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Abstract 

Over the years, not only have the T-cell mediated immune mechanisms of aplastic anemia 

(AA) involved in AA development started to become better understood, but there is now also 

a better understanding of the roles played by somatic mutations, cytogenetic abnormalities 

and defective telomerase functions and other genetically-related factors.  

Somatic gene mutations suggestive of clonal hematopoiesis are detected in approximately one 

third of patients with AA. Recent studies have suggested that some of these may predict a 

better response to immunosuppressive therapy, whereas others indicate poorer outcomes with 

higher risks of clonal evolution to myelodysplastic syndrome or acute myeloid leukemia, and 

that therefore better results may be obtained based on allogeneic stem cell transplantation. 

Furthermore, recent advances in molecular techniques may be useful in differentiating 

aplastic anemia from hypocellular myelodysplastic syndrome and other clonal 

hematopoiesises of indeterminate potential. All of these are summarized in this review which 

includes further insights into treatment personalization based on the molecular pathogenesis 

of AA. 

Key words: aplastic anemia, clonal hematopoiesis, outcomes, allogeneic stem cell 

transplantation 
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Introduction 

 

Aplastic anemia (AA) is a rare form of bone marrow failure caused by autoimmune 

destruction of hematopoietic progenitor stem cells with a clinical picture dominated by 

pancytopenia [1, 2]. 

For many years, it was thought to be based solely on the response of T-cell mediated 

immune mechanisms to toxic agents, including cytotoxic drugs, some medications, 

irradiation, toxins or infections such as viruses [3, 4]. In the majority of cases, some genetic 

abnormalities are also relevant. In all cases, an extensive differential diagnostic work-up 

should be performed (Table I) to exclude other pancytopenia causes (Table II) and thus to 

establish the diagnosis of AA. The appropriate decisions and choices of therapy, along with 

an assessment of risk stratification, are based on the Camitta classification of AA (Table III) 

[5–7]. 

The incidence of AA is, on average, 2 cases per million in Europe. The incidence is 

roughly three times higher in Asia, which may indicate some genetic or environmental factors 

[8–11]. Several hypotheses have been proposed to explain why the incidence of AA is higher 

in Asia than in Europe and North America, but the most probable seems to be host genetics 

such as HLA types and nucleotide polymorphisms in some cytokine genes [12]. There is no 

difference in the incidence of AA between men and women, but as most cases are observed 

before the age of 40, a genetic predisposition to AA has been suggested. Although clonal 

evolution of AA to paroxysmal nocturnal hemoglobinuria (PNH), hypocellular 

myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) is often observed [13], 

co-existing somatic mutations may predispose to this process. 

Irrespective of the identification of the cause of pancytopenia in the course of AA, the 

responses to immunosuppressive treatment confirm the thesis of autoimmune injury to 

hematopoietic stem cells and stem cell progenitors [14–16]. The primary role of T-cell 

cytotoxic lymphocytes along with the additional effect of interferon gamma and TNF on the 

inhibition of hematopoietic stem cell (HSCs) production together with an increasing FAS 

receptor expression (the first sign of apoptosis) all contribute to immune-mediated destruction 

of HSCs [17–22]. The Human Leukocyte Antigen (HLA) genes play key roles in mediating 

the immune response, especially HLA class II alleles. A Chinese study identified HLA-

DRB1, DQB1 and DPB1 alleles predisposing to AA development [23]. The dysfunction of T 
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regulatory cells is increased NK cells and autoantibodies, which are also involved in HSC 

immune destruction in AA [24–28]. 

 

 

Table I. Proposed diagnostic procedures for aplastic anemia (AA) 

Category Tests 

Peripheral blood testing CBC, differential, reticulocyte count 

Flow cytometry for PNH 

Bone marrow examination Bone marrow smear 

Flow cytometry 

Cytogenetics 

Trephine biopsy 

Rheumatoid disease screening Antinuclear antibodies 

Rheumatoid factor 

Liver function tests ALT, AST, Bilirubin serum levels 

Viral infection testing HBV, HCV, EBV, CMV, HHV-6, HIV, Parvovirus B19 

Visual imaging CT, PET-CT, MRI, US for searching solid tumors and 

lymphoproliferative neoplasms 

CBC — complete blood count; PNH — paroxysmal nocturnal hemoglobinuria; ALT — 

alanine transaminase; AST — aspartate transaminase; HBV — hepatitis B virus; HCV — 

hepatitis C virus; EBV — Epstein-Barr virus; CMV — cytomegalovirus; HHV-6 — human 

herpesvirus 6; HIV — human immunodeficiency virus; CT — computed tomography; PET-

