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ABSTRACT  
 
 
 

Effect of Electron Beam Irradiation on Quality and Shelf-life  

of Tommy Atkins Mango (Mangifera indica L.) and Blueberry 

(Vaccinium corymbosum L.). 

(December 2005) 

Maria Alexandra Moreno Tinjaca, B.S., Universidad de La Salle 

Chair of Advisory Committee: Dr. Elena Castell-Perez 
 
 
 

The main goal of this research was to determine the feasibility of using electron 

beam irradiation as an alternative disinfestation technology while preserving the overall 

quality of mangoes, and to verify its suitability for the preservation shelf life of 

blueberries. 

Physicochemical and sensory characteristics of the fruits were evaluated. 

Mangoes were irradiated at 1.0, 1.5 and 3.1 kGy using a 10MeV (10 kW) linear 

accelerator (LINAC) with double beam fixture. Samples were stored at 12ºC and 62.7% 

RH for 21 days. Blueberries packed in plastic clamshell containers were irradiated at 1.1, 

1.6 and 3.2 kGy doses using the same linear accelerator with a single beam. The shelf 

life of the berries stored at 5˚C and 70.4% RH was evaluated for 14 days. The firmness 

of mangoes irradiated at 1.5 and 3.1 kGy significantly (p > 0.05) decreased during 

storage. There was a reduction of total sugars (8.1% and 14.1%) in samples irradiated at 

1.0 kGy and 1.5 kGy, respectively. All irradiated mangoes had significantly lower (50-
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70 %) ascorbic acid content throughout storage. The phenolic compounds increased in 

samples irradiated at 1.5 kGy (27.4%) and 3.1 kGy) (18.3%). Sensory evaluation of the 

fruits irradiated with 3.1 kGy showed significantly less acceptability for overall quality, 

color, texture and aroma. Irradiation of blueberries at 1.1 kGy had no significant (p > 

0.05) effect on the fruits’ physicochemical characteristics with the exception of ascorbic 

acid which decreased by 17% after 14 days. A significant decrease in texture (firmness) 

of irradiated berries was observed during storage time. Total sugars decreased in all 

irradiated fruits while total phenolics and tannins increased (10 -20%). Sensory attributes 

of samples irradiated with 1.1 kGy and 1.6 kGy were found acceptable by the panelists. 

The high dose-treated fruits were considered unacceptable. 

The results from this research suggest that a 1.5 kGy is the best treatment to 

maintain the quality attributes of mangoes and increase the shelf life by three days. The 

electron beam irradiation of packed blueberries at doses of 1.1 and 1.6 kGy ensures and 

enhances the quality and the shelf life of blueberries up to 14 days.  
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CHAPTER I 

INTRODUCTION 

 

Fruits are important constituents of the human diet and they are rich sources of 

nutrients such as vitamin C, provitamin A carotenoids, and minerals. However, their 

high moisture content and the presence of macronutrients such as sugars make them 

vulnerable to spoilage by microorganisms and insects, therefore limiting their shelf-life 

and marketability.  

Food irradiation has been identified as a new technology that can eliminate 

pathogenic microorganisms such as Salmonella, E.coli O157:H7 and Campylobacter 

from raw foods in both the fresh and frozen state (ICGFI, 1999). The application of 

electron beam irradiation to fresh fruits and vegetables is a way to extend shelf life and 

to improve disinfestation and pasteurization treatments. Dose levels of 0.5 to1.0 kGy, 

depending on the type of fruit, are sufficient to kill large numbers of most molds, yeasts 

and bacteria naturally present on the product. Lethality of irradiation is influenced by the 

target (insect or microorganism), the condition of the treated product, and environmental 

factors such as temperature, nutrients, pH, and presence/absence of oxygen. 

Compared with other disinfestation methods such as the use of pesticides (which 

are chemicals like ethylene dibromide, methyl bromide, phosphine, etc.), electron beam 

irradiation may be an efficient technique that assures complete disinfestation and there  
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would be no fumigant residues which require post-treatment. The practicability of 

applying ionizing radiation as a disinfestation technique depends on the fruit tolerance to 

the irradiation dose. Irradiation at doses below 1.0 kGy is an effective insect 

disinfestation treatment against various species of fruit flies, orange worm, spider mites, 

scale insects, and other insect species of quarantine significance in marketing fresh 

fruits. Decay produced by original microflora and post-handling contaminants can be 

eliminated or delayed by dose levels that do not affect the sensory qualities such as 

color, texture and flavor. However, physiological and compositional changes have been 

reported as a response to gamma irradiation (Lacroix et al., 1992; Beyers et al., 1983). 

Some alterations in quality induced by irradiation doses are concerned with softening, 

texture loss, and flavor changes. Citrus fruits, for example, are particularly susceptible to 

skin pitting and additional treatments are required to reduce the radiation doses, but in 

the case of fruits like strawberries it has been demonstrated that the application of an 

irradiation dose of up to 2.0 kGy by itself delays the development of spoilage 

microorganisms responsible for softening of the tissue (ICGFI, 1999).  

Most of the studies of irradiated foods have been carried out with foods irradiated 

with gamma rays. Therefore, there is a gap in the knowledge and understanding of the 

effects of electron beam irradiation in the physical and organoleptic quality attributes of 

fruits. The new knowledge is critical because it is important to maintain a balance 

between the optimum doses required to achieve safety and the minimum change in the 

quality of the fruit. 
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This research focused on the application of new advances targeted to the 

preservation of physicochemical properties of selected fruits and consequently in the 

reduction of the risk of postharvest decay. The benefits of this study are not only to the 

food industry but also to the retail markets and the consumer. To date, there is a lack of 

information about the effect of this irradiation treatment on popular fruits such as 

mangoes and berries. Thus, the aim of this study was to evaluate the effect of electron 

beam irradiation on the physical, sensory and chemical properties of the two fruits.  

The main goal of this study was achieved by addressing the following specific 

objectives: 

• To identify radiation levels at which loss of quality of the selected fruits is 

minimized.  

• To quantify the changes in the physical, sensory and chemical properties of the 

irradiated fruits using kinetics principles. 
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CHAPTER II 

LITERATURE REVIEW 

 

From 1982 to 1997, per capita consumption in the United States of fresh fruits 

and vegetables increased from 91.6 to 121.1 kg, an increase of 32% (CDC, 2000; FDA, 

2003). This fact is associated in part with the effect of the significant role of these 

commodities as a part of a healthy diet, and it also involves economic benefits to the 

industry and the grower. However, it has been established that pathogenic 

microorganisms related to the consumption of these products can cause disease 

outbreaks (Beuchat, 1998). For instance, raw raspberries and blackberries imported from 

Guatemala have been associated with several Cyclospora cayetanesis outbreaks 

(CFSAN.FDA, 2001); thus there is a need for new or improved technologies that reduce 

risks associated with these foodstuffs. 

Pathogens related to foodborne diseases are sensitive to low levels of ionizing 

radiation. As irradiation doses increase, more microorganisms are affected (Radomski et 

al., 1994). However, a higher dose, while not creating any harmful products, can induce 

changes in sensory qualities and chemical properties. For example, in the irradiation of 

mangoes with gamma rays, the concentration of phenolic compounds was higher in 

fruits irradiated at l.5 kGy compared with the controls; also, irradiation at 0.5-1.5 kGy 

caused a minor loss of vitamin C (El-Samahy et al., 2000). In studies of oranges, minor 

differences were found in the evaluation of the sensory quality of navel oranges treated 

with low doses (60-80 Krad) of gamma radiation (O’Mahony et al., 1985). It is, 
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therefore, important to understand how irradiation can be used as an efficient treatment 

strategy that will show the way for producing more high quality and safer food. 

2.1. Fruits in this study  

2.1.1. Mango 

2.1.1.1. Botany background 

The mango (Mangifera indica L.) is a dicotyledonous fruit of the family 

Arcardiaceae. It is produced mainly in the developing countries in the tropics. Two 

groups of mango cultivars are found: Indian and Indo-Chinese, based mainly on peel 

pigments and sensory characteristics of the fruit. Most of the Indian varieties posses 

stronger aroma and more intense peel coloration and are monoembryonic, while the 

cultivars grown in the Southeast Asian region are polyembrionic (Lizada, 1993). It is the 

largest subtropical fruit crop in India which occupies an area of 1.17 million ha with a 

production of 9.6 million tons (66% of world’s production) (Mitra, 1997). 

Mangoes are classified as climacteric fruits and ripen rapidly after post harvest. 

The final quality depends on the physiological processes during ripening and also on the 

process of development and maturation. As the fruit matures, bloom develops as wax is 

deposited on the peel (Lizada, 1993). Usually the development of mango fruits is divided 

into four stages: (a) the juvenile stage, up to 21 days from fertilization (rapid cellular 

growth; (b) stage of maximum growth, 21-49 days from fertilization; (c) maturation  
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(respiration climacteric and ripening), 49-77 days from fertilization; and (d) senescence.  

Different biochemical changes occur according to the stage (Hulme, 1971). 

Mango fruits are tropical in origin and therefore chilling sensitive. Temperatures 

low enough to delay ripening injures these fruits. Storage temperature varies depending 

on the fruit variety. Between 12ºC and 13ºC is considered the optimum temperature for 

mango storage and will give a shelf-life of 14 to 18 days for mature green fruit 

depending of the variety (Mitra, 1997). 

2.1.1.2. Chemical composition 

Mangoes are a rich source of vitamin C, provitamin A carotenoids, mineral salts 

and carbohydrates and they are liked for their flavor and taste (Thomas, 1986). Table 2-1 

presents the average chemical composition of mango. Mango is one of the most popular 

tropical fruits consumed in the United States. Its per capita consumption from 1980 to 

date has increased by approximately 88% (Figure 2-1).  
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Figure 2-1. Per capita consumption of fresh fruits: mangoes and blueberries in the U.S. 
(adapted from USDA, 2004).  
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Table 2-1 
Raw mangoes (Mangifera indica) nutritional composition data (amount in 100 grams of 
edible portion) 

Nutrient Units Amount in 
100 gr 

Water g 81.71-82.40 
Energy Kcal 57.00-65.00 
Protein g 0.51-0.70 

Total Lipid g 0.20-0.27 
Ash g 0.50 

Carbohydrate g 14.1-17.0 
Dietary Fiber g 1.8-2.6 
Calcium, Ca mg 10-12 
Magnesium, 

Mg mg 9-13 

Phosphorus, P mg 11-16 
Potassium, K mg 156-180 

Vitamin C, total 
ascorbic acid mg 27.7-37 

Folates µg_DFE 14 
Vitamin A, IU IU 765 
Total Sugars g 13.8-14.8 

Fructose g 3.0 
Glucose g 0.7 
Sucrose g 10.1 

Alpha-carotenes µg 16-27 
Beta-carotenes µg 445-696 

Adapted from: USDA Nutrient Database for Standard Reference, Release 16-1 (2004) 
 

 

2.1.1.3. Use of ionizing irradiation for fruit preservation  

Fruit flies and stone weevil infestation have been a problem associated with 

quarantine and mango decay (Wolfenbarger, 1995). Stone weevil has been reported to 

occur in countries like Bangladesh, Cambodia, India, Indonesia, Japan, Malaysia, 

Mauritius, Mozambique, Philippines, South Africa, Vietnam, Thailand, USA, and 

Zanzibar. The mango weevil, Cryptorynchus mangiferae, is a pest that is found in 
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mangoes where eggs are laid on immature fruits and the emerging larvae develop, 

pupate and emerge as adults in the seed. The adult weevil then leaves the seed and 

tunnels through the edible flesh which provides access for secondary fungal infections 

and consequently affects the fruit’s marketability and acceptability (Thomas, 1986). 

Therefore, it is of economic importance to have quarantine restrictions on mangoes that 

reduce the risk of introducing these pests in the US (Singh, 1989). 

Fumigation with organic chemicals has been used for years for postharvest 

control of fruit flies but there is a concern about residue and human health effects 

(Wolfenbarger, 1995). Irradiation has been used as an effective technique for quarantine 

purposes and decay control. The percentage of decayed mangoes fell when the fruits had 

been irradiated. Von Windeguth (1986) determined that 75 Gy of gamma irradiation 

killed 99.9968% of A. suspensa on mangoes and 175 Gy provided quarantine security of 

adults of this insect. Milne et al. (1977) also reported that irradiation at doses above 

50krad resulted in 100% mortality of mango weevil larvae and pupae and adults 

surviving treatments were inactivated at doses above 0.75 kGy and they were unable to 

emerge from the seed. Note: 1 kGy = 100 krad.  

Several studies have shown that gamma irradiation at low levels extend the shelf 

life of mango fruits by slowing down the rates of ripening and senescence (Thomas, 

1986). For instance, a delay in ripening of fruits was observed by Spalding and Reeder 

(1986) with irradiation treatment doses of 150, 250 and 750 Gy. Earlier studies also 

showed a delay in ripening of irradiated mangoes at doses up to 250 Gy of gamma rays, 

manifested by degreening of the peel (Dhakar et al., 1966). 
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In the USA between 1986 and 1987, gamma irradiated mangoes, Hawaiian 

papayas and apples were marketed and sold well in different states. Later, other tropical 

fruits and irradiated poultry products showed an increase in their consumption and 

acceptance by consumers (ICGFI, 1999). 

2.1.2. Blueberries 

2.1.2.1. Botany background 

Blueberries belong to the genus Vaccinium in the heath family (Ericaceae). They 

are solely North American in origin. Four species are cultivated: 1) highbush (V. 

corymbosum L), 2) lowbush (V. myrtilloides Michx. and V. angustifolium Aiton), and 3) 

rabbiteye (V. ashei Reade). The commercial production of rabbiteye blueberries is 

largely confined to the southeastern United States, centering on Georgia and extending 

to North Carolina and to Texas. Lowbush blueberries are cultivated primarily above 

latitude 44ºC in the northeastern United States and Maritime Provinces of Canada. Most 

highbush blueberries are grown in the Midwestern, eastern, and central United States 

and along the Pacific coast of the northern United States and southern Canada (Caruso & 

Ramsdell, 1995). 

The highbush blueberry is the most commercially important blueberry with 

annual production of about 55,000 t of fruit on about 14,000 hectares in North America. 

Its production is correlated with the altitude. The blueberry production season begins in 

Florida in mid-late April and follows in North Carolina, Arkansas, Georgia, New Jersey, 

Michigan, and Maine, in that order. In the Southern Hemisphere, blueberry production 

begins in December and extends for as long as four months (Caruso & Ramsdell, 1995). 
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Blueberries have very fine fibrous root systems that do not develop root hairs. 

Roots begin growth before bloom and can continue to grow well into the fall. Peak root 

growth occurs in the spring and early fall. The fruit contains many seeds and is held on 

corymbs or racemes. Their size depends largely on the number of developed seeds. 

Anthocyanis pigments give the fruits their characteristic color. Blueberry fruit enlarges 

after pollination according to a double sigmoid growth curve and goes through several 

phases of color development from immature green to translucent greenish white, 

greenish pink, blue-red, and finally a complete blue. Up to 50% of the increase in 

blueberry volume occurs during the shift from greenish pink to blue. Fruit are ripe 40-80 

days after blooming, depending on cultivar and environmental conditions; the rabbiteye 

specie develops most slowly (Caruso &Ramsdell, 1995). 

Berries should be cooled as soon as possible after harvested, ideally to 0˚C 

within 2 hours of harvest (but no later than 12 hours), to retain their optimum quality. 

The optimum storage temperature is between -0.5˚ and 0˚C, and the optimum humidity 

is 90 to 95%. Berries that are free of physical damage, have low sugar to acid ratio, are 

precooled to 0˚C and are stored to optimum humidity and temperature can have an 

acceptable storage life of 2-3 weeks (Eck, 1988).  
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2.1.2.2. Chemical composition 

Blueberries are low in fat, sodium free and a good source of both fiber and 

vitamin C (Hulme, 1970). They have high antioxidant capacity. Table 2-2 shows the 

chemical composition of blueberry. 

 

 

Table 2-2 
Raw blueberries (Vaccinium spp.) nutritional composition data (amount in 100 grams of 
edible portion) 

Nutrient Units Amount in 
100 gr 

Water g 84.21 
Energy Kcal 57 
Protein g 0.74 

Total Lipid g 0.33 
Ash g 0.24 

Carbohydrate g 14.4 
Dietary Fiber g 2.4 
Calcium, Ca mg 6 
Magnesium, 

Mg mg 6 

Phosphorus, P mg 12 
Potassium, K mg 77 

Vitamin C, total 
ascorbic acid mg 9.7 

Folates µg_DFE 6 
Vitamin A, IU IU 54 
Total Sugars g 9.96 

Fructose g 4.97 
Glucose g 4.88 
Sucrose g 0.11 

Beta-carotenes µg 32-35 
Luthein-

Zeaxanthin µg 80 

Adapted from: USDA Nutrient Database for Standard Reference, Release 17 (2004) 
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2.1.2.3. Irradiation of blueberries 

Fruits such as citrus and berries are the main suppliers of vitamin C intake for 

men and women (Hagg et al., 1995). It is well established that citrus and berry fruits are 

a rich source of vitamins, minerals and dietary fiber that are essential components for 

normal growth and development. Additionally, berries contain phenolic substances like 

flavonols, tannins, and anthocyanins that are of special significance because of their 

contribution to the color, taste and flavor of the fresh fruit (Taylor & Tucker, 1993). On 

the other hand, as antioxidants and anticarcinogens they have a protective effect against 

chronic diseases, including cancer and heart disease (Philip & Chen, 1988). The content 

of micronutrients, sugars and acids in these fruits influences markedly their sensory 

quality. For example, softening of the tissue is associated with changes in nutritional 

composition. In addition, it has been reported that phenolic acids contribute to the dark 

color, bitter taste, and objectionable flavour of some fruits and leaves (Ayaz et al., 2000). 

Besides all their nutritional properties, these fruits have economic benefits for the 

food industry and its consumers. North America (83%) is the primary producer of 

blueberries (USA: 55% and Canada: 28%). Between 2000 and 2002 the U.S. fresh 

blueberry exports averaged 38 million pounds, increasing in share of domestic 

production (44%). For instance, the U.S. production sent to Japan accounts for 7 %, up 

from only a fraction in the 90’s (USDA, 2003). Their per capita consumption in the US 

has increased from 1987 to date about 54% (Figure 2-1). 

Because many decay organisms such as anthracnose (Gleosporium spp), gray 

mold rot (Botrytis cinerea), and alternaria (Alternaria spp.) result in spoilage, 
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blueberries lose considerable market (Miller et al., 1994b). The principal insects that 

inhibit distribution of blueberries are the apple maggot (Ragoletis pomonella), blueberry 

maggot (R. mendax Curran) and plum curculio (Conotrachelus nenuphar) (Miller & 

McDonal, 1996). Lower dosages of gamma irradiatiation have been used successfully to 

increase the shelf life and control decay in some fruits without significant effects on 

quality. For example, Miller et al. (1994) reported that Climax and Sharpblue blueberry 

cultivars tolerated gamma irradiation up to 0.75 kGy without a loss of fruit quality. 

Eaton et al. (1970) found significant cultivar variation in the physiological response of 

high-bush blueberries to gamma irradiation at doses from 1.0 to 5.0 kGy. Hallman and 

Thomas (1999) reported that the prevention of phanerocephalic pupae of blueberry 

maggot at the 99% level was accomplished with the application of gamma irradiation at 

levels of 58 and 24 Gy. Miller et al. (1995) observed that Sharpblue blueberries appear 

to tolerate electron beam irradiation at 0.75 kGy as an acceptable nonchemical 

quarantine treatment. 

Little information is available on how electron beam irradiation affects 

physiological and physical characteristics of the fruits or on how effective this treatment 

may be for the control of blueberry decay. Therefore, it is important to consider an 

approach that maintains food quality, extends shelf-life, and offers economic incentives 

for production and commercialization of this commodity.  
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2.2. Food irradiation 

2.2.1. Overview 

Finding the ways to prevent the deterioration of food and to control infection by 

microorganisms has been a big concern over the years. Controls such as refrigeration, 

canning, and pasteurization are usual but food irradiation techniques are being used more 

often and as a result are being more closely related to public health issues. 

Food irradiation is a non-thermal energy method used to “pasteurize” foods. 

Irradiating food basically means using non-thermal energy that results in the lethal-

destruction of microorganisms responsible for foodborne illness (Josephson & Peterson, 

1982). 

Ionizing radiations which can be used for the treatment of foods are gamma rays 

from Cobalt-60 (60Co) and Cesium- 137 (137Cs), accelerated electrons from a machine at 

energy of 10 MeV or lower and X-rays from a device at of 5 MeV or lower energy 

(Rosenthal, 1992). 

Research in food irradiation began as early as 1905. Table 2-3 presents a 

chronological summary of the major events in the development of food irradiation. 

At low doses (0.05-0.15 KGy), gamma irradiation has been used efficiently on 

different foods such as potatoes, onions, and garlic to eliminate insect pests, inhibit the 

growth of molds, inhibit sprouting, and prolong the shelf life. At higher doses (10-50 

kGy) irradiation could be used on a variety of different foods to eliminate parasites and 

pathogenic bacteria. Many foods can be irradiated effectively, including meat, poultry, 

grains, and many seafood, fruits and vegetables (ICGFI, 1999).  
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Table 2-3 
Chronological events in the development of food irradiation 

YEAR         EVENT          

1905 Scientists receive patents for a food preservative process that uses ionizing radiation to kill bacteria in food.
1921 U.S. patent is granted for a process to kill Trichinella spiralis in meat by using X-ray technology. 

1953-1980 
The U.S. government forms the National Food Irradiation Program. Under this program, the U.S. Army 
and the Atomic Energy Commission sponsor many projects in food irradiation 

1958 The Food, Drug, and Cosmetic Act is amended and defines sources of radiation intended for use  
  in processing of food as a new food additive. Act administered by FDA.      

1963 FDA approves irradiation to control insects in wheat and flour.       
1964 FDA approves irradiation to inhibit sprouting in white potatoes.       

1964-1968 The U.S. Army and the Atomic Energy Commission petition FDA to approve the irradiation of several  
  packaging materials.               

1966 The U.S. Army and USDA petition FDA to approve the irradiation of ham.     
1971 FDA approves the irradiation of several packaging materials.       
1985 FDA approves irradiation at specific doses to control Trichinella spiralis in pork.     
1986 FDA approves irradiation at specific doses to delay maturation, inhibit growth, and disinfect foods,  

  including vegetables and species.             
1990 FDA approves irradiation for poultry to control salmonella and other foodborne bacteria.    
1992 USDA approves irradiation for poultry to control salmonella and other foodborne bacteria   
1997 FDA's regulations permit ionizing radiation to treat refrigerates or frozen uncooked meat, meat byproducts, 

  and certain food product to control foodborne pathogens and to extend shelf life.     
2000 USDA's regulations allow the irradiation of refrigerated or frozen uncooked meat, meat byproducts,  

 and certain food product to reduce the levels of foodborne pathogens and to extend shelf life.   
  FDA's regulations permit irradiation of fresh shell eggs to control salmonella.     

Adapted from: EPA (2004) 
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In fruits and vegetables, most contamination occurs on the surface. The 

effectiveness of ionizing radiation depends on the radiation source in addition to factors 

such as food shape, dimensions and type of packaging materials (ICGFI, 1999). All 

fruits and vegetables are perishable due to physiological changes, postharvest fungal 

diseases, other pathological breakdown, and insect infestation. 

Ionizing radiation, commonly in the form of gamma radiation, has been an 

effective and efficient postharvest treatment of these products applied basically for 

disinfestation, shelf-life extension, and pasteurization (Josephson & Peterson, 1982). 

A large number of fruits have been irradiated for several purposes. For example, 

strawberries have been irradiated at dose levels between 1.0-3.0 kGy in order to reduce 

the amount of decay produced by B. cinerea which causes the gray mold disease. Dose 

levels of gamma radiation between 0.50 to 4.0 kGy have been applied to various Prunus 

fruits such as peaches, cherries and nectarines as an effective treatment to control brown 

rot produced by fungi. In the case of tropical fruits, such as papaya and mango, gamma 

irradiation has been applied to control decay mainly produced by fruit fly infestation, as 

well as for shelf life extension (Josephson & Peterson, 1982). 

Minea et al. (1996) reported that the application of electron beam irradiation in 

strawberries, cherries, apricots, nectarines and apples at radiation doses of 0.1-3.0 kGy 

resulted in a longer extension of shelf life without any significant change in the nutritive 

value of the fruits. Yu et al. (1995) found an extension of 2 and 4 days in the shelf-life of 

electron beam irradiated strawberries at doses of 1.0 and 2.0 kGy, respectively. 
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In other studies, Palekar et al. (2004) reported a reduction in the total aerobic 

microbial counts of cantaloupes irradiated at 0.7 and 1.4 kGy. Bari, et al. (2004) reported 

that irradiation at a dose of 1.0 kGy reduced the total aerobic plate count and L. 

monocytogenes by approximately 4.0 logs (99.99%) on precut bell pepper. In the same 

study, spoilage bacteria were reduced by 5 log cycles on carrot cubes by 1.0 kGy. 

2.2.2. Types of irradiation 

2.2.2.1. Gamma radiation 

Gamma radiation is electromagnetic radiation produced by the nuclear 

disintegration of certain radioactive materials. A radioactive transformation is the change 

of an atom from one element to another by the involvement of a particulate radiation 

(alpha, beta, neutrons) (Rosenthal, 1992). Cobalt 60 and Cesium 137 are the radioactive 

elements used as sources for food preservation; they provide high-energy photons, called 

gamma rays. These rays can penetrate foods to a depth of several centimeters 

(McMurray et al., 1998). 

2.2.2.2. Electron beam 

The electron beam is a flow of high-energy electrons that are emitted from an 

electron gun. They can be emitted as cathode rays from the cathode of an evacuated tube 

subjected to an electrical current or are produced in linear accelerators. The electrons can 

penetrate food only to a depth of three centimeters, or a little over 2.54 cm (Scharf, 

1986). For food treatment the energy of the electron beams is limited to a maximum of 

10 MeV (Rosenthal, 1992).  
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2.2.2.3. X-rays 

X-rays are usually produced by a machine in which a beam of fast electrons in a 

high vacuum bombards a metallic target (tungsten, molybdenum). X-rays of short 

wavelengths are of the same nature as gamma rays except for their origin. For food 

treatment the X-ray machines should be operated at an energy level of 5 MeV or lower 

(Rosenthal, 1992). 

2.2.3. Units of measurement 

The dose of irradiation is usually measured in a unit called the Gray (Gy), which 

is a measure of the amount of energy transferred to the food, microbe or other substance. 

Gray is therefore the unit of absorbed ionizing energy. A radiation dose of 1 Gy involves 

the absorption of 1 Joule (J) of energy of 1 kg of matter. Another unit that has been used 

is the rad that involves the liberation of 100 erg energy for each gram of material 

through which radiation passes (Josephson & Peterson, 1982).   

Different doses of irradiation can be applied to foods to achieve diverse benefits. 

Table 2-4 summarizes the doses approved for food applications. 
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Table 2-4 
Food irradiation applications 
Benefit Dose (kGy) Products 

Low dose (up to 1 kGy) 

-Inhibition of sprouting 
 
-Insect disinfestations and  
parasite disinfestations 
 
-Delay of physiological 
processes (e.g. ripening) 

0.05 - 0.15 
 
0.15 - 0.5 
 
 
0.25 - 1.0 

Potatoes, onions, garlic, root 
ginger, yam, etc. 
Cereals and pulses, fresh and 
dried fruits, dried fish and meat, 
fresh pork, etc. 
Fresh fruits and vegetables. 
 

Medium dose (1 – 10 kGy) 

-Extension of shelf- life 
 
-Elimination of spoilage and 
pathogenic microorganisms 
-Improving technological  
properties of food 

1.0 – 3.0 
 
1.0 – 7.0 
 
2.0 – 7.0 

Fresh fish, strawberries, 
mushrooms, etc. 
Fresh and frozen seafood, raw or 
frozen poultry and meat, etc. 
Grapes (increasing juice yield), 
dehydrated vegetables (reducing 
cooking time), etc. 

High Dose ( 10 -50 kGy) 

- Industrial sterilization (in 
combination with mild heat) 
- Decontamination of certain 
food additives and ingredients 

30 - 50 
 
 
10 – 50 

Meat, poultry, seafood, prepared 
foods, sterilized hospital diets. 
Spices, enzymes preparations 
,natural gum, etc. 

Adapted from: IGCFI, (1999) 

 

 

2.2.4. Effect of ionizing radiation on food nutrients 

Food contains various types of compounds such as water, proteins, 

carbohydrates, lipids, and minerals. Chemical reactions produced by ionizing radiation 

are dependent upon the dose, and the amount of radiolytic products increases with the 

dose (Hayashi, 1991). It is well known that the chemical changes induced by radiation 

are influenced by temperature, water content and oxygen concentration because of their 
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influence on the diffusion of radicals. Dose rate also influences the production of 

chemical reactions. A high dose rate resulted in a lower number of chemical reactions 

(Hayashi, 1991). 

2.2.4.1. Water 

In high moisture foods water is the macrocomponent most vulnerable to direct 

radiolysis which yields several major decomposition products like hydrated electrons 

(e_
aq), hydrogen atoms (H·), hydroxyl radicals (OH·), hydrogen (H2), and hydrogen 

peroxide(H2O2) (Rosenthal, 1992) as, 

H2O → e_
aq, H·, OH·, H2, H2O2.       (2-1) 

Between these transformations, the hydroxyl radical (OH·) is the most reactive 

and accounts for the major chemical changes occurring in irradiated foods. With its 

unsaturated bonds it (the hydroxyl radical (OH·)) adds hydrogen atoms and with its 

saturated molecules it substrates hydrogen atoms. The other products of water radiolysis 

are more selective and have lower reactivity (Rosenthal, 1992). Hydroxyl radicals (OH·) 

are powerful oxidising agents while hydrated electrons (e_
aq) are powerful reducing 

agents (Butler et al., 1984). 

2.2.4.2. Lipids 

The irradiation of lipids results in a nonoxidative (direct) and oxidative (indirect) 

effect. Nonoxidative changes are due to the susceptibility of some bonds to radiation, 

which break easier than others. As a result, free radicals are formed and terminated by 

either hydrogen atom abstraction from other molecules or by the loss of a hydrogen 
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atom, and by recombination with other radicals. Some of the products formed are H2, 

CO2, CO, alkanes, alkenes, and aldehydes (Rosenthal, 1992). 

In the case of lipid oxidation, the changes are produced by the initiation of a free 

radical chain process by any nonspecific free radical source including ionizing radiation. 

After initiation the further mechanism is always the same, producing peroxides, 

alcohols, carbonyl compounds, hydroxy and keto acids, lactones and polymers. The 

immediate effect of lipid degradation in foods is reflected in a decrease of organoleptic 

quality, especially noticeable in rancid foods because of the formation of carbonyl 

compounds. These oxides may impart off-odors and tastes to foods and may contribute 

to lipid-related diseases (Rosenthal, 1992). 

2.2.4.3. Proteins 

The principal effect of irradiation on proteins is the splitting of large molecules 

into smaller units because of the weakness of the hydrogen ions which can be broken 

easily when they are in the ionization area. This is an effect of the introduction of a 

charge that disrupts electrical dipoles. These changes would be lethal to a living 

organism (foodborne bacteria) but do not affect the nutritional quality of the food 

(Rosenthal, 1992). However, in some cases irradiated proteins can form intermolecular 

covalent bonds which must contribute their precipitation from solutions as aggregates 

and therefore, there is a loss of protein activity (Butler et al., 1983). The reactions of 

electrons with proteins lead to deamination, the scission of peptide and disulphide bonds, 

the addition of aromatic and heterocyclic aminoacid residues, and the reduction of 

metmyoglobin (Josephson & Peterson, 1982).  
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2.2.4.4. Carbohydrates 

Hydrolysis and degradation of carbohydrate molecules may happen due to 

irradiation. Lower saccharides (i.e. glucose, ribose) may be oxidized at the end of the 

molecule to form acids and as a result of the ring scission, aldehydes are formed. Large 

carbohydrate molecules (like cellulose and starch) are divided into smaller units by the 

breakdown of the glycosidic link, resulting in depolymerization (Rosenthal, 1992). 

These polymers are highly sensitive to radiation and the radiation induced damage 

causes considerable changes in the cell membranes and connective tissue (Josephson & 

Peterson, 1982). 

2.2.4.5. Vitamins 

Usually the destruction of vitamins is indirectly produced by the reaction of free 

radicals of the solvent or oxidizing species like peroxyl radicals or carbonyl compounds 

that react with them. Therefore, the percent of destruction is related to the content of 

water and oxygen. The fat-soluble vitamins would be exposed mainly to radicals 

produced by the direct action of radiation of lipids (Josephson & Peterson, 1982). 

Among the fat-soluble vitamins, vitamin E is the most radiosensitive and vitamin D the 

least. In the group B, thiamine is the most radiosensitive. Ascorbic acid is voluntarily 

converted to dehydroascorbic acid. This conversion is nutritionally insignificant. 

However, losses of vitamin C in irradiated foods have been reported (Rosenthal, 1992). 

