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Abstract: Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-
glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an es-
tablished function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII
manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A
gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a
homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack
of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from
cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation:
plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form
encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in
different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme
in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different
settings and the evidence to date to support their function in haemostasis and wound healing.

Keywords: Factor XIII-A; transglutaminase; cross-linking; cellular FXIII-A; haemostasis; wound
healing

1. Background

FXIII belongs to the transglutaminase family of enzymes which is named according to
its crucial role in blood coagulation. FXIII is a zymogen that must be activated to reveal its
transglutaminase function [1]. Plasma FXIII (pFXIII) circulates as a heterotetramer, termed
FXIII-A2B2, which is comprised of two catalytic A subunits and two carrier B subunits
which envelope the catalytic subunits [2,3]. pFXIII circulates at an average concentration
of 68 nM [4]. The A subunits in plasma exist only in complex with the carrier B subunits,
while an excess (43–62 nM) of B homodimers is evident in the circulation [4,5]. pFXIII is
largely found in a non-covalent complex with one of its dominant substrates, fibrinogen
(KD = ~10 nM) [6]. Thrombin cleaves the Arg37-Gly38 peptide bond in the activation pep-
tide (AP-FXIII) which flank the amino terminus of the A2 subunits thereby destabilising the
complex (Figure 1A). Subsequent binding of Ca2+ promotes dissociation of the inhibitory
FXIII-B2 subunits to release a functional transglutaminase enzyme, FXIII-A2*. Other serine
proteases, such as the endogenous platelet acid protease [7] and calpain [8] can also re-
portedly activate FXIII. Fibrin acts a s a cofactor in activation of FXIII by forming a tertiary
complex with thrombin and FXIII thereby promoting cleavage [6,9–12]. Once activated
FXIII (FXIIIa) elicits transamidase activity that introduces ε-(γ-glutamyl)lysyl isopeptide
cross-links into protein substrates. Crosslinks can form within a single substrate, such as
fibrin, or between different proteins which can impact on their biological function [13].
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Figure 1. Mechanisms of FXIII activation. (A) Thrombin- and Ca2+-driven cleavage of FXIIIA2B2.
(B) Non-proteolytic activation of cellular FXIII-A by low Ca2+. The green and purple cylinders
represent β-barrel and β-sandwich domains of FXIII-A subunit, respectively. The core domains in
FXIII-A subunit are shown in orange and the activation peptides are shown in red. The inhibitory B
subunits are shown in grey. Adapted from the work in [1].

The cellular form of FXIII is a homodimer of the A subunits, termed FXIII-A through-
out this review [14]. Cellular FXIII-A is non-proteolytically activated to FXIII-A* by modest
increases in intracellular Ca2+ concentrations (Figure 1B) [15,16]. FXIII-A exists in cells of
bone marrow and mesenchymal lineage, notably platelets [17–19], megakaryocytes [20]
monocytes [21,22], circulating [21,23] and tissue macrophages [23], dendritic cells [24],
chondrocytes [25–27], osteoblasts [28] and preadipocytes [29]. Regulation of FXIII-A* is a
complex area. It is clear that the regulatory “B” subunits function to attenuate FXIIIA2B2 in
plasma and stabilise the complex in this milieu [30]. However, once activated, the story is
more complex. Elegant studies have delineated a role for plasmin regulation of FXIIIa [31],
but the FXIIIA2B2 complex is protected against degradation. There is also a suggested role
of thrombin [32] and proteolytic enzymes secreted from granulocytes [33] in regulation
of FXIII* function. The focus of this review will be on the localization and function of
the FXIII-A subunit and examine its crucial function in regulation of haemostasis and
wound healing.

2. Structural Considerations

Identification and cloning of the F13A1 and F13B genes led to recombinant expression
of the FXIIIA2 and FXIIIB2 subunits [34]. This led to a description of the zymogenic form of
the A2 homodimer [35,36] and subsequently a Ca2+ activated and inhibitor stabilized FXIIII-
A subunit [37]. The structure of the plasma and cellular forms is identical, which provided
an early clue that the plasma pool of FXIII-A was of haematopoietic origin. FXIII-A (Figure 2;
83 kDa) is comprised of several domains including the activation peptide (AP-FXIII (1–37),
β-sandwich domain (38–184), the catalytic core domain (185–515), β-barrel-1 domain



Int. J. Mol. Sci. 2021, 22, 3055 3 of 21

(516–628) and β-barrel-2 domain (629–731) [38]. The catalytic core domain is largely
comprised of helical structures; however, the rest of the domains contain β-sheets with
limited helical elements [38] (Figure 2). The catalytic cores of two FXIII-A subunits align
to form the FXIII-A2 dimer which is encased by the six β-sheet domains [39]. The active
site cysteine residue (Cys314) is completely encased by the AP-FXIII, to impede interaction
with target substrates [35]. Dissociation of AP-FXIII promotes structural rearrangement of
the catalytic triad (Cys314; His373; Asp396) to allow docking of substrate to the active site.
There is also a single Ca2+ binding site per FXIII-A subunit that is crucial for activation of
the transglutaminase [40,41].

