
ROBUSTNESS MEASURES FOR SIGNAL DETECTION

IN NON-STATIONARY NOISE

USING DIFFERENTIAL GEOMETRIC TOOLS

A Dissertation

by

GUILLAUME JULIEN RAUX

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2006

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ROBUSTNESS MEASURES FOR SIGNAL DETECTION

IN NON-STATIONARY NOISE

USING DIFFERENTIAL GEOMETRIC TOOLS

A Dissertation

by

GUILLAUME JULIEN RAUX

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Don R. Halverson
Committee Members, Deepa Kundur

Jim Ji
Yassin Hassan

Head of Department, Costas N. Georghiades

December 2006

Major Subject: Electrical Engineering

iii

ABSTRACT

Robustness Measures for Signal Detection

in Non-Stationary Noise

Using Differential Geometric Tools. (December 2006)

Guillaume Julien Raux, B.S., West Virginia University;

M.S., West Virginia University

Chair of Advisory Committee: Dr. Don Halverson

We propose the study of robustness measures for signal detection in non-stationary

noise using differential geometric tools in conjunction with empirical distribution anal-

ysis. Our approach shows that the gradient can be viewed as a random variable and

therefore used to generate sample densities allowing one to draw conclusions regard-

ing the robustness. As an example, one can apply the geometric methodology to the

detection of time varying deterministic signals in imperfectly known dependent non-

stationary Gaussian noise. We also compare stationary to non-stationary noise and

prove that robustness is barely reduced by admitting non-stationarity. In addition,

we show that robustness decreases with larger sample sizes, but there is a convergence

in this decrease for sample sizes greater than 14.

We then move on to compare the effect on robustness for signal detection between

non-Gaussian tail effects and residual dependency. The work focuses on robustness

as applied to tail effects for the noise distribution, affecting discrete-time detection of

signals in independent non-stationary noise. This approach makes use of the extension

to the generalized Gaussian case allowing the comparison in robustness between the

Gaussian and Laplacian PDF. The obtained results are contrasted with the influence

of dependency on robustness for a fixed tail category and draws consequences on

iv

residual dependency versus tail uncertainty.

v

To Mon grand-père Georges.

vi

ACKNOWLEDGMENTS

I would like to thank the professors on my committee for their assistance and insight

into my research. I would like to give special thanks to Dr. Halverson. I have

enjoyed working with him and greatly appreciate the many opportunities he has

made available to me. Thanks for your help and comments for the preparation of this

dissertation.

Finally, on a personal note, I would like to thank all my friends and family that

kept encouraging me all along the tedious process of writing this dissertation and to

whom I dedicate this work.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Historical . 1

B. Saddlepoint Technique . 2

C. Assumptions and Goals . 4

D. Applications . 6

E. Purpose and Overview of this Dissertation 6

II BACKGROUND AND FUNDAMENTALS 9

A. Estimation Theory in Signal Processing 9

1. The Mathematical Estimation Problem 10

2. Example . 12

B. Detection Theory in Signal Processing 13

1. The Detection Problem 14

2. The Mathematical Detection Problem 16

3. Detector Fidelity . 18

C. Introduction to Differential Geometry and General Relativity 20

1. Preliminaries: Distance, Open Sets, Parametric

Surfaces and Smooth Function 21

2. Smooth Manifolds and Scalar Fields 26

3. Tangent Vectors and the Tangent Space 29

4. Contravariant and Covariant Vector Fields 31

5. Tensor Fields . 34

6. Riemannian Manifolds 36

III DISTRIBUTIONAL APPROACH TOWARD APPLICATIONS

TO MEASURING BIASED AND UNBIASED DETECTION

ROBUSTNESS . 40

A. Introduction . 40

B. Development . 42

C. Preliminaries and Problem Statement 42

D. Applications . 44

E. Derivation of Formulas Used for Robustness Analysis . . . 48

1. General Worst Case Slope to Riemannian Manifold . . 48

viii

CHAPTER Page

2. Slope with Unbiased Perturbations 51

3. Slope with Biased Perturbations 52

F. Calculations . 53

1. Detail of Derivations 53

2. Sample Densities and Weighting Factors 55

a. Sample Densities 55

b. Weighting Factor 55

c. Sample Size and Bin-Size 61

G. Computation of Gradient 64

H. Examples . 64

1. Example 1 . 64

2. Histograms . 65

3. Example 2 . 71

4. Histograms . 73

I. Conclusion . 78

IV APPLICATION TO STATIONARITY VERSUS NON STA-

TIONARITY USING A 6 DIMENSION MODEL 80

A. Stationary Versus Non Stationary 80

1. The Neyman-Pearson Test Statistic 81

2. The Stationary Case 82

3. The Non-Stationary Case 85

B. Matching ε2D and ε5D . 87

C. Surface Area . 90

D. Weighting Factors and Point Selection 90

E. Directional Derivatives . 96

F. Results . 98

1. Median, Mode And Confidence Bounds 105

2. Total Amount of Change in α 109

a. Maximum Distance for the Stationary Case . . . 109

b. Maximum Distance for the Non-Stationary Case . 110

3. The Effect of α, Signal Vector and Correlation 111

G. Extension to N-Samples: Larger Sample Sizes 116

H. Conclusion . 121

V A QUANTITATIVE ROBUSTNESS COMPARISON FOR

SIGNAL DETECTION: NON-GAUSSIAN TAIL EFFECTS

VERSUS RESIDUAL DEPENDENCY 123

ix

CHAPTER Page

A. Extension to Generalized Gaussian 123

B. Detector and Parameter Surface 124

C. Derivations: Partial with Respect to α and r 128

D. Conclusion . 133

VI CONCLUSIONS: PUTTING IT ALL TOGETHER 142

A. Dissertation Summary . 142

REFERENCES . 143

APPENDIX A . 149

APPENDIX B . 151

APPENDIX C . 157

APPENDIX D . 163

APPENDIX E . 171

APPENDIX F . 174

APPENDIX G . 179

VITA . 188

x

LIST OF TABLES

TABLE Page

I Nominal values for the 1st example 47

II Difference in mean and variance for 7000 points and 700 points . . . 63

III All the different cases scenario for the 1st surface parameter 67

IV Means and variances for each case scenario for the 1st surface parameter 71

V All the different cases scenario for the 2nd surface parameter 74

VI Nominal values for the stationary case 84

VII All the different cases scenario for both stationary and non-stationary 99

VIII Means and variances for each case scenario for both the stationary

and non-stationary approach . 100

IX Means, variances, medians, standard deviation, mode and 90 and

75 percentile for each case scenario for the stationary case 107

X Means, variances, medians, standard deviation, mode and 90 and

75 percentile for each case scenario for the non-stationary case 108

XI Maximum value of α that would guarantee a maximum total

amount of change of less than 10% 112

XII The effect of signal and correlation on the value of ∆α for the

non-stationary case . 113

XIII The effect of signal and correlation on the value of ∆α for the

stationary case . 113

XIV The values of ε2D for the stationary case 115

XV The values of ε5D for the non-stationary case 115

xi

TABLE Page

XVI All the different cases scenario for the extended Gaussian approach . 133

XVII Non Gaussian independent vs. dependent Gaussian 140

XVIII Results for the new method . 141

xii

LIST OF FIGURES

FIGURE Page

1 Gaussian distribution with zero mean 11

2 Gaussian distribution with µ = 5 . 12

3 Hypothesis testing: PDF of x[n] for signal present and signal absent . 16

4 Linear detector equivalent to a matched filter 20

5 Representation of open and not open sets 22

6 Open set in M . 23

7 Smooth surface immersed in E3 . 24

8 The unit sphere . 25

9 Chart . 26

10 Unit sphere covered by the collection {U1, U2} 27

11 Change of coordinates using two charts 28

12 1-Dimensional manifold . 28

13 Tangent vector to a cone. Path on M 30

14 Tangent vector to a sphere. Path on M 31

15 Tangent space at m . 32

16 The vector field δ/δxi . 33

17 Field on M . 33

18 Smooth cotangent vector field . 35

19 A metric tensor . 36

xiii

FIGURE Page

20 X as a timelike, spacelike, and null 38

21 Upper part of the manifold . 43

22 Lower part of the manifold . 44

23 Hypothesis testing: signal present and signal abscent 45

24 Point selection over the whole ellipsoid 56

25 Rotation along the axis for an ellipsoid 57

26 Circular strip of radius r=y . 58

27 Weighting factor as a function of the location on the ellipsoid 58

28 (a,b,c) related to the latitude θ . 60

29 Weighting factor as a function of θ 61

30 Sample density with 7000 set of points 62

31 Sample density with 700 set of points 62

32 Picking the right set of points . 66

33 Sample densities for the first surface parameter: case 1 67

34 Sample densities for the first surface parameter: case 2 68

35 Sample densities for the first surface parameter: case 3 68

36 Sample densities for the first surface parameter: case 4 69

37 Sample densities for the first surface parameter: case 5 69

38 Sample densities for the first surface parameter: case 6 70

39 Sample densities for the first surface parameter: case 7 70

40 Representation of the saddle surface for λ = −0.2 72

41 Representation of the saddle surface for λ = +0.2 73

xiv

FIGURE Page

42 Sample densities for the second surface parameter: case 1 75

43 Sample densities for the second surface parameter: case 2 75

44 Sample densities for the second surface parameter: case 3 76

45 Sample densities for the second surface parameter: case 4 76

46 Sample densities for the second surface parameter: case 5 77

47 Sample densities for the second surface parameter: case 6 77

48 Sample densities for the second surface parameter: case 7 78

49 Selection of the sets of points for the stationary case 92

50 Selection of the sets of points for the non-stationary case 93

51 The selection of the sets of points using polar coordinates for the

non-stationary case . 93

52 Sample densities for the 3 sample example: case 1 101

53 Sample densities for the 3 sample example: case 2 101

54 Sample densities for the 3 sample example: case 3 102

55 Sample densities for the 3 sample example: case 4 102

56 Sample densities for the 3 sample example: case 5 103

57 Sample densities for the 3 sample example: case 6 103

58 Sample densities for the 3 sample example: case 7 104

59 Sample densities for the 3 sample example: case 8 104

60 Representation of the effect of a very small value of ε (ε = 10−3)

on the sample density . 105

61 Maximum distance between two points for the stationary case 109

62 Maximum distance between two points for the non-stationary case . 111

xv

FIGURE Page

63 Representation of the effect of the signal vector and the type of

correlation for the stationary case . 114

64 Representation of the effect of the signal vector and the type of

correlation for the non-stationary case 114

65 Effect of ε on the location of the sample densities: case 1 116

66 Effect of ε on the location of the sample densities: case 2 117

67 Effect of ε on the location of the sample densities: case 3 117

68 Effect of ε on the location of the sample densities: case 4 118

69 Effect of ε on the location of the sample densities: case 5 118

70 Effect of ε on the location of the sample densities: case 6 119

71 Effect of an increase in sample size 121

72 Matching εn . 122

73 Linear detector used for the generalized Gaussian case 125

74 Extended Gaussian approach (r = 2): case 1 134

75 Old method: case 1 . 134

76 Extended Gaussian approach (r = 2): case 2 135

77 Old method: case 2 . 135

78 Extended Gaussian approach (r = 2): case 3 136

79 Old method: case 3 . 136

80 Extended Gaussian approach (r = 2): case 4 137

81 Old method: case 4 . 137

82 Extended Gaussian approach (r = 1): case 1 138

83 Extended Gaussian approach (r = 1): case 2 138

xvi

FIGURE Page

84 Extended Gaussian approach (r = 1): case 3 139

85 Extended Gaussian approach (r = 1): case 4 139

1

CHAPTER I

INTRODUCTION

It is a capital mistake to theorize before you have all the evidence. It

biases the judgement. —Arthur Conan Doyle

A. Historical

In recent years, robustness measures have been widely discussed. Many of the tech-

niques used in today’s communications, signal processing, and control systems ap-

plications rely on techniques for detecting various signal parameters. Furthermore,

it has become evident that the degree of robustness associated with the parameter

detector is an important factor that effects overall system performance. Evidence

of increased attention given to robustness issues in signal processing applications is

given in [1], which is an excellent paper of over 200 publications which investigate

robustness issues.

In this dissertation we consider the detection of a real signal parameter based on

data which we allow to be dependent, and either stationary or non-stationary. While

an analysis is fairly straight forward for certain cases (e.g., the detection of a signal

in independent identically distributed -i.i.d.- Gaussian data), the situation becomes

far more involved when the data possess statistical distributions which are not well

known. In particular, the sampling rate that is slow enough to yield independent data

may be consistent with an assumption of absolute stationarity and vice versa. Hence

the motivation to seek procedures that are robust to the inexact statistical knowledge

increased.

The journal model is IEEE Transactions on Information Theory.

2

B. Saddlepoint Technique

For an algorithm to be successful, it must possess a degree of robustness to the inexact

knowledge, i.e., the algorithm’s performance should not be too sensitive to inexact

statistical knowledge. Much past work has been performed in engineering robustness

research by applications of Huber-Strassen saddlepoint techniques [2, 3]. Even though

this technique still plays an important role in today’s research, it contains major

limitations (being inherently non-quantitative) which have inspired an alternative

approach using differential geometric tools. This new direction of research allows

engineers to combine both performance and robustness into the development of an

algorithm.

Classically, the noise models were stationary Gaussian with a parametric as-

sumption (all necessary parameters assumed known), but it was quickly realized that

some relaxation of such assumptions was necessary. For example, while a Gaussian

model might be useful as a first step, it is certainly desirable to allow the entries in

its covariance matrix to be imperfectly known and to admit residual non-stationarity.

For these reasons, there has been sustained interest in detection algorithms that

feature robustness. This could be in the context of the algorithm performing well

under a Gaussian assumption but with imperfectly known covariance matrix and

residual non-stationarity. Classical robustness analysis (e.g. see [4, 5]) has built off the

Huber-Strassen saddlepoint approach, and many useful results have been obtained,

both for detection theory and, for other domains (such as estimation). There are

some limitations to the employment of Huber-Strassen, however. The method is

not naturally quantitative; one obtains an algorithm as a solution of a saddlepoint

equation which is by definition: “the” robust solution. Algorithms which are very

close to the solution are simply not robust, and there is not a natural measure of

3

how close they are to being robust. Secondly, the adaptation by practitioners in

such fields as engineering are bound by Huber’s concept of robustness as a subject

of interest to statisticians who focused on outliers. For many practitioners, this may

not be what they mean by robustness, since outliers might not be the chief problem.

Third, the saddlepoint method restricts the type of uncertainty admitted through

canonical models such as ε-contamination, and finally, the method resists admitting

non-stationarity and dependency.

As a consequence, a new approach toward measuring robustness has been devel-

oped by Halverson, et. al (see examples, [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20]). This work is naturally quantitative and views the focus of robustness not

on outliers but on perturbations away from a nominal. This may be of more interest

to practitioners in fields such as engineering, where one first often makes a “seat of

the pants” guess (i.e., to choose nominal values) and requires an algorithm that will

tolerate an imperfect guess. In addition, the work readily admits non-stationarity

and dependency. The general idea of this work is that the imperfectly known quan-

tity (parameter vector or distribution) is allowed to vary about its nominal over a

differentiable manifold which models a local “neighborhood” about the nominal. As

the variation occurs, the performance (e.g., false alarm rate or detection probability

for detectors, mean Lp error for estimators) changes. The greater the change: the less

robustness; thus gradient provides a convenient measure. Early work [10, 13, 21, 22]

focused on local robustness very close to the nominal, and so gradient at the nominal

was a key element in robustness measure. Later work [6, 11] allowed for non-local

neighborhoods, with [11] even allowing the robustness to be computed as a hybrid

between the local and the non-local concepts, thus admitting an emphasis on outliers

a la Huber if desired. While gradient was commonly employed, there was also con-

sideration to context where gradient was insufficient, and the second-order measure

4

offered by Gaussian curvature was applied [8, 12, 23]. All of this later work features

Euclidian models for the parameter manifold.

Recent work has explored the admission of non-Euclidian models. The reason for

doing so is not to do more complex mathematics for its own sake, but to better model

reality. For example, if a covariance matrix is imperfectly known, one approach would

be to model this by simply allowing each entry to vary by, say, ±δ. If the nominal

matrix is positive definite, then for sufficiently small δ the actual matrix will stay pos-

itive definite. But how small? This Euclidian model thus puts limits, possibly severe,

on how much variation can be considered. But, a practitioner might need to take

into account large variations. A Euclidian model will thus fail: it will admit matri-

ces which are not positive definite and thus cannot be potential covariance matrices.

The best approach would be to impose positive definiteness a priori, resulting in a

non-Euclidian structure. Naturally, employing a non-Euclidian Riemannian manifold

complicates the mathematics, but it provides a much more versatile tool to address

the needs of the user. It is also a feasible and tractable approach; for example, in

[8, 23] both gradient and curvature were employed to measure robustness for linear

estimation using non-Euclidian model with a “biased” perturbation interpretation. In

[9] the same general problem was expanded using gradient to include an “unbiased”

perturbation interpretation, and this was compared to the “biased.” In [9], the same

general problem was expanded using gradient to include an “unbiased” perturbation

interpretation, and this was compared to the “biased.” Our proposed work will, for

the first time, direct the non-Euclidian model toward detection theory.

C. Assumptions and Goals

In this dissertation, a variety of assumptions apply. These include:

5

• Constant additive signal in dependent noise

• Noise jointly Gaussian, later to be extended to specific non-Gaussian, such as

Laplace

• Linear detector -of practical interest, e.g., the matched filter

• Covariance matrix entries lie on a non-Euclidian Riemannian differentiable man-

ifold (we consider two canonical choices for examples)

• Gradient the measure of variability

• Sufficient smoothness conditions on all functions so that required operations

(such as derivatives) exist

• Perturbations modeled by either the “biased” or “unbiased” approach of [9, 24]

• Robustness of the false alarm rate is studied, although the method easily extends

to detection probability

• When comparing examples possessing parameter manifold of different dimen-

sions, such as when comparing the stationary to the non-stationary, the man-

ifolds are of comparable size if their integrated Gaussian curvature per unit

volume is invariant

The goals of this dissertation include:

• To illustrate how non-Euclidean geometry can be applied toward measuring

robustness of systems of engineering interest. While we specifically illustrate an

application for signal detection with a matched filter, our methods will be seen

to have broad potential application

6

• To compare the biased versus unbiased approach of [9, 24] to see if they yield

similar results. If so, then the biased approach might be appealing because it

is easier to compute

• To compare the robustness of the detector for stationary data versus non-

stationary. Is there a loss of robustness due to non-stationarity?

• What is the effect of increasing sample size on robustness?

• What is the effect of a specific non-Gaussian noise (Laplace for example)?

D. Applications

Detection theory is an area of classical interest dating back at least to World War

II. Simply put, it employs classical hypothesis testing to make a “signal with noise”

or “noise only” decision. The signal can be random or not, but the noise is modeled

as a random process. The “signal and noise” are not limited to electromagnetic

phenomena, but can be interpreted as economic or medical trends – we are really

referring simply to a choice between two hypotheses. Applications of classical interest

include sonar (naval warfare; oil exploration); radar (military; remote sensing) and

more recently, radio astronomy. In addition, there is now renewed interest in the area

as part of the security arena (airline, explosive and pathogen detection).

E. Purpose and Overview of this Dissertation

Consider a performance function P : Rm → R. For example, the covariance matrix

entries may lie in a subset of Rm, and P might be the least squares error of a linear

estimator employed with an imperfectly known variance matrix. Using the techniques

described in [13, 10, 21, 22], one can easily associate the robustness of an algorithm

7

with changes in P as one moves away from the nominal point in Rm. The most

convenient way to do this locally is to look at the rate of change of P as one moves

in the manifold M spanned by the imperfectly known quantities. While potentially

misleading, the use of slope is convenient and has been found to be a good indicator

of the actual performance in many situations where the more sensitive additional

measure provided by curvature [8, 12, 23] is not necessary.

As an example of the application of the above approach, consider applications

which involve Gaussian-distributed data. The Gaussian covariance matrix is crucial

to an analysis of such an application, but it is unrealistic to assume we will know the

matrix perfectly. After all, why would mother nature be so kind to us? The set of

possible entries for the matrix is imperfectly known but its constraint, such as being

positive definite, might be known. This and other possible constraints will result in

the entries lying in a manifold which may very well be non-Euclidian. More detail of

this proposed work is presented in chapter III.

Now, we remark that the work in chapter III will employ gradient to generate a

quantitative robustness measure and will also be based on signal detection. Chapter

III will therefore be dedicated to the applications and tools of differential geometry

to robustness while chapter II will be dedicated to detection theory and will also

include discussion of applications, historical context, assumptions, and will provide

more detailed comments of some of the elements of this introduction. Chapter IV

will be dedicated to the extension of the previous case scenario using 3 samples.

Extending the previous approach from 2 to 3 samples allows one to observe the effect

of stationarity on robustness. Chapter V will be dedicated to generate a quantitative

robustness measure based on signal detection for non-Gaussian noise for the 2 sample

case scenario. This will be done using an extended Gaussian distribution and by

varying the value of the exponential factor (allowing to deal with different noises).

8

Finally, chapter VI will present a complete summary of all the results obtained along

this dissertation.

9

CHAPTER II

BACKGROUND AND FUNDAMENTALS

This chapter presents two main tasks in signal processing, which are detection and

estimation of a signal leading to the making of a decision. It clearly shows how these

two tasks are closely related and then moves on to make an in-depth presentation of

the tools needed to form differential geometry for this research.

A. Estimation Theory in Signal Processing

In modern life, estimation theory can be found at the center of many electronic

signal processing systems designed to extract information. The theory of estimation,

originally developed within the area of statistics, is applied today in many different

fields. A non-exhaustive list of the systems that incorporate this purpose is given as

follows: radar, speech, sonar, communications, seismology, image analysis, etc..

All of these applications share the same common function of needing to estimate

the values of a group of parameters. For example, within a radar system one might

be interested in determining the position of an aircraft. To accomplish this, the

transmission of an electromagnetic pulse is reflected off of the aircraft causing the

antenna to receive an echo a few moments later. Clearly, if the the round trip delay

can be measured, one can easily compute the distance between the plane and the

antenna, even though the echo is decreased in amplitude due to the propagation

losses and the corruption of the signal induced by the channel.

Another example is speech processing systems, such as speech recognition. This

systems corresponds to the recognition of speech by a device like a computer. One

of the many tasks the computer can execute is trying to recognize speech sounds like

vowels or consonants. In order to do so, a computer tries to compare the spoken

10

vowel with waveforms stored in memory and then chooses the closest one to the

spoken vowel, the one that minimizes the distance measure. The main difficulty here

is when the pitch of the speakers’s voice differs from the voice recorded during the

training session.

Due to this problem inherent to the wave forms, one should try to choose different

attributes that are less susceptible to variations. For example the spectral envelope

will not change with the pitch since the Fourier transform of a periodic signal is a

sampled version of the Fourier transform of one of the period of the signal. The period

only affects the spacing between frequency samples, not the values.

In all of these systems, one faces the problem of the extraction of the parameter

values based on continuous waveforms. The same problem arises in the use of digital

computer. The equivalent problem is to extract different parameter values from a

discrete-time waveform or a data set. Mathematically, we now have a N-point data

set {x[0], x[1], ..., x[N − 1]} which depends on an unknown parameter θ.

If one wishes to determine θ based on the data set or to define an estimator, he

will obtain:

θ̂ = g(x[0], x[1], ..., x[N − 1]) (2.1)

where g is some function.

One of the first people to address this kind of problem was Gauss in 1795 with

the use of least squares data analysis to predict the movement of the planets (see

[25]).

1. The Mathematical Estimation Problem

In order to determine good estimators the first step is to mathematically model the

data. The data being random, we can describe it by its probability density function

11

Fig. 1. Gaussian distribution with zero mean

(PDF). As such, the performance of the estimator can only be completely described

statistically. The unknown parameter θ parameterized the PDF, i.e., within the class

of PDFs each PDF is different due to the different value of θ.

For example, if N=1 and θ denotes the mean of a Gaussian random variable,

then the PDF might be:

p(x[0]; θ) =
1√

2πσ2
exp[− 1

2σ2
(x[0] − θ)2] (2.2)

which is shown in figure 1 for θ = 0 and figure 2 for θ = 5. The x-axis corresponds

to x[0] and the y-axis corresponds to p(x[0]; θ).

It is easy to realize that the value of the mean affects the probability of x[0], and

consequently the specification of the PDF is critical in determining a good estimator.

In real life problems, we are not given a PDF but instead we have to choose one

that is not only consistent with the problem constraints and any prior knowledge, but

one that is also mathematically tractable.

12

Fig. 2. Gaussian distribution with µ = 5

2. Example

As an example, consider the DC level in White Gaussian Noise (WGN). Let’s consider

the observations: x[n]=A+w[n] where n=0, 1,...,N-1, where A is the parameter to be

estimated. A reasonable model for w[n] is WGN or each sample of w[n] has the PDF

N ∼ (0, σ2) which denotes a Gaussian distribution with a mean of 0 and a variance

of σ2 and is uncorrelated with the other samples. Thus, the PDF becomes:

p(x[n]; θ) =
1

(2πσ2)
N
2

exp[− 1

2σ2

N−1∑
n=0

(x[n] − A)2] (2.3)

Therefore a reasonable estimator for the average value of x[n] is:

Â =
1

N

N−1∑
n=0

x[n] (2.4)

The performance of the estimator is critically dependent on the PDF assumptions.

One can only hope that the estimator is robust, in that slight changes in the PDF do

not severely affect the performance of the estimator.

13

An estimation based on PDFs is described as classical estimation because the

parameters of interest are unknown but deterministic. When one incorporates the

prior knowledge of the PDF, therefore assuming that the parameter is no longer

deterministic, such an approach is called Bayesian estimation. The parameter we are

attempting to to estimate is then viewed as a realization of the random variable θ.

The data are now described by the joint PDF:

p(x; θ) = p(x|θ)p(θ) (2.5)

where p(θ) is the prior PDF, summarizing the knowledge about θ before any data are

observed, and p(x|θ) is the conditional PDF, summarizing our knowledge provided

by the data x conditioned on knowing θ.

Once the PDF has been specified, the problem is to determine an optimal esti-

mator or a function of the data, knowing that the estimator may depend on other

parameters. An estimator may be thought of as a rule that assigns a value to θ

for each realization of x. The estimate of θ is the value of θ obtained for a given

realization of x (see [26]).

B. Detection Theory in Signal Processing

Modern detection theory is fundamental to the design of electronic signal processing

systems for decision making and the extraction of the information. Detection theory

is mostly employed in weak signal and/or high noise situations where a decision must

be made as to whether a noise-corrupted signal is present [27].

The making of the decision is based on the extraction of the information out

of the available data [27]. The mathematical techniques needed to extract as much

information from the data will provide the necessary interface between the need to

14

make a detection decision and the desire to optimize the accuracy of the decision.

Ultimately the goal is to use the data as efficiently and accurately as possible.

Most of the results referenced above deal with the case where the signals are

deterministic or of known form with random parameters. There are, however, ap-

plications in which non-homogeneous propagation media or incomplete knowledge of

the signal source invalidates such an assumption regarding the signal.

In these cases, the signal would be best modeled as a random process. There

has been a great amount of effort expended in this area; for example, the Gaussian

signal case has been considered in many publications like [27], as has the detection of

a random signal in Gaussian noise.

1. The Detection Problem

One of the simplest detection problems is to decide whether a signal embedded in

noise is present, or if only the noise is present. An example of this problem would be

the detection of a plane based on the signal received by a radar. This type of problem

is called a binary hypothesis testing problem, since one needs to decide between two

possible outcomes, signal plus noise present versus just noise present.

H0 : signal not present

H1 : signal present

The detection decision then reduces to the choice of H0 and H1. In order to

decide between H0 and H1, we have to rely on the available data, which may be

collected either continuously or discretely. In the discrete time case, the decision is

15

between:

H0 : F0(., ..., .)

H1 : F1(., ..., .)

where the indicated point distributions F0 and F1 apply to n samples and traditionally

correspond respectively to “noise only” and “signal with noise” situations.

Further discussion of the decision theoretic background for continuous time de-

tection theory as applied to radar detection in Gaussian noise appears in literature

such as [27]. One should note that the random process involved in the previous

discussion has historically been modeled as Gaussian. However, much of the noise

encountered in real-life situations is highly non-Gaussian. In these situations, contin-

uous time detection often becomes mathematically intractable. Because of this, and

also due to the increasing use of discrete time systems, we will limit the remainder of

our consideration of detection theory to discrete time case.

Let’s consider a case where the noise is deterministic. We will further limit

consideration to the common case where the signal is additive to the noise. The

detection problem then becomes:

H0 : F0(., ..., .)

H1 : F1(., ..., .) (2.6)

where F0 corresponds to n noise samples and F1 corresponds to each of these samples

respectively added to the i-th signal value si. We observe realizations {yi}n
i=1 of the

observation random process {Yi}n
i=1 and the si are known constants.

