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Misalignment between perceptual 
boundaries and weight categories 
reflects a new normal for body size 
perception
Annie W. Y. Chan  1*, Danielle L. Noles2, Nathan Utkov3, Oguz Akbilgic4 & Webb Smith5

Combatting the current global epidemic of obesity requires that people have a realistic understanding 
of what a healthy body size looks like. This is a particular issue in different population sub-groups, 
where there may be increased susceptibility to obesity-related diseases. Prior research has been 
unable to systematically assess body size judgement due to a lack of attention to gender and race; 
our study aimed to identify the contribution of these factors. Using a data-driven multi-variate 
decision tree approach, we varied the gender and race of image stimuli used, and included the same 
diversity among participants. We adopted a condition-rich categorization visual task and presented 
participants with 120 unique body images. We show that gender and weight categories of the stimuli 
affect accuracy of body size perception. The decision pattern reveals biases for male bodies, in which 
participants showed an increasing number of errors from leaner to bigger bodies, particularly under-
estimation errors. Participants consistently mis-categorized overweight male bodies as normal 
weight, while accurately categorizing normal weight. Overweight male bodies are now perceived 
as part of an expanded normal: the perceptual boundary of normal weight has become wider than 
the recognized BMI category. For female bodies, another intriguing pattern emerged, in which 
participants consistently mis-categorized underweight bodies as normal, whilst still accurately 
categorizing normal female bodies. Underweight female bodies are now in an expanded normal, in 
opposite direction to that of males. Furthermore, an impact of race type and gender of participants 
was also observed. Our results demonstrate that perceptual weight categorization is multi-
dimensional, such that categorization decisions can be driven by ultiple factors.

Body weight perception differs across cultures1–3, perceptual biases can vary due to social-economic status, 
religion, ethnicity, muscular tone, location, and/or gender, thus highlighting the diverse variations in body 
weight perception4. Much research has focused on weight estimation of oneself, especially how differences 
in ethnicity affect self-reporting of one’s own weight or their preferred weight. It has been suggested1–3 that 
African American women seem to prefer a larger body and may often perceive an overweight body as normal 
weight, and they may tend to under-estimate their own weight. Meanwhile, Caucasian American women prefer 
leaner bodies and may often perceive underweight as normal, and they are more likely to over-estimate their 
own weight. Others5,6 have observed that people, predominately Caucasian female participants, tend to under-
estimate Caucasian bodies. Since multiple demographic factors (e.g. ethnicity and gender of the stimuli as well 
as of the participants) can contribute to weight perception biases, a data-driven multivariate approach using a 
machine learning, such as decision tree, is thus necessary, as it will allow identification of those critical factors 
that would otherwise be missed.

Visual perception of body weight has been investigated from visual, social, and health psychology perspec-
tives. For example, whether gender or ethnicity influences body size preference. A recent questionnaire survey7 
reported that African–American and Hispanic men preferred women with larger bodies, whereas Caucasian 
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American men preferred women with thinner bodies. Others1 have reported that such racial disparity was 
stronger in women than in men. Researchers have also concentrated on self-perception of participants’ own body 
weight4,8,9. Although some recent studies have examined weight perception from the perspective of the observers, 
they have only recruited participants exclusively from one of the genders, mostly women2,10–12, presented body 
images of only one gender5,12–14, presented only Caucasian stimuli5,15,16 or used line drawings without colour 
information17. One recent report12 has examined weight estimation of both self and others using a very realistic 
set of stimuli, but with only female stimuli and female participants. Others have also attempted to illustrate the 
discrepancy of body weight across different ethnic groups2,4,11,14,18. Several vision scientists19–25 have adopted a 
well-controlled visual psychophysics approach, using visual adaptation to investigate the impact of context and 
exposure on body size and shape misperception. Despite these investigations, more work is needed in order to 
quantify and delineate the contribution of gender, ethnicity, and identity in parallel.

Our principle is that using a well-balanced psychophysics task with a wide variety of stimuli, it will allow us 
to measure accuracy and error rate, and it will also allow us to define the perceptual categorization patterns and 
biases. A psychophysics paradigm can also measure behaviour repeatedly with an expansive variety of conditions 
and stimuli. Some of the previous studies have used body images in their survey; unfortunately, these stimuli were 
primarily line drawing, silhouette, or schematic figures26,27, which failed to capture crucial details of a person 
such as skin colors, textures, and facial features2,3,8,14,28. Furthermore, many have tested only a limited number 
of stimuli, varying from 7 to 30 images3,11,18,28,29. A few recent studies9,12,13 have used a wider selection of stimuli, 
but have only presented female body images.