Figure 2. Structure of FXIII-A zymogenic homodimer. The structure of FXIII-A homodimer is
composed of four major domains: catalytic core domain (orange), β-sandwich domain (blue), β-
barrel-1 domain (red) and the β-barrel-2 domain (purple); alpha helices strands (pale yellow); and
the activation peptide (AP) (green).

FXIIIa uses a double displacement mechanism for cross-linking proteins. In the initial
stage, Cys314 attacks the glutamine γ-carboxyamide group of a glutamine acceptor protein,
displacing an ammonia molecule to form a thioester intermediate. In the second stage,
the reactive thioester intermediate is attacked by the lysine ε-amino group of the amine
donor protein, thereby displacing Cys314 and generating an isopeptide bond between
the two substrate proteins and the concomitant release of FXIIIa [42]. In the absence of
lysine residues, water reacts with the thioester intermediate converting glutamine into
glutamic acid [42]. Glutamine sites that participate in FXIIIa-catalysed reactions have been
identified through incorporation of primary amines, such as dansylcadaverine [43–47] and
5-(biotinamido)pentylamine [48,49]. Alternatively, labelled synthetic peptides have been
designed to incorporate into the lysine residues of FXIIIa substrates [44]. In several cases,
reactive glutamine and lysine residues have been characterised by mass spectrometry and
Edman sequencing analysis [48–50].
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3. Pools of FXIII-A within the Vasculature

The presence of the FXIII-A subunit in plasma has posed a conundrum: (i) it is not
released from hepatocytes alongside its regulatory subunit FXIII-B, (ii) the concentration of
FXIII-A is relatively high within the circulation and (iii) it lacks an identifiable endoplasmic
reticulum signal sequence beseeching the question of how it can be released within the
plasma environment. The most abundant source of FXIII-A is within the cytoplasm of
cells of bone marrow and mesenchymal lineage. Bone marrow transplantation studies in
humans implicated platelets, macrophages and unidentified circulatory haematopoietic
cells as the source of plasma FXIII-A [51–54]. Cordell et al. [55] demonstrated that platelets
were not the source of plasma FXIII-A, as thrombocytopenic mice exhibit normal levels of
plasma FXIII-A [55]. Elegant studies from the same group used a complex series of lineage
specific Cre mice to demonstrate that resident macrophages maintain plasma FXIII-A and
excluded the megakaryocytic lineage as a major contributor. Externalisation of the closely
related family member transglutaminase 2 has been shown on the surface of macrophages,
but FXIII-A was not evident [56]. The enigma of how FXIII-A is released from these
cells remains; nonetheless, current evidence underscores the importance of tissue specific
macrophages in the release of this key protein to the blood stream.

3.1. Platelet-Derived FXIII-A

Platelet FXIII-A is synthesised in the precursor megakaryocyte cell during throm-
bopoiesis and packed during pro-platelet production. Unlike the majority of platelet-
derived coagulation factors, FXIII-A is not deposited within the α-granules but is instead
found in cytoplasm, most likely due to the lack of ER signal to direct it to the gran-
ule cargo. FXIII-A is an abundant protein within the cytoplasm, with levels as high as
60 ± 10 fg/platelet, accounting for approximately 3% of total protein [57]. Platelets there-
fore harbour approximately150-fold higher concentrations of FXIII-A than plasma, thereby
insinuating this pool may be important in certain physiological functions [58]. Importantly,
the Muszbek laboratory revealed that platelet FXIII-A can be activated within the cytoplasm
following elevation of intracellular Ca2+ during platelet activation [16]. This thrombin-
independent process occurs without concomitant release of the activation peptide [16]
(Figure 1). Endocytosis of pFXIII into platelet α-granules during their circulation has been
reported [59–61], but negligible amounts are detectable within the platelet releasate [62–64].
In line with these observations, FXIII-A levels are normal in platelets derived from patients
with Grey Platelet Syndrome [65] and levels are unchanged in thrombocytopenic mice [55].

The absence of FXIII-A in the secretome of platelets led to the assumption that this
pool did not contribute to haemostasis [66]. Our laboratory has revealed that FXIII-A
is translocated from the cytoplasm to the outer leaflet of the membrane in stimulated
platelets [64]. This pool of FXIII-A, while adhered to the membrane, is functional in
conferring resistance against fibrinolytic degradation via the cross-linking of α2-antiplamin
(α2AP) to fibrin [64]. The localisation of FXIII-A on the surface of phosphatidylserine-
positive (PS-positive) platelets or procoagulant platelets occurs in the platelet “cap” or
platelet body (Figure 3) [64]. These procoagulant platelets, as their name indicates, support
assembly of coagulation factors which promote thrombin generation and subsequent
fibrin formation [67]. Indeed, many other coagulation factors including factor Va, factor
VIII, factor IXa, factor X/Xa, and prothrombin are concentrated within the “cap” region
alongside FXIII-A [68]. The primary substrate of FXIII-A, fibrin(ogen), and other substrates
including thrombospondin [69,70], and factor Va [43] are also abundant within the “cap”
region of procoagulant platelets [71,72]. It has been suggested that fibrin and the integrin
αIIbβ3 are critical for FXIII-A binding to the “cap” [68,73]. This localises FXIII-A in a prime
location in which to promote crosslinking of fibrin and substrates into the fibrin matrix.
However, αIIbβ3 is proposed to be inactive on procoagulant platelets, due to high Ca2+

and calpain levels [74]. The “cap” region of procoagulant platelets has been proposed as
a point of attachment to aggregates and the forming clot [68]. Cross-linking of adhesive
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proteins, fibrin and thrombospondin in the “cap” could be a vital element in consolidating
the attachment of procoagulant platelets under shear stress.