16

Fig. 3. Hypothesis testing: PDF of x[n] for signal present and signal absent

2. The Mathematical Detection Problem

The model of the detection problem has a form that will allow us to apply the theory

of statistical hypothesis testing (see figure 3). As we did previously, one can consider,

as an example, the detection of a DC level of amplitude A=1 embedded in WGN w[n]

with variance σ2. In order to simplify the discussion one can assume that we base the

decision on the only sample available. Hence, one effectively needs to decide between

the hypotheses x[0]=w[0] (noise) and x[0]=A+w[0] (signal plus noise). Since the main

assumption is to consider the noise to be zero mean, one will need to decide that the

signal is present if x[0]>1/2 and if noise only is present x[0]<1/2 -since E
[
x[0]

]
= 0

if only noise is present and E
[
x[0]

]
= A if noise and signal are present-.

Clearly there will be an error whenever a signal is present and w[0]<1/2 or

whenever noise only is present and w[0]>1/2. We cannot expect to make the correct

decision all the time, but hopefully we can maximize the number of times that we make

a good decision. The performance of any detector will depend upon how different the

PDFs of x[0] are under each hypothesis. Multiple studies have already proven that

17

the detection performance improves as the “distance” between the PDFs increases or

as A2/σ2, also called the signal-to-noise ratio (SNR), increases (see [27]).

This study illustrates the basic result that the detection performance depends

on the discrimination between the two hypotheses or equivalently between the two

PDFs. More formally, we model the detection problem as one of choosing between

H0, which is termed the noise-only hypothesis, and H1, which is the signal present

hypothesis.

The PDfs under each hypothesis are denoted by p(x[0];H0) and p(x[0];H1), which

are for example:

p(x[0];H0) =
1√

2πσ2
exp(− 1

2σ2
x[0]2) (2.7)

and

p(x[0];H1) =
1√

2πσ2
exp(− 1

2σ2
(x[0] − A)2) (2.8)

Ultimately, one will need to decide between the two PDFs as to which one is going to

minimize the probability of making an error or equivalently maximize the probability

of making a right decision.

Most of the results referenced above deal with the case where the signals are

deterministic or of known form with random parameters. There are, however, appli-

cations in which non-homogeneous propagation media or incomplete knowledge of the

signal source invalidates such an assumption regarding the signal. Such applications

arise, for example, in sonar detection, radio astronomy, and seismic exploration.

In this cases, the signal would be best modeled as a random process. There has

been a great amount of effort expended in this area; for example, the Gaussian signal

case has been considered in many publications like [28, 29, 30], as has the detection

of a random signal in Gaussian noise.

18

3. Detector Fidelity

In order to formalize the notion of fidelity of a detector, it has been found useful to

employ two quantities, denoted by α and β, and defined by:

α = probability of choosing H1 when H0 is true.

β = probability of choosing H1 when H1 is true. (2.9)

Classically, α has been called the “false alarm probability,” and β the “detection

probability”. Ideally, one would like a detector to have the lowest α possible and the

highest β possible. The problem is that there is a tradeoff between the two.

For example, if one designs a detector in an effort to make α small, it will bias

the decision more toward H0 than for a detector designed to operate at a higher α

level, with the result that β is reduced.

In view of this, there are several approaches which may be taken to formalize

the notion of fidelity of a detector. For example, one could employ the probability of

error criterion (minimize the probability of error) [31], the Bayes criterion (minimize

the “average risk” associated with a weighted cost formulation) [32], the minimax

criterion (minimize the maximum risk) [33], or finally the Neyman-Pearson criterion

(constrain α and maximize β) [34].

One can easily remark that detectors designed under the first three criteria still

possess an associated α and β; it can also be shown that many detectors reduce to

the form of a Neyman-Pearson detector [35]. Also, α is usually associated with some

sort of cost, and thus it is often desirable to constrain α to be no greater than some

small value (e.g.α ≤ 0.05 or 5%). For this reason, the Neyman-Pearson criterion is

especially popular and will be of immediate interest here.

The next step is to, when possible, design a detector with a maximal β for a

19

constrained α. In view of the Neyman-Pearson lemma [36], the optimal detector

takes the following form:

Λ(y1,, yn)
H1

≷
H0

T (2.10)

where Λ is a function of the observations and T is a deterministic constant. That is,

the optimal detector chooses H1 if Λ(y1,, yn) > T , and chooses H0 if Λ(y1,, yn) <

T . The Neyman-Pearson also gives the form of Λ. If Pi denotes the probability measure

induced by the Y1, ..., Yn under H1, and µ is the dominating measure, then

Λ =
dP1

dµ
/
dP0

dµ
(2.11)

In this case the joint densities Pi(y1, ..., yn) of Y1, ..., Yn under Hi exist, then we have

the more recognizable form.

Λ(y1,, yn) =
P1(y1, ..., yn)

P0(y1, ..., yn)
(2.12)

This form is called the likelihood function. In certain cases, the form of the Neyman-

Pearson detector simplifies. For example, if the noise process is first order stationary

and “white”, we then have, since p1(y1, ..., yn) = p0(y1 − s1, ..., yn − sn),

Λ(y1,, yn) =
p0(y1 − s1)p0(y2 − s2)...p0(yn − sn)

p0(y1)p0(y2)...p0(yn)
(2.13)

where p0(.) denotes the univariate density of N1. If we compare the above to the

threshold value T, and take a natural logarithm of each side of the inequality, the

Neyman-Pearson test becomes:

n∑
i=1

[
ln
(
p0(yi − si)

)
− ln

(
p0(yi)

)] H1

≷
H0

T̂ (2.14)

where T̂ = ln T . The optimal detector, which is now called the log-likelihood ratio,

reduces to figure 4.

20

{ }niiy 1=
(.)ig ∑

=

n

i 1
(.) T̂

<
>

>

<
H0

H1

Fig. 4. Linear detector equivalent to a matched filter

where gi is a time varying zero memory nonlinearity. If the noise is Gaussian,

the nonlinearities gi become linear, yielding a matched filter as in the continuous time

case. Also, if the si are equal (the “sure” signal case), then the nonlinearity is time

invariant.

If the noise is nonwhite, the Neyman-Pearson detector unfortunately is not of

such a simple form as above. Because of modern, high speed sampling, dependency

between the samples is often no longer negligible, and in these cases a Neyman-

Pearson approach to detector design often becomes intractable because of inexact

knowledge of the required n-th order densities of the noise, as well as inability to

determine the statistics of the likelihood ratio Λ.

C. Introduction to Differential Geometry and General Relativity

We wish to remind the reader that differential geometry is a very abstract and chal-

lenging field. For a full understanding of those concepts, one should refer himself to

the proper mathematical references (see [37] for example). However, in the interest

of acquainting the interest of the reader, we now present a short heuristic description

of differential geometry.

Differential Geometry is the language of modern physics as well as an area of

21

mathematical delight. Typically, one considers sets which are manifolds (that is,

locally resemble Euclidean space) and which come equipped with a measure of dis-

tances. In particular, this includes classical studies of the curvature of curves and

surfaces.

In mathematics, differential topology is the field dealing with differentiable func-

tions on differentiable manifolds. It arises naturally from the study of the theory of

differential equations. Differential geometry is the study of geometry using calculus.

Together they make up the geometric theory of differentiable manifolds - which can

also be studied directly from the point of view of dynamical systems.

1. Preliminaries: Distance, Open Sets, Parametric Surfaces and Smooth Function

In order to be able to speak about smooth manifolds, a review of the topology is

necessary. A n-dimensional Euclidian space corresponds to:

En = (y1, y2, ...yn|yi ∈ R)

where R is the set of real numbers. Thus, E1 represents just a line, where E2

represents an Euclidian plane, and E3 represents a 3-dimensional Euclidian space.

The norm, also called “magnitude”, ‖y‖ of y = (y1, y2, ..., yn) in En is defined to

be:

‖y‖ =
√

y1
1 + y2

2 + ... + y2
n

which can be viewed as its distance from the origin. Therefore the distance between

two points , y and z, will be:

z = ‖z − y‖ =
√

(z1 − y1)2 + (z2 − y2)2 + ... + (zn − yn)2

A subset U of En is called open if, for every y in U, all points of En within some

22

Fig. 5. Representation of open and not open sets

positive distance r of y are also in U. In figure 5, the top set U is a set that does not

include any boundary points and is therefore open. Thus, given any point y in U, we

can find a little ball centered at y that lies entirely within U.

The lower set is not open since it includes on its lower part some boundary points.

For example, if one chooses y on the boundary, then it is impossible to find a little

ball centered at y entirely contained within U.

Intuitively, one can visualize an open set as a solid region minus its boundary.

If the boundary is included then we will get a closed set. The closed set is formally

defined as the complement of the open set.

Let M ⊂ Es. A subset U ⊂ C is called open in M if, for every y in U, all

points within some positive distance r of y are also in U. For the parametric paths

and surfaces in E3, from now on, the three coordinates of 3-space will be referred to

as y1, y2, and y3 [38].

23

Fig. 6. Open set in M

In figure 6, M is the hemisphere, Es is 3-dimensional space and U is a small

“patch” on M that excludes its boundary. Thus U is not open in Es, since there are

points in Es arbitrarily close to U that lie outside U. However, it is open in M, since

given any point y in U, all points of M within a small enough distance from y are still

in U.

This will help define a smooth path in E3 as a set of three smooth (infinitely

differentiable) real-valued functions of a single real variable t:

y1 = y1(t), y2 = y2(t), and y3 = y3(t)

The parameter of the curve is the term that usually describes the variable t. The

path is non-singular if the vector (dy1

dt
, dy2

dt
, dy3

dt
) is nowhere zero.

A smooth path in En is defined as a collection of smooth functions yi = yi(t),

where i goes from 1 to n. A smooth surface immersed in E3 is a collection of three

smooth real-valued function of two variables x1 and x2 (see figure 7).

y1 = y1(x
1, x2)

y2 = y2(x
1, x2)

y3 = y3(x
1, x2)

24

Fig. 7. Smooth surface immersed in E3

or just

yi = yi(x
1, x2), where i = (1, 2, 3)

Then x1 and x2 are called the parameters or local coordinates. A unit sphere (y2
1 +

y2
2 +y2

3 = 1), when using spherical coordinates, is a good example that illustrates this

concept (see figure 8).

y1 = sin(x1) cos(x2)

y2 = sin(x1) sin(x2)

y3 = cos(x1)

where x1 and x2 are the polar coordinates (the angles are shown on the figure).

Therefore, the parametric equations of a surface show us how to obtain a point

on the surface once we know the two local coordinates (or parameters). In other

words, this operation allows us to specify a function E2 → E3. Thus, in order to

obtain the local coordinates from the Cartesian coordinates y1, y2 and y3, one will

need to solve for the local coordinates xi as a function of yj. For example, for the

25

Fig. 8. The unit sphere

sphere case, we will get:

x1 = cos−1(y3)

x2 =

⎧⎪⎨⎪⎩ cos−1(y1/
√

y2
1 + y2

2) if y2 ≥ 0

2π − cos−1(y1/
√

y2
1 + y2

2) if y2 < 0

This technique presents the advantage of allowing us to give each point on much

of the sphere two unique coordinates, x1 and x2. Even though there is a continuity

problem as y2 approaches 0, since then x2 “jumps” from 0 to 2π, and at the poles

(y1 = y2 = 0) since the function is not even defined, we still can restrict the portion

of the sphere to an open subset of the sphere by having:

0 < x1 < π and 0 < x2 < 2π

x1 and x2 are called the coordinates functions.

A chart of a surface S is a pair of functions x = (x1(y1, y2, y3), x
2(y1, y2, y3)) which

specify each of the local coordinates (parameters) x1 and x2 as smooth functions of

a general point (global or ambient coordinates) on the surface (see figure 9).

26

Fig. 9. Chart

2. Smooth Manifolds and Scalar Fields

An open cover of M ⊂ Es is a collection {Uα} of open sets in M such that M = ∪αUα.

The following are two examples that can be used to illustrate these concepts: Es can

be covered by open balls and the unit sphere in Es can be covered by the collection

{U1, U2} (see figure 10) where:

U1 = {(y1, y2, y3)|y3 > −1

2
}

U2 = {(y1, y2, y3)|y3 <
1

2
}

A subset M of Es is called an n-dimensional smooth manifold if there is a collec-

tion {Uα; x1
α, x2

α, ..., xn
α} where:

• The Uα form an open cover of M

• Each xr
α is a C∞ real-valued function defined on U (that is, xr

α : Uα → En)

given by x(u)=(x1
α(u), x2

α(u), ..., xn
α(u)) is one-to-one (that is , to each point Uα

is assigned a unique set of n coordinates). The tuple (Uα; x1
α, x2

α, ..., xn
α) is called

a local chart of M. The collection of all charts is called a smooth atlas of M.

27

Fig. 10. Unit sphere covered by the collection {U1, U2}

Further, Uα is called a coordinate neighborhood.

• If (U, xj) and (V, xj) are two local charts of M, and if U ∩ V �= 0, then one

can write xi = xixj and its inverse xk = xk(xl) for each i and k, where all

functions are C∞ (all the functions are smooth). This ensemble of functions

is called the change-of-coordinates transformation (see figure 11). One should

note that xi should always be thought as the local coordinates (or parameters)

of the manifold. It is easy to parameterize each of the open sets U by using the

inverse function of x, which assigns to each point in some neighborhood of En

a corresponding point onto the manifold.

Also it is important to notice that the third condition implies that:

det

(
δxi

δxj

)
�= 0

det

(
δxi

δxj

)
�= 0

since the matrices associated to those determinants must be invertible.

28

Fig. 11. Change of coordinates using two charts

Fig. 12. 1-Dimensional manifold

The following example is a good illustration of the previous definitions. Let’s have

Sl the unit circle, with the exponential map. Hence, this unit circle is a 1-dimensional

manifold. Here is a possible structure (with two charts as shown in figure 12),

One has:

x : S1 − {(1, 0)} → E1

x : S1 − {(−1, 0)} → E1,

29

with 0¡x, x < 2π, and the change of coordinate maps are given by:

x =

⎧⎪⎨⎪⎩ x + π if x < π

x − π if x > π

and

x =

⎧⎪⎨⎪⎩ x + π if x < π

x − π if x > π

Notice the symmetry between x and x. Also, notice that these change of coordinate

functions are only defined when θ �= 0, π.

3. Tangent Vectors and the Tangent Space

In order for us to fully understand the concept of vector tangent to smooth manifold,

we first need to introduce the concept of smooth paths on M.

A smooth path in the smooth manifold M is a smooth map r : (−a, a) → M ,

where r(t) = (y1(t), y2(t), ..., ys(t)). We say that r is a smooth path through m ∈ M if

r(t0) = m for some t0. We can specify a path in M by its coordinates: y1 = y1(t), y2 =

y2(t), ..., ys = ys(t).

Since the ambient and local coordinates are functions of each other, we can also

express a path in terms of its local coordinates: x1 = x1(t), x2 = x2(t), ..., xn = xn(t).

A tangent vector is an operator that maps functions on the manifold.

t : {f : f ∈ F} (2.15)

A good illustration of this is the following example (see figure 13); Let M be the

surface y3 = y1
1 + y2

2, which can be parameterize by:

y1 = x1

30

Fig. 13. Tangent vector to a cone. Path on M

y2 = x2

y3 = (x1)2 + (x2)2

This corresponds to the single chart (U = M ; x1, x2), where

x1 = y1 and x2 = y2

To specify the tangent vector, let’s first specify a path in M, such as:

y1 =
√

t sin(t)

y2 =
√

t cos(t)

y3 = t

giving us the path shown in figure 13 and figure 14.

We then can obtain a tangent vector field along the path by taking the appro-

31

Fig. 14. Tangent vector to a sphere. Path on M

priate derivatives:

(
dy1

dt
,
dy2

dt
,
dy3

dt
) = (

√
t cos t +

sin t

2
√

t
,−√

t sin t +
cos t

2
√

t
, 1)

In order to get the actual tangent vectors at points in M, one needs to evaluate this

at a fixed point t0. Also, it is easy to realize that we can express the coordinates xi

in terms of t.

If M is an n-dimensional manifold, and m ∈ M , then the tangent space at m (see

figure 15) is the set Tm of all tangent vectors at m. The above constructions turn Tm

into a vector space.

4. Contravariant and Covariant Vector Fields

A contravariant vector at m ∈ M is a collection vi of n quantities (defined for each

chart at m) which transform according to the formula:

vi =
δxi

δxj
vj

32

Fig. 15. Tangent space at m

It goes along with the fact that contravariant vectors are just tangent vectors.

At each point m in a manifold M, we have the n vectors δ
δx1 ,

δ
δx2 , ...,

δ
δxn , where

the typical vector δ
δxi was obtained by taking the derivative of the path. Hence,

δ

δxi
= vector obtained by differentiating the path xj =

⎧⎪⎨⎪⎩ t + constant if j=i

constant if j �= i

where the constants are chosen to make xi(t0) correspond to m for some t0.

Note that a tangent filed is a field on (part of) a manifold, and as such, it is not,

in general, constant. The only things that are constant are its coordinates under the

specific chart x. The corresponding coordinates under another chart x are δxj/δxi,

are not constant in general. The vector field looks like figure 16. If one wants to path

together local vector fields, making them not local anymore, one will need to extend

them to the whole of M. In order to do so, one will need to make them zero near the

boundary of the coordinate patch. The following procedure will allow this.

If m ∈ M and x is any chart of M, lat x(m) = y and let D be a ball of some

radius r centered at y entirely contained in the image of x. Now define a vector field

33

Fig. 16. The vector field δ/δxi

on the whole of M by:

w(p) =

⎧⎪⎨⎪⎩ δ/δxje−R2
if p is in D

0 otherwise

where R=(|x(p) − y|)/(r − |x(p) − y|). The figure 17 shows what this field looks like

on M. The fact that V
i
is a smooth function of the xi now follows from the fact that

Fig. 17. Field on M

34

all the partial derivatives of all orders vanish as you leave the domain of x.

A covariant vector field C on M associates with each chart x a collection of

n smooth functions Ci(x
1, x2, ..., xn) which satisfy (covariant vector transformation

rule):

Ci = Cj
δxj

δxi

Geometrically, a contravariant vector is a vector that is tangent to the manifold.

Hence, a smooth 1-form, also called a smooth cotangent vector field on the manifold

M (or on an open subset U of M) is a function F that assigns to each tangent vector

field V on M (or on the subset U) a scalar field F(V) which is smooth (see figure 18).

It has the following properties:

F (V + W) = F (V) + F (W)

F (αV) = αF (V)

for every pair of tangent vector fields V and W, and every scalar α. The equivalent

in linear algebra is that F is a linear transformation from the vector space of smooth

tangent vector fields on M to the the vector space of smooth scalar fields on M.

5. Tensor Fields

Suppose that v = (v1, v2, v3) and w = (w1, w2, w3) are vector fields on E3. Then

their tensor product is defined to consist of the nine quantities viwj. Thus, let V and

W be contravariant, and let C and D be covariant. Then:

viwj =
δxi

δxk
V k δxj

δxm
Wm =

δxi

δxk

δxj

δxm
V kWm

and similarly,

vicj =
δxi

δxk

δxj

δxm
V kCm

35

Fig. 18. Smooth cotangent vector field

and,

cidj =
δxk

δxj

δxm

δxj CkDm

These product fields are called respectively “tensors” of type (2,0), (1,1), and (0,2).

A tensor field of type (2,0) on the n-dimensional smooth manifold M associates

with each chart x a collection of n2 smooth functions T ij(x1, x2, ..., xn) which satisfy

the transformation rules shown below. Similarly, we define tensor fields of type (0,2),

(1,1), and, more generally, a tensor field of type (m,n).

It is important to note that a tensor field of type (1,0) is just a contravariant

vector field, while a tensor field of type (0,1) is a covariant vector field. Similarly, a

tensor field of type (0,0) is a scalar field. Also type (1,1) tensors correspond to linear

transformations in linear algebra.

The Kronecker Delta Tensor, given by:

δi
j =

⎧⎪⎨⎪⎩ 1 if j=i

0 otherwise

36

Fig. 19. A metric tensor

is a tensor field of type (1,1). Indeed, one has δi
j = δxi

δxj and the latter quantities

transform according to the rule:

δ
i

j =
δxi

δxk

δxm

δxj δk
m

whence they constitute a tensor field of type (1,1).

A metric tensor (see figure 19) is defined by a set of quantities gij where:

gij =
δ

δxi

δ

δxj

This is a tensor of type (0,2). This tensor is called “the metric tensor inherited from

the imbedding of M in Es.”

6. Riemannian Manifolds

A smooth inner product on a manifold M is a function < −,− > that associates to

each pair of smooth contravariant vector fields X and Y a scalar (field) < X, Y > ,

satisfying the following properties.

37

• Symmetry: < X, Y >=< Y,X > for all X and Y.

Also, < aX, bY > = ab < X, Y > for all X and Y, and scalars a and b

• Bilinearity: < X, Y + Z >=< X, Y > + < X,Z >.

• Non-degeneracy: If < X, Y >= 0 for every Y, then X = 0

A manifold endowed with a smooth inner product is called a Riemannian manifold.

It is important to realize that if x is any chart, and p is any point in the domain of

x, then :

< X, Y >= X iY j <
δ

δxi
,

δ

δxj
>

This gives us smooth functions

gij =<
δ

δxi
,

δ

δxj
>

such that

< X, Y >= gijX
iY j

and which constitutes the coefficients of a type (0,2) symmetric tensor. This tensor

is called the fundamental tensor or metric tensor of the Riemannian manifold.

Here are some things we can do with a Riemannian manifold. If X is a con-

travariant vector field on M, then the square norm norm of X is defined by:

‖X‖2 =< X,X >= gijX
iXj

Unlike in regular algebra, ‖X‖2 can be negative. If ‖X‖2 < 0, X is called timelike; if

‖X‖2 > 0, X is called spacelike, and if ‖X‖2 = 0 X is called null (see figure 20). If X

is not spacelike, it can then be defined as:

‖X‖ = (‖X‖2)1/2 = (gijX
iXj)1/2

38

Fig. 20. X as a timelike, spacelike, and null

One of the useful applications for these Riemannian manifolds is arc length. If C is

a non-null path in M, then its length is defined as follows: First break the path into

segments S where each of them lie in some coordinate neighborhood, and then define

the length of S by:

L(a, b) =

b∫
a

(±gij
dxi

dt

dxj

dt
)1/2

where the sign ±1 is chosen as +1 if the curve is space-like and -1 if it is time-like.

In other words, we are defining the arc-length differential form by:

ds2 = ±gijdxidxj

39

Another useful application is the parameterizations by arc length. In order to so, one

needs to let C be a non-null path xi = xi(t) in M. Then, one needs to fix a point t =

a on this path, and define a new function s (arc length) by s(t) = L(a, t) = length of

path from t = a to t. Then s is an invertible function of t, and, using s as a parameter,

‖dxi/ds‖2 is constant, and equals 1 if C is space-like and -1 if it is time-like.

40

CHAPTER III

DISTRIBUTIONAL APPROACH TOWARD APPLICATIONS TO MEASURING

BIASED AND UNBIASED DETECTION ROBUSTNESS

A robustness measure technique, based on differential geometric tools is presented in

this chapter. The first part of the chapter shows that when one models imperfectly

known quantities as elements of a non-Euclidian manifold, the use of tangent space

is the most effective method of measuring robustness for a variety of communications

and signal processing algorithms. Through the use of different types of parameter

surfaces, the second part of the chapter illustrates the previous technique.

A. Introduction

Engineers do not always deal with exact knowledge of both design and analysis.

Real world applications of algorithms are often made more difficult by the presence

of inexact knowledge of certain quantities. Often, such knowledge pertains to the

statistics of an underlying random process such as elements of the covariance ma-

trix. For an algorithm to be successful, it must posses a degree of robustness to this

inexact knowledge (i.e., the algorithm’s performance should not be too sensitive to

inexact statistical knowledge). The recognition of the importance of robustness al-

lows engineers to combine both performance and robustness into the development of

an algorithm [15, 16, 17, 18, 19, 20]. Much past work has been performed in engi-

neering robustness research by Huber-Strassen [2, 3] on saddlepoint techniques. Even

though this technique still plays an important role in today’s research, it contains

a major limitation through the absence of a natural quantitative way to evaluate

the performance of the technique. This is a major problem because often the sad-

dlepoint solution (defined as the “robust” solution) is difficult to obtain in practical

41

applications, and thus alternative algorithms were considered.

More recently, a new group of researchers (Halverson, Bakich, Wise...) has

started to use differential geometric tools to develop more natural quantitative mea-

sures of the degree of robustness. This new direction of research allows engineers to

combine both performance and robustness into the development of an algorithm. The

thrust of this work is to extend the differential geometric approach toward robustness

in different ways.

It is important to note that past work made use of both Euclidian and curved

space to model the inexact knowledge. Much of this past work viewed the corre-

sponding perturbations only in Euclidian space [10, 6, 7, 12, 13, 11]. For example,

if one is considering a strictly increasing nominal distribution function, this distribu-

tion function can be allowed to vary locally in a region of m-dimensional Euclidian

space, where m is ultimately allowed to approach infinity. There are, however, other

situations where the imperfectly known quantities must be constrained to lie on a

non-Euclidian manifold.

As an example of practical scenarios where non-Euclidian manifolds may arise,

consider applications which involve Gaussian-distributed data. The Gaussian covari-

ance matrix is crucial to an analysis of such an application; but it is unrealistic to

assume we will know the matrix perfectly. After all, why would mother nature be

so kind to us? The set of possible entries for the matrix is imperfectly known but

its constraint, such as being positive definite, might be known. This and other pos-

sible constraints will result in the entries lying in a manifold which may very well be

non-Euclidian.

42

B. Development

Consider a performance function P : Rm → R. For example, the covariance matrix

entries may lie in a subset of Rm and P might be the least squares error of a linear es-

timator employed with data processing an imperfectly known variance matrix. Using

the techniques described in [21, 22, 13, 10], one can easily associate the robustness of

an algorithm with changes in P as one moves away from the nominal point in Rm.

The most convenient way to do this locally is to look at the rate of change of P

as one moves in the manifold M spanned by the imperfectly known quantities, where

C̃ ⊂ Rm, where C̃ is a set containing all the local coordinates. While potentially

misleading, the use of slope is convenient and has been found to be a good indicator

of the actual performance, in many situations where the more sensitive additional

measure provided by curvature [23, 8, 12] is not necessary.

In the next section, we present the detection problem under consideration and

the techniques introduced by [2] to obtain the design of the robust detector.

C. Preliminaries and Problem Statement

As an example of the application of the above approach, consider detection in zero

mean noise with two samples. The noise samples are realizations of the random

variables X and Y, where X and Y are jointly Gaussian distributed random variables

with covariance matrix C:

C =

⎛⎜⎝ a c

c b

⎞⎟⎠
where a = E(X2), b = E(Y 2) and c = E(XY). In order to ensure a positive

definite matrix, we need, c2 < ab. Performance function is the false alarm rate; similar

methods could be obtained for detection probability by simply shifting the underlying

43

0

0.02

0.04
0

0.02

0.04
0.04

0.045

0.05

0.055

0

0.02

0.04

Fig. 21. Upper part of the manifold

distribution.

Supposed (a,b,c) are close to the nominal (a0, b0, c0) according to (for reasons

discussed later):

(a − a0)
2 + (b − b0)

2 + 2(c − c0)
2 = ε (3.1)

where equation 3.1 represents a surface parameter of a 3D manifold centered at

(a0, b0, c0). The manifold of vectors of covariance entries is a paraboloidal bowl (an

ellipsoidal “egg” shape) which is vertically constrained via c2 < ab (see figures 21

and 22). Combining the constraint of the previous equation together with the need

of a positive definite covariance matrix results in (a,b,c) lying in a two dimensional

manifold.

The following section is dedicated to the derivation of closed form expressions

for the distribution function of the test statistic under each hypothesis.

44

0

0.02

0.04
0

0.02

0.04
-0.01

-0.005

0

0.005

0

0.02

0.04

Fig. 22. Lower part of the manifold

D. Applications

The discrete time detection problem under consideration reduces to a hypothesis test

of the following form:

H0 : Noise

(or H0 : P0)

H1 : Noise + Signal

(or H1 : P1)

Noise denotes the distribution function P0 under the null hypothesis and Noise +

Signal denotes the distribution P1 under the signal present hypothesis. Figure 23

illustrates the previous statement for the corresponding densities, assuming they exist.

Based on the realizations {yi}n
i=1 of the random variables {Yi}n

i=1 which have

distribution function Pj(j = 0, 1), the detector attempts to decide between the two

hypotheses: H0 (mean equal to zero) and H1 (mean equal to two) (see figure 23).

45

-10 -5 5 10

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Fig. 23. Hypothesis testing: signal present and signal abscent

As is customary, let α denote the false alarm probability and let β denote the

detection probability. If the underlying distribution of the noise were known then one

could use the Neyman-Pearson optimal detector [26], therefore:

Λ(y1, y2) =
f1(y1, y2)

f0(y1, y2)
(3.2)

where:

• Under H1, we have (N1 ∼ N (0, σ)):

(y1 ∼ N1 + s1 and y2 ∼ N2 + s2) with joint distribution N ([s1s2]
T , σ2

1, σ
2
2, ρ).

It is easy to realize that: σ2
1 = E[(y1 − s1)

2] = E[(N1 + s1 − s1)
2] = E[N 2

1] = a,

σ2
2 = E[(y2 − s2)

2] = E[(N2 + s2 − s2)
2] = E[N 2

2] = b, and ρ = (E[y1y2] −
E[y1]E[y2])/(σ1σ2) = (E[(N1 + s1)(N2 + s2) − s1s2])/(σ1σ2) = c/(

√
ab).