To address these gaps of knowledge, here we aim: (1) To identify key demographical features affecting visual 
perception of body weight and estimation of weight boundaries of others. (2) To increase our understanding 
of how variety affects weight categorization, with a broader spectrum of demographic features (e.g. gender, 
ethnicity) at both stimulus and participant levels. (3) To measure and compare perceptual boundaries and the 
recognized weight categories (Body Mass Index, BMI).

Results
Are people good at categorizing body size?  We have used percent accuracy as a measurement of per-
formance (a univariate approach, Fig. 1). Participants were not at ceiling in terms of their performance, though 
most of them performed above chance level (25%). Overall, our participants did not demonstrate a uniform 
level of performance across all conditions; their performance was modulated by demographic factors such as the 
Race Types, Genders and/or Weight Categories of body stimuli they observed, as well as participants’ Gender.

Main effect of the stimulus race types.  Participants did not perform equally across all stimulus race types; small 
but significant differences across race types (Fig. 1A) were observed. Specifically, a significant main effect of the 
Stimulus Race Type, F(2,112) = 4.37, p < 0.015, ηp

2 = 0.072 was found. Further tests showed that across all partici-
pants, categorization performance was best for Green Avatar (the control race type), followed by Caucasian, then 
African–American stimuli. Paired samples t-tests showed significant better performance for Caucasian > Afri-
can–American (t = 2.19, p < 0.032); for Green Avatar > African American (t = 2.79, p < 0.007), but no significant 
difference between Green Avatar vs Caucasian (t = 0.58, p < 0.564).

Main effect of BMI weight categories.  Responses were not  the same for all weight categories (Fig.  1B), par-
ticipants performed significantly better for Normal than Underweight and Overweight, and worse for Obese 
weight. This is confirmed by a significant main effect of BMI weight category, F(3,168) = 32.787, p < 0.001, 
ηp

2 = 0.369. Follow-up paired t-tests showed a significantly higher percent accuracy when categorizing Normal 
weight compared to other weight categories: Normal > Underweight (t = 6.478, p < 0.001), Normal > Overweight 
(t = 5.412, p < 0.001), Normal > Obese (t = 9.216, p < 0.001). There are also significant differences between Over-
weight > Obese (t = 4.994, p < 0.001) and Underweight > Obese (t = 4.695, p < 0.001). No significant difference was 
found between Underweight and Overweight (t = 0.592, p > 0.556).

Interaction between stimuli gender and stimuli weight categories.  Intriguingly, participants were more accurate 
when categorizing leaner male stimuli (underweight and normal bodies) relative to those leaner female stimuli. 
On the other hand, participants were more accurate when categorizing heavier female stimuli (Overweight and 
Obese bodies) relative to those heavier male bodies (Fig. 1C). A significant two-way interaction between stimu-
lus gender and stimulus weight category was found F(3,168) = 210.293, p < 0.001, ηp

2 = 0.790. Follow-up paired 
t-tests confirmed that significant difference between accuracy rates for female and male stimuli for each weight 
category: Underweight female < male stimuli (t = − 18.912, p < 0.001), Normal female < male stimuli (t = − 3.499, 
p < 0.001), Overweight female > male stimuli (t = 8.587, p < 0.001), Obese female > male stimuli (t = 15.732, 
p < 0.001).

Interaction between stimuli race type, stimuli weight category, and gender of participants.  We have observed 
a significant 3-way interaction between stimuli race type, stimuli weight category, and gender of the partici-
pants (Fig. 1D), F(3,336) = 230.174, p < 0.026, ηp

2 = 0.042. In general, female participants were more accurate for 
Underweight than Overweight bodies, and in particular, these female participants were significantly more accu-
rate for African American Underweight stimuli than African American Overweight stimuli (t = 2.962, p < 0.006). 
In contrast, male participants did not seem to show any difference in performance between Underweight and 
Overweight body stimuli across all Race Types.