Ascorbic acid (Vitamin C) participates in many chemical reactions mainly as a 

redox system which plays a role as an electron donor in enzymatic reactions involving 

metals. This acid is not very stable in solutions, and its degradation depends on variables 
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such us temperature, salt and sugar concentration, pH, oxygen, enzymes, aminoacids, 

etc. Oxidative degradation involves the formation of the ascorbic acid radical (·A-) as in 

radiolytic degradation. Some of the intermediate products of this degradation are 

combined with aminoacids and are responsible for the browning of foods (Josephson & 

Peterson, 1982). In the radiation chemistry of ascorbic acid, the OH radical adds to the 

double bond in positions 3 or 4 of the acid molecule, followed by the elimination of 

water (OH-). In neutral solutions ascorbic acid is ionized as: 

AH- + OH → HO __ ·AH-→ ·AH + OH-                (2-2) 

AH ↔· A- + H+               (2-3) 

The same radical can be produced by dehydroascorbic acid as well: 

e_
aq + A→· A-                   (2-4) 

2.3. Quality parameters 

Quality of food has been defined as the composite of those parameters that 

differentiate individual units of a product and have significance in determining the 

degree of acceptability by the buyer (Kramer & Twigg, 1970). This implies the degree of 

excellence of a product or its suitability for a particular use. Quality involves sensory 

characteristics, nutritive values, chemical constituents, mechanical properties, functional 

properties and defects (Abbott, 1999).  

2.3.1. Physical properties 

2.3.1.1. Color  

Color is the total visual experience resulting from biological stimulus by certain 

intensities and wavelengths. The perception of the food color is a function of the light 
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absorption, reflection and scattering. The color of the food is not only determined by the 

chemical structure of the pigments present but also by their physical state relative to the 

nonpigmented constituents (Abbott, 1999).  

Light reflected from the product carries information used by inspectors and 

consumers to judge different aspects of quality; however, human vision is limited to a 

small region of spectrum. Color can be described by different coordinate systems. One 

of the most common is the Hunter L, a, b system, where L indicates the lightness, from 

white to black, and a and b are XY coordinates indicating color directions: a is the red –

green axis, and b is the yellow and blue axis (Abbott, 1999). Colorimeters measure light 

in tristimulus color space that relates to human vision. These parameters are: hue, 

saturation and lightness. Hue (H) is the perception of color resulting from differences in 

absorption of incident energy at several wavelengths, such us green, blue, yellow, and 

red. Saturation (chroma (C) or purity) describes the reflection of a given wavelength. 

The Lightness (L) describes the relation between total reflected and absorbed light with 

no regard to specific wavelength. If the light is reflected from a surface evenly at all 

angles, the impression of a product with a “flat” or “diffuse “appearance is created. 

Some quality parameters respond to wavelengths outside of visible spectrum so 

spectrometers and spectrophotometers are used for measuring wavelengths in the UV, 

visible and NIR spectral regions (Abbott, 1999). 

It has been known that irradiation can destroy pigments in fruits and fruit juices 

and its effect depends on the dose and conditions during irradiation. (Hulme, 1971). 

Therefore, changes in color could be noticeable. Several authors have investigated the 



 

 

26

effect of irradiation on fruit color. Mitchell et al. (1992) reported no significant effect on 

L and b values of lemons at 75 and 300 Gy gamma irradiation but a values were lower 

and fruits were greener. In the same study, it was shown that when the irradiation dose 

was increased, the redness (a value) of mangoes was reduced. In the application of 

gamma irradiation on apple slices treated with and without calcium ascorbate at doses of 

0.5 kGy and 1.0 kGy, Fan et al. (2005) found a slight decrease in L values at both doses. 

Castell-Perez et al. (2004) reported a significant decrease in a, b and chroma values of 

cantaloupe, both fresh-cut and whole, when irradiated with an electron beam at 3.1 kGy. 

2.3.1.2. Texture 
 

Texture is a critical quality attribute for the acceptability of fruits and vegetables 

and it involves the structural and mechanical properties of a food and their sensory 

perception in the hand or mouth. Some of these mechanical properties include the 

resistance to mechanical damage. Compression is one of the types of mechanical loading 

and the force required to attain a specified deformation or to rupture the fruit is measured 

(Abbot & Harker, 2000) (Figure 2-2). 
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Figure 2-2. Schematic of uniaxial deformation of a solid under constant force (adapted 
from Bourne, 1982). 

 

 

Textural attributes refer to the structural, physiological and biochemical 

characteristics of the living cell; their change over time, and their alteration by processes 

like freezing, cooking, etc. Because of the continuous physiological changes in the living 

cells and the variability between the individual units of the commodity, the evaluation of 

texture is difficult (Abbot & Harker, 2000).  

2.3.1.2.1. Physiological basis for texture  

To evaluate and develop an adequate method for testing the texture of a product, 

it is important to understand many of the anatomical and physiological aspects that are 

the main elements in the strength or softness of tissues and are responsible for the 

textural parameters (Abbot & Harker, 2000). 
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Figure 2-3 represents a diagram of the cell structure of a plant cell. In the 

parenchyma cells, the mechanical properties are determined by a mixture of pectin and 

hemicelluloses and by the fibrous polysaccharides present in the cell wall. The wall’s 

plasticity (flexibility) and rigidity (strength) are conferred by the polysaccharides. The 

arrangement and packing of the parenchyma cells in the tissue is another factor that 

influences the mechanical strength of the produce (Abbot & Harker, 2000). In apples, for 

example, the cortical tissue cells are large and elongated along the fruit radius and 

organized into distinct columns which results in higher tissue stiffness and the strain at 

fracture is lower when tissue plugs are compressed in a radial rather than a vertical or 

tangential orientation (Khan & Vincent, 1993).  

The primary cell wall of the parenchyma cell is composed of a mixture of 

cellulose, hemicellulose and pectin. Changes that occur in the cell wall during the 

ripening of fruit, the storage of product and cooking are critical to the texture of the final 

product. During maturation some cells become lignified which results in toughening of 

the product. Also, in the period of ripening, cell changes include solubilization and 

degradation of pectin and a net loss of the noncellulosic neutral sugars galactose and 

aracbinose, and there may be a decrease in the molecular weight distribution of 

hemicellusose. The cell wall also influences the perception of juiciness through its 

ability to hold and release fluid. In some fruits the cell wall swells greatly during 

ripening (Abbot & Harker, 2000). In mangoes, the ripening is characterized by softening  
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Figure 2-3. Diagram of the structural appearance of a plant cell (adapted from Rosenthal, 
1999). 

 

 

of the flesh (Mitra, 1997). Mitcham & McDonal (1992) observed that neutral sugars and 

cell wall hemicellulose of ‘Keitt ‘and ‘Tommy Atkins’ mangoes decreased with 

ripening. Woodruff et al. (1960) reported a decrease in the soluble pectin in blueberry 

fruit after red coloration was reached during the ripening. 
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2.3.1.2.2. Effect of gamma irradiation on plant cells 

The microstructure of food materials has been used to explain and predict 

physical and chemical behaviors of foods. Texture, which is an important quality 

indicator, is dependent on the microstructure of the fruit. In scanning electron 

microscopy (SEM), the image of the sample is obtained by scanning electrons on the 

sample surface and recoiled electrons are detected by a detector in the SEM, which is 

operated under high vacuum to provide the ideal conditions for electron movements 

(Kim, 1996). 

One of the effects of ionizing radiation is the interaction with atoms and 

molecules in the cell, especially with water, to produce free radicals which can diffuse 

far enough to reach and produce damage to different important compounds in the plant 

cell. This indirect effect of irradiation is especially significant in vegetative cells, the 

cytoplasm of which contains about 80% water. Softening and loss of cell cohesion of 

fruit tissues is based on an increase in water soluble pectin and is accomplished with loss 

of protopectin (Kovacs & Keresztes, 2002). Exo- and endo- polygaracturonases are 

bound to the cell walls and carry out autolysis of cell wall pectin. Irradiation, by 

increasing the activity of polygalacturonase and methyl esterase, results in a significant 

decrease of pectin. Kovacs & Keresztes (2002) found that the structure of apple changed 

as a function of the irradiation dose (1-2.5 kGy) and storage time. The cotex cells in their 

radiated apples shrunk and collapsed. Foa et al. (1980) reported that the total 

polysaccharide of the cell wall of soft fruits irradiated with gamma radiation at doses of 



 

 

31

10 and 100 Krad reacted as a quadratic function of the dose, and the most affected are 

primarily pectincs followed by hemicellulose. 

2.3.1.2.3. Objective measurement of texture 

Compression test 

Firmness of a fruit can be measured by compression or puncture with various 

probes at different forces or deformation levels, depending on the purpose of the 

measurement and how quality is defined. Deformation is the change in height and 

diameter of a food under the application of a force (Bourne, 1982). The deformation test 

usually measures the force under a constant deformation. The test involves the contact of 

the product (usually small cylinders) with small flat or curved indentors or with parallel 

plates significantly larger than the area of contact (Abbott & Harker, 2000). Figure 2-4 

shows a linear force-deformation relationship for a firm, medium and a soft product. The 

application of a force F to three ideal commodities gives the deformations f for a firm 

product, m for a medium and s for a soft product (Bourne, 1982). 
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Figure 2-4. Deformation of ideal firm, medium, and soft solids (adapted from Bourne, 
1982). 
 

 

Kramer shear test 

The maximum force is defined as firmness in the Kramer shear test. The Kramer 

shear device is used extensively in the food processing industry and is used by some 

fresh-cut processors for quality control. The key component of the original Kramer shear 

device is a multiblade cell with ten blades 2.9 mm (around 7/34 in) thick attached to the 

press ram that engage with holes in the bottom of the box (67x67x63 mm). The cell is 

usually filled with randomly oriented pieces of the product. The force measured by the 

test involves compression, shear, extrusion and friction between the tissue and the 

blades. In operation, the food is placed in the test cell; the lid is put on, and the test cell 
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is placed in the machine such that the slits formed by the bars in the lid are aligned with 

the blades on the ram. When the ram is activated, the set of blades is forced down 

through the box, first compressing and then extruding the material. Some of the material 

extrudes upward between the moving blades, and the remainder extrudes downward 

through the bars in the bottom of the test cell. The moving blades are pushed down until 

they pass between the bars in the bottom of the test cell. When the ram is reversed, the 

moving blades return to their original position. As they ascend, the bars of the stationary 

test cell lid scrape off into the cell the food lodged between the moving blades (Bourne, 

1982). 

Plant materials have a high tendency to soften after irradiation. The effect of 

irradiation on texture would probably be less in soft fruits than in firm fruits. It is 

probable that most of the fruits soften at doses below 2.0 kGy. The correlation between 

the degree of polymerization of the cell wall and pectin substances of the fruit, plays an 

important role in the texture of irradiated of fruits (Hulme, 1971). 

Different studies have been done to evaluate the texture of irradiated fruits. Fan 

et al. (2005) reported that firmness of fresh-cut apples was decreased (22%) as radiation 

dose increased (0.5 and 1.0 kGy, gamma rays). Yu et al. (1995) found that firmness of 

strawberries was less after electron beam irradiation at 0.5, 1.0 and 2.0 kGy. Similar 

findings were reported by Castell-Perez et al. (2004) when whole cantaloupes were 

irradiated with an electron beam at 1.5 and 3.1 kGy. Samples were less firm than the 

control and those irradiated at 1.0 kGy. Eaton et al. (1970) showed that the effect of 

gamma irradiation on the texture of blueberries  at doses of 1.0, 1.71, 2.92, and 5.0 kGy 
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changed according with the cultivar but in general all irradiates samples were softer that 

the controls. El-Samahy et al. (2000) found that the application of gamma irradiation on 

mangoes at doses of 0.5, 0.75, 1.0 and 1.5 kGy caused a significant decrease in firmness, 

and this decrease was proportional to the applied dose. Ladaniya et al. (2003) reported a 

significant decrease in firmness of oranges when they were treated with gamma 

irradiation at 1.0 and 1.5 kGy. Palekar et al. (2004) reported a lower force of 

compression when cantaloupe was irradiated with electron beam at 1.4 kGy than when it 

was treated with 0.7 kGy. 

2.3.1.3. Respiration rates 

The process of respiration involves combining oxygen in the air with organic 

molecules in the tissue (usually sugars) to form various intermediate compounds and 

eventually, carbon dioxide and water. The energy and organic molecules produced 

during respiration are used by other metabolic processes to maintain the health of the 

commodity (Saltveit, 1997). The overall equation for respiration can be written as 

follows: 

C6H12O6 + 6O2→ 6CO2 + 6 H2O + 686 kcal/mol    (2-5) 

The water produced remains in the tissue but the CO2 escapes and accounts for 

part of the weight loss of harvested fruits (3-5% weight loss). 

From measurements of CO2 and O2 it is possible to evaluate the nature of the 

respiratory process. The ratio of the volume CO2 release to the volume of O2 absorbed in 

respiration is termed the respiratory quotient (RQ). For aerobic respiration, values of RQ 

range from 0.7 to 1.3, depending on the substrate being oxidized (Robertson, 1993). 
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Respiration is affected by different environmental factors such as light, chemical 

stress, radiation stress, water stress, growth regulators, and pathogen attack. The most 

important postharvest factors are temperature, atmospheric composition, and physical 

stress (Saltveit, 1997).  

The storage life of fruit varies according to their rate of respiration. This is 

because respiration supplies compounds that determine the rate of metabolic processes 

directly associated to quality parameters, like firmness, sugars, flavor compounds, etc. 

Respiration plays an important role in the postharvest life of fresh commodities because 

it reflects the metabolic activity of the tissue including the loss of substrate, the synthesis 

of new compounds, and the release of heat energy (Saltveit, 1997). The two major 

substrates found in fruits are sugars and organic acids; both are largely sequestered in the 

vacuole and form a major contribution to the overall flavor of the fruit. However, they 

are released and therefore available for respiration. 

Glycolysis, oxidative pentose phosphate (OPP) and tricarboxylic acid (TCA) are 

the respiratory pathways utilized by the fruit for the oxidation of sugars. The increased 

respiration of sugars on climacteric fruits seems to be mediated mainly by an increased 

flux through glycolysis (Saltveit, 1997). 

 Radiation induces an immediate increase in the respiration rate of most fruits 

(Hulme, 1971). Radiation appears to induce some modification in the respiratory 

apparatus or mechanisms which results in an enhanced rate of gaseous exchange, 

because oxygen uptake may also be stimulated as well as carbon dioxide production. 

The increase in the rate of carbon dioxide is a characteristic of the maturation process in 
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climacteric fruits. This rise is usually related to some metabolic changes leading to 

ripening of the fruit (Thomas, 1986). Akamine and Goo (1971) reported that the 

respiration of green preclimateric mangoes exposed to gamma irradiation doses of 0.25, 

0.50, 0.75 and 1.0 kGy showed an initial increase in respiration rate, reaching the peak 

one day after the treatment and then a decrease was observed. They also reported a slight 

increase in the respiration of papaya immediately after irradiation at 1.0 kGy. Similar 

findings have been reported for bananas and tomatoes (Thomas, 1986). Paul (1996) 

found higher levels in the respiration rate of papaya irradiated with gamma rays at 750 

Gy. Ladaniya et al. (2003) reported an increase in the respiration rate of mandarin and 

oranges when the fruits were exposed to gamma irradiation at 0.25, 0.5, 1.0 and 1.5 kGy.  

2.3.1.4. Density 

Density is important in both liquid and solid foods. Density may be used in 

determining the composition of liquid mixtures, evaluating seed purity, and determining 

fruit and vegetable maturity. Loss of density could be an indicator of quality that is 

characterized by changes in the tissue like the lysis of the cells due to different effects 

such as stresses produced by deficiencies of water, oxygen and minerals (Saltveit & 

Mangrich, 1996). 

The density of a substance at a determined temperature is defined as the mass 

divided by the volume (Saltveit & Mangrich, 1996). The density of some fruits is: 1.02 

g/cc for pears, 0.906 g/cc for oranges, mangos are between 0.99 and 1.065 and blueberry 

1.030 – 1.050 specific gravity (Seymour, 1993). 
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The bulk density is considered when transporting, string and packaging particular 

matter. It is known as the density of the bulk material including the volume of the air 

spaces when the material is poured into a container. The values of the bulk density of 

some fruits are: 0.54-0.60 g/cc for apples, 0.768 g/cc for lemon, 0.608 g/cc for peaches, 

0.3-0.6 g/cc for blueberries, and 0.58g/cc for mangoes (Lewis, 1987). 

2.3.2. Chemical properties  

2.3.2.1. Moisture 

Water is the major component in every food and is found bounded in different 

ways as free, absorbed and bound water. Free water occurs in the intergranular spaces 

and pores of a food and is the least tightly bound. Absorbed water is water taken from 

the surface of the macromolecular colloids. The most tightly held water is bound within 

the food, which is also known as water of hydration. The moisture content is determined 

by measuring the mass of a food before and after the water is removed by evaporation 

(Fennema, 1996). The moisture content is relatively high in the flesh of most fruits at 

maturity and it is an important quality factor in the preservation and packaging of some 

products (Fennema, 1996). 

The selection of the method to measure moisture is influenced by the difficulty of 

breaking up these bonds with water. Moisture methods can be classified as loss from 

drying, distillation, chemical assays and physical procedures. One of the most common 

and widely used is oven drying. This method consists of tare-weighing the drying dish, 

filling the dish with a specific amount of sample, drying the sample, cooling the dried 

sample and dish, and, finally calculating the moisture content. Other types of drying use 
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vacuum ovens, infrared heating, and microwave ovens. Vacuum-oven drying allows the 

removal of the last small amount of water left in the food material. By drying under 

reduced pressure (25-100 mm Hg), it is able to obtain the complete removal of water and 

volatiles without decomposition within a 3-6 hr time (Multon, 1997). 

Fruits average water content is between 80-90%. For mangoes, water content is 

about 81.71% and for blueberries it is about 84.21% (USDA, 2004). 

2.3.2.2. pH 

Most foods are complex materials that contain many substances such as proteins, 

organic acids, and weak inorganic acid- phosphate salts, which participate in the pH 

control and buffering systems. In plants, buffering systems containing citric acid 

(lemons, tomatoes, rhubarb), malic acid (apples, tomatoes, lettuce), and tartaric acid 

(grapes, pineapple) are common, and they usually work in combination with phosphate 

salts maintaining the pH control (Fennema, 1996). The pH of an extract is a way to 

express the acidity of a fruit. The buffer ratio ∆pH/∆NaOH changes during fruit growth. 

pH changes are associated with the ripening process of the fruits; the ratio of H+/tritable 

acidity is used as an index of maturity (Hulme, 1971).  

The pH value changes according to the acid content in the fruit, for instance, for 

citrus fruits like lemons and nectarines the pH is around 2.2. and 3.4, respectively. For 

mangoes it is approximately 4.9 (Mitchell et al., 1992). The pH of blueberries ranges 

between 2.85-3.49 (Hulme, 1971). 

Gamma irradiation treatment had no significant effect on the pH of fresh-cut 

fruits and tropical fruits (Mitchell et al.1992; Fan et al. 2005). Similar findings were 
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reported by Yu et al. (1995) who found no differences in the pH values of electron beam 

irradiated fruits (up to 2.0 kGy) and non-irradiated strawberries. Also, Miller and 

McDonal (1996) reported no differences in the pH values of blueberries when irradiated 

with gamma rays at 0.5 and 1.0 kGy. 

2.3.2.3. Acidity 

Most of the fruits contain several organic acids that play an important role in fruit 

metabolism which involves process like photosynthesis, respiration, synthesis of lipids, 

phenolics compounds and volatile aromas, etc.  During the fruit development stages the 

acid content varies according to the maturity level. However, there is a big significance 

between the acid content and the flavor of the fruits; sometimes sweetness is preferred 

but in other cases acidity is best (Hulme, 1971). The ratio of sugar/acid is often used as 

an index of consumer acceptability and quality in fruits. It is an important parameter to 

predict the maturity of the fruit and is also decisive for their basic taste and palatability. 

For example, in citrus fruits like mandarins and novel oranges this value is 8, for 

blueberries it ranges from 11.2 to 14.3, for mangoes from 5.26 to 100 according to the 

maturity stage (Dantas de Morais & Simanao de Asis, 2004). 

Total acidity represents the sum of all the acids present, free or combined with 

cations, while tritratable acidity is the free acidity which is measured by neutralizing the 

fruit extract with a strong base. The aim is to measure the total neutralization of all 

acidic groups including phenols, amino acids and other constituents which would 

combine with the alkali (Hulme, 1971). 
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The acidity in mango declines as the fruit ripens. The predominant acid is citric, 

with malic and succinic also found in some quantities. In blueberry, the non-volatile 

acids are the most important in determining fruit acidity. The major organic acids are 

citric and malic acid (Mitra, 1997). 

Different findings have been reported about the effect of irradiation on the 

acidity of fruits. Mitchell et al. (1992) and Fan et al. (2005) found no significant effect 

on tritratable acidity of irradiated apple slices or tropical fruits (like lemons, mangoes, 

mandarins and nectarines) respectively. The acidity of gamma irradiated mango samples 

was higher than the unirradiated samples (Youssef et al., 2002). 

2.3.2.4. Total soluble solids 

Soluble solids content is a chemical factor used as an indicator to define the 

optimum stage of fruit maturity. This parameter is also associated with the sweet flavor 

of the product (Seymour et al, 1993). 

The total solids content in soft fruits such as blackberry, blueberry and 

strawberry ranges between 1.02 and 15.2%. In mangoes according to the variety and 

maturity, this parameter ranges between 9.1 and 18.27% (Hulme, 1971). 

Ladaniya et al. (2003) reported an increase in the total soluble solids of irradiated 

mandarins and oranges at doses up to 1.5 kGy. Eaton et al. (1970) found an increase in 

the soluble solids of blueberries and cherries irradiated with gamma doses of 100, 171, 

292 and 500 Krad. Lacroix et al. (1992) showed that the level of soluble solids of 

mangoes irradiated with doses between 0.3 and 0.6 kGy was significantly higher that the 

control samples. Mitchell et al. (1992) reported no effect of irradiation on the soluble 
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solids of mango irradiated at doses of 75, 300 and 600 Gy. However, in the same study 

the author found a reduction in the soluble solids of peaches at 75 Gy.  

2.3.2.5. Water activity 

The water activity is related to the intensity with which water associates with 

nonaqueus constituents. This is a parameter used to predict food stability, safety and 

perishability. Water tightly associated with other food constituents is less available for 

microbial growth and chemical reactions to cause decomposition. Water activity 

between 0.6 and 0.7 is a critical value below which no microorganism can grow 

(Fennema, 1996). 

Relative humidity plays an important role in food product development, storage 

and packaging. A hygroscopic product equilibrates with a humid environment after 

prolonged exposure and reaches the equilibrium relative humidity. The equilibrium 

humidity between the moist food and the surrounding is termed the water activity (aw) 

(Fennema, 1996). 

2.3.2.6. Sugars 

Sugars constitute around 91% of the dry matter in foods. They are very common 

components of foods in natural form and also as added ingredients. They have different 

molecular structures, shapes, and sizes and exhibit a variety of chemical and physical 

properties. Fruits are attractive for their flavor, appearance and texture; in all these 

properties sugars play an important role. Flavor is the balance between sugar and acid. 

Specific flavor constituents are glycosides. The color of many fruits is determined by 

sugar derivatives of anthocyanidins and texture is governed by structural 
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polysaccharides. Usually their molecules contain carbon atoms along with hydrogen and 

oxygen atoms. D-Glucose is the most abundant carbohydrate that belongs to the group of 

monosaccharides whose molecules cannot be broken down. It has six carbons atoms and 

therefore, is called hexose (Hulme, 1971).  

Glucose, sucrose and fructose are the most common sugars found in fruits. Their 

content varies considerably with the variety of the fruit, and the soil and climatic 

conditions during their life on the plant. In addition, climacteric fruits show considerable 

changes in sugar content between harvesting and eating ripeness (Seymour et al., 1993). 

Sugars form rings that involve the aldehyde or ketone group. The ring forming 

and opening again is reversible unless the hemiacetal or ketal hydroxyl group has 

become involved in another link. Rings that are locked have no aldehyde or ketone 

group to react (unless there are several rings, and one can open) and are non-reducing 

sugars. Sucrose is an oligosaccharide composed of α-D-glucopyranosyl unit and β-D-

fructofuranosyl unit linked head to head (reducing end to reducing end) and therefore, is 

a non reducing sugar (Fennema, 1996). Glucose and fructose are the main reducing 

sugars. However, in most of the fruits glucose concentration exceeds that of fructose. 

Table 2-5 presents the sugar content of several fruits. 

Changes in the sugar content of irradiated fruits have been investigated. Mitchell 

et al. (1992) reported no effect of gamma irradiation at 75 and 300 Gy on the sucrose 

and fructose content of custard apples. However, for glucose levels a significant increase 

was observed in irradiated samples. In the same experiment, they found no effect in the 

fructose and glucose content of lemons but an increase in sucrose at 75 Gy; for mangoes 
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they reported higher levels of glucose in irradiated samples and no effect on the fructose 

content. 

In other studies, El-Samahy et al. (2000) found no effect of gamma radiation 

(0.5, 0.75, 1.0 and 1.5 kGy) on total sugars of mangoes but a slight increase in reducing 

sugars was observed. Castell-Perez et al. (2004) reported no effect of electron beam 

irradiation (1.0, 1.5 and 3.1 kGy) on the total sugars in cantaloupe (whole) however, for 

fresh-cut samples a reduction (8%) of fructose content was observed. 

 

 

Table 2-5 
Glucose, fructose and sucrose contents of selected fruits 

 Sugar content (g/100g edible portion) 
Fruit Glucose Fructose Sucrose 

Apple 1.82 5.01 2.4 
Banana 5.82 3.78 6.58 

Blackberry 3.24 2.88 0.24 
Blueberry 4.88 4.97 0.11 

Lemon 0.52 0.92 0.18 
Cantaloupe 1.16 1.8 5.4 

Mango 0.7 2.9 9.9 
Pineapple 2.9 2.1 3.1 
Strawberry 2.2 2.5 1 
Watermelon 1.6 3.3 3.6 

Adapted from: Hulme (1971); USDA (2004) 
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2.3.2.7. Total phenolics 

Phenolic compounds are important because of their contribution to the nutritional 

and sensory quality of fruits (color, astringency, bitterness, and flavor). Some of these 

compounds, especially flavonoids, have health benefits because of their antioxidant 

capacity. It has been reported that free radicals cause oxidative damage to lipids, proteins 

and nucleic acids (Prior et al., 1998). Free radicals may be related to the etiology of 

different diseases such as cancer, heart, vascular and neurodegenerative diseases. 

Chemically, phenolics are defined as substances possessing an aromatic ring supporting 

one or more hydroxyl substituents, including their functional derivatives (Shahidi & 

Naczk, 1995).  

The accumulation of phenolics in fruits may be higher or lower than in other 

parts of the plant, such as bark, leaves or heart wood. The concentration of phenolics 

decreases as fruit matures, but usually the amount per fruit increases (Seymour et al., 

1993). It also varies commonly from species to species, variety to variety, season to 

season, and location to location. The common phenolics in fruits are cinnamic acids and 

derivatives, flavans, anthocyanidins and anthocyanins, flavonol and flavonol glucosides 

and other condensed polyphenols. The predominant phenolic acids present in foods are 

derivates of hydrobenzoic and hydroxycinnamic acids. These derivates differ in the 

patterns of hydroxylations and methoxylations of their aromatic rings. High 

concentrations (75%) of these compounds have been reported in blueberries (Macheix et 

al., 1990). Among the flavonoids, (+) catechin and (-) epicatecin are the most common 

forms in fruits (Hulme, 1971). 
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There have been several reports of the accumulation of phenolic compounds 

following irradiation. El-Samahy et al. (2000) and Youssef et al. (2002) showed an 

increase in total phenolics content in gamma irradiated mango. Tan & Lam (1985) also 

found a rise in the total phenolics of papaya and mango fruits which were irradiated with 

gamma rays at 1.0 kGy and 1.50 kGy, and 0.25, 0.50, 075 and 1.0 kGy, respectively. 

Gamma irradiation of citrus clementina fruits at 0.3 kGy stimulated the synthesis of 

phenolics compounds (Oufedjikh et al., 2000). Breitfellner et al. (2003) showed that 

gamma irradiation of strawberries at doses of 1 up to 6 kGy increased flavonoid 

compounds. 

2.3.2.8. Antioxidant activity index 

Fruits and vegetables contain many phytonutrients that have antioxidant 

properties. Besides the Vitamin C and carotenoids, phenolics like flavonoids, 

antocyanins and tannins are important components in fruits that have strong antioxidant 

activity (Prior et al., 1998). Enzymes like phenylalanine ammonia-lyase (PAL) are 

significant in the metabolism of phenolics (Frylinck et al., 1986). 

Lipid auto-oxidation is a radical process that involves a chain reaction including 

induction, propagation and termination steps. Different compounds are formed during 

these stages which are responsible for organoleptic and nutritional alterations due to the 

formation of off-flavor volatile compounds from degradation of hydroperoxides and the 

disappearance of essential fatty acids (Bondet et al., 1997). Also, the radicals formed are 

involved in the ageing process of tissues and pathologies such as cancer or 

cardiovascular diseases. Therefore, it is important to protect food lipids and human 
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tissues against free radicals by endogenous or exogenous antioxidants from natural or 

synthetic origin (Bondet et al., 1997). 

Antiradical antioxidants act by donating hydrogen atoms to lipid radicals. 

Radicals obtained from antioxidants with molecular structures such as phenols are stable 

species and will then stop the oxidation chain (Bondet et al., 1997). 

The DPPH• free radical method is based on the reduction of two radicals 2,2-

difenil-1-picrilhidrazil (DPPH•) by the donation of one hydrogen atom for the phenolic 

molecule. This reduction is accompanied by a decrease in its absorbance in the 

methanolic solution while the radicals are being reduced by the phenolics (Bondet et al., 

1997). 

Prior et at. (1998) reported a linear relationship between the phenolics content 

and the total antioxidant activity of blueberries. Oufedjikh et al., 2000 showed that the 

application of gamma irradiation at 0.3kGy of citrus clementina increased the PAL 

(Phenylalanine ammonia-lyase) activity. Lorinda et al. (1986) also reported an increase 

in the PAL activity of mangoes after gamma radiation at 0.75, 1.25, 1.75 kGy. 

2.3.2.9. Ascorbic acid 

Fruits like mango and blueberries are high sources of vitamin C (ascorbic acid), 

an essential nutrient in the human diet. Additionally because of its reducing and 

antixiodative properties, vitamin C is effective in the treatment and prevention of 

atherosclerosis and other diseases (Prior et al., 1998). 

Different factors affect the content of ascorbic acid in fruits, for example 

sunlight, rain, fertilization, ripeness and variety. It is known that vitamin C decreases 
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during storage time (Hagg et al., 1995). The changes in concentrations of acid depend on 

the type of fruit (Seymour et al, 1993). Table 2-6 presents the average value of ascorbic 

acid in several fruits. 

Several studies have been conducted to illustrate the effect of irradiation on 

vitamin C, ascorbic acid. Michell et al. (1992) reported that the application of gamma 

irradiation doses of 75 and 300 Gy on mangoes had no effect on total vitamin C, 

however at 600 Gy a significant reduction was observed. 

In addition, Youssef et al. (2002) reported a significant decrease (15.0-18.0%) of 

ascorbic acid in gamma irradiated (0.0 - 2.0 kGy) mango pulp. Beyers & Thomas (1979) 

found that gamma irradiation at 0.75, 1.50 and 2.0 kGy caused a 17% loss of ascorbic 

acid content in mangoes. Contrary results were reported by Fan et al. (2005) who 

observed that gamma irradiation at doses of 0.5 and 1.0 kGy had no significant effect on 

ascorbic acid levels of cut apple slices treated and nontreated with calcium ascorbate. 

Ladaniya et al. (2003) concluded that the vitamin C content of orange, mandarin and 

acid lime was reduced by 15.84%, 26.80% and 29.20% respectively, when the fruits 

were irradiated at 1.5 kGy using gamma rays. 
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Table 2-6 
Ascorbic acid content in selected fruits 

Ascorbic acid Fruit 
(mg/100g) 

Apple 2-10 
Banana 10-30 

Blackberry 15 
Blueberry 10 
Grapefruit 40 

Guava 300 
Lemon 50 
Mango 27 
Orange 50 

Pineapple 25 
Strawberry 60 

Source: Hulme (1971) 
 
 

2.3.2.10. Volatiles 

Aroma is one of the important quality attributes of fruits. Volatile compounds 

provide the characteristic flavor and aroma for different fruits; they involve diverse 

compounds like alcohols, acids, ketones, aldehydes, esters and many other chemical 

groups that are distributed differently in each fruit (Hulme, 1971). 

In mangoes, more than 270 volatile compounds have been identified as free 

forms (Bartley & Schwede, 1987; Olle et al., 1998) and about 70 compounds as 

glycosidically bound aromas (Olle et al., 1998). MacLeod & Gonzalez De Troconis 

(1982) reported that monoterpenes (such as α- and β-pinene, myrcene and limonene) and 

sesquiterpene hydrocarbons were the most abundant compounds of the mango aroma. 
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The volatiles responsible for the aroma of blueberries are esters and alcohols, and 

their distribution varies among the cultivars. For instance, in highbush blueberries these 

compounds account for a third of the volatile compounds, while terpenoids compromise 

an additional 20 to 30%. In wild lowbush blueberries, esters accounted for 10 to 50% of 

the volatiles, alcohols for 25 to 40%, and terpenoids for 2 to 15% (Forney, 2001; 

Balonga et al. 1995). Some of the main compounds in this fruit included ethanol, 1-

ethyl-1-hexanol, phenol, methyl acetate, bezyl alchol, and linalool. (Forney, 2001). 