Therefore, we obtain:

f1(y1, y2) =
1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)

∗ [
(y1 − s1)

2

a
− 2ρ

(y1 − s1)(y2 − s2)√
ab

+
(y2 − s2)

2

b
]
]

(3.3)

• Under H0 this time, we have:

46

(y1 ∼ N1, y2 ∼ N2) which is equivalent to:

N (0, σ2
1, σ

2
2, ρ) where σ2

1 = σ2
N1

= a, σ2
2 = σ2

N2
= b, and ρ = E[y1y2]/(σ1σ2) =

E[N1N2]/(σ1σ2) = c/
√

ab.

Therefore:

f0(y1, y2) =
1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)
[
y2

1

a
− 2ρ

(y1)(y2)√
ab

+
y2

2

b
]
]

(3.4)

Also, by doing the ratio, one can obtain:

Λ(y1, y2) =
exp

[
− 1

2(1−ρ2)
[(y1−s1)2

a
− 2ρ (y1−s1)(y2−s2)√

ab
+ (y2−s2)2

b
]
]

exp
[
− 1

2(1−ρ2)
[
y2
1

a
− 2ρ (y1)(y2)√

ab
+

y2
2

b
]
]

= exp[
y2

1

a
− 2y1s1

a
+

s2
1

a
− y2

1

a
− 2

ρ√
ab

[y1y2 − y2s1 − y1s2 + s1s2 − y1y2]

+
y2

2

b
− 2

y2s2

b
+

s2
2

b
− y2

2

b
] (3.5)

After few obvious simplifications, one can easily obtain the following equation:

exp[−2
s1y1

a
+

s2
1

a
+ 2

ρ√
ab

[s1y2 + s2y1 − s1s2] − 2
s2y2

b
− s2

2

b
]
H1

≷
H0

T (3.6)

and now taking the natural log of the previous expression and if a,b,s1 and s2 ≥0,

one can obtain the simplify expression for the threshold:

(−s1

a
+

ρs2√
ab

)y1 + (−s2

b
+

ρs1√
ab

)y2

H1

≷
H0

T̃ (3.7)

Now if one replaces ρ by its expression (see previous page) and after scaling the

equation, one can obtain:

(cs2 − bs1)y1 + (cs1 − as2)y2

H1

≷
H0

T̂ ∗ (3.8)

The next goal is to find a solution to α = P (Λ < T |Noise) where Λ=AY1+BY2 and

Y1 ∼ N (0, a), Y2 ∼ N (0, b). Thus, one will need to compute the variance for both A

47

and B.

σ2
Λ = E[Λ2] − E[Λ]2

= E[A2Y 2
1] + 2E[ABY1Y2] + E[B2Y 2

2]

= (cs2 − bs1)
2a + 2c(cs2 − bs1)(cs1 − as2)

+ (cs1 − as2)
2b (3.9)

where c = c0 ±
√

(ε2 − (a − a0)2 − (b − b0)2)/(2) (see figures 21 and 22).

For the computation of the value of the threshold T̂ , we will employ nominal

values, chosen, for example, according to the following table I. The computations are

as followed:

α = Pr(Λ > T̂ |Noise)

=

∞∫
�T

1√
2πσ2

Λ

e
− y2

2σ2
Λ dy

=
1

2
− erf(

T̂

σΛ

) (3.10)

Table I. Nominal values for the 1st example

Point Value

a0 1.5

b0 2

c0 0.5

48

In order to get a value for the threshold T̂ , one needs to compute the nominal variance

(σ2
Λ0

= 11.344). We then obtain, for α=0.05:

0.05 =
1

2
− erf(

T̂

3.3680
)

0.45 = erf(.2969045T̂)

or 0.2969045T̂ = 1.64399

T̂ = 5.5371 (3.11)

E. Derivation of Formulas Used for Robustness Analysis

In this section, we first define and then illustrate the derivation of Varma and Halver-

son [24, 9] for expressions for the slopes that we are going to use for the robustness

analysis, namely slope with biased perturbations and slope with unbiased perturba-

tions. We remark that the way a perturbation about the nominal in a manifold is

modeled is not unique, and [24, 9] describes two important ways (biased and unbiased)

that thus may occur.

1. General Worst Case Slope to Riemannian Manifold

Consider the manifold M and consider a point P on M, with local coordinates (ui)i.

Consider the Riemannian metric g on the tangent space TpM . If
−→
X and

−→
Y are tangent

vectors at P, then:

−→
X =

∑
i

Xi
∂

∂ui

(3.12)

−→
Y =

∑
i

Yi
∂

∂ui

(3.13)

therefore:

〈−→X,
−→
Y 〉 =

∑
i

gijXiYj (3.14)

49

where:

gij = g
(∂

∂ui

,
∂

∂uj

)
(3.15)

Thus, g is a covariant tensor of order 2. For tangent vector,
−→
X =

∑
i Xi

∂
∂ui

, by

varying
−→
X we wish to maximize directional derivative of function h at P,

D−→
X

h(P) =
∑

i

Xi
∂h

∂ui

∣∣∣
P

(3.16)

subject to the condition that
−→
X have a unit length.

〈−→X,
−→
Y 〉 = 1 (3.17)

and ∑
i

gijXiYj = 1 (3.18)

Using the Lagrange multiplier method, we get:

J =
∑

i

Xi
∂h

∂ui

∣∣∣
P
− λ

∑
i,k

gjkXjXk (3.19)

thus:

∀i,
∂J

∂Xi

=
∂

∂Xi

(∑
i

Xi
∂h

∂ui

∣∣∣
P
− λ(

∑
j,k

gjkXjXk)
)

then

∂

∂Xi

(∑
i

Xi
∂h

∂ui

∣∣∣
P
− λ(

∑
j �=k

gjkXjXk) − λ(
∑

j

gjjXjXj)
)

= 0

hence

∂h

∂ui

∣∣∣
P
− λ

∑
k �=i

gikXk − λ
∑
j �=i

gijXj − 2λgiiXi = 0 (3.20)

Using the fact that G = (gij) is symmetric, we have then:

∂h

∂ui

∣∣∣
P
− 2λ

∑
j �=k

gijXj − 2λgiiXi = 0 (3.21)

50

or:

∂h

∂ui

∣∣∣
P
− 2λ

∑
j

gijXj = 0 (3.22)

D−→
X

h(P) − 2λ.1 = 0 (3.23)

λ =
1

2
D−→

X
h(P) (3.24)

∂h

∂ui

∣∣∣
P

= D−→
X

h(P).
∑

j

gijXj (3.25)

⎛⎜⎜⎜⎜⎝
∂h/∂u1

...

∂h/∂um

⎞⎟⎟⎟⎟⎠ = D−→
X

hG
−→
X

where G is a m ∗ m matrix of the following form:

G =

⎛⎜⎜⎜⎜⎝
g11 g12 . . .

g21 g22 . . .

...
...

. . .

⎞⎟⎟⎟⎟⎠
and where

−→
X is a column vector of the following form:

X1 =

⎛⎜⎜⎜⎜⎝
X1

...

Xm

⎞⎟⎟⎟⎟⎠
Therefore: ⎛⎜⎜⎜⎜⎝

∂h/∂u1

...

∂h/∂um

⎞⎟⎟⎟⎟⎠ = D−→
X

h.G

⎛⎜⎜⎜⎜⎝
X1

...

Xm

⎞⎟⎟⎟⎟⎠

51

Since D−→
X

h is a scalar, we will obtain:

D−→
X

h
(∂h

∂u1

. . .
∂h

∂um

)
⎛⎜⎜⎜⎜⎝

X1

...

Xm

⎞⎟⎟⎟⎟⎠ =
(∂h

∂u1

. . .
∂h

∂um

)
G−1

⎛⎜⎜⎜⎜⎝
∂h
∂u1

...

∂h
∂um

⎞⎟⎟⎟⎟⎠ (3.26)

(D−→
X

h)2 = ∇hG−1∇hT (3.27)

Hence:

(D−→
X

h)
∣∣∣
Extreme

=
√
∇hG−1∇hT (3.28)

While it might not be obvious from the above expression, the value of (D−→
X

h)
∣∣∣
Extreme

does not depend on the choice of the coordinates, provided the underlying manifold

remains fixed. However, this follows from the classical interpretation of directional

derivative as a limit of ∇h over the arc length, where the answer computes to be

independent of the curve chosen as long as the tangent to the curve at P is fixed.

2. Slope with Unbiased Perturbations

If the parameter surface is defined by c=f(a,b), we can use a = u1 and b = u2. Then

we obtain:

∂

∂a
= (1, 0,

∂c

∂a
) (3.29)

∂

∂b
= (1, 0,

∂c

∂b
) (3.30)

Inheriting the inner product from R3

g11 = 1 +
(∂c

∂a

)2

(3.31)

g22 = 1 +
(∂c

∂b

)2

(3.32)

g12 = g21 =
∂c

∂a
.
∂c

∂b
(3.33)

52

We then remark that this choice of coordinates is for convenience, and the same result

will be obtained for an alternative choice. Thus, the result is without bias. If the

performance function is P = h(a, b, c) ≡ h(a, b), we then obtain:

(
D−→

X
h
)∣∣∣

Extreme
=

√
∇hG−1∇hT (3.34)

∇h =
(∂h

∂a

∂h

∂b

)
(3.35)

and finally:

G =

⎛⎜⎝ g11 g12

g12 g22

⎞⎟⎠
3. Slope with Biased Perturbations

In the case where the slope is biased with perturbations, the variations are translated

to the Euclidean space. It is with these variations that the bias enters the system,

because the manifold has been altered. Thus, gij = δij, where δij is the Kronecker

delta.

This time we have:

G =

⎛⎜⎝ 1 0

0 1

⎞⎟⎠
G becomes the identity matrix. Using the new matrix G into equation 4.58, we obtain:

(
D−→

X
h
)∣∣∣

Extreme
=

√
∇hG−1∇hT =

√
(
∂h

∂a
)2 + (

∂h

∂b
)2 (3.36)

The equation (3.36) is the well known version of the directional derivative applying

on functions on affine space.

53

F. Calculations

All the results are obtained in this section with the use of Matlab simulations. After

paying closer attention to the computations, one can easily realize that the integrals

(∂α)/(∂a) and (∂α)/(∂b) do not have a closed form.

∂α

∂a
=

1√
2π

∞∫
�T

[−1

2
(σ2)

−3
2

Λ exp(− y2

2σ2
Λ

) +
y2

2(σ2
Λ)

5
2

exp(− y2

2σ2
Λ

)]
∂σ2

Λ

∂a
dy (3.37)

∂α

∂b
=

1√
2π

∞∫
�T

[−1

2
(σ2)

−3
2

Λ exp(− y2

2σ2
Λ

) +
y2

2(σ2
Λ)

5
2

exp(− y2

2σ2
Λ

)]
∂σ2

Λ

∂b
dy (3.38)

Especially the following part:

∞∫
�T

1

const
y2exp−

y2

const dy (3.39)

In order to determine a solution to those equations, numerical analysis is used1.

1. Detail of Derivations

∂f

∂a
=

∂c

∂a
= (a0 − a)(2(ε2 − (a − a0)

2 − (b − b0)
2))−

1
2 (3.40)

∂f

∂b
=

∂c

∂b
= (b0 − b)(2(ε2 − (a − a0)

2 − (b − b0)
2))−

1
2 (3.41)

∂h

∂a
=

∂α

∂a
(3.42)

1The Matlab 7.0 source codes for the numerical analysis are included in the
appendix

54

and

∆h =
(∂h

∂a

∂h

∂b

)
(3.43)

Now, let’s give the detail of the computations of (∂σ2
Λ)/(∂a) and (∂σ2

Λ)/(∂b). Breaking

the differentiation into three different parts, we have:

• For (∂σ2
Λ)/(∂a):

∂1stterm

∂a
=

∂

∂a
a
(
cs2 − bs1

)2

=
(
cs2 − bs1

)2

+ 2a(
∂f

∂a
s2)(cs2 − bs1) (3.44)

∂2ndterm

∂a
= 2

∂f

∂a
(cs2 − bs1)(cs1 − as2) + 2c(

∂f

∂a
s2)(cs1 − as2)

+ 2c(cs2 − bs1)(
∂f

∂a
s1 − s2) (3.45)

∂3rdterm

∂a
=

∂

∂a
b(cs1 − as2)

2

= 2b(
∂f

∂a
s1 − s2)(cs1 − as2) (3.46)

• For (∂σ2
Λ)/(∂b):

∂1stterm

∂b
=

∂

∂b
a
(
cs2 − bs1

)2

= 2a(
∂f

∂b
s2 − s1)(cs2 − bs1) (3.47)

∂2ndterm

∂b
= 2

∂f

∂b
(cs2 − bs1)(cs1 − as2) + 2c(

∂f

∂b
s2 − s1)(cs1 − as2)

+ 2c(cs2 − bs1)(
∂f

∂b
s1) (3.48)

55

∂3rdterm

∂b
=

∂

∂b
b(cs1 − as2)

2

= (cs1 − as2)
2 + 2b(

∂f

∂b
s1)(cs1 − as2) (3.49)

2. Sample Densities and Weighting Factors

a. Sample Densities

The gradient over a region of the manifold is not constant. It very much varies over

the whole region. Therefore instead of computing the average of the values over the

region, we seek a method that quickly illustrates the nature of the variations. If we

regard gradient as a random variable, then vital information would be carried by its

density. The following procedure is used throughout in the analysis:

• We first decide on the nominal covariance matrix for (X,Y). We also need to

assume additional information about the parameters (a,b,c) which compose the

covariance matrix expressed by the parameter surface.

• The actual parameters are unlikely to vary from the nominal by a large amount.

After choosing an area local to a nominal, we vary the parameters around this

region, located on the parameter surface. Then, the gradient values for both,

the unbiased and the biased, perturbations are calculated for the new system

state (point on the performance surface).

• A sample density for these gradient values is obtained.

b. Weighting Factor

Consider first the sphere in 3-D. If n points are equally arranged along circles of

constant latitude, they gradually become more close together as one approaches the

pole (figure 24). For this reason when computing a sample density for gradient, such

56

Fig. 24. Point selection over the whole ellipsoid

points are over represented as we approach the pole. When counting them their

number should be given reduced “weight”. The same issue arises with an ellipsoid.

The same “compactification” of points at poles occurs.

Now, let’s consider an ellipsoid, where one views the “poles” generated by ro-

tating an ellipse (Ax2 + By2 = C) about the long axis (see figure 25). The same

“compactification” of points at poles occurs, but compared to the sphere, the weight-

ing is more complicated and is affected by three considerations:

• As before, directly proportional to the radius of the circle of constant latitude,

r=y

• If one measures the area of a circular strip generated by varying θ by ±(∆θ)/2,

57

R()

Axis of rotation

(X,Y)

Normal to vector

Tangent

Radius of circle of
constant latitude

r()

Fig. 25. Rotation along the axis for an ellipsoid

we see that the area of strip depends not only on its radius r, but is directly

proportional to (for “width”) the non-constant distance from the origin R, and

• The “width” of the strip also differs from the sphere case because it is not

constantly normal to θ vector (see figure 25). In the sphere, R is constant and

we have normality so the strip “width” depends only on ∆θ and r (see figure

26)

As a consequence of the last two points, we see that the weighting factor is also

directly proportional to R(θ) and the ratio (s1 + s2)/(2s) (see figure 27). As the

deviation from normality increases, and the strip widens, thus increasing the area

and partially compensating for smaller r as we move to the pole. It is also easy to

realize that the weighting factor could be computed using the volume element. Let’s

consider the ellipsoid, a2 + b2 + 2c2 = ε or equivalently c = ±√(ε − a2 − b2)/2. The

58

Circular strip of radius r=y

Fig. 26. Circular strip of radius r=y

R

S1

S

S

S2

Fig. 27. Weighting factor as a function of the location on the ellipsoid

59

volume element is then equal to:

V olume element =

√
1 + (

∂c

∂a
)2 + (

∂c

∂b
)2dadb (3.50)

where
√

1 + (∂c
∂a

)2 + (∂c
∂b

)2 represents the weight. We then obtain:

weight2 = 1 + (
∂c

∂a
)2 + (

∂c

∂b
)2 (3.51)

Now, replacing c by its corresponding expression, and taking the partial of c with

respect to a and b, one can obtain:

weight =

√
ε − 1/2a2 − 1/2b2

ε − a2 − b2
(3.52)

This weighting factor is expressed in the cartesian coordinates and therefore needs to

be expressed, for obvious reasons, in polar coordinates. One will then need to relate

the previous expression to the “latitude” θ.

Let’s note that a2 + b2 = ε−2c2 and using figure 28, one can obtain the following

expression:

c√
a2 + b2

= tan θ

a2 + b2 =
c2

tan θ
c2

tan2θ
= a2 + b2 = ε − 2c2

c = ±
√

ε

2 + cot2 θ
(3.53)

Therefore, when replacing into the equation 3.52, one can obtain:

weight =

√
ε − 1

2
ε

1+2 tan2 θ

ε − ε
1+2 tan2 θ

(3.54)

60

a

b

c

(a,b,c)

2

2

b
a + (a,b)

Fig. 28. (a,b,c) related to the latitude θ

which simplifies into:

weight =

√
1 +

1

4
cot2 θ (3.55)

where θ is the latitude. However note that the previous weighting factor scales da.db.

This assumes rectangular partition in the (a,b) plane, therefore da.db must be con-

verted to dθ.dφ where φ is the longitude and θ is the latitude. Now, looking at the

ellipse, the weighting factor in polar coordinates will then be equal to multiplying

(3.55) by the conversion factor of da.db to dθ.dφ:

weighting factor = 2ε

√
sin2 θ cos2 θ +

1

4
cos4 θ (3.56)

The weighting factor is represented in figure 29 for −90◦ < θ < 90◦.

61

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Angle in Degree

W
ei

gh
tin

g
F

ac
to

r

Weighting factor

Fig. 29. Weighting factor as a function of θ

c. Sample Size and Bin-Size

The sample densities are all based on bin-sizes of 5 ∗ 10−3. The sample densities are

obtained by adding, for each bin, the weighting factors corresponding to each of the

tangent slopes. Figures 30 and 31 illustrate the results. The means and variances are

similar (less than 1.5% difference in mean for the unbiased case for example), allowing

one to use only 700 sets of points and therefore run faster simulations without affecting

the simulation results.

Table II illustrates well the similarity between the two cases scenario.

The sample size includes 700 sets of data points. For each set of three points

(c=f(a,b)) the corresponding tangent slope to the surface is computed. The following

procedure is used all along in the analysis:

• We first decide on the nominal covariance matrix for (X,Y). We also need to

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Unbiased Case

Biased Case

Fig. 30. Sample density with 7000 set of points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Unbiased Case

Biased Case

Fig. 31. Sample density with 700 set of points

63

Table II. Difference in mean and variance for 7000 points and 700 points

Mean Variance

Unbiased Biased Unbiased Biased

7000 points 0.012153 0.13135 0.000147 0.01725

700 points 0.011492 0.11931 0.001623 0.14503

assume additional information about the parameters (a,b,c) which compose the

covariance matrix expressed by the parameter surface.

• The actual parameters are unlikely to vary from the nominal by a large amount.

After choosing an area local to a nominal, we vary the parameters around this

region, located on the parameter surface. Then, the gradient values for both

the unbiased and the biased, perturbations are calculated for the new system

state (point on the performance surface).

• Different values of nominal parameters are tested. Also, the effect of the bin-

size over the sample densities is implemented. The last case scenario treated is

when the variation from the nominal is bigger than usual.

We treated two different examples. The first example corresponds to the use

where the covariance matrix lies on a ball centered on the nominal. Such a parameter

surface is bounded with positive Gaussian curvatures. The second example uses a

new parameter surface; the correlation coefficient is set up to stay constant, thus

yielding a saddle surface with negative curvature.

64

G. Computation of Gradient

For example 1 we employ coordinates (a,b) and express the tangent vectors (∂/∂a, ∂/∂b)

in terms of the Euclidean vectors. Inherently the inner product from R3, it is routine

to obtain g11 = 1 + (∂c/∂a)2, g22 = 1 + (∂c/∂b)2 and g12 = g21 = ∂c/∂a ∗ ∂c/∂b for

the unbiased case. For example 2, the same method is obtained, except coordinates ã

and b̃ are employed. To complete the calculation of 3.28, employing false alarm rate

α as the performance function, we easily obtain:

∂α

∂a
=

1√
2π

∞∫
T

[−1

2
(σ2

Λ)
−3
2 exp(

−y2

2σ2
Λ

) +
y2

2(σ2
Λ)

5
2

exp(
−y2

2σ2
Λ

)]
∂σ2

Λ

∂a
dy (3.57)

where T is the detector threshold and σ2
Λ is the variance of the test statistic. Compu-

tations for the coordinates yield the same form: all requiring the analog of (∂σ2
Λ)/(∂a),

which is a long but realistic calculation. The threshold is chosen using the nominal

values (a0, b0, c0) for α=0.05.

H. Examples

1. Example 1

In this first example, the parameters (a,b,c) are related by:

∥∥∥
⎛⎜⎝ a c

c b

⎞⎟⎠−

⎛⎜⎝ a0 c0

c0 b0

⎞⎟⎠∥∥∥ = ‖E‖ =
√

ε (3.58)

For this example (2 � 2 matrix), let ‖E‖ represent the value of the natural norm of

the generic linear group G1(2,IR) applied to E, also known as the Frobenius Norm.

Then:

‖E‖2 = (a − a0)
2 + (b − b0)

2 + 2(c − c0)
2 (3.59)

65

representing an ellipsoidal “egg” shape. We then impose the constraint that ‖E‖2 =

ε. Various ε can be considered, but we always employ an ε small enough so that

all parameters (a,b,c) correspond to a positive definite matrix. We remark that

the proper interpretation of the parameter surface is that the surfaces induces the

“nominal” (a0, b0, c0) and not the reverse. The nominal is simply a convenient center

of gravity serving as a kind of average value, for choosing the detector threshold, for

example.

The next step is to compute all the sets of points. The (a,b,c) points are bounded

by the need to be on the manifold (see figure 32). In order to do so, we first need to

divide the select manifold onto “strips” of different latitudes (every 5◦ for example)

and different longitudes (every 10◦ for example). Therefore on each “slice” or latitude

of the manifold, we will have 36 points. In order not to introduce any biased-ness

into the sample density approach, a weighting factor is assigned to each latitude of

the manifold (see figure 29).

Let’s have ε be the tolerance on variance of the covariance (or the deviation of

the covariance matrix from its nominal). Note that ε is also directly used to verify

if the covariance matrix is positive definite (through the computation of each set of

coordinates a, b and c).

2. Histograms

Histograms of the gradient sample density over the manifold are used to visualize if

the detection algorithm is or is not robust. The more “compact” the histogram, the

more it shows the absence of big slopes, and the less variable is the gradient. If in

addition the point of “compactification” is of small value, then the detector might be

called “robust.”

All the scenarios that one could potentially encounter are represented in table

66

Fig. 32. Picking the right set of points

III. There are seven sets of two graphs that cover all those cases (see figures 33 to

39). For all the histograms the bin-size is 0.005. Each of the sample distributions

(see table III) are based on 700 points each.

Table IV gives the corresponding means and variances for both the biased and

unbiased case, for each case scenario. The weighted mean is used to combine average

values from samples of the same population with different sample sizes:

x̄ =

∑n
i=1 wi.xi∑n

i=1 wi

(3.60)

The weights wi represent the bounds of the partial sample. In other applications they

represent a measure for the reliability of the influence upon the mean by respective

values.

In statistics, the concept of variance can also be used to describe a set of data.

67

Table III. All the different cases scenario for the 1st surface parameter

Case a0 b0 c0 s1 s2 ε Threshold

1 1.5 2 0.5 1.5 0.5 0.05 5.5371

2 1.5 2 0.5 1.5 0.5 0.5 5.5371

3 1.5 2 0.5 1.5 0.5 0.005 5.5371

4 1.5 2 -0.5 1.5 0.5 0.05 6.4659

5 0.5 3 0.25 1.5 0.5 0.05 5.0253

6 1.5 2 0.5 0.5 0.5 0.05 2.1553

7 1.5 2 0.5 1.5 2 0.05 7.4662

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Unbiased Case

Biased Case

Fig. 33. Sample densities for the first surface parameter: case 1

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Unbiased Case

Biased Case

Fig. 34. Sample densities for the first surface parameter: case 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Unbiased Case

Biased Case

Fig. 35. Sample densities for the first surface parameter: case 3

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Unbiased Case

Biased Case

Fig. 36. Sample densities for the first surface parameter: case 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Unbiased Case

Biased Case

Fig. 37. Sample densities for the first surface parameter: case 5

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Unbiased Case

Biased Case

Fig. 38. Sample densities for the first surface parameter: case 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Unbiased Case

Biased Case

Fig. 39. Sample densities for the first surface parameter: case 7

71

Table IV. Means and variances for each case scenario for the 1st surface parameter

Mean Variance

Biased Unbiased Biased Unbiased

case 1 0.11931 0.011492 0.4529 0.004623

case 2 0.10078 0.010683 0.5986 0.048921

case 3 0.12165 0.011942 0.0327 0.000348

case 4 0.10351 0.009103 0.2950 0.002491

case 5 0.18399 0.028262 0.9893 0.025275

case 6 0.14021 0.015596 0.7075 0.009061

case 7 0.14368 0.016364 0.7377 0.009955

When the set of data is a population, it is called the population variance. If the set

is a sample, we call it the sample variance. The population variance of a population

yi where i=1,2,...,N is given by:

σ2 =
1

N

N∑
i=1

(yi − µ)2 (3.61)

where µ is the population mean.

3. Example 2

In this example a new parameter surface is used. This time, the correlation coefficient

is set up to stay constant. We have now:

λ =
c

ãb̃
(3.62)

where λ is the correlation coefficient that takes a value between −1 < λ < 1. Let’s

have ã =
√

a and b̃ =
√

b, then ã, b̃, c can be used as parameters of the Gaussian,

72

0

5

10

15 0

2

4

6

8

10

0

2

4

0

5

10

Fig. 40. Representation of the saddle surface for λ = −0.2

where ã, b̃ are now the standard deviations instead of the variances. Note that the

previous equation represents a true saddle surface parameter. Such a model might be

appropriate in situations where one had much more confidence in the values of the

correlation coefficient than the specific (a,b,c) values that are related to it. Various

λ can be considered.

For a fixed and known value of λ, we will need to compute the weight factor.

weight factor =

√
1 + (

∂c

∂ã
)2 + (

∂c

∂b̃
)2

=
√

1 + λ2ã2 + λ2b̃2 (3.63)

The surface parameter for the two different values of λ are represented in figures

40 and 41.

73

0

5

10

15 0

2

4

6

8

10

-2

-1

0

0

5

10

Fig. 41. Representation of the saddle surface for λ = +0.2

4. Histograms

Like the previous section, we first need to determine sets of points (ã, b̃, c) that respect

the equation of the true saddle. In order to accomplish this, we partition the (ã, b̃)

plane using squares out as far as possible (the saddle surface has no boundaries).

For each case scenario, (see table V) the focus of our interest is on both biased and

unbiased, cases. All the sample distributions are based on 1500 points each.

By varying the nominal values, one will be able to visualize the robustness of the

detection scheme. The changes will be made one value at the time, to improve the

chance of visualizing the parameter’s effect on the robustness of the detection scheme.

Note that naturally, the G matrix used to compute the tangent slopes is different

from the “egg” surface. This is because c(ã, b̃) has changed. Due to this change, we

will now need to compute ∂α/∂ã and ∂α/∂b̃. The Chain’s rule makes this computa-

74

Table V. All the different cases scenario for the 2nd surface parameter

case # λ ã b̃ s1 s2 c̃0

1st 0.2 0.5 1 1.5 2 0.75

2nd -0.2 0.5 1 1.5 2 -0.75

3rd 0.2 1.5 1 1.5 2 0.3

4th 0.2 0.5 1/4 1.5 2 0.025

5th 0.2 1.5 1 0.5 2 0.3

6th 0.2 1.5 1 0.5 1/2 0.3

7th 0.2 0.5 1 1.5 2 0.1

tion possible.

∂α

∂ã
=

∂α

∂a
× ∂a

∂ã

=
(∂α

∂a

∣∣∣
a=ã2

)
2ã (3.64)

∂α

∂b̃
=

∂α

∂b
× ∂b

∂b̃

=
(∂α

∂b

∣∣∣
b=b̃2

)
2b̃ (3.65)

The reader should be aware that for the seventh case scenario, the value of ε is now

equal to 0.005 instead of 0.05. Also, for all the cases L = 1 (there were found no

differences in results with an increase or decrease of the value of L).

75

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

Unbiased Case

Biased Case

Fig. 42. Sample densities for the second surface parameter: case 1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80
Unbiased Case
Biased Case

Fig. 43. Sample densities for the second surface parameter: case 2

76

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

Unbiased Case

Biased Case

Fig. 44. Sample densities for the second surface parameter: case 3

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

Unbiased Case

Biased Case

Fig. 45. Sample densities for the second surface parameter: case 4

77

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

Unbiased Case

Biased Case

Fig. 46. Sample densities for the second surface parameter: case 5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

Unbiased Case

Biased Case

Fig. 47. Sample densities for the second surface parameter: case 6

78

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

Unbiased Case

Biased Case

Fig. 48. Sample densities for the second surface parameter: case 7

I. Conclusion

Histograms of the gradient distribution over the manifold are used to visualize if the

detection algorithm is or is not robust. The more “compact” the histogram, the more

it shows the absence of big slopes, and the less variable is the gradient. If in addition

the point of “compactification” is of small value, then the detector might be called

“robust” (see figures 42 to 48).