The above findings suggested that perceptual decision of body size could be affected by many factors, and 
we have shown that gender and race type of the stimuli and the participants are critical features that should not 
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be ignored. Importantly, we are not only interested in the accuracy rates, but the type of errors participants had 
made are equally vital, as their errors can inform us the direction of the perceptual bias relative to the standard 
definition of the BMI weight category.

What kind of errors do people make?  Classification tree analysis reliably separated performance.  In 
order to capture the complex and hierarchical categorization patterns associated with correct- and mis-classifi-
cation, we have categorized participants’ responses as correct estimation (coded as 0), under-estimation (coded 
as − 1), and over-estimation (coded as + 1), which allow the use of multi-variate analysis. A classification tree, a 
data-driven machine learning approach, was adopted—an algorithm that implements recursive partitioning of 
data into subgroups, at each step of the algorithm, where the data are divided to a single explanatory variable30. 
First, we have found a significant partitioning of the four BMI categories (X2(6, N = 21,525) = 8533.95, p < 0.0001, 
correct estimation CI = [0.60, 0.62], under-estimation CI [0.22, 0.25], over-estimation CI [0.13, 0.15]), suggest-
ing that this data-driven approach can reliably parcellate responses into those expected groups. Specifically, our 
classification tree results showed that our participants did best with Normal stimuli, with 80.4% of correct re-
sponses, 14% of over-estimation responses, and 4.6% of under-estimation responses (X2(6, N = 5380) = 8533.96, 
p < 0.0001, correct estimation CI = [0.79 0.81], under-estimation CI [0.02, 0.07], over-estimation CI [0.12, 
0.17]). This was followed by 61.5% of accurate responses for Underweight stimuli, with 38.4% over-estima-
tion responses (X2(6, N = 5384) = 8533.96, p < 0.0001, correct estimation CI = [0.59, 0.63], over-estimation CI 
[0.36, 0.40]). Performance for Overweight stimuli was slightly worse than Underweight, with 59% of correct 
responses, 35.7% under-estimation, and 5% over-estimation responses (X2(6, N = 5379) = 8533.96, p < 0.0001, 

Figure 1.   Performance in terms of average percent accuracy. (A) A significant main effect of stimuli race type: 
there was a small but significant difference across stimuli race type, whereby participants performed best for the 
Green Avatar stimuli. (B) A significant main effect of stimuli weight categories was found, whereby participants 
performed best for normal stimuli and worst for obese stimuli. (C) A significant interaction of weight category 
and stimuli gender: specifically, participants were more accurate when categorizing male (hatched bars) normal 
and underweight bodies relative to the corresponding female bodies, whereas they were more accurate in 
categorizing female overweight and obese bodies relative to male bodies. (D) Illustrating a significant three-
way interaction of participants’ gender, stimuli race type and stimuli weight category. In particular, accuracy 
for underweight female African American bodies was significantly better than accuracy for overweight female 
African American bodies.
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correct estimation CI = [0.57 0.60], under-estimation CI [0.33, 0.37], over-estimation CI [0.02, 0.07]). Perfor-
mance was worse for Obese stimuli, with only 44% correct responses, but 56% of under-estimation responses 
(X2(6, N = 5382) = 8533.96, p < 0.0001, correct estimation CI = [0.46, 0.42], under-estimation CI [0.57, 0.54]). 
This pattern is of course consistent with the main effect of weight category with percent accuracy (see Fig. 2 and 
Supplemental Figure 2).

Underweight bodies: impact of the gender of the stimuli and race type of the participants.  Overall, performance 
was better for male stimuli (85% accuracy) than for female stimuli (38.2%) (X2(1, N = 2692) = 1244.26, p < 0.0001) 
(Fig. 2A). When viewing female underweight bodies, African–American participants often over-estimated the 
female body weight (70.7% over-estimate vs 29.3% correct, CI [0.67, 0.73] [0.17, 0.26]), whereas Caucasian 
participants did not exhibit such bias (52.9% over-estimate vs 47.1% correct; CI [0.49, 0.56] [0.43, 0.50]; X2(1, 