Figure 3. Localisation of FXIII-A in platelet subpopulations. Within resting platelets, Ca2+ ions and cellular FXIII-A reside
within the cytoplasm. Following weak stimulation, with agonists such as ADP, PS-negative platelets expose FXIII-A on the
external membrane. The integrin αIIbβ3 is exposed in this subpopulation of platelets. Stimulation with dual agonists, such
as thrombin and collagen, generate procoagulant platelets which expose FXIII-A within the phosphatidylserine (PS)-rich
cap. In this subpopulation αIIbβ3 is inactive [70]. The cap is also rich in other coagulation factors, such as factor X, factor IX
and prothrombin, and substrates for FXIII-A including fibrinogen, thrombospondin and factor Va [64].

PS-negative, spread platelets, also expose FXIII-A where it is diffusely localised across
the membrane (Figure 3) [64]. The discrete role played by these platelets in thrombus
initiation, propagation and in particular the expression of the active integrin αIIbβ3 and
binding of fibrinogen most likely account for this differential staining pattern of FXIII-A.
Of interest to consider is the difference in intracellular Ca2+ spikes associated with these
platelet subpopulations following stimulation. Procoagulant platelets undergo a massive
increase in cytosolic Ca2+ [68,75,76], with a recent report suggesting it is around 100-fold
higher than spread, PS-negative platelets [77]. It is therefore feasible that the activity of
FXIII-A on the surface of different subpopulations of platelets is hugely different and
requires further investigation.

Clot retraction is platelet-mediated process that serves to constrain clot volume [78,79],
thereby reducing blood loss [80] and permitting blood flow past otherwise obstructive
thrombi [81]. The integrin αIIbβ3 acts as a molecular bridge between extracellular fib-
rinogen and the intracellular actin cytoskeleton via sphingomyelin-rich lipid rafts [82].
The cytoskeleton interacts with the α3 subunit tails via the adapter proteins talin and vin-
culin [83]. During clot retraction, fibrin bound to αIIbβ3 triggers outside-in signalling [84],
resulting in the contraction of the actin cytoskeleton. FXIIIA2B2 contributes to the strength
and rigidity of the condensed clot by cross-linking fibrin, and enhancing platelet spread-
ing [85]. Conflicting evidence exists on the effects of platelet FXIII-A on clot retraction. Early
reports found that clot retraction was normal in FXIII-deficient patients [86–88]. However,
Kasahara et al. [82,89] demonstrated that clot retraction was significantly impaired in the
absence of platelet FXIII-A transglutaminase activity in platelet-rich plasma from FXIII-A
knockout mice [82,89]. Nevertheless, platelet FXIII-A has been shown not to contribute
to retention of red blood cells [90]. It is apparent that further studies are required into
the role of platelet FXIII-A in clot retraction in vivo. In procoagulant platelets, FXIII-A
and calpain act in concert to downregulate integrin αIIbβ3 adhesive function, thereby
limiting platelet recruitment in to the forming aggregate [91]. This FXIII-A-dependent
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mechanism attenuates thrombus size and may be important in preventing haemostatic
clots from becoming obstructive in the vasculature.

3.2. Monocyte/Macrophage-Derived FXIII-A

FXIII-A is expressed on the cell surface of monocytes and macrophages [92] in
response to stimulation with certain immune modulators, which is akin to the situa-
tion in platelets [64]. Indeed, monocytes isolated from patients with a congenital de-
ficiency in F13A1 show a lack of FXIII-A and transglutaminase activity [93]. Within
monocytes/macrophages, FXIII-A is localised to the cytoplasm but several studies have
indicated it can be shuttled to the surface [94–96], and it is secreted by dendritic cells into
the culture medium [97]. Secretion by an alternative secretory pathway has been proposed
given the lack of ER signal in the FXIII-A protein [98]. Translocation of FXIII-A to the
nucleus of differentiating human macrophages has been reported but the exact function of
this transglutaminase enzyme in this locale is unclear [99].

The expression of FXIII-A in macrophages is dynamic in nature and is modulated in
response to external stimuli and the phenotype of the activated macrophage. Macrophages
can be “alternatively” or “classically” activated depending on the activating stimulus.
“Classically activated”, or M1, macrophages are generated in response to stimulation
with the immune mediators, interferon-γ, lipopolysaccharide or tumour necrosis fac-
tor [100]. These proinflammatory “type 1” macrophages [101] tend to exhibit down-
regulation of FXIII-A [102,103]. “Alternatively activated”, or M2 macrophages, are stim-
ulated in response to anti-inflammatory mediators, such as interleukin-4 and -13 [101].
M2 macrophages are reported to function in matrix remodelling, wound healing, allergy
and parasite killing [100] and it is this subtype of macrophages that reveal upregulation
of FXIII-A [103–105]. The selective expression of FXIII-A in M2 macrophages is in line
with the capacity of this transglutaminase to act as an anti-inflammatory and pro-wound
healing molecule.