Information concerning the impact of irradiation on volatile compounds is 

limited. Fan and Mattheis (2001) reported that gamma irradiation of apple at 0.44, 0.88 

and 1.32 kGy inhibited the production of some volatile compounds; however, a 

stimulation of aldehyde production at 1.32 kGy was noticeable after 8 weeks of storage. 

Lee et al. (2004) presented a difference in the volatile profiles of red pepper powder 

irradiated at 3.0, 5.0 and 7.0 kGy (gamma rays). 

2.3.2.11. Pigment 

Peel color is an important criterion of fruit acceptability. Pigments are natural 

indicators of fruit ripeness and some of them, including carotenoids and flavonoids, have 

vitamin activity (Seymour et al., 1993). 

2.3.2.11.1. Carotenoids 

Mango is rich in carotene and other carotenoid pigments. Approximately 60% of 

the total carotenoids in mango are β carotenes. In addition to their contribution to the 

fruit color as natural pigments, they also have an important role as a food nutrient since 

they are vitamin A precursors (Wilberg &Rodriguez, 1995).  
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Peel color development is usually accompanied by ultrastructural changes 

associated with chloroplast-to-chromoplast transition. The thylakoid membrane systems 

in the peel of ‘Alphonso’ and ‘Tommy Atkins’ mangoes gradually break down, while 

osmiophilic globules enlarge and increase in number. The loss of membrane integrity is 

related to chlorophyll degradation, while the appearance of osmiophilic globules 

involves an increase in carotenoid levels (Medlicott et al., 1986). 

Some of the carotenoids found in fruits are β-carotene, α-carotene, lycoxanthin, 

lutein, lycopene, and zeaxanthin (Hulme, 1971). Table 2-7 presents the β-carotenoid 

content of several fruits. 

Several authors have investigated the effects of radiation on pigment stability of 

fruit juices. Lacroix et al. (1993) reported an increase in Vitamin A content of irradiated 

(gamma rays) mangoes at 0.63 and 0.56 kGy. EL- Samahy et al. (2000) also found an 

increase in the total carotenoids content of mangoes as a result of gamma irradiation 

(0.5-1.5 kGy). Similar findings were found by Youssef et al. (2002) with gamma 

irradiation of mangoes at doses between 0.5 and 2.0 kGy. Castell-Perez et al. (2004) 

reported an increase of approximately 25% in the carotenoid content of whole 

cantaloupes exposed at 3.1 kGy with electron beam irradiation. The same trend was 

observed in that study for fresh-cut cantaloupe. 
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Table 2-7 
β-carotene levels in selected fruits 

 Β-carotene 

Fruit (μg/100g edible portion)

Blueberries 35 
Papaya 276 
Melon 450 

Mangoes 445 
Peaches 334 

Persimmons 374 
Source: Holden et al. (1999) 

 

 

2.3.2.11.2. Tannins 

The phenolic compounds contributing to the color of soft fruits are precursors of 

polymeric proanthocyanidins. They are more prominent in the skin and peel of the fruits, 

although they are also distributed throughout the flesh (Hulme, 1971). 

Tannis are water soluble poliphenolic compounds that have the ability to 

precipitate alkaloids, gelatin and other proteins. They range in color from yellowish-

white to light brown (Fennema, 1996). 

Tannins are responsible for the astringency of many edible fruits. The process of 

fruit ripening brings about changes in the composition and quality of tannins, thus 

lowering astringency and improving palatability of the fruit (Shahidi & Naczk, 1995). 

Table 2-8 presents the content of tannin in several fruits. 
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Table 2-8 
Proanthocyanidin tannins content in several fruits 

Proanthocyanidin 
content 

 
Fruit 

(mg/100g fresh weight) 
Blackcurrant 1.12 

Apricot 1.32 
Cranberry 7.26 

Apple 5.94 
Blueberry  3.46 

Grapes  1.36 
Source: Shahidi & Naczk (1995); USDA (2004) 

 

 

In early studies, Markakis et al. (1959) found 50% destruction of anthocyanin 

content in some strawberry juices irradiated (gamma) at 0.5 Mrad. Later, Lees & Francis 

(1972) showed that gamma radiation at levels of 150 and 300 krad stimulates the 

synthesis of anthocyanins and flavonoids of cranberries when stored at 31° and 40°F. 

Similar findings were reported by Lu et al. (1993) who reported that the phenolic and 

anthocyanin content in peaches treated with gamma irradiation at 0.1 kGy was higher 

than that in non-irradiated fruits. 

2.3.3. Sensory quality of fruits  

Sensory evaluation focuses on evaluating the goodness and badness of food that 

can be used and consumed. The objective is the measurement of the sensory attributes. 

Sensory testing can establish the value of a commodity or even its very acceptability. 

The principal uses of sensory testing are in quality control, product development and 

research (Meilgaard et al., 2000). 
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Sensory analysis studies the relationship between a given physical stimulus and 

the subject’s response. The sensory attributes perceived in a food product are: 

appearance, odor/aroma, consistency and texture, and flavors (aromatics, chemical 

feelings, taste) (Meilgaard et al., 2000). 

2.3.3.1. Appearance  

Appearance is usually the parameter that determines the decision to purchase or 

consume. General appearance characteristics include color, size and shape, surface 

texture, and clarity (Meilgaard et al., 2000). 

2.3.3.2. Odor/aroma 

The odor of a product is detected when the volatiles enter the nasal passage and 

are perceived by the olfactory system. Aroma is the odor of a food product. The amount 

of volatiles that escape from a product is affected by the temperature and by the nature 

of the compounds (Meilgaard et al., 2000). For example, esters are characterized by their 

fruity aromas and some terpene alcohols by their floral odor (Hulme, 1971). 

2.3.3.3. Texture and firmness  

Texture and firmness are perceived by sensors in the mouth. They refer to the 

viscosity (for homogeneous Newtonian liquids), consistency (for non-Newtonian or 

heterogeneous liquids and semisolids) and texture (for solids and semisolids) (Meilgaard 

et al., 2000). 

2.3.3.4. Flavor  

Flavor is an attribute that results from the sum of impressions perceived via 

chemical senses from a product in the mouth. It includes the aromatics that are the 
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olfactory perceptions caused by volatile compounds, the tastes or gustatory perceptions 

and the chemical feeling factors such as astringency, spice heat, and cooling (Meilgaard 

et al., 2000). 

Ahmed et al. (1972) showed that the texture of strawberries irradiated with 

gamma rays at 1.5 and 3.0 kGy was rated softer by sensory evaluation. However, 

Lacroix et al., (1992) evaluated the effect of gamma irradiation on biochemical and 

organoleptical changes in mangoes and papayas and their results indicated that up to 

0.95 kGy (gamma rays) the sensory evaluation of these commodities was not changed. 

In a later study, Lacroix et al. (1993) showed similar results when the (gamma) 

irradiation treatment of mangoes at an average of 0.75 kGy did not affect the overall 

quality of the fruits. 

2.4. Kinetics of quality changes  

 Food quality involves microbiological, chemical, physical and enzymatic 

changes during processing and storage. In food science and in food engineering, most 

kinetic models that are used are limited to zero order, first order or second order (Boekel, 

2000).  

The undesirable changes in quality usually involve degradation of color, flavor 

and texture, deterioration of the functional properties of ingredients and loss of 

nutritional value and on development of potentially toxic compounds. Similar reactions 

occur post-processing at a rate that is determined by the inherent properties of the food, 

the type of packaging, and conditions of storage and distribution. These factors 

determine the shelf-life of the food (Fennema, 1996). 
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Foods are kinetically stable but it is important to understand the appropriate use 

of kinetics for prediction of quality. This research only focused on quantifying the 

chemical and physical changes of the tested fruits due to irradiation and storage time. 

Many of the changes occurring during processing of the food may be described 

by the following first order equation: 

 

kt
dt
dC

−=−               (2-6) 

where C = quantity of quality attributes (units of amount, such as concentration), t = 

time of exposure to process (eg, min), and k = reaction rate constant (min-1). 

Although Eq. (2-6) suggests that a first order reaction may be causing the 

quantitative change in a given quality attribute, most of the changes occurring in foods 

are more complex; therefore, the reaction order and quality function should be selected 

properly.  

In fruits and vegetables, color and texture degradation usually follow a first order 

reaction kinetics (Ahmed et al., 2001; Lau et al. 2000; Dixon & Hewett, 1998). Little 

information is available about the kinetics of quality changes on irradiated products. 

However, Bourne (1995) reported that the softening of carrots exposed to gamma 

radiation at doses ranging from 1.3 to 50 kGy showed a first order kinetic rate process. 

Ibarz et al. (2005) found that the effect of UV irradiation on brightness of apple, peach 

and lemon juices increased following a first order kinetics. Nayak et al. (2005) evaluated 

the effect of gamma irradiation (3.0-9.0 kGy) and osmotic treatment on mass transfer 
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during rehydratation of carrots. The authors estimated the diffusion coefficient for water 

considering Fickian diffusion described by the equation, 

 

x
CDF
∂
∂

−=      (2-7) 

 
 

where F is the mass flux of solute per unit area per unit time and D is the effective 

diffusion coefficient in a porous medium. They found that the increase in dose resulted 

in decrease of water and increase in the solute diffusion coefficient. Korkmaz & Polat 

(2001) reported that the radical kinetics and characterization of the free radicals in 

gamma (10 kGy) irradiated red pepper evaluated by electron spin resonance 

corresponded to a second-order kinetics. Valdivia et al. (2002) observed that the 

oxidative rancidity of the gamma irradiated avocado at dose levels between 0.5 and 2.5 

kGy followed a first order kinetics. 

In other studies, Ochoa et al. (2001) evaluated the color change in preserves of 

raspberries and sweet and sour cherries exposed to different lighting conditions (light 

and darkness) at constant temperature. The authors found that the changes followed a 

first order kinetics. Vikram et al. (2004) also reported that the thermal degradation of 

vitamin C in orange juice heated by electromagnetic and conventional methods followed 

a first order kinetics.  
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CHAPTER III 

METHODOLOGY 

 

3.1. Fruit samples  

One hundred sixty-eight (168) mangoes (Mangifera indica) and ninety-six (96) 

trays of blueberries (Vaccinium corymbosum L.) were purchased at a local market the 

night before the irradiation test was performed. The fruits were labeled with the specific 

treatment (radiation dose) and kept at refrigeration temperature (10ºC) over night. 

3.1.1. Irradiation of mangoes  

Samples were subjected to four (4) treatments: (1) zero dose (control), (2) high 

dose (3.0 kGy), (3) medium dose (1.5 kGy), and (4) low dose (1.0 kGy). The effect of 

irradiation was evaluated at four different time periods up to 21 days of storage. Table 3-

1 shows the experimental design of the fruit quality study. A total of forty-two (42) 

mangoes were used for each irradiation dose. At each dose level, eight (8) mangoes were 

placed in molded pulp packaging fruit trays (CMC Industries) and then placed inside 

open cardboard boxes (0.508 x 0.609 x 0.102m) (Figure 3-1 A). The samples were then 

irradiated using a double beam fixture (top and bottom) 10 MeV (10 kW) Electron Beam 

Linear Accelerator located at the National Center for Electron Beam Food Research 

facility at Texas A&M University. To determine the applied dose, four dosimeters (B3WIN 

Radiochromic Films, Gex Corporation Centenial, CO, USA) were placed evenly at the 

surface of the mangoes: two on the top and two in the back of the fruit.  
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Dose was varied by running the conveyor belt at three different speeds: 0.10, 0.20, 

and 0.30 m/s. The dose rate was 0.8 kGy /s. The measured doses were 3.1 kGy, 1.5 kGy 

and 1.0 kGy, respectively. Table 3-2 presents the dosimeter readings. Control samples 

were non-irradiated. 

 

 

Table 3-1. 
Experimental design for irradiation of mangoes using a 10MeV electron beam 
accelerator (double beam fixture) 

Dose Storage time 
(Days) 

At 12˚C 
Controla 
(0 kGy) 

Low 
(1.0 kGy) 

Medium 
(1.5 kGy) 

High 
(3.1 kGy) 

Subtotal 
(units) 

0 5 5 5 5 20 
5 5 5 5 5 20 
10 5 5 5 5 20 
21 5 5 5 5 20 

Subtotal 20 20 20 20 80 
Respiration rate 6 6 6 6 24 

Other quality 
tests 

16 16 16 16 64 

Total (units)* 42 42 42 42 168 
*One unit represents one fruit 
aNon-irradiated fruits. 
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Figure 3-1. Experimental setup for irradiation of mango fruits. (A) placement of fruit on 
the trays, (B) location of film dosimeters on the product. 
 

 

The blank dosimeter was used to estimate the dose absorbed by the dosimeter 

alone (no produce). The difference in the values of the dosimeter readings was small and 

the dose absorbed was also the same by the sides of the fruit (T1 and T2 in Table 3-2, for 

example). Figure 3-2 represents the simulation of the dose distribution in the mangoes 

when irradiated by running the conveyor at 0.30 m/s (higher speed). Since the fruits 

were exposed to the double beam (upper and lower), a high-dose region was located in 

the middle of the mango.  
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At the side edges of the fruit, the absorbed doses were significantly high (>2.5 

kGy, orange to red color on the color scale) due to the overlapping high dose area of the 

single beam. However, this was a very small portion (2.4%) of the fruit. 

In order to minimize the effects of high dose on the later measurements, samples 

taken from the mangoes after irradiation were mixed thoroughly. The uniformity ratio 

(Dmax/Dmin) was 2.4, which is an acceptable commercial situation. 

 

 

Table 3-2 
Dosimeter reading after irradiation of mangoes using a 10 MeV electron beam 
accelerator (double beam fixture) 

Dose [kGy]        Conveyor speed 
 

Dosimeter location 
0.30m/s 0.20m/s 0.10m/s 

Blank 0.9+0.1 1.3+0.1 2.9+0.1 
T1*-Top left 0.9+0.1 1.3+0.1 2.9+0.1 
T2-  Top right 0.9+0.1 1.3+0.1 2.9+0.1 
T3-  Back left 1.0+0.1 1.5+0.1 3.0+0.1 
T4-  Back right 0.8+0.1 1.5+0.1 3.0+0.1 
*indicates position of radiochromic film on fruit (see Fig 3.1B)  
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Figure 3-2. Monte Carlo simulation of dose distribution in a mango irradiated using a 10 
MeV electron beam in double fixture. Conveyor speed 0.30 m/s (adapted from: Kim, 
2005).  

 

 

3.1.2. Irradiation of blueberries 

Seventy two (72) blueberry trays (0.09 x 0.09 x 0.04m, and ~190.0 g) were 

irradiated using the same 10 MeV Electron Beam Linear Accelerator located at the 

National Center for Electron Beam Food Research facility at Texas A&M University. 

The conditions for the experiment were the same as for the mangoes but in this case a 

single beam fixture was used (due to the small thickness of the trays). Eight (8) 

blueberry trays were placed inside open cardboard boxes (Figure 3-3 A) with the same 

dimensions as those used for mangoes and then irradiated using a top single beam. Three 
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replications for treatment were performed. Untreated (non-irradiated) samples were used 

as controls.  

The effect of irradiation on the fruit quality was evaluated up to 14 days of 

storage. Twenty-four (24) trays of blueberries were irradiated at each dosage (zero 

(control), high, medium and low dose) using the same conveyor speeds of 0.10, 0.20, 

and 0.30 m/s, respectively. Table 3-3 presents the experimental design. In the same 

manner as for mangoes, radiochromic films were used to determine the absorbed dose. 

For the blueberries, two dosimeters were placed at the top (T) and two at the bottom (B) 

of the sample trays (Figure 3-3 B).  

 

 

Table 3-3 
Experimental design for the irradiation of blueberries using a 10 MeV electron beam 
accelerator (single beam (top) fixture) 

Dose Storage time 
(Days) 
At 5˚C 

Controla 
(0 kGy) 

Low 
(1.1 kGy) 

Medium 
(1.6 kGy) 

High 
(3.2 kGy) 

Subtotal 
(trays) 

0 5 5 5 5 20 
3 5 5 5 5 20 
7 5 5 5 5 20 
14 5 5 5 5 20 

Subtotal 20 20 20 20 80 
Respiration rate 1 1 1 1 4 

Other quality 
tests 

3 3 3 3 12 

Total (trays) 24 24 24 24 96 
aNon-irradiated fruits 
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Figure 3-3. Experimental setup for irradiation of blueberry fruit. (A) placement of fruit 
on the trays, (B) location of film dosimeters on the product. 
 

 

The dosimeter readings for all speeds are shown in Table 3-4. The measured 

doses were 1.1 kGy, 1.6 kGy and 3.2 kGy. In this case, variation in dose among the 

locations was observed. Doses at the bottom (B1 and B2) were higher than at the top (T1 

and T2, Table 3-4) due to dose buildup; secondary electrons are more effectively 

absorbed in the medium as an electron beam penetrates. In the simulation of the 

absorbed dose in blueberries when irradiated by running the conveyor at 0.30 m/s 

(Figure 3-4) it was observed that the dose went up to 1.85 kGy (red color), which was  
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relatively high. However, only 2.5% of the absorbed dose was higher than 1.5 kGy. 

Even though no clear pattern was observed in the dose distribution of blueberries, 

most of the dose at this speed (0.30 m/s) ranged between 1.0 kGy and 1.5 kGy (green to 

yellow color).  

 

 

Table 3-4  
Dosimeter reading after the irradiation of blueberries using a 10 MeV electron beam 
accelerator (single beam (top) fixture) 

Dose [kGy]           Conveyor speed 
 

Dosimeter location 
0.30m/s 0.20m/s 0.10m/s 

Blank(cardboard box) 1.0+0.1 1.4+0.1 2.8+0.1 
T1*     (top left) 0.8+0.1 1.4+0.1 2.9+0.1 
T2     (top right) 0.8+0.1 1.3+0.1 2.8+0.1 
B1     (back left) 0.9+0.1 1.6+0.1 3.5+0.1 
B2     (back right) 1.1+0.1 1.7+0.1 3.0+0.1 
*indicates position of radiochromic film dosimeter on fruit  
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Figure 3-4. Monte Carlo simulation of dose distribution in blueberries irradiated using 
10 MeV electron beam in single fixture. Conveyor speed 0.30 m/s (adapted from Kim, 
2005).  

 

 

3.1.3. Shelf-life study  

 Treated (irradiated) and control (non-irradiated) fruits were stored at refrigeration 

temperature to determine the effect of ionizing radiation on fruit shelf-life. Mangoes 

were stored at 12˚C and 62.7% RH while the blueberry trays were stored at 5˚ C and 

70% RH. The physicochemical properties of the fruits (Figure 3-5) were analyzed right after 

irradiation treatment (day 0) and during refrigerated storage at intervals of 5 days up to 21 

days for mangoes and every 3 days up to 14 days for blueberries..  
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Figure 3-5. Physical and chemical properties measured in mangoes and blueberries. All the properties were the same in both 
fruits, except for the pigments that were determined as carotenoids in mangoes and as tannins in blueberries. 
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3.2. Quality parameters 

3.2.1. Physical properties 

3.2.1.1. Color attributes  

The color of the fruit was measured with a Lab Scan XE DP-9000 colorimeter 

(Hunter Associates Lab II, Preston VA). Mango samples consisted of slices of 

approximately 5cmx7cm obtained from the interior of the fruit (without peel) while a 

random amount (around 70g) of blueberries were used for color measurements. The 

values of L (lightness), a (redness to greenness) and b (yellowness to blueness) were 

recorded for each sample. Six replications per sample were used. Chroma (C) values 

were calculated as: 2/122 )**( ba + . Hue angle, (θ), was determined as tan-1(b/a), and the 

total color difference, ΔE, as 2/1222 )***( baL Δ+Δ+Δ  (McGuire, 1992). 

3.2.1.2. Texture  

3.2.1.2.1. Mangoes 

Cylindrical samples (20 mm length x 17 mm diameter) were carved out from the 

whole mango using a fruit perforator with the edges flattened in a plastic mold. A 

Texture Analyzer (TA.XT2, Texture Technologies Corp., Scarsdale, NY) was used to 

compress the samples with an applied force of 0.35 N within two parallel plates (top 

diameter of 14 cm) (Fig 3-6). Tests were designed for a final deformation of 15% of the 

original sample height (15% strain), since sample permanent deformation (i.e., sample 

destruction) occurred prior to this limit. Force (N) versus distance (mm) values were 

recorded (Figure 3-7) and used to calculate the following texture parameters: (1) the 
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rupture or breaking force (FR), in Newton, which is the force required to cause a 

permanent deformation; (2) the toughness (T) or the area under the force-distance curve 

up to the point of rupture of the fruits, in Joules (N.m), and (3) the modulus of elasticity 

(Young’s Modulus) which is a measure of the stiffness based on the stress/strain ratio. A 

minimum of nine replications was performed for each treatment (irradiated and non-

irradiated) up to 21 days. All tests were conducted at room temperature.  

 

 

 

 

 

Figure 3-6. Compression test on mangoes. 
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Figure 3-7 Strength, toughness, stiffness and rupture force (adapted from Rosenthal, 
1999). 
 

 

3.2.1.2.2. Blueberries 

Firmness of blueberries was measured using a Shear Kramer Press with 5 blades 

(TA-91) attached to a TA-XT2 Texture Analyzer (Texture Technologies Corporation, 

Scarsdale, NY). Approximately eighty (80) grams of fruit were placed into the square 

metal container and a 5 flat-plate plunger was forced through the blueberries. The probe 

was set at 35 mm from the bottom of the 5 flat-plate plunger and moved downward at 

5.0 mm/s (Fig. 3-8). The maximum force, Fm, (N) and area, A, (N.m) were recorded by 

the Texture Expert software program, v.1.16 (Texture Technology corp., Scarsdale, NY) 

and used to calculate the firmness, toughness and stiffness of the fruit. Three 
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measurements were performed for each sample (irradiated and nonirradiated) up to 14 

days. All tests were conducted at room temperature.  

 

 

 
 

Figure 3-8. Kramer shear test on blueberries. 
 

 

3.2.1.3. Scanning Electron Microscopy (SEM) 

Since the objective of this test was to evaluate the effect of irradiation on cell 

structure and because most of the reaction effects after processing occur in the first five 

days, approximately ten days after irradiation treatment the samples were evaluated. 
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Pieces of fresh tissue of mango and blueberries were cut with a surgical blade with 

approximate dimensions of 7x7x8 mm and 5x5x4 mm, respectively. The samples were 

fixed chemically with a 2% glutaraldehyde/phosphate buffer then washed with the same 

phosphate buffer for 30 min and post-fixed in 1% phosphate buffered osmium solution. 

The following day the samples were washed with distilled water and dehydrated under 

vacuum through ascending concentrations of methanol(EMD Chemicals, Gibbstown, 

N.J.) series, starting with 5% until 100% each for one minute. 0.3 mL 

Hexamethyldisaline (HMDS) (Sigma Aldrich, St Louis, MO) was added and the samples 

were dried over night at room temperature. After dehydration, the samples were 

mounted on stubs and coated with gold-palladium for 90 s in a coating unit, osmium in 

TECHNICS sputter coater. SEM was performed on a JOEL JSM 6400 scanning electric 

microscope (Princeton Gamma- Tech. PGT Prism Digital Spectrometer, Japan) at 15 kV 

(Kim, 1996). Three samples were prepared for each treatment. 

3.2.1.4. Unit density 

Density of the fruit (treated and control) was determined by the weight and 

volume displacement method. Samples of fruit (mango: cylindrical pieces of 5cm x 7cm, 

blueberry: one unit) were weighed and then pierced with a long thin stainless–steel pin. 

A stand was constructed that held the end of the pin and could be used to lower and 

completely immerse the pieces in a beaker with water on top of an analytical balance. 

The increase in weight loading the samples in the water equals the weight of the 

displaced water. The tests were conducted at room temperature during the entire storage 
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time (21 days for mango and 14 days for blueberry) and four replications were made for 

each sample. Density of the fruit was calculated using the following equation: 

water
waterdisplaced

sample *ρ
W

Wρ(g/cc)
  

=     (3-1) 

where Wsample = sample weight in grams, Wdisplaced water = displaced water weight in 

grams, ρ = density of the fruit in g/cc and ρwater = density of water in g/cc. 

The specific gravity (SG) corresponds to the relationship between the unit density 

(ρunit) and the density of water (ρwater) at a reference temperature (T). Therefore it was 

calculates as: 

Twater

unitSG ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ

      (3-2) 

The bulk density of the blueberries was calculated as  

bulk

bulk

V
Wρ(g/cc) =       (3-3) 

where W bulk = bulk weight in grams, Vbulk = bulk volume in cc. 

The porosity (ε) that is the fraction of the total volume that is occupied by the air 

was calculated as follows:  

product

bulk

ρ
ρ

ε −= 1       (3-4) 

where ρbulk = bulk density in g/cc and ρproduct = density of the fruit in g/cc. 
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3.2.1.5. Respiration rates 

Although ethylene production has an effect on the respiration rate, in this 

study the respiration rate was evaluated in terms of the CO2 production as a direct 

product of the respiration process and because the equipment available only determines 

the concentrations of O2 and CO2. The respiration rate of the fruits throughout storage 

was monitored in a closed system (Figure 3-9). Approximately 50 grams of blueberries 

were placed in sealed glass jars (450 ml) and stored at 5°C for up to 14 days. 

Approximately 900 grams of mangoes (2 units) were placed in sealed glass jars (4L) and 

stored at 12°C up to 21 days. After 2 hours of blueberries being completely sealed and 

40 min for mangoes, the gas concentration (CO2) inside the jars was measured. Internal 

gases were collected from the headspace using a 5 mL syringe having a side hole needle. 

The withdrawn gas was immediately injected into a PIR-2000 infrared CO2 analyzer 

(IRGA) (Horiba Instruments, Irvine, CA) to determine the levels of CO2. 
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Figure 3-9. Experimental set up for measuring respiration rate of tested fruits. (A) 
blueberries, (B) mangoes.  
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A standard curve for CO2 concentrations was obtained and the measured peak 

was fitted into a curve to obtain the corresponding gas concentration for each sample 

(treated and control). Tests were conducted in triplicate, and the respiration rate was 

calculated using the following equation: 

(kg)*t(h)W
(mL)*V%CO/kg.h)mlCO

sample

final2
2( =     (3-5) 

where Vfinal = headspace volume in mL, Wsample = sample weight in grams, and t = time of 

gas collection (40 min for blueberries and 2 hours for mangoes) (Saltveit, 1997). 

3.2.2. Chemical properties  

To prepare the samples, approximately three (3) mangoes and two (2) blueberry 

trays were taken from each batch treatment (control and irradiated at low, medium and 

high doses), and homogenized in a blender at high speed (Oster Regency Kitchen 

Center) using a shredder disc to obtain a pulp sample for the chemical analyses.  

3.2.2.1. Moisture content  

Moisture content of the fruit was measured using a vacuum oven (Squared Lab 

Line Instruments, Melrose Park, IL), by taking 5 g of flesh (mesocarp) and drying at 

70oC under pressure ≤ 100 mm Hg (13.3 KPa) to a constant weight following the AOAC 

Method 920.151 (AOAC, 1980). Tests were run in triplicate and were conducted 

throughout the storage time. Moisture in wet basis was calculated as follows: 

 

010x
)(W

)W(WMC(%w.b.)
wet

drywet −
=    (3-6) 
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where Wwet= weight of wet sample and Wdry= weight of dry sample in grams.  

3.2.2.2. Water activity 

 Water activity was determined using a Rotronic Hydrometer (Rotronic 

Instrument Corp., Huntington, NY) at room temperature. Approximately 38g of pulp 

from each sample (treated and control) were placed in an air-tight chamber connected to 

a panel display where the corresponding water activity and temperature were recorded. 

Readings were made in triplicate and were reported throughout the storage time at the 

specified intervals. 

3.2.2.3. pH 

The pH of the fruit samples was determined using a digital pH meter (Corning 

model 350 pH/ion analyzer, Corning, Inc) following AOAC Method 32.025 (AOAC, 

1980). After previous calibration with standard solutions (pH 4.0, 7.0 and 10.0) a glass 

electrode was immersed in the pulp of the fruit. The pH was recorded by direct reading. 

Three replications per sample were used. Measurements were conducted at room 

temperature and throughout the storage time. 

3.2.2.4. Titratable acidity  

Acidity was determined by titrating ten (10) grams of flesh with 0.1 N alkali 

(NaOH) following AOAC Method 22.060 (AOAC, 1980). Ten (10) grams of the pulp 

were diluted to 250 ml with neutralized water and approximately 0.3 ml of 

phenolphthalein (Fisher Scientific Company, Fair Lawn, NJ) was added. The sample 

was stirred and titration was made with 0.1N NaOH (Fisher Scientific, Fair Fawn, NJ) 

until a pink color persisted for 30 sec and the pH reading was 8.1.Three replications per 
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each sample were used. Determinations were made throughout the storage time. Results 

were expressed in terms of dominant acid as grams of citric acid per gram (AOAC, 

1980).  

3.2.2.5. Total soluble solids 

The total soluble solids content was determined using samples of the fruit’s juice 

with a hand refractometer (TS Meter Refractometer, American Optical, Buffalo, NY). 

Soluble solids by the refractometric method are defined as the concentration (by weight) 

of sucrose in solution that has the same refractive index (n) as the solution analyzed. The 

refractive index is measured in the refractometer using prisms and by total reflection. 

The instrument was calibrated with water at 20ºC, and a drop of the sample (juice) was 

placed on the prism of the instrument at 20ºC. The corresponding percentage of soluble 

solids was obtained by direct reading. Three replications per each sample were used. 

Determinations were conducted throughout the storage time. 

3.2.2.6 Sugars 

3.2.2.6.1 Total sugars  

The total sugar content of the samples was determined using a modified version 

of the phenol-sulphuric acid method by Dubois et al. (1956). Approximately 5 grams of 

pulp were weighed and diluted in 100 mL distilled water. Diluted samples were left at 

refrigeration temperature (10°C) for 17 hours. After this time, the solution was filtered 

using a Whatman® filter No.4 and a vacuum pump (KNF Neuberger, Inc., Trenton, NJ) 

and the volume was increased to 200mL. A new dilution was made by taking 1 mL of 

the extract solution and completed to 100 mL with distilled water. Two (2) mL of sugar 
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solution were placed into an essay tube and 0.05 mL. of 80% phenol were added. Then, 

5 mL of concentrated sulfuric acid (EMD Chemicals, Gibbstown, NJ) were added 

rapidly. The tubes were allowed to stand 10 minutes and then shaken using a Vortex 

Genie 2 (Scientific Industries, Bohamia, NY) and placed for 10 to 20 minutes in a water 

bath (Baxter Scientific Products, Miami, FL) at 20o to 30o C before readings were taken. 

The absorbance of the characteristic yellow-orange color was measured using an UV-

1601 Spectrophotometer (Shimadzu Corp., MD). The wavelength was fixed at 490 nm. 

Blanks were prepared by substituting distilled water for the sugar solution.  

The amount of sugar was then determined by referring to a standard curve 

previously developed with concentrations ranging from 40.0 to 160.-0 μg/ml (Figure 3-

10) for the particular sugar under examination. From the standard curve, x is the sugar 

concentration and y corresponds to absorbance. Thus,  

  

y = -0.02275 + 0.00842x, R2= 0.999     (3-7) 

 

Tests were conducted in triplicate and throughout the storage time. The 

concentration of total sugars was calculated as: 
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where Wsample= sample weight in grams. 
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Figure 3-10. Standard curve for total sugars (µg sucrose/ml). 
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3.2.2.6.2 Reducing sugars 

The reducing sugars (glucose) content was determined by spectrophotometer 

following the dinitro-salicylic method (Miller, 1959). This method tests for the presence 

of free carbonyl group (C=O), the so-called reducing sugar. It involves the oxidation of 

the aldehyde functional group present in, for example, glucose and the ketone functional 

group in fructose. Simultaneously, 3,5-dinitrosalicylic acid (DNS) is reduced to 3-amino, 

5-nitrosalicylic acid under alkaline conditions:  

                           oxidation 

  aldehyde group ----------> carboxyl group               (3-9) 

 

             reduction 

 3, 5-dinitrosalicylic acid ----------> 3-amino, 5-nitrosalicylic acid           (3-10) 

 

Because dissolved oxygen can interfere with glucose oxidation, sulfite, which 

itself is not necessary for the color reaction, is added to the reagent to absorb the 

dissolved oxygen (Miller, 1959).  

The above reaction scheme shows that one mole of sugar will react with one 

mole of 3,5-dinitrosalicylic acid. However, it is suspected that there are many side 

reactions and that the actual reaction stoichiometry is more complicated than that 

previously described. The type of side reaction depends on the exact nature of the 

reducing sugars. Different reducing sugars generally yield different color intensities; 
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thus, it is necessary to calibrate each sugar. In addition to the oxidation of the carbonyl 

groups in the sugar, other side reactions such as the decomposition of sugar also compete 

for the availability of 3,5-dinitrosalicylic acid. As a consequence, carboxymethyl 

cellulose can affect the calibration curve by enhancing the intensity of the developed 

color (Miller, 1959). 