Figure 2.   Circos31 plots are used to visualize significant nodes from the decision tree analysis for each weight 
categories (A) Underweight, (B) Normal, (C) Overweight, and (D) Obese. In each circos31 plot, the right side 
shows participants’ demography (F = female, M = male, AA = African American, CA = Caucasian-American), 
the rest of the circos31 marks stimuli demography and stimuli weight category. The width of the “triangle” 
illustrates the percentage of responses from participants. The inner circle ticks mark the percentage of responses; 
participants could have made three types of responses: correct estimation (white triangles), under-estimation 
(red triangles), or over-estimation (green triangles). Also see Supplementary Table 1 for a summary table of the 
decision tree results for each BMI category.
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N = 1349) = 90.427, p < 0.0001), demonstrating a significant difference in decision-making between African–
American and Caucasian participants. In contrast, when viewing male underweight body stimuli, both Afri-
can–American and Caucasian participants performed accurately and made fewer errors of mis-categorization, 
but Caucasians performed relatively better than African–American (CA 86.8% correct vs AA 83.1%; CI [0.84, 
0.88] [0.80, 0.85]; X2(1, N = 1346) = 7.56, p < 0.0001). Our results suggested that while participants were accurate 
in categorizing male underweight bodies, African–American participants tended to over-estimate underweight 
female bodies, as they have consistently mis-categorized underweight female bodies as normal weight. Thus, this 
result showed a discrepancy between the perceptual weight boundaries and the standard BMI weight category.

Normal weight bodies: impact of the gender of the stimuli and race type of the participants.  We were also able 
to identify biases associated with gender of the body stimuli and race type of the participants (Fig. 2B). Overall 
performance for normal weight stimuli was better for male stimuli than female stimuli (F: 76.1% vs M: 84.9%; 
CI [0.74, 0.77] [0.83, 0.86]; X2(2, N = 2693) = 313.619, p < 0.0001), participants made more over-estimation 
errors for female stimuli than for male stimuli (22.3% vs 7.5%, CI [0.18, 0.25] [0.03, 0.11]). Furthermore, for 
female stimuli, Caucasians performed slightly better than African–American participants, whereby AA made 
significantly more over-estimation errors (CA: 77.30% vs AA: 74.80%; CI [0.15, 0.24] [0.19, 0.29]), whilst CA 
made more under-estimation errors than AA (CA: 2.70% vs AA: 0.60%; CI [− 0.02, 0.07] [− 0.04, 0.05]; (X2(2, 
N = 1348) = 24.382, p < 0.0001)). In contrast, for male stimuli, responses were quite accurate relative to those for 
female stimuli. AA performed better than CA (AA: 85.90% vs CA: 83.90%, CI [0.83, 0.87] [0.81, 0.86]), but AA 
made more over-estimation errors than CA (AA: 9.20% vs CA: 5.80%, CI [0.04, 0.14] [0.006, 0.10]), whereas CA 
showed more under-estimation errors than AA (CA: 10.3% vs AA: 4.8% CI [0.05, 0.15] [− 0.003, 0.10]); X2(2, 
N = 1350) = 37.49, p < 0.0001). Overall, participants consistently slightly over-estimated normal female bodies as 
overweight, whereas they were quite accurate in categorizing males in the normal weight category. Once again, 
our data have suggested there is a misalignment between the perceptual and BMI boundaries.

Overweight bodies: impact of gender of the stimuli, race of the stimuli, and gender of the participants.  Overall 
performance for Overweight stimuli was significantly better for female stimuli than for male stimuli (F: 71.50% 
vs M: 47.10%; CI [0.69, 0.73] [0.44, 0.49]), participants made more under-estimation errors for male than for 
female stimuli (M: 47% vs F: 23.70%); CI [0.45, 0.50] [0.20, 0.27]; X2(2, N = 5379) = 352.55, p < 0.0001). This 
result is consistent with the significant interaction between the gender and weight categories of stimuli reported 
earlier (see Fig. 2C), where participants were more accurate for overweight female stimuli than for overweight 
male stimuli. Intriguingly, we also observed an impact of the gender of the stimuli and the participants (Fig. 2C), 
where for male stimuli, male participants performed significantly better than female participants (M: 54.70% 
vs F 39.50%; CI [0.51, 0.58] [0.35, 0.43]), and female participants showed more under under-estimation errors 
(F: 55.80% vs M: 39.60%; CI [0.52, 0.59] [0.35, 0.43]). An impact of gender and race type of the stimuli (Fig. 3) 
was also found; our data showed that for female stimuli, participants showed higher accuracy for CA and Avatar 
stimuli than for AA stimuli (CA + AV: 72.4% vs AA: 69.6%, CI [0.17, 0.26] [0.65, 0.73]), and they made more 
under-estimation errors for AA stimuli (X2(2, N = 1792) = 12.82, p < 0.005. These results illustrate that unlike cat-
egorization of underweight and normal female bodies, where participants tended to over-estimate, an opposite 
pattern was observed for overweight male bodies, participants tended to under-estimate. Hence, the misalign-
ment between perception and BMI weight category depends on the gender of the stimuli and participants, as 
well as the race type of the stimuli.