In the case of the “egg” shape which corresponds to a closed parameter surface

with a positive curvature, the sample densities obtained for the unbiased case are

showing a high degree of robustness (absence of large slopes). The results look very

consistent with sample densities compact around zero, and similar means/variances.

Note that the biased results are not comparable. Since the unbiased approach is

philosophically preferable in terms of telling the “true” robustness story, our results

show that the extra difficulty in computing unbiased histograms is worth the effort.

79

In the case of the “saddle” surface, which this time corresponds to an open

surface parameter with a negative curvature, the sample densities obtained show an

absence of robustness in the scheme. Again, results of the biased approach are not

comparable. To the view of those results we can conclude that the statement about

robustness of an algorithm can only be made if it is associated with a parameter

surface. The results depend completely on the choice of the parameter surface.

The next step of this work is an extension of our research: the case where

three samples are involved. While the extension of this work from two to three

samples sounds trivial, it will allow us to draw conclusions regarding the effect of

non-stationarity on robustness (a related work would be the study of the effect of sta-

tionary noise –high frequency sampling for example– on robustness). For this work

we will employ the unbiased approach exclusively.

80

CHAPTER IV

APPLICATION TO STATIONARITY VERSUS NON STATIONARITY USING A

6 DIMENSION MODEL

Many of the techniques used in telecommunications, image, speech, and radar signal

processing rely on various degrees of measuring performance. The measure of robust-

ness, is also based on the received data; for example the sampling speed has a direct

effect on the dependency of the data. This chapter starts by extending the previous

example from two samples/three dimensions to three samples/six dimensions. It then

introduces the necessary computations one needs to make in order to state on the

measure of robustness. Finally, the end of this chapter is dedicated to the effect of a

larger sample size approach on robustness.

A. Stationary Versus Non Stationary

Statistically speaking, a stationary process (or strictly stationary process) is a stochas-

tic process in which the probability density function of some random variable X does

not change over time or position. As a result, parameters such as the mean and

variance of the data set also do not change over time or position. For example, the

measurement of white noise is considered a stationary process. Alternatively, the

measurement of a slow sampling process is not stationary.

The linear detection of a random variable Y in terms of X, where X and Y are

jointly Gaussian distributed random variables with covariance matrix K, using three

81

samples and non-stationary noise, becomes:

K =

⎛⎜⎜⎜⎜⎝
a d/

√
2 f/

√
2

d/
√

2 b e/
√

2

f/
√

2 e/
√

2 c

⎞⎟⎟⎟⎟⎠
The normalization by

√
2 is done to make the higher dimensional analysis easier;

it does not compromise the robustness analysis.

The parameter surface obtained using the Frobenius norm, for the non-stationary

case, would be a 5-sphere in 6D:

(a − a0)
2 + (b − b0)

2 + (c − c0)
2 + (d − d0)

2 + (e − e0)
2 + (f − f0)

2 = ε (4.1)

The same covariance matrix, using stationary data this time, would then be:

K =

⎛⎜⎜⎜⎜⎝
a d/

√
2 f/

√
2

d/
√

2 a d/
√

2

f/
√

2 d/
√

2 a

⎞⎟⎟⎟⎟⎠
The corresponding surface parameter would now be an 2-dimensional ellipsoid

with a non-circular cross section in 3D:

3(a − a0)
2 + 2(d − d0)

2 + (f − f0)
2 = ε (4.2)

1. The Neyman-Pearson Test Statistic

Under H1, we obtain:

fY
1

(y1, y2, y3) =
1

(2π)3/2|K|1/2
exp
(
−1

2
(y1−s1 y2−s2 y3−s3)K

−1(y1−s1 y2−s2 y3−s3)
T
)

(4.3)

82

Under H0, we obtain:

fY
0

(y1, y2, y3) =
1

(2π)3/2|K|1/2
exp
(
− 1

2
(y1 y2 y3)K

−1(y1 y2 y3)
T
)

(4.4)

Therefore the Neyman-Pearson test statistics becomes:

Λ(y1, y2, y3) =

fY
1

(y1, y2, y3)

fY
0

(y1, y2, y3)
(4.5)

After few computations, the test statistic can easily be transformed into:

Λ(y1, y2, y3) =
exp
(
− 1

2
(y1 − s1 y2 − s2 y3 − s3)K

−1(y1 − s1 y2 − s2 y3 − s3)
T
)

exp
(
− 1

2
(y1 y2 y3)K−1(y1 y2 y3)T

)
(4.6)

Therefore the new test statistic comes down to the computation of Y K−1Y T for both

hypotheses (under H1 and under H0).

2. The Stationary Case

The inverse of the K matrix is equal to:

K−1 = 1/(det K)

⎛⎜⎜⎜⎜⎝
a2 − (d2)/2 (−ad)/(

√
2) + (df)/2 (d2)/2 − (af)/

√
2

(−ad)/
√

2 + (df)/2 a2 − (f 2/2 (−ad)/
√

2 + (df)/2

d2/2 − (af)/
√

2 (−ad)/
√

2 + (df)/2 a2 − (d2)/2

⎞⎟⎟⎟⎟⎠
Under H1, we then obtain:

Y K−1Y T =
1

det K

[
(a2 − d2

2
)(y1 − s1)

2 + (a2 − f 2

2
)(y2 − s2)

2 + (a2 − d2

2
)(y3 − s3)

2

+ 2(
df

2
− ad√

2
)(y1 − s1)(y2 − s2) + 2(

d2

2
− af√

2
)(y1 − s1)(y3 − s3)

+ 2(
df

2
− ad√

2
)(y2 − s2)(y3 − s3)

]
(4.7)

83

Under H0, we obtain:

Y K−1Y T =
1

det K

[
(a2 − d2

2
)y2

1 + (a2 − f 2

2
)y2

2 + (a2 − d2

2
)y2

3

+ 2(
df

2
− ad√

2
)y1y2 + 2(

d2

2
− af√

2
)y1y3 + 2(

df

2
− ad√

2
)y2y3

]
(4.8)

The Neyman-Pearson test statistic is then equal to:

Λ(y1, y2, y3) = (y − m)K−1(y − m)T − yK−1yT
H1

≷
H0

T (4.9)

After few obvious simplifications, one can easily obtain the following equation:

Λ(y1, y2, y3) =
1

2

(
2s1(a

2 − d2

2
) + 2s2(

df

2
− ad√

2
) + 2s3(

d2

2
− af√

2
)
)
y1

+
1

2

(
2s1(

df

2
− ad√

2
) + 2s2(a

2 − f 2

2
) + 2s3(

df

2
− ad√

2
)
)
y2

+
1

2

(
2s1(

d2

2
− af√

2
) + 2s2(

df

2
− ad√

2
) + 2s3(

a2

2
− d2

2
)
)
y3

+
1

2

(
s2
1(

d2

2
− a2) + s2

2(
f 2

2
− a2) + s2

3(
d2

2
− a2) + 2s1s2(

ad√
2
− df

2
)

+ 2s1s3(
af√

2
− d2

2
) + 2s2s3(

ad√
2
− df

2
)
)

(4.10)

It is interesting to notice that the Neyman-Pearson test statistic now looks like:

Λ = AY1 + BY2 + CY3 + D
H1

≷
H0

T (4.11)

One can also “push” the D term into the test statistic without affecting the final

result, obtaining the next expression:

Λ = AY1 + BY2 + CY3

H1

≷
H0

T ∗ (4.12)

where A,B and C are constant terms and where Y1 ∼ N (0, a), Y2 ∼ N (0, b) and

Y3 ∼ N (0, c). The next logical step is to find a solution to α = P (Λ < T |Noise) of

the test statistic. In order to do so, one needs to compute the variance σ2
Λ. Starting

84

from the definition of the variance, one can easily express the variance as a function

of a,d,f,A,B and C. The variance is then equal to:

σ2
Λ = E[Λ2] − E[Λ]2

= E[(AY 2
1 + BY 2

2 + CY 2
3)2] − E[AY 2

1 + BY 2
2 + CY 2

3]2

= A2E[Y 1
1] + B2E[Y 2

2] + C2E[Y 2
3] + 2ABE[Y1Y2] + 2ACE[Y1Y3]

+ 2BCE[Y2Y3]

= a(A2 + B2 + C2) + 2AB
d√
2

+ 2AC
f√
2

+ 2BC
d√
2

(4.13)

where E[Y1Y2]=d, E[Y1Y3]=e, E[Y2Y3]=f.

For the computation of the value of the threshold T̂ , one will employ nominal

values, chosen according to the following table:

Table VI. Nominal values for the stationary case

Point Value

a0 1.5

d0 2

f0 0.5

For α the computations are as follows:

α = Pr(Λ > T̂ |Noise)

=

∞∫
�T

1√
2πσ2

Λ

e
− y2

2σ2
Λ dy

=
1

2
− erf(

T̂

σΛ

) (4.14)

85

In order to get a value for the threshold T̂ , one needs to compute the nominal vari-

ance. Using the nominal values one can obtain σ2
Λ0

= 11.344. Replacing the nominal

variance by its value one will then obtain the threshold value, where α=0.05:

0.05 =
1

2
− erf(

T̂

3.3680
)

0.45 = erf(.2969045T̂)

or 0.2969045T̂ = 1.64399

T̂ = 5.5371 (4.15)

3. The Non-Stationary Case

For the non-stationary case, the inverse of the K matrix is then equal to:

K−1 = 1/(det K)

⎛⎜⎜⎜⎜⎝
bc − e2/2 ef/2 − (dc)/

√
2 (de)/2 − (bf)/

√
2

(ef)/2 − (cd)/
√

2 ac − f 2/2 (df)/2 − (ae)/
√

2

(de)/2 − (bf)/
√

2 (df)/2 − (ae)/
√

2 ab − d2/2

⎞⎟⎟⎟⎟⎠
This time, under H1, we obtain:

Y K−1Y T =
1

det K

[
(bc − e2

2
)(y1 − s1)

2 + (ac − f 2

2
)(y2 − s2)

2 + (
ef

2
− dc√

2
)(y3 − s3)

2

+ 2(
de

2
− bf√

2
)(y1 − s1)(y3 − s3) + 2(

ef

2
− dc√

2
)(y1 − s1)(y2 − s2)

+ 2(
df

2
− ae√

2
)(y2 − s2)(y3 − s3)

]
(4.16)

Also, under H0, we obtain:

Y K−1Y T =
1

det K

[
(bc − e2

2
)y2

1 + (ac − f 2

2
)y2

2 + (
ef

2
− dc√

2
)y2

3

+ 2(
de

2
− bf√

2
)y1y3 + 2(

ef

2
− dc√

2
)y1y2 + 2(

df

2
− ae√

2
)y2y3

]
(4.17)

86

The Neyman-Pearson test statistic then becomes:

Λ(y1, y2, y3) = (y − m)K−1(y − m)T − yK−1yT
H1

≷
H0

T (4.18)

Using the previous simplifications, one can easily obtain the following equation:

Λ(y1, y2, y3) =
(
2s1(bc − e2

2
) + 2s2(

ef

2
− dc√

2
) + 2s3(

de

2
− bf√

2
)
)
y1

+
(
2s1(

ef

2
− dc√

2
) + 2s2(ac − f 2

2
) + 2s3(

df

2
− ae√

2
)
)
y2

+
(
2s1(

de

2
− bf√

2
) + 2s2(

df

2
− ae√

2
) + 2s3(

ab

2
− d2

2
)
)
y3

+
(
s2
1(

e2

2
− bc) + s2

2(
f 2

2
− ac) + s2

3(
d2

2
− ab) + 2s1s3(

bf√
2
− de

2
)

+ 2s1s2(
dc√
2
− ef

2
) + 2s2s3(

ae√
2
− df

2
)
)

(4.19)

The Neyman-Pearson test statistic for the non-stationary case looks like the following

equation:

Λ = AY1 + BY2 + CY3 + D
H1

≷
H0

T (4.20)

Again, “pushing” the D term into the test statistic, the final result will not be affected.

Therefore:

Λ = AY1 + BY2 + CY3

H1

≷
H0

T ∗ (4.21)

where A,B and C are constant terms and where Y1 ∼ N (0, a), Y2 ∼ N (0, b) and

Y3 ∼ N (0, c). The next logical step is to compute a solution to α = P (Λ < T |Noise)

for the test statistic. One will again need to compute the nominal variance σ2
Λ:

σ2
Λ = E[Λ2] − E[Λ]2

= E[(AY 2
1 + BY 2

2 + CY 2
3)2] − E[AY 2

1 + BY 2
2 + CY 2

3]2

= aA2 + bB2 + cC2 + 2AB
d√
2

+ 2AC
f√
2

+ 2BC
e√
2

(4.22)

87

where E[Y1Y2]=d, E[Y1Y3]=e, E[Y2Y3]=f.

B. Matching ε2D and ε5D

For two-dimensional surfaces embedded in R3, there are two kinds of curvature: Gaus-

sian curvature and Mean curvature. To compute these at a given point of the surface,

one needs to consider the intersection of the surface with a plane containing a fixed

normal vector at the point. This intersection is a plane curve and has a curvature. If

we vary the plane, this curvature will change. Furthermore, there are two extremal

values - the maximal and the minimal curvature, called the principal curvatures, k1

and k2, the extremal directions are called principal directions. Here we adopt the

convention that a curvature is taken to be positive if the curve turns in the same

direction as the surface’s chosen normal, otherwise negative.

The Gaussian curvature [39], named after Carl Friedrich Gauss, is equal to the

product of the principal curvatures, k1*k2. It is positive for spheres, negative for one

sheet hyperboloids, and zero for planes. It determines whether a surface is locally

convex (when it is positive) or locally saddle (when it is negative).

The above definition of Gaussian curvature is extrinsic in that it uses the surface’s

embedding in R3, normal vectors, external planes etc. Gaussian curvature is, however,

in fact an intrinsic property of the surface. This means it does not depend on the

particular embedding of the surface. Intuitively, this means that ants living on the

surface could determine the Gaussian curvature. Formally, Gaussian curvature only

depends on the Riemannian metric of the surface (see [40]).

The matching of the values of ε is necessary to enable one to compare the obtained

results. This can be done by looking at the average Gauss-Kronecker curvature over

88

a surface. The curvature at a point on a manifold is given by:

Kn = λ1...λn (4.23)

where n is the dimension of the manifold and the λi are the principle curvatures. The

average curvature is then equal to:

Kn,Av =

∫
M

KndVn

volume M
(4.24)

where the volume is actually the “surface area” of the surface parameter. Since the

curvature is an n-dimensional concept (Kn =
n∏

i=1

λi), we can equate:

(K5,Av)
1/5 = (K2,Av)

1/2 (4.25)

Since n=5 has m5 = sphere of radius
√

ε5, we have Kn = (1√
ε5

)5, so:

K5,Av =

∫
m5

ε
−5/2
5 dV5

volume m5

=
ε
−5/2
5

∫
m5

dV5

volume m5

=
ε
−5/2
5 volume m5

volume m5

= ε
−5/2
5 (4.26)

For the two dimensions, we have to use the Gauss-Bonnet theorem [41, 42, 43] because

the manifold is non spherical. The Gauss-Bonnet theorem in differential geometry is

an important statement about surfaces which connects their geometry (in the sense

of curvature) to their topology (in the sense of the Euler characteristic).

Suppose M is a compact two-dimensional orientable Riemannian manifold with

boundary ∂M . Denote by K the Gaussian curvature at points of M, and by kg the

89

geodesic curvature at points of ∂M . Then, the Gauss-Bonnet yields:∫
M

KdA +

∫
∂M

kgdS = 2πχ(M) (4.27)

where χ(M) is the Euler characteristic of M.

The theorem applies in particular if the manifold does not have a boundary, in

which case the integral
∫

∂M
kg ds can be omitted. Therefore, for two dimensions:

χ(M) =
1

2π

∫
M2

K2dV2 (4.28)

Since M2 (2 dimension ellipsoid) is diffeomorphic to a 2-sphere, χ(M2) = 2, thus:

2 =
1

2π

∫
M2

K2dV2 (4.29)

or

4π =

∫
M2

K2dV2 (4.30)

Also, we know that:

K2,Av =

∫
M2

K2dV2

vol M2

=
4π

vol M2

=
4π

surface area of (3a2 + 2d2 + f 2 = ε2)

=
4π

A2(ε2)
(4.31)

Finally we obtain:

(ε
−5/2
5)1/5 = (

4π

A2(ε2)
)1/2 (4.32)

or

ε5 =
A2(ε2)

4π
(4.33)

where A2(ε2) is the surface area of 3a2 + 2d2 + f 2 = ε2.

90

C. Surface Area

If we express the surface area as a function of f, we have:

f = (ε − 3a2 − 2d2)1/2 (4.34)

So we have for 1/2 of the area:

1

2
area =

∫
(a,b)

∫
region

√
1 + (

∂f

∂a
)2 + (

∂f

∂d
)2dadd (4.35)

The (a,b) region is {(a, b) : ε = 3a2 + 2d2}. If one wants to quickly verify the results,

one can use, for example, the geometric mean and approximate the ellipsoid into a

sphere of radius r = (
√

ε.
√

ε/2.
√

ε/3)1/3. The total area being equal to 4πr2.

So, one has:

1

2
area =

√
ε/3∫

−
√

ε/3

�
ε−3a2

2∫
−
�

ε−3a2

2

√
1 + (

∂f

∂a
)2 + (

∂f

∂d
)2dadd (4.36)

After few simplifications, one will obtain:

1

2
area =

√
ε/3∫

−
√

ε/3

�
ε−3a2

2∫
−
�

ε−3a2

2

√
6a2 + 2d2 + ε

−3a2 − 2d2 + ε
dadd (4.37)

If ε = 0.05, for example, one gets 1/2 area equals to 3.16.

D. Weighting Factors and Point Selection

For the stationary case, with f as a function of a and d one has for the weighting

factor:

Weighting Factor =

√
(1 + (

∂f

∂a
)2 + (

∂f

∂d
)2) (4.38)

91

So after few simplifications, one has:

Weighting Factor =
[ε + 6(a − a0)

2 + 2(d − d0)
2

ε − 3(a − a0)2 − 2(d − d0)2

]1/2

(4.39)

One should note that the weighting factor is independent of f, so if one decides to

compute the upper half of f = f0 ± (...)1/2, one will get the same weighting factor for

the lower part (a,d) too.

For the points selection, let’s again express f as a function of (a,d). Remember

that it does not matter which side we choose (upper or lower part of the ellipsoid in

R3) because the weighting factor will equalize (independent of f). Hence, using the

Frobenius norm one has:

f = f0 + (ε − 3(a − a0)
2 − 2(d − d0)

2)1/2 (4.40)

For the point selection, we will first need to shift the center of the ellipsoid at the

origin. we then will have â = a − a0, d̂ = d − d0 and f̂ = f − f0. Inside the (â, d̂)

plane (where f̂ = 0), we will have:

3â2 − 2d̂2 < ε (4.41)

The previous equation is represented in figure 49. The grid needs to be at the interior

of the ellipse allowing one to find sets of (â, d̂) points. From this, the next step is to

get the (a,d) points via a = â + a0 and d = d̂ + d0. Then using equation 4.40 to get

f, one can produce sets of (a,d,f) points for the upper half of the ellipsoid. The same

procedure is used to produce sets of points for the lower part of the ellipsoid.

For the non-stationary case, the point assignment and the weighting factor are

done simultaneously (for a sphere in 6D). One will first start with a sphere in 3D and

then expand our reasoning to a sphere in 6D. For a sphere in 3D, centered at the

92

2

ε

3

ε

â

d̂

Fig. 49. Selection of the sets of points for the stationary case

origin, one has (see figure 50) a radius in the (x1, x2) plane of
√

ε cos φ2. Hence:

x1 = (cos φ1)
√

ε cos φ2 =
√

ε cos φ2 cos φ1

x2 = (sin φ1)
√

ε cos φ2 =
√

ε cos φ2 sin φ1

x3 =
√

ε sin φ2 (4.42)

where 0 ≤ φ1 < 2π and −π/2 ≤ φ2 ≤ π/2.

The weighting factor is then equal to the surface area element for the sphere

in polar coordinates (see figure 51). As φ2 is incremented by dφ2, it introduces an

increment in latitude of
√

εdφ2. As φ1 is incremented, it induces an increment in

longitude of (
√

ε cos φ2)dφ1. After noticing that all the increments are orthogonal,

the surface area element is equals to:

Surface area element =
√

εdφ2

√
ε cos φ2dφ1

= ε cos φ2dφ1dφ2 (4.43)

93

2φ

1φ

1x

2x

3x

ε

Fig. 50. Selection of the sets of points for the non-stationary case

1φ

2φ

V

1x

2x

3x

Radius =
2cosφε

Fig. 51. The selection of the sets of points using polar coordinates for the non-station-

ary case

94

The weighting factor for the sphere in 3D then becomes:

Weighting factor 3D = ε| cos φ2| (4.44)

Now, one needs to expand the previous approach to a sphere in 4D. Therefore, one

will need to project down into the (x1, x2, x3) space, where the vector
−→
V is at the angle

in 4D of φ3 with respect to the (x1, x2, x3) space. Thus the “radius” in (x1, x2, x3) is

no longer
√

ε but
√

ε cos φ3. One hence obtain:

x1 = (
√

ε cos φ3) cos φ2 cos φ1 =
√

ε cos φ3 cos φ2 cos φ1

x2 =
√

ε cos φ3 cos φ2 sin φ1

x3 =
√

ε cos φ3 sin φ2

x4 =
√

ε sin φ3 (4.45)

where 0 ≤ φ1 < 2π, −π/2 ≤ φi ≤ π/2, for i = 2,3. Now, the surface area element is

equal to a surface area element of a sphere in 3D with radius
√

ε cos φ3 times
√

εdφ3.

Hence:

Surface area element = (
√

εdφ3)(
√

ε cos φ3dφ2)(
√

ε cos φ3 cos φ2dφ1)

= ε3/2 cos2 φ3 cos φ2dφ1dφ2dφ3 (4.46)

The weighting factor for the 4D sphere then becomes:

Weighting factor 4D = ε3/2 cos2 φ3| cos φ2| (4.47)

95

Now, with inductive reasoning, for a sphere in 5D we have:

x1 =
√

ε cos φ4 cos φ3 cos φ2 cos φ1

x2 =
√

ε cos φ4 cos φ3 cos φ2 sin φ1

x3 =
√

ε cos φ4 cos φ3 sin φ2

x4 =
√

ε cos φ4 sin φ3

x5 =
√

ε sin φ4 (4.48)

where 0 ≤ φ1 ≤ 2π and −π/2 ≤ φi ≤ π/2, i = 2,3,4. The surface area element is

then equal to:

Surface area element =
√

εdφ4(surface area element of

4D sphere with radius
√

ε cos φ4)

=
√

εdφ4(
√

ε cos φ4)
3 cos2 φ3| cos φ2|dφ1dφ2dφ3 (4.49)

The weighting factor of a sphere in 5D is then equal to:

Weighting factor 5D = ε2| cos3 φ4 cos2 φ3 cos φ2| (4.50)

The same reasoning is applied to a sphere in 6D. We then obtain:

x1 =
√

ε cos φ5 cos φ4 cos φ3 cos φ2 cos φ1

x2 =
√

ε cos φ5 cos φ4 cos φ3 cos φ2 sin φ1

x3 =
√

ε cos φ5 cos φ4 cos φ3 sin φ2

x4 =
√

ε cos φ5 cos φ4 sin φ3

x5 =
√

ε cos φ5 sin φ4

x6 =
√

ε sin φ5 (4.51)

96

where 0 ≤ φ1 ≤ 2π and −π/2 ≤ φi ≤ π/2, i = 2,3,4,5. The weighting factor of a

sphere in 6D is then equal to:

Weighting factor 6D = ε5/2| cos4 φ5 cos3 φ4 cos2 φ3 cos φ2| (4.52)

The procedure to pick the points is as follows: First partition φ1 from 0 to 2π and

partition the other angles φ2 to φ5 from −π/2 to π/2 yielding points (φ1, φ2, φ3, φ4, φ5).

Then, one should use the following transformation: a = x1 + a0, b = x2 + b0, c =

x3 + c0,d = x4 + d0, e = x5 + e0 and f = x6 + f0. One will then use these to evaluate

the partial derivatives ∂d/∂a, etc... and finally compute the weighting factor from

(φ2, φ3, φ4, φ5) associated with the points.

E. Directional Derivatives

The computations of the directional derivative (D−→
X

h) =
√
∇hG−1∇hT depends di-

rectly on the approach used, but does not depend on the choice of the coordinates

(provided the underlying manifold remains fixed). However, this follows from the

classical interpretation of directional derivative as a limit of ∇h over the arc length,

where the answer computes to be independent of the curve chosen as long as the

tangent to the curve at P is fixed.

When one uses the stationary approach, the gradient of three variables embedded

into 2D becomes (the parameter surface is defined as c=c(a,b)):

∂

∂a
= (1, 0,

∂f

∂a
) (4.53)

∂

∂d
= (0, 1,

∂f

∂b
) (4.54)

97

Inheriting the inner product from R3

g11 = 1 + (
∂c

∂a
)2 (4.55)

g22 = 1 + (
∂c

∂b
)2 (4.56)

g12 = g21 =
∂c

∂a
.
∂c

∂b
(4.57)

We then remark that this choice of coordinates is for convenience, and the same result

will be obtained for an alternative choice. Thus, the result is without bias. If the

performance function is P = h(a, b, c) ≡ h(a, b), we then obtain:

(
D−→

X
h
)∣∣∣

Extreme
=

√
∇hG−1∇hT (4.58)

∇h =
(∂h

∂a

∂h

∂b

)
(4.59)

and finally:

G =

⎛⎜⎝ g11 g12

g21 g22

⎞⎟⎠
On the other side, the gradient of six variables embedded into 5D becomes (the

parameter surface is defined as f(a,b,c,d,e)):

∂

∂a
= (1, 0, 0, 0, 0,

∂f

∂a
) (4.60)

∂

∂b
= (0, 1, 0, 0, 0,

∂f

∂b
) (4.61)

∂

∂c
= (0, 0, 1, 0, 0,

∂f

∂c
) (4.62)

∂

∂d
= (0, 0, 0, 1, 0,

∂f

∂d
) (4.63)

∂

∂e
= (0, 0, 0, 0, 1,

∂f

∂e
) (4.64)

98

Inheriting the inner product from R6

g11 = (
∂f

∂a
,
∂f

∂a
) = 1 + 02 + 02 + 02 + 02 + (

∂f

∂a
)2 (4.65)

g12 = (
∂f

∂a
,
∂f

∂b
) =

∂f

∂a

∂f

∂b
(4.66)

g13 = (
∂f

∂a
,
∂f

∂c
) =

∂f

∂a

∂f

∂c
(4.67)

... (4.68)

g22 = (
∂f

∂b
,
∂f

∂b
) = 1 + (

∂f

∂a
)2 + 02 + 02 + 02 + 02 (4.69)

where

G =

⎛⎜⎜⎜⎜⎝
g11 · · · g15

...
. . .

...

g51 · · · g55

⎞⎟⎟⎟⎟⎠
Note:

∇h = (
∂α

∂a
,
∂α

∂b
, . . . ,

∂α

∂e
) (4.70)

F. Results

The results are obtained using two different signal vectors (a small one and a large

one), and two different types of correlations (positive and negative). They are com-

bined with two different values of ε (one close to εmax and a smaller value of ε)

allowing us to generate eight examples of gradient distributions for the stationary

and non-stationary cases superimposed.

In each case, the results are obtained using a bin-size of 5∗10−3. For each graph,

we were forced to represent the normalized values of each sample densities because

of the scaling effect on the results that ε5D (non-stationary approach) has. Note that

the distribution shapes are similar; we urge the reader to resist the temptation to

draw comparative conclusions between non-stationary and stationary at this point.

99

Table VII. All the different cases scenario for both stationary and non-stationary

Case a0 d0 f0 s1 s2 s3 ε2D ε5D

1 1.5 3/4 1/2 1 1/4 1/8 1.05 0.60

2 1.5 3/4 1/2 1 1/4 1/8 0.15 0.0857

3 1.5 3/4 1/2 2 1.5 1.75 1.05 0.60

4 1.5 3/4 1/2 2 1.5 1.75 0.15 0.0857

5 1.5 -3/4 1/2 1 1/4 1/8 1.05 0.60

6 1.5 -3/4 1/2 1 1/4 1/8 0.15 0.0857

7 1.5 -3/4 1/2 2 1.5 1.75 1.05 0.60

8 1.5 -3/4 1/2 2 1.5 1.75 0.15 0.0857

The value of εmax represents the maximum value that ε can take and still generate

only sets of positive definite points. For the stationary case, we have ε2Dmax = 1.092.

The corresponding value of ε5Dmax is equal to 0.6238. The two values used for the

simulations are ε2Dupper = 1.05 and ε2Dlower = 0.15. The corresponding values of ε5D

are respectively 0.6 and 0.0857.