Phagocytosis is the active ingestion and breakdown of microbes or other foreign
particles by cells such as monocytes and macrophages. Phagocytic processes are driven by
a finely controlled rearrangement of the actin cytoskeleton [106]. Considering the key role
of FXIII-A in regulating cytoskeletal proteins, it is perhaps not surprising that it is directly
linked to this process [107–109]. Studies have indicated that FXIII-A activity may play
a role in increasing phagocytosis in monocytes and macrophages [110]. Phagocytosis is
positively correlated with FXIII-A expression in myelomonocytic cells [111]. In accordance
with this, Fcγ and complement receptor-mediated phagocytosis is impaired in monocytes
and macrophages following inhibition of FXIII-A in FXIII-A-deficient mice [110]. Similarly,
phagocytosis is significantly attenuated in monocytes isolated from FXIII-A deficient pa-
tients [110]. FXIII-A is upregulated during monocyte-derived dendritic cell differentiation
and supports migration of mature cells [112]. The role of monocyte/macrophage FXIII-A in
haemostasis has not been widely explored; however, these cells can promote cross-linking
of fibrin [92,95], suggesting a potential role in thrombus stabilisation. Interestingly, throm-
bin treatment of monocytes does not augment exposure of FXIII-A [92], suggesting these
cells may contribute to haemostasis in a situation where there is also an increase in the
type 2 immune response, for example, in a wound healing capacity. Together, these data
implicate FXIII-A in the phagocytic and/or migration capacity of these cells suggesting an
important function of this pool of FXIII-A in innate immunity, inflammation and wound
healing. However, there are many unaddressed questions in relation to the externalisation
of FXIII-A on these cells. The dominant bleeding phenotype in congenital FXIII-A defi-
ciency has perhaps masked the auxiliary roles of this transglutaminase in innate immunity,
inflammation and wound healing. Nonetheless, it is apparent that there is an association
with depleted levels of circulatory FXIII-A and delayed wound healing in different settings,
such as venous leg ulcers, and in chronic inflammatory conditions, including inflammatory
bowel disease [113–115].
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4. FXIII Deficiency and Associated Complications
4.1. Congenital Deficiency

Congenital FXIII deficiency is a rare haemorrhagic disorder with an estimated preva-
lence of one per two million [116]. Umbilical stump bleeding in infants within the first
few days of life is emblematic and frequently leads to a positive diagnosis. Patients also
exhibit soft tissue haematoma, recurrent miscarriage and prolonged wound healing and
most acutely intracranial bleeding [3]. Diagnosis of FXIII deficiency is challenging as
routine coagulation tests, such as prothrombin time (PT), activated partial thromboplas-
tin time (APTT), thrombin time (TT) and platelet count, are normal [117]. Laboratory
tests employed to diagnose FXIII deficiency include clot solubility assays; quantitative
FXIIIa activity assays; ELISA for the A and B subunits and A2B2 complex; and genetic
testing [117–119]. More recently, a whole blood clot retraction assay has been reported to
be valuable in diagnosis of FXIII deficiency and monitoring of treatment [120]. The Interna-
tional Society on Thrombosis and Haemostasis Scientific and Standardization Committee
on Fibrinogen and Factor XIII recommended an algorithm to guide laboratory diagnosis of
FXIII deficiency and classify the form of the disease [121]. Challenges remain in that many
of these specialised tests are not universally available.

FXIII deficiency is classified into three groups: type I FXIII-A subunit deficiency, type
II FXIII-A subunit deficiency and FXIII-B subunit deficiency [118]. Type I is a quantitative
defect resulting from decreased synthesis of the protein, whereas type II deficiency is asso-
ciated with normal levels of FXIII that is functionally deficient. FXIII-B subunit deficiency
is exceptionally rare and is associated with a milder bleeding phenotype [3]. The milder
penetrance of B subunit deficiency is perhaps not surprising given the fact that the active
A subunits still circulate, albeit at a reduced half-life, due to the absence of the inhibitor
subunits [122]. Over 70 causative mutations have been described in the FXIII-A gene, while
only five have been reported in the FXIII-B gene [118].

Congenital FXIII-A deficiency is associated with spontaneous miscarriage within the
first trimester [123]. Similarly, homozygous FXIII-A knockout mice die due to massive
uterine bleeding events at approximately 10 days of gestation [124]. FXIII-A is located in
the histocytes of the uterus [125], in tissue macrophages and in the placenta [126], and
enhances the formation of cytotrophoblastic shell and the cross-linking of Nitabuch’s
fibrinoid layers [127]. It is found to directly co-localise with fibrinogen and fibronectin
at the Nichbuch layer and is likely to have a protective function by downregulating
fibrinolysis within this region. Insufficient development of the cytotrophoblastic shell and
Nitabuch’s fibrinoid layers leads to placental abruption and foetal loss [128]. Macrophages
manifest in the Nitabuch’s layer and surrounding implantation tissue, suggesting FXIII-A
in this region is of cellular origin. Nevertheless, supplementation of plasma with FXIII-A
concentrate to trough levels of around 10% is sufficient to permit successful full-term
pregnancy [3,123,129]. This poses a conundrum as to the origin of FXIII-A in the placental
tissue considering the FXIII-B subunit is absent.