CT — positron emission tomography-computed tomography; MRI — magnetic resonance 

imaging; US — ultrasonography 

 

 

Table II. Differential diagnosis of aplastic anemia (AA) 

Infectious diseases Cancers Other 

HBV, HCV 

EBV, CMV 

HHV-6 

HIV 

Parvovirus B19 

MDS, 

AML, 

Myelofibrosis 

ALL 

NHL 

Megaloblastic 

anemia 

PNH 

HLH 
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Mycobacterial 

infections 

HCL 

Solid tumor 

metastases 

HBV — hepatitis B virus; HCV — hepatitis C virus, EBV — Epstein-Barr virus; CMV — 

cytomegalovirus; HHV-6 — human herpesvirus 6; HIV — human immunodeficiency virus; 

MDS — myelodysplastic syndrome; AML — acute myeloid leukemia; ALL — acute 

lymphoblastic leukemia; NHL — non-Hodgkin’s lymphoma; HCL — hairy cell leukemia; 

PNH — paroxysmal nocturnal hemoglobinuria; HLH — hemophagocytic lymphohistiocytosis 

 

 

Table III. Camitta criteria for aplastic anemia (AA) stratification 

Stage Criteria 

Severe aplastic 

anemia (SAA) 

Bone marrow cellularity <25% (or 25–50% with <30% residual 

hematopoietic cells), plus at least two of the following peripheral 

blood findings: 

Neutrophils <0.5 ×109 

Platelets <20 ×109/L 

Reticulocytes <20 ×109/L 

Very severe 

aplastic anemia 

(VSAA) 

As SAA, but neutrophils less than 0.2 ×109/L 

Non-severe aplastic 

anemia (NSAA) 

Criteria for SAA or VSAA not fulfilled and decreased bone marrow 

cellularity, plus at least two of the following peripheral blood 

findings: 

Neutrophils <1.5 ×109 

Platelets <100 ×109/L 

Hemoglobin <10g/dl 

 

 

Inherited bone marrow failure syndromes 

 

Several genetic disorders including Schwachman-Diamond syndrome (which leads to a 

reduction in hematopoietic stem cells’ ability to repair DNA because of genetic lesions), 
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congenital amegakaryocytic thrombocytopenia (MPL gene), Diamond Blackfan anemia 

(SBDF gene), Fanconi anemia, some GATA2 spectrum disorders, congenital keratosis, 

SRP72, and congenital pure red cell aplasia have all been identified as familiar cases of AA 

[29–34]. Careful history-taking and physical examinations may be helpful in the identification 

of germ-like genetic bone marrow failure disorders associated with AA and included in 

differential diagnostics in children, adolescents and young adults (Table IV) [6, 35]. Next-

generation sequencing technologies have facilitated the discovery of mutations that cause 

pancytopenia and lead to aplastic anemia. All of them carry a high risk of MDS/AML, and 

some of them are associated with an especially high risk of a range of solid tumors. Thus a 

tailored stem cell transplantation regimen, such as reduced intensity conditioning, may be the 

optimal treatment. This is especially true for Fanconi anemia, dyskeratosis congenita, 

Diamond Blackfan anemia, and Shwachman-Diamond syndrome, not only because of the 

high risk of clonal evolution, but also due to the high risk of morbidity and mortality [36–38]. 

