Therefore the theorem follows.

Remark 3.8. If we fix the initial data u0, and thus initial energy E(0), then Theorem 3.7 provides a quenching result for
big values of the nonlocal parameter 𝜆. In particular, (3.8) provides a threshold for parameter 𝜆 above which finite-time
quenching occurs. Namely, if

𝜆 > �̃� ∶=
2𝛼

(
1
2
∫Ω|∇u0|2dx + 𝛽

2
∫
𝜕Ωu2

0dS
)

q𝛼 (|Ω|) − 2𝛼
1+𝛼∫Ω 1

1−u0
dx

,

then ||u(· , t) ||∞ → 1− as t → Tq < ∞ provided that 𝛼(|Ω|) ∶= q𝛼 (|Ω|) − 2𝛼
1+𝛼∫Ω 1

1−u0
dx

is positive. Note that

𝛼(|Ω|) ≥ q𝛼 (|Ω|) − 2𝛼
1 + 𝛼|Ω| =

⎧⎪⎨⎪⎩
1+𝛼(|Ω|−2)

1+𝛼|Ω| , |Ω| ≤ 1
3𝛼
,

1−𝛼(6𝛼−1)|Ω|
3𝛼|Ω|(1+𝛼|Ω|) , |Ω| ≥ 1

3𝛼
,

and so 𝛼(|Ω|) > 0 by either choosing 𝛼 < 2
3

and 2𝛼−1
𝛼

< |Ω| ≤ 1
3𝛼

for the first branch of the inequality, and 1
6
< 𝛼 <

2
3

with 1
3𝛼

≤ |Ω| < 1
𝛼(6𝛼−1)

or just 𝛼 < 1
6

for the second branch.
Remarkably, an optimal value of �̃� for the unit sphere B1(0) is given in Theorem 3.12, where it is actually shown

that �̃� = 𝜆∗.

A first step toward the derivation of sharper quenching results is the following lemma. Henceforth, we use Ci, i = 1, … ,
to denote various positive constants.

Lemma 3.9. Let u be a global-in-time solution of the problem (1.1). Then there is a sequence {t𝑗}∞𝑗=1 ↑ ∞as𝑗 → ∞
such that

𝜆∫Ω
u𝑗(1 − u𝑗)−2dx ≤ C1

(
H(u𝑗)

)2
, (3.13)

for a positive constant C1, where uj = u(· , tj) and

H(u𝑗) ∶= 1 + 𝛼∫Ω

1
1 − u𝑗

dx > 1. (3.14)

Proof. The proof follows closely the steps of the proof of Kavallaris et al20, Lemma 2.1 for the case of Dirichlet boundary
conditions and so it is omitted.

3.3 Finite time quenching for the radial symmetric case
A wide used situation is a circular MEMS configuration, see Figure 2B, cf. Pelesko and Chen.31 Especially, in that case
the role of the elastic membrane is played by a soap film and such configuration was first suggested by the prolific British
scientist, G.I. Taylor, who actually investigated the coalescence of liquid drops held at differing electric potentials.32 Later,
R.C. Ackerberg initiated the mathematically study of Taylor's model in Ackerberg.30

Under a circular configuration, that is, when Ω = B1(0), then solution of problem (1.1) is radial symmetric, cf. Gidas
et al26 and then we end up with the following

ut − urr − (N − 1)r−1ur = F(r, t), (r, t) ∈ (0, 1) × (0,T), N ≥ 1, (3.15a)
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ur(0, t) = 0, ur(1, t) + 𝛽u(1, t) = 0, t ∈ (0,T), (3.15b)

0 ≤ u(r, 0) = u0(r) < 1, 0 < r < 1, (3.15c)

where

F(r, t) = 𝜆(1 − u(r, t))−2k(t), (3.16)

and

k(t) =
[

1 + 𝛼N𝜔N ∫
1

0
rN−1(1 − u(r, t))−1dr

]−2

,

recalling that 𝜔N stands for the volume of the N-dimensional unit sphere B1(0) in RN . Note that condition ur(0, t) = 0 is
imposed to guarantee the regularity of the solution u. We also, for simplicity, consider that u′

0(r) ≤ 0 for 0 ≤ r ≤ 1, and
thus via maximum principle ur(r, t) ≤ 0 for (r, t) ∈ [0, 1] × [0, T).

For convenience we define 0 < v ∶= 1 − u ≤ 1 and so v satisfies

vt − vrr − (N − 1)r−1vr = −𝑓v−2, (r, t) ∈ (0, 1) × (0,T), (3.17a)

vr(0, t) = 0, vr(1, t) + 𝛽v(1, t) = 𝛽, t ∈ (0,T) (3.17b)

0 < v(r, 0) = v0(r) ≤ 1, 0 < r < 1, (3.17c)

where
𝑓 = 𝑓 (t) ∶= 𝜆[

1 + 𝛼N𝜔N ∫ 1
0 rN−1v−1dr

]2

and

vr(r, t) > 0 for (r, t) ∈ (0, 1] × [0,T). (3.18)

For the rest of the our analysis we need a lower estimate for v, which infers a uniform in time upper estimate of the
nonocal term, and is shown in the following.