Obese bodies: impact of gender of the stimuli, gender of the participants, and race of the participants.  Consistent 
with the accuracy results above, performance (Fig. 2D) was lowest for the Obese stimuli (44%) and there was 
also an impact of stimuli gender, where performance was better for female stimuli than male stimuli (F: 63.2% vs 
M: 24.9%; CI [0.60, 0.65] [0.21, 0.28]; (X2(1, N = 2690) = 801.23, p < 0.0001). We also observed an impact of gen-
der and race of the participants. Specifically, we found a significant difference between male and female partici-
pants, where male participants (66.90%; CI [0.63, 0.69]) showed more accurate performance for female Obese 
stimuli relative to female participants (59.50%; CI [0.56, 0.62]) (X2(1, N = 1346) = 15.587, p < 0.0001). Intrigu-
ingly, for obese male stimuli, AA participants performed worse than CA, whereby they made more under-esti-
mation errors for Obese bodies (AA: 21.10% vs CA: 28.60; CI [0.16, 0.25] [0.24, 0.33]; (X2(1, N = 1348) = 20.272, 
p < 0.0001). Similar to the performance for Overweight stimuli, participants tended to under-estimate male 
Obese bodies, but they were relatively accurate for female Obese bodies.

Participants’ BMI.  Due to the heterogeneity in BMIs among participants and small sample size, we did not test 
the impact of participants BMI group on body size discrimination performance. Nonetheless, each participant’s 
BMI was calculated (weight divided by the square of the body height), and a between-subject (participants’ 
gender and race as factors) univariate ANOVA was performed. This showed that there was a significant main 
effect of participants’ ethnicity (F(1,56) = 12.14, p < 0.001). No other effects were observed. Follow-up independ-
ent sample t-tests illustrated that there was a significant difference in BMIs between AA and CA participants 
(t = 3.51, p < 0.001), suggesting that AA participants (female: M = 28.46, SD = 4.54; male: M = 29.30, SD = 5.59) 
had significantly higher BMIs than CA participants (female: M = 24.40, SD = 3.71; male: M = 25.82, SD = 2.11). 
The average BMI within AA participants was in the Overweight category, while for CA, their BMIs were between 
the Normal and Overweight categories. Putting the above results in the context of accuracy performance, since 
no significant effects were related to the race type of the participants, it is unlikely that participants’ own BMIs 
affect accuracy performance in size estimation of others in our current experiment. As for the effects reported 
in the decision tree analysis, a couple of significant effects concerning the race type of the participants and the 



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10442  | https://doi.org/10.1038/s41598-021-89533-5

www.nature.com/scientificreports/

gender of the stimuli were found. Specifically, AA participants frequently over-estimated the female Under-
weight bodies, whilst CA participants did not exhibit such bias. Furthermore, AA participants also performed 
worse than CA in Obese male stimuli, by making more under-estimation errors. It remains unclear the extent to 
which participants’ BMIs affect body size estimation of others in our current study; our results have once again 
underscored the complex relationship between attributes from the participants and the stimuli, highlighting the 
importance of using a diverse approach in body size research.

Discussion
By providing corroborating evidence from univariate and multi-variate analyses to investigate body size percep-
tion, we are able to identify the complex relationship between gender and race types of the stimuli and of the 
participants, and the impact of these factors on body size categorization. In particular, we have revealed that 
performance (percent accuracy) for body stimuli is not uniform, whereby participants performed best for Normal 
weight and worst for Obese stimuli. We also revealed evidence of an interaction between weight category and 
gender of the stimuli; participants were more accurate for Underweight and Normal male stimuli (leaner size) 
relative to the same weight category of female bodies, but they were more accurate for overweight and obese 
female stimuli compared to male bodies of the same size.