Three (3) mL of sugar solution were placed into an essay tube and 3 mL of 

dinitrosalicylic acid (Sigma Aldrich, St Louis, MO) solution were added. To avoid the 

loss of liquid due to evaporation, the test tubes were covered with a piece of paraffin 

film and heated at 90º C for 5-15 minutes to develop the red-brown color. One (1) mL of 

a 40% potassium sodium tartrate (Rochelle salt, Sigma Aldrich, St Louis, MO) solution 

was added to stabilize the color. After cooling to room temperature in a cold water bath, 

the absorbance was recorded with a UV-1601 Spectrophotometer (Shimadzu Corp., 

MD). The wavelength was set at 575 nm. A standard curve (Figure 3-11) was prepared 

using different glucose concentrations from 0.0 to 2.5 mg /ml. From the curve, x is the 

sugar concentration and y corresponds to absorbance. Thus: 

 

y = -0.038395 + 0.49661x, R2=0.998     (3-11) 

 

Two replicates were done for each sample. Analyses were carried out throughout 

the entire storage time and the concentration of reducing sugars was determined as 

follows: 
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Figure 3-11. Standard curve for reducing sugars (mg glucose/ml). 
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3.2.2.7. Total phenolics 

Total phenolics were determined by spectrophotometric analysis following the 

Folin-Denis assay using the AOAC method 9.098 (AOAC, 1980). Approximately 5 

grams of pulp were weighed and diluted in 25 mL of methanol (EMD Chemicals, 

Gibbstown, NJ). Diluted samples were left standing at room temperature for 24 hours. 

After this time, samples were filtered and the volume was completed to 50 mL. Then, 

7.5 mL distilled water was added to a 1.0 mL of sample extract and was shaken with a 

Vortex Genie 2 (Scientific Industries, Bohemia, NY). Half (0.5) mL of Folin-Denis 

reagent (Fluka, St Louis, MO) was added to this solution. After 3 min standing, 1 mL 

saturated sodium bicarbonate solution was added. The absorbance was measured using 

an UV-1601 Spectrophotometer (Shimadzu Corp; MD) at 725 nm after standing 1h at 

room temperature. Samples were run in triplicate. This test was conducted throughout 

the storage time. 

The results were determined by using a standard curve previously developed with 

six different concentrations ranging between 0.0 and 150 μg/mL (Figure 3-12) and 

expressed as mg Gallic acid / 100 g of fresh fruit. From the standard curve, x is the 

Gallic acid concentration and, y is the absorbance. Thus: 

 

y = -0.00959524 + 0.00692238 x, R2=0.99813   (3-13) 
 
 

Total phenolics concentration was calculated as follows: 
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where Wsample = sample weight in grams.  
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Figure 3-12. Standard curve of total phenolics (µg gallic acid/ml). 
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3.2.2.8. Antioxidant activity index  

The determination of the antioxidant activity index was obtained following the 

diphenylpicrylhydrazyl (DPPH) free radical method (Bondet et al., 1997). From the 

same phenolic extraction obtained in section 3.2.2.7, 0.5 mL were taken and added to 3.5 

ml of methanolic DPPH (Sigma Aldrich, St. Louis, MO) solution so that the initial 

DPPH concentration in the cuvettes (10 mm x 4mm x 45 mm) was approximately 6 x 

10-5 mol/L. The absorbance was read at 515 nm by spectrophometric measurements in a 

kinetics modem using an UV-1601 Spectrophotometer (Shimadzu Corp., MD), until the 

reaction reached a plateau for 1 min (absorbance final). The percentage of antioxidant 

activity index (Q) was calculated as, 

100s
s

in

in

*
(g)W

Ab
)Abs(Ab

Q(%/g)
sample

itial

finalicial

⎟
⎟
⎟
⎟

⎠

⎞

⎜
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⎜
⎜

⎝

⎛ −

=    (3-15) 

 

where Absinitial = absorbance at time 0, Absfinal = absorbance at 1 min, and Wsample 

= sample weight in grams. Tests were conducted in triplicate throughout the storage 

time. 

3.2.2.9. Ascorbic acid (Vitamin C) 

Vitamin C content was determined using the 2.6-dichlorophenol-indophenol 

titrimetric method following the 43.059 AOAC standards (AOAC, 1980). In this 

method, L-ascorbic acid is oxidized to L-dehydroascorbic acid by the indicator dye. At 

the endpoint, excess unreduced dye is rose-pink in an acid solution. L-dehydroascorbic 
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acid can be determined by first converting it to L-ascorbic acid with a suitable reducing 

agent. The red-color endpoint should last at least 10 sec to be valid (AOAC, 1980). 

About 10 grams of the fresh fruit were pulverized by grinding. Methaphosphoric 

acid-acetic acid solution (HPO3-HOAc) (Sigma Aldrich, St Louis, MO) was added. The 

solution was filtered using a Whatman® filter No. 4 and a vacuum pump (KNF 

Neuberger, Inc., Trenton, NJ) and then tritrated until the sample became in suspension. 

Three replications for each sample were done. Tests were conducted at room 

temperature and throughout the storage time. 

3.2.2.10. Volatiles 

Volatile compounds were identified by headspace solid phase microextraction 

(HS-SPME) analysis using a mass spectrophotometer gas chromatograph (MS-GC). 

Nine grams of fruit sample were placed in 40 ml headspace sampling vials and 

equilibrated at 25°C. A CarboxenTM/PDMS Stable FlexTM 85 µm SPME fiber (Supelco 

Co., Bellefonte, PA) was used to absorb the head space volatiles. The fiber was inserted 

into the sample vial through the septum and exposed to headspace for 60 min. Before 

sampling, the PDMS fiber was reconditioned for 30 min in the GC injection port at 

250°C. Volatile compounds absorbed by partition on the SPME fiber were thermally 

desorbed at 250°C for 3 min in the injector port of an HP6890/5973 GC-MS (Hewlett 

Packard, Palo Alto, CA) with a CP-Wax BP20 capillary column (25m x 0.53mm i.d., 

1.0µm film thickness). Helium was used as a carrier gas. A splitless mode was used. The 

oven temperature was maintained at 40ºC for 3 min, followed by an increase to 220ºC at 

the rate of 7ºC /min and held for 25 min. The HP 5973 mass spectrometer was operated 
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in the electron ionization mode at 70 eV. The tests were conducted by duplicate for each 

sample and evaluated on the first and the last day of the storage time. 

Data were collected with HP CHEMSTATION software (Agilent Technologies) 

and searched against the Wiley registry of mass spectral data compounds (6th edition, 

Palisade Corp., Newfield, NY). Compounds were identified by matching their spectra 

with the library database, and total ions counts were presented. Because, there was a 

dominant compound recovered in most samples of mangoes and blueberries, 

respectively, the data was evaluated from the total ion chromatograms on a relative 

percentage basis. The ion count of δ-3-carene in mango samples, was divided by the 

total ion count of all integrated compounds, and then expressed as a relative percentage. 

Thus, reported volatile data are semi-quantitative (Beaulieu & Lea, 2003). The same 

approach was used for (E)-2-hexenal in blueberry samples. 

3.2.2.11. Pigments 

3.2.2.11.1. Carotenes 

In this study, the content of  β-carotenes in mango samples was determined by 

spectrophotometric measurements using an UV-1601 Spectrophotometer (Shimadzu 

Corp; MD) calibrated at 453 nm following the methodology cited by Rodrigues-Amaya 

(1989). All tests were carried out without the presence of light in order to protect the 

compounds from diffused light and oxygen. Fifty (50) mL of acetone were added to 5 

grams of the fruit’s pulp. The extraction was made after 24 hours. The solution was 

filtered using a Whatman® filter No. 4 and a vacuum pump (KNF Neuberger, Inc., 

Trenton, N.J.). The acetonic solution was placed in decantation balloons and 50 mL of 
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petroleum ether was added. The residue was washed with approximately 5-7 washes of 

100 mL distilled water. The carotene extract was concentrated in a Rota-vapor-R110 

(Brinkman Instruments, Westbury, N.Y.) at 32˚C for 10 min to evaporate the petroleum 

ether. The spectrophotometric determination was made by diluting the concentrate with 

5 mL of hexane (EM Science, Gibbstown, N.J). Tests were conducted in triplicate at 

room temperature and throughtout the storage time. 

The concentration of β-carotenes was determined with a previous standard curve 

developed at concentrations between 1.0 and 2.5 μg/ml (Figure 3-13) in which x and y 

correspond to concentration and absorbance, respectively,  

x..y 2442001250 +−= , R2=1.000     (3-16) 

The concentration of carotenes was calculated as: 
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where Wsample = sample weight in grams. 
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Figure 3-13. Standard curve for carotenes (µg β-carotenes/ml). 
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3.2.2.11.2 Tannins 

The tannin content in blueberries was determined colorimetrically using the 

vanillin assay for their quantification (Shahidi & Naczk, 1995). Approximately 5 grams 

of pulp were weighed and extraction was made with 25 mL of methanol (EMD 

Chemicals, Gibbstown, N.J.). Diluted samples were left standing at room temperature 

for 24 hours. Samples were then filtered and the volume increased with methanol to 50 

mL. Five (5) mL of freshly prepared vanillin solution in methanol containing 4% of 

concentrated HCl was added to a 1 mL solution of condensed tannins and mixed 

thoroughly with a Vortex Genie 2 (Scientific Industries, Bohemia, NY). Blanks were 

prepared by substituting the vanillin solution in methanol for a 4% concentrated HCl 

solution in methanol. The absorbance (Abs) was measured at 500nm after standing for 

20 min at 30ºC. The results were determined by using a standard curve previously 

developed with different concentrations between 0.0 and 200 μg/ml (Figure 3-14) in 

which x and y correspond to concentration and absorbance, respectively,  

y = 0.00857143 + 0.00495679x, R2= 1.000    (3-18) 

Tests were conducted by triplicate at room temperature and throughout the storage time. 

The concentration of condensed tannins was expressed in mg of catechin/100g of sample 

calculated as:  
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where Abssample = absorbance of the sample, Absblank = absorbance of the blank and 

Wsample = sample weight in grams.  
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Figure 3-14. Standard curve for tannins (µg catechin/ml). 
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3.2.3. Sensory evaluation  

The sensory test helps to understand the attributes of a product from a consumer 

point of view that is critical to its acceptance. 

The combined effect of irradiation dose and storage time on the sensory quality 

of the mangoes and blueberries was evaluated (overall quality, color, texture and aroma) 

throughout the specified storage time by 50 untrained and randomly chosen panelists. 

The samples (control and irradiated) were presented to the panelist for a total of four 

samples of the respective fruit every week. For overall quality and color, the scale was 1-

5 (hedonic scale) as described by Meilgaard et al. (2000). On this hedonic scale, a score 

of 1 represented the attributes most liked and a score of 5 represented the attributes most 

disliked. For texture, samples were rated as 1-5 with 1(firm) and 5 (soft). The aroma was 

rated as 1 (strong) to 5 (none) (see also appendix A-A). The samples were placed on top 

of white paper plates identified by three digits and randomly placed in the trays. Samples 

were only evaluated by visual inspection. 

3.3. Statistical analysis 

A completely randomized design with a 3*3*4 factorial experiment was 

conducted for each measurement: Three irradiation dose levels, three replications, and 

four days of analysis during the storage time. All experiments were conducted in 

triplicate with untreated samples used as controls. Analysis of Variance (ANOVA) using 

statistical analysis package (SPSS 11.0, 1999) with mean separation by Student-

Neuman-Keuls (SNK) method at P < 0.05 was utilized to analyze the data. 
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CHAPTER IV 

RESULTS 

 

4.1. Effect of irradiation on physical and chemical properties of mango  

4.1.1. Physical properties   

4.1.1.1. Color attributes 

4.1.1.1.1. Visual changes  

Visual changes in the color of the fruits were noticeable throughout the entire 

storage time (Figures 4-1 to 4-3). Changes in the color of fruit are usually related to 

different stages of maturity. However, irradiation can induce some changes in 

metabolism that cause a delay in the ripening process. The outer skin of the mango fruits 

irradiated at a higher dose (3.1 kGy) was greener than the skin of the control (non-

irradiated) samples by the end of storage (Figure 4-3); however, pitting (scars and holes) 

and browning (dark contour) of the internal flesh tissue was also observed (Figure 4-3, 

Appendix A-B). This observation suggests that the absorbed dose was higher in these 

areas (as discussed in section 3.1.1) which could have increased the activity of enzymes 

such as polyphenoloxidase and phenylalanine ammonia lyase. The browning and 

discoloration of the mango skin have been attributed to the ozone formation during the 

irradiation process and also to changes in enzyme (polyphenoloxidase) activity (Thomas, 

1986). Injury and discoloration or browning of skin and fresh tissues have been reported 

when irradiating mangoes with gamma rays at doses as low as 0.5 kGy and 0.75 kGy 

(Spalding & Von Windeguth, 1988).  
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Figure 4-1. Irradiated and non-irradiated mangoes right after irradiation treatment (day 
0). (Control =non-irradiated, Low dose =1.0 kGy, medium dose =1.5 kGy, high dose 
=3.1 kGy). 
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Figure 4-2. Irradiated and non-irradiated mangoes after 5 days of storage at 12ºC. 
(Control =non-irradiated, Low dose =1.0 kGy, medium dose =1.5 kGy, high dose =3.1 
kGy). 
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Figure 4.3. Irradiated and non-irradiated mangoes after 21 days of storage at 12°C. 
(Control =non-irradiated, Low dose =1.0 kGy, medium dose =1.5 kGy, high dose =3.1 
kGy). 
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It is important to consider that the color of a fruit is also influenced by the 

harvesting conditions which may also affect the appearance of the fruit. In some control 

(non-irradiated) fruits black spots in the skin were observed at the beginning of the 

experiment (Figure 4-1). In addition, the non uniformity in maturity levels among the 

fruits used in this study may have caused differences in color. 

4.1.1.1.2. Objective measurement 

The effect of ionizing radiation on the color (Hunter parameters) of the mangoes 

is shown in Tables 4-1 and 4-2. Compared with the control, no differences in the 

lightness (L) values were observed after irradiation (day 0). However, all the irradiated 

fruits became significantly (P> 0.05) lighter (higher values of L) by the last day of 

storage. The increases in L value were 6.43%, 8.30% and 4.0% for samples treated with 

low (1.0 kGy), medium (1.5 kGy) and high (3.1 kGy) doses, respectively (Table 4-1). 

The increase in L values may be associated with higher chlorophyll content in these 

fruits, in addition to the decrease in a values for all irradiated samples on this day (21). 

During the storage time, the samples exposed to medium (1.5 kGy) and high (3.1 kGy) 

doses showed significant (P> 0.05) darkening (decrease in L value) at days 5 and 10 

(Table 4-1). The reduction was of about 7.87% and 4.62% for samples treated with 

medium dose, and 12.24% and 4.0% for samples exposed to high dose on days 5 and 10, 

respectively. For control fruits and samples treated with low dose (1.0 kGy) no 

significant differences (P> 0.05) in L values were found. These results could be  
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Table 4-1 
Effect of irradiation dose on the color attributes -lightness (L), redness (a) and yellowness (b)- of mangoes stored up to 21 days 
at 12°C 

    Control* Low Medium High 
Color 

parameter Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1kGy) 

L 0 73.28ax(3.18) 73.86ax(3.81) 75.00ax(1.20) 75.12ax(1.74) 
Lightness  5 69.54ax(2.28) 71.25ax(2.30) 69.10bx(3.86) 65.92bx(4.71) 

(%) 10 72.51ax(3.44) 72.07ax(3.50) 71.53bx(2.72) 72.06bx(1.89) 
 21 69.88ax(1.72) 74.38ayz(1.46) 75.68az(0.43) 72.67ay(1.21) 
      
a 0 3.06ax(5.44) 3.67ax(5.23) 3.16ax(3.38) 3.26ax(1.70) 

redness 5 12.84bx(5.30) 10.57bx(2.37) 9.25bx(3.90) 9.74bx(6.06) 
(+red, -green) 10 4.20ax(4.02) 3.79ax(4.67) 6.20abx(3.50) 3.50ax(2.31) 

 21 9.65bx(1.51) 2.01ay(0.64) 2.04ay(1.28) 4.74az(1.70) 
      

b 0 49.78ax(6.34) 48.86ax(9.58) 49.31ax(5.40) 43.13ax(5.32) 
yellowness 5 61.07bx(9.18) 64.37bx(2.23) 63.61bx(5.05) 60.68bx(10.58)
(+yellow, - 

blue) 10 51.03abx(9.08) 53.78ax(10.81) 59.36abx(8.79) 52.47bx(6.44) 
  21 60.86bx(2.07) 51.13ay(2.88) 50.86ay(5.11) 55.73bxy(6.42) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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Table 4-2  
Effect of irradiation dose on color attributes-chroma (C), total color difference (ΔE) and hue (θ) - of mangoes stored up to 21 
days at 12°C 

    Control* Low Medium High 
Color parameter Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

Chroma 0 50.07ax(6.80) 49.16ax(10.03) 49.49ax(5.58) 43.15ax(5.34) 
(C) 5 62.49bx(9.97) 65.27bx(2.23) 64.34bx(5.58) 61.59bx(11.38)

 10 51.29ax(9.42) 54.06ax(10.99) 51.74abx(9.05) 52.61bx(6.59) 
 21 61.64bx(2.18) 51.17ay(2.90) 50.91ay(5.16) 55.95bxy(6.53) 
      

Total color 
difference  0 88.78ax(2.87) 89.02ax(3.12) 89.79ax(2.41) 86.56ax(2.61) 

(∆E) 5 93.48ax(4.76) 96.26bx(2.71) 94.23ax(1.56) 90.45ax(4.48) 
 10 88.70ax(3.55) 90.10ax(4.22) 93.02ax(4.12) 88.86ax(3.26) 
 21 92.75ax(2.08) 89.87ax(1.94) 90.82ax(3.02) 91.41ax(3.57) 
      

Hue angle 0 57.06ax(1.21) 56.50ax(1.23) 56.66ax(1.23) 85.68ax(1.68) 
(θ) 5 78.57ax(3.57) 80.67ax(2.08) 81.90ax(2.70) 81.51bx(4.17) 

 10 60.08ax(1.15) 61.08ax(1.40) 83.66ay(2.30) 86.37bx(1.98) 
  21 81.00ax(0.02) 87.77ay(0.59) 88.05ay(1.17) 85.27bz(1.41) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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attributed to an increased polyphenoloxidase activity and the consequent oxidation of 

phenolics giving rise to brown and dark pigmentation of the fruit (Thomas, 1986). 

Compared with the control sample, redness (a) values showed a significant 

(P>0.05) decrease in all irradiated samples by the twenty-first day of storage, indicating 

a greener color. These reductions corresponded to 79.17%, 78.86% and 50.88% for 

samples treated with low (1.0 kGy), medium (1.5 kGy) and high (3.1 kGy) doses, 

respectively (Table 4-1). Mitchell et al. (1992) reported a reduction in a values of 

mangoes exposed to 75 and 300 Gy gamma rays. These results are associated with the 

potential effect of irradiation on delaying the ripening process. Normally, in climacteric 

fruits, such as mango, when ripening begin there are changes in pigments from green to 

yellow or red, due to chlorophyll degradation and carotenoid and/or anthocyanin 

development. It has been shown that irradiation can destroy pigments on fruit depending 

on the dose and the irradiation conditions (Hulme, 1971).  

During storage, the a value for control and irradiated fruits did not follow a clear 

trend. However, for control samples a significant increase was observed in days 5 

(76.16%) and 21 (68.30%). All irradiated samples showed a significant (P>0.05) 

increase in a values by the fifth day of storage. The increase corresponded to 65.3% for 

low dose (1.0 kGy), 65.84% for medium (1.5 kGy) dose and 66.63% for high (3.1 kGy) 

dose; this means that the fruit had a redder color instead of a greener color; therefore, an 

indication that the fruits were riper on this day than in the other times of evaluation. The 

formation of a red deep pigment was observed by Clarke (1959) to occur in irradiated 

pears during storage, while Maxie and Abdel-Kader (1966) observed an increase in red 



 

 

101

pigmentation of irradiated peaches and nectarines. These authors did not find an 

explanation for this finding. However, Thomas (1986) observed that irradiated (0.15 to 

0.75 kGy) ‘Totapuri’ mangoes developed a deep pink coloration around the shoulder due 

to formation of anthocyanins. 

The yellowness (b values) was considerably higher for the control than for all the 

irradiated samples by the end of the storage time (Table 4-1). The difference became 

significant (P>0.05) in samples exposed to low (1.0 kGy) and medium (1.5 kGy) doses 

which had a decrease in b values of 16.0% and 16.5%, respectively. The pulp 

carotenoids continue to increase in the fruit as the ripening proceeds; therefore, these 

results suggest the ripening of the control samples and its delay in the irradiated fruits. 

During the storage time, yellowness (b) values increased significantly (P>0.05) 

in all the treatments at the fifth day of storage. This increase accounted for 18.5% for 

control samples, 24.09% for low dose (1.0 kGy), 22.5% for medium dose (1.5 kGy) and 

28.92% for high dose (3.1 kGy). Similar results were found by Lacroix et al. (1992) with 

mangoes exposed to gamma irradiation at dose levels between 0.6 and 0.9 kGy. These 

results are associated with an increase in carotenoids content and the effect of irradiation 

on delay of the ripening process as it was previously mentioned. 

When compared with the control sample, chroma (C) values showed a significant 

(P>0.05) decrease by the twenty-first day of storage in samples treated with low (1.0 

kGy) and medium (1.5 kGy) doses (Table 4-2) indicating that these fruits had more dull 

color. The C values were reduced by 17.0% and 17.5 %, respectively. The effect of 

storage, although significant (P>0.05) in all the treatments by the fifth day, didnot show 
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any specific trend. The increased value indicates a brighter color of the fruits and 

corresponds to 19.87% for control samples, 25.0% for samples treated with low dose 

(1.0 kGy), 23.0% for samples treated with medium dose (1.5 kGy) and 30.0% for 

samples treated with high dose (3.1 kGy). Similar results were observed in the sensory 

studies that indicated the non acceptance of the color of the samples exposed at higher 

dose by the end of the storage time (section 4.1.3). 

The total color difference (ΔE) values were not affected significantly by 

irradiation dose (Table 4-2). During the storage time, this parameter increased slightly 

for all treatments; however, samples irradiated at low (1.0 kGy) dose showed a 

significant (P>0.05) increase (7.5%) by day five. This increase may be associated with 

the higher a and b values of these samples on that day which are associated with changes 

in carotenoids and anthocyanins content. 

Irradiated mangoes had significantly (P>0.05) higher hue (θ) values than the 

control samples by the end of storage (Table 4-2) which means a change from the orange 

to yellow spectrum. Only the high dose (3.1 kGy) samples showed a significant (P>0.05) 

increase throughout the storage period. Lacroix et al. (1992) reported that irradiated 

mangoes exposed to gamma irradiation at dose levels between 0.6 and 0.9 kGy had 

significantly higher hue (θ) values than the control. 

These results suggest that the low dose (1.0 kGy) is the best irradiation treatment 

to maintain the best fruit color quality attributes. 
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4.1.1.2. Texture (uniaxial compression) 

The rupture force was determined as an indicator of firmness or softness of the 

fruits. Exposure to ionizing radiation induced a significant (P>0.05) softening of the 

mangoes throughout the entire storage time. The mangoes exposed to the higher dose 

level (3.1 kGy) were significantly (P>0.05) softer, requiring 82.7% less force to rupture 

than the control samples (Figure 4-4). These fruits were mushy and had increased 

moisture contents (1.35% more) (section 4.1.2.1). The firmness of the fruits exposed to 

low (1.0 kGy) and medium (1.5 kGy) doses, was reduced by 50.0% and 66.9 %, 

respectively (Table A-1, Appendix A). However, the rate of reduction was higher on day 

five; firmness decreased by 60.9 % at low (1.0 kGy) dose, 86.7 % at medium (1.5 kGy) 

dose, and 85.9 % at high (3.1 kGy) dose. According to Mitra (1997), ripening of the 

mango fruit is characterized by softening of the flesh. Skin color development is 

accompanied by ultrastructural changes associated with chloroplast to chromoplats 

transition. The thylakoid membrane of systems in the skin of the mangoes gradually 

breaks down, while osmiophilic globules enlarge and increase in number. The loss of 

membrane integrity is associated with chlorophyll degradation, while the appearance of 

the osmophilic globules accompanies an increase in carotenoid levels; therefore, it is 

possible that the reduction of firmness on day five may be associated with a more ripe 

stage of the fruits tested on that day. These results are in accordance with the increased a 

and b color values on that day. 



 

 

104

0

40

80

120

160

200

240

R
up

tu
re

 fo
rc

e 
(N

)

Treatment

Day 0
Day 5
Day 10
Day 21

Control Low Medium High

 

Figure 4-4. Effect of irradiation dose on texture (force to rupture in N) of mangoes 
stored up to 21 days at 12°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose 
=1.5 kGy, high dose =3.1 kGy; uniaxial compression, 15% strain, room temperature 
20˚C).  
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A significant (P>0.05) reduction on fruit firmness occurred in mangoes exposed 

to medium (1.5 kGy) and high (3.1 kGy) doses by the fifth day (Figure 4-4). The 

softening effect of irradiation and the loss of cell cohesion of fruit tissue can be 

associated with the degradation of cell wall polysaccharides and the solubilization of 

pectins, celullose, hemicellulose and starch (Kovacs & Keresztes, 2002; Kader, 1986). 

Similar findings have been reported by Lacroix et al. (1992) where mango samples 

irradiated (gamma rays) at 0.60 and 0.90 kGy showed a significant difference in the loss 

of texture when compared with unirradiated fruits. El-Samahy et al. (2000) also found a 

reduction of firmness of mango when exposed to gamma irradiation at dose levels 

between 0.5 and 1.5 kGy. 

The same trend was observed for the values of toughness (Figure 4-5). Irradiated 

samples at 1.0, 1.5 and 3.1 kGy were 74%, 83% and 64% less tough than the control, 

respectively (Table A-1, Appendix A), indicating that these samples required less energy 

or work to fracture than the control fruits, therefore, when the fruit is consumed a 

perception of less force for biting the fruit and for the interaction between the teeth, 

tongue and the fruit would be felt. During storage, fruits exposed to medium (1.5 kGy) 

and high (3.1 kGy) doses showed a significant (P>0.05) decrease in toughness 

throughout the entire storage time. Again, in all the samples toughness decreased on day 

five as an effect of the reduction on firmness of the fruits on that day. However, the 

samples irradiated at low and medium doses were acceptable to the panelists (section 

4.1.3). 
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Figure 4-5. Effect of irradiation dose on texture (toughness in J) of mangoes stored up to 
21 days at 12°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, 
high dose =3.1 kGy; uniaxial compression, 15% strain, temperature 20˚C).  
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There is a direct relationship between loss of texture (loss of firmness or 

softening) and irradiation dose (Figure 4-4). The loss of firmness of the fruits increased 

as a function of the dose and this trend followed a first order rate equation (Eqn 4-1) 

with exception of day five as,  

 

-kD
oeFF =      (4-1) 

 

where F is the degradation on fruit firmness (rupture force) at dose D, Fo is the initial 

value of firmness in the non-irradiated mango and k is the dose dependent constant in 

kGy-1. Table 4-3 presents the dose-dependent rate constants (k) for each storage time 

interval (Eq 4-1) obtained from the slope of the plot of ln F vs dose. The changes on day 

five did not follow the same trend and low correlation was found with this model (R2= 

0.72) therefore, they were considered separately. 

 

 

Table 4-3 
Dose-dependent rate constants (k) for degradation of texture (firmness) of 
mangoes stored up to 21 days at 12°C (Eq. 4-1) 

Day  k (kGy-1) R2 
0 0.62 0.98 
10 0.47 0.99 
21 0.50 0.97 
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Although the obtained k value was higher on day 0 (at the beginning of the 

storage) than on the other days, no significant difference in rate of the loss of firmness 

was found for all mangoes; therefore, the loss of firmness occurs continuously 

throughout all the storage time. The following equations describe the loss of firmness 

with irradiation dose: 

Fday 0 = 162.52*e-0.62D, R2 = 0.98    (4-2) 

Fday10 = 122.50*e-0.47D, R2 = 0.99    (4-3) 

Fday21 = 148.61*e-0.50D, R2 = 0.97    (4-4) 

The force versus dose data for day five was better fitted to an exponential model 

(Figure 4-6) described as: 

11.83110.1e 1.349D
day5 += −F , R2= 0.98   (4-5) 

According to the above equations (4-2-4-5) the relationship between loss of 

firmness and dose follows a decreasing trend of each storage time interval, therefore, the 

higher the irradiation dose, the higher the loss of firmness of the fruits and the less the 

required force to rupture the samples.  
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Figure 4-6. Effect of dose on the rate of firmness loss (force to rupture, FR) of mangoes 
on day five of storage at 12° C. (0 kGy means non-irradiated or control samples). 
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The effect of time on fruit firmness will be discussed in section 4.3. 

The softening effect of ionizing radiation can be further explained by looking at 

the structure of the fruit (section 4.1.1.4). 

Stiffness is related to the ability of the fruit to withstand a load before it breaks or 

impact during handling; it is an indication of how difficult it is to deform the fruit. The 

softening of the irradiated mangoes was also indicated by a significant (P>0.05) 

reduction (50 to 75%) in the values of the stiffness (Young’s modulus) (Figure 4-7 and 

Table A-1). All irradiated samples were less stiff than the control fruits. Samples 

exposed to higher dose had the lowest values of stiffness, therefore these samples would 

deform easily. For all irradiated and non-irradiated samples an initial decrease in the 

fruit stiffness was observed from day zero until day five and then it increased at day ten. 

By the end of the storage, the stiffness of the all samples remained constant. 

Overall, irradiation of mango fruits with doses higher than 1.0 kGy has a 

detrimental effect on the fruit’s texture. 
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Figure 4-7. Effect of irradiation dose on texture (stiffness-Young’s modulus (MPa)) of 
mangoes stored up to 21 days at 12°C. (Control =non-irradiated, low dose =1.0 kGy, 
medium dose =1.5 kGy, high dose =3.1 kGy; uniaxial compression, 15% strain, 
temperature 20˚C).  
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4.1.1.3. Fruit structure 

One of the effects of ionizing radiation in plant cells is the interaction with atoms 

and molecules in the cell, especially with water, to produce free radicals which can 

diffuse far enough to reach and produce damage to important compounds of the plant 

cell (Kovás & Keresztes, 2002).  

The cortex (skin) cells in mango irradiated at low, medium and high doses 

shrunk and collapsed (Figure 4-8). Large numbers of cells separated or were only 

slightly bound to the neighboring cells, due to the loss of pectin. The skin 

photomicrographs of the irradiated fruit showed the formation of fractures or cracks (c) 

and more depressions were noticeable. Micro-cracks were observed around the stomata 

(sto) (Figure 4-8 B). In samples irradiated at medium (1.5 kGy) and high (3.1 kGy) 

doses, wax platelets (wp) were seen in some areas covering the skin (Figure 4-8C and D) 

indicating the bleeding of the skin.  

At a higher resolution, (Figure 4-9) the skin photomicrographs showed the 

control samples (4-9 A) to have a continuous cell wall on a parallel organized striation 

pattern, while for the irradiated samples the cell wall was fragmented and the striation 

became shorter. This effect was more intense in samples irradiated at medium and high 

doses (4-9 C & D). Additionally, the presence of microcracks in irradiated samples was 

observed as well as the amorphous surface and depressions that are characteristics of the 

brown spots mentioned in the visual changes (section 4.1.1.1). Fruit sensitivity to skin 

damage is related to the number of new fractures (Gazzola et al., 2004), meaning that in  
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Figure 4-8. SEM photomicrographs of mango skin after irradiation treatment (10 days). 
(A) Control =non-irradiated, (B) low dose =1.0 kGy, (C) medium dose =1.5 kGy , (D) 
high dose =3.1 kGy, (c =cracks, sto =stomata, wp =wax platelets, Vb =vascular bundle, 
e =epidermis). Fruits were viewed at 15kV. Bars in (A), (C) and (D) represent 100µm; in 
(B), 10µm. 
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Figure 4-9. SEM photomicrographs of mango skin at higher resolution after irradiation 
treatment (10 days). (A) Control =non-irradiated, (B) low dose =1.0 kGy, (C) medium 
dose =1.5 kGy, (D) high dose =3.1 kGy, (c =cracks). Fruits were viewed at 15kV. Bars 
represent 10µm. 
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the fruit with cracks the susceptibility to skin spots would be higher. Similar findings 

were reported by Kovás et al. (1997) when apples were exposed to gamma rays at doses 

of 1.0 and 2.5 kGy. The authors also found a significant decrease in total pectin in cortex 

cells as an effect of irradiation. These results support the findings in the objective 

measurement of texture where the irradiated samples were less firm and tough than the 

controls. In addition, these results are in agreement with the changes in color, which also 

induce structural changes due to chlorophyll degradation, and the increase in carotenoids 

level. 

Figure 4-10 presents the photomicrographs of mango flesh. The irradiated fruit 

exhibited a large number of cells that were separated and the presence of empty spaces 

without starch granules was also observed, demonstrating the mechanical damage of the 

mango fruits. At a relative low dose (1.0 kGy) the breakdown of the microstructure of 

mango was initiated. A similar trend was observed for the parenchyma cells (Figure 4-

11). The irradiated samples showed more collapsed cells than the non-irradiated 

controls. These changes in cell structure were consistent with the texture characteristics 

(Section 4.1.1.2) where firmness and stiffness (Young’s modulus) of the irradiated 

samples were reduced significantly, especially at higher doses. This result may be 

related to changes in the degree of polymerization of the cell wall constituents which 

also enhances changes in the chemical composition such as the increase in reducing 

sugars that could be associated with the starch degradation in irradiated samples and also 

with the accumulation of phenolic and volatile compounds (Keresztes & Kovács, 1991).  
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Figure 4-10. SEM photomicrographs of mango flesh after irradiation treatment (10 
days). (A) control =non-irradiated, (B) low dose =1.0 kGy, (C) medium dose =1.5 kGy, 
(D) high dose =3.1 kGy, (e =epidermis, Vb =vascular bundle, Ssc =substomatal cavities, 
em =empty spaces, str =starch granules). Fruits were observed at 15kV. Bars represent 
100µm. 
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Figure 4-11. SEM photomicrographs of parenchyma cells of mango after irradiation 
treatment (10 days). (A) Control =non-irradiated, (B) low dose =1.0 kGy, (C) medium 
dose =1.5 kGy, (D) high dose =3.1 kGy, (e =epidermis, Vb =vascular bundle, Ssc 
=substomatal cavities, em =empty spaces, str =starch granules). Fruits were observed at 
15kV. Bars represent 100µm. 
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On the other hand, these changes in structure are consistent with the increase in 

respiration rates and the phenolic compounds which were higher in the irradiated 

samples than in the control fruits (section 4.1.1.4 & 4.1.2.7).  