4.2. Pregnancy Complications

During normal pregnancy, levels of many coagulation factors, including fibrinogen
and coagulation factors VII, VIII, IX and X, steadily increase [130]. Interestingly, the same
is true of the FXIII-B subunit while the levels of FXIII-A, and accordingly the tetrameric
complex FXIIIA2B2, decrease to approximately 50% during gestation [131–133]. Recurrent
pregnancy loss is only associated with deficiencies in fibrinogen or FXIII, reflecting the
key contribution of these coagulation factors in stabilization of the placenta [116]. There
are limited studies analysing the perturbation of FXIII-A in recurrent pregnancy loss with
individuals that are otherwise competent for FXIII-A [134,135]. Neither of these studies
were able to establish a direct link between consecutive miscarriage and reduced levels of
FXIII-A. It is feasible that mild depletion of FXIII-A in plasma is not sufficient to induce
complications in placental development, or that other circulatory pools of FXIII-A can
compensate. Indeed, the source of FXIII-A in the placenta is unclear. Clearly there is
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many unanswered questions pertaining to the role and origin of FXIII-A in pregnancy
and whether disruptions to these circulatory pools could explain recurrent spontaneous
miscarriage in individuals who do not harbour a FXIII-A deficiency.

4.3. Acquired FXIII Deficiency

Acquired FXIII deficiency is a rare condition in which circulating levels of FXIII can
drop to 20–70% of normal due to decreased synthesis or increased consumption of FXIII
in different disease states [136]. This can be due to conditions such as disseminated in-
travascular coagulation (DIC), sepsis, pulmonary embolism, stroke, liver cirrhosis, Crohn’s
disease and ulcerative colitis or due to major surgery and trauma [121]. Alternatively,
autoantibodies which prevent activation of FXIII, impair binding of FXIII to its substrate
and cofactor fibrin, or attenuate the half-life of FXIII in plasma may develop [137]. Several
cases relate to patients with systemic lupus erythematosus [138]. The most common clinical
feature of acquired FXIII deficiency is haemorrhage in soft tissue. Decreased synthesis of
FXIII can be observed in patients undergoing chemotherapy [53] and with chronic liver
failure [139]. In a case of acquired FXIII deficiency, decreased thrombus stability was
associated with defective crosslinking of α2AP [64].

5. The Indispensable Role of FXIII-A Haemostasis and Wound Healing

Proteomic approaches have identified over 147 potential substrates for FXIIIa in
plasma [140]. The identified substrates are involved in processes such as haemostasis,
complement, extracellular matrix organisation and inflammatory and immune response
thereby illustrating the diverse and crucial function of FXIII-A in normal physiology. Of
these substrates 48 were cross-linked into the forming fibrin matrix during formation
thereby localising them at the site of injury and subsequent wound healing. Historically,
it was viewed that as little as 5% FXIII is sufficient for crosslinking function of FXIII;
however, this assumption was largely based on coagulation assays. Our own work on the
antifibrinolytic function of FXIII reveal that replenishment to around 50% of circulating
levels is necessary for normal haemostasis [141,142].

5.1. FXIII in Haemostasis

The role of plasma FXIII-A in haemostasis is well-established; it confers mechan-
ical stability to thrombi by cross-linking the α- and γ-chains of fibrin, and provides
protection against fibrinolytic breakdown by cross-linking fibrinolytic inhibitors to fib-
rin [44,45,143]. Cross-linking of fibrin reduces the association rate of plasmin for fibrin
more than 6-fold [144]. In addition, multiple lysine residues within the C-terminal domain
of fibrin act as a substrate for FXIIIa [145]. Cross-linking within these areas has the potential
to mitigate binding of plasminogen and tPA to the fibrin network, thereby downregulating
fibrinolysis. Another proposed mechanism by which FXIIIa confers resistance to fibri-
nolytic degradation is by compacting the fibrin fibre diameter and increasing fibre density
in the clot [146]. Clots comprised of thinner fibres with smaller pores have previously been
shown to show enhanced resistance to fibrinolysis [147], which can be ascribed to reduced
solute access and to a reduction in binding of tPA [141,148,149].

Our laboratory illustrated that flow or shear stress is necessary to visualize the impact
of FXIII-A on fibrinolysis in a plasma environment [150]. Several fibrinolytic inhibitors
can be cross-linked into the forming clot including α2AP [151], thrombin-activatable fib-
rinolysis inhibitor (TAFI) [44] and plasminogen activator inhibitor-2 (PAI-2) [152]. The
principal inhibitor of plasmin, α2AP, is synthesized in the liver and secreted as methionine
(Met1-α2AP). In plasma, the N-terminal 12 amino acid residues are rapidly cleaved by
an antiplasmin cleaving enzyme (APCE) [153] transforming it to Asn1-α2AP [154]. Only
the Asn1-α2-PI isoform is a good substrate for FXIIIa [155]. Our laboratory has shown
that the dominant antifibrinolytic action of FXIIIa is mediated exclusively by cross-linking
α2AP to fibrin [142] with negligible contribution of the other inhibitors. Rijken and col-
leagues subsequently reported that compaction or retraction of fibrin clots reveals the
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strong antifibrinolytic effect of FXIII-A [156]. The authors also confirm our observations
that cross-linking of α2AP is required for the antifibrinolytic effect of FXIII to be visualised
rather than by fibrin–fibrin cross-links [156]. It is likely that the dominant effect of FXIIIa on
fibrinolysis is mediated via α2AP with cross-linking of fibres playing a minor contribution.