Lemma 3.10. Consider radial symmetric v0(r) with v′0(r) > 0 and assume also that N > 𝛽 + 1. Then for any k > 2∕3
there is a constant C = C(k) such that

v(r, t) ≥ C(k)rk for (r, t) ∈ (0, 1) × (0,T). (3.19)

Moreover, there exists a constant C2 which is independent of time t and uniform in 𝜆 such that

H(u) = H(1 − v) ≤ C2 for any 0 < t < T. (3.20)

Proof. Considering 1 < b < 2, there exist some t1 > 0 and 𝜖1 > 0 such that

vr > 𝜖1rv−b at t = t1 for 0 < r ≤ 1, (3.21)

since v > 0 with a bounded spatial derivative is a classical solution of (3.17a)-(3.17c).
Next differentiating Equation (3.17a) with respect to r gives

(vr)t − (vrr)r − (N − 1)(−r−2vr + r−1(vr)r) = 2𝑓v−3vr,
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which after multiplying with rN− 1 reads

zt − zrr + (N − 1)r−1zr = 2𝑓v−3z, (3.22)

for z ∶= rN− 1vr.

As a next step, we define the functional

J = z − 𝜖rN v−b for 0 < 𝜖 < 𝜖1, (3.23)

and note that

J > 0 for 0 < r ≤ 1 at t = t1, (3.24)

thanks to (3.21).
Moreover,

Jt = zt + b𝜖rN v−b−1vt,

Jr = zr − 𝜖NrN−1v−b + 𝜖brN v−b−1vr,

and

Jrr = zrr + b𝜖rN v−b−1vrr + 2Nb𝜖rN−1v−b−1vr − b(b + 1)𝜖rN v−b−2v2
r − N(N − 1)𝜖rN−2v−b.

Notably, as long as J > 0, then vr > 𝜖rv−b and so

v >
(

b + 1
2

𝜖

) 1
b+1

r
2

b+1 ,

which retrieves (3.19) for C =
(

b+1
2
𝜖

) 1
b+1 and k = 2

b+1
.

The latter inequality infers

∫
1

0
rN−1v−1dr < ∫

1

0
rN−1

(
2

(b + 1)𝜖

) 1
b+1 1

r
2

b+1

dr

≤
(

2
(b + 1)𝜖

) 1
b+1

(
b + 1

Nb + N − 2

)
= C2𝜖

−1∕(b+1),

(3.25)

and thus estimate (3.20) is also retrieved.
We now introduce the function

G(𝜖) ∶= 𝜖
2

b+1(
𝜖

1
b+1 + 𝛼N𝜔N C2

)2 , (3.26)

where parameter 𝜖 is small enough 0 < 𝜖 ≪ 1, and 𝜖2 imposed to fulfill

𝜖2 < sup
{
𝜖 ∶ 𝜖 ≤ min

{
1
N
,

(
2 − b

2b

)}
𝜆G(𝜖)

}
. (3.27)

Remarkably, such an 𝜖2 satisfying (3.27) exists since G(𝜖) = O(𝜖2∕(b+1))) ≫ 𝜖 for 𝜖 small with 0 < 𝜖 < min{𝜖1, 𝜖2},
taking also into account that b > 1.

By virtue of (3.24) and (3.25) there holds

𝑓 (t1) =
𝜆(

1 + 𝛼N𝜔N ∫ 1
0 rN−1v−1dr

)2 > 𝜆G(𝜖), (3.28)
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thus, in a neighborhood of t = t1 we obtain that f(t) > 𝜆G(𝜖).
Now we claim that f(t) > 𝜆G(𝜖) for any t ∈ (t1, T). Let us assume to the contrary that:

there exists t2 ∈ (t1,T) such that 𝑓 (t2) = 𝜆G(𝜖) with 𝑓 (t) > 𝜆G(𝜖) for t1 ≤ t < t2. (3.29)

By the definition of J and z we immediately get

J = 0 on r = 0,

while on the boundary r = 1, due to (3.17b), we have

J = z(1, t) − 𝜖v−b(1, t)

= 𝛽 (1 − v(1, t)) − 𝜖v−b(1, t) = vr(1, t) − 𝜖v−b(1, t) > 0,
(3.30)

provided that

0 < 𝜖 ≤ 𝜖3 ∶= inf
t1<t<t2

vr(1, t)
v−b(1, t)

,

and taking also into account (3.18).
In addition,

Jr = zr − 𝜖NrN−1v−b + 𝜖brN v−b−1vr = (N − 1)rN−2vr + rN−1vrr + 𝜖rN v−b(−Nr−1 + bv−1vr),

and for r = 1 we obtain

Jr = (N − 1)vr(1, t) + vrr(1, t) + 𝜖v−b(1, t)
[
−N + bv−1(1, t)vr(1, t)

]
.