Multi-variate decision tree analysis provided not only consistent results but has pinpointed the direction of 
estimation errors. Specifically, it revealed that while our participants were reliably making more under-estimation 
errors for Overweight and Obese male stimuli, they were quite accurate when categorizing Overweight and 
Obese female stimuli. The overall decision tree pattern (Fig. 2 and Supplemental Figure 2) suggests a strong bias 
for male stimuli where participants showed an increasing number of errors from leaner to bigger bodies, par-
ticularly under-estimation errors. Importantly, there was an expansion of Normal weight category, such that for 

Figure 3.   Categorization of Overweight Bodies. Circos31 plot illustrates the impact of gender and race type 
of the stimuli during categorization of overweight bodies. Specifically, for female stimuli, participants showed 
slightly but significantly higher accuracy rate for CA and Avatar bodies than for AA bodies, and they made more 
under-estimation errors for AA stimuli.
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male stimuli, while a high percent accuracy was found for Normal weight (Fig. 2B), there were also substantial 
under-estimating errors for identification of Overweight male bodies (Fig. 2C), where participants consistently 
mis-identified Overweight as Normal weight. Thus, it ndicated that the perceptual BMI for Normal male bodies 
is now higher than the recognized BMI. For female stimuli however, an expanded boundary for Normal size 
was found in the opposite direction. Participants have categorized Underweight as Normal (Fig. 2A) as well as 
accurately categorized Normal bodies (Fig. 2B), suggesting that the averaged perceptual BMI for ormal female 
bodies is now lower than the recognized BMI. The fact that both male and female participants shared many of the 
same biases also suggests that visual learning plays a critical role in developing these specific biases. Part of these 
results was consistent with previous findings; for example, it has been reported5,6 that participants (predominately 
Caucasian women) make more under-estimation errors when judging Caucasian Overweight or Obese male 
bodies. It is also worth highlighting that due to the diverse range of our stimuli and equal sampling across both 
gender and race of participants in the current study, we are able to capture opposite response patterns when 
judging male vs female bodies, thus, a more complex pattern than previously reported.

As mentioned earlier, prior work has primarily reported perceptual biases for own body weight that might 
associate with race or gender types, while others have reported biases when judging others’ bodies, but theyhave 
primarily focused on a particular gender, race, and/or weight category of the stimuli or participants. Our current 
study focused on assessing others’ body weight as observers, accounting for race and gender of both stimuli and 
participants. We found that perceptual errors could be associated with characteristics of the participants and 
the stimuli. For example, all participants, regardless of their race and gender, showed more under-estimating 
errors by mis-categorizing AA female overweight bodies as normal (Fig. 3). Intriguingly, (Fig. 2A) when judging 
female underweight bodies (all race types), AA participants (both genders), showed a stronger over-estimating 
bias for female underweight bodies, mis-categorizing those images as normal weight. CA participants, however, 
did not exhibit such bias.

It has been well-established in the face perception literature that people are more accurate in recognizing 
and identifying faces of their own race compared to other race groups. This discrepancy in performance is 
known as the “other-race effect”32–40. In the context of body weight perception, our current results did not show 
any other-race effect; no interaction between stimulus and participants’ race types was found in the univari-
ate analysis or multi-variate analysis. However, we identified various participant-specific race effects from the 
multi-variate results. For example, we found that AA participants were slightly better at categorizing Obese male 
bodies relative to CA participants. AA participants also over-estimated Underweight female bodies, as they 
had consistently mis-categorized Underweight female bodies as Normal size (and this effect was not present in 
CA participants). For normal male bodies, AA performed better than CA, but AA made more over-estimation 
errors than CA. Interestingly, some stimuli-specific race effects were also identified. Overall, categorization 
performance was slightly (but significantly) better for Avatar stimuli in terms of percent accuracy. Multi-variate 
analysis further revealed that during categorization of female overweight stimuli, participants showed higher 
accuracy for Avatar and CA bodies than for AA (Fig. 3). A recent study20 had used visual adaptation to study 
the after-effect following repeated exposure of Asian or Caucasian female bodies, and their results seemed to be 
consistent to our findings. They also reported a lack of “other-race effect” at the stimuli level, but they reported 
that Asian participants seemed to show a weaker adaptation effect relative to Caucasians; however, the effect was 
not specific to Asian or Caucasian stimuli.