 

Table IV. Selected anomalies in physical examination indicative of inherited AA 

Anomaly Disease or mutation 

Short stature 
FA, DKC, DBA, SDS, 

SAMD9 

Microcephaly FA, DKC 

Café-au-lait skin lesions FA 

Abnormal skin pigmentation, dystrophic nail and oral 

leucoplakia 
DC 

Skeletal anomalies SDS 

Erythema nodosum, warts and molluscum GATA2 

Absent radii TARS 

Abnormal thumbs FA, DBA 

Hypertelorism, epicanthal folds DBA 

Cerebellar ataxia SAMD9L 

FA — Fanconi anemia; DBA — Diamond Blackfan anemia; SDS — Shwachman-Diamond 

syndrome; DC — dyskeratosis congenita; CAMT — congenital amegakaryocytic 

thrombocytopenia; TARS — thrombocytopenia-absentradii syndrome 

 

Somatic mutations in AA 
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Recurrent mutations and variants have been detected in up to 50% of patients with AA using 

targeted next generation sequencing hematopoiesis [39–42]. Although some of these 

mutations are limited to AA, such as PIGA [43] and BCOR/BCORL1 mutations, others are 

frequently found in myeloid malignancies, including ASXL1 and DNMT3A. Moreover, 

DNMT3A-mutated and ASXL1-mutated clones tend to increase in size over time, whereas 

BCOR- and BCORL1-mutated and PIGA-mutated clones decrease or remain stable [44]. 

 

Impact of somatic mutations on outcomes 

 

Several reports have evaluated the clinical significance of somatic mutations in AA. Firstly, it 

has been shown that the response to immunosuppressive therapy is better in patients with 

PIGA, BCOR and BCORL1 mutations [45]. In the study by Hosokawa et al., the presence of 

increased glycosylphosphatidylinositol-anchored protein-deficient cells correlated with a 

positive response to immunosuppressive therapy and prognosis, and thus was found helpful in 

choosing the optimal treatment for trisomy +8 patients with AA or low-risk MDS [45]. 

Although the natural history of AA patients with PNH clones has been studied, no impact on 

progression to symptomatic PNH or transformation to AML/MDS has been observed [46]. 

Furthermore, higher rates of overall and progression-free survival have been found in these 

subgroups of mutations [44]. However, other somatic mutations such as DNMT3A and 

ASXL1 are associated with worse outcomes. Recently, a study into mutation status and the 

differences between severe and non-severe AA by Patel et al. [47] detected at least one 

mutation in 19% of patients with AA at the time of diagnosis, independent of the severity of 

the AA. However, patients with severe AA had a higher mutation rate compared to moderate 

AA (56% vs. 19%), which corresponds to the unstable hematopoietic clones and higher risk 

of clonal evolution [47]. 

Finally, the effect of somatic mutations on a higher risk of progression to MDS/AML 

was revealed by Kulasekararaj et al. [42]. Furthermore, other specific mutations are likely 

predictors of secondary MDS [48]. The effect of the therapy applied also influences the 

mutational status, and BCOR/BCORL1 mutations may expand during the course of IST [48]. 

Negoro et al. demonstrated that, in serial samples of AA without evolution to MDS, clones 

with GATA2, PHF6, RUNX1, SMC3, TET2 and BCORL1 mutations decreased in size during 

the course of AA, whereas ASXL1, CALR, CUX1, ETV6, EZH2, G3BP1, RIT1, U2AF1, and 

ZRSR2 expanded. In contrast, DNMT3A, BCOR, and CEBPA clones showed individually 
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variable behavior with regard to clonal dynamics [48]. Lastly, Negoro et al. also demonstrated 

the clinical impact of MDS-driver mutations found in AA at presentation, which transformed 

to MDS and had a shorter median progression-free survival and overall survival compared to 

cases without such somatic alterations [48]. Other researchers have postulated that clonal 

dynamics might be highly variable and may not predict response to therapy in individual 

patients. 

 

Telomerases abnormalities 

 

Telomere shortening is found in up to 35% of patients with AA [49, 50]. It is known that this 

can result in chromosomal instability and may lead to evolution to MDS/AML [51]. To resist 

the attrition, germ-like cells utilize telomerase reverse transcriptase (TERT), telomerase RNA 

component (TERC) telomerase genes, and the stabilizing protein dyskerin (DKC1) to 

assemble the telomerase complex and maintain telomere length [52]. It has been found that 

several mutations in TERT, TERC-DKC1 (stabilizing protein dyskerin) and RTEL1 (regulator 

of telomere elongation helicase 1) are associated with telomere shortening in AA patients [53, 

54]. 