Moreover, at r = 1

Jr − b𝜖J = (N − 1)vr(1, t) + vrr(1, t) − 𝜖v−b(1, t)
[
N − b𝛽v−1(1, t) + b𝛽

]
− b𝜖

[
𝛽 − (𝛽v(1, t) + 𝜖v−b(1, t))

]
= (N − 1)vr(1, t) + vrr(1, t)

− 𝜖
[
v−b(1, t)N − b𝛽v−b−1(1, t) + b𝛽v−b(1, t) + b𝛽 − b𝛽v(1, t) − b𝜖v−b(1, t)

]
,

and therefore, after dropping all the positive terms,

Jr − b𝜖J > (N − 1)vr(1, t) + vrr(1, t) − 𝜖
[
v−b(1, t)N + b𝛽v−b(1, t) + b𝛽

]
.

Next differentiating the second of the boundary conditions (3.15b) with respect to r we get

vrr(1, t) = −𝛽vr(1, t),

and thus
Jr − b𝜖J > (N − 1 − 𝛽) vr(1, t) − 𝜖

[
v−b(1, t)N + b𝛽v−b(1, t) + b𝛽

]
.

Therefore, for Jr(1, t) and Jr(1, t) − b𝜖J(1, t) to be positive we need

(N − 1 − 𝛽) vr(1, t) − 𝜖
[
v−b(1, t)N + b𝛽v−b(1, t) + b𝛽

]
> 0,

or it is sufficient to choose 𝜖 ≤ min{𝜖3, 𝜖4} for

𝜖4 ∶= inf
t1<t<t2

(N − 1 − 𝛽) vr(1, t)
(N + b𝛽)v−b(1, t) + b𝛽

> 0,
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since N > 𝛽 + 1.
Therefore, we have

Jt − Jrr + (N − 1)r−1Jr ≥ 2J( 𝑓v−3 − b𝜖v−b−1) + 𝜖𝑓 rN v−b−3(2 − b) − 2𝜖2rN v−2b−1b,

and hence,
Jt − Jrr + (N − 1)r−1Jr > 2J(𝑓v−3 − b𝜖v−b−1), (3.31)

as far as

𝜖𝑓 rN v−b−3(2 − b) − 2𝜖2rN v−2b−1b > 0,

or
𝜖𝑓 (2 − b) > 2𝜖2b,

which in turn gives

𝜖 < 𝜖5 ∶= inf
t1<t<t2

𝑓 (t)(2 − b)
2b

.

After all by maximum principle we derive that J > 0, for 0 < r ≤ 1, t1 ≤ t ≤ t2 and for 𝜖 small enough satisfying
𝜖 < min{𝜖1, 𝜖2, 𝜖3, 𝜖4, 𝜖5}. In 0 < r ≤ 1, t1 ≤ t ≤ t2, and since v > 0 then the coefficient of J in Equation (3.31) is
bounded, so we can define a new variable J̃ = e−D1tJ which then satisfies the boundary condition (3.30), the boundary
inequality (3.31) and

J̃t − J̃rr + (N − 1)r−1J̃r > −D2J̃, (3.32)

where D1 and D2 are positive constants. Should J̃ be non-positive, it must take a non-positive minimum at (r3, t3) with
0 < r3 ≤ 1 and t1 < t3 ≤ t2. At r3 = 1, by the fact that Jr(1, t) > 0 we have J̃r(1, t) > 0 leading to a contradiction.
Thus the supposed minimum must have 0 < r3 < 1, where J̃t ≤ 0, J̃r = 0 and J̃rr ≥ 0. If we have J̃ ≤ 0 then
equation (3.32) gives another contradiction. Therefore, J̃ and J remain positive in 0 < r < 1 for t1 ≤ t ≤ t2.

The latter infers that Equation (3.28) holds at t = t2, contradicting to the initial assumption (3.29). So, as long as
solution u exists then f(t) > 𝜆G(𝜖) for t ≥ t1. It then follows that J > 0, and estimate (3.19) holds together with

∫
1

0
rN−1v−1dr < 2

1
b+1

(b + 1)𝜖)
1

b+1

b + 1
Nb + N − 2

= 1
Nb + N − 2

(2
𝜖

) 1
b+1 (b + 1)1− 1

b+1

= 1
Nb + N − 2

(2
𝜖

) 1
b+1 (b + 1)

b
b+1 ,

(3.33)

for t ≥ t1, in case (3.17a)-(3.17c) has a global solution u or up to and including the quenching time Tq when u
quenches. Finally by the definition of H(u) and inequality (3.33) we obtain the desired estimate, (3.20), and the
lemma follows.