For each sample density, its mean and variance are calculated. This is expected

to allow us to state on the measure of robustness. All the results are presented

in figures 52, 53, 54, 55, 56, 57, 58 , 59 and for a very small value of ε in figure

60. One of the requirements for all those sample densities is the need for positive

definiteness for all sets of points. Each corresponding G matrix formed with those

points has the particularity of being real and symmetrical forming an Hermitian

100

Table VIII. Means and variances for each case scenario for both the stationary and

non-stationary approach

Stationary Non-Stationary

Case Mean Variance Mean Variance

case 1 2.16 ∗ 10−2 4.6 ∗ 10−4 3.21 ∗ 10−2 1.03 ∗ 10−3

case 2 2.51 ∗ 10−2 6.3 ∗ 10−4 3.83 ∗ 10−2 1.46 ∗ 10−3

case 3 2.12 ∗ 10−2 4.5 ∗ 10−4 3.61 ∗ 10−2 1.31 ∗ 10−3

case 4 2.73 ∗ 10−2 7.5 ∗ 10−4 4.31 ∗ 10−2 1.85 ∗ 10−3

case 5 1.75 ∗ 10−2 3.1 ∗ 10−4 2.74 ∗ 10−2 0.75 ∗ 10−3

case 6 2.05 ∗ 10−2 4.2 ∗ 10−4 3.21 ∗ 10−2 1.03 ∗ 10−3

case 7 1.37 ∗ 10−2 1.9 ∗ 10−4 2.36 ∗ 10−2 0.56 ∗ 10−3

case 8 1.73 ∗ 10−2 2.9 ∗ 10−4 2.71 ∗ 10−2 0.73 ∗ 10−3

101

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 52. Sample densities for the 3 sample example: case 1

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 53. Sample densities for the 3 sample example: case 2

102

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 54. Sample densities for the 3 sample example: case 3

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 55. Sample densities for the 3 sample example: case 4

103

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 56. Sample densities for the 3 sample example: case 5

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 57. Sample densities for the 3 sample example: case 6

104

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 58. Sample densities for the 3 sample example: case 7

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 59. Sample densities for the 3 sample example: case 8

105

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 60. Representation of the effect of a very small value of ε (ε = 10−3) on the sample

density

matrix. The Hermitian matrix has special properties that could be used by one to

verify that the sets of points are positive definite. One would only need to compute

all the eigenvalues, knowing that if all the eigenvalues are positive, then the matrix is

positive definite. Note that any not-positive definite sets of points are automatically

ignored by the simulation.

1. Median, Mode And Confidence Bounds

While the distribution shapes such as Fig. 58 and 59 can be intriguing, it is not readily

apparent how best to utilize them so as to address the fundamental question, “Is the

stationary case more robust than the non-stationary?” This situation is complicated

by the differing dimensionality that leads to the creation of the distributions. While

there are admittedly many ways one might use the distributions to evoke an answer,

we recommend one in particular. Since what we mean by robustness is related to

106

stability of “performance” (which is, for these examples, false alarm probability α),

it might prove useful to the user to provide a bound on the change in performance as

the covariance moves about the parameter surface. By making this surface very close

to the nominal by controlling ε to be small, such a bound could be arbitrarily reduced.

The comparison between stationary and non-stationary would thus translate into a

comparison of the relative size of ε required to constrain the change in α (i.e ∆α) to

be no more than a certain amount (i.e. 10% of the design goal of α=0.05). Since for

both the non-stationary and stationary case the corresponding parameter surface is

just a model of a
√

ε-ball in a metric space of matrices, the dimensionality issue is

alleviated. To compute such a bound one simply employes a ninety percent confidence

bound on the slope (calculated from the appropriate distribution) and then multiplies

by the maximum distance one can travel between any two points on the parameter

surface, which is a 2-D ellipsoid for the stationary case and a 5-D sphere for the

non-stationary case. Since these distances (which even for the ellipsoid case, can be

easily computed – see following section) involve ε, the result will lead to a maximal

epsilon compatible with a specified ∆α (in per cent) at ninety percent confidence.

The introduction of the notions of median, mode and confidence bound will also help

in the making of the decision on the robustness of the detection scheme.

In statistics, the mode is the value that has the largest number of observations,

namely the most frequent value or values. The mode is not necessarily unique, unlike

the arithmetic mean [44]. In probability theory and statistics, the median is a number

that separates the highest half of a sample, a population, or a probability distribution

from the lowest half. More precisely half of the population will have values less than

or equal to the median and half of the population will have values equal to or greater

than the median [44].

A confidence bound is, for example, if X is a 90 percent upper one-sided bound,

107

Table IX. Means, variances, medians, standard deviation, mode and 90 and 75 per-

centile for each case scenario for the stationary case

Case Mean Variance Median Mode 90% 75%

case 1 2.16 ∗ 10−2 4.66 ∗ 10−4 0.01 0.0025 0.045 0.04

case 2 2.51 ∗ 10−2 6.28 ∗ 10−4 0.025 0.0025 0.045 0.04

case 3 2.13 ∗ 10−2 4.53 ∗ 10−4 0.005 0.0025 0.055 0.04

case 4 2.74 ∗ 10−2 7.50 ∗ 10−4 0.025 0.0025 0.05 0.045

case 5 1.75 ∗ 10−2 3.06 ∗ 10−4 0.005 0.0025 0.04 0.03

case 6 2.05 ∗ 10−2 4.12 ∗ 10−4 0.02 0.0025 0.035 0.03

case 7 1.37 ∗ 10−2 1.89 ∗ 10−4 0.005 0.0025 0.035 0.025

case 8 1.73 ∗ 10−2 2.99 ∗ 10−4 0.015 0.0025 0.03 0.025

this would imply that ninety percent of the population is less than X. If X is a

ninety percent lower one-sided bound, this would indicate that ninety percent of the

population is greater than X. For the following results, we used a ninety percent

confidence bound that is an upper one sided bound (ninety percent of the area under

the curve that is represented by the sample density is on the left of that limit) [45].

The median, mode, and ninety percent confidence bound are recalculated for all

the previous simulations. A summary of the results are presented in tables IX and

X.

108

Table X. Means, variances, medians, standard deviation, mode and 90 and 75 per-

centile for each case scenario for the non-stationary case

Case Mean Variance Median Mode 90% 75%

case 1 3.21 ∗ 10−2 1.03 ∗ 10−3 0.03 0.0025 0.065 0.055

case 2 3.83 ∗ 10−2 1.46 ∗ 10−3 0.04 0.0525 0.055 0.05

case 3 3.62 ∗ 10−2 1.31 ∗ 10−3 0.03 0.0025 0.075 0.06

case 4 4.31 ∗ 10−2 1.85 ∗ 10−3 0.045 0.0575 0.060 0.055

case 5 2.74 ∗ 10−2 7.529 ∗ 10−4 0.025 0.0025 0.055 0.045

case 6 3.21 ∗ 10−2 1.03 ∗ 10−3 0.035 0.0425 0.045 0.040

case 7 2.36 ∗ 10−2 5.584 ∗ 10−4 0.02 0.0025 0.045 0.040

case 8 2.71 ∗ 10−2 7.3174 ∗ 10−4 0.025 0.0375 0.035 0.035

109

επ

Fig. 61. Maximum distance between two points for the stationary case

2. Total Amount of Change in α

The total amount of change in α is the measure that will make a scheme robust or

not. For both approaches, the stationary and non-stationary scheme, it is the maxi-

mum distance between two perturbations multiplied by the ninety percent confidence

bound. It is the ability of one to surely state, with ninety percent confidence, that

the scheme is robust or not. In order to do so, the total amount of change in α needs

to be less than ten percent. Therefore we should have:

∆α ≤ 0.005 (4.71)

a. Maximum Distance for the Stationary Case

The maximum distance between two perturbations (sphere in 3D) for the stationary

approach is equal to π
√

ε and is represented in figure 61. Hence the total amount of

change in α is then equal to:

∆α = π
√

ε(90%) (4.72)

110

b. Maximum Distance for the Non-Stationary Case

The maximum distance between two perturbations (ellipsoid of non circular radius)

is a little more difficult to compute. We first need to compute the maximum distance

between two points in a ellipse of equation f 2 + 2d2 = ε (see figure 62).

Max distance =

√
ε
2∫

−
√

ε
2

√
1 + (

∂f

∂d
)2dd (4.73)

This integral is called an elliptic integral and can be numerically computed [46]. In

integral calculus, elliptic integrals originally arose in connection with the problem of

giving the arc length of an ellipse and were first studied by Fagnano and Leonhard

Euler. In the modern definition, an elliptic integral is any function f which can be

expressed in the form:

f(x) =

∫ x

c

R(t, P (t))dt (4.74)

where R is a rational function of its two arguments, P is the square root of a poly-

nomial of degree three or four (a cubic or quartic) with no repeated roots, and c is

a constant. In general, elliptic integrals cannot be expressed in terms of elementary

functions. Exceptions to this are when P has repeated roots, or when R(x,y) con-

tains no odd powers of y. However, with appropriate reduction formula, every elliptic

integral can be brought into a form that involves integrals over rational functions,

and the three canonical forms (i.e. the elliptic integrals of the first, second and third

kind).

The partial derivative of f with respect to d is equal to:

∂f

∂d
=

−2d√
ε − 2d2

(4.75)

111

ε

2

ε

Fig. 62. Maximum distance between two points for the non-stationary case

Hence, the total amount of change in α is equal to:

∆α = 2

√
ε
2∫

0

√
1 + (

∂f

∂d
)2dd(90%)

= 2

√
ε
2∫

0

√
1 + (

−2d√
ε − 2d2

)2dd(90%) ≤ 0.005 (4.76)

One might want to verify his or her results using an approximation (using the geo-

metric mean and a circle instead of an ellipsoid for the shape). The approximation

can be found to be equal to 0.84π
√

ε.

3. The Effect of α, Signal Vector and Correlation

From the previous results, it is easy to realize that the smaller the value of ε is, the

less amount of change in α that will be available. This rises a question: What would

be the maximum value of ε that could guaranty an amount of change in α smaller

than ten percent? In other words: How much confidence can we have in α and still

be sure that the detection scheme will be robust?

112

Table XI. Maximum value of α that would guarantee a maximum total amount of

change of less than 10%

ε2D ε5D

1.00 ∗ 10−3 0.95 ∗ 10−3

It is obvious that the robustness problem boils down to the knowledge of α.

The amount of confidence put into the selection of α will very much affects the final

decision. The upper limits for α that would guarantee a maximum of ten percent in

the total amount of change in α is summarized in table XI.

The next important issue is the effect of the signal vector and the type of correla-

tion used (positive or negative) on the results. The results are summarized in tables

XII and XIII and are represented in figures 63 and 64. From all the simulations

run (figures 65 to 70), it appears that the combination of positive correlation and

strong signal vector generates the highest ∆α. Also, the combination of a negative

correlation and a weak signal generates the weakest ∆α.

Note that if one selects a slightly higher value of ε5D the results will show three

of the four values of ∆α bigger than 0.005. In order to have all four values of ∆α

bigger than 0.005, one needs to set ε5D equals to a minimum of 3.80 ∗ 10−3 and to set

ε2D equals to a minimum of 1.27 ∗ 10−4.

Note that if we compare table XIV to table XV for each corresponding case, the

ε value for table XIV is always greater than or equal to that for table XV. Thus, less

deviation from the nominal is allowed for the non-stationary case and it can therefore

be judged to be less robust (although the differences are small). While the presence

of non-stationary data compromises robustness, the amount of compromise is not

113

Table XII. The effect of signal and correlation on the value of ∆α for the non-station-

ary case

case ε5D a0 = b0 = c0 d0 = e0 f0 s1 s2 s3 90% ∆α

1 1.35 ∗ 10−3 1.5 3
4

1
2

2 1.5 1.75 0.050 4.95 ∗ 10−3

2 1.35 ∗ 10−3 1.5 -3
4

1
2

2 1.5 1.75 0.030 2.97 ∗ 10−3

3 1.35 ∗ 10−3 1.5 3
4

1
2

1 1
4

1
8

0.045 4.455 ∗ 10−3

4 1.35 ∗ 10−3 1.5 -3
4

1
2

1 1
4

1
8

0.040 3.96 ∗ 10−3

Table XIII. The effect of signal and correlation on the value of ∆α for the stationary

case

case ε2D a0 = b0 = c0 d0 = e0 f0 s1 s2 s3 90% ∆α

1 1.00 ∗ 10−3 1.5 3
4

1
2

2 1.5 1.75 0.0525 4.96 ∗ 10−3

2 1.00 ∗ 10−3 1.5 -3
4

1
2

2 1.5 1.75 0.0325 2.98 ∗ 10−3

3 1.00 ∗ 10−3 1.5 3
4

1
2

1 1
4

1
8

0.0425 3.97 ∗ 10−3

4 1.00 ∗ 10−3 1.5 -3
4

1
2

1 1
4

1
8

0.0355 3.47 ∗ 10−3

114

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

case 1

case 2

case 3

case 4

Fig. 63. Representation of the effect of the signal vector and the type of correlation

for the stationary case

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

case 1

case 2

case 3

case 4

Fig. 64. Representation of the effect of the signal vector and the type of correlation

for the non-stationary case

115

Table XIV. The values of ε2D for the stationary case

case ∆α < 5% ∆α < 10% ∆α < 25% ∆α < 50%

1 2.5 ∗ 10−4 1.0 ∗ 10−3 6.3 ∗ 10−3 2.25 ∗ 10−2

2 7.05 ∗ 10−4 2.85 ∗ 10−3 1.75 ∗ 10−2 6.85 ∗ 10−2

3 4.0 ∗ 10−4 1.5 ∗ 10−3 9.9 ∗ 10−3 3.9 ∗ 10−2

4 5.2 ∗ 10−4 2.2 ∗ 10−3 1.3 ∗ 10−2 5.2 ∗ 10−2

Table XV. The values of ε5D for the non-stationary case

case ∆α < 5% ∆α < 10% ∆α < 25% ∆α < 50%

1 2.5 ∗ 10−4 8.5 ∗ 10−4 6.3 ∗ 10−3 2.05 ∗ 10−2

2 7.0 ∗ 10−4 2.8 ∗ 10−3 1.75 ∗ 10−2 4.98 ∗ 10−2

3 3.2 ∗ 10−4 1.25 ∗ 10−3 7.8 ∗ 10−3 2.55 ∗ 10−2

4 4.0 ∗ 10−4 1.6 ∗ 10−3 1.00 ∗ 10−2 4.0 ∗ 10−2

116

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 65. Effect of ε on the location of the sample densities: case 1

large and may be considered acceptable - in view of the convenience in practice the

assumption of stationarity offers.

G. Extension to N-Samples: Larger Sample Sizes

The aforementioned work has not only presented a versatile method for investigating

robustness for a variety of applications, but has also addressed the specific question

of the non-stationarity in the detection context. As might have been expected, the

admission of non-stationarity data has been seen to compromise robustness, but as

perhaps not expected, the degree of compromise is quite small in all cases considered.

Another obvious question of interest concerns what happens to robustness as sample

sizes increase. In many domains of statistical analysis, larger sample sizes make life

easier and more convenient; one has laws of large numbers and central limit results.

But one could also argue that the larger sample sizes imply larger covariance matrices,

117

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 66. Effect of ε on the location of the sample densities: case 2

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stationary

Non Stationary

Fig. 67. Effect of ε on the location of the sample densities: case 3

118

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 68. Effect of ε on the location of the sample densities: case 4

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Non Stationary

Stationary

Fig. 69. Effect of ε on the location of the sample densities: case 5

119

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stationary

Non Stationary

Fig. 70. Effect of ε on the location of the sample densities: case 6

with more opportunities for things to go wrong. In order to investigate the effect of

sample size in robustness, we have considered an example which is not fully general

so as to be tractable with many samples.

Consider the detection of signals in multi-variable Gaussian noise with an affine

detector, with test statistic
n∑

i=1

yi compared to a threshold. The noise is assumed to

be zero mean with covariance matrix of form:

C(a,c) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a c · · · 0

c a

a c

... c a
...

. . .

a c

0 · · · c a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

120

i.e., all zero off the diagonal blocks, and where the number of samples n are even.

This type of matrix has been popular with various researchers and has been used

quite recently in genomic work. Analogous work can be found in [47]. Note that this

implies σ2
Λ = E{∑

ij

NiNj} = na + nc; and the parameter surface is given by:

∥∥∥C(a,c) − C(a0,c0)

∥∥∥ = n(a − a0)
2 + n(c − c0)

2 = εn (4.77)

i.e., (a− a0)
2 + (c− c0)

2 = εn/n. This is a one dimensional manifold, in part, a circle

of radius
√

εn/n centered on (a0, c0). Using “a” as the single coordinate, we have:
√
∇hG−1∇hT =

√
(∂α/∂a)g−1

11 (∂α/∂a) = |∂α/∂a|(g11)
−1/2 where:

g11 = 〈 ∂

∂a
,

∂

∂a
〉 = 1 + (

∂c

∂a
)2 (4.78)

In addition, for ∂α/∂a we use equation 3.57 with (∂σ2
Λ)/∂a = n + n ∗ ∂c/∂a =

n(1 + ∂c/∂a) and since c is related to a via the circle, we have:

∂c

∂a
=

∂

∂a
(c0 +

√
εn − n(a − a0)2

n
)

=
∂

∂a
(c0 +

√
εn/n − (a − a0)2)

=
1

2
(εn/n − (a − a0)

2)−1/2(−2)(a − a0)

=
∓(a − a0)√

εn/n − (a − a0)2)
(4.79)

To compute gradient distributions, point selection is readily obtained on the circle

through regular subdivision of the polar angle, with unity weighting factor. Numerous

examples were obtained, with all having he same shape as indicated in figure 71, with

(a0, c0)=(1,1/2), ε=1/8 and threshold chosen for (nominally) α = 5∗10−3. To compare

the distribution shapes as sample size n varies, we matched the εn so that the “size”

of the parameter manifold stays constant, i.e. εn/n is held constant (see Fig. 72).

For convenience, this is done by setting εn = nε, where ε is chosen small enough to

121

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n=2

n=4

n=6

n=10

n=14

n=20

Fig. 71. Effect of an increase in sample size

guarantee that all points on the manifold satisfy the positive definite requirement.

As one can see, gradient tends to increase with increasing sample size; however the

effect is not dramatic for n ≥ 14. We thus can conclude that larger sample sizes do

indeed compromise robustness, but this compromise asymptotes around n=14.

H. Conclusion

The chapter illustrates how, for example, gradient can be regarded as a random

variable and an empirical distribution generated by means of a density histogram,

allowing conclusions regarding robustness to be drawn from statistical metrics such

as median an confidence bounds. In order for one to be able to surely state on the

robustness of a scheme requires the computation of ∆α. This ∆α is very dependent

on the value of ε and is therefore directly related to the confidence one has in the

covariance matrix. For example, the more confidence one has in the covariance matrix,

122

n
nε

Fig. 72. Matching εn

the closer from the nominal values one will work, and the more robust the scheme

might be.

This chapter also proves to go against all expected results. One legitimately

could have been expecting the simulations would prove that the stationary scheme

to be much more robust (due to fact that there is more constraint on the stationary

approach than the non-stationary). The results show that if one compares stationary

to non-stationary noise, robustness is reduced by admitting non-stationarity. The

effect, however is not dramatic, and so little may be lost by assuming the convenient

stationarity. This chapter shows the dependency of the measure of robustness on the

signal vector, the sign of the correlation and ε. In addition, it shows that robustness

decreases with larger sample sizes, but that saturation in this decrease occurs for

sample sizes greater than 14.

123

CHAPTER V

A QUANTITATIVE ROBUSTNESS COMPARISON FOR SIGNAL DETECTION:

NON-GAUSSIAN TAIL EFFECTS VERSUS RESIDUAL DEPENDENCY

In this chapter we investigate the effect of tail uncertainty on detector robustness

through the use of a non-Euclidean manifold. This manifold is carefully chosen so

as to simultaneously admit computation of detector robustness regarding tail effects

while employing a model consistent with [48] which computes robustness regarding

residual dependency. The goals of this paper thus include:

• Develop a non-Euclidean model which addresses tail effects and is consistent

with the models of [48] for residual dependency.

• Compute results by example for robustness reflecting tail effects in a form which

can be compared to the method of [48].

• Draw conclusions regarding the relative impact of tail effects vis a vis residual

dependency on detector performance.

We are now poised to investigate the comparison of tail effects of a noise density on

detector robustness with the impact of residual dependency as considered in [48]. We

begin by modeling non-Gaussian tails with the generalized Gaussian.

A. Extension to Generalized Gaussian

The generalized Gaussian distribution (GGD) is another distribution that is used to

characterize the statistics of signals. The main advantage of this distribution is the

possible tuning of one of its parameters. The generalized Gaussian distribution (see

124

[49, 50, 51]) is defined as follows:

p(x; v, r) =
r

2vΓ(1/r)
e−(|x|/v)r

(5.1)

where Γ(.) is the Gamma function, i.e. Γ(x) =
∞∫
0

e−ttx−1dt, for x > 0.

Here v models the width of the PDF peak (variance), while r is inversely pro-

portional with the decreasing rate of the peak. Sometimes, v is referred as the scale

parameter while r is called the shape parameter. The GGD model contains the

Gaussian and Laplacian PDF’s as special cases, using r=2 and r=1, respectively.

Working out all the coefficients within equation 5.1, one can obtain the following

equation for the PDF of the random variable:

fX(x) =
rΓ(3/r)1/2

2u1/2Γ(1/r)3/2
e
− |x|r

ar/2Γ(1/r)r/2Γ(3/r)−r/2 (5.2)

where u can be expressed in terms of v and r and controls the variance for a fixed r

value.

B. Detector and Parameter Surface

In order for one to be able to compare the results obtained through simulations of the

generalized Gaussian case and the previous approach, one will need to use the same

type of detector. The previous approach focused on residual dependency for jointly

Gaussian noise, and therefore in this chapter we will investigate tail perturbations on

nominally Gaussian noise by means of the generalized Gaussian model. Accordingly,

for each detector we employ the matched filter within decision region as indicated in

figure 73 for two samples, where the zero mean noise has variance a and b respectively,

si represent the signal, and T the detector threshold.

Hence, the detector used is a linear detector (similar to a matched filter detector,

125

bT/s1

b(T-(s1x1)/a)/s2

x1

x2

Fig. 73. Linear detector used for the generalized Gaussian case

see figure 73) with zero mean and variance σ2
λ.The main difference with the two

detectors is that the correlation coefficient is now equal to zero (ρ = 0), which is also

equivalent to have ρ = c/
√

ab = 0, i.e. c=0.

While the detector is the same for both methods, the parameter surfaces for

the previous approach and for the new one cannot be made the same because the

previous approach admits dependency while forbidding the non-Gaussian, whereas

the new tail-effect analysis features the reverse. What is important is that the two

regions should be modeled in a comparable manner. For [48] with two samples,

the parameter manifold is two-dimensional and employs coordinates a and b for the

surface corresponding to:

∥∥∥
⎛⎜⎝ a c

c b

⎞⎟⎠−

⎛⎜⎝ a0 c0

c0 b0

⎞⎟⎠∥∥∥ =
√

ε (5.3)

126

where the “0” subscript denotes nominal values and where the norm is Frobenius,

leading to the surface

(a − a0)
2 + (b − b0)

2 + 2(c − c0)
2 = ε (5.4)

Since this paper seeks to isolate the role of tail effects by assuming independence, when

applying the previous method the above manifold should be defined with c0 = 0, i.e.,

nominally independent, yielding:

(a − a0)
2 + (b − b0)

2 + 2c = ε (5.5)

To model tail effects assuming independence with generalized Gaussian noise, we

employ the surface which is the Cartesian cross product of the reals (i.e. r ∈ R) with

the one-dimensional manifold:

∥∥∥
⎛⎜⎝ a 0

0 b

⎞⎟⎠−

⎛⎜⎝ a0 0

0 b0

⎞⎟⎠∥∥∥ =
√

ε, (5.6)

a circle C(a0, b0;
√

ε) centered at (a0, b0) with radius
√

ε. The resultant two-dimensional

surface is the cylinder:

C(a0, b0;
√

ε) × {r : r ∈ R} (5.7)

which can admit coordinates a and r. Nominal values a0 and b0 would be chosen

the same as for (5.5) but for proper comparison we take r0 = 2 to reflect nominal

Gaussianity.

Now that the parameter surfaces are specified, we wish to compute gradient for

the detector false alarm rate α (the computation for detection probability β would

be analogous). In [23] we show that for the “unbiased” method, gradient (in the

127

maximum direction) is given by:

(D−→
X

h)
∣∣∣
Extreme

=
√
∇hG−1∇hT (5.8)

where h is the performance function (e.g. α or β),

∇h = (
∂h

∂x1

∂h

∂x2

) (5.9)

where xi are coordinates, and

G =

⎛⎜⎝ g11 g12

g21 g22

⎞⎟⎠ (5.10)

where the gij are the values of the Riemannian metric, which can be inherited for our

purposes from the embedding of the surface in Euclidean space. For (5.7) this results

in:

∂

∂x1

=
∂

∂a
= (1,

∂b

∂a
, 0)

∂

∂x2

=
∂

∂r
= (0, 0, 1) (5.11)

and hence:

g11 = 〈 ∂

∂a
,

∂

∂a
〉 = 1 + (

∂b

∂a
)2

g22 = 〈 ∂

∂r
,

∂

∂r
〉 = 1

g21 = g12 = 〈 ∂

∂a
,

∂

∂r
〉 = 0 (5.12)

Using false alarm rate α as h, it is clear that the long calculation will be ∂α/∂a and

∂α/∂r, i.e., ∇h.

128

C. Derivations: Partial with Respect to α and r

For this approach, the extended Gaussian approach, we will need to make few deriva-

tions. For example:

∂α

∂a
=

∂

∂a

∞∫
−∞

∞∫
b(

T− s1x1
a

s2
)

fX1(x1)fX2(x2)dx2dx1 (5.13)

where:

fX1(x1) =
rΓ(3/r)1/2

2a1/2Γ(1/r)3/2
e
− |x1|r

ar/2Γ(1/r)r/2Γ(3/r)−r/2

and

fX2(x2) =
rΓ(3/r)1/2

2b1/2Γ(1/r)3/2
e
− |x2|r

br/2Γ(1/r)r/2Γ(3/r)−r/2

Those derivations are computable through the use the Leibnitz integral rule, also

known as the Leibnitz formula for the differentiation of definite integrals. The Leibnitz

formula is used mainly when the boundaries of the integral are variables, and it is

defined as follows [52, 53]:

d

dt

∫ b(t)

a(t)

f(t, x) dx =

∫ b(t)

a(t)

∂f(t, x)

∂t
dx + f(t, b(t))

db(t)

dt
− f(t, a(t))

da(t)

dt
(5.14)

129

Using t(x1) = b/s2 ∗ (T − s1/a ∗ x1) as a simplification, one can easily obtain:

∂α

∂a
=

∂

∂a

∞∫
−∞

∞∫
t(x1)

fX1(x1)fX2(x2)dx2dx1

=

∞∫
−∞

∂

∂a

∞∫
t(x1)

fX1(x1)fX2(x2)dx2dx1

=

∞∫
−∞

∂

∂a
(fX1(x1)

∞∫
t(x1)

fX2(x2)dx2)dx1

=

∞∫
−∞

[∂fX1(x1)

∂a

∞∫
t(x1)

fX2(x2)dx2 + fX1

∂

∂a

∞∫
t(x1)

fX2(x2)dx2

]
dx1

=

∞∫
−∞

[∂fX1(x1)

∂a

∞∫
t(x1)

fX2(x2)dx2 + fX1(x1)

∗
(
− fX2(t(x1))

∂t(x1)

∂a
+

∞∫
t(x1)

∂

∂a
fX2(x2)dx2

)]
dx1

(5.15)

Also, one can obtain:

∂

∂a
t(x1) =

∂

∂a
(

b

s2

(T − s1

a
x1))

=
∂b
∂a

s2

(T − s1

a
x1) +

bs1x1

s2a2
(5.16)

Note:

∂b

∂a
=

∂

∂a
(b ±

√
ε − (a − a0)2)

= ∓(ε − (a − a0)
2)−(1/2)(a − a0) (5.17)

130

Using Chain Rules, this time one will have:

∂fX2(x2)

∂a
=

∂fX1(x2, b)

∂a
.
∂b

∂a

=
∂

∂a

rΓ(3/r)1/2

2b1/2Γ(1/r)3/2
e
− |x2|r

br/2Γ(1/r)r/2Γ(3/r)−r/2 .
∂b

∂a
(5.18)

Below are the details of the derivations:

∂

∂a
(

rΓ(3/r)1/2

2a1/2Γ(1/r)3/2
) =

rΓ(3/r)1/2

2Γ(1/r)3/2

∂

∂a
(

1

a1/2
)

=
−rΓ(3/r)1/2

4Γ(1/r)3/2a3/2
= A (5.19)

∂

∂a
(e

− |x1|r
ar/2Γ(1/r)r/2Γ(3/r)−r/2) =

1

2

|x1|r
ar/2Γ(1/r)r/2Γ(3/r)−r/2

r

a
e
− |x1|r

ar/2Γ(1/r)r/2Γ(3/r)−r/2

= B (5.20)

Therefore, one finally obtains:

∂fX1(x1)

∂a
= A e

− |x1|r
ar/2Γ(1/r)r/2Γ(3/r)−r/2 + B

rΓ(3/r)1/2

2a1/2Γ(1/r)3/2
(5.21)

The next logical step is to compute ∂α/∂r. This will need to be done in multiple

steps. As a reminder we also have for the Gamma function:

Γ(x) =

∞∫
0

tx−1e−tdt (5.22)

Therefore, we obtain, for the derivative of the Gamma function:

Γ′(x) =

∞∫
0

tx−1e−tln(t)dt (5.23)

131

For our equation we will need to compute:

∂Γ(3/r)

∂r
=

∂

∂r

∞∫
0

t3/r−1e−tdt

=
−3

r2

∞∫
0

t3/r−1ln(t)e−tdt

= C (5.24)

Also,

∂Γ(1/r)

∂r
=

∂

∂r

∞∫
0

t1/r−1e−tdt

=
−1

r2

∞∫
0

t1/r−1ln(t)e−tdt

= D (5.25)

Therefore, one will obtain for:

∂

∂r
(

rΓ(3/r)1/2

2a1/2Γ(1/r)3/2
) =

1

2a1/2

∂

∂r
(
rΓ(3/r)1/2

Γ(1/r)3/2
)

=
1

2a1/2

[1

Γ(1/r)3/2
(Γ(3/r)1/2 +

r

2
C Γ(3/r)−1/2)

+ rΓ(3/r)
1
2 (−3

2
Γ(1/r)−5/2 D)

]
= K (5.26)

and for ∂/∂r(e−|x1|r/(ar/2Γ(1/r)r/2Γ(3/r)−r/2)) one will have to use the following partial:

∂

∂r
Γ(1/r)−r/2 =

1

2r
Γ(1/r)−r/2−1Γ′(1/r) − 1

2
Γ(1/r)−r/2ln(Γ(1/r)) = E (5.27)

using integration per parts (
∫

udv = uv − ∫ vdu), and having dv = ln(Γ(1/r)),

u = −r/2 (hence v = 1/Γ(1/r) ∗ Γ′(1/r) ∗ −1/r and du = −1/2dr), one can obtain

the previous equation.