Shortened telomere length at diagnosis in patients with AA has been shown to 

correlate with poorer outcomes [55–57], particularly due to an inadequate response to 

immunosuppressive therapy. Moreover, some mutations like TERT or TERC mutations [54, 

58] are associated with transformation to MDS/AML [51, 55, 59, 60]. Sex hormones or other 

pharmacological agents have been shown to be effective in up-regulating telomere length and 

reducing the risk of clonal evolution to AML [61]. A frequency of up to 38% of clonal 

patterns of X-chromosome inactivation in female patients with AA has been observed [62]. 

 

Cytogenetic abnormalities 

 

The most common cytogenetic abnormality is monosomy 7 (-7), occurring in up to 13% of 

AA cases. Overall, this is associated with a poorer prognosis and a high risk of progression to 

MDS or AML [63, 64]. Evaluation of the karyotypes in patients with MDS secondary to AA 

revealed the presence of chromosomes 6, 7 and 8 abnormalities [64] which suggests that these 

cytogenetic abnormalities, at the initial diagnosis or developed later in patients with AA, can 

promote progression to MDS/AML. Some cytogenetic abnormalities such as trisomy 8 or 

del(13q) are associated with a favorable response to immunosuppressive therapy [65–67]. 
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Although they are commonly found in other myeloid malignancies, they are related to a low 

risk of transformation to MDS or AML [57, 63, 68]. There are many cytogenetic 

abnormalities whose clinical impact on outcomes remains to be established [69]. 

 

Circulating exosomal microRNAs 

 

MicroRNAs (miRNAs) can regulate T cell differentiation and plasticity by targeting their 

corresponding message RNAs (mRNAs), which play important roles in many autoimmune 

diseases and also AA [70–73].  

Among several specific miRNAs which regulate RNA silencing and post-

transcriptional regulation of gene expression to have been studied in AA and MDS, Guidice et 

al. identified 25 exosomal microRNAs uniquely or frequently present in AA and/or MDS 

[74]. One of these, mir-126-5p, with its higher expression at diagnosis in patients with AA, 

was associated with a shorter progression-free survival and a poorer response to therapy. In 

another study by Hosokawa, two miRNAs were identified: miR-150-5p which regulated the 

induction of T-cell differentiation, and miR-146b-5p which was involved in innate immune 

response. Both of these increased in AA patients, whereas miR-1 was decreased in AA [75]. 

Moreover, the elevated expression of miR-150-5p was significantly reduced after successful 

immunosuppressive therapy but did not change in non-responders, indicating the clinical 

utility of miR-150-5p for disease monitoring [75]. 

 

Management of patients with aplastic anemia 

 

Prior to initiating treatment for AA, other causes of pancytopenia should be excluded, 

particularly inherited bone marrow failure syndrome (IBMFS), hypoplastic MDS and some 

others transient causes of pancytopenia including drugs or infections. As AA may be 

associated with PNH, detection of the PNH clone is more indicative for AA than any other 

cause of pancytopenia and bone marrow failure. Although allo-HSCT is considered to be the 

only curative procedure for patients with SAA, it is recommended that younger patients, 

particularly children, undergo careful evaluation of concomitant illnesses and performance 

status to determine unfit or frail patients before intensive therapies, including allo-HSCT or 

IST (ATG or CsA), due to treatment-related mortality and morbidity [76–78]. Figure 1 shows 

a practical therapeutic algorithm in SAA [EBMT algorithm for SAA in 2019, modified] [5]. 

In cases of the detection of clonal hematopoiesis, especially monosomy 7 (-7) or other 
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abnormalities related to high-risk MDS or insufficient response to IST in patients with SAA 

below the age of 60, if these patients are assessed as eligible for transplant but have no 

identical sibling donor, an alternative donor should be sought. 

 

 

Figure 1. Therapeutic algorithm in severe aplastic anemia (SAA) 

 

 

 

Clonal hematopoiesis and supportive therapy 

 

All patients with AA require ongoing supportive care to alleviate symptoms and reduce the 

adverse effects related to pancytopenia. Most studies have reported that infections were the 

predominant cause of death; therefore recommendations for infection prevention are included 

in several guidelines, independent of the intensity of AA treatment, both for transplant- or 

IST-eligible patients and for less fit patients on ongoing supportive care [6, 76, 79–81]. 