Remark 3.11. Note that we can alternatively obtain that

𝜖4 = inf
t1<t<t2

𝑓v−2(1, t) + vt(1, t)
(N + b𝛽)v−b(1, t) + b𝛽

> 0

without any restrictions on the spatial dimesnion N, by choosing 𝜆 large enough, that is, 𝜆 > 𝜆** ≥ 𝜆*, so that

𝑓 (t) = 𝜆(
1 + 𝛼N𝜔N ∫ 1

0 rN−1v−1(r, t)dr
)2 > −vt(1, t)v2(1, t) for t ∈ (t1, t2), (3.34)

which is always possible for a classical (and thus smooth enough) solution u(r, t). Therefore, we can recover the result
of Lemma 3.10 independently of the dimension N, but for 𝜆 > 𝜆** so that (3.34) is satisfied. Consequently, in the
sequel all the derived quenching results can alternatively be obtained for 𝜆 large enough, in particular for 𝜆 > 𝜆**,
but without imposing any restrictions on the spatial dimesnion.
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Now having in place Lemmata 3.9 and 3.10 we are ready to prove the following quenching result. This result is
sharp (optimal) in the sense that predicts quenching in the parameter range for the pull-in voltage 𝜆 where no classical
steady-states exist.

Theorem 3.12. Consider radially symmetric initial data u0(r) with u′
0(r) < 0. Assume also that N > 𝛽 + 1 then for

any 𝜆 > 𝜆* the solution of the problem (3.15) quenches in finite time Tq < ∞.

Proof. Let assume to the contrary that for some 𝜆 > 𝜆* problem (3.15) has a global-in-time solution. Then thanks
to (3.13) and (3.20), we can get a sequence {t𝑗}∞𝑗=1 with tj → ∞ as j → ∞ such that

𝜆N𝜔N ∫
1

0
rN−1u𝑗(1 − u𝑗)−2 dr ≤ C3 , for any t > 0, (3.35)

where the constant C3 is independent of j.
Then by (3.20) it is readily seen that

N𝜔N ∫
1

0

rN−1 dr
(1 − u𝑗)2 = N𝜔N ∫

1

0

rN−1 dr
(1 − u𝑗)

+ N𝜔N ∫
1

0

rN−1u𝑗 dr
(1 − u𝑗)2

≤ (C2 − 1) + C3

𝜆
∶= C4,

(3.36)

where C4 is independent of j.
Additionally, by virtue of (3.7) we have ||∇u𝑗||2

L2(B1)
≤ C5 < ∞, (3.37)

where C5 is again independent of j.
Passing to a sub-sequence, if necessary, relation (3.37) infers the existence of a function w such that

u𝑗 ⇀ w in H1(B1), (3.38)

u𝑗 → w a.e. in B1, (3.39)

as j → ∞. For N ≥ 2 and by (3.36) we immediately obtain that 1∕(1 − uj)2 is uniformly integrable and since

1
(1 − u𝑗)2 →

1
(1 − w)2 , 𝑗 → ∞ a.e. in B1,

due to (3.39), we finally deduce

1
(1 − u𝑗)2 →

1
(1 − w)2 as 𝑗 → ∞ in L1(B1), (3.40)

by virtue of Lebesque dominated convergence theorem. Similarly we also derive

H(u𝑗) → H(w) as 𝑗 → ∞ in L1(B1). (3.41)

Next note also that by relation (3.6), see also Kavallaris et al,20 we derive the following estimate

∫
∞

𝜏
∫B1

u2
t (x, s)dx ds ≤ C < ∞,

for a constant C independent of 𝜏 > 0, and thus passing to a sub-sequence if it is necessary we obtain

||ut(·, t𝑗)||2
2 = ∫B1

u2
t (x, t𝑗)dx → 0 as 𝑗 → ∞. (3.42)



DROSINOU ET AL. 27

A weak formulation of (3.15) along the sequence {t𝑗}∞𝑗=1 can be written as

∫B1

𝜕u𝑗
𝜕t

𝜙dx = −∫B1

∇u𝑗 · ∇𝜙dx + ∫
𝜕B1

𝜕u𝑗
𝜕𝜈

𝜙ds + 𝜆H−1(u𝑗)∫B1

𝜙(1 − u𝑗)−2 dx, (3.43)

for any 𝜙 ∈ H1(B1).
For any 𝜙 ∈ W2, 2(B1) with 𝜕𝜙

𝜕𝜈
+ 𝛽𝜙 = 0, on 𝜕B1, then Green's identities imply

∫𝜕B1

𝜕u𝑗
𝜕𝜈

𝜙ds = ∫B1

∇u𝑗 · ∇𝜙dx + ∫B1

(Δu𝑗)𝜙dx

= ∫B1

∇u𝑗 · ∇𝜙dx + ∫B1

u𝑗 (Δ𝜙)dx

and thus by virtue of (3.38), (3.39) and Lebesque dominated convergence theorem we derive