132

Also, one can obtain:

∂

∂r
Γ(3/r)r/2 =

−3

2r
Γ(3/r)r/2−1Γ′(3/r) +

1

2
Γ(3/r)r/2ln(Γ(3/r)) = F (5.28)

again using integration per parts, and having dv = ln(Γ(3/r)), u = − r
2

(hence v =

1
Γ(3/r)

Γ′(3/r)−3
r

and du = 1
2
dr), one can obtain the previous equation.

We also need to compute:

∂

∂r
(|x|r) = |x|rln(|x|) = G (5.29)

and finally:

∂

∂r
(a−r/2) =

−1

2
a−r/2ln(a) = H (5.30)

Knowing that (eU)′ = U ′eU , one will obtain for the final derivation for the expo-

nential part:

∂

∂r

−|x|r
ar/2Γ(1/r)r/2Γ(3/r)−r/2

=
∂

∂r
− |x|ra−r/2Γ(1/r)−r/2Γ(3/r)r/2

= −|x|ra−r/2Γ(1/r)−r/2 F − |x|ra−r/2 E Γ(3/r)r/2

− |x|r H Γ(1/r)−r/2Γ(3/r)r/2

− G a−r/2Γ(1/r)−r/2Γ(3/r)r/2 = I (5.31)

Hence, one can easily compute:

∂

∂r
fX1(x1) =

1

2a1/2

∂

∂r

(rΓ(3/r)1/2

Γ(1/r)3/2
e
− |x1|r

ar/2Γ(1/r)r/2Γ(3/r)−r/2

)
= e

− |x1|r
ar/2Γ(1/r)r/2Γ(3/r)−r/2

[
K + I

rΓ(3/r)1/2

Γ(1/r)3/2

1

2a1/2

]
= J (5.32)

Similar results will be obtained for (∂/∂r ∗ fX2(x2) = L) by replacing all the a’s by a

133

corresponding b. In a similar way, one will need to the following derivation:

∂α

∂r
=

∂

∂r

∞∫
aT
s1

∞∫
b(

T− s1x1
a

s2
)

fX1(x1)fX2(x2)dx2dx1

=

∞∫
aT
s1

∞∫
b(

T− s1x1
a

s2
)

[
fX1(x1)

∂fX2(x2)

∂r
+ fX2(x2)

∂fX1(x1)

∂r

]
dx2dx1

=

∞∫
aT
s1

∞∫
b(

T− s1x1
a

s2
)

[
fX1(x1) L + fX2(x2) J

]
dx2dx1 (5.33)

Computations were conducted over the sub-manifold of (5.7) given by the slice r=2

so as to admit comparison with the dependent Gaussian model corresponding to [48]

(see (5.5)) for which nominal c0 = 0, consistent with the independence assumption

for extended Gaussian. Four cases were considered with nominal and signal values

indicated in table XVI. Results are discussed in the next section.

Table XVI. All the different cases scenario for the extended Gaussian approach

case a0 b0 c0 s1 s2

1 1/2 1/4 0 1.5 2

2 1/2 1/4 0 1/2 1/4

3 1 1/2 0 1/2 1/4

4 1 1/2 0 2 1

D. Conclusion

We have described how to compute false alarm (or alternatively detection probabil-

ity) gradient over two possible parameter manifolds. One assumes independence but

134

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

Fig. 74. Extended Gaussian approach (r = 2): case 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

35

40

Fig. 75. Old method: case 1

135

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

Fig. 76. Extended Gaussian approach (r = 2): case 2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

Fig. 77. Old method: case 2

136

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

Fig. 78. Extended Gaussian approach (r = 2): case 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

Fig. 79. Old method: case 3

137

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

Fig. 80. Extended Gaussian approach (r = 2): case 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

Fig. 81. Old method: case 4

138

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

Fig. 82. Extended Gaussian approach (r = 1): case 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Fig. 83. Extended Gaussian approach (r = 1): case 2

139

0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

Fig. 84. Extended Gaussian approach (r = 1): case 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Fig. 85. Extended Gaussian approach (r = 1): case 4

140

Table XVII. Non Gaussian independent vs. dependent Gaussian

∆α < 10%

case New method (r=2) Old method

1 ε = 7.70 ∗ 10−6 ε = 3.54 ∗ 10−3

2 ε = 2.71 ∗ 10−5 ε = 6.79 ∗ 10−3

3 ε = 5.90 ∗ 10−6 ε = 5.01 ∗ 10−3

4 ε = 6.25 ∗ 10−6 ε = 5.49 ∗ 10−3

allows for non-Gaussian tail effects perturbed from nominally Gaussian by using an

extended Gaussian model with r nominally equal to 2. The other, using a model from

[48], admits dependency under Gaussian assumptions with nominal independence

(c0 = 0). For the cases of table XVI and for many points over the two parameter

models, gradient was computed and sample densities obtained (figures 74-85). From

these, comparisons can be made based on the ε − analysis described in the previous

chapter. Recall that smaller epsilon reflects less robustness. Table XVII summarizes

the results for residual dependency and non-Gaussian tail effects (“old method”) and

for residual tail effects and no dependency (“new method”).

Note that for the new method, appropriate ε values are several orders of mag-

nitude smaller, which is very revealing in how much more serious non-Gaussian tail

effects degrade robustness compared to residual dependency under a Gaussian as-

sumption. The new method also can of course transcend any kind of Gaussian as-

sumption, even for the nominal. For example, with nominally Laplace noise (r0 = 1)

new method entries are shown in table XVIII.

141

Table XVIII. Results for the new method

∆α < 10%

case New method (r0=1)

1 ε = 1.82 ∗ 10−6

2 ε = 7.36 ∗ 10−6

3 ε = 2.39 ∗ 10−6

4 ε = 5.33 ∗ 10−6

These ε values are even smaller indicating the difficulty that a linear detector

experiences when the tail center of gravity moves from Gaussian to Laplace. Some

example sample densities used to generate these results are illustrated through figures

74-85.

There remains the question of larger sample sizes. In our past work this has

always been shown to lead to decreasing robustness as sample sizes increase. For

example, in [48] an example is provided where gradient nearly doubles as n goes from

2 to 20. For the work of this dissertation it is expected that larger samples sizes will

exacerbate the already serious impact of non-Gaussian tail effects.

142

CHAPTER VI

CONCLUSIONS: PUTTING IT ALL TOGETHER

A. Dissertation Summary

This dissertation is dedicated to the study of robustness measures for signal detection

in non-stationary noise using differential geometric tools in conjunction with empirical

distribution analysis. We first showed that gradient can be viewed as a random

variable and therefore used to generate sample densities allowing one to conclude

on robustness. We used the differential geometric methodology (through the use

of non-Euclidean manifold) to the detection of time varying deterministic signals in

imperfectly known dependent non-stationary Gaussian noise. The dissertation moves

on to prove that robustness is barely reduced by admitting non-stationarity and also

decreases with large sample sizes. The robustness converges in this decrease for sample

sizes larger than 14.

The dissertation then investigated the effect of tail uncertainty on detector ro-

bustness and more precisely, investigated the comparison of tail effects of a noise

density on detector robustness with the impact of residual dependency by modeling

non-Gaussian tails with the generalized Gaussian formula. By comparing the two

methods we showed how much more serious non-Gaussian tail effects degrade robust-

ness compared to residual dependency under a Gaussian assumption. This approach

also allowed us to transcend any kind of Gaussian assumption, even for the nominal

(for example with nominally Laplace noise).

143

REFERENCES

[1] S. Kassam and H. Poor, “Robust techniques for signal processing: A survey,”

Proc. IEEE, vol. 73, pp. 433–480, 1985.

[2] P. Huber, “Robust statistical procedures,” in CBMS NSF Regional Conference

Series in Applied Mathematics, pp. 963–973, 1968.

[3] P. Huber, Robust Statistics, vol. 1. Hoboken NJ: Wiley, Inc., 1981.

[4] M. Thompson, D. Halverson, and G. Wise, “Robust detection in nominally

laplace noise,” IEEE Transactions on Communications, vol. 42, no. 3, pp. 1651–

1660, February/March/April 1994.

[5] A. El-Sawy and V. V. Linde, “Robust detection of known signals,” IEEE Trans.

Info. Theory, vol. IT-23, pp. 722–727, November 1977.

[6] W. Liu, D. Halverson, S. Akkihal, and M. Thompson, “Local and nonlocal ro-

bustness measures with applications to distributed sensor systems,” IEEE Trans-

actions on Aerospace and Electriconic System, vol. 38, no. 2, pp. 675–681, 2002.

[7] W. Liu and D. Halverson, “Robustness of the sign detector in dependent noise,”

J. Franklin Inst., vol. 336, no. 7, pp. 1155–1174, 1996.

[8] M. Bakich and D. Halverson, “Non-Euclidian robustness measures for commu-

nications and signal processing,” in Proc. of the Eleventh Annual International

Conference on Signal Processing Applications and Technology, pp. 567–601, Oc-

tober 16-19, 2000.

144

[9] V. V. Varma and D. Halverson, “Applications of unbiased perturbations towards

providing robustness with pragmatic geometric methods,” in To appear in: Com-

putational Statistics and Data Analysis.

[10] D. Halverson, “Robust estimation and signal detection with dependent non-

stationary data,” Circuits Systems and Signal Processing, vol. 14, pp. 465–472,

1995.

[11] C. Tsai and D. Halverson, “Average robustness in signal detection and estima-

tion,” J. Franklin Inst., vol. 333 B, pp. 127–139, 1996.

[12] F. Kellison and D. Halverson, “Applications of curvature toward the measure-

ment of robustness for data processors,” Computational Statistics and Data Anal-

ysis, vol. 11, no. 37, pp. 343–362, 2001.

[13] M. Thompson, D. Halverson, and Tsai, “Robust estimation of signal parameters

with non stationary and/or dependent data,” IEEE Transactions on Information

Theory, vol. 39, pp. 617–623, 1993.

[14] M. Szewczul, D. Halverson, and M. Thompson, “Modelling and measuring de-

tector performance/robustness in nominally laplace noise,” International J. of

Modelling and Simulation, vol. 24, no. 1, pp. 20–25, 2004.

[15] S. A. Kassam and H. V. Poor, “Robust techniques for signal processing: A

survey,” Proc. IEEE, vol. 73, pp. 433–481, March 1985.

[16] H. V. Poor, “Signal detection in the presence of weakly dependent noise - part ii:

Robust detection,” IEEE Trans. Inform. Theory, vol. 28, pp. 744–752, September

1982.

145

[17] G. V. Moustakides and J. B. Thomas, “Robust detection of signals in dependent

noise,” IEEE Trans. Inform. Theory, vol. 33, pp. 11–15, January 1987.

[18] E. C. Martin and H. V. Poor, “On the asymtotic efficiencies of robust detectors,”

IEEE Trans. Inform. Theory, vol. 38, pp. 50–60, January 1992.

[19] O. Kenny and L. White, “Robust detection of signal classes,” IEEE Trans. In-

form. Theory, vol. 34, no. 1, pp. 3131–3133, 1995.

[20] D. J. Warren and J. B. Thomas, “Asymptotically robust detection and estimation

for very heavy-tailed noise,” IEEE Trans. Inform. Theory, vol. 37, pp. 475–481,

May 1991.

[21] M. Thompson and D. Halverson, “A differential geometric approach toward ro-

bust signal detection,” J. Franklin Inst., vol. 328, no. 4, pp. 379–401, 1991.

[22] M. Thompson and D. Halverson, “Geometric measures of robustness in signal

processing.” in Advances in Communications and Signal Processing (edited by

W.A. Porter and S.C. Kakin), New York: Springer, 1989. pp. 345-348.

[23] M. Bakich, Non Euclidean Robustness Measures for Communications and Signal

Processing. Ph.D. dissertation, Texas A&M University, 2002.

[24] V. Varma, “Applications of non-riemanian and differential information geometry

in communications and signal processing algorithms with stationary and non-

stationary data,” M.S., Texas A&M University, 2004.

[25] K. Gauss, Theory of Motion of Heavenly Bodies. New York, Prentice Hall, 1963.

[26] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. En-

glewood Cliffs, NJ: Prentice Hall Signal Processing Series, 1998.

146

[27] S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Engle-

wood Cliffs, NJ: Prentice Hall Signal Processing Series, 1998.

[28] E. Lehman, Testing Statistical Hypotheses. New York, Springer, 1959.

[29] R. McDonough and A. Whalen, Detection of Signals in Noise. New York, Aca-

demic Press, 1995.

[30] H. V. Trees, Detection, Estimation, and Modulation Theory, vol. I-III. New

York, Wiley-Interscience, 1968-1971.

[31] S. M. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 2. New

York, Hafner Publishing Company, 1979.

[32] G. Box and G. Tiao, Bayesian Interference in Statistical Analysis. Reading, MA:

Addison-Wesley, 1973.

[33] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,

pp. 465–471, 1978.

[34] E. Lehmann, Testing Statistical Hypothesis. New York, Wiley-Interscience, 1959.

[35] H. V. Trees, Detection, Estimation, and Modulation Theory, Part I. New York,

Paperback, 1968.

[36] E. Lehman, Testing Statistical Hypotheses. New York, Hardcover, 1970.

[37] S. Chern and R. Osserman, Lebnitz Integrals, Proceeding of Symposia in Pure

Mathematics: Differential Geometry, vol. XXVII. Austin, TX: Advanced Math-

ematic Symposium, 1975.

[38] S. Waner, Lecture Notes “Introduction to differential geome-

try and general relativity.” Hofstra University, Online available.

147

http://people.hofstra.edu/faculty/StefanWaner/diffgeom/tc.html, April 19th

2005.

[39] I. Chavel, Riemannian Geometry: A Modern Introduction. Cambridge: Cam-

bridge University Press 1994.

[40] V. Guillemin and A. Pollack, Differential Topology. Englewood Cliffs, NJ:

Prentice-Hall, 1974.

[41] R. Millman and G. Parker, Elements of Differential Geometry. Englewood Cliffs,

NJ: Prentice-Hall, 1977.

[42] H. Reckziegel, Mathematical Models from the Collections of Universities and

Museums. Munich, Germany: Braunschweig, 1986.

[43] I. Singer and J. Thorpe, Lecture Notes on Elementary Topology and Geometry.

New York: Springer-Verlag, 1996.

[44] J. Kenney and E. Keeping, Relation between Mean, Median, and Mode, vol. 1,

3rd ed. Princeton, NJ: Mathematics of Statistics, 1962.

[45] J. Kenney and E. Keeping, Confidence Interval Charts, vol. 1. Princeton, NJ:

Mathematics of Statistics, 1962.

[46] M. Abramowitz and I. A. Stegun, chap 17: Leibnitz Integrals, pp. 234-278 Hand-

book of Mathematical Functions. New York: Dover Publications, 1964.

[47] A. Jain and W. Waller, “On the optimal number of features in the classification

of multivariate Gaussian data,” Pattern Recognition, vol. 10, pp. 365–374, 1978.

148

[48] G. Raux and D. Halverson, “An empirical distribution approach to the applica-

tion of differential geometric robustness analysis,” IEEE Trans. Inform. Theory,

submitted.

[49] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet rep-

resentation,” IEEE Trans. Inform. Theory, vol. 11, pp. 674–693, July 1989.

[50] G. V. Wouwer, P. Scheunders, and D. V. Dyck, “Statistical texture characteri-

zation from discrete wavelet representations,” IEEE Trans. Signal Proc., vol. 8,

pp. 592–598, April 1999.

[51] P. Moulin and J. Liu, “Analysis of multiresolution image denoising schemes us-

ing generalized gaussian and complexity priors,” IEEE Trans. Inform. Theory,

vol. 45, pp. 909–919, 1999.

[52] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables. New York: Dover, 1972.

[53] G. Borros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experi-

ments in the Evaluation of Integrals. Cambridge: Cambridge University Press,

2004. 25-31.

149

APPENDIX A

LIST OF VARIABLES

Lp : error for the estimator

±δ : variation in the entry of the covariance matrix

P : performance function

fX(x) : PDF of the random variable x

x[.] : data set

θ : unknown parameter

θ̂ : estimator for detection theory

p(x[n]; θ) : probability density function of data x[n] parameterized by the unknown

parameter θ

σ2 : variance of the random variable

En : n-dimensional Euclidian space

yi : coordinates in the n-dimensional Euclidian space

H0 : binary hypothesis (null hypothesis)

H1 : binary hypothesis (alternative hypothesis)

α : false alarm probability

β : detection probability

T̂ : threshold value for the test statistic

Γ : log likelihood ratio

x1 : parameter or local coordinate in differential geometry

Tm : set of all tangent vectors at m

Ci : covariant vector field

viwj : tensor product

150

δi
j : Kronecker delta tensor

gij : metric tensor

ds2 : arc-length differential

C̃ : set containing all the local coordinates

C : covariance matrix

E[x] : mean of X

Λ(y1, y2) : Neyman-Pearson optimal detector

−→
X : tangent vector

J : Lagrange multiplier

(D−→
X

h)
∣∣∣
Extreme

: directional derivative

X, Y : random variable

Kn : curvature at a point

χ(M) : Euler characteristic of M

∆α : total amount of change in α

151

APPENDIX B

3 DIMENSION MODEL - MATLAB PROGRAM

% Guillaume Raux
% Spring 2004 - Fall 2005 - Summer 2005
% PhD Texas A&M University
clear; clc; close all;
% Nominal values
a0 = 1.5; b0 = 2; c0 = 1/2; s1 = 1.5; s2 = 0.5; epsi = .05; alpha =
0.05;

% Getting points @ the origine
% Ax^2+By^2=C and (a-a0)^2+(b-b0)^2+2(c-c0)^2=epsi^2 gives A=2, B=1 and
% C=epsi^2
partial = partial_points(2,1,epsi);

% Moving the manifold over a0, b0 and c0
points = final_points(partial,a0,b0,c0); Set_of_Points_not_posedef =
posedef(points)
% Computing the weighting factor
Weights = weighting2(points,epsi,2,1);

% Assigning weights to their corresponding points
% Weight_final = assigning(Weights,points);

AA = points(:,1); BB = points(:,2); CC = points(:,3);
% Computations for Sigma square positive
for i = 1 : length(AA)
Sigma_square_positive(i) =
AA(i)*(CC(i)*s2-s1*BB(i))^2+2*CC(i)*
(CC(i)*s2-s1*BB(i))*(CC(i)*s1-s2*AA(i))+(CC(i)*s1-s2*AA(i))^2*BB(i);

% Computations for partiel of c wrt a and b

partiel_c_a(i)=-(AA(i)-a0)/(2*(epsi-(AA(i)-a0)^2-(BB(i)-b0)^2))^.5;
partiel_c_b(i)= -(BB(i)-b0)/(2*(epsi-(AA(i)-a0)^2-(BB(i)-b0)^2))^.5;
% Computation for partiel of Sigma square wrt a and b

term_1a = (CC(i)*s2-s1*BB(i))^2+2*AA(i)*partiel_c_a(i)*s2*(CC(i)*s2
-s1*BB(i));
term_2a = 2*partiel_c_a(i)*(CC(i)*s2-s1*BB(i))*(CC(i)*s1-s2*AA(i))+
2*CC(i)*partiel_c_a(i)*s2*(CC(i)*s1-s2*AA(i))+2*CC(i)*(CC(i)*s2
-s1*BB(i))*
(partiel_c_a(i)*s1-s2);
term_3a = 2*BB(i)*(partiel_c_a(i)*s1-s2)*(CC(i)*s1-s2*AA(i));
Partiel_sigma_a(i) = term_1a + term_2a + term_3a;
term_1b = 2*AA(i)*(CC(i)*s2-s1*BB(i))*(partiel_c_b(i)*s2-s1);

152

term_2b = 2*partiel_c_b(i)*(CC(i)*s2-s1*BB(i))
*(CC(i)*s1-s2*AA(i))+2*CC(i)*(partiel_c_b(i)*s2-s1)
*(CC(i)*s1-s2*AA(i))
+2*CC(i)*(CC(i)*s2-s1*BB(i))*partiel_c_b(i)*s1;
term_3b = (CC(i)*s1-s2*AA(i))^2+2*BB(i)*partiel_c_b(i)
s1(CC(i)*s1-s2*AA(i));
Partiel_sigma_b(i) = term_1b + term_2b + term_3b;

end
% Computing the Threshold value for integral
nominal_variance =

(c0*s2-b0*s1)^2*a0+2*c0*(c0*s2-b0*s1)*(c0*s1-a0*s2)
+(c0*s1-a0*s2)^2*b0;

T = inverse_erf(alpha)*sqrt(nominal_variance);
% Computation of the Integrale
delta = 0.001; u = T:delta:1000;
% d_rond_a = Partiel_sigma_a(i);
% d_rond_b = Partiel_sigma_b(i);
for i = 1 : length(Partiel_sigma_a)

d_rond_a = Partiel_sigma_a(i);
d_rond_b = Partiel_sigma_b(i);
koulchen = Sigma_square_positive(i);
funky_1a = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_a*
sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2a = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_a*
sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_a(i) = funky_1a + funky_2a;
funky_1b = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_b*
sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2b = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_b*
sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_b(i) = funky_1b + funky_2b;

end

% Biased
for i = 1 : length(funky_a)

Slope_biased(i) = sqrt(funky_a(i)^2+funky_b(i)^2);
end
% Slope Unbiased case
for i = 1 : length(AA)

g11 = 1+partiel_c_a(i)^2;
g22 = 1+partiel_c_b(i)^2;
g12 = partiel_c_a(i)*partiel_c_b(i);
Slope_unbiased(i) = 1/(g11*g22-g12^2)*(g22*funky_a(i)^2-
2*g12*funky_a(i)*funky_b(i)+g11*funky_b(i)^2);

end

% Assigning the according weight to the slope
results = histo(Slope_unbiased, Slope_biased,Weights); x =
0:0.005:2; plot(x,results(:,1),x,results(:,2)); legend(’Unbiased
Case’,’Biased Case’);
% Mean and Variance without the last bin

153

Mean_Variance =
meanvariance(results(1:end-1,1),results(1:end-1,2),x(1:end-1));
% Saving the results
save(’Results_case_8’);

function y = assigning(weights,points) A = []; for i = 1:37
AA(180*(i-1)+1:180*i) = weights(i);

end AA = AA’;
y = AA;

function y = final_points(partial,a0,b0,c0)

% Dummy Var
dummy = min(size(partial));
%dummy = max(size(partial));
% The function
A = partial(38:74,:); B = partial(75:end,:); C = partial(1:37,:);
for i = 1:37

for j = 1:dummy
A(i,j) = A(i,j)+a0;
B(i,j) = B(i,j)+b0;
C(i,j) = C(i,j)+c0;

end
end surf(C,A,B);
% Change matrix into 3 column vector
u = 0; for i = 1:37

for j = 1:dummy
u = u + 1;
AA(u) = A(i,j);
BB(u) = B(i,j);
CC(u) = C(i,j);

end
end

y = [AA; BB; CC]’;

function y = histo2(U,B,Weights)
% Making a matrix of the result
U = U’; B = B’; AA = []; CC = []; for i = 1:37

A = sort(U(180*(i-1)+1:180*i));
AA = [AA A]; % each column correspond to a weight
C = sort(B(180*(i-1)+1:180*i));
CC = [CC C]; % each column correspond to a weight

end
% Matrix that we need to compare the values to
% x = 0:0.005:2; for bin size (401 steps)
Bin = []; for i = 1:2001

Bin(i) = 0.005*(i-1);
end
% Finding the right spot in the matrix
Count = zeros(2001,37); for j = 1:37

154

for i = 1:180
for k = 1:2000

if (AA(i,j)>Bin(k) & AA(i,j)<=Bin(k+1)),
Count(k,j) = Count(k,j) + 1;
k = 2000;

end
if(AA(i,j)>Bin(2001)),

Count(2001,j) = Count(2001,j) + 1;
end

end
end

end

Count2 = zeros(2001,37); for j = 1:37
for i = 1:180

for k = 1:2000
if (CC(i,j)>Bin(k) & CC(i,j)<=Bin(k+1)),

Count2(k,j) = Count2(k,j) + 1;
k = 2000;

end
if(CC(i,j)>Bin(2001)),

Count2(2001,j) = Count2(2001,j) + 1;
end

end
end

end

% Getting the final histogram
for i = 1:37

Count(:,i) = Weights(i).*Count(:,i);
Count2(:,i) = Weights(i).*Count2(:,i);

end Dummy = cumsum(Count,2); Dummy2 = cumsum(Count2,2);
Final_Unbiased = Dummy(:,end); Final_Biased = Dummy2(:,end);

y = [Final_Unbiased Final_Biased];

function y = integral(threshold, sigmasquare)

delta = 0.001; u = threshold:delta:1000; funky =
sum(u.^2.*exp(-u.^2/(2*sigmasquare)).*delta); y = funky;

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;
%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end

155

% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end

y = i;

function y = meanvariance(U,B,x) U = U’; B = B’; for i = 1:length(x)
xi(i) = ((i-1)+i)*0.005/2;

end Mean_Biased = sum(B.*xi)/sum(B) Mean_Unbiased =
sum(U.*xi)/sum(U)
% Var(X) = E[X^2]-E[X]^2 = 1/N*sum(yi-mean)^2
A = length(B); C = length(U); Var_Biased = 0; Var_Unbiased = 0; for
j = 1 : length(x)

Var_Biased = Var_Biased + (B(i)-Mean_Biased)^2;
Var_Unbiased = Var_Unbiased + (U(i)-Mean_Unbiased)^2;

end Var_Biased = 1/A*Var_Biased Var_Unbiased = 1/C*Var_Unbiased

y = [Mean_Biased Mean_Unbiased Var_Biased Var_Unbiased];

function y = partial_points(A,B,epsi) i = 0; for theta =
-pi/2:pi/36:pi/2

i = i + 1;
j = 0;
for phi = 0:pi/9:2*pi

j = j + 1;
c(i,j) = sqrt(epsi/(A*sin(theta)^2+B*cos(theta)^2))*sin(theta);
a(i,j) = sqrt(epsi/(A*sin(theta)^2+B*cos(theta)^2))*cos(theta)

*cos(phi);
b(i,j) = sqrt(epsi/(A*sin(theta)^2+B*cos(theta)^2))*cos(theta)

*sin(phi);
end

end y = [a; b; c];

function y = posedef(points)
% points is a 2-by-2 matrix with constant coefficients
% We need to represent all the points as matrix = [a c; c b]
count = 0; for i = 1:length(points)

set = points(i,1)*points(i,2)-points(i,3)^2;
if (set < 0),

points(i,:) = 0;
count = count + 1;

end
end

y = count;

156

function y = variance(a,b,c,d,e,f,s1,s2,s3)

A = -2*s1*(b*c-d*f)-d*s2*(e-c)-2*s3*(d*f-b*e)-f*s2*(e-c); B =
-2*s2*(a*c-e^2)-d*s1*(e-c)-f*s1*(e-c)-f*s3*(e-a)-d*s3*(e-a); C =
-2*s3*(a*b-d*f)-2*s1*(d*f-b*e)-f*s2*(e-a)-d*s2*(e-a);

sigma_square = a*A^2+b*B^2+c*C^2+2*A*B*d+2*A*C*e+2*B*C*f; y =
sigma_square;

function y = weighting2(points,epsi,A,B) i = 0; for theta =
-pi/2:pi/36:pi/2

i = i + 1;
%gamma = theta-atan(A/B*tan(theta));
%w(i) = abs(epsi*cos(theta)/(A*sin(theta)^2