“Own-gender biases” have also been reported in face perception literature41. People are better at recalling 
or recognizing faces of their own gender relative to faces of the opposite gender41,42. Limited work has been 
conducted regarding gender-biases in body perception. Our recent study43 investigated gaze-pattern during 
perception of upright vs inverted bodies, but observed no differences in eye-movement patterns between male 
and female participants during a same/different categorization task of male body images. Multi-variate analysis 
in the current study has identified significant differences in performance between viewing female and male body 
images. There is a stimuli- and participant-specific gender effect that is particularly prominent for Obese bod-
ies. Specifically, a marked difference was found between male and female participants, where male participants 
showed significantly higher accuracy for female Obese bodies. For male Overweight bodies, male participants 
performed better than female, while female participants showed more under-estimation errors. This suggests 
that under-estimation bias for Overweight male bodies was primarily driven by female participants. A stimuli-
specific gender effect was also observed whereby, consistent with the univariate analysis, participants performed 
more accurately for Underweight male bodies than female Underweight bodies. Overall performance for Normal 
weight images was also better for male than female bodies. For Obese bodies, performance was better for female 
bodies, and there were also more under-estimation errors for male Obese bodies. These findings demonstrated 
that, by increasing the diversity in the stimuli and participants tested and by adopting a multi-variate approach, 
a more complex categorization pattern can be revealed. Furthermore, our observations of behavioural biases 
for higher BMI male stimuli and for lower BMI female stimuli seem to be consistent with the idea that partial 
overlapping or multiple gender-specific neural mechanisms may be at play during body size perception24,25.

Two major theories have been adopted to elucidate perceptual weight biases: the Weber’s law and contrac-
tion bias12,13,44. Specifically, the Weber’s law would predict that since detection of change of one’s body size is 
in constant proportion with one’s own weight, it is more diffcult to notice the change when one is overweight/
obese. Alternatively, contradiction bias predicts that one’s perceived own BMI is inversely correlated with their 
own actual BMI. It has been reported that such correlation was only found during size estimation of partici-
pants’ own avatar, but did not generalize to estimating others’ body size12. While these theories may be helpful 
for explaining error in estimating one’s own weight, it is rather difficult to apply them to explain errors/biases 
during identification of others’ weight, especially when there are a lot more variables (race, gender, body weight, 
etc.) when dealing with “other bodies”. As we have shown here, estimation accuracies and errors interact with 
the type of stimuli presented in the experiment, thus illustrating that with increasing diversity in the stimuli, it 
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might not be possible to show an “one-to-one mapping” using the above theories, as estimation decisions might 
be more complex than previously thought. While it is important to recognize that people have different body 
sizes, shapes, and other physical characteristics19, and that even BMI cut-off points may not capture variations 
in physiological measurements across cultures45, our current approach aims demonstrated that it is possible 
to capture and quantify some of the multi-dimensional visual characteristics, and it is critical that future work 
should also harness similar approaches.

Our findings here certainly do not attempt to capture categorization patterns for all types of bodies, and 
despite the constraints in our well-controlled paradigm (in real life, people with the same BMI may have differ-
ent body shapes, and we see bodies from many different viewpoints other than straight-on), we have taken an 
important first step to quantify complex patterns in body weight perception. Finally, we believe that providing a 
careful characterization of perceptual biases in body weight here may lead to better diagnostic decision-making 
and development of personalized intervention programmes in both clinical and non-clinical settings.

Materials, methods and procedures
Participants.  Sixty participants were recruited for this study (age 20–44). Specifically, four groups of par-
ticipants were tested, 15 participants per group with equal numbers of female and male participants, equal num-
bers of participants who had identified themselves as African American and Caucasian American. The current 
protocol was approved by the Institutional Review Board of the University of Tennessee Health Science Center 
(Protocol no. #15-03683-XP). The current research had been performed in accordance with the Declaration of 
Helsinki. All participants gave written informed consent and were compensated for their participation.