∫
𝜕B1

𝜕u𝑗
𝜕𝜈

𝜙ds → ∫B1

∇w · ∇𝜙dx + ∫B1

w (Δ𝜙)dx = ∫
𝜕B1

𝜕w
𝜕𝜈

𝜙ds, (3.44)

since w ∈ H1(B1).
Passing to the limit as j → ∞ in (3.43), and in conjunction with (3.38), (3.40), (3.41),(3.42) and (3.44) we derive

−∫B1

∇𝜙 · ∇wdx + ∫
𝜕B1

𝜙
𝜕w
𝜕𝜈

ds + 𝜆
∫B1

𝜙

(1−w)2
dx(

1 + ∫B1

1
1−w

dx
)2 = 0,

for any 𝜙 ∈ W2, 2(B1) satisfying 𝜕𝜙

𝜕𝜈
+ 𝛽𝜙 = 0 on 𝜕B1.

The latter, according to Definition 2.2, infers that w is a weak finite-energy solution of problem (3.15) corresponding
to 𝜆 > 𝜆* which contradicts with the result of Proposition 2.3.

For N = 1, using a similar approach and trace theorem, see also Kavallaris et al,20, Theorem 3.5 we obtain that uj
converges to a weak finite-energy solution of problem (3.15) arriving again at a contradiction. This completes the
proof of theorem.

Remark 3.13. Notably the quenching predicted by Theorem 3.12 is single-point quenching. In particular, due to (3.19)
we derive that u(r.t) can only quench at the origin r = 0.

3.4 Quenching for large initial data
In the following, we investigate the behavior of the problem (3.15) for large initial data. Namely, the following result holds.

Theorem 3.14. For any 𝜆 > 0 and for N > 𝛽 + 1 we can choose initial data u0 close enough to 1 such that the solution
u of problem (3.15) quenches in finite time Tq < ∞.

Proof. We denote by (𝜆1, 𝜙1) be the principal eigenpair of

−Δ𝜙1 = 𝜆1𝜙1, x ∈ B1,
𝜕𝜙1

𝜕𝜈
+ 𝛽𝜙1 = 0, x ∈ 𝜕B1,

where again 𝜙 is normalized so that

∫B1

𝜙1(x)dx = 1.

Let us suppose that problem (3.15) has a global-in-time solution 0 < u(x, t) < 1 for any (x, t) ∈ B1 × (0, ∞).
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Testing Equation (3.15a) with 𝜙1 and integrating over B1 then Green's second identity and Lemma 3.10 infer,

d
dt∫B1

𝜙1udx = ∫B1

𝜙1Δrudx + 𝜆∫B1

𝜙1(1 − u)−2(H(u))−2dx

= ∫B1

Δr𝜙1udx + ∫
𝜕B1

(
u𝜕𝜙1

𝜕𝜈
− 𝜕u
𝜕𝜈
𝜙1

)
ds + 𝜆∫B1

𝜙1(1 − u)−2(H(u))−2dx

= −∫B1

𝜆1𝜙1udx +
𝜆∫B1

𝜙1(1 − u)−2dx

(H(u))2 .

(3.45)

Set A(t) ∶= ∫B1
u𝜙1dx, then applying Jensen's inequality to equation (3.45), we obtain

dA
dt

≥ −𝜆1A(t) + 𝜆

C2
2
(1 − A(t))−2, for any t > 0. (3.46)

Next we choose suitable 𝛾 ∈ (0, 1) such that

fk(s) ∶= 𝜆

C2
2
(1 − s)−2 − 𝜆1s > 0 for all s ∈ [𝛾, 1),

and then by choosing u0 such that A(0) = ∫B1
u0𝜙1dx ≥ 𝛾 , then (3.46) infers

dA
dt

≥ fk(A(t)) > 0 for any t > 0,

or by integrating

t ≤ ∫
A(t)

A(0)

ds
fk(s)

≤ ∫
1

A(0)

ds
fk(s)

< ∞.

The latter is in contradiction with our initial assumption that T = ∞, and the theorem is proved.

3.5 Behavior at quenching
In the current subsection we give more details regarding the behavior of quenching solutions close to quenching time Tq.

We first obtain the quenching rate. Let us recall that a solution u(r, t) of (3.15) with radial decreasing initial data u0 then
u is also radial decreasing and thus,

M(t) ∶= max
x∈B̄1

u(x, t) = u(0, t).

The next result determines the quenching rate of u for singular solutions of (3.15).