Platelet FXIII-A was previously shown to stabilise clots, by inducing the formation
of high molecular weight γ-dimer and α-polymer [157–161] and cross-linking α2AP to
fibrin [157,160]. The conundrum is that FXIII-A is not found within the secretome of
platelets. We have shown that strong agonist stimulation of platelets induces translocation
of FXIII-A from the cytoplasm to the platelet membrane where it is actively retained
and can participate in extracellular cross-linking reactions [64]. The intensity of FXIII-A
staining on the surface of activated platelets increases as a function of time, particularly
in those platelets directly associated with collagen fibres. Our work clearly highlights a
role for externalised platelet FXIII-A in stabilizing thrombi via cross-linking of α2AP to
fibrin [64]. Intriguingly, plasma FXIII-A, but not platelet FXIII-A, aids the retention of red
blood cells in clots via fibrin α-chain cross-linking which has a direct impact on the overall
size of clots [90,162,163]. The relative contribution of plasma FXIIIA2B2 versus platelet-
derived FXIII-A to thrombus stability requires clarification, but it is unlikely to be uniform
throughout the thrombus, with the balance tipping toward FXIII-A in platelet-rich areas
of the haemostatic plug, where solute transport of the large plasma FXIIIA2B2 tetramer
is low. Together with the fact that levels of FXIII-A are around 150-fold higher in the
platelet cytoplasm, this advocates a role for these anucleate cells in thrombus stabilisation
in certain environments.

5.2. FXIII in Wound Healing

Normal wound healing occurs in response to a haemostatic challenge or necrosis with
infection [164] and involves formation of a provisional matrix which is the basis for invasion
of cells involved in tissue regeneration. Impaired wound healing occurs in around 15–30%
of FXIII-deficient patients [122,165,166]. Elegant studies with FXIII-A-deficient mice show
prolonged healing of excisional wounds and delayed tissue repair which could be rectified
by infusion of FXIII concentrate in the mice [167]. A rat model of experimental colitis
showed a significant improvement of existing and established lesion severity following
intravenous infusion of recombinant FXIII-A [168]. These lines of evidence highlight the
crucial function of this transglutaminase in wound healing and remodelling.

The contribution of FXIII-A to wound healing and tissue repair is pleiotropic (as
reviewed in [137,169]) and commences with its crucial function in the haemostatic cascade
in terms of platelet adhesion to the sub-endothelium, which is mediated by the integrins
αIIbβ3 and αvβ3 on the platelet surface, but occurs in a transglutaminase independent
manner [170] (Figure 4). It subsequently stabilises the forming fibrin matrix and consoli-
dates the clot by participating in clot retraction. Consequently, FXIII-A reduces vascular
permeability at the wound and traps invading pathogens by crosslinking them to the pro-
visional matrix. Finally, it promotes repair by supporting cellular invasion and stimulates
angiogenic signalling. The many substrates of FXIIIa include adhesive, extracellular matrix
proteins, such as fibronectin, vitronectin, thrombospondin, collagen and von Willebrand
factor, which are cross-linked into the clot [169] and enhance cell migration and attach-
ment [171]. Indeed, early studies showed that cross-linking of fibronectin into the fibrin clot
via FXIII-A enhances fibroblast adherence and migration [172]. FXIII-A binds to endothelial
cells via the integrin αVβ3 enhancing platelet adhesion at the site of injury [173]. Binding
occurs via a tripeptide motif Leu-Asp-Val in FXIII-A independent of transglutaminase
activity thereby permitting ongoing cross-linking of proteins involved in repair to occur in
a localised manner [170].
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Figure 4. The roles of Factor XIII in wound healing. During injury, FXIII-A enhances platelet ad-
hesion to the injured endothelium through an integrin-dependent mechanism. Activated FXIII
(FXIIIa) mediates the cross-linking of fibrin and promotes clot retraction. FXIII-A enhances inva-
sion of monocytes/macrophages and phagocytosis of cell debris and pathogens. FXIII-A promotes
crosslinking of extracellular matrix (ECM) and reduces vascular permeability. FXIIIa binds αvβ3 and
promotes cross-linking to vascular endothelial growth factor receptor-2 (VEGFR-2) and downregu-
lates thrombospondin-1 (TSP-1). Adapted from the work in [133].

Macrophages are key to tissue repair and play essential roles in removal of cell
debris, invading organisms, neutrophils and other apoptotic cells from the injured site.
FXIII-A participates in phagocytic processes including Fcγ and complement-induced
uptake of sensitized erythrocytes and complement-coated yeast particles [174]. However,
it is clear that macrophages play a complex and intricate role in tissue repair supplying
many chemokines, matrix metalloproteinases and other inflammatory mediators that
drive the cellular response to injury [175]. Indeed, activated FXIII-A has been shown
to generate complement C5-derived monocyte chemotactic factor [176]. A protein that
is indistinguishable from ribosomal protein S19 has been shown to be converted to an
active form via crosslinking of FXIII-A to the surface of activated platelets [177]. These
chemotactic factors formed via cross-linking dependent processes may function to actively
recruit monocytes and inflammatory macrophages to the site of injury.