 

G-CSF 
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Hematopoietic growth factor, granulocyte colony stimulating factor (G-CSF) stimulates 

granulocyte progenitors as well as stem cells for proliferation and differentiation. A 

randomized prospective trial on patients with newly diagnosed severe AA (n =192), receiving 

antithymocyte globulin and cyclosporine, with and without G-CSF, did not demonstrate any 

impact of G-CSF on the outcome of severe AA, independent of cytogenetic abnormalities. 

Overall survival and progression-free survival was comparable in both groups, as well as the 

risk of clonal abnormalities and myeloid neoplasm development [82]. Moreover, the results of 

a metanalysis of four studies confirm that the usage of G-CSF in IST is not associated with a 

higher occurrence of clonal evolution into malignant neoplasm and PNH in SAA patients 

[83]. On the other hand, a rapid granulocyte recovery in patients treated with IST with G-CSF 

addiction may identify early non-responders, and perhaps indicate the need for urgent 

transplantation [84, 85]. 

 

Eltrombopag 

 

Eltrombopag (EPAG), an oral thrombopoietin (TPO) receptor agonist used in immune 

thrombocytopenia treatment, is a new therapeutic option in transplant-ineligible SAA patients. 

The role of TPO in hematopoiesis is not limited only to thrombopoiesis: a TPO receptor c-

Mpl is present on hematopoietic stem and progenitor cells (HSPCs), and its lack in murine 

models leads to HSPC deficiency [86]. EPAG is efficient at SAA refractory to IST and in 

some patients it restores trilineage hematopoiesis with a sustained response even after 

discontinuation of the treatment [87–89]. Nevertheless, a risk of clonal evolution during this 

treatment remains an area of concern. Two prospective studies of EPAG usage in treatment 

naïve and second in refractory/relapsed SAA have not shown a higher risk of clonal evolution 

or myeloid neoplasm development compared to historical data [87, 88]. On the other hand, in 

phase 1 / 2 EPAG in R/R SAA (18%) have developed new cytogenetic abnormalities, most of 

these (87%) within six months of beginning treatment. However, some were unstable and 

disappeared after EPAG withdrawal. Chromosome 7 abnormalities were observed in 8% 

(7/83) of patients, and four of them had persistent aberration in control cytogenetic testing one 

month after drug discontinuation. Nevertheless, none of them progressed to MDS/AML [88]. 

The impact of EPAG on the overall risk of cytogenetic progression, clonal evolution, 

and/or clinical progression to MDS/AML in patients with SAA requires further investigation. 

Due to an insufficient response to IST, patients who are platelet transfusion-dependent may 
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receive EPAG as secondary SAA therapy, but its high costs limit the widespread 

application of this treatment option in many countries [79, 90]. 

 

Survival after hematopoietic stem cell transplantation (HSCT) 

 

A recent study demonstrated that in some situations, despite the identification of certain 

genetic abnormalities of germline monoallelic deleterious variants in the Fanconi anemia gene 

in patients with idiopathic AA (21 variants in 730 patients), the abnormalities do not influence 

the outcome of hematopoietic cell transplantation [91].  

Generally, although allogeneic HSCT has shown an improvement in survival rates, 

particularly for HLA-matched unrelated donor transplants, haploidentical transplantation has 

been proposed as the effective treatment for severe aplastic anemia and it is increasingly 

being used [15]. The optimal choice of haploidentical donor has also been the subject of 

research [92]. Furthermore, a recent meta-analysis of 5,336 patients comparing front-line 

treatments for AA showed significantly longer survival among AA patients undergoing first-

line allo-HSCT compared to IST. On the other hand, one of the most important complications 

after allo-HSCT is graft-versus-host disease, and this needs to be carefully balanced against 

the concerns of IST [93].  

It has to be emphasized that the choice of initial treatment for patients with newly 

diagnosed AA still requires a comprehensive evaluation of donor availability, patient age, 

expected quality of life, and the risk of disease relapse or clonal evolution after IST [94]. 

 

Conclusions 

 

There are difficulties in differentiating between AA and MDS due to the high prevalence of 

clonal hematopoiesis in AA with genetic abnormalities overlapping with MDS. Furthermore, 

a better understanding of the pathogenesis of AA with respect to somatic mutations, 

cytogenetic abnormalities and defective telomerase functions, and their impacts on the 

response to IST, along with a balancing of the risk of clonal progression to MDS/AML, may 

in future allow for treatment personalization with precise indications for upfront allo-HSCT. 
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