Theorem 3.15. Let u(r, t) be a quenching solution of (3.15). Then for N > 𝛽 + 1 there are positive constants Ĉ, C̃
indpendent on time t such that

1 − Ĉ(Tq − t)1∕3 ≤ M(t) ≤ 1 − C̃(Tq − t)1∕3 for 0 < t − Tq ≪ 1. (3.47)

Proof. Since M(t) is Lipschitz continuous then by Rademacher's theorem, is almost everywhere differentiable, cf.41,42

Furthermore, since u attains a maximum at r = 0 then Δru(0, t) ≤ 0 for all t ∈ (0, Tq). Therefore, for any t where
dM∕dt exists, we derive

d
dM

t ≤ 𝜆
(1 − M(t))−2(

1 + ∫B1

1
1−u

dx
)2 ≤ 𝜆

(1 − M(t))−2

(1 + N𝜔N)2 for a.e. t ∈ (0,Tq),
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which yields

∫
1

M(t)
(1 − s)2 ds ≤ 𝜆C(Tq − t),

for C = 1∕(1 + N𝜔N)2. The latter implies

M(t) ≥ 1 − Ĉ(Tq − t)1∕3 for 0 < t < Tq , (3.48)

where Ĉ = (3𝜆C)1∕3.
Note that inequality (3.20) implies that H(u) is uniformly integrable so then via, (3.19) and parabolic regularity

estimates in the region r ∈ (0, 1), cf. Ladyženskaja et al43 we obtain that

lim
t→Tq

u(r, t) = u(r,Tq) for any 0 < r < 1. (3.49)

Estimate (3.19) also implies that

(1 − u)−1 ≤ C̄(k)r−k,

for k >
2
3
, and C̄(k) = 1

C(k)
and thus from relation (3.49), and the Lebesque dominated convergence theorem we

get that

lim
t→Tq ∫B(0,1)

1
1 − u(x, t)

dx = ∫B(0,1)

1
1 − u(x,Tq)

dx < ∞

and finally,

lim
t→Tq

(H(u))2 = K < ∞.

Therefore, for 0 < t − Tq ≪ 1 we have that

ut(x, t) ≃ Δu + 𝜆

K
1

(1 − u)2 , x ∈ B(0, 1),

𝜕u
𝜕𝜈

(x, t) + 𝛽u(x, t) = 0, x ∈ 𝜕B(0, 1),

u(x, 0) = u0(x).

But for the above local problem it is known, cf. previous works,44,45 that

M(t) = u(0, t) ≲ 1 − C̃(Tq − t)1∕3, (3.50)

for some C̃ > 0.
Therefore, combining inequalities (3.48), (3.50), we obtain the required estimation (3.47)

It is worth noting that due to the uniform bounds of nonlocal term (H(u))2 we can treat nonlocal problem (3.15) as a
local one and therefore, the quenching profile is given as follows, cf.44,45

1 − u(r,Tq) ∼ C∗
[ |r|2| ln |r||

]1∕3

as r → 0+, (3.51)

for some positive constant C*. For a more rigorous approach, which is out of the scope of the current work, one should
follow similar arguments as in24,46 to derive (3.51) where it is conjectured that C∗ = limt→Tq H(u(r, t)).
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4 NUMERICAL APPROACH

In the current section we present a numerical study of problem (1.1) both in the one-dimensional as well as in the
two-dimensional radial symmetric case. For that purpose an adaptive method monitoring the behavior of the solution
near a singularity, such as the detected quenching behavior of (1.1), is used (e.g., see6,47).

4.1 One-dimensional case
For the one-dimensional case and for the sake of simplicity, taking advantage of the symmetry of the solution, we may
consider the problem in the interval [0, 1]with Neumann condition at x = 0, ux(0, t) = 0 and the original Robin condition
at the point x = 1.

Initially, we take a partition of M + 1 points in the interval [0,1], 𝜉0 = 0, 𝜉1 = 𝜉0 + Δ𝜉, … , 𝜉M = 1. For u = u(x, t), we
introduce a computational coordinate 𝜉 in [0,1] and we consider the mesh points Xi to be the images of the points 𝜉i under
the map x(𝜉, t) so that Xi(t) = x(iΔ𝜉, t). By the latter relation we obtain du(X(t),t)

dt
= ut(Xi, t) + uxX ′

i for the approximation
of the solution ui(t) ≃ u(xi(t), t).

Moreover, the map x(𝜉, t) is determined by the function (u) which in a sense, follows the evolution of the singularity
in case of quenching. This function is determined by the scale invariants of the problem. In particular, for the semilinear
parabolic equation

vt = vxx −
𝜆

v2
[
1 + 𝛼 ∫ 1

−1 1∕vdx
]2 ,

where v = 1 − u, an appropriate monitor function should be of the form (u) = |1 − u|−2 or (v) = |v|−2.
We need also a rescaling of time of the form du

dt
= du

d𝜏
d𝜏
dt

where dt
d𝜏

= g(u), and g(u) is a function determining the way
that the time scale changes as the solution approaches the singularity. In particular, we have g(u) = 1||(u)||∞ .

In addition the evolution of Xi(t) is given by a moving mesh PDE which is of the form x𝜏𝜉𝜉 = 𝜖−1g(u)((u)x𝜉)𝜉 . Here 𝜖
is a small parameter accounting for the time scale. Thus finally we obtain a system of ODEs for Xi and ui. The underlying
ODE system takes the form

dt
d𝜏

= g(u),

u𝜏 − x𝜏ux = g(u)
⎛⎜⎜⎜⎝uxx +

𝜆

(1 − u)2
(

1 + 𝛼 ∫ 1
0

1
1−u

dx
)2

⎞⎟⎟⎟⎠ ,
− x𝜏𝜉𝜉 =

g(u)
𝜖

((u)x𝜉)𝜉 .