FXIII-A reduces endothelial permeability in transglutaminase dependent manner in
in vitro monolayers and saline-perfused rat hearts [178]. Similarly, a reduction in vascular
permeability was noted in an in vivo guinea pig model of antiserum-induced vascular
damage [179]. In patients undergoing cardiac surgery, infusion of FXIII concentrate re-
duces vascular leakage [180,181]. Together these findings indicate that FXIII-A protects
endothelial barrier function most likely via cross-linking of adhesive proteins to the site
of injury.

Angiogenesis is an important part of tissue repair and wound healing [137]. FXIII-A
exerts a direct proangiogenic effect on endothelial cells in vitro, promoting migration and
proliferation while constraining apoptosis [182]. FXIII-A transamidase activity is a require-
ment to illicit these proangiogenic effects which were associated with downregulation of
the antiangiogenic factor thrombospondin-1. The process is multifaceted with binding
of FXIII-A to endothelial cells inducing complex formation between vascular endothelial
growth factor (VEGF) and the integrin αVβ3 (vitronectin receptor). Association of FXIII-A
with αVβ3 results in partial cross-linking between the β3 subunit and the VEGFR-2 [183].
This promotes a cascade of events including tyrosine phosphorylation and activation of
VEGFR-2 accompanied by upregulation of intracellular signalling molecules, such as c-Jun
and Egr-1 and a subsequent downregulation of thrombospondin-1 [183]. These actions
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are entirely dependent on the transamidase activity of FXIII-A. In addition, the interplay
between the extracellular matrix (ECM) and integrins is important for the migration of
reparative cells into the wound bed and the transmission of intracellular signals caused
by extracellular changes [184]. These observations provide a clear link between FXIII-A
of plasma and cellular origin in the wound healing and tissue repair process, although
evidently this is an intricate process of which there are still several missing links that require
further insight and elucidation. There is potential for application of FXIII-A to promote
wound healing which may prove beneficial in some context, such as during inflammatory
conditions, post-operative bleeding and trauma.

6. FXIII-A Replacement Therapy and Utility as a Drug Target

The management of FXIII deficiency includes regular prophylaxis [185] with replace-
ment therapy to increase the amount of FXIII in plasma by administering cryoprecipitate,
fresh frozen plasma (FFP) [186], heat inactivated concentrate or recombinant FXIII-A2
(rFXIII-A2) therapy [187]. FXIII has relatively long half-life (~9 days), making it suitable
for routine prophylactic treatment given around every 4 weeks [188]. The use of FFP and
cryoprecipitate carries a risk of bloodborne virus transmission, so FXIII concentrates are
viewed a safer alternative as they undergo rigorous screening and viral inactivation [189].

Prophylactic treatment aims to have a trough level greater than 5% FXIII obtained
with doses of 35 to 40 U/kg [190]. A target level of 8–9% of plasma FXIII was thought to be
sufficient to maintain normal haemostasis [117,191,192]. However, to maintain thrombus
stability against fibrinolysis, around 50% normal plasma concentrations are required [150].
Fibrogammin P® is a purified heat treated FXIII concentrate used to treat congenital FXIII
deficiency and is well tolerated but requires regular intravenous doses. Fibrogammin P®

was approved for use in Europe since the early 1990s and subsequently in USA under
the name Corifact™. The plasma-derived product is approved for use with both FXIII-
A subunit and the rarer FXIII-B subunit deficiency. Preoperative prophylaxis with the
concentrate is effective in preventing postoperative bleeding [193]. The recombinant FXIII-
A (rFXIII-A) subunit product, termed Tretten, is produced in yeast and therefore benefits
from not involving any human or mammalian products in its manufacture. Upon infusion
it complexes with the excess of endogenous FXIII-B in plasma generating a heterotetramer
with a similar half-life to native FXIII [194]. Long-term safety and efficacy of rFXIII-A
were evaluated in the Mentor™2 extension trial and demonstrated a low incidence of
bleeding, no reports of development of non-neutralising or neutralising antibodies and
that pre-surgery prophylaxis was effective [195].

Congenital deficiency of FXIII-A in pregnancy is generally managed with more reg-
ular, low dose (10 IU/kg) prophylaxis [196], ideally aiming for higher than 10–12 IU/d
with above 30% plasma FXIII being ideal during labour [123,197]. A bolus of 1000 IU
is recommended prior to onset of labour to prevent postpartum haemorrhage [123]. Re-
cently, rFXIII-A2 has been shown to be effective at successfully facilitating a healthy preg-
nancy [197]. Prompt prophylaxis in neonates with FXIII concentrate is effective at both low
(10–26 IU/kg) and high (60/80 IU/kg) doses with those on the higher dose having less
bleeding episodes and no incidences of thrombotic events [196].