Design and materials.  A psychophysical experiment (visual body categorization) was carefully designed 
to study the effects of demographic features by presenting 120 body stimuli × 3 runs, resulting in a total of 360 
body stimuli viewed by each participant , with each run lasting for approximately 10 min. This experiment was 
a rich presentation paradigm consisting of 24 conditions, a 2 × 3 × 4 within-subject factorial design. This was 
comprised of 2 Gender body stimuli (male, female), 3 Race of body stimuli (African–American/AA, Cauca-
sian American/CA, Green Avatar as a control race), and 4 types of BMI weight categories of the body stimuli 
(Underweight, Normal, Overweight, Obese; see Fig. 1). Each condition consisted of 5 computer-generated indi-
vidual identities (see Fig. 4A). These stimuli were computer-generated images, polygon meshes (Dyna Models) 
created by Pons-Moll and colleagues46 using 4D cameras to capture images of actors with a range of BMI (from 
underweight to obese). These meshes were exported to Poser Pro (Smith Micro Software 2014), where they were 
then customized in order to generate additional race types and identities within each BMI category. We then 
performed width transformation in Poser Pro by 0%, ± 5% or ± 10%. Also see Supplementary Figure 1 for body 
stimuli weight categories and the standard BMI boundaries.

The experiment was presented to the participants on a computer screen, one stimulus at a time. This was an 
event-related design, where stimuli and position of the stimuli were randomized using Optseq247, and the posi-
tion of each image was slightly jittered from the center of the screen to minimize estimation using low-level visual 
differences between images. Participants were asked to estimate if the body is underweight, normal, overweight, 
or obese by pressing the corresponding key. Both accuracy and error rates were measured (Fig. 4B).

Analysis.  Accuracy.  We measured the correct responses and calculated percent accuracy for each condi-
tion and for each participant. Percent accuracy was then submitted to a repeated measures factorial ANOVA, 
with the Stimulus Gender (Female, Male), Stimulus Race Types (African American, Caucasian American, Green 
Avatar), and Stimulus Weight Categories (Underweight, Normal, Overweight, Obese) as within-subject factors, 
and Participant Genders (Female, Male) and Participant Race Types (African American, Caucasian American) 
as between-subject factors.

Participants’ BMI.  Each participant’s weight and height were recorded and their BMI values were subsequently 
calculated within each group.

Classification tree analysis.  To gauge the decision-making patterns, we had not only measured the accuracy 
rates (correct-estimation) but also the direction of biases (under-estimation, over-estimation of the weight cat-
egories). Again, we had categorized participants’ responses as correct estimation (coded as 0), under-estimation 
(coded as − 1), and over-estimation (coded as + 1) for this analysis. To expose the specific observant and stimuli 
profiles leading to correct classification, under-estimation, or over-estimation, we implemented a classification 
tree analysis using a Chi-Squared Automatic Interaction Detector (CHAID) algorithm. The CHAID algorithm 
splits parent nodes into children nodes using the predictor yielding the minimum p-value by chi-squared test 
that is lower than the splitting criteria (0.05 in our case). CHAID uses Bonferroni-adjusted p-values since the 
selection of the predictor with the smallest p-value is a multiple testing task. The algorithm is terminated when 
there is no Bonferroni-adjusted p-value lower than the determined significance level. In addition, we also set 
the minimum size of parent nodes to 50, the minimum size of children nodes to 25, and maximum depth (max 
number of splits) to 3 30. As a non-parametric classification method, the main concern about classification trees 
is over-fitting, leading to a lack of generalizability of the model. To control overfitting, we implemented fivefold 
cross-validation. In fivefold cross-validation, the cohort was divided into five equal-size subgroups. Next, a tree 
was developed through a combination of 4 subgroups (comprising 80% of the original sample) and tested on the 
remaining one subgroup (20%). The associated risk for each case in the test data was calculated for each of the 5 
subgroups; the average of the risk across the 5 test samples were presented as the cross-validation risk. Smaller 
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values of cross-validation risk indicate that the produced classification model is generalizable. The final tree 
represented was the one built on the full cohort.

Ethical approval.  This study was approved by University of Tennessee Health Science Center Institutional 
Review Board. Protocol no. #15-03683-XP.

 Data availability
Datasets reported in the manuscript will be shared via the Brunel University London research repository—Fig-
share, reserved https://​doi.​org/​10.​17633/​rd.​brunel.​11791​461.
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