The cell structure of mango was affected when the fruit was exposed to higher 

doses. Irradiation induced the softening of the fruit by causing the breakdown of the cells 

and its components. The results suggest that low dose (1.0 kGy) is an appropriate 

treatment to minimize changes in product textural attributes and higher doses are not 

recomended.  

4.1.1.4. Respiration rate 

The rate of respiration is often a good index to the storage life of horticultural 

products: the higher the rate, the shorter the life, and the lower the rate the longer the 

life. 

The effect of ionizing radiation on respiration rate (Eq 3-5) of the mangoes is 

presented in Table 4-4. The CO2 concentration of the irradiated samples stored at 12˚C 

ranged between 10.94 and 22.26 mg/Kg h. Compared with the control, the CO2 

concentration in the atmosphere increased significantly (P>0.05) in fruits exposed to low 

(1.0 kGy) and medium (1.5 kGy) doses right after irradiation (day 0) and by the end of 

storage. According to Hulme (1971) radiation induces an immediate increase in the 

respiration rate in most of the fruits. However, these differences according to dose may 

be associated with the variability in the ripening stage of the fruits treated at each dose. 

The rise in carbon dioxide depends on the ripening stage of the fruit at the time of 

irradiation. In general, for climacteric fruits the earlier the treatment is given in the pre-
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climacteric stage, the greater is the stimulated rise in carbon dioxide production (Hulme, 

1971). Therefore, the results suggest that the fruits treated at low (1.0 kGy) and medium 

(1.6 kGy) doses may be more immature than the fruits treated at high dose (3.1 kGy). 

This respiratory rise also suggests a premature start of the climacteric phase in samples 

irradiated at low (1.0 kGy) and medium (1.6 kGy) doses. 

 

 

Table 4-4 
Headspace gas (CO2 in mg /Kg h) concentration for mangoes stored up to 21 days at 
12˚C 

    Control* Low Medium High 
Gas  Day/Dose (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1kGy) 

 0 12.85ax(2.83) 22.26ay(0.68) 18.27acz(1.01) 11.64ax(0.53)
CO2 5 19.96ax(5.45) 20.08bx(0.56) 18.02ax(0.28) 10.94ay(0.20)

 10 17.45ax(0.74) 17.98cx(0.44) 16.23bx(0.56) 11.08ax(0.32)
  21 14.65ax(0.34) 20.96dy(0.18) 19.48cy(0.94) 16.03bx(2.75)

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
 

 

The samples treated at 3.1 kGy had decreased CO2 concentration. However, only 

on day 5 is this reduction significant (P>0.05). This does not extend shelf-life. At low 

CO2 levels some physiological disorders such as internal browning and pitting can be 

induced (Robertson, 1993). According to Eq 2-5 increasing the CO2 levels in the 

atmosphere would reduce the respiration rate and extend the shelf-life by delaying the 
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senesce and retarding fungal growth. Therefore, the samples exposed to 1.0 and 1.5 kGy 

may have a longer shelf-life. 

The increased carbon dioxide concentrations after irradiation also may be 

associated with the effect of radiation in the raise of ethylene production which is 

another phenomenon related to the climacteric stage of the fruit. A small amount of 

ethylene present in the fruit at harvest is sufficient to initiate the ripening (Mitra, 1997). 

This phenomenon could be explained by the effect of irradiation at the cellular level 

(structural changes) which induces the damage to the tissue and therefore physiological 

changes which include the fruit’s respiratory mechanism that enhances the production of 

ethylene and carbon dioxide (section 4.1.1.3). In addition, these changes are correlated 

with the differences in color due to chlorophyll breakdown and carotenoids biosynthesis 

(section 4.1.1.1) which also induce changes in the ethylene production. The ethylene 

production continues as the fruit approaches color break (Seymour, 1993).  

Paul (1996) found an increase in respiration rate of papaya irradiated at 250 Gy 

with lower concentrations in non-irradiated samples. Akamine and Goo (1971) reported 

that the respiration of green pre-climacteric mangoes exposed to gamma irradiation 

doses of 0.25, 0.50, 0.75 and 1.0 kGy showed an initial increase, reaching the peak one 

day after the treatment and then a final decrease. 

The effect of time on fruit respiration rate will be discussed in section 4.3. 

Overall, with the conditions used in this study, the irradiation treatment of 

mangos of doses up to 1.5 kGy keeps respiration at normal level (~ 20 mg CO2 /Kg h) 

and extends the fruit’s shelf life by approximately 3 days by increasing the CO2 levels. 
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4.1.1.5. Density and specific gravity 

Exposure to ionizing radiation did not induce a significant effect on the specific 

gravity of the fruits (Figure 4-12) (also see Table A-2, appendix A); though a slight 

reduction occurred in all irradiated samples. This finding could be associated with the 

structural changes in the tissue due to the mechanical damage produced by irradiation 

and the lyses of the cells that include the solubilization and degradation of pectin where 

the cells of the irradiated samples shrunk and separated (section 4.1.1.3).  

No effect of storage was recorded for control and irradiated samples. In addition, 

the values obtained in this study are in agreement with the range of specific gravity 

values for mangoes which vary between 0.99 and 1.065 (Seymour, 1993). These 

findings suggest that no weight losses were induced by irradiation.  

The bulk density of the mango is approximately 0.58 g/cc. When calculating the 

porosity (Eq 3-4) of the material no effect of the irradiation treatment was found. The 

porosity values were 0.48, 0.43, 0.43 and 0.44 for control, low, medium and high 

samples respectively, indicating that the fruits did not get more porous with the 

irradiation treatment. 

Overall, irradiation of mangoes with doses up to 3.1 kGy does not affect the 

density and specific gravity of mangoes.  
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Figure 4-12. Effect of irradiation dose on specific gravity of mangoes stored up to 21 
days at 12ºC. (Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, high 
dose =3.1 kGy).  
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4.1.2. Chemical properties 

4.1.2.1. Moisture content 

The moisture content of the fruit ranged between 84 and 86% (w.b). Irradiated 

mangoes had significantly higher moisture content than the control sample up to day ten, 

but a reduction was observed on the twenty-first day in all irradiated samples. Within the 

irradiated fruits the samples exposed at medium dose had higher moisture content on the 

21st day (Table 4-5). This result could be associated with the effect and interaction of 

ionizing radiation with atoms and molecules in the cell, especially with water, to produce 

free radicals which can diffuse and produce damage in different compounds of the cell. 

Additionally, with the increase in respiration rate when the fruits exude water as a 

byproduct of respiration which could be accumulated as free water which increases the 

moisture content. 

During storage time, the moisture content values of the control and the irradiated 

fruits did not follow a clear trend. However, for control samples and the mangoes 

exposed to a high (3.1 kGy) dose, a significant (P>0.05) decrease in moisture content 

was observed at days five and ten; while samples treated with a low dose (1.0 kGy) had 

increased values on these days. No significant change in the moisture content of the 

samples treated with medium (1.5 kGy) dose was observed. Even with these statistical 

differences, the changes in the moisture content of the mangos were too small to induce 

the water lost in the fruit; thus, this factor does not affect the quality of the fruit. Loss of 

moisture content is associated with the loss of juiciness of the fruit. Therefore, the 
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exposure of mangoes at irradiation up to 3.1 kGy does not affect the juiciness 

characteristics of the fruit. 

 

 

Table 4-5 
Effect of irradiation dose on moisture content (% w.b.) of mangoes stored up to 21 days 
at 12ºC 

  Control* Low Medium High 
Day/Dose (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

0 85.09aw(0.17) 83.30ax(0.16) 85.48ay(0.04) 85.74az(0.01) 
5 84.59bx(0.03) 85.48by(0.29) 85.08az(0.02) 85.52by(0.20) 
10 83.64cx(0.13) 85.82cy(0.04) 85.19ay(0.67) 85.42by(0.02) 
21 85.13aw(0.10) 84.12dx(0.04) 84.89ay(0.05) 84.57cz(0.01) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
 

 

4.1.2.2. Water activity 

The water activity of the fruit ranged between 0.89 and 0.92. According to 

Fennema (1996) at ranges between 0.95-0.91 and 0.91-0.87 some bacteria (Salmonella, 

Lactobacillus, Serratia) and many yeast and mold are inhibited. Therefore, in the treated 

samples these microorganisms would not grow and the decay of the fruit would be 

reduced.  

No significant changes in the water activity of the irradiated samples were 

observed. Only at day ten of storage the water activity of the irradiated fruit increased 
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significantly (P>0.05) by: 5.35% at low dose (1.0 kGy), 4.58% at medium dose (1.5kGy) 

and 4.30% at high dose (3.1 kGy) (Figure 4-13) (see also Table A-3). The rise in water 

activity may be attributed to the generation of hydrolytic reactions due to irradiation 

(Rosenthal, 1992). These results are consistent with the findings in moisture content 

which was higher for irradiated samples than for the control fruits (section 4.1.2.1) and 

with the softening of the irradiated samples.  

During storage, the water activity of the fruits increased slightly for all 

treatments; the change became significant (P>0.05) on the twenty- first day of storage. 

For instance, samples exposed to medium (1.5 kGy) and high (3.1 kGy) doses had an 

increase of 2.85 and 2.16%, respectively. However, non-irradiated samples (control) had 

a significant (P>0.05) reduction in the tenth day of storage with a subsequent increase on 

the twenty-first day. Samples treated with low dose (1.0 kGy) increased by 2.42% 

throughout the time. This increase could be related to the reduction of total soluble 

solids.  

Although significant differences in the water activity of the mangos were 

observed statistically, this factor does not affect the quality of the fruits. Therefore, 

exposure at dose levels up to 3.1 kGy would maintain the water content of the fruits. 

However, because of the softening of the samples treated at higher dose, irradiation at 

doses up to 1.5 kGy is recommended to maintain the quality of the fruit. 
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Figure 4-13. Effect of irradiation dose on water activity of mangoes stored up to 21 days 
at 12°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, high 
dose =3.1 kGy).  
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4.1.2.3. pH 

There was not a clear effect of irradiation dose on the pH values (Figure 4-14). 

For instance, all irradiated samples showed a significant (P>0.05) increase (3.14-3.44) in 

pH values until the fifth day, with the exception of the samples exposed to high dose (3.1 

kGy) which had a significant reduction (3.27-3.21) on that day. On the other hand, 

samples treated with low and medium doses decreased significantly (P> 0.05) on day ten 

and twenty-one, but the samples treated at high (3.1 kGy) dose had an increase in pH 

values by the last day (21) (see also Table A-4, Appendix A). These results are 

associated with the changes in acidity levels which were lower in samples treated with 

the highest dose by the end of the storage time.  

According to Hulme (1971), changes in pH are associated with the acid content 

of the fruit which changes during the development of the fruit. Consequently, low pH 

(2.0-4.0) values correspond to high acid concentrations. The acid content is considerably 

greater in the greener young fruit than in the ripe fruit. Therefore, these results may be 

associated with the differences in the degree of ripening and the differences in color 

between the mango fruits. Krishnamurthy et al. (1960) evaluated the changes in 

physicochemical properties of Indian mangoes at different stages of maturity. The 

authors reported that for Badami variety a fruit with a pH of 2.68 corresponded to a 

green and hard stage of maturity with acidity of 3.41%, a pale white fruit color and no 

flavor. While a fruit with a pH of 2.85 corresponded to another stage of maturity with an 

acidity of 2.08%, the color was dull yellow and the fruit had a mild flavor. 
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Figure 4-14. Effect of irradiation dose on pH of mangoes stored up to 21 days at 12ºC. 
(Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, high dose =3.1 
kGy). 
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In the same study, they reported that for a Neeleman variety a pH of 3.06 

corresponded to an acidity of 1.50%, pale white color and no flavor; but a mango with a 

pH of 3.10 and different stage of maturity, had acidity of 1.28%, dull yellow color and 

very mild flavor. 

Throughout the storage time, the control samples had a significant (P> 0.05) 

increase (3.14-3.33, 4.0%) in pH while the samples treated with low (1.0 kGy) and 

medium (1.5 kGy) doses had a significant (P> 0.05) decrease (5.57% and 0.27%, 

respectively) in pH values. For samples exposed to a high dose (3.1 kGy) this reduction 

was significant on day five. These results could be associated with the effect of 

irradiation delaying the ripening of the fruit. The acidity in mango declines as the fruit 

ripens which means higher pH values as was observed in the control samples. 

Overall, the changes in pH were associated more with the differences in the 

ripening stages of the fruits used in this study than with the effect of the irradiation dose. 

Therefore, the exposure of mangoes to irradiation levels up to 3.1 kGy does not affect 

the pH of the fruits. 

4.1.2.4. Tritratable acidity 

No effect of irradiation on the acidity values of the mangoes was observed up to 

day five. However, the acidity values of the fruits exposed to low (1.0 kGy) dose 

increased significantly (P>0.05) by days ten (8.7%) and twenty-one (10.5%); but for 

samples exposed to medium (1.5 kGy) and high (3.5 kGy) doses, a significant reduction 

was observed on day twenty-one (Table 4-6). Different findings have been reported 

about the effect of irradiation on acidity. For instance, Youssef et al. (2000) observed an 
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increase in acidity (21.0%) of gamma irradiated mango pulp at doses between 0.5 and 

2.0 kGy.  

However, opposite results were reported by Durigan et al. (2004) who observed a 

reduction of total tritratable acidity of mango irradiated with gamma rays at 0.8 and 1.0 

kGy. This suggests that the effect of irradiation on acidity depends on the dose. In the 

present study, the reduction of acidity in samples treated at higher doses could be 

associated with the reduction in organic acids that are used in the respiration metabolism 

which increased at those dosages (section 4.1.1.3). 

 

 

Table 4-6 
Effect of irradiation dose on tritratable acidity (g citric acid/100g w.b.) of mangoes 
stored up to 21 days at 12ºC 

 Control* Low Medium High 
Day/Dose (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

0 1.14ax(0.05) 1.03ax(0.06) 1.00ax(0.01) 1.15ax(0.01) 
5 1.15ax(0.06) 1.20bx(0.02) 1.09bx(0.01) 1.19ax(0.01) 
10 1.00bx(0.06) 1.24by(0.02) 1.15cxy(0.01) 1.08axy(0.10) 
21 1.23aw(0.01) 1.26bx(0.01) 1.13cy(0.01) 1.06az(0.01) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
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The ratio H+/ acidity could be used as an index of maturity. The acidity may be 

useful as a reference to the stage of maturity or as objective information related to flavor. 

Therefore, a fruit with a lower acidity would have a sweeter flavor. 

The range of the ratio sugar/acid of the irradiated samples (8.29-11.76) was 

lower than the ratio of the control samples (9.50-12.70) (Table A-5) suggesting the delay 

of ripening due to irradiation and the immature stage of the fruit. 

During the storage period, the acidity values of the control samples showed a 

significant (P>0.05) reduction on day ten; while for the samples treated with low (1.0 

kGy) and medium (1.5 kGy) doses, an increase of 21.7% and 1.6%, respectively was 

observed throughout storage. These results were consistent with the lower values (3.11 

and 3.15, respectively compared with control 3.19) of pH for samples irradiated at these 

dosages by the end of the storage time (section 4.1.2.3). For samples exposed to a high 

dose (3.1 kGy) no effect of time was observed. The increase in acidity with time may be 

associated with a reduction (12.3%) in total soluble solids (section 4.1.2.5) as an 

indicator of the delay of ripening in all irradiated samples.  

In summary, the effect of irradiation on the tritratable acidity depends on the 

irradiation dose, but at doses up to 1.5 kGy the flavor of the mango fruit may be less acid 

than the samples exposed to 3.1 kGy. 

4.1.2.5. Total soluble solids 

Irradiation treatment affected the total soluble solids (°Brix) content of mangoes. 

All irradiated samples showed a significant (P<0.05) decrease in the total soluble solids 

compared to the non-irradiated samples (control). These results indicate that irradiation 
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delays the ripening of mango. The decrease in total soluble solids is associated with the 

increase in tritratable acidity (section 4.1.2.4). However, the fruits exposed to low and 

high doses had a significant increase (P<0.05) on day zero (Table 4-7). This increase 

may be associated with the increase in reducing sugars (section 4.1.2.6) due to the starch 

breakdown (section 4.1.1.3).In addition, this difference may be associated with variation 

between the samples. Lacroix et al. (1992) reported that the level of soluble solids of 

mangoes irradiated with gamma rays at doses between 0.3 and 0.6 kGy was significantly 

higher than that of the control samples. 

 

 

Table 4-7 
Effect of irradiation dose on soluble solids (°Brix) of mangoes stored up to 21 days at 
12ºC 

  Control* Low Medium High 
Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

0 10.83ax(0.06) 13.17ay(0.15) 10.93ax(0.12) 13.40ay(0.17) 
5 12.17bw(0.14) 11.42bx(0.14) 12.50by(0.00) 10.42bz(0.14) 
10 12.67cx(0.14) 10.25cy(0.00) 10.67cz(0.14) 10.25by(0.00) 
21 12.08bx(0.14) 11.25by(0.00) 10.17dz(0.14) 11.33cy(0.14) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
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An increasing trend was observed in non-treated samples (control) during the 

storage time (11.5% by day 21). Overall, all irradiated samples had a significant 

(P>0.05) decrease over time, indicating the delay of ripening induced by irradiation. 

These findings are consistent with the higher values of yellowness (b values) observed in 

the control compared to all the irradiated samples by the end of the storage time, which 

was associated with an increase in carotenoids (section 4.1.1.1) due to the ripening 

process. Medlicott et al. (1986) reported an earlier increasing of carotenoids during 

ripening of mango fruits. However, on day five, samples treated with medium (1.5 kGy) 

dose had a significant (P>0.05) increase in the totals soluble solids. These results were in 

agreement with the reduction of acidity level and the increase in pH previously observed 

for the fruits treated at this dose level.  

In summary, irradiation dose decreases the total soluble solids (°Brix) content of 

mangoes, but the exposure of the fruits at 1.0 kGy minimizes the decrease. 

4.1.2.6. Sugars 

4.1.2.6.1. Total sugars  

The total sugars content (g sucrose/100g w.b) in irradiated samples did not show 

a consistent trend when compared with the control fruit (Table 4-8). Significant (P>0.05) 

differences were observed. For example, fruit treated at a low dose (1.0 kGy) had 28.1% 

more sugars than the control in day zero, but the samples exposed to a high dose (3.1 

kGy) had a reduction of 26.32 % in day five. The fruit treated with medium dose (1.5 

kGy) showed a decrease in total sugars of 16.82% on day twenty-one. However, within 

the irradiated samples, the low dose (1.0 kGy) treatment caused the higher (12.0%) level 
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of total sugars. Similar findings were reported by Mitchell et al. (1992) who found that 

the sucrose levels of gamma irradiated mangoes varied inconsistently with the dose. The 

authors observed that the samples irradiated at 300 Gy had the highest sucrose levels but 

those treated with 600 Gy had the lowest. However, in other studies, El-Samahy et al. 

(2000) found no effect of gamma radiation (0.5, 0.75, 1.0 and 1.5 kGy) on total sugars 

content of mangoes.  

Throughout the storage time, there was a significant (P>0.05) reduction of the 

total sugars of the fruit irradiated at medium dose (1.5 kGy), approximately 14.13%. 

Samples exposed to low (1.0 kGy) dose showed a reduction (31.80%) on day ten (Table 

4-8). On the other hand, the control (non-irradiated) and the high dose (3.1 kGy) samples 

showed an increase of 12.47% and 6.32%, respectively by the twenty-first day of 

storage. These differences in total sugars may be due to the variation in maturity level of 

the fruits used for each treatment in this study. 

4.1.2.6.2. Reducing sugars 

The content of reducing sugars (g glucose/100g w.b.) in irradiated mangoes was 

significantly (P>0.05) higher than in the control fruit (Table 4-8). This increase was 

14.0% at low dose, 15.1% at medium dose and 10.0% at high dose. However, the highest 

content of reducing sugars was observed in the samples exposed at high dose on day 

zero and in those treated with medium dose in day twenty-one. 
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Table 4-8 
Effect of irradiation dose on total (g sucrose/100g w.b.) and reducing sugars content (g glucose/100g w.b.) of mangoes 
stored up to 21 days at 12°C 

    Control* Low Medium High 
Sugars Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1kGy) 

Total sugars 0 6.95ax(0.36) 8.90ax(1.69) 7.69ax(0.87) 7.63ax(0.57) 
(g Sucrose/100g w.b.) 5 8.50bx(0.25) 8.94ax(1.69) 7.76axy(0.98) 6.73by(0.12) 

 10 8.46bx(0.43) 6.07by(0.23) 6.37by(0.74) 6.10cy(0.07) 
 21 7.94cx(0.24) 8.18ax(0.26) 6.60bz(0.23) 8.14dx(0.26) 
      

Reducing sugars 0 3.06ax(0.05) 4.39ay(0.06) 4.42ay(0.09) 4.69az(0.12) 
(g Glucose/100g w.b.) 5 4.35bw(0.03) 4.62bx(0.10) 4.00by(0.11) 3.53bz(0.06) 

 10 4.93cx(0.07) 4.74by(0.15) 4.98cx(0.08) 5.10ax(0.11) 
  21 4.14bx(0.44) 5.15cyz(0.08) 5.69dz(0.09) 4.80ay(0.64) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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This increase may be associated with the effect of irradiation in the 

depolymerization of large carbohydrate molecules (like cellulose and starch) which also 

induced degradation of the cell membranes and connective tissue (section 4.1.1.3) and 

therefore, softening of the fruit (section 4.1.1.2).  

Mitchell et al. (1992) reported higher levels of glucose in irradiated samples at 

300 and 600 Gy than the control samples. El- Samahy et al. (2000) also found that the 

reducing sugars content was higher in mangoes exposed to gamma radiation (0.5–1.5 

kGy) than the controls at zero time.  

Referring to storage, an increasing trend in the content of reducing sugars was 

observed in all fruits (Table 4-8). However, treatment at high (3.1 kGy) dose induced a 

significant (P>0.05) reduction (24.73%) by the fifth day. However, this dose had the 

higher level of reducing sugars on day ten. On day twenty-one, the samples exposed at 

low and medium doses presented the higher reducing sugars concentrations. Youssef et 

al. (2002) reported an increase after storage in reducing sugars of gamma irradiated (0.5-

2.0 kGy) mango pulp. However, Soule and Harding (1956) reported different 

concentrations of reducing sugars according to starch content. According to Hulme 

(1971), the soluble sugars in ripening mango increases with corresponding decreases in 

the level of starch and organic acids. Therefore, the increase in reducing sugars during 

the storage could be associated with the fruit ripening and also with the generation of 

reducing sugars from starch. These results also suggest a variation between the degrees 

of ripening among the fruits used for each treatment. 
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In summary, the exposure of mangoes to ionizing irradiation does not show a 

consistent trend for its effect on total sugars, but it generally enhances the reducing 

sugars content of mangoes. Doses up to 1.5 kGy keep the sugars content of mangoes 

with a higher acceptable quality level (higher values of total sugars, and closer to the 

normal values, 9.9 g of sucrose/100g edible portion) than samples treated with 3.1 kGy. 

4.1.2.7. Total phenolics and antioxidant activity index 

The exposure of mangoes to ionizing radiation induced a significant (P>0.05) 

increase in the content of phenolic compounds for all dose levels studied (Figure 4-15 

and Table A-6). Compared with the control (non-irradiated), concentrations (mg Gallic 

acid/100 g w.b.) were significantly higher in all irradiated samples on day zero and low 

dose (1.0 kGy) gave the higher concentrations. The same trend was observed by the end 

of the storage, but the samples irradiated at medium dose presented the higher phenolic 

concentrations (~27.44%). However, a significant (P>0.05) reduction of 25.0% and 

19.0% was observed for mangoes exposed at low (1.0 kGy) dose on days five and ten of 

storage, respectively. These results are in agreement with those of El-Samahy et al. 

(2000) who reported an increase of 25.54% in the concentration of phenolic compounds 

in irradiated (0.5-1.5 kGy) mangoes compared to those in the untreated fruit. Tan Chye 

& Lam (1985) reported an increase (52.73%) of phenolics in mango irradiated at 0.25-

1.0 kGy. In addition, Youssef et al. (2002) found a higher rate of increase (2.05%) on 

irradiated samples of mango pulp at doses between 0.5 and 2.0 kGy than in unirradiated 

fruits.  
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Figure 4-15. Effect of irradiation dose on total phenolics (mg gallic acid/100 g w.b.) of 
mangoes stored up to 21 days at 12ºC. (Control =non-irradiated, low dose =1.0 kGy, 
medium dose =1.5 kGy, high dose =3.1 kGy).  
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The accumulation of phenolic compounds after irradiation is associated with 

different factors such as the modifications occurring in cell structures as a response of 

the tissues to irradiation, reflecting the stress condition and also with the enhancement of 

enzymes activity due to radiation (Lorinda et al., 1987), the increase in extractability, 

and the variation between maturity levels among the samples. These results are in 

agreement with the browning color present in the irradiated samples (section 4.1.1.1) and 

with the changes observed in the fruit structure (section 4.1.1.4) where the irradiated 

fruits had a fragmented cell wall and separated cells, especially in samples exposed to 

medium (1.5 kGy) and high doses (3.1 kGy). This breakdown results in an increase of 

the cell permeability leading to increased contact between enzymes and substrates such 

as phenolics already present in the tissue. The raise in phenolic concentrations has a 

beneficial effect because of their antioxidant properties which are important in the 

prevention of different diseases. In addition, phenolics are essential components in the 

flavor and astringency of the fruit. Loss of astringency is associated with loss of 

phenolics content (Mitra, 1997). On the other hand, it has been reported by Tan et al. 

(1982), that there is a relationship between the phenolic compounds and fungal 

resistance in papaya; papaya fruits with higher phenolics content were more resistant to 

fungal infection. Therefore, the increase on phenolics content may be important in 

extending the shelf-life. 

During storage time, an increase in phenolic compounds was observed in 

samples treated at medium (1.5 kGy) and high doses (3.1 kGy) (Figure 4-15). The 

control (non-irradiated) fruit had the higher concentrations on day five. The samples 
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treated with a high dose had the higher concentration of phenolics on day ten. On day 

twenty-one all the irradiated samples had significantly higher concentrations than the 

control. Variation of phenolic compounds in fruits has been found during growth and 

maturation. The concentration of phenolics decreases as fruit matures. This process is 

also affected by the modification of cell structures during ripening and also by the 

enzymes involved in the phenolics metabolism (Macheix et al., 1990). Therefore, results 

from this study suggest differences in the ripening stages of the samples. 

The trend observed in phenolic compounds corresponded to changes in the 

antioxidant activity index of the fruits when the percentage of 2,2-diphenil-1-

picrilhidrazil (DPPH) reduction was significantly (P>0.05) higher for irradiated samples 

by the twenty-first day of storage (Figure 4-16, Table A-6). This increase was about 

3.73% for samples treated with low dose (1.0 kGy), 15.87% for medium dose (1.5 kGy) 

and 19.06% for high dose (3.1 kGy), so the higher the dose the higher the increase. 

The increase in DPPH activity is a good indicator of the reduction of the 

oxidation reactions which induce the formation of compounds that may altered the flavor 

and odor of the fruit. 

Throughout the storage time, the antioxidant activity index of the samples treated 

with a low dose (1.0 kGy) showed a significant (P>0.05) reduction (11.67%), while the 

control (non-irradiated) samples and those exposed to medium (1.5 kGy) and high 

(3.1kGy) doses showed a trend to increase. The control and the samples treated with a 

medium dose had the higher percentage of antioxidant activity on day five. On day ten, 

this value was higher for control and for samples exposed to a high dose. 
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Figure 4-16. Effect of irradiation dose on antioxidant index (% of reduction of DPPH/g 
w.b.) of mangoes stored up to 21 days at 12°C. (Control =non-irradiated, low dose =1.0 
kGy, medium dose =1.5 kGy, high dose =3.1 kGy).  
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All the irradiated samples had a significantly higher percentage of DPPH on day 

twenty-one. Again, these findings were consistent with the changes in phenolic 

compounds. It is possible that within the experimental conditions of this study some 

compounds (such as phenolics and ascorbic acid) were more easily oxidized which 

caused the creation of more free radicals. Consequently, this would be a reason for 

oxidation processing which induce the increase in the antioxidant activity index, and 

therefore, a reduction in the reactions that affect the quality of the fruit. Similar results 

were obtained by Reyes & Cisneros (2005) who found an increase in the antioxidant 

activity of mango irradiated under the same conditions used in this study. This increase 

was 11.56% for low dose (1.0 kGy), 5.58% for medium dose (1.5 kGy) and 2.78% for 

high (3.1 kGy) dose, by the end of storage time.  

These findings are in agreement with an increased phenyalalanine ammonia lyase 

(PAL) activity found by Reyes & Cisneros (2005). 

In summary, electron beam irradiation of mangoes with doses up to 3.1 kGy 

enhances the phenolics compounds and the antioxidant activity of the fruits. 

4.1.2.8. Ascorbic acid 

Irradiation had a significant (P>0.05) effect on the ascorbic acid content of 

mangoes. All irradiated samples had lower ascorbic acid content than the control (Table 

4-9). By the end of the storage time, this decrease was 58.51%, 63.67% and 80.03% in 

samples treated with low (1.0 kGy), medium (1.5 kGy) and high (3.5 kGy) doses, 

respectively. However, the samples exposed to low dose had higher concentrations than 

the samples exposed to the other doses. This suggests that the higher the dose the higher 
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the decrease of the acid concentrations. On day five, control and samples exposed to 

medium dose had the higher concentrations; on day ten, samples treated with a medium 

dose and the controls had elevated ascorbic acid content. These results were consistent 

with the higher pH values and higher content of reducing sugars in the irradiated 

samples than in the control fruits (sections 4.1.2.3 & 4.1.2.6, respectively).  

Similar findings were reported by Youssef et al. (2000) who found a marked 

decrease in ascorbic acid values of mango pulp upon gamma irradiation at doses 

between 0.5 and 2.0 kGy. In addition, Michell et al. (1992) observed that the application 

of gamma irradiation at 0.6 kGy on mangoes produced a significant reduction on total 

vitamin C (ascorbic acid). The reduction of ascorbic acid could be associated with the 

role that this organic acid plays as a substrate in the respiration rate, which increased in 

the irradiated samples evaluated in this experiment (section 4.1.1.4). Additionally, 

irradiation induces the oxidation of ascorbic acid as well as the synthesis of phenolic 

compounds as previously mentioned in the discussion on antioxidant activity (section 

4.1.2.7).  

All irradiated and non-irradiated mangoes had significant (P>0.05) decreased 

ascorbic acid content with time. On day five, control and samples exposed to medium 

dose had the higher concentrations, on day ten samples treated with medium dose and 

the controls had elevated ascorbic acid content. Normally, the ascorbic acid decreases 

during ripening of the fruit (Seymour, 1993) thus, reduction upon storage may be due to 

the ripening process. 
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Table 4-9 
Effect of irradiation dose on ascorbic acid content (mg/100 g w.b.) of mangoes stored up 
to 21 days at 12°C 

  Control* Low Medium High 
Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

5 15.27ax(1.44) 7.71ay(2.50) 7.23ay(0.04) 6.23ay(1.31) 
10 12.61bx(0.72) 6.86ay(0.86) 3.86bz(0.56) 1.90bz(0.26) 
21 16.84ax(0.55) 3.61by(0.64) 0.59cz(0.10) 0.68bz(0.09) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 

 

 

The same trend was observed in the high performance liquid chromatography 

(HPLC) study of Reyes and Cisneros (2005) who found a reduction of 32.3%, 50.3% 

and 53.8% in ascorbic acid for samples irradiated at low (1.0 kGy), medium (1.5 kGy) 

and high (3.1 kGy) doses, respectively, by the end of the storage at 15°C (18 days).  

In summary, the irradiation of mangoes up to 1.0 kGy minimizes the ascorbic 

acid reduction. Irradiation at higher doses causes detrimental changes in this parameter. 

4.1.2.9. Volatiles  

Volatiles in mango predominately contain a mixture of terpene carbons and 

oxygenated sesquiterpenoids, often mainly δ-3-carene. δ-3-carene was predominant in 

all treatments throughout the storage time and it accounted for 58% and 56% of the total 

volatiles on days zero and twenty-one, respectively (Table 4-10). MacLeod and Snyder 
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(1985) reported δ-3-carene as the major compound in the pulp of ripe mango of the 

Tommy Atkins variety. 