+B*cos(theta)^2)/cos(gamma));
w2(i) = 2*epsi*sqrt(sin(theta)^2*cos(theta)^2

+0.25*cos(theta)^4);
end

y = w2’;

157

APPENDIX C

THE SADDLE SURFACE

% Guillaume Raux
% Spring 2005 - Fall 2004 - Summer 2005
% PhD Texas A&M University
clear; clc; close all;
% Nominal values
epsi = .05; alpha = 0.05; lambda = 0.5; L = 1; a = 1.5; b = 1; s1 =
1.5; s2 = 2; factor = 2;

%Computing the corresponding c0 tilda
c0 = cotilda(a,b,lambda);
% Finding points on the saddle c = lambda*a’*b’
partial = points2(L,a,b,epsi,factor); Points =
final_points(partial,lambda);

Set_of_Points_not_posedef = posedef(Points)
% Computing the weighting factor and add it to the Points matrix
Points_and_Weights = weighting(Points,lambda);

% I can only use the points that are positive definite
if (Set_of_Points_not_posedef > 0),

Points_and_Weights = fixed(Points_and_Weights);
end

% The 4th column of Points contains the weighting factors
AA = Points_and_Weights(:,1); BB = Points_and_Weights(:,2); CC =
Points_and_Weights(:,3); Weighting_factors =
Points_and_Weights(:,4);

% Computations for Sigma square positive
for i = 1 : length(AA)

Sigma_square(i) = AA(i)*(CC(i)*s2-s1*BB(i))^2+2*CC(i)*(CC(i)*s2
-s1*BB(i))*(CC(i)*s1-s2*AA(i))+(CC(i)*s1-s2*AA(i))^2*BB(i);

% Computations for partiel of c wrt a and b
partiel_c_a(i) = (2*AA(i))*lambda*AA(i)^2*(AA(i)^2*BB(i)^2)^(-.5);
partiel_c_b(i) = (2*BB(i))*lambda*BB(i)^2*(AA(i)^2*BB(i)^2)^(-.5);

% Computation for partiel of Sigma square wrt a and b
term_1a = (CC(i)*s2-s1*BB(i)^2)^2+2*AA(i)^2*partiel_c_a(i)*s2*(CC(i)
*s2-s1*BB(i)^2);
term_2a = 2*partiel_c_a(i)*(CC(i)*s2-s1*BB(i)^2)*(CC(i)*s1-s2*AA(i)^2)
+2*CC(i)*partiel_c_a(i)*s2*(CC(i)*s1-s2*AA(i)^2)+2*CC(i)*(CC(i)*s2-s1
BB(i)^2)(partiel_c_a(i)*s1-s2);
term_3a = 2*BB(i)^2*(partiel_c_a(i)*s1-s2)*(CC(i)*s1-s2*AA(i)^2);
Partiel_sigma_a(i) = 2*AA(i)*(term_1a + term_2a + term_3a);

158

term_1b = 2*AA(i)^2*(CC(i)*s2-s1*BB(i)^2)*(partiel_c_b(i)*s2-s1);
term_2b = 2*partiel_c_b(i)*(CC(i)*s2-s1*BB(i)^2)*(CC(i)*s1

-s2*AA(i)^2)+2*CC(i)*(partiel_c_b(i)*s2-s1)*(CC(i)
*s1-s2*AA(i)^2)+2*CC(i)*(CC(i)*s2-s1*BB(i)^2)
*partiel_c_b(i)*s1;

term_3b = (CC(i)*s1-s2*AA(i)^2)^2+2*BB(i)^2*partiel_c_b(i)*s1
*(CC(i)*s1-s2*AA(i)^2);

Partiel_sigma_b(i) = 2*BB(i)*(term_1b + term_2b + term_3b);
end
% Computing the Threshold value for integral
nominal_variance =
(c0*s2-b*s1)^2*a+2*c0*(c0*s2-b*s1)*(c0*s1-a*s2)+(c0*s1-a*s2)^2*b; T
= inverse_erf(alpha)*sqrt(nominal_variance);
% Computation of the Integrale
delta = 0.001; u = T:delta:1000;

for i = 1 : length(Partiel_sigma_a)
d_rond_a = Partiel_sigma_a(i);
d_rond_b = Partiel_sigma_b(i);
koulchen = Sigma_square(i);
funky_1a = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_a
*sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2a = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_a
*sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_a(i) = funky_1a + funky_2a;
funky_1b = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_b
*sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2b = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_b
*sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_b(i) = funky_1b + funky_2b;

end

% Biased
for i = 1 : length(funky_a)

Slope_biased(i) = sqrt(funky_a(i)^2+funky_b(i)^2);
end
% Slope Unbiased case
for i = 1 : length(AA)

g11 = 1+partiel_c_a(i)^2;
g22 = 1+partiel_c_b(i)^2;
g12 = partiel_c_a(i)*partiel_c_b(i);
Slope_unbiased(i) = 1/(g11*g22-g12^2)*
(g22*funky_a(i)^2-2*g12*funky_a(i)*funky_b(i)+g11*funky_b(i)^2);

end

% Assigning the according weight to the slope
results = histo2(Slope_unbiased, Slope_biased,Weighting_factors); x
= 0:0.005:4; plot(x,results(:,1),x,results(:,2)); legend(’Unbiased
Case’,’Biased Case’);
% Mean and Variance without the last bin
Mean_Variance =

159

meanvariance(results(1:end-1,1),results(1:end-1,2),x(1:end-1));
% Saving the results
save(’Results_case_5’);

function y = assigning(weights,points) A = []; for i = 1:37
AA(180*(i-1)+1:180*i) = weights(i);

end
AA = AA’;
y = AA;

function y = cotilda(a,b,lambda)
c0 = lambda*a*b;
y = c0;

function y = final_points(partial,lambda) A = partial(:,1); B =
partial(:,2); for i = 1:length(partial)

C(i) = lambda*A(i)*B(i);
end C = C’; y = [A B C];

function y = fixed(Points)

for i = 1:length(Points)
set = Points(i,1)*Points(i,2)-Points(i,3)^2;
if (set < 0),

Points(i,:) = 0;
end

end A = []; B = []; C = []; D = []; for j = 1 : length(Points)
if (sum(xor(Points(j,:),[0 0 0 0]) ~= 0)),

dummy_A = Points(j,1);
dummy_B = Points(j,2);
dummy_C = Points(j,3);
dummy_D = Points(j,4);
A = [A ; dummy_A];
B = [B ; dummy_B];
C = [C ; dummy_C];
D = [D ; dummy_D];

end
end
%Box = A + sqrt(-1)*B;
%plot(Box,’*’);
y = [A B C D];

function y = histo2(U,B,Weights)
% Making a matrix of the result
U = U’; B = B’; A = [B Weights]; C = [U Weights];

% Sort 1st row of matrix and corresponding weights
AA = sortrows(A,1); CC = sortrows(C,1);

% Matrix that we need to compare the values to
% x = 0:0.005:4; for bin size (401 steps)

160

Bin = []; for i = 1:801
Bin(i) = 0.005*(i-1);

end
% Finding the right spot in the matrix
Count = zeros(1,801); for j = 1:length(AA)

for k = 1:800
if (AA(j)>Bin(k) & AA(j)<=Bin(k+1)),

Count(k) = Count(k) + AA(j,2);
k = 800;

end
if(AA(j)>Bin(801)),

Count(801) = Count(801) + AA(j,2);
end

end
end

Count2 = zeros(1,801); for j = 1:length(CC)
for k = 1:800

if (CC(j)>Bin(k) & CC(j)<=Bin(k+1)),
Count2(k) = Count2(k) + CC(j,2);
k = 800;

end
if(CC(j)>Bin(801)),

Count2(801) = Count2(801) + CC(j,2);
end

end
end

% Getting the final histogram
Final_Unbiased = Count’; Final_Biased = Count2’;

y = [Final_Unbiased Final_Biased];

function y = integral(threshold, sigmasquare)

delta = 0.001; u = threshold:delta:1000; funky =
sum(u.^2.*exp(-u.^2/(2*sigmasquare)).*delta); y = funky;

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;
%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

161

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
%error_function_equals_to = input
%corresponding_value_of_x = i
y = i;

function y = meanvariance(U,B,x) U = U’; B = B’; for i = 1:length(x)
xi(i) = ((i-1)+i)*0.005/2;

end Mean_Biased = sum(B.*xi)/sum(B) Mean_Unbiased =
sum(U.*xi)/sum(U)
% Var(X) = E[X^2]-E[X]^2 = 1/N*sum(yi-mean)^2
A = length(B); C = length(U); Var_Biased = 0; Var_Unbiased = 0; for
j = 1 : length(x)

Var_Biased = Var_Biased + (B(i)-Mean_Biased)^2;
Var_Unbiased = Var_Unbiased + (U(i)-Mean_Unbiased)^2;

end Var_Biased = 1/A*Var_Biased Var_Unbiased = 1/C*Var_Unbiased

y = [Mean_Biased Mean_Unbiased Var_Biased Var_Unbiased];

function y = points2(L,a,b,epsi,factor) j = sqrt(-1); origine =
a+j*b;
% Design of the box and its intersections
box = []; index = 0; for x = 1 : (L/(epsi/factor))+1

for y = 1 : (L/(epsi/factor))+1
index = index + 1;
box(x,y) = (a+(x-1)*(epsi/factor))+j*(b+(y-1)*(epsi/factor));
real_part(index) = a+(x-1)*epsi/factor;
imaginary_part(index) = b+(y-1)*epsi/factor;

end
end
%plot(box,’*’);
y = [real_part; imaginary_part]’;

function y = posedef(points)
% points is a 2-by-2 matrix with constant coefficients
% We need to represent all the points as matrix = [a c; c b]
count = 0; for i = 1:length(points)

set(i) = points(i,1)*points(i,2)-points(i,3)^2;
if (set(i)<0),

count = count + 1;
end

end

y = count;

function y = variance(a,b,c,d,e,f,s1,s2,s3)

A = -2*s1*(b*c-d*f)-d*s2*(e-c)-2*s3*(d*f-b*e)-f*s2*(e-c); B =

162

-2*s2*(a*c-e^2)-d*s1*(e-c)-f*s1*(e-c)-f*s3*(e-a)-d*s3*(e-a); C =
-2*s3*(a*b-d*f)-2*s1*(d*f-b*e)-f*s2*(e-a)-d*s2*(e-a);

sigma_square = a*A^2+b*B^2+c*C^2+2*A*B*d+2*A*C*e+2*B*C*f; y =
sigma_square;

function y = weighting(Points,lambda)

for i = 1 : length(Points)
w(i) = sqrt(1+lambda^2*Points(i,1)^2+lambda^2*Points(i,2)^2);

end Points = [Points w’]; y = Points;

163

APPENDIX D

THE 6 DIMENSION MODEL

% Guillaume Raux
% Spring 2004 - Fall 2005 - Summer 2005
% PhD Texas A&M University
% Simulation for the stationary case in 6D
clear all; close all; clc;
% Nominal values
a0 = 1.5; d0 = -3/4 ; f0 = 1/2; s1 = 1; s2 = 1/4; s3 = 1/8; epsi =
1.5*10^(-3); alpha = 0.05; factor = 3; delta = 0.005; m = sqrt(2);
Infinity = 70;

% Getting the points
partial = partial_points2(a0, d0, epsi, factor);

% Getting the corresponding f points
final = final_points(partial, f0, epsi, a0, d0);

% Positive def
non_posi = posi_def(final);

% Weighting factor
weight = weighting_factor(final, a0, d0, epsi);

% Assigning weights to their corresponding points
%Final_with_weights = [final; weight];

% Nominal variance
Nominal = nominal_variance(a0, d0, f0, s1, s2, s3);

% Threshold value
T = inverse_erf(alpha)*sqrt(Nominal);

% Computations for Sigma square positive

AA = final(1,:); BB = final(2,:); CC = final(3,:); DD = weight;

A = 2*s1.*(AA.^2-BB.^2./2)+2*s2.*(BB.*CC./2-AA.*BB./m)+2*s3.
*(BB.^2./2-AA.*CC./m);

B = 2*s1.*(BB.*CC./2-AA.*BB./m)+2*s2.*(AA.^2-CC.^2./2)+2*s3.
*(BB.*CC./2-AA.*BB./m);

C = 2*s1.*(BB.^2./2-AA.*CC./m)+2*s2.*(BB.*CC./2-AA.*BB./m)+2*s3.
*(AA.^2-BB.^2./2);

Sigma_square_positive =

164

AA.*(A.^2+B.^2+C.^2)+2.*A.*B.*BB./m+2.*A.*C.*CC./m+2.*B.*C.*BB./m;
%%%%%%% Computation for partiel of f wrt to a and d

partiel_f_a = -3.*(AA-a0)./sqrt(epsi-3.*(AA-a0).^2-2.*(BB-d0).^2);
partiel_f_d = -2.*(BB-d0)./sqrt(epsi-3.*(AA-a0).^2-2.*(BB-d0).^2);

%%%%%%% Computation for partiel of Sigma square wrt to a and d
term_1aa = 2.*(4.*AA.*s1-m.*BB.*s2-m.*CC.*s3).*A; term_1bb =
2.*(-m.*BB.*s1+4.*AA.*s2-m.*BB.*s3).*B; term_1cc =
2.*(-m.*CC.*s1-m.*BB.*s2+4.*AA.*s3).*C; term_1a =
A.^2+B.^2+C.^2+AA.*(term_1aa+term_1bb+term_1cc); term_2a =
m.*BB.*(B.*(4.*AA.*s1-m.*BB.*s2-m.*CC.*s3)
+A.*(-m.*BB.*s1+4.*AA.*s2-m.*BB.*s3));
term_3a=m.*CC.*(C.*(4.*AA.*s1-m.*BB.*s2-m.*CC.*s3)
+A.*(-m.*CC.*s1-m.*BB.*s2+4.*AA.*s3));
term_4a =
m.*BB.*(C.*(-m.*BB.*s1+4.*AA.*s2-m.*BB.*s3)
+B.*(-m.*CC.*s1-m.*BB.*s2+4.*AA.*s3));
Partiel_sigma_a = term_1a + term_2a + term_3a + term_4a;
%%
term_2aa = 2.*(-2.*BB.*s1+2.*s2.*(CC./2-AA./m)+2.*BB.*s3).*A;
term_2bb = 2.*(2.*s1.*(CC./2-AA./m)+2.*s3.*(CC./2-AA./m)).*B;
term_2cc = 2.*(2.*BB.*s1+2.*s2.*(CC./2-AA./m)
-2.*BB.*s3).*C; term_1d
= AA.*(term_2aa+term_2bb+term_2cc); term_2d =
m.*BB.*(B.*(-2.*BB.*s1+2.*s2.*(CC./2-AA./m)+2.*BB.*s3)
+A.*(2.*s1.*(CC./2-AA./m)+2.*s3.*(CC./2-AA./m)));
term_3d =
m.*A.*B+m.*CC.*(C.*(-2.*BB.*s1+2.*s2.*(CC./2-AA./m)+2.*BB.*s3)
+A.*(2.*BB.*s1+2.*s2.*(CC./2-AA./m)-2.*BB.*s3));
term_4d =
m.*BB.*(C.*(2.*s1.*(CC./2-AA./m)+2.*s3.*(CC./2-AA./m))
+B.*(2.*BB.*s1+2.*s2.*(CC./2-AA./m)-2.*BB.*s3));
term_5d = m.*B.*C; Partiel_sigma_d = term_1d + term_2d + term_3d +
term_4d + term_5d;

% Computation of the integral
u = T : delta : Infinity; for i = 1 : length(Partiel_sigma_a)

d_rond_a = Partiel_sigma_a(i);
d_rond_d = Partiel_sigma_d(i);
koulchen = Sigma_square_positive(i);
funky_1a = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_a
*sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2a = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_a
*sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_a(i) = funky_1a + funky_2a;
funky_1d = -.5*(koulchen^(-3/2))/sqrt(2*pi)*d_rond_d
*sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2d = 1/(2*sqrt(2*pi)*koulchen^(5/2))*d_rond_d
*sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);

165

funky_d(i) = funky_1d + funky_2d;
end

% Getting red of the complex elements in funky_a and funky_d
if (sum(abs(imag(funky_a))) > 0),

dummy=onlyreal2(funky_a,funky_d,weight,partiel_f_a,partiel_f_d);
funky_a = dummy(1,:);
funky_d = dummy(2,:);
weight = dummy(3,:);
partiel_f_a = dummy(4,:);
partiel_f_d = dummy(5,:);
final_number_of_points = length(weight)

end

% Slope Unbiased case
g11 = 3+partiel_f_a.^2; g22 = 2+partiel_f_d.^2; g12 =
partiel_f_a.*partiel_f_d; Slope_unbiased =
1./(g11.*g22-g12.^2).
*(g22.*funky_a.^2-2.*g12.*funky_a.*funky_d+g11.*funky_d.^2);

save(’Results_XX’,’Slope_unbiased’,’weight’); clear all; load
Results_XX;
% Assigning the according weight to the slope
results = histo2(Slope_unbiased, weight); Normalized_results =
Norm(results); x = 0:0.005:2;
%plot(x,results);
%legend(’Unbiased Case’);

% Mean and Variance without the last bin
Mean_Variance = meanvariance(results(1:end-1),x(1:end-1));
% Median, Mode and standart deviation
Median = over50(results,x) Mode = mode(results, x) Over_90_pourcent
= over90(results,x) Over_75_pourcent = over75(results,x)
% Saving the results
save(’Results_XX’);

function y = weighting_factor(final, a0, d0, epsi) for i = 1 :
length(final)

weight(i) = sqrt(((epsi+6*(final(1,i)-a0)^2+2*(final(2,i)-d0)^2))
/(epsi-3*(final(1,i)-a0)^2-2*(final(2,i)-d0)^2));

end y = weight;

function y = final_points(partial, f0, epsi, a0, d0) for i = 1 :
length(partial)

f(i) = f0+sqrt(epsi-3*(partial(1,i)-a0)^2-2*(partial(2,i)-d0)^2);
end y = [partial(1,:); partial(2,:); f];

function y = S_square_posi(epsi, a0, d0, f0, s1, s2, s3,
Final_with_weights)

m = sqrt(2); AA = Final_with_weights(1,:); BB =

166

Final_with_weights(2,:); CC = Final_with_weights(3,:); DD =
Final_with_weights(4,:);

for i = 1 : length(AA)
A = 2*s1*(AA(i)^2-BB(i)^2/2)+2*s2*(BB(i)*CC(i)/2-AA(i)*BB(i)/m)
+2*s3*(BB(i)^2/2-AA(i)*CC(i)/m);
B = 2*s1*(BB(i)*CC(i)/2-AA(i)*BB(i)/m)+2*s2*(AA(i)^2-CC(i)^2/2)
+2*s3*(BB(i)*CC(i)/2-AA(i)*BB(i)/m);
C = 2*s1*(BB(i)^2/2-AA(i)*CC(i)/m)+2*s2*(BB(i)*CC(i)/2-AA(i)

*BB(i)/m)+2*s3*(AA(i)^2-BB(i)^2/2);
dummy(i) = AA(i)*(A^2+B^2+C^2)+2*A*B*BB(i)/m+2*A*C*CC(i)/m

+2*B*C*BB(i)/m;
%%%%%%% Computation for partiel of f wrt to a and d

partiel_f_a(i) = -3*(AA(i)-a0)/sqrt(epsi-3*(AA(i)-a0)^2
-2*(DD(i)-d0)^2);

partiel_f_d(i) = -2*(DD(i)-d0)/sqrt(epsi-3*(AA(i)-a0)^2
-2*(DD(i)-d0)^2);

%%%%%%% Computation for partiel of Sigma square wrt to a and d
term_1aa = 2*(4*AA(i)*s1-m*BB(i)*s2-m*CC(i)*s3)*A;
term_1bb = 2*(-m*BB(i)*s1+4*AA(i)*s2-m*BB(i)*s3)*B;
term_1cc = 2*(-m*CC(i)*s1-m*BB(i)*s2+4*AA(i)*s3)*C;
term_1a = A^2+B^2+C^2+AA(i)*(term_1aa+term_1bb+term_1cc);
term_2a = m*BB(i)*(B*(4*AA(i)*s1-m*BB(i)*s2-m*CC(i)*s3)
+A*(-m*BB(i)*s1+4*AA(i)*s2-m*BB(i)*s3));
term_3a = m*CC(i)*(C*(4*AA(i)*s1-m*BB(i)*s2-m*CC(i)*s3)
+A*(-m*CC(i)*s1-m*BB(i)*s2+4*AA(i)*s3));
term_4a = m*BB(i)*(C*(-m*BB(i)*s1+4*AA(i)*s2-m*BB(i)*s3)
+B*(-m*CC(i)*s1-m*BB(i)*s2+4*AA(i)*s3));
Partiel_sigma_a(i) = term_1a + term_2a + term_3a + term_4a;
%%
term_1aa = 2*(-2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)+2*BB(i)*s3)*A;
term_1bb = 2*(2*s1*(CC(i)/2-AA(i)/m)+2*s3*(CC(i)/2-AA(i)/m))*B;
term_1cc = 2*(2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)-2*BB(i)*s3)*C;
term_1d = AA(i)*(term_1aa+term_1bb+term_1cc);
term_2d = m*BB(i)*(B*(-2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)
+2*BB(i)*s3)+A*(2*s1*(CC(i)/2-AA(i)/m)+2*s3*(CC(i)/2-AA(i)/m)));
term_3d = m*A*B+m*CC(i)*(C*(-2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)
+2*BB(i)*s3)+A*(2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)-2*BB(i)*s3));
term_4d = m*BB(i)*(C*(2*s1*(CC(i)/2-AA(i)/m)+2*s3*(CC(i)/2-AA(i)/m))
+B*(2*BB(i)*s1+2*s2*(CC(i)/2-AA(i)/m)-2*BB(i)*s3));
term_5d = m*B*C;
Partiel_sigma_d(i) = term_1d + term_2d + term_3d

+ term_4d + term_5d;
end y = [Partiel_sigma_a ; Partiel_sigma_d];

function y = posi_def(final) a = final(1,:); d = final(2,:); f =
final(3,:);

m = sqrt(2); count = 0; for i = 1 : length(a)

167

G = [a(i) d(i)/m f(i)/m ;d(i)/m a(i) d(i)/m ;f(i)/m d(i)/m a(i)];
eigenvalues = eig(G);
for j = 1 : length(eigenvalues)

if (eigenvalues(j) < 0),
count = count + 1;

end
end

end y = count;

function y = partial_points2(a0, d0, epsi, factor)

% 3(a-a0)^2+2(d-d0)^2+(f-f0)^2=epsi
% Gives an ellipse of equation 3A^2+2D^2=epsi after projection

j = sqrt(-1); offset = epsi/(10*factor);
% Design of the box and its intersections
box = []; index = 0; abc = factor*10*6; for x = 1 : abc

for y = 1 : abc
index = index + 1;
box(x,y) = (a0-3*epsi+(x-1)*offset)+j

*(d0-3*epsi+(y-1)*offset);
real_part(index) = (a0-3*epsi+(x-1)*offset);
imaginary_part(index) = (d0-3*epsi+(y-1)*offset);

end
end
%plot(box,’*’);
aaa = size(box); number_of_points_on_grid = aaa(1)*aaa(2)
% Needs to respect the equation of the ellipse
A = real_part’; D = imaginary_part’;

Set = []; for i = 1 : length(A)
result = 3*(A(i)-a0)^2+2*(D(i)-d0)^2;
if (result - epsi > 0) % fail the test

A(i) = 0;
D(i) = 0;

end
end
% Taking care of only the none zero elements
coord_D = []; coord_A = []; for i = 1 : length(D)

if (A(i) ~= 0),
coordinates = D(i);
coordinate = A(i);
coord_D = [coord_D ;coordinates];
coord_A = [coord_A ;coordinate];

end
end D = coord_D; A = coord_A; inside_ellipse = length(A)
y = [A D]’;

function y = over90(results,x) a = sum(results); b = 0.9 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);

168

Sum = [Sum dummy];
end index = min(find(Sum > b)); Over_90 = x(index); y = Over_90;

function y = over75(results,x) a = sum(results); b = 0.75 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);
Sum = [Sum dummy];

end index = min(find(Sum > b)); Over_75 = x(index); y = Over_75;

function y = over50(results,x) a = sum(results); b = 0.5 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);
Sum = [Sum dummy];

end index = min(find(Sum > b)); Over_50 = x(index); y = Over_50;

function y = onlyreal2(funky_a, funky_d, weight, partiel_f_a,
partiel_f_d)

aaa = zeros(1,length(funky_a)); bbb = zeros(1,length(funky_d));

ccc = find(imag(funky_a)>0);

for j = 1 : length(ccc)
funky_a(ccc(j)) = 0;
funky_d(ccc(j)) = 0;
weight(ccc(j)) = 0;
partiel_f_a(ccc(j)) = 0;
partiel_f_d(ccc(j)) = 0;

end

% Keep only the non zero elements
dummy1 = []; dummy2 = []; dummy3 = []; dummy4 = []; dummy5 = []; for
i = 1 : length(funky_a)

if (funky_a(i) ~= 0),
coordinates = funky_a(i);
coordinate = funky_d(i);
coordinat = weight(i);
coordina = partiel_f_a(i);
coordin = partiel_f_d(i);
dummy1 = [dummy1 ;coordinates];
dummy2 = [dummy2 ;coordinate];
dummy3 = [dummy3 ;coordinat];
dummy4 = [dummy4 ; coordina];
dummy5 = [dummy5 ; coordin];

end
end y = [dummy1 dummy2 dummy3 dummy4 dummy5]’;

function y = Norm(results) a = norm(results); b = results / a;

y = b;

169

function y = nominal_variance(a0, d0, f0, s1, s2, s3) m = sqrt(2); A
= 2*s1*(a0^2-d0^2/2)+2*s2*(d0*f0/2-a0*d0/m)+2*s3*(d0^2/2-a0*f0/m); B
= 2*s1*(d0*f0/2-a0*d0/m)+2*s2*(a0^2-f0^2/2)+2*s3*(d0*f0/2-a0*d0/m);
C = 2*s1*(d0^2/2-a0*f0/m)+2*s2*(d0*f0/2-a0*d0/m)+2*s3*(a0^2-d0^2/2);

dummy = a0*(A^2+B^2+C^2)+2*A*B*d0/m+2*A*C*f0/m+2*B*C*d0/m;

y = dummy;

function y = mode(results,x)
% In statistics, the mode is the value that has the largest number of
% observations, namely the most frequent value or values.
% The mode is not necessarily unique, unlike the arithmetic mean.