(4.1)

We apply a discretization in space to derive

ux(Xi, 𝜏) ≃ Δxui(𝜏) ∶= − ui+1(𝜏) − ui−1(𝜏)
Xi+1(𝜏) − Xi−1(𝜏)

,

uxx(Xi, 𝜏) ≃ Δ2
xui(𝜏) ∶=

(
ui+1(𝜏) − ui(𝜏)
Xi+1(𝜏) − Xi(𝜏)

− ui(𝜏) − ui−1(𝜏)
Xi(𝜏) − Xi−1(𝜏)

)
2

Xi+1(𝜏) − Xi−1(𝜏)
,

x𝜉𝜉(𝜉i, 𝜏) ≃ Δ2
𝜉
xi(𝜏) ∶=

Xi+1(𝜏) − 2Xi(𝜏) + Xi−1(𝜏)
𝛿𝜉2 ,

((u)x𝜉)𝜉 ≃ Δ𝜉(Δ𝜉x) ∶= −
(i+1 +i

2
xi+1 − xi

Δ𝜉
− i +i−1

2
xi − xi−1

Δ𝜉

)
1
Δ𝜉

.

Notably at the boundary point XM = 1 the discretized boundary condition uM = uM−1−𝛽uM (XM − XM−1) has been used.
The preceding spatial discretization leads to an ODE system of the form

A(𝜏, 𝑦)d𝑦
d𝜏

= b(𝜏, 𝑦), (4.2)
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with the vector 𝑦 ∈ R2n+1 defined as

𝑦 = (t(𝜏),u1(𝜏),u2(𝜏), ...,uM(𝜏),X1(𝜏),X2(𝜏), ...,XM(𝜏)),= (t(𝜏), u, X),u, X ∈ R
M ,

and A ∈ R2n+1,2n+1. System (4.2) has the block form

A =
⎡⎢⎢⎣

1 0 0
0 I −Δxu
0 0 −Δ2

𝜉

⎤⎥⎥⎦ , 𝑦 =
[ t(𝜏)

u
X

]
, b = g(u)

⎡⎢⎢⎣
1

Δ2
xu + 𝜆 1

(1−u)2(1+𝛼I(u))2
Δ𝜉(Δ𝜉x)

⎤⎥⎥⎦ ,
where I(u) is an approximation of the integral ∫ 1

0
1

1−u
dx, using Simpsons' method. For the solution of (4.2) a standard

ODE solver, such as the matlab function “ode15i”, can be used.

4.1.1 The local problem
Initially, we present a simulation for the local problem, (1.2), that is, problem (1.1) for 𝛼 = 0. In Figure 5some numerical
experiments presented for the case where a global-in-time solution exists. In the first of these graphs (top left) we plot
the solution against space and time. In the second one (top right) we plot the moving mesh X(i, t) against time, while in

FIGURE 5 Form of the solution and various
profiles of the local problem for 𝜆 = 0.05, 𝛽 = 1
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Form of the solution and various
profiles of the local problem in the case of
quenching for 𝜆 = 1, and 𝛽 = 1 [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 7 Form of the solution maximum against time for various
values of the parameter 𝜆 for the local problem for 𝛽 = 1 [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Form of the solution and various
profiles of the nonlocal problem, for 𝜆 = 0.5,
𝛼 = 1, 𝛽 = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

the third (bottom left) a sequence of profiles of the solution (u(x, ti)) for various time steps ti is presented. Finally, in the
fourth graph we plot the maximum of the solution u(0, t) against time. The latter plot shows the convergence toward a
steady state. The initial condition here, as well as in the rest of the simulations, was taken to be zero, u0(x) = 0. Also, the
parameters used here were 𝜆 = 0.05, 𝛽 = 1, t ∈ [0, Tf], T𝑓 = 40, M = 141.

Figure 6 depicts the situation where the solution quenches in finite time. Again in the first of these graphs (top left)
we plot the solution against space and time. In the second one (top right) we plot the moving mesh X(i, t) against time.
Here the motion of Xi's captures the observed singularity, that is, the finite-time quenching. In the third (bottom left) a
sequence of profiles of the solution (u(x, ti)) for various time steps ti is presented. We can observe the increasing with time
profiles of the solution. Finally in the fourth graph we plot the maximum of the solution u(0, t) against time from which
the quenching behavior is revealed. The same parameters as in Figure 5 are used but with 𝜆 = 1. In the next figure, 7
we plot the profiles of the solution maximum, u(0, t) against time, for various 𝜆's and specifically for 𝜆 = .7, .8, .9, 1. We
observe that by increasing the value of the parameter 𝜆 the quenching time decreases as it is expected.