Inspection of the chromatographs (Figures 4-17 & 4-18) indicates that the overall 

profiles are relatively similar. Only few differences were observed in the concentrations 

of α-humulene by the end of the storage time (Figure 4-18). Blakeskey et al. (1979) 

reported no significant change in the volatile profile of mango pulp irradiated with 

gamma rays at 0.75 kGy. Similar results were found by Gholap et al. (1990) where the 

effect of gamma irradiation at 0.25 kGy on mango fruits was similar in the control and 

the irradiated samples. However, compared with the control sample, some compounds 

increased and others decreased with the irradiation dose. For instance, α-pinene 

decreased significantly by approximately 29.5% in samples irradiated at medium dose 

on day zero and by 51.9% in samples irradiated at high dose (3.1 kGy) on day twenty-

one. The same trend was followed by other terpenes such as trans-caryophyllene and α-

humulene. However, limonene content was higher in samples treated with medium (1.5 

kGy) and high (3.1 kGy) dose on day zero and twenty-one, respectively, but a reduction 

in the samples exposed to low dose was observed throughout the storage time. Moussaid 

et al. (2000) found a reduction of limonene in orange irradiated with gamma radiation at 

doses up to 2 kGy. The authors also reported that only linalool increased with storage 

time. These differences may be associated with the variation in the degree of ripening of 

the fruits and the harvesting conditions. 
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Table 4-10 
Mean pick areas (%) of fourteen volatile compounds recovered by solid phase microextraction, GC-MS of mangoes stored up 
to 21 days at 12°C   

Day 0 Day 21 

Control* Low Medium High Control* Low Medium High 

Volatiles/Dose (0.0 kGy) (1.0 kGy) (1.5 kGy)   (3.1 kGy)  (0.0 kGy)  (1.0 kGy)  (1.5 kGy)  (3.1 kGy) 

Methyl buthanoate 0.13ax(0.13) 0.53ax(0.74) bdl 0.29ax(0.04) 0.13ax(0.10) 0.05x(0.03) 0.06ax(0.04) 0.115ax(0.05) 

Ethyl buthanoate 2.74ax(1.96) 0.28ax(0.04) bdl 3.73ax(2.69) 0.085bx(0.04) 0.65x(0.09) 0.05ax(0.02) 0.68bx(0.08) 

Ethanol   0.3ax(0.05) 0.98ax(0.37) bdl 1.87ax(0.83) 0.23ax(0.05) 4.19y(0.01) 2.63bz(0.01) 0.58ax(0.38) 

Alpha pinene 15.09ax(1.93) 13.92axy(0.01) 10.64ay(0.01) 14.195axy(7.99) 19.45ax(2.91) 12.89ax(0.01) 10.13ax(0.01) 9.34bx(4.46) 

E-hexenal  0.69aw(0.45) 14.65ax(0.01) 13.21ay(0.01) 1.69az(0.54) 2.84bx(1.91) 2.66bx(0.01) 5.08bx(0.01) 31.64by(14.94) 

Methyl caproate 2.64ax(0.20) 3.21ay(0.01) 8.5az(0.01) 2.49ax(0.02) 5.33bx(3.40) 3.46ax(0.01) 5.66bx(0.01) 6.05bx(1.66) 

Delta-3-carene 100ax(0.00) 100 ax(0.00) 100ax(0.00) 100ax(0.00) 100ax(0.00) 100ax(0.00) 100ax(0.00) 100ax(0.00) 

Alpha-terpinene 1.57ax(0.31) 1.11ax(0.01) 2.28ayz(0.01) 1.82axz(0.15) 0.70ax(0.38) 0.63ax(0.00) 0.65bx(0.01) 0.51bx(0.04) 

Beta-myrcene 6.26ax(1.55) 4.42ax(0.01) 6.68ax(0.01) 4.02ax(0.04) 5.34ax(3.40) 3.46ax(0.01) 5.66ax(0.01) 6.06ax(1.66) 

Limonene 8.14ax(1.97) 5.26ax(0.01) 8.68ax(0.01) 6.25ax(0.63) 6.64ax(2.55) 4.37ax(0.01) 6.59ax(0.01) 14.84ax(5.71) 

P-cymene 7.64ax(1.60) 5.40ax(0.01) 3.82ax(1.30) 5.56ax(0.01) 3.78ax(91.30) 4.72ax(0.00) 2.70ax(0.01) 7.19ax(0.01) 

Alpha-terpinolene 6.14ax(1.34) 5.40ax(0.01) 8.25ay(0.00) 4.45ax(0.24) 2.89bx(2.12) 1.84bx(0.01) 3.14bx(0.00) 2.15ax(0.33) 

Trans-caryophyllene 6.52ax(0.74) 5.40ay(0.01) 3.26az(0.01) 4.62ay(0.05) 6.62ax(2.96) 1.08ax(0.31) 0.76bx(0.01) 1.38ax(0.13) 

Alpha-humulene 3.31ax(0.29) 2.27ay(0.33) 1.60az(0.31) 2.57ay(0.07) 2.70ax(0.92) 0.41by(0.01) 1.53axy(0.00) 0.69by(0.04) 
Bdl =below detection limit.*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within days which are not followed by a common superscript letter are significantly different (P<0.05). 
w-zMeans within treatments which are not followed by a common superscript letter are significantly different (P<0.05) 
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Figure 4-17. Gas chromatography/ mass spectrometry of head space volatiles extracted from irradiated and non-irradiated 
mangoes (day 0). 
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Figure 4-18 Gas chromatography/ mass spectrometry of head space volatiles extracted from irradiated and non-irradiated 
mangoes (day 21). Dot lines indicate the main differences. 
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According to Hulme (1971), the aroma of the climatecric fruit develops better 

quality if harvested after it starts ripening. In addition, the aroma of mango has been 

reported to be influenced by various factors including mango species, maturity stage, 

ripening and processing (Singh et al., 2004). Lalel et al. (2003) found that the production 

of the most terpenes (such as α-pinene, δ-3-carene, β-pinene, and α-terpinolene) during 

ripening of ‘Kensington Pride’ mango was parallel to the ethylene production, while the 

esters (such as ethyl acetate and ethyl butanoate) were related to the fatty acid 

biosynthesis. It is also important to consider that the aroma of mango could be affected 

by the storage temperature. Lakshiminarayana (1980) found a reduction in aroma 

volatiles of mango when they were stored below 15°C. The authors also reported a 

reduction in the production of mango aroma volatile compounds due to chill- injury and 

the increase in the concentrations of CO2. 

E-hexenal increased significantly (P<0.05) with dose throughout storage. 

Alcohols such as ethanol increased significantly (P>0.05) with the higher dose on day 

twenty-one. These results which were consistent with the increase in CO2 concentration 

(section 4.1.1.4) occurred in irradiated samples but especially in those treated with the 

higher dose by the end of the storage time. They were also consistent with the changes in 

the cell structure where some of these compounds are released due to the cell disruption. 

Some of these changes were perceived by the panelists in the sensory evaluation when 

the fruits irradiated at medium and high doses were rated with stronger aroma than the 

control fruits (section 4.1.3). 
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No significant (P<0.05) changes in volatile compounds were observed with time. 

Only E-hexenal had a significant decrease in the control fruits and the samples treated 

with low and medium doses by the end of storage. However, there were some terpenes 

such as alpha pinene and alpha terpinolene that had a reduction on day twenty-one. 

In summary, the exposure of mangoes to irradiation levels up to 3.1 kGy induced 

the formation of volatile compounds which are important components to the odor and 

flavor of the fruit. 

4.1.2.10. Carotenoids 

The carotenoids content (μg β-carotene/100g w.b) in irradiated mangoes did not 

show a consistent trend when compared with the control fruits (Table 4-11). Significant 

(P>0.05) differences were observed for irradiated samples. For example, an increase 

(47.7% and 21.16%) was observed on days 0 and 21 respectively, for fruits treated at low 

dose (1.0 kGy), but a reduction (49.10%) occurred on day10. These samples also had a 

decrease in acidity and an increase in sugars. Therefore, the variation in carotenoids is 

associated with the ripening stage of the fruits. According to Hulme (1971), the content 

of carotenoids in ripe mangoes is ten times more than the content of the partially ripe 

fruits. This increase is related to the structural changes associated with chloroplast to 

chromoplats transition. The samples exposed at high dose had the lower concentrations 

than the other treatments on day zero while the samples treated with medium dose had 

lower concentrations on day twenty-one. However, the maximum concentrations of 

carotenoids content were reached on the fifth day of storage but the rate of increase 

(48.5%) was higher in samples irradiated at low dose (1.0 kGy). This trend correlates 
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well with the values of redness and yellowness of the samples, which reached at 

maximum on day five (section 4.1.1.1). 

 

 

Table 4-11 
Effect of irradiation dose on carotenoids content (µg β-carotene/100g w.b.) of mangoes 
stored up to 21 days at 12°C 

  Control* Low Medium High 
Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

0 589.02ax(1.50) 1126.41ay(20.36) 713.60az(26.99) 590.44ax(9.25) 
5 1222.64bx(21.85) 1178.58bx(51.15) 1300.85by(77.73) 849.23bz(21.85) 
10 1050.74cx(40.68) 704.69cy(15.38) 531.00cz(13.14) 710.21by(27.79) 
21 698.00dx(13.77) 885.43dy(17.74) 481.62cz(11.32) 880.39dy(18.36) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 

 

Beyers and Thomas (1979) reported a reduction in carotene levels in irradiated 

mangoes as compared with non-irradiated fruits. However, in a subsequent study, Beyers 

et al. (1983) recorded higher carotene levels for irradiated mangos at doses from 0.25 to 

2.0 kGy than for non-irradiated samples. The authors explained the increase as an effect 

of irradiation on increasing the extractability of carotenoids due to the changes in the 

structure of the cells rather than an increase in their synthesis by enzymatic action. El-
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Samahy et al. (2000) also recorded an increase in carotene levels of mango irradiated at 

low doses (0.5-1.5 kGy) using gamma rays.  

Throughout the storage time, samples treated with low and medium doses had 

significantly higher carotenoids content than the control at day zero. On the fifth day, the 

concentrations were higher in samples exposed to medium dose. On day ten, all irradiated 

samples had significantly (P>0.05) lower carotenoid content than the control. By the end 

of the storage the samples treated with low and high doses had higher concentrations. The 

samples treated with low (1.0 kGy) and medium (1.5 kGy) doses had a reduction of 

21.39% and 32.50%, respectively by the end of the storage. Carotenoids increase 

naturally with the ripening process of the fruits (Hulme, 1971); therefore, the variation 

during time is related to the different stages of ripening.  

The color of the fruits is the base for categorization of many products in 

commercial scales but the concentration of pigments could be a good quality index. Color 

is more related to consumer perception of appearance; pigment concentration is more 

related to maturity (Abbott, 1999). 

 In summary, the effect of irradiation on carotenoids content depends on the fruit 

maturity level. The higher the concentration of carotenoids, the more mature the fruit and 

better the color and the appearance. These results suggest that irradiation up to 1.5 kGy 

may enhance the carotenoids content of mangoes and therefore, the overall appearance of 

the fruit. 
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4.1.3. Sensory evaluation  

The sensory evaluation of mangoes indicated a stronger preference for the control 

(non-irradiated) and low dose (1.0 kGy) treated samples over those that were irradiated at 

higher doses. The overall acceptability of the fruits decreased as the dose level increased. 

The results of the sensory evaluation are shown in Table 4-12. 

4.1.3.1. Overall quality 

Differences in the acceptability of the overall quality of the fruits were observed 

during the sensory evaluation. For control samples a significant (P>0.05) preference was 

observed in day ten but, samples exposed at medium dose were more acceptable on day 

five. In general, the overall quality of the control samples was acceptable. However, 

fruits irradiated at low (1.0 kGy) and medium (1.5 kGy) doses were rated in the 

acceptability limit (1.0-3.0). The most unacceptable (higher scores) fruits were those 

exposed to a high dose (3.1 kGy). 

4.1.3.2. Color 

The results indicated differences for the acceptance of the irradiated and non-

irradiated (control) samples. For instance, a significant (P>0.05) preference was observed 

on day zero for the color of samples treated with high (3.1 kGy) dose, but at day five the 

control and the samples exposed to low dose (1.0 kGy) received better scores. However, 

at day ten, the control samples showed more acceptability by the panelists. 
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Table 4-12 
Sensory attributes (overall quality, color, texture and aroma) of irradiated mangoes stored 
up to 21 days at 12°C 
Overall quality     

Day Control* 
(0.0 kGy) 

Low dose 
(1.0 kGy) 

Medium dose 
(1.5 kGy) 

High dose 
(3.1 kGy) 

0 2.72ax(0.97) 2.72ax(0.90) 2.52ax(1.03) 1.86ay(0.94) 
5 2.22bx(0.84) 2.80ay(0.90) 2.08bx(0.82) 3.14by(1.04) 
10 1.90bx(0.90) 2.78ay(0.88) 2.66ay(0.68) 3.86cz(0.92) 
21 2.98axz(1.16) 2.67axy(1.04) 2.26aby(0.97) 3.22bz(1.04) 
     

Color     

Day Control* 
(0.0 kGy) 

Low dose 
(1.0 kGy) 

Medium dose 
(1.5 kGy) 

High dose 
(3.1 kGy) 

0 2.70ax(1.07) 2.72ax(0.97) 2.54ax(0.99) 1.94ay(1.09) 
5 2.18bx(1.02) 2.78ay(0.88) 1.84bx(0.88) 2.89by(1.02) 
10 1.70cx(0.81) 2.70ay(0.93) 2.42ay(0.83) 4.00cz(0.90) 
21 2.90ax(1.01) 2.73ax(1.13) 1.85by(0.84) 3.08bx(1.11) 
     

Texture     

Day Control* 
(0.0 kGy) 

Low dose 
(1.0 kGy) 

Medium dose 
(1.5 kGy) 

High dose 
(3.1 kGy) 

0 1.70abx(0.88) 1.90ax(0.78) 2.78ay(0.93) 3.88az(0.96) 
5 1.44ax(0.73) 2.32by(0.76) 2.62ay(0.87) 3.83az(1.04) 
10 2.00bx(1.10) 2.04abx(0.85) 2.58ay(0.62) 4.06az(1.07) 
21 1.34aw(0.65) 3.30cx(0.89) 2.98ay(0.83) 3.85az(0.76) 
     

Aroma     

Day Control* 
(0.0 kGy) 

Low dose 
(1.0 kGy) 

Medium dose 
(1.5 kGy) 

High dose 
(3.1 kGy) 

0 3.66ax(0.87) 3.38ax(0.87) 2.86ay(0.85) 2.22az(1.05) 
5 3.26bx(1.06) 3.22ax(0.79) 2.74ay(0.92) 2.69by(1.07) 
10 2.66cx(1.08) 3.30ay(1.05) 3.32by(0.94) 3.30cy(1.03) 
21 3.78ax(0.91) 2.65by(1.01) 2.69ay(0.94) 2.77by(1.15) 
*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). On the hedonic scale for overall quality and color a score of 1= like extremely, 
3= neither like nor dislike, 5=dislike extremely; for texture a score of 1= firm, 3= somewhat firm-
soft, 5= soft; for aroma a score of 1= strong, 3= moderate, 5= none (see appendix A-A). 
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By the end of storage the color of the samples treated with high dose was less 

acceptable (higher scores) than the other treatments. Throughout time, only the scores of 

the samples exposed to low dose (1.0 kGy) did not show significant differences.  

These results are in agreement with the measured color (section 4.1.1.1) where 

differences within doses and time were observed, due to the variation between the stage 

of ripeness and the variation of carotenoids content among the fruits used in this study. In 

general, both tests, the objective measurement of color and the sensory evaluation, 

indicated the low irradiation treatment as more appropriate to maintain the quality and 

acceptability of the color of the mangoes. The correlation factor was calculated between 

the yellowness (b values) previously evaluated and the scores of the sensory evaluation. 

The samples treated at low dose had the higher correlation factor (r= 0.79). 

4.1.3.3. Texture 

The panelists found a significant (P>0.05) difference between the texture of the 

control samples and the texture of the irradiated fruits. Control samples received better 

scores (firm) than the irradiated mangoes throughout the entire storage time. However, 

fruits irradiated at low (1.0 kGy) and medium (1.5 kGy) doses were rated in the 

acceptability range (1.0-3.0). Samples irradiated at high dose had the highest scores 

(3.83-4.06) indicating that the degree of softness was not acceptable. Throughout the 

time, no differences were observed for all treatments except for low dose samples which 

had higher scores on days five and twenty-one indicating a decrease in firmness, but still 

acceptable. Similar results were observed in the objective measurement of texture 

(compression test) which showed an increase in softening of the fruits irradiated at higher 
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dose, and the texture of the control was firmer (thus more acceptable) (r2= 0.98) than the 

irradiated samples during the evaluation time. 

4.1.3.4. Aroma  

Significant (P>0.05) differences in the acceptability of the aroma of the control 

samples and the irradiated fruits were observed. The aroma of the control and the samples 

exposed to low (1.0 kGy) dose was less perceived by the panelists (higher scores) than 

the aroma of those fruits irradiated at medium (1.5 kGy) and high (3.1 kGy) doses, which 

were significantly rated better (moderate and moderate strong) especially those irradiated 

at a high dose. These results are supported by the objective evaluation of volatile 

compounds when the irradiated samples showed an increase in volatile compounds by the 

end of the storage.  

In summary, irradiation of mangoes up to 1.5 kGy does not affect the sensory 

quality of the fruits. Irradiation at higher dose (3.1 kGy) did cause a detrimental change 

on the sensory quality of mangoes. 

Overall, the previous results suggest that irradiation treatment of mangoes may 

lead to a stress condition which depending of the dose, may or may not cause the 

physicochemical changes that depend on the physiological parameters of the fruit. In 

general, irradiation of mangoes up to 1.5 kGy treatment maintains the overall quality of 

mangoes and may increase the shelf-life by three days (from 18 days to 21 days when 

stored at 12˚) by delaying the ripening. 
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4.2. Effect of irradiation on physical and chemical properties of blueberry 

4.2.1. Physical properties  

4.2.1.1. Color attributes 

4.2.1.1.1. Visual changes  

No obvious visual changes were noted in blueberry samples right after irradiation 

(day 0). However, in general, irradiated samples looked darker than the controls (Figure 

4-19). By the end of the storage time (14 days), the fruits irradiated at medium (1.6 kGy) 

dose became more brownish-reddish (Figure 4-20) than the other samples. This 

darkening effect may be attributed to an increased polyphenoloxidase activity and the 

consequent oxidation of phenolics giving rise to brown and dark pigmentation of the fruit 

(Thomas, 1986). In addition, some of the control samples shrunk and spoiled due to the 

presence of molds (fungi) by the end of storage (Figure 4-21). This problem with molds 

did not occur in any of the irradiated samples. 
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Figure 4-19. Irradiated and non-irradiated blueberries right after irradiation treatment 
(day 0). (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose 
=3.2 kGy). 
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Figure 4-20. Irradiated and non-irradiated blueberries after 14 days of storage at 5°C. 
(Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose =3.2 
kGy). 
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Figure 4-21. Blueberries (control) after 14 days of storage at 5°C. (F = fungi-molds). 

 

 

4.2.1.1.2. Objective measurement  

The values of lightness (L) of the fruits exposed to low (1.1 kGy) and medium 

(1.6 kGy) doses was significantly (P>0.05) lower than the control right after irradiation 

(day 0) which indicates a darkening of the fruits. The samples treated with high dose (3.2 

kGy) were not significantly different from the control on that day (Table 4-13). The 

decrease in L values is associated with the effect of irradiation on enzymes 

(polyphenoloxidase) activity due to phenolics oxidation. According to Seymour et al., 

(1993) there is a correlation between Phenylalanine ammonia-lyase (PAL) activity and 

anthocyanin levels, which increase during the fruit ripening. Therefore, it is possible that 

at these doses the enzymes activity is enhanced and consequently changes in color may 

be observed. 
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The fruit exposed at low (1.1 kGy) and medium (1.6 kGy) doses became 

significantly (P>0.05) lighter (higher values of L) on days three and fourteen of storage. 

All irradiated samples were lighter than the control by the end of storage. The changes in 

L values with time are associated with the ripeness stage of the fruit and their 

anthocyanin content. Mustafa et al. (2001) reported that dark-red berries had four times 

more anthocyanin content compared with light-red berries. Yu et al., (1995) also reported 

an increase in L values of strawberries irradiated at 2.0 kGy using electron beam. 

The redness (a values) of the samples exposed to low (1.1 kGy) dose was 

significantly (P>0.05) higher (more red) than the controls until day 7 (Table 4-13). 

However, all irradiated samples had decreased a values by the end of storage. This effect 

may be associated with the potential effect of irradiation on delaying the ripening proces; 

thus, with differences in the anthocyanin content which depends of the fruit maturity 

level. According to Seymour (1993), as the berry matures there is a gradual change from 

green to the characteristic color of the fruit, red or black depending on the variety. This 

suggests that the samples treated with a low dose were more mature on day 7 than the 

control and the fruits exposed to the other treatments. 

Irradiation had an effect on the yellowness (b values) of the blueberries. The 

differences became significant (P>0.05) for samples treated with low dose (1.1 kGy) 

which had higher b values than the control on day zero. All irradiated samples had 

decreased b values (more blue than the control) by the end of the storage time (Table 4-

13). 
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Table 4-13 
Effect of irradiation dose on the color attributes-lightness (L), redness (a) and yellowness (b)- of blueberries stored up to 14 
days at 5°C 

  Dose/Day Control* Low Medium  High  
Color parameter   (0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 

L 0 18.14ax(1.14) 15.62ay(0.47) 16.87axy(1.60) 18.28ax(1.19) 
Lightness  3 18.35axz(0.72) 14.72aby(0.99) 19.83bz(0.39) 17.63ax(1.25) 

(%) 7 19.18ax(1.19) 16.96bx(1.53) 19.52bx(1.07) 17.75ax(0.58) 
 14 14.27bx(0.46) 19.58cy(0.45) 18.95byz(0.44) 17.58az(1.85) 
      

a 0 -0.38ax(0.15)  -0.09ay(0.04) -0.31ax(0.12) -0.25axy(0.18) 
redness 3 -0.34ax(0.15)    0.15by(0.63) -0.48ax(0.57) -0.43ax(0.15) 

(+red, -green) 7 -0.39ax(0.10)  -0.19cy(0.89) -0.41ax(0.45) -0.30axy(0.62) 
 14 -0.21ax(0.04)  -0.44dy(0.02) -0.45ay(0.03) -0.31az(0.02) 
      

b 0 -2.98ax(0.16)  -2.13ay(0.10) -2.62az(0.24) -2.79axz(0.30) 
yellowness 3 -3.13ax(0.17)  -1.94ay(0.02) -3.40bz(0.13) -3.53bz(0.02) 

(+yellow, - blue) 7 -3.61bx(0.43)  -2.61by(0.47) -3.56bx(0.14) -3.21bxy(0.13) 
  14 -2.23cx(0.10)  -3.83cy(0.07) -3.87cy(0.62) -2.65az(0.18) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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This decrease in b values in irradiated samples may be associated with the strong 

effect of irradiation on the cell structure (section 4.1.2.3) which is related to the 

concentration of pigments. In addition, it is possible that a co-pigmentation occurs at 

these doses. For instance, anthocyanins may form complex with flavones, causing a color 

change from red to blue, therefore, an increase in color intensity is perceived (Asen et al., 

1972). The samples treated with a low dose had significantly higher b values on days 

three and seven than the samples subjected to other treatments; therefore these samples 

would have more blue color. In some fruits the minor pigments such as carotenoids will 

be masked by the more intense pigments such as anthocyanins. 

Throughout the storage time, different trends were observed in the yellowness (b 

values) of the non-irradiated and irradiated blueberries. Control samples had a significant 

(P>0.05) increase in b values on day fourteen indicating the ripening of the fruits. The 

samples treated with low dose (1.1 kGy) showed an increasing trend in b values during 

storage, while the samples exposed to medium dose (1.6 kGy) had decreased b values. 

The fruit exposed to high dose had decreased b values until day seven (half of storage 

time) with a subsequent increase on day fourteen. Again, these changes are related to the 

ripening stage of the fruit and to the effect of irradiation on delaying  ripening especially 

in samples treated with medium (1.6 kGy) and high doses (3.2 kGy). 
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Table 4-14 
Effect of irradiation dose on the color attributes -chroma (C), total color difference (ΔE) and hue (θ)- of blueberries stored up 
to 14 days at 5°C 

 Dose/Day Control* Low Medium  High  
Color 

parameter   (0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 

Chroma 0  3.01ax(0.17)  2.14ay(0.10)  2.64az(0.25)  2.81axz(0.31) 
(C) 3  3.16ax(0.19)  1.95ay(0.02)  3.44bz(0.14)  3.56bz(0.03) 

 7  3.63bx(0.44)  2.62by(0.48)  3.58bx(0.14)  3.23bxy(0.14) 
 14  2.25cx(0.10)  3.86cy(0.07)  3.90cy(0.06)  2.67az(0.18) 
      

Total color 
difference  0 13.49ax(0.80) 11.69ay(0.32) 12.59axy(1.12) 13.57ax(0.82) 

(∆E) 3 18.51bxz(0.72) 14.73by(0.10) 20.02bx(0.37) 17.88bz(1.23) 
 7 19.25bx(1.25) 16.88cx(1.58) 19.57bx(1.08) 17.77bx(0.59) 
 14 14.21ax(0.47) 19.73dy(0.45) 19.12by(0.43) 17.55bz(1.82) 
      

Hue angle 0 85.59ax(2.83) 87.51ax(1.08) 83.36ax(2.36) 69.94ax(1.24) 
(θ) 3 83.84ax(2.44) 44.51bx(2.19) 81.93ax(0.62) 83.00ax(0.20) 

 7 83.78ax(1.12) 85.93ax(1.36) 83.42ax(0.75) 84.69ax(0.88) 
  14 84.57ax(0.77) 83.38ax(0.49) 83.29ax(0.45) 83.22ax(0.88) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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Chroma (C) values of all irradiated samples were significantly (P>0.05) lower 

than the control samples after irradiation (day 0). However, by the end of the storage all 

irradiated samples had higher C values than the control (Table 4-14). This increase 

indicates brighter fruit color which is related to higher L values. However, the chroma of 

the samples treated with low dose (1.1 kGy) decreased significantly (P>0.05) until the 

seventh day of storage which suggests a more dull color. These samples had lower L 

values up to day seven. 

The chroma values of the samples treated with low (1.1 kGy) and medium (1.6 

kGy) doses increased significantly (P>0.05) with time. The samples exposed to high dose 

(3.1 kGy) had increased values until day seven with a subsequent decrease by the end of 

the study. Control samples had significantly lower chroma values on day fourteen which 

suggests that the color of these samples was less intense than the color of the treated 

fruits. 

The total color difference (ΔE) was significantly lower for the samples exposed to 

low (1.1 kGy) dose after irradiation. However, by the end of the storage all irradiated 

samples had significantly higher ΔE values than the control (Table 4-14). This trend may 

be related to some physiological changes that involve differences in growth and ripening. 

Young (1952) reported that blueberries in any given cluster do not all ripen at the same 

time. Fruit from the medial portions of the cluster ripens first, followed by the fruit from 

the terminal and basal portions at about the same time. These changes in ripening induce 

variation in the anthocyanin levels which affect the color development. Ballinger et al. 

(1972) reported that the difference in color expression of blueberries was related to the 
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anthocyanin content. For instance, pink fruits had 2.5 mg while blue fruits had 49 mg of 

anthocyanin per 10 g of fruit. 

Irradiation had no effect on the Hue (θ) angle of the blueberries. Throughout the 

storage time, only the fruit treated with low dose (1.1 kGy) showed a significant (P>0.05) 

decrease (49.13%) by the third day (Table 4-14) of storage. 

In summary, the exposure of blueberries at 1.1 kGy seems to have an unfavorable 

effect in the color of the fruit. This effect was not observed at higher doses. Overall, 

treatment of blueberries with 1.6 kGy is the best to maintain the fruit color attributes. 

4.2.1.2. Texture (Kramer shear test) 

The texture of blueberries was significantly (P>0.05) affected by irradiation 

treatment at all doses applied (Figure 4-22, Table A-7, Appendix A). Shear force or the 

force required to cut the fruit decreased significantly (P>0.05) as the irradiation dose 

increased. The samples treated with higher dose (3.2 kGy) required much less force than 

the other treatments. These samples were also considerably less tough than all the other 

samples (see figure on p.175). The control samples were more resistant to shear 

throughout the storage time. The softening effect induced by irradiation may be 

associated with the changes in cell wall structure and the solubility of its pectin 

substances (section 4.1.2.3). These results are consistent with the reduction of color at 

higher doses due to changes in pigmented cells (section 4.1.2.1).  
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Figure 4-22. Effect of irradiation dose on texture of blueberries stored up to 14 days at 
5°C (shear force (N)). (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 
kGy, high dose =3.2 kGy).  
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Similar findings were reported by Eaton et al. (1970) on irradiated Coville and 

Dixi blueberry varieties with gamma rays at dosages between 1.0 and 0.5 kGy. The 

irradiated samples were considerably softer than the non-irradiated fruits. Miller and 

McDonal (1996) observed that blueberries irradiated with gamma rays at 0.5 and 1.0 kGy 

were softer by 33% and 38%, respectively. Yu et al. (1995) showed that strawberries 

were significantly less firm after electron beam irradiation at doses of 0.5, 1.0 and 2.0 

kGy. 

Figure 4-23 shows the relationship between loss of texture (decreased shear force 

or softening) and the irradiation dose. The reduction on shear force of the fruits increased 

as a function of the dose. This effect can be described by an exponential model with the 

following equations: 

SF(0)=    98.2 exp(-0.517)D  + 64.99, R2  = 0.997   (4-6) 

SF(3)=  118.1 exp(-0.876)D + 84.79, R2 = 0.993   (4-7) 

SF(7)=  154.4 exp(-0.5478)D + 44.54, R2 = 0.999   (4-8) 

SF(14)= 222.8 exp(-0.1046)D - 68.32, R2 = 0.998   (4-9) 

where SF is the shear force in N at each storage time interval and D is the irradiation dose 

in kGy. According to Eqs 4-6 to 4-9 at any interval time, the higher the dose the higher 

the reduction on the shear force of the fruit.  
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Figure 4-23. Effect of dose on shear force (N) of blueberries stored up to 14 days at 5°C. 
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The same trend was observed for the values of toughness (Figure 4-24). Irradiated 

samples at 1.1, 1.6, and 3.2 kGy were 25.6%, 33.6% and 48.7% less tough than the 

control fruit, respectively (Table A-7, Appendix A). The samples exposed to the higher 

dose were significantly less tough than the other treatments throughout the study. 

Therefore, when this fruit is consumed a perception of less force for biting the berry 

would be felt. 

The softening effect of ionizing radiation can be more explained by examining the 

structural changes of the fruits which induce the degradation of the cell wall constituents 

such as polyssacharides, cellulose and hemicellulose, and therefore, changes in the cell 

structure are created reducing the firmness of the fruits . These changes will be discussed 

in section 4.1.2.3. 

These results indicate that irradiating blueberries with doses as high as 3.2 kGy 

will yield unacceptable fruits in terms of texture. However, doses up to 1.6 kGy do not 

cause any detrimental change in texture. 
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Figure 4-24. Effect of irradiation dose on texture (toughness in J) of blueberries stored up 
to 14 days at 5ºC. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, 
high dose =3.2 kGy).  
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4.2.2.3. Structural changes 

Figures 4-25 and 4-26 present the SEM photomicrographs of blueberry skin. The 

skin of the control sample berries was found to be smoother that the skin of the irradiated 

fruit (Figure 4-25A). Dryness was observed in irradiated samples, especially in the fruits 

treated with medium (1.6 kGy) dose (Figure 4-25 C) which caused inconsistency in the 

cells shape and also closed stomata. Even though different findings were observed in the 

moisture content values, the dryness of these samples may be associated with changes in 

the cell compartments that cause the collapse of the structure of the hydrated cells (Allan-

Wojtas et al., 2001). The methodology used in this study did not allow the observation of 

this effect. In samples irradiated at high (3.2 kGy) dose, micro-cracks and bleeding were 

observed in the surface (Figure 4-25 D).  

At a higher resolution (Figure 4-26) the skin photomicrographs showed 

depressions in all irradiated samples (Figure 4-26 B to D) becoming more pronounced at 

medium (1.6 kGy) dose samples. In addition, the presence of fungi was noted in samples 

treated with high (3.2 kGy) dose (Figure 4-26D). According to Mustafa et al. (2001), the 

main path of entry of these microorganisms would be through the fractures or through the 

stomata. The authors reported the presence of fungal hyphae in the surface of cranberry 

in dark-red stage but not in white stage samples. Therefore, it is valid to assume that the 

presence of micro-cracks in the samples treated at a high dose facilitated the presence of 

fungus. These results are consistent with the increase in water activity observed for these 

samples (section 4.2.2.2). 
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Figure 4-25. SEM photomicrographs of blueberry skin after irradiation treatment (10 
days). (A) control= non-irradiated, (B) low dose =1.1 kGy, (C) medium dose =1.6 kGy , 
(D) high dose =3.2 kGy, (c =cracks , p =parenchyma, bld =bleeding, e =epidermis). 
Fruits were observed at 15 kV. Bars in (B), (C) and (D) represent 100µm; in (A), 10µm. 
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Figure 4-26. SEM photomicrographs of blueberry skin at higher resolution after 
irradiation treatment (10 days). (A) control =non-irradiated, (B) low dose =1.1 kGy, (C) 
medium dose =1.6 kGy , (D) high dose =3.2 kGy, (d =depressions, f =fungi). Fruits were 
observed at 15 kV. Bars represent 10µm. 
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The changes in structure observed in this study are in agreement with the texture 

changes monitored in the samples since the firmness of the fruit was significantly 

(P>0.05) reduced at all dosages (section 4.2.1.2). The samples exposed to 3.2 kGy 

required less shear force than the other treatments. These results may be related to the 

degradation of cell wall polysaccharides and the solubilization of pectins, cellulose, 

hemicellulose and starch (Kovacs & Keresztes, 2002; Kader, 1986). In addition, these 

physiological alterations induced by irradiation involve chemical changes that caused an 

increase in reduced sugars and respiration rate of treated samples (see sections 4.2.2.6 

and 4.2.1.4, respectively).  