Acquired FXIII deficiency can result from a decreased production, increased con-
sumption or, more rarely, due to the development of neutralising or non-neutralising
autoantibodies [198]. Autoantibodies can be categorised depending how they interfere
with FXIII: type Aa both block formation of the tetramer and steal FXIII-A, while Ab
blocks the active transglutaminase and B rapidly clears the FXIII–antibody complex [199].
Treatment therefore requires immunosuppression, in addition to FXIII concentrate. Treat-
ments are varied, but the steroid prednisolone is commonly prescribed combined with an
immunosuppressant such as cyclophosphamide or the anti-CD20 monoclonal antibody
Rituximab [198,200]. Other treatments include plasmapheresis and targeting fibrinolysis
with tranexamic acid and epsilon aminocaproic acid [198,200].
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FXIII replacement therapy has recently assimilated interest in the field of trauma.
Trauma-induced coagulopathy (TIC) is associated with a dramatic decline in fibrinogen
over other coagulation factors [201–203]. Consequently, there is a concomitant decrease in
FXIIIA2B2 which circulates in complex with fibrinogen [6]. Early replacement of fibrinogen
is associated with improved outcomes in TIC [204–206]. In vitro models of TIC have
suggested that there is benefit to replacing not only fibrinogen, but also FXIII to enhance clot
stability [207,208]. Patient studies and clinical trials of available sources of FXIII, including
concentrate, fresh frozen plasma and cryoprecipitate, will be necessary to extrapolate on
its potential benefit in this setting. Similarly, low levels of FXIII-A have been implicated
in intraoperative unexplained bleeding episodes [209] indicating the potential of FXIII-A
supplementation for perioperative bleeding. Bleeding volume after cardiac surgery shows
a strong correlation with FXIII-A activity [210,211]. Pre-operative supplementation with
FXIII-A has been shown to be effective in improve clot stiffness and is associated with
reduced bleeding [212].

Current anticoagulant therapies are targeted indirectly or directly to downregulate
thrombin production, thereby attenuating platelet activation and fibrin formation. How-
ever, the common anticoagulants, which are vitamin K-mediated or target-specific coag-
ulation factors, generally FXa or thrombin, are associated with bleeding complications.
FXIII-A has been considered a promising therapeutic strategy, as it is downstream of
thrombin, and therefore permits clot formation but promotes instability, thereby enhancing
susceptibility to clearance. In a canine coronary thrombosis model, pretreatment with the
FXIIIa inhibitor L-722,151 (2-[l-acetonylthio]-5-methylthiazolo[2,3-b] 1,3,4-thiadiazolium,
effectively enhanced tPA-induced reperfusion and reduced thrombus mass but no benefit
was observed administering the inhibitor post-thrombus formation [213]. The authors
suggested L-722,151 could be a pharmacological tool and as prototype for the development
of future therapeutic FXIIIa inhibitors [213]. Tridegin, a small peptide inhibitor purified
from the salivary gland extract of the giant Amazon leech Haementeria ghilianii, inhibits
both plasma and platelet FXIIIa without interfering with the enzymatic activity of thrombin
or Factor Xa [214]. Analogues of this peptidic inhibitor offer insight into the mechanism of
action and have potential as lead structures for development [215]. The novel inhibitors
with a cis-bisamido epoxides pharmacore were shown to have an improved potency com-
pared to a natural product inhibitor, cerulenin, although still lacked selectivity for FXIII
over transglutaminase 2 [216]. ZED3197 has a Michael acceptor warhead which irreversibly
blocks the active site cysteine and has recently been shown to restore blood flow in an
in vivo rabbit model of venous stasis without affecting clotting time [217]. An alternative
strategy to the peptidic inhibitors is siRNA targeting of FXIII-B which causes a depletion
of plasma FXIII-A, without altering platelet FXIII-A and has been shown to enhance fib-
rinolysis [218]. Clearly, the crucial role that FXIII-A plays in haemostasis spotlights this
enzyme as a potential target for antithrombotic strategies. However, caution must be
applied considering the bleeding phenotype and wound healing complications associated
with congenital FXIII-A deficiency even with the mild deficiency of FXIII-B and acquired
FXIII-A deficiency.

7. Discussion and Future Perspectives

FXIII-A is crucial to normal physiology as indicated by the bleeding diathesis of
deficient patients, which can range from relatively mild to devastatingly fatal in terms of
the intracranial haemorrhage associated with congenital FXIII-A deficiency in the absence
of FXIII supplementation. This is amalgamated with the vital role of FXIII-A in wound
healing, that was perhaps difficult to tease out considering the overbearing impact on
the haemostatic cascade. The key roles of FXIII-A in normal biological processes are of
course embodied within corresponding pathophysiological processes. These have not been
discussed herein, as are expertly discussed in another review in this series on FXIII-A in
diseases [219]. A growing body of literature now propels the function of cellular pools of
FXIII-A into the limelight. These cells are known to externalise FXIII-A and therefore are
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capable of delivering extracellular functions of this complex transglutaminase. It is clear
we have many unanswered questions to tackle, starting with the mechanisms by which
FXIII-A escapes the cells despite its lack of signal sequence. This knowledge will impart us
with a clearer understanding of the processes that drive externalisation and the relative
contribution of cellular sources in different settings and biological processes. Of interest is
the influence of different circulatory pools of FXIII-A to haemostasis in varying locales of
the vasculature. The role of FXIII-A in modulating wound healing and tissue repair is now
unequivocal, but the mechanisms underpinning this are still very much in their infancy. It
appears that the field of FXIII-A is ripe for development particularly with the wealth of
potential therapeutic options exploding into the market.
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