4.1.2 The non-local problem
A similar set of simulations is presented for the case that 𝛼 = 1 while the rest of the parameters, unless otherwise stated,
are kept the same as in the experiment of Figure 5. In Figure 8and for 𝜆 = 0.5 the convergence of the solution toward a

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


DROSINOU ET AL. 33

FIGURE 9 Form of the solution and various
profiles of the nonlocal problem for 𝜆 = 3,
𝛼 = 1, 𝛽 = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 10 Form of the solution maximum against time for
various values of the parameter 𝜆 and with 𝛼 = 1, 𝛽 = 1 [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 (A) Form of the solution maximum against time for various values of the parameter 𝛼 for 𝜆 = 2 and 𝛽 = 1. (B) Variation of the
quenching time of the nonlocal problem with respect to the parameter 𝛼 [Colour figure can be viewed at wileyonlinelibrary.com]

steady state is depicted. In a similar set of graphs, see Figure 9 and for 𝜆 = 3, we present the quenching behavior of the
solution. Moreover, in Figure 10 we can observe the evolution of the quenching time as the value of the parameter 𝜆 varies,
something cannot be seen via our theoretical results. In particular,by increasing the parameter 𝜆 results in a decreasing

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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of quenching time. Here 𝜆 = 2.5, 3, 3.5, 4. Next in Figure 11A we plot a series of profiles for the maximum of the solution
as the parameter 𝛼 varies. Again such a behavior cannot be unveiled via our analytical results in Sections 3.2 and 3.3. It is
easily seen that by decreasing 𝛼 the quenching time decreases too. The parameter 𝛼 decreases from 1 to the value 0 while
the parameter 𝜆 is kept constant and equal to 𝜆 = 2.

The effect of the boundary parameter 𝛽 is unveiled by Figure 12A, a fact cannot be easily seen by our theoretical results
in Section 3. Indeed, it is seen that by increasing 𝛽 a long-time behavior resembles the one of the Dirichlet problem is
derived. The variation of the quenching time t* of the nonlocal problem is depicted in a series of plots in Figures 11A and
12B. In the first of them, Figure 11B, we present a plot of t*(𝛼), while in the second, Figure 12B, a plot of t*(𝛽). In both
cases was taken 𝜆 = 2.

4.2 The radial symmetric case
It has been already pointed out that the two-dimensional problem in the radially symmetric case is very interesting from
the point of view of applications and thus we choose to provide a numerical treatment for it in the current subsection. For
this purpose the aforementioned adaptive numerical scheme and specifically Equation (4.1) can be modified accordingly
with uxx + (N − 1)r−1ux used in place of uxx.

Initially, we solve the local problem, that is, problem (3.15) for 𝛼 = 0 and the results are presented in Figure 13. Here
we take 𝛽 = 1, 𝜆 = 0.05 and we observe that the solution converges toward a steady state. In Figure 14we present an
analogous simulation for the nonlocal problem. In that case we take 𝛼 = 1, 𝛽 = 1, and 𝜆 = 0.2 and we derive that the
solution quenches in finite time.

FIGURE 12 (A) Form of the solution maximum against time for various values of the parameter 𝛽 for 𝜆 = 2 and 𝛼 = 1. (B) Variation of the
quenching time of the nonlocal problem with respect to the parameter 𝛽 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Form of the solution and
various profiles of the local problem for the
radial symmetric case for 𝜆 = 0.05 and 𝛼 = 0,
𝛽 = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 14 Form of the solution and
various profiles of the nonlocal problem for the
radial symmetric case for 𝜆 = 0.2 and 𝛼 = 1,
𝛽 = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

5 DISCUSSION

In the current work we investigate a nonlocal parabolic problem with Robin boundary conditions associated with the oper-
ation of some idealized MEMS device. In the first part we deliver a thorough investigation of the associated steady-state
problem, and we derive some estimates of the pull-in voltage, which is the controlling parameter of the model. In partic-
ular, and for the N−dimensional case, N > 1, in order to derive sharp estimates for the pull-in voltage we had to show,
as a very interesting by-product, a Pohožaev's type identity for Robin boundary conditions. To the best of our knowledge
such a result has not been available in the literature.

In the second part of this work, existence and uniqueness results together with long time behavior of time-dependent
problem are discussed. In particular, we focus on the investigation of the phenomenon of quenching (i.e., the so called
touching down in the context of MEMS literature). We first examine the quenching behavior on a general domain, while
later in order to derive an optimal quenching result we restrict ourselves to the radially symmetric case.

Finally, we close our investigation by the implementation of an adaptive numerical method,47 for the solution of the
time-dependent problem. We actually perform a series of numerical experiments verifying the obtained analytical results
as well as revealing qualitative features of nonlocal problem (1.1) do not arise from our analytical approach. Additionally,
some further numerical experiments are performed to determine the quenching profile of the solution in the radially
symmetric case.
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