Some relationship between changes in cell structure and the pigment 

concentration in the cells has been documented. Allan-Wojtas et al. (2001) related the 

susceptibility of epidermis cells of blueberry to bleeding with the sizes and arrangement 

of the cells in the cell wall and their pigment content. Pigmented cells were closer to each 

other. This is in agreement with the color results in this study where a reduction of color 

attributes (a and b values) was observed in samples irradiated at higher doses. This result 

suggests a stronger effect of irradiation in the cell structure of the samples exposed at 

such a high dose.  

The observation of blueberry epidermis (Figure 4-27) showed shrinkage of the 

flesh tissue in irradiated samples, especially those subjected to high (3.2 kGy) dose where 

the cells were more compact and drier (Figure 4-27D). Thus, the cell structure was not 

preserved. In samples irradiated at a low dose, the presence of empty spaces (voids) 

(Figure 4-28B) occurred due to tissue shrinkage. 
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Figure 4-27. SEM photomicrographs of blueberry epidermis after irradiation treatment 
(10 days). (A) control =non-irradiated, (B) low dose =1.1 kGy, (C) medium dose =1.6 
kGy , (D) high dose =3.2 kGy, (c =cracks, p =parenchyma,* =seed, stc =stone cells, e 
=epidermis). Fruits were observed at 15 kV. Bars represent 100µm. 
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Figure 4-28. SEM photomicrographs of parenchyma cells of blueberry after irradiation 
treatment (10 days). (A) Control= non-irradiated, (B) low dose =1.1 kGy, (C) medium 
dose =1.6 kGy, (D) high dose =3.2 kGy, (p= parenchyma, e =epidermis, Ssc =substomal 
cavities, st =stone cells, v =void ). Fruits were observed at 15 kV. Bars represent 100µm. 
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In the parenchyma cells (p) micrograph, samples irradiated at high dose showed 

more collapsed cells with loss of shape (Figure 4-28D). In all irradiated samples the 

arrangement of the stone cells changed and fracture of these cells was observed mainly in 

samples exposed to medium (1.6 kGy) and high (3.2 kGy) doses. The relative amounts 

and pattern of stone cells and vascular tissue in the fruit could determine its texture and 

response to instrumental test (Allan-Wojtas et al., 2001). These results are consistent with 

the findings from the compression test (toughness and Kramer shear) where the samples 

irradiated at higher doses were less tough (easier to crush) than the controls and less force 

was required to cut (shear) the fruits.  

4.2.1.4. Respiration rates 

Irradiation dose significantly increased (P>0.05) the respiration rate of blueberries 

in all irradiated samples right after irradiation. By the end of the storage time, the CO2 

concentrations in blueberries increased by 14.02% for low (1.1 kGy), 16.54% for medium 

(1.6 kGy) and 61.15% for high (3.2 kGy) doses, respectively (Table 4-15). Samples 

exposed to the higher dose had significantly higher CO2 concentrations than the other 

treatments. Blueberries are considered non-climacteric fruits with a lack of rising in the 

respiration rate during ripening. Therefore, the increase in the CO2 concentrations may be 

associated with the effect of irradiation on the changes of cell structure and the 

breakdown of substrate molecules for the respiration process normally present in the cells 

such as starch, sugars and organic acids. 

Higher CO2 levels in the atmosphere can reduce the respiration rate and also the 

physiological changes, specifically oxidation, with a beneficial effect of extending the 
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shelf-life. CO2 in excess of 5% v/v inhibits the many food spoilage bacteria. This factor 

could explain the presence of mold observed only on the control samples by the end of 

the storage (section 4.2.2.1). Therefore, the irradiation at doses up to 3.2 kGy may extend 

the shelf-life of the fruits. 

 

 

Table 4-15 
Headspace gas (CO2 in mg /Kg h) concentration for blueberries stored up to 14 days at 
5°C 

    Control* Low Medium High 
Gas Day/Dose (0.0 kGy) (1.1 kGy) (1.6 kGy) (3.2kGy) 

 0 5.18ax(0.41) 7.06ay(0.26) 6.59ay(0.72) 10.34az(0.52) 
CO2 3 1.58bx(0.26) 3.12by(0.14) 3.24by(0.82)   4.48bz(0.72) 

 7 2.78cx(0.24) 3.29by(0.18) 3.27by(0.12)   4.07bz(0.13) 
  14 2.78cx(0.08) 3.17bx(0.02) 3.24bx(0.47)   4.48by(0.21) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-zMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 

 

All samples had significantly (P>0.05) lower CO2 concentrations by the end of 

the storage (Table 4-15). The decrease in CO2 production could be associated with the 

beginning of senescence. Taylor and Brock (1998) reported no significant differences in 

CO2 production over storage time of Laetitia plums irradiated at 150, 300 and 400 Gy 

while for Songold plums some changes were observed over time. In the same study, the 
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authors found that samples irradiated at higher dose showed the tendency to have 

elevated CO2 production. 

 In summary, the irradiation of blueberries up to 3.1 kGy increases the respiration 

rate but still the CO2 concentrations are acceptable (~10 mg/ Kg h) for the shelf-life 

preservation.  

4.2.1.5. Density and specific gravity 

No effect of irradiation dose on the specific gravity of the blueberries was 

observed (Figure 4-29, Table A-8, Appendix A). The value of the unit density of the 

blueberries ranged between 0.932 and 1.023 g/cc These results suggest no weight loss 

due to irradiation. 

Normally, the specific gravity is an index of fruit maturity. Usually, specific 

gravity >1.0 means optimum maturity. For blueberries the normal specific gravity (Eq 3-

2) ranges between 1.030 and 1.050. In this study, the average specific gravity of the 

samples was 0.994 suggesting a close but no mature stage of the fruit. 
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Figure 4-29. Effect of irradiation dose on specific gravity of blueberries stored up to 14 
days at 5°C. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high 
dose =3.2 kGy).  
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The bulk density (Eq 3-3) of the fruits was 0.59 g/cc. The porosity (Eq 3-4) of the 

samples was 0.39 for controls, 0.40 for 1.1 kGy-treated fruits, 0.40 for 1.6 kGy-treated 

fruits and 0.40 for 3.2 kGy-treated fruits, respectively. This suggests that the irradiated 

samples were not more porous than the control fruits. In addition, these results indicated 

that there is approximately 40% of air between the berries within the tray. 

In summary, the exposure of blueberries to irradiation at dose levels up to 3.2 kGy 

does not affect the unit density and the specific gravity of the fruit. 

4.2.2. Chemical properties 

4.2.2.1. Moisture content 

The moisture content of the blueberries ranged from 79.58% to 81.83% (Table A-

9, appendix A). In comparison with the control, no differences in the moisture content of 

the irradiated blueberries were observed (Figure 4-30).  

Throughout storage time, a slight increase of the moisture content of control fruits 

and samples treated with medium (1.6 kGy) dose was observed on day seven. This 

increase may be related to the differences in the ripening process of the blueberries. It has 

been found that there is an increase in moisture content in the early stage of development 

of berries with a tendency to stabilize as the fruit reaches maturity. (Hulme, 1971). No 

significant changes were found for samples treated with low and high doses. 

 Overall, the exposure of blueberries at dose levels up to 3.2 kGy does not affect 

the moisture content of the fruit. 
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Figure 4-30. Effect of irradiation dose on moisture content (% w.b.) of blueberries stored 
up to 14 days at 5ºC. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 
kGy, high dose =3.2 kGy).  
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4.2.2.2. Water activity 

No effect of irradiation dose on the water activity of the blueberries was observed 

(Figure 4-31). The water activity of the blueberries ranged between 0.87 and 0.92 (Table 

A-10, Appendix A). Many yeast and mold are inhibited by water activities between 0.87 

and 0.91 (Fennema, 1996). Therefore, in the treated samples the decay of the fruit would 

be reduced.  

Throughout time, no differences were found for control samples. However, in the 

fruit treated with medium (1.6 kGy) and high (3.6 kGy) doses the water activity increased 

(0.87-0.91) during storage, but still this change does not affect the quality of the fruit, 

since it is within the range of mold inhibition. These results are consistent with the 

content of total soluble solids of the fruit at these doses that presented lower values than 

those fruit exposed to low dose. 

Overall, irradiation of blueberries at doses up to 3.2 kGy does not affect the water 

activity of the fruit and may increase their shelf-life. 
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Figure 4-31. Effect of irradiation dose on water activity of blueberries stored up to 14 
days at 5ºC. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high 
dose =3.2 kGy).  
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4.2.2.3. pH 

The effect of ionizing radiation on the pH of blueberries only showed a significant 

(P>0.05) decrease in fruits exposed to high (3.2 kGy) dose at day zero. By the end of the 

storage (day 14), no differences between the pH of the control and the pH of the 

irradiated samples were observed (Figure 4-32) (Table A-11). The samples exposed to 

high dose had the highest pH on day three and seven (3.19 and 3.21, respectively) of 

storage. These results may be associated with changes in acidity due to differences in the 

fruit ripening stage. The acid content is considerably greater in the greener young fruit 

than in the ripe fruit. Although there are differences, the pH of the irradiated samples 

ranged between the normal values (2.85 -3.49) reported for blueberries (Hulme, 1971).  

Similar results were reported by Miller et al. (1994b) who found an increase in the 

pH (1.55% more) of blueberries irradiated at 2.25 and 3.0 kGy after seven and fourteen 

days of storage at 1°C. However, Miller and McDonal (1994a) reported no differences 

among the doses in the pH of sharpblue blueberries irradiated with electron beam at doses 

up to 1.0 kGy, but a slight increase in pH was found by the end of storage. Later, Miller 

and McDonal (1996) found no differences in pH (3.5-3.6) values of blueberries when 

irradiated with gamma rays at 0.5 and 1.0 kGy. 

In summary, the exposure of blueberries to irradiation levels up to 3.2 kGy does 

not affect the pH of the fruit. 
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Figure 4-32. Effect of irradiation dose on pH values of blueberries stored up to 14 days at 
5ºC. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose 
=3.2 kGy).  
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4.2.2.4. Tritratable acidity 

Although the acidity of irradiated samples showed a decreasing trend, only the 

fruit exposed to high (3.2 kGy) dose presented a significant (P>0.05) decrease in acidity 

on days three and seven of storage (Table 4-16). These samples had higher pH (3.19) 

than the other treatments on those days. No changes in acidity levels were observed 

between the control and the irradiated samples on day twenty-one. Throughout time, the 

samples exposed to a low (1.1 kGy) dose showed a significant (P>0.05) decrease in 

acidity on days seven and fourteen. In addition, the samples treated with high (3.2 kGy) 

dose had a decreased acidity during the entire storage period. Therefore, these fruits with 

lower acidity (0.55-0.60) would have a sweeter flavor. These differences may be 

associated with the different degrees of ripening between the samples. 

These results are consistent with the lower pH values of the irradiated samples on 

day zero, and the higher values throughout the storage time. It has been documented that 

acids regulate cellular pH and may influence the appearance of fruit pigments within the 

tissue (Seymour, 1993). Yu et al. (1995) reported a decrease in tritratable acidity of 

strawberry irradiated with electron beam up to 2.0 kGy after two days of storage at 2°C. 

No effect of gamma irradiation on tritratable acidity of blueberry varieties has been 

reported (Miller et al., 1994; Miller & McDonal, 1996). 

The range of the ratio sugar/acid of the irradiated samples (17.86-24.98) was 

similar to the ratio of the control samples (18.99-21.53) (Table A-12) suggesting the 

acceptability of the irradiated fruit. 
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In summary, the irradiation of blueberries at doses up to 3.2 kGy maintains the 

acidity levels of the fruit. 

 

 

Table 4-16 
Effect of irradiation dose on tritratable acidity (g citric acid/100g w.b.) of blueberries 
stored up to 14 days at 5ºC 

Dose/Day Control* Low Medium  High  
  (0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
0 0.73ax(0.05) 0.81ax(0.00) 0.72abx(0.00) 0.76ax(0.07) 
3 0.78ax(0.07) 0.74abx(0.00) 0.74bx(0.03) 0.60by(0.02) 
7 0.67ax(0.04) 0.66bx(0.01) 0.67abx(0.03) 0.55by(0.02) 
14 0.72ax(0.02) 0.69bx(0.06) 0.65ax(0.018) 0.66bx(0.04) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-yMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 

 

4.2.2.5. Total soluble solids 

Irradiation had an effect on the total soluble solids (°Brix) of blueberries. 

Compared with non-irradiated samples, the total soluble solids of all irradiated 

blueberries decreased significantly (P<0.05) with time. However, the fruit treated with 

the lower dose (1.1 kGy) had the highest values (Table 4-17). These results are consistent 

with the decrease in the acidity level of the samples irradiated at this dose level (section 

4.2.2.2). The acid content of the fruits increases considerably during development and 
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ripening but it declines rapidly in the later stages of ripening which is accompanied by 

changes in pH, sugars and soluble solids. The reduction in soluble solids may be due to a 

delay in ripening induced by irradiation. Through time, a general increase (3.0%-12%) 

was observed in the content of soluble solids in all samples however, the irradiated 

samples presented a significant (P<0.05) decrease on day seven. This decrease is 

consistent with the reduction on total sugars for all irradiated samples on that day (see 

section 4.2.2.6). 

 

 

Table 4-17 
Effect of irradiation dose on soluble solids (°Brix) of blueberries stored up to 14 days at 
5ºC 

Dose/Day Control* Low Medium  High  
  (0 .0kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
0 13.93ax(0.11) 14.43ay(0.12) 13.83ax(0.29) 13.03az(0.15) 
3 14.50bx(0.00) 14.92by(0.14) 14.00az(0.00) 14.33bx(0.14) 
7 14.92cx(0.14) 14.08cy(0.14) 13.75az(0.00) 13.75cz(0.00) 
14 15.50dx(0.00) 14.83by(0.14) 14.75by(0.00) 14.25bz(0.00) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-dMeans within a row which are not followed by a common superscript letter are 
significantly different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
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Different findings have been reported for the effect of irradiation on this quality 

parameter. Miller et al. (1994b) found no effect of gamma irradiation (0.75-3.0 kGy) on 

total soluble solids of rabbiteye blueberry. However, Eaton et al. (1970) reported an 

increase of soluble solids of blueberry with different responses according with the variety 

when the fruits were exposed to gamma radiation at levels between 0.10 and 0.5 kGy. In 

addition, Miller et al. (1995) reported a slight increase in total soluble solids of electron 

beam irradiated sharpblue blueberries at doses up to 1.0 kGy by the end of storage, but 

the authors found not differences between the doses. 

In summary, irradiation at doses higher than 1.1 kGy causes a significant decrease 

in the total soluble solids (°Brix) content of blueberries. 

4.2.2.6. Sugars 

4.2.2.6.1. Total sugars 

No differences in the total sugars content of irradiated and non-irradiated samples 

were observed on day zero. However, all irradiated samples had a significant (P<0.05) 

decrease by the end of the storage (Table 4-18). Throughout storage time, the samples 

exposed at high dose (3.2 kGy) had the higher content (11.65g glucose/100g wb) on day 

three. On day seven, the control and the samples treated with medium dose had the higher 

sugars content (11.85 and 10.15g glucose/100g wb., respectively). These results are 

consistent with the effect of irradiation on the reduction of soluble solids previously 

discussed (section 4.2.2.4).  
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Foa et al. (1980) reported a decrease in the total polysaccharides of cherries when 

subjected to gamma irradiation at dose levels between 0.1 and 1.0 kGy. 

4.2.2.6.2. Reducing sugars 

Irradiation dose induced a decrease in reducing sugars content of the fruit (Table 

4-18). All irradiated samples had lower contents than the control. This decrease was 

9.0%, 9.22% and 9.57% for samples exposed to low (1.1 kGy), medium (1.6 kGy) and 

high (3.6 kGy) doses, respectively, by the end of the storage. However, among the 

irradiated samples the fruit treated with low dose (1.1 kGy) had the higher concentrations 

on day three and fourteen. The decrease in reducing sugars could be associated with the 

effect of irradiation on delaying ripeness of the fruit. 

In summary, the exposure of blueberries to irradiation doses up to 3.2 kGy 

decreases the total and reducing sugars of the fruit. However, the exposure to dose levels 

up to 1.6 kGy maintains an acceptable sugar content of the fruit. 
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Table 4-18 
Effect of irradiation dose on total (g glucose/100g w.b.) and reducing sugars (g glucose/100g w.b.) of blueberries 
stored up to 14 days at 5ºC 

 

  Dose/Day Control* Low Medium  High  
Sugar   (0.0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 

Total 0 11.55ax(0.34) 11.87ax(0.12) 11.87ax(1.13) 10.50ax(1.00) 
(gGlucose/100g w.b.) 3 11.22ax(0.99) 11.46ax(1.38) 9.34bx(0.57) 11.65ax(1.69) 

 7 11.87ax(0.57) 9.77by(0.11) 10.15by(0.11) 9.87ay(0.07) 
 14 12.17ax(0.57) 9.19by(0.96) 9.92by(0.25) 10.11ay(0.41) 
      

Reducing 0 13.94ax(1.13) 12.78axy(0.31) 11.87ayz(0.52) 11.08az(1.20) 
(gGlucose/100g w.b.) 3 12.21bx(0.79) 11.93bx(0.58) 11.16abx(0.64) 11.15ax(0.32) 

 7 10.70bx(1.31) 9.87cx(0.56) 10.22bx(0.85) 9.55ax(1.06) 
  14 11.66bx(0.53) 10.34cy(0.23) 10.29by(0.22) 10.16ay(0.60) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly different (P<0.05). 
x-yMeans within a column which are not followed by a common superscript letter are significantly different (P<0.05). 
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4.2.2.7. Total phenolics and antioxidant activity index 

The total phenolics content in irradiated blueberries was higher than the content of 

phenolics in the control fruit after irradiation treatment (Figure 4-33). By the end of the 

storage, the samples treated with 1.1 kGy had the higher concentrations but a significant 

(P<0.05) decrease was observed in samples irradiated at high dose. On day three, the 

samples exposed to low and medium doses had the higher concentrations. However, 

within the irradiated samples, those treated with low dose (1.1 kGy) had the higher 

phenolics content (10.43% more) (Table A-13, appendix A). The accumulation of 

phenolic compounds after irradiation is associated with different factors such as the 

increase in solubility due to the modifications in cell structures, the increase in 

extractability, and the variation between maturity levels among the samples. The increase 

in phenolics compounds has an important effect because they are considered powerful 

antioxidants and anti-inflammatory agents. In addition, they are associated with the bitter 

or astringent flavor of the fruit. Therefore, no loss of these properties was induced by 

irradiation treatment.  

These results were accompanied by changes in the antioxidant activity index and 

were consistent when among the treatments, samples irradiated at low dose showed the 

higher percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction. The samples 

exposed to medium dose had the highest percentage of antioxidant activity index on day 

zero. This increase corresponded to higher concentration of phenolics on this day. High 

correlation (r2= 0.97) was found between the phenolic compounds and the DPPH 

percentage of the samples exposed at medium and high doses, indicating their high 
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antioxidant activity. The increase in DPPH is related to the decrease of oxidative 

reactions like the degradation of hydroperoxides from lipid oxidation that can affect the 

quality of the fruit.  
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Figure 4-33. Effect of irradiation dose on total phenolics (mg gallic acid/100g w.b.) of 
blueberries stored up to 14 days at 5°C. (Control=non-irradiated, low dose=1.1 kGy, 
medium dose=1.6 kGy, high dose=3.2 kGy).  
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Throughout time, a reduction of the antioxidant activity index for all treatments 

was detected (Table A-13, appendix A) (Figure 4-34). 

Lees and Francis (1972) reported that gamma irradiation at levels of 1.5 and 3.0 

kGy showed an increase in flavonol pigments in full-red cranberries but when the berries 

were less colored the synthesis of flavonoids was reduced when storage at 34°F and 40°F. 

However, Breitfellner et al. (2003) found different behavior in phenolics compounds of 

strawberries exposed to gamma radiation at dose levels of 1.0 to 6.0 kGy. The authors 

reported the increase of some phenolics acids, the decrease of some flavonoids, and no 

effect of irradiation in other phenolic compounds. 

In summary, the exposure of blueberries at dose levels up to 1.6 kGy may 

enhances the phenolics content of the fruits and maintains the nutritional and flavor 

properties of the fruits. 

Similar findings were obtained by Reyes and Cisneros (2005) who found a slight 

increase in phenolics during the storage time, but within the irradiated samples 

blueberries exposed to low dose (irradiated in the same conditions used in this study) 

presented higher levels of total phenolics. In addition, the authors found that the volatile 

profile did not show significant changes, except for anthocyanins where its accumulation 

was induced by irradiation. The antioxidant activity was higher for samples irradiated at 

high dose by the end of the storage. The authors observed the same trend for the PAL 

activity. 
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Figure 4-34. Effect of irradiation dose on antioxidant index (% reduction of DPPH/g 
w.b.) of blueberries stored up to 14 days at 5°C. (Control =non-irradiated, low dose =1.1 
kGy, medium dose =1.6 kGy, high dose =3.2 kGy).  
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4.2.2.8. Ascorbic acid 

Irradiation had a significant (P<0.05) effect on the ascorbic acid content of 

blueberries. Overall, compared with non-irradiated samples, a reduction (28.15%) of the 

ascorbic acid was observed by day three in all irradiated samples. By the end of the 

storage, the samples treated with low (1.1 kGy) and medium doses had the highest 

ascorbic acid concentrations. The samples treated with high dose (3.2 kGy) had the 

lowest ascorbic acid content (Table 4-19). These results are consistent with the increase 

in respiration rate in samples exposed to high dose (3.2 kGy) since ascorbic acid is one of 

the substrates available for respiration. They were also consistent with the elevated pH 

values in the samples treated with the higher dose indicating a reduction in the acid 

content of the fruit. 

Similar results were obtained by Reyes and Cisneros (2005) who determined a 

decrease of the ascorbic acid content of the blueberries irradiated under the same 

conditions used in this study. By the end of storage, this decrease was 23.39% for control, 

15.19% for low dose, 36.84% medium dose and 21.21% for high dose. However, 

between the treatments, just a reduction of 6-9% was observed in fruits treated at high 

dose. 

In summary, the exposure of blueberries up to dose levels of 3.2 kGy decreases 

the ascorbic acid concentration but at doses up to 1.6 kGy the reduction is minimized to 

acceptable levels. 
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Table 4-19 
Effect of irradiation dose on vitamin C (mg ascorbic acid/100g w.b.) content of 
blueberries stored up to 14 days at 5°C 

Dose/Day Control* Low Medium  High  
  (0.0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
3 14.01ax(1.37) 11.56ay(1.67)   9.26ay(0.67) 9.36ay(1.09) 
7 10.09bx(0.82)   7.83bx(1.18) 12.66ay(1.25) 9.68bax(1.14) 
14 9.93bx(0.51) 12.51ax(1.25) 12.86ax(2.21) 9.160ax(0.97) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-yMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 

 

 

4.2.2.9. Volatiles  

The volatile constituents evaluated by head space are shown in Table 4-20.The 

flavor compounds that were determined included esters, hydrocarbons, aldehydes, 

alcohols and ketones. Hirvi and Honkanen (1983) found benzyl alcohol as the main 

volatile compound in bog blueberry, bilberry and high-bush blueberries. However, in this 

study the main compound in blueberry volatiles was (E) - 2-hexenal, which accounted for 

45.24% and 23.9% of the total volatiles for days zero and twenty first, respectively. 
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Table 4-20 
Mean pick areas (%) of fifteen volatile compounds recovered by solid phase microextraction, GC-MS of blueberries stored up 
to 14 days at 5°C   

                       Day 0                          Day 14 

Control Low Medium High Control Low Medium High 

Volatiles/Dose (0.0 kGy) (1.1 kGy)  (1.6 kGy)  (3.2 kGy) (0.0 kGy) (1.1 kGy) (1.6 kGy)  (3.2 kGy) 

Acethaldehyde 0.04ax(0.00) 0.09ax(0.01) 0.13ax(0.01) Bdl 0.56ax(0.07) 0.16ax(0.02) 0.87ax(0.01) bdl 

n-hexane 0.74ax(0.01) 0.56ax(0.07) 0.15ax(0.21) Bdl 1.43ax(0.02) 2.24ax(0.03) 0.83ax(0.01) bdl 

Ethanol 1.15ax(0.16) 1.77ax(0.02) 0.98ax(0.01) 0.25ax(0.03) 1.44ax(0.02) 7.67ax(1.08) 6.40ax(0.09) 0.41ax(0.05) 

n-hexanal 49.86ax(7.05) 50.0ax(7.71) 30.11ax(4.25) 20.94ax(2.96) 50.00ax(7.07) 32.70ax(4.62) 50.00ax(7.07) 9.22ax(1.30) 

2-methyl-4 pentenal 1.31ax(0.18) 1.81ax(0.26) 0.22ax(0.02) 1.07ax(0.15) 2.83ax(0.19) 2.66ax(0.01) 5.08bx(0.01) 31.63by(1.49) 

(E)-2-hexenal 100ax(0.01) 97.54ax(0.01) 100ax(0.01) 100ax(0.01) 86.90ax(0.01) 90.63ax(0.01) 95.98ax(0.01) 100ax(0.01) 

Delta-3-carene 2.27ax(0.03) 1.76ax(0.28) 1.49ax(0.21) 0.48ax(0.06) 1.55ax(0.21) 4.89ax(0.69) 7.08ax(1.00) 0.39ax(0.05) 

1-hexanol 3.37ax(0.52) 1.80ax(0.22) 1.98ax(0.28) 2.00ax(0.28) 11.40ax(1.61) 28.47bx(4.02) 32.88bx(4.65) 11.13ax(1.57) 

Limonene 0.54ax(0.07) 0.55ax(0.08) 0.81ax(0.01) 0.85ax(0.12) 1.18ax(0.16) 7.74ax(1.094) 11.80bx(1.66) 1.12ax(0.59) 

2-hexen-1-ol 6.41ax(0.90) 1.67ax(0.23) 2.25ax(0.38) 2.31ax(0.32) 9.52ax(1.34) 29.93bx(4.23) 26.33bx(3.72) 0.70ay(0.09) 

Linalool oxide 0.21ax(0.03) 0.18ax(0.02) 0.19ax(0.02) 0.39ax(0.01) 1.20ax(0.01) 1.55ax(0.02) 1.45ax(0.02) bdl 

Benzaldehyde 0.47ax(0.06) 0.55ax(0.07) 0.57ax(0.08) 0.19ax(0.27) 1.40ax(0.09) 9.35by(1.32) 13.85by(1.95) bdl 

Linalool 0.48ax(0.06) 0.75ax(0.01) 1.13ax(0.02) 1.19ax(0.16) 1.23ax(0.13) 3.03ax(0.04) 5.98axy(084) 13.14by(1.85) 

Alpha-terpinol 2.42ax(0.34) 3.30ax(0.46) 2.83ax(0.40) 1.30ax(0.83) 2.11ax(0.28) 50.00by(7.07) 39.37by(5.56) 3.39ax(0.47) 

Beta-myrcene 0.84ax(0.11) 1.43ax(0.20) 1.26ax(1.78) 0.73ax(0.01) 3.80ax(0.53) 16.88by(2.37) 20.71by(2.92) 3.56ax(0.50) 
Bdl= below detection limit. Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% confidence. 
Numbers in parenthesis are the standard deviation. a-bMeans within days which are not followed by a common superscript letter are significantly 
different (P<0.05).x-yMeans within treatments which are not followed by a common superscript letter are significantly different (P<0.05) 
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Other compounds like n-hexenal, linalool, and 2-hexen-1-ol were significantly 

predominant in the flavor of blueberry. (E)- 2-hexenal, (E)-2-hexenol and linalool have 

been associated with the sensory characteristic flavor of blueberries (Simon et al., 1996; 

Parliment & Kolor, 1975).  

No significant changes in the volatiles profile was observed after irradiation 

treatment (day 0). Only a slight reduction on the acethaldehyde concentration was 

detected in the samples treated with high dose (3.2 kGy) (Figure 4-35). The main 

differences were found after storage up to 14 days. Some of these compounds increased 

and others decreased with dose. The evaluation of the chromatograph (Figure 4-36) 

shows the reduction of compounds such as acethaldehyde and trans-caryophyllene at high 

dose. Other compounds like linalool had an increase of 3.8%, 9.6% in samples treated 

with medium and high doses, respectively; on day twenty-one. Alcohols such as 2-hexen-

1-ol, had (P<0.05) significant increase in samples treated with low and medium doses by 

the end of the storage time, however, the concentration of this compound was less in 

samples irradiated at high dose. This reduction may be associated with the inhibition of 

ripening by irradiation. A similar trend was observed for compounds such as alpha 

terpinol, delta-3- carene and beta-myrcene with the samples treated at low and medium 

doses with higher concentrations than the other treatments on days zero and twenty-one. 

However, the fruit exposed to high dose had significantly higher concentration of 2-

methyl-4 pentenal and linalool on day 14. These results are consistent with the sensory 

evaluation of aroma where the samples treated with the higher dose were rated better than 

the other treatments and the samples irradiated at medium dose had acceptable aroma.  
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Figure 4-35. Gas chromatography/ mass spectrometry of head space volatiles extracted from irradiated and non-irradiated 
blueberries (day 0). Dotted lines indicate the main differences. 
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Figure 4-36. Gas chromatography/ mass spectrometry of head space volatiles extracted from irradiated and non-irradiated 
blueberries (day 14). Dotted lines indicate the main differences. 
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The production or the reduction of these compounds may be associated with the 

fruit maturity. Simon et al. (1996) reported an increase in concentration of volatiles as the 

fruit ripened. Horvat and Senter (1985) reported that during ripening of rabbiteye 

blueberries the concentration of low molecular weight volatiles tended to decrease while 

the higher molecular weight increased. The compounds trans-2-hexenal, trans-2-hexenol, 

α-terpineol, and β-caryophyllene all decrease in concentration as fruit progressed from 

green to midripe to fully ripe. However, linalool and geraniol were equal or greater in 

midripe and ripe than in green fruit.  

Blakesley et al. (1979) did not find any significant differences among the volatile 

profiles of irradiated (2.0 kGy gamma rays) and non-irradiated strawberry pulp. Fan & 

Mattheis (2001) found an inhibition of volatiles in apple when the fruit was treated with 

1- methycyclopropene and exposed to gamma radiation doses of 0.88 and 1.32 kGy. 

However, a consistent trend was not found when the samples were irradiated at 0.44 kGy. 

It seems like the effect of irradiation on the aroma of blueberries depends on the 

dose but in general, the exposure of blueberries to irradiation levels up to 3.2 kGy 

enhances the production of the volatile compounds that characterize the aroma of the 

fruits. 
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4.2.2.10. Tannins 

In general, the tannin content of blueberries increased with the irradiation 

treatment. The fruits treated with low (1.1 kGy) and high (3.2 kGy) doses had the higher 

concentrations of tannins after irradiation treatment and also by the end of the storage 

(Table 4-21). A significant (P<0.05) increase (56.48%) in tannins content was observed 

in samples exposed to medium (1.6 kGy) dose by the seventh day of storage. These 

results were consistent with the increase in the total phenolics observed for irradiated 

samples (section 4.2.2.7) and also with the effect on color where some modifications 

were observed for redness (a) values (section 4.2.2.1) of the irradiated fruits. 

Referring to the storage time, the tannin content in all samples showed a 

decreasing trend. The differences became significant (P<0.05) on days seven and 

fourteen for fruits treated with low dose (1.1 kGy), on days three and fourteen for 

samples exposed to high dose (3.2 kGy), and on day fourteen for samples irradiated at 

medium dose (1.6 kGy). This finding may be related to the maturity stage of the samples. 

According to Hulme (1971) there are considerable changes in phenolic compounds as 

fruit mature and this are closely linked with the oxidative enzyme system. 

These results are in agreement with the findings of Reyes and Cisneros (2005), 

who found changes in the total anthocyanin content of blueberries (irradiated at the same 

conditions used in this study) during the storage. In addition, an increase was detected in 

samples irradiated at high dose (3.2 kGy). The authors found variation in the 

anthocyanins profile of the irradiated samples.  
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Large variations of tannins in fruits have been reported according to the degree of 

maturation and also with their distribution on the fruit (Macheix et al., 1990). Lees and 

Francis (1972) showed that gamma irradiation at levels of 1.5 and 3.0 kGy had a 

beneficial effect on the pigmentation of full mature and full-red cranberries when stored 

at 34° and 40°F by causing more rapid rate of anthocyanin synthesis. 

 

 

Table 4-21 
Effect of irradiation dose on tannin content (mg catechin/100g w.b.) of blueberries stored 
up to 14 days at 5°C 

Day/Dose Control* Low Medium  High  
  (0.0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
0 20.66ax(7.68) 26.08ax(6.51) 19.87ax(5.68) 37.08ay(5.94) 
3 24.66ax(3.61) 26.18ax(2.82) 26.08ax(2.52) 17.51bx(6.13) 
7 11.20ax(0.66) 14.39bx(2.12) 25.73ay(1.65) 29.95az(1.14) 
14 15.09axy(1.30) 15.71bx(1.82) 13.28bxy(0.94) 18.86by(2.90) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 

 

4.2.3. Sensory evaluation 

The sensorial evaluation of blueberries showed significant differences (P<0.005) 

between the acceptability of the irradiated and the non-irradiated samples (Table 4-22). 
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4.2.3.1. Overall quality  

The control fruit had better scores (1.7-2.7) than the irradiated samples. However, 

within the irradiated fruits, samples exposed to a medium dose (1.6 kGy) were the most 

accepted while the fruits treated with a high dose (3.2 kGy) were less acceptable to the 

panelists.  