[a, index] = max(results); dummy = (x(index)+x(index+1))/2; y =
dummy;

function y = meanvariance(U,x)
%U = U’;
for i = 1:length(x)

xi(i) = ((i-1)+i)*0.005/2;
end Mean_Unbiased = sum(U.*xi)/sum(U)
% Var(X) = E[X^2]-E[X]^2 = 1/N*sum(yi-mean)^2
C = length(U); Var_Unbiased = 0; for j = 1 : length(x)

Var_Unbiased = Var_Unbiased + (U(i)-Mean_Unbiased)^2;
end Var_Unbiased = 1/C*Var_Unbiased y = [Mean_Unbiased
Var_Unbiased];

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;
%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
%error_function_equals_to = input
%corresponding_value_of_x = i
y = i;

function y = integr(T, delta, epsi, a0, d0, f0, s1, s2, s3,

170

Final_with_weights, Partiel_sigma_a_and_d) u = u = T:delta:1000; m =
sqrt(2); AA = Final_with_weights(1,:); BB = Final_with_weights(2,:);
CC = Final_with_weights(3,:); DD = Final_with_weights(4,:);

function y = histo2(U, weight)

A = U;
% Matrix that we need to compare the values to
% x = 0:0.005:2; for bin size (401 steps)
Bin = []; for i = 1:401

Bin(i) = 0.005*(i-1);
end

% Finding the right spot in the matrix
Count = zeros(length(A),401);

for i = 1 : length(A)
for k = 1:400

if (A(i)>Bin(k) & A(i)<=Bin(k+1)),
Count(i,k) = weight(i);
k = 400;

end
if(A(i)>Bin(401)),

Count(i,401) = weight(i);
end

end
end dummy = cumsum(Count); Count = dummy(end,:); y = Count;

171

APPENDIX E

LARGE SAMPLE EXAMPLE

clear all; clc;

epsi_n = 1/8; a0 = 1; c0 = -1/2; alpha = 0.005; n = 10; delta =
0.005; factor = 10000;
% Find a’s and corresponding c’s
a = -epsi_n/n:epsi_n/(factor):epsi_n/n-epsi_n/(factor); c =
sqrt(epsi_n/n - a.^2)/sqrt(n-1); Infinity = 70;

% Shift them using the nominal values
a = a0 + a; c = c0 + c;

% Weighting factor
partial_c_a = -(a - a0)./sqrt((n-1).*(epsi_n/n-(a-a0).^2)); WF =
sqrt(1 + partial_c_a.^2);

% Nominal variances
sigma_lambda_square_nomi = n*a0 + (n^2-n)*c0; Nominal =
sigma_lambda_square_nomi;
% Sigma Square
Sigma_square = n.*a + (n^2-n).*c;

% Threshold value
T = inverse_erf(alpha)*sqrt(Nominal);
% Computation of the integral
Partial_sigma_a = n - (n^2-n).*(a -
a0)./sqrt((n-1)*(epsi_n/n-(a-a0).^2)); u = T : delta : Infinity; for
i = 1 : length(Partial_sigma_a)

funky_a1(i) = -.5*Sigma_square(i)^(-3/2)*
sum(exp(-u.^2/(2*Sigma_square(i))).*delta);
funky_a2(i) = 1/(2*sqrt(2*pi)*Sigma_square(i)^(5/2))
*Partial_sigma_a(i)*sum(u.^2.*exp(-u.^2/(2*Sigma_square(i))).*delta);

end partial_alpha_a = 1/(2*pi).*Partial_sigma_a.*(funky_a1 +
funky_a2);

% Slopes
g11 = 1 + (partial_c_a).^2; Slopes =
abs(partial_alpha_a).*g11.^(-1/2); save(’Results_3a’,’Slopes’,’WF’);
clear all; load Results_3a;
% Assigning the according weight to the slope
results = histo2(Slopes, WF); Normalized_results = Norm(results); x
= 0:0.0005:2; plot(x,Normalized_results); axis([0 .07 0 1]);
legend(’Slopes for n = 10’);

172

% Mean and Variance without the last bin
Mean_Variance = meanvariance(results(1:end-1),x(1:end-1));
% Median, Mode and standart deviation
Median = over50(results,x) Mode = mode(results, x) Over_90_pourcent
= over90(results,x) Over_75_pourcent = over75(results,x)
% Saving the results
save(’Results_3a’);

function y = over90(results,x) a = sum(results); b = 0.9 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);
Sum = [Sum dummy];

end index = min(find(Sum > b)); Over_90 = x(index); y = Over_90;

function y = over75(results,x) a = sum(results); b = 0.75 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);
Sum = [Sum dummy];

end index = min(find(Sum > b)); Over_75 = x(index); y = Over_75;

function y = over50(results,x) a = sum(results); b = 0.5 * a; Sum =
[]; dummy = 0; for i = 1:length(results)

dummy = dummy + results(i);
Sum = [Sum dummy];

end index = min(find(Sum > b)); Over_50 = x(index); y = Over_50;

function y = Norm(results) a = norm(results); b = results / a;

y = b;

function y = mode(results,x)
% In statistics, the mode is the value that has the largest number of
% observations, namely the most frequent value or values.
% The mode is not necessarily unique, unlike the arithmetic mean.

[a, index] = max(results); dummy = (x(index)+x(index+1))/2; y =
dummy;

function y = meanvariance(U,x)
%U = U’;
for i = 1:length(x)

xi(i) = ((i-1)+i)*0.005/2;
end Mean_Unbiased = sum(U.*xi)/sum(U)
% Var(X) = E[X^2]-E[X]^2 = 1/N*sum(yi-mean)^2
C = length(U); Var_Unbiased = 0; for j = 1 : length(x)

Var_Unbiased = Var_Unbiased + (U(i)-Mean_Unbiased)^2;
end Var_Unbiased = 1/C*Var_Unbiased y = [Mean_Unbiased
Var_Unbiased];

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;

173

%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
%error_function_equals_to = input
%corresponding_value_of_x = i
y = i;

function y = histo2(U, weight)

A = U;
% Matrix that we need to compare the values to
% x = 0:0.0005:2; for bin size (401 steps)
Bin = []; for i = 1:4001

Bin(i) = 0.0005*(i-1);
end

% Finding the right spot in the matrix
Count = zeros(length(A),4001);

for i = 1 : length(A)
for k = 1:4000

if (A(i)>Bin(k) & A(i)<=Bin(k+1)),
Count(i,k) = weight(i);
k = 4000;

end
if(A(i)>Bin(4001)),

Count(i,4001) = weight(i);
end

end
end dummy = cumsum(Count); Count = dummy(end,:); y = Count;

174

APPENDIX F

EXTENSION TO GENERALIZED GAUSSIAN

% Old simulation with new parameters surface
% Guillaume Raux
% Spring 2004 - Fall 2005
% PhD Texas A&M University

clear all; clc;
% Nominal values
a0 = 1/2; b0 = 1/4; c0 = 0; s1 = 1/2; s2 = 1/4; epsi = 0.05; alpha =
0.05; delta = 0.001;

% Selection of Points
Points = circle(a0 ,b0 ,c0, epsi); Number_of_points =
min(size(Points))*max(size(Points))/2; A = Points(:,1); B =
Points(:,2); C = zeros(1,length(A))’;
% Computation of Sigma square nominal
Sigma_square_nom = a0*b0^2*s1^2 + a0^2*b0*s2^2;

% Computations for Sigma square positive
Partial_b_a = -(A-a0).*(epsi-(A-a0).^2).^(1/2); Partial_b2_a =
-2*b0*Partial_b_a - 2*(A-a0); Partial_sigma_a = (B.^2 +
A.*Partial_b2_a)*s1^2 + (2.*A.^2.*B + A.^2.*Partial_b_a)*s2^2;
Sigma_square = A.*B.^2*s1^2 + A.^2.*B*s2^2;

% Computation of the threshold
T = inverse_erf(alpha)*sqrt(Sigma_square_nom);

% Computation of the Integrale
u = T : delta : 200; for i = 1 : length(Partial_sigma_a)

d_rond_a = Partial_sigma_a(i);
koulchen = Sigma_square(i);
funky_1a = -.5*(koulchen^(-3/2))/sqrt(2*pi)
*d_rond_a*sum(exp(-u.^2/(2*koulchen)).*delta);
funky_2a = 1/(2*sqrt(2*pi)*koulchen^(5/2))
*d_rond_a*sum(u.^2.*exp(-u.^2/(2*koulchen)).*delta);
funky_a(i) = funky_1a + funky_2a;

end funky_a = funky_a’;
% Slope Unbiased case
Slope_unbiased = sqrt(funky_a./(1 + Partial_sigma_a.^2));

% Assigning the according weight to the slope
xxx = -.05:0.001:0.5; figure; hist(Slope_unbiased,xxx); axis([0 0.5
0 500]);

175

% Saving the results
save(’Results_case_4’);

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;
%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
%error_function_equals_to = input
%corresponding_value_of_x = i
y = i;

function y = circle(a0, b0, c0, epsi)

% All the points need to be inside a circle of radius epsi
j = sqrt(-1); origine = a0+j*b0;
% Design of the box and its intersections
box = []; index = 0; factor = 3; for x = 1 : (11*factor)

for y = 1 : (11*factor)
index = index + 1;
box(x,y) = ((a0-epsi)+(x-1)*epsi/(5*factor))
+j*((b0-epsi)+(y-1)*epsi/(5*factor));
real_part(index) = (a0-epsi)+(x-1)*epsi/(5*factor);
imaginary_part(index) = (b0-epsi)+(y-1)*epsi/(5*factor);

end
end
%plot(box,’*’);

% Taking only the points that are within the circle of radius epsi
A = real_part’; B = imaginary_part’;

Set = []; BB = []; AA = []; for i = 1 : length(B)
result = (b0-B(i))^2+(a0-A(i))^2;
if (result - epsi^2 > 0) % fail the test

B(i) = 0;
A(i) = 0;

else
B(i) = B(i);

176

A(i) = A(i);
end

end

% Taking care of only the none zero elements
coord_B = []; coord_A = []; for i = 1 : length(B)

if (B(i) ~= 0),
coordinates = B(i);
coordinate = A(i);
coord_B = [coord_B ;coordinates];
coord_A = [coord_A ;coordinate];

end
end B = coord_B; A = coord_A;

y = [A B];

% Extended Gaussian Case
% Guillaume Raux
% Spring 2004 - Fall 2005
% PhD Texas A&M University

clear all; clc;
% Nominal values
a0 = 1/2; b0 = 1/4; c0 = 0; s1 = 1/2; s2 = 1/4; epsi = 0.05; alpha =
0.05; delta = 0.001; r = 2;

% Selection of Points
Points = circle(a0 ,b0 ,c0, epsi); Number_of_points =
min(size(Points))*max(size(Points))/2; A = Points(:,1); B =
Points(:,2); C = zeros(1,length(A))’;
% Computation of Sigma square nominal
Sigma_square_nom = a0*b0^2*s1^2 + a0^2*b0*s2^2;

% Computations for Sigma square positive
Partial_b_a = -(A-a0).*(epsi-(A-a0).^2).^(1/2); Partial_b2_a =
-2*b0*Partial_b_a - 2*(A-a0); Partial_sigma_a = (B.^2 +
A.*Partial_b2_a)*s1^2 + (2.*A.^2.*B + A.^2.*Partial_b_a)*s2^2;
Sigma_square = A.*B.^2*s1^2 + A.^2.*B*s2^2;

% Computation of the threshold
T = inverse_erf(alpha)*sqrt(Sigma_square_nom);

% Computation of the integrales
Gam1 = gamma(3/r); Gam2 = gamma(1/r); for i = 1 : length(A)

term1(i) = -T/s1*r*Gam1^.5/(2*A(i)^.5*Gam2^(3/2))
*exp(-(abs(A(i)*T/s1))^r/(A(i)^(r/2)*Gam2^(r/2)*Gam1^(-r/2)));
dummy = B(i);
dummy2 = A(i);
term2(i) = quadl(@(y) r*Gam1^(.5)/(2*dummy^.5*Gam2^(3/2))

177

.*exp(-y.^r./(dummy^(r/2)*Gam2^(r/2)*Gam1^(-r/2))), 0, 100);
term3(i) = @(x) -r*Gam1^(.5)/(4*Gam2^(3/2)*dummy2)
.*exp(-x.^r./(dummy2^(r/2)*Gam2^(r/2)*Gam1^(-r/2)))
+ r/(2*dummy2).*x.^r./(dummy2^(r/2)*Gam2^(r/2)*Gam1^(-r/2))
.*exp(-x.^r./(dummy2^(r/2)*Gam2^(r/2)*Gam1^(-r/2)));

end Partial_b_a = -(A-a0).*(epsi-(A-a0).^2).^(1/2); for i = 1 :
length(A)

% Matrix G and Joestar
g11 = 1 + Partial_b_a(i)^2;
g21 = 0;
g12 = 0;
g22 = 1;
G = [g11 g12; g21 g22];
Joestar = [funky_a(i) funky_r(i)];
% Slope Unbiased case
Slope_unbiased(i) = sqrt(Joestar*inv(G)*Joestar’);

end
% Assigning the according weight to the slope
xxx = -.05:0.001:0.5; figure; hist(Slope_unbiased,xxx);
%axis([0 0.5 0 50]);
% Saving the results
save(’Results_case_1’);

function y = inverse_erf(alpha) delta = 0.00001; sigmasquare = 1;
err = 1; i = 0;
%alpha = 0.1;
input = 0.5 - alpha; while (err > 0.005)

i = i + .05;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
% In case I went too far
i = i - 0.05; err = 1;
% Same procedure with smaller increment and smaller err
while (err > 0.0001)

i = i + 0.001;
u = 0:delta:i;
funky = 1/sqrt(2*pi).*sum(exp(-u.^2/(2*sigmasquare)).*delta);
err = abs(funky-input);

end
%error_function_equals_to = input
%corresponding_value_of_x = i
y = i;

function y = Integr(lower ,higher, delta) for x = lower : delta :
100

index = index + 1;
aa(index) = quadl(@(y) cst2*exp(-abs(y).^r/cst22),x,higher);
bb(index) = cst1*exp(-abs(x).^r/cst11);

end

178

Final = sum(bb.*aa)*delta; y = Final;

function y = circle(a0, b0, c0, epsi)

% All the points need to be inside a circle of radius epsi
j = sqrt(-1); origine = a0+j*b0;
% Design of the box and its intersections
box = []; index = 0; factor = 3; for x = 1 : (11*factor)

for y = 1 : (11*factor)
index = index + 1;
box(x,y) = ((a0-epsi)+(x-1)*epsi/(5*factor))
+j*((b0-epsi)+(y-1)*epsi/(5*factor));
real_part(index) = (a0-epsi)+(x-1)*epsi/(5*factor);
imaginary_part(index) = (b0-epsi)+(y-1)*epsi/(5*factor);

end
end
%plot(box,’*’);

% Taking only the points that are within the circle of radius epsi
A = real_part’; B = imaginary_part’;

Set = []; BB = []; AA = []; for i = 1 : length(B)
result = (b0-B(i))^2+(a0-A(i))^2;
if (result - epsi^2 > 0) % fail the test

B(i) = 0;
A(i) = 0;

else
B(i) = B(i);
A(i) = A(i);

end
end

% Taking care of only the none zero elements
coord_B = []; coord_A = []; for i = 1 : length(B)

if (B(i) ~= 0),
coordinates = B(i);
coordinate = A(i);
coord_B = [coord_B ;coordinates];
coord_A = [coord_A ;coordinate];

end
end B = coord_B; A = coord_A;

y = [A B];

179

APPENDIX G

INTEGRAL FOR THE GENERALIZED GAUSSIAN CASE USING FORTRAN 90

PROGRAM integrale

IMPLICIT NONE

!--------------PARAMETRES DU PROBLEME-------------------------------
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: a_0, b_0
REAL(KIND=8)::s1, s2, T, r0

INTEGER :: i, ix1, ix2
INTEGER :: nb_pts !nb de couples
REAL(KIND=8) :: inf !borne infini

!--------------PARAMETRE POUR L’INTEGRATION DES DERIVEES
PARTIELLES------

REAL(KIND=8) :: b_inf1, b_sup1 !pour IX1_1,
IX1_2, IX1_3
REAL(KIND=8) :: b_inf2, b_sup2 !pour IX2_1,
IX2_2
REAL(KIND=8) :: b_inf3, b_sup3 !pour IX2_3

INTEGER :: N1, N2
!nb de pts de discretisation
REAL(KIND=8) :: h1, h2
!pas d’espace = (b_sup-b_inf)/N
REAL(KIND=8) :: Itotal, It1, It2
REAL(KIND=8) :: IX1_1, IX1_2, IX1_3
REAL(KIND=8) :: IX2_1, IX2_2, IX2_3
REAL(KIND=8) :: X1, X2
LOGICAL :: once1 = .true., once2 = .true.,
once = .true.
REAL(KIND=8) :: user_time, dummy, tt1, tps
REAL(KIND=8) :: norme

!--------------PARAMETER POUR L’INTEGRATION DE C ET
D-----------------

REAL(KIND=8) :: b_infc, b_supc, t0
INTEGER :: N
REAL(KIND=8) :: h
REAL(KIND=8) :: C0, D0, E0, F0
REAL(KIND=8) :: IX2R_1, IX2R_2
REAL(KIND=8) :: IX1R_1, IX1R_2
REAL(KIND=8) :: ItotalR

!---------------FIN DES
DECLARATIONS-----------------------------------
!==

180

!---------------LECTURE
PARAMETRES-----------------------------------

write(*,*) ’Lecture data ...’
OPEN(UNIT = 10, FILE = ’data’,FORM =’formatted’,STATUS =’unknown’)
READ(10,*) s1, s2, T, nb_pts, inf, r0

!---------------LECTURE DATA
INTEGRATION-----------------------------

READ(10,*) N1, N2
READ(10,*) b_infc, b_supc, N
CLOSE(10)

!---------------LECTURE NUAGE DE
POINTS--------------------------------
write(*,*) ’Lecture nuage de points ...’
ALLOCATE(a_0(nb_pts), b_0(nb_pts))
OPEN(UNIT = 11, FILE = ’points’,FORM =’formatted’,STATUS =’unknown’)
DO i=1, nb_pts

READ(11,*) a_0(i), b_0(i)
ENDDO
CLOSE(11)

!---------------OUVERTURE FICHIERS
SORTIE--------------------------------
OPEN(UNIT = 12,FILE=’sortie_A’,FORM =’formatted’,STATUS=’unknown’)
OPEN(UNIT = 17, FILE=’sortie_R’,FORM =’formatted’,STATUS=’unknown’)
OPEN(UNIT = 13, FILE=’fX1_fX2’,FORM=’formatted’,STATUS=’unknown’)
OPEN(UNIT = 14, FILE=’dfX1_dFX2’,FORM=’formatted’,STATUS=’unknown’)
OPEN(UNIT = 15, FILE=’gamma’,FORM=’formatted’,STATUS=’unknown’)
OPEN(UNIT = 16, FILE=’CD’,FORM=’formatted’,STATUS=’unknown’)

!---
!===

!trace des fonctions sur (a,b)
write(*,*) ’Trace des fonctions et derivees ...’
DO i=1, N1

h1 = (inf)/N1
X1 = h1*i
write(13,103) X1, f_X1(a_0(1), b_0(1), r0, X1), f_X2(a_0(1),
b_0(1), r0, X1)
write(14,103) X1, df_X1(a_0(1), b_0(1), r0, X1), df_X2(a_0(1),
b_0(1), r0, X1)
write(15,103) X1, gamma(X1)

ENDDO
DO i=1, N

h1 = (b_supc-b_infc)/N
X1 = h1*i
write(16,103) X1, X1**(3.d0/r0-1.d0)*log(X1)*exp(-X1), &

X1**(1.d0/r0-1.d0)*log(X1)*exp(-X1)
ENDDO
CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE(16)

181

!STOP
!-------------------Calcul des integrales C et D-----------------

write(*,*) ’Calcul integrales C et D ...’
DO ix1=1, N

h = (b_supc-b_infc)/N
t0 = b_infc + (2.d0*ix1-1)*h/2.d0
C0 = C0 + h*(-3.d0/r0**2)*t0**(3.d0/r0-1.d0)*log(t0)*exp(-t0)
D0 = D0 + h*(-1.d0/r0**2)*t0**(1.d0/r0-1.d0)*log(t0)*exp(-t0)

ENDDO
!--
!-------------------Calcul de E et F-----------------------------

write(*,*) ’Calcul constante E et F ’
E0 = 1.d0/(2.d0*r0)*gamma(1.d0/r0)**(-r0/2.d0-1.d0)*D0 -&

0.5d0*gamma(1.d0/r0)**(-r0/2.d0)*log(gamma(1.d0/r0))

F0 = -3.d0/(2.d0*r0)*gamma(3.d0/r0)**(-r0/2.d0-1.d0)*C0 + &
0.5d0*gamma(3.d0/r0)**(r0/2.d0)*log(gamma(3.d0/r0))

!---

write(*,*) ’Calcul integrales ...’

DO i=1, nb_pts !boucle sur les couples de points

tt1 = user_time(dummy)

write(*,*) ’point numero’,i

b_inf1 = a_0(i)*T/s1
b_sup1 = inf

IX1_1 = 0.d0
IX1_2 = 0.d0
IX1_3 = 0.d0
IX2_3 = 0.d0
IX1R_1 = 0.d0
IX1R_2 = 0.d0

DO ix1 = 1, N1 !boucle pour l’integration sur X1

h1 = (b_sup1-b_inf1)/N1

IF (once1) THEN
once1 = .false.
write(*,*) ’h1=’,h1

ENDIF

X1 = b_inf1 + (2.d0*ix1-1)*h1/2.d0

IX2_1 = 0.d0

182

IX2_2 = 0.d0
IX2R_1 = 0.d0
IX2R_2 = 0.d0

DO ix2 = 1, N2 !boucle pour l’integration sur X2

b_inf2 = b_0(i)*((T-(s1*X1)/a_0(i))/s2)
b_sup2 = inf
h2 = (b_sup2-b_inf2)/N2

IF (once2) THEN
once2 = .false.

write(*,*) ’h2 = ’,h2
ENDIF

X2 = b_inf2 + (2.d0*ix2-1)*h2/2.d0

!D(alpha)/Da
IX2_1 = IX2_1 + h2*f_X2 (a_0(i), b_0(i), r0, X2)
IX2_2 = IX2_2 + h2*df_X2(a_0(i), b_0(i), r0, X2)

!D(alpha)/Dr
IX2R_1 = IX2R_1 + h2* &

J(b_0(i), r0, X2, C0, D0, E0, F0)
IX2R_2 = IX2R_2 + h2* &

J(a_0(i), r0, X2, C0, D0, E0, F0)

IF (ix1 == 1) THEN
b_inf2 = 0.d0

b_sup2 = inf
h2 = (b_sup2-b_inf2)/N2
X2 = b_inf2 + (2.d0*ix2-1)*h2/2.d0

!D(alpha)/Da
IX2_3 = IX2_3 - T/s1*f_X1(a_0(i),b_0(i),r0,a_0(i)*T/s1)*&

h2*f_X2(a_0(i), b_0(i), r0, X2)
ENDIF

!D(alpha)/Da
IX1_1 = IX1_1 + h1*df_X1(a_0(i), b_0(i), r0, X1)*IX2_1
IX1_2 = IX1_2 + h1*f_X1 (a_0(i), b_0(i), r0, X1)*IX2_2
IX1_3 = IX1_3 - h1*b_0(i)*X1/(s2*a_0(i)**2) * &

f_X1(a_0(i), b_0(i), r0, X1)* &
f_X2(a_0(i), b_0(i), r0, ((T-(s1*X1)/a_0(i))/s2))

!D(alpha)/Dr
IX1R_1 = IX1R_1 + h1*f_X1(a_0(i), b_0(i), r0, X1)*IX2R_1
IX1R_2 = IX1R_2 + h1*f_X2(a_0(i), b_0(i), r0, X1)*IX2R_2

ENDDO

183

Itotal = IX1_1 + IX1_2 + IX1_3 + IX2_3
ItotalR = IX1R_1 + IX1R_2

ENDDO

IF (once) THEN
once = .false.

tps = user_time(dummy) - tt1
write(*,*) ’estimation temps total :’, tps*nb_pts/60.d0

ENDIF

write(12,103) a_0(i), b_0(i), Itotal
write(17,103) a_0(i), b_0(i), ItotalR

ENDDO

CLOSE(12)

103 FORMAT(50(e22.9,2x))

CONTAINS

FUNCTION f_test(x) RESULT(valeur)

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: x
REAL(KIND=8) :: valeur

valeur = x**5

END FUNCTION f_test

FUNCTION f_X1(a, b, r, x) RESULT(valeur)

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: a, b, r, x
REAL(KIND=8) :: valeur

valeur = (r*gamma(3.d0/r)**(0.5)) / &
(2.d0*a**(0.5d0)*gamma(1.d0/r)**(1.5d0)) * &

exp(&
-abs(x)**(r) / &
(a**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0)))

END FUNCTION f_X1

FUNCTION f_X2(a, b, r, x) RESULT(valeur)

184

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: a, b, r, x
REAL(KIND=8) :: valeur

valeur = (r*gamma(3.d0/r)**(0.5)) / &
(2.d0*b**(0.5)*gamma(1.d0/r)**(1.5)) * &
exp(&
-abs(x)**(r) / &
(b**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0)))

END FUNCTION f_X2

FUNCTION df_X1(a, b, r, x) RESULT(valeur)

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: a, b, r, x
REAL(KIND=8) :: valeur
REAL(KIND=8) :: AA, BB

AA = -r*gamma(3.d0/r)**(0.5) / &
(4.d0*gamma(1.d0/r)**(1.5)*a**(1.5))

BB = 0.5d0 * abs(x)**r / &
(a**(r/2.d0)*gamma(1.d0/r)**(r/2.d0)* &

gamma(3.d0/r)**(-r/2.d0)) * r/a * &
exp(&
-abs(x)**(r) / &
(a**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &

gamma(3.d0/r)**(-r/2.d0)))

valeur = AA * exp(&
-abs(x)**(r) / &
(a**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0))) + &

BB * (r*gamma(3.d0/r)**(0.5d0)) / &
(2.d0*a**(0.5)*gamma(1.d0/r)**(1.5))

END FUNCTION df_X1

FUNCTION df_X2(a, b, r, x) RESULT(valeur)

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: a, b, r, x
REAL(KIND=8) :: valeur
REAL(KIND=8) :: AA, BB

AA = -r*gamma(3.d0/r)**(0.5) / &
(4.d0*gamma(1.d0/r)**(1.5)*b**(1.5))

185

BB = 0.5d0 * abs(x)**r / &
(b**(r/2.d0)*gamma(1.d0/r)**(r/2.d0)* &
gamma(3.d0/r)**(-r/2.d0)) * r/b * &
exp(&
-abs(x)**(r) / &
(b**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0)))

valeur = AA * exp(&
-abs(x)**(r) / &
(b**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0))) + &
BB * (r*gamma(3.d0/r)**(0.5d0)) / &
(2.d0*b**(0.5)*gamma(1.d0/r)**(1.5))

END FUNCTION df_X2

FUNCTION J(a, r, x, C, D, E, F) RESULT(valeur)

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: a, r, x
REAL(KIND=8), INTENT(IN) :: C, D, E, F
REAL(KIND=8) :: valeur
REAL(KIND=8) :: K, I, H

H = -0.5d0*a**(-r/2.d0)*log(a)

K = 1.d0/(2.d0*a**(0.5))* (&
gamma(1.d0/r)**(-1.5)* (gamma(3.d0/r)**(0.5) + &
r/2.d0*C*gamma(3.d0/r)**(-0.5)) + &
r*gamma(3.d0/r)**(0.5)*-1.5* &
gamma(1.d0/r)**(-2.5)*D)

I = -abs(x)**(r)*a**(-r/2.d0)*gamma(1.d0/r)**(-r/2.d0)*F &
-abs(x)**(r)*a**(-r/2.d0)*E*gamma(3.d0/r)**(r/2.d0) &
- abs(x)**(r)*H*gamma(1.d0/r)**(-r/2.d0)*gamma(3.d0/r)
(r/2.d0) &-G(r, x)*a(-r/2.d0)*gamma(1.d0/r)**(-r/2.d0)
*gamma(3.d0/r)**(r/2.d0)

valeur = exp(-abs(x)**(r) / &
(a**(r/2.d0)*gamma(1.d0/r)**(r/2.d0) * &
gamma(3.d0/r)**(-r/2.d0)))*(&
K+I*r*gamma(3.d0/r)**(0.5)/(&
gamma(1.d0/r)**(1.5)*2.d0*a**(0.5)))

END FUNCTION J

FUNCTION G(r, x) RESULT(valeur)

186

IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: r, x
REAL(KIND=8) :: valeur

valeur = abs(x)**(r)*log(abs(x))

END FUNCTION G

function gamma(x) result(dgamma)

implicit none
real(kind=8), intent(in) :: x
real(kind=8) :: dgamma
integer :: n, k
real(kind=8) :: w, y

real(kind=8), parameter :: p0 = 0.999999999999999990d0
real(kind=8), parameter :: p1 = -0.422784335098466784d0
real(kind=8), parameter :: p2 = -0.233093736421782878d0
real(kind=8), parameter :: p3 = 0.191091101387638410d0
real(kind=8), parameter :: p4 = -0.024552490005641278d0
real(kind=8), parameter :: p5 = -0.017645244547851414d0
real(kind=8), parameter :: p6 = 0.008023273027855346d0
real(kind=8), parameter :: p7 = -0.000804329819255744d0
real(kind=8), parameter :: p8 = -0.000360837876648255d0
real(kind=8), parameter :: p9 = 0.000145596568617526d0
real(kind=8), parameter :: p10 = -0.000017545539395205d0
real(kind=8), parameter :: p11 = -0.000002591225267689d0
real(kind=8), parameter :: p12 = 0.000001337767384067d0
real(kind=8), parameter :: p13 = -0.000000199542863674d0

n = nint(x - 2)
w = x - (n + 2.d0)
y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) * &

w + p9) * w + p8) * w + p7) * w + p6) * w + p5) * &
w + p4) * w + p3) * w + p2) * w + p1) * w + p0

if (n .gt. 0) then
w = x - 1
do k = 2, n

w = w * (x - k)
end do

else
w = 1
do k = 0, -n - 1

y = y * (x + k)
end do

end if
dgamma = w / y

end function gamma

187

FUNCTION user_time(dummy) RESULT(time)
IMPLICIT NONE

REAL(KIND=8) :: dummy, time

INTEGER :: count, count_rate, count_max

CALL SYSTEM_CLOCK(COUNT, COUNT_RATE, COUNT_MAX)
time = (1.d0*count)/count_rate

END FUNCTION user_time

END PROGRAM integrale

188

VITA

Guillaume Raux was born in Dijon, France on January 3, 1976. He is the son of

Michèle Blanche Raux and Michel Georges Raux, the brother of Emmanuel Yann and

the uncle of Anne-Sophie and Camille, from France. He graduated from L’Université

de Rennes 1 with a Licence d’Ingenierie Electrique in May 1998. He then attended

West Virginia University where he played varsity tennis and obtained both a B.S.

in 2001 and a M.S. in 2003, both in Electrical Engineering. After that, Guillaume

attended Texas A&M University in 2003 for his Ph.D. He studied ways to quantify

measures of robustness for signal detection under the supervision of Dr. Don Halver-

son. He obtained his diploma in December 2006. His research interests are in wireless

communication systems, estimation and/or detection of signals, and spread spectrum.

Permanent address:

3400 Clayton Blvd Apt#6B

Shaker Heights, OH 44120

The typist for this dissertation was Guillaume Julien Raux.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