4.2.3.2. Color 

The objective color measurements presented differences among the treatments 

and these variations in the color of blueberries were detected by the panelists. A 

significant (P<0.05) preference was observed for control samples on day zero. However, 

by days three and seven the fruits treated with low and medium doses received scores 

closer to the control. The samples exposed to high dose (3.2 kGy) rated consistently 

higher than the other treatments but still between the acceptance limit (1-3). These results 

are in agreement with the objective evaluation of color where the samples irradiated at 

the higher dose had lower values of color attributes due to the differences in the 

anthocyanin content and in the fruit maturity levels. A correlation factor was determined 

between the redness (a values) previously measured in the samples and the values of the 

sensory evaluation of color. The higher association was observed for control fruits (r = 

0.79). 
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Table 4-22 
Sensory attributes (overall quality, color, texture and aroma) of irradiated blueberries 
stored up to 14 days at 5°C 

Overall quality     

Day Control* 
(0.0 kGy) 

Low dose 
(1.1 kGy) 

Medium dose 
(1.6kGy) 

High dose 
(3.2 kGy) 

0 1.76ax(0.82) 2.13axy(0.87) 2.37ay(0.91) 2.91az(1.03) 
3 2.26bx(0.88) 2.72by(1.01) 2.14ax(0.77) 2.74ay(0.89) 
7 2.54bcx(1.13) 2.54abx(1.13) 2.54ax(1.00) 3.17ay(1.15) 
14 2.78cx(1.03) 2.14ay(1.16) 2.38axy(0.86) 3.20az(3.20) 
     

Color     

Day Control* 
(0.0 kGy) 

Low dose 
(1.1 kGy) 

Medium dose 
(1.6kGy) 

High dose 
(3.2 kGy) 

0 1.61ax(0.82) 1.83axy(0.88) 2.25ayz(0.88) 2.38az(1.02) 
3 1.98abx(0.92) 2.20abx(0.78) 1.93ax(0.78) 2.26ax(1.00) 
7 2.27bx(0.98) 2.54bx(1.09) 2.37ax(0.98) 2.78abx(1.12) 
14 2.78cx(1.13) 2.06ay(1.00) 2.22ay(0.85) 2.98bx(1.23) 
     

Texture     

Day Control* 
(0.0 kGy) 

Low dose 
(1.1 kGy) 

Medium dose 
(1.6kGy) 

High dose 
(3.2 kGy) 

0 1.94ax(0.85) 2.33axy(0.98) 2.60ay(0.74) 3.58az(1.03) 
3 2.52bx(0.99) 3.44by(1.16) 2.39ax(1.03) 3.14ay(1.08) 
7 2.52bx(1.08) 2.92cx(1.18) 2.60ax(1.13) 3.40ay(1.24) 
14 3.38cx(0.99) 2.69acy(1.29) 2.59ay(0.95) 3.34ax(1.29) 
     

Aroma     

Day Control* 
(0.0 kGy) 

Low dose 
(1.1 kGy) 

Medium dose 
(1.6kGy) 

High dose 
(3.2 kGy) 

0 3.23ax(1.13) 3.36ax(0.90) 3.51ax(0.74) 3.13ax(0.96) 
3 3.18ax(1.10) 3.30ax(1.14) 3.14abx(0.96) 3.08ax(0.97) 
7 3.23ax(1.05) 2.98ax(1.00) 2.96bx(1.04) 3.17ax(1.20) 
14 3.42ax(0.75) 3.10ax(1.18) 3.22abx(0.96) 3.08ax(0.84) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-zMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05).On the hedonic scale for overall quality and color a score of 1= like extremely, 
3= neither like nor dislike, 5=dislike extremely; for texture a score of 1= firm, 3= somewhat firm-
soft, 5= soft; for aroma a score of 1= strong, 3= moderate, 5= none (see appendix A-A). 
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4.2.3.2. Texture  

The sensory results indicated differences for the texture acceptance of the 

irradiated and the non-irradiated samples. The control samples had significantly lower 

scores than the irradiated samples on days zero and seven; however, the low and medium 

dose samples received better scores (more firm at P<0.05) than the control on day 

fourteen. The higher scores (more soft at P<0.05) were given to those samples exposed 

to higher dose (3.2 kGy) at days zero, three and seven, indicating less acceptability of 

the fruits. These results are in agreement with the objective evaluation of texture where 

the samples irradiated at high dose required less force to shear and were also less tough 

than the other samples. In addition, the changes in the cell structure were more severe at 

this dose level (section 4.21.3). A negative correlation between the objective measure of 

texture and the sensory evaluation was found. This suggests that higher values of shear 

force are related with very low values of the hedonic scale. The correlation factors 

between these variables were: -0.27 for control, 0.35 for samples treated at low dose, -

.62 for medium dose and, -0.45 for samples irradiated at high dose. 

4.2.3.3. Aroma 

No significant differences in the average score of aroma between the control and 

the irradiated samples were detected by the panelists. However, the samples treated with 

a high dose (3.2 kGy) were rated with better scores (moderate aroma) on days zero, 

seven and fourteen. In addition, the samples exposed to medium dose were more 

acceptable on day seven. Different results were found in the volatile analysis of the 

samples (section 4.2.2.9) that indicated a decrease of some compounds in samples 
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exposed to high dose. It is possible that the difference in these compounds was not 

enough to affect the aroma of the fruits or that the panelist had difficulties in evaluating 

the blueberry aroma. 

Miller et al. (1994) reported that the subjective evaluation of texture of 

blueberries irradiated with gamma rays at doses of 0.75, 1.5, 2.25 and 3.0 kGy showed 

that firmness was reduced with irradiation after seven days of storage at 1°C. They also 

indicated increase in internal damage of fruits irradiated at 2.25 and 3.0 kGy. In the same 

study, flavor was rated unacceptable at doses above 1.5 kGy. Yu et al. (1995) evaluated 

the sensory quality of strawberries exposed to electron beam irradiation at dosages of 

0.5, 1.0 and 2.0 kGy, they found a decrease in sensory color and firmness of irradiated 

samples as irradiation dose was increased, and off-flavor intensity of strawberries was 

incremented after 6 days of storage at 2°C.  

In summary, irradiation of blueberries up to 1.6 kGy does not affect the sensory 

quality of the fruits. 
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4.3. Kinetics of quality changes  

The main effects of irradiation on the product quality attributes were in color, 

texture, ascorbic acid content, phenolics and respiration rate. These changes were 

quantified using principles of kinetics. 

In general, the rate of change of a quality parameter can be represented by 

 

nk(C)
dt
dC

−=                                                 (4-10) 

where k is the rate constant, C is the concentration of a quality parameter C at time t and 

n is the order of the reaction (Chen & Ramaswamy, 2002). 

For the greater part of foods, the time dependence relationship appears to be 

described by zero or first order models. By integrating Eqn (4-10), zero-order (Eqn 4-

11), first order (Eqn 4-12) and fractional conversion (Eqn 4-13) kinetics models can be 

derived: 

tkCC o +=       (4-11) 

)exp( kt
C
C

o

−=      (4-12) 

kt)(
CC
CC

eo

e
−=

−
− exp      (4-13) 

where Co represents the initial quality value and Ce is the equilibrium value of the 

quality factor C (Chen & Ramaswamy, 2002). 
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4.3.1. Mangoes 

4.3.1.1. Color changes 

The variation in color of fruits with time has been reported to follow first order 

kinetics (Ochoa et al., 2001; Ahmed et al., 2001; Shin & Bhowmik, 1995)  

Figures 4-37 to 4-39 present the changes in color attributes of all mangoes 

throughout the storage time. The changes in color parameters found in the present study 

for control and irradiated fruits did not follow a clear trend and they could not be fitted 

to any simple kinetics model. Therefore, the kinetics describing a, b and L values was 

not determined. However, redness (a values) (Figure 4-37) and yellowness (b values) 

(Figure 4-38) showed an increase from day zero until day five. This increase was 

associated with the significant increase on tannins and carotenoids on that day (section 

4.1.2.10). It is possible that on these samples a rapid destruction of the chlorophyll 

occurs with chlorophyll a preferentially degraded to chlorophyll b. This degradation is 

accompanied by increases in carotenoids levels which affect the color development on 

the fruit. From days five to twenty-one, a decrease occurred for all treatments on day ten, 

followed by a significant (P>0.05) increase for control and samples treated with high 

dose. For samples exposed to medium and low dose a slight decrease was observed by 

the end of the storage. Discussion of these parameters is available in section 4.1.1.1.  
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Figure 4-37. Changes in redness (a values) of irradiated and non-irradiated mangoes 
stored up to 21 days at 12°C. (Control=non-irradiated, low dose=1.0 kGy, medium 
dose=1.5 kGy, high dose=3.1 kGy).  
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Figure 4-38. Changes in yellowness (b values) of irradiated and non-irradiated mangoes 
stored up to 21 days at 12°C. (Control= non-irradiated, low dose= 1.0 kGy, medium 
dose= 1.5 kGy, high dose= 3.1 kGy).  
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The change in redness (a) was fitted to different models as, 

[ ]89278700260 2 .t.t.
ta(control)

−+−
= , R2= 0.96   (4-14) 

a (1.0 kGy) = 17328[t(-3.366)]+2.88, R2= 0.96    (4-15) 

a (1.5 kGy) = 66.66*[t(-1.41)]+2.57, R2= 0.89    (4-16) 

a (3.1 kGy) = 2.92 exp006*[t(-8.147)]+3.83, R2= 0.95   (4-17) 

The changes in yellowness (b) were described by the following equations: 

[ ]01132431240 2 .t.t.
tb(control)

−+−
= , R2= 0.55   (4-18) 

b (l.0 kGy) =     202*(t (-1.607)) + 49.11, R2= 0.99   (4-19) 

b (1.5 kGy) = 65.97*(t (-0.902)) + 48.81, R2= 0.92   (4-20) 

b (3.1 kGy) = 25.97*(t (-0.303)) + 43.22, R2= 0.88   (4-21) 

 

The above equations (4-14 to 4-21) suggest that differences in the values of the 

color attributes (a and b values) would be observed with time at each irradiation dose. 

For instance, the redness of the 1.5 kGy samples (Eqn 4-16) would be lower at longer 

time, but for 3.1 kGy samples (Eqn 4.17) small changes would occur. The yellowness of 

the 1.0 kGy and 1.5 kGy samples (Eqn 4-19 and 4-20) would have a decreasing trend 

with time. 

 The changes in lightness (L) are shown in Figure 4-39. Differences among the 

samples were observed but not a clear trend was found. In general, all samples had a 

decrease in lightness by day five with a subsequent increase on day ten.  
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Figure 4-39. Changes in lightness (L) of irradiated and non-irradiated mangoes stored up 
to 21 days at 12°C. (Control= non-irradiated, low dose= 1.0 kGy, medium dose= 1.5 
kGy, high dose= 3.1 kGy).  
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By the end of the storage, a reduction in lightness was observed for control 

samples while the samples treated with low (1.0 kGy) and medium (1.5 kGy) doses had 

increased value. The fruits treated with high dose (3.1 kGy) did not change by day 

twenty-one. These variations are associated with the changes in a and b values related to 

the pigments concentrations and also associated with the differences in fruit maturity 

levels. The changes in lightness were fitted using a power model and described as, 

L (control) =    (-3.41)*(t (-0.1135)) +73.28, R2= 0.51    (4-22) 

L (1.0 kGy) = (-20.04)*(t (-1.172)) +74.13, R2= 0.80    (4-23) 

L (1.5 kGy) = (-47.78)*(t (-1.229)) +75.80, R2= 0.88    (4-24) 

L (3.1 kGy) =   (79.75)*(t (-1.374)) +74.77, R2= 0.97     (4-25) 

 

From Eq 4-22 to 4-25 an increasing but not significant trend in lightness of 

controls and fruits treated up to 1.5 kGy was observed through time. The samples treated 

with 3.1 kGy had a decreasing L values which imply the darkening of the fruits. 

4.3.1.2. Texture changes  

Texture degradation has been reported to follow a first order kinetic reaction 

(Lau et al., 2000; Ahmed et al., 2001) which is modeled by Eqn (4-12). By linearization 

of Eqn (4-12), 

kt C C o −= lnln      (4-26) 
 
 

where C is the textural characteristic (like firmness) at time t, Co is the initial amount of 

the textural characteristic in the treated samples, k is the ‘softening’ rate constant in 
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(time -1), which is the slope of the curve of the appropriate reaction vs time. The plot of 

ln (C/C0) versus t would be a straight line, and the slope at a constant dose would be 

equal to –k. 

Zero and first order kinetics models were used to evaluate the changes in texture 

parameters of mangoes but low correlation was found. Therefore, the fractional kinetics 

model (Eqn 4-13) best fitted the results of the changes in firmness and Young’s modulus 

with time.  

4.3.1.2.1. Firmness 

The degradation of texture (loss of firmness) showed two distinct trends. There 

was a rapid loss of firmness in all treatments from day zero until day five, and then a 

continuous but not significant increase in the rupture force until the end of the storage, 

especially in samples irradiated at low and medium doses (Figure 4-40). The reduced 

firmness is associated with a more ripe stage of the fruits, which implies changes in the 

cell structure and in color. During the ripening there is a disruption of the cell wall with 

the release of many of its components (polysaccharides); therefore, the softening of the 

fruits increases. The changes in color involve the alteration of the cell structure 

associated with chloroplast to chromoplast transition that induces the breakdown of the 

thylakoid membrane in the peel of the fruit.  
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Figure 4-40. Changes in texture –rupture force (RF)-during storage of mangoes stored up 
to 21 days at 12°C. (Control= non-irradiated, low dose= 1.0 kGy, medium dose= 1.5 
kGy, high dose= 3.1 kGy). 
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For fruits exposed at high dose firmness remained constant during time. It is 

possible that the variation on ripening stage among the fruits exposed to high dose was 

less than in the other treatments, therefore, minimum changes in texture with time were 

observed. 

As it was expected, the rate constant (k) was higher at elevated doses, therefore, 

the higher the dose the greater the loss of firmness in the irradiated fruits (Table 4-23). 

The samples treated at low dose were firmer than those treated at medium and low dose. 

 

 

Table 4-23 
Rate constant (k) and R2 values for changes in firmness of irradiated 
mangoes (Eqn 4-13) 

Treatment k (days-1) (EMS)* R2 
1.0 kGy 0.57 11.49 0.81 
1.5 kGy 0.62 14.26 0.76 
3.1 kGy 0.63 4.46 0.85 

  *Mean square error 
 

 

Eqn 4-13 did not describe the changes in firmness of the control samples and the 

changes were described by,  

RF (control) = 173.9+ (-10.53) t+0.4292t2, R2 =0.915   (4-27) 

and for irradiated samples: rupture force (RF) =
eo

e

CC
CC

−
− = Aexp (-kt) then: 

RF (1.0 kGy) = 1.702exp (-0.57 t), R2 =0.81     (4-28) 
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RF (1.5 kGy) = 3.167 exp (-0.62 t), R2 =0.76     (4-29) 

RF (3.1 kGy) = 4.567 exp (-0.63 t), R2 =0.84    (4-30) 

The influence of dose on the reaction rate constant (k) was assumed to follow an 

Arrhenius type relationship as: 

Ea/RDekk(D) -
o=      (4-31) 

where ko is the frequency factor (day-1), Ea is the activation energy (kcal/mol K), R is the 

universal gas constant (8.314 J/mol K), and D is the dose (kGy). Linearizing Eq.(4-31), 

RD
Ea k k o −= lnln          (4-32) 

By plotting ln(k) vs the reciprocal of dose (1/D), the following relationship was found  

⎟
⎠
⎞

⎜
⎝
⎛−=

D
.-.n k 1150400l , R2= 0.86      (4-33) 

From Eq. (4-33), ko= 0.67 (day -1) and Ea= 0.0003 kcal/mol (1.25 J/mol). Chen 

and Ramaswamy (2002) reported activation energy of 5.49 kcal/mol for the degradation 

of the axial puncture force of banana stored at 15°C. According to Karel et al. (1975) the 

activation energy for thermal degradation of texture of fruits and vegetables ranges 

between 13.0 and 41.0 kcal/mol. This suggests that firmness is more sensitive to 

temperature than it is to radiation dose. 

The dependence of k on irradiation dose is given by: 

k(D)= 0.67 day -1e(-1.25/D)    (4-34) 

and the changes in firmness due to irradiation dose at specific time, (t), are described by: 

C(t)= Coe
[0.67 e(-1.25/D)]*t    (4-35) 
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Therefore, as the time increases the changes in firmness are more drastic or significant. 

4.3.1.2.2. Toughness 

The values of toughness of the control samples and the fruits treated with any 

irradiation dose remained relatively constant throughout the storage period. Only the 

samples exposed at medium (1.5 kGy) dose had a significant (P>0.05) decrease of this 

texture parameter on day 5 and it remained constant after that (Figure 4-41). Therefore, 

the kinetics of toughness changes was not determined. The decrease of toughness was 

associated with the increase in softening due to the changes in the cell wall structure.  

The following equations describe the changes in toughness of mangoes, 

T (control)  =  0.43 + (-0.01823) t+0.000703t2, R2 =0.88   (4-36) 

T (1.0 kGy) = (-6.03)* (t-2.79) +0.129, R2 =0.83     (4-37) 

T (1.5 kGy) = (-0. 24)* (t-0.58) +0.119, R2 =0.99     (4-38) 

T (3.1 kGy) = (-0.04) * (t-0.53) +0.050, R2 =0.76    (4-39) 

The above equations (4-36 to 4-39) suggest that the toughness of fruits decreases 

with time independent of the dose. 
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Figure 4-41. Changes in texture –toughness (T)-during storage of mangoes stored up to 
21 days at 12°C. (Control=non-irradiated, low dose=1.0 kGy, medium dose=1.5 kGy, 
high dose=3.1 kGy). 
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4.3.1.2.3. Stiffness (Young’s modulus) 

 For all irradiated and non-irradiated samples an initial decrease in the fruit 

stiffness was observed from day zero until day five and then it increased at day ten. The 

decrease (75.5%) was significant (P<0.05) in samples treated with medium dose (1.5 

kGy) (Figure 4-42). These results are related with the loss of firmness due to structural 

changes. By the end of the storage, the stiffness of the all samples remained constant.  

The effect of time on the Young’s modulus (E) of the fruits was described by the 

fractional conversion kinetics model (Eqn 4-13). The rate constants (k) (Table 4-24) 

were determined from the ln (C-Ce/Co-Ce) versus time plots. 

 

 

Table 4-24 
Rate constant (k) and R2 values for changes in stiffness of mangoes (Eqn 4-13) 

Treatment k (days-1) EMS* R2 
0.0 kGy 0.28 2.35 0.84 
1.0 kGy 0.36 3.63 0.82 
1.5 kGy 0.35 5.31 0.73 
3.1 kGy 0.30 1.76 0.86 

*Mean square error 
 

 

The value of the degradation rate constant (k) was higher for the irradiated 

samples than for the control indicating faster reduction of the stiffness with the 

irradiation treatment. 
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Figure 4-42. Changes in texture –Young’s modulus (E) or stiffness- during storage of 
mangoes stored up to 21 days at 12°C. (Control= non-irradiated, low dose= 1.0 kGy, 
medium dose= 1.5 kGy, high dose= 3.1 kGy).  
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The low value of k for the samples treated with the higher dose may be related to 

the constant stiffness of these samples during the storage time. These variations may be 

associated with the differences in the degree of ripening of the fruits used for each 

treatment which increases the softening because of the cell wall depolymeration. 

The changes in stiffness were described by the following equations: 

E (control) =  0.94exp (-0.32 t), R2 =0.84    (4-40) 

E (1.0 kGy) = 1.57 exp (-036 t), R2 =0.81     (4-41) 

E (1.5 kGy) = 1.95exp (-0.35 t), R2 =0.73     (4-42) 

E (3.1 kGy) = 1.19 exp (-0.30 t), R2 =0.86    (4-43) 

The results implied that for all treatments, as the time increases the stiffness of 

the fruits decreases. 

The influence of dose on the reaction rate constant (k) was assumed to follow an 

Arrhenius type relationship (Eq 4-31), where ko is the frequency factor (day-1), Ea is the 

activation energy (kcal/mol K), R is the universal gas constant (8.314 J/mol K), and D is 

the dose (kGy). 

By plotting ln(k) vs the reciprocal of dose (1/D) (Eq 4-32, Figure 4-43), the 

following relationship was found  

⎟
⎠
⎞

⎜
⎝
⎛+−=

D
..nk 1300291l , R2=0.95      (4-44) 

From Eq. (4-44), ko= 0.28 (day -1) and Ea= 2.49 J/mol. The activation energy 

(Ea) is higher compared with the activation energy calculated for firmness (1.25 J/mol). 
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Figure 4-43. k describing changes in stiffness (Young’s modulus) of irradiated mangoes 
stored at 12°C. 
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This suggests that the changes in firmness occurred at higher rate than the 

changes in stiffness. 

The dependence of k on dose in the irradiation treatment of mangoes for 1.0-3.1 

kGy is given by: 

k(D)= 0.28 day -1e(-2.49/D)    (4-45) 

and the changes in stiffness due to irradiation dose at specific time, (t), are described by: 

C(t)= Coe
[0.28 e(-2.49/D)]*t    (4-46) 

The changes in stiffness suggest that the higher irradiation dose the higher the 

reduction of the stiffness of the fruits, and the longer the time the higher the reduction.  

4.3.1.3 Degradation of ascorbic acid (Vitamin C)  

The average concentration of ascorbic acid in the control (non-irradiated) fruits 

was 15.27±1.44 mg/100g w.b. while for the irradiated samples it was 6.77±0.74 

mg/100g w.b (Figure 4-44). All irradiated and non-irradiated mangoes had a significant 

(P>0.05) decrease of ascorbic acid content with time. This reduction accounted for 

31.5%, 47.0%, 91.0% and 89.0 % for control, low (1.0 kGy), medium (1.5 kGy) and 

high (3.5 kGy) doses, respectively by the end of storage. Lacroix et al. (1990) reported a 

decrease in the ascorbic acid content of gamma irradiated (0.5 – 0.95 kGy) and 

unirradiated mangoes during storage with significant differences in days 0, 9 and 15. 

Normally, the ascorbic acid decreases during ripening of the fruits (Seymour et al., 

1993) thus, reduction upon storage may be due mostly to the effect of ripening process. 
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Figure 4-44. Effect of time of storage on ascorbic acid (AA) concentration of mangoes 
stored at 12°C. (Control= non-irradiated, low dose= 1.0 kGy, medium dose= 1.5 kGy, 
high dose= 3.1 kGy). 
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The reaction rate constants (k) and the initial concentration of ascorbic acid were 

calculated using the first order kinetics model (Eqn. 4-12) (Figure 4-45) and are 

presented in Table 4-25.  

 

 

Table 4-25 
Rate constant (k) and initial ascorbic acid concentration for degradation of ascorbic acid 
in mangoes stored up to 21 days at 12° C 

Treatment  k(day-1) ESM* 
Co (mg/100g 

w.b) R2 
Control 0.03 6.6E-05 2.91 0.99 
1.0 kGy 0.13 0.156 2.27 0.94 
1.5 kGy 0.16 0.015 2.84 0.99 
3.1 kGy 0.05 0.010 2.34 0.97 

* Mean square error 
 

 

The reaction rate constants (k) confirm the influence of irradiation on the 

degradation of vitamin C. However, within the irradiated samples the fruits treated with 

medium dose degraded faster than the other treatments. This factor may be associated 

with different concentrations of solute and pH between the irradiated samples. Barr and 

King (1956) found that the rate of gamma induced oxidation radiation was inversely 

proportional to the concentration of solute. In solution the ascorbic acid is easily 

oxidized to a dehydorascorbic acid, and the liability to oxidation increases with 

increasing pH.  
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Figure 4-45. Relationship between ascorbic acid content and time of storage on mangoes 
stored up to 21 days at 12°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose 
=1.5 kGy, high dose =3.1 kGy). 
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Since, these samples treated with medium dose had high antioxidant activity 

during storage; it is possible that at medium dose (1.5 kGy) these chemical reactions 

occur first. 

The changes in ascorbic acid were described by the following equations: 

AA (control)=  2.91 exp (-0.03 t), R2 =0.99   (4-47) 

AA (1.0 kGy)= 2.27 exp (-0.13 t), R2 =0.94   (4-48) 

AA (1.5 kGy)= 2.84 exp (-0.16 t), R2 =0.99    (4-49) 

AA (3.1 kGy)= 2.34 exp (-0.05 t), R2 =0.97   (4-50) 

The influence of dose on the reaction rate constant (k) was assumed to follow an 

Arrhenius type relationship (Eqn 4-6). By linearization and plotting ln(k) vs the 

reciprocal of dose (1/D) (Figure 4-46), the following relationship was found:  

⎟
⎠
⎞

⎜
⎝
⎛+−=

D
..nk 1671621l , R2=0.98      (4-51) 

From Eq. (4-51), ko= 0.2 (day -1) and Ea= 0.00331 kcal/mol (13.88 J/mol). 

Vikram et al. (2004) reported activation energies values between 9.52 and 15.48 

kcal/mol for thermal degradation of ascorbic acid in orange juice treated with different 

heating methods. In addition, Karel et al. (1975) reported that the activation energy for 

thermal degradation of liquid vitamin C in food components was 23.1kcal/mol. This 

suggests that heat treatment has more detrimental effect on ascorbic acid than irradiation. 

With small changes in temperature ascorbic acid degrades faster than with small changes 

in dosage.  

The dependence of k on dose in the irradiation of mangoes is given by: 
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k(D)= 0.2 day -1e(-13.88/D)    (4-52) 

and the changes in ascorbic acid concentrations due to irradiation dose at specific time, 

(t), are described by: 

C(t) = Coe
[0.20e-13.88/D]t    (4-53) 
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Figure 4-46. Effect of dose on the rate constant (k) for change in ascorbic acid in 
irradiated mangoes stored up to 21 days at 12°C. 
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4.3.1.4 Respiration rate changes 

The changes in respiration rate (mg CO2/Kg h) showed distinct trends but in 

general, all the samples had two phases: one of increase of respiration and other one of 

decrease (Figure 4-47). For instance, the samples treated at medium (1.5 kGy) and at low 

dose (1.0 kGy) had a rapid loss of respiration from day zero until day ten (phase 1), and 

then a continuous increase until the end of the storage (phase 2). The control fruits had a 

rapid decrease in respiration until day 5 (phase 1) with a subsequent increase until day 

twenty-one (phase 2). The samples exposed to high dose (3.1 kGy) did not have 

significant (P>0.05) changes in the respiration rate until day 10 (phase 1) but an increase 

was observed by the end of storage (phase 2). The variations in the CO2 concentrations 

are associated with the differences in the stage of ripening of the fruit. Immature fruit 

have high respiration rates while mature fruits have relatively low rates (Salveit, 1997).  

The rate constant k was calculated from the slope (dCO2/dt) of each of the 

increasing and decreasing phases observed from each treatment. In phase 1, the values of 

k indicate that the changes in CO2 concentrations occurred faster in the control samples 

than the irradiated samples (Table 4-26). It also suggest than the changes in the 

respiration rate of the samples treated with a high dose (3.1 kGy) are very slow. 

Contrarily, in phase 2 the CO2 concentrations increased faster in high dose samples than 

in the other treatments.  
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Figure 4-47. Effect of time of storage on respiration rate (mg CO2/kg h) of mangoes 
stored at 15°C. (Control= non-irradiated, low dose= 1.0 kGy, medium dose= 1.5 kGy, 
high dose= 3.1 kGy). 
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Table 4-26 
Rate constant (k) and R2 values for changes in respiration rate of mangoes stored 
up to 21 days at 12°C 

  Phase 1 Phase 2 

Treatment  k(day-1) R2 k(day-1) R2 
Control  1.73 0.91 0.31 0.97 
1.0 kGy 0.42 0.99 0.27 0.96 
1.5 kGy 0.20 0.84 0.29 0.99 
3.1 kGy 0.06 0.57 0.44 0.99 

 

 

4.3.2 Blueberries 

4.3.1.1 Color changes  

4.3.1.1.1. Redness 

Color values (a, b and L) of the berries did not follow a specific trend and 

therefore were not suitable for monitoring color changes during irradiation treatment. 

Previous discussion of these color parameters is available in section 4.2.2.1.  

Control (non-irradiated), medium and, high doses did not cause significant 

changes in a values (redness) with time (Figure 4-48). Only the samples treated with the 

low dose had a significant (P>0.05) increase in a values until day three with a 

subsequent decrease at the end of the storage time. This variation could be due to the 

increase of anthocyanins and tannins content on that day according to the ripeness and 

pH of the evaluated fruit. 
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Figure 4-48. Changes in redness (a values) of blueberries stored up to 14 days at 5°C. 
(Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose =3.2 
kGy).  
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The changes in redness were described by the following equations: 

a (control)  = (-0.369)+(-0.010)*t + 0.0015t2, R2= 0.82    (4-54) 

a (1.1 kGy) = (-0.021)+(0.013)*t + (-0.0032)t2, R2= 0.76   (4-55) 

a (1.6 kGy) = (-0.91) *(t(0.170)) + (-0.31), R2= 0.88    (4-56) 

a (3.2 kGy) = (-0.72) *(t(-1.353)) + (-0.26), R2= 0.93    (4-57) 

From the above equations the a values of the berries would be increased as the 

storage time is extended.  

4.3.1.1.2. Yellowness 

Throughout the storage time, different trends were observed in the yellowness of 

the non-irradiated and irradiated blueberries. Control samples had a significant (P>0.05) 

increase in b values on day fourteen indicating the ripening of the fruits (Figure 4-49). 

The samples treated with a low dose (1.1 kGy) showed an increase in b values 

during storage, while the samples exposed to medium dose (1.6 kGy) had decreased b 

values. The decrease in b values could be associated with the reduction of carotenoids. 

In some fruits these pigments are masked by more intense pigments such as 

anthocyanins. These samples also had a reduction of phenolics within time. The changes 

in color (yellowness) were described by different equations as: 

b (control)  = (-2.88) + (-0.209)*t + 0.018t2, R2= 0.90   (4-58) 

b (1.1 kGy) = (-0.307)*exp(0.1387*t) + (-1.69), R2=0.97   (4-59) 

b (1.6 kGy) = (-0.53) *(t(0.319)) + (-2.63), R2= 0.99    (4-60) 

b (3.2 kGy) = (-3.01) *(t(-1.16)) + (-2.73), R2= 0.83    (4-61) 
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Figure 4-49. Changes in yellowness (b values) of blueberries stored up to 14 days at 5°C. 
(Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose =3.2 
kGy).  
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4.3.1.1.3. Lightness 

Different trends were observed for lightness of both control and irradiated 

samples. For instance, a significant (P>0.05) decrease (21.33%) in L values (darker) of 

the control samples was observed on day fourteen, while samples exposed to low dose 

(1.1 kGy) showed a slight reduction half way the storage time (day 7), but then the 

samples became significantly lighter (higher L values) at the end of the storage. Samples 

treated with medium (1.6 kGy) dose became significantly lighter throughout the storage 

time. The color (L values) of the samples treated with high (3.2 kGy) dose remained 

constant throughout storage (Figure 4-50). The variation of lightness values is associated 

with the changes in a and b values, and also with the activity of the enzymes responsible 

of pigment synthesis. According to Seymour et al. (1993) there is a correlation between 

anthocyanins and PAL activity which increase during the ripening.  

The changes in lightness were described by the following equations: 

L (control)  = 17.89 + (0.512)*t+ (-0.05)*t2, R2= 0.81    (4-62) 

L (1.1 kGy) = (0.05) *(t (1.705)) + (15.68), R2= 0.93    (4-63) 

L (1.6 kGy) = (3.82) *(t (-0.215)) + (16.87), R2= 0.99    (4-64) 

L (3.2 kGy) = (-0.53) *(t (0.112)) + (18.28), R2= 0.95    (4-65) 

 The results indicated the variation between the changes in lightness for each 

treatment. For instance, for the control and for the fruits treated at medium dose L values 

increases at extended storage times while for the samples exposed to low and high doses 

these values are decreased. 
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Figure 4-50. Changes in lightness (L) of blueberries stored up to 14 days at 5°C. 
(Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high dose =3.2 
kGy).  
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4.3.2.2 Texture changes 

Softening of the fruit has been one of the most frequent phenomena observed in 

the application of irradiation treatment. Zero, first order and fractional conversion 

kinetics models were used to evaluate the reaction order of the changes in texture of 

blueberries. Low correlation was obtained therefore, the kinetics describing changes in 

firmness (shear force) and toughness with the time of blueberries was not determined.  

4.3.2.2.1. Firmness 

No changes in the shear force (SF) of the samples treated with low and medium 

dose were observed during time. The control samples had a significant (P>0.05) increase 

in the shear force values on days three and seven with a subsequent decrease on day 

fourteen. The samples exposed to high dose had a significant decrease in firmness on 

day seven (Figure 4-51). These differences may be related to different maturity levels 

between the fruits and the changes in cell wall structure by the degradation of the cell 

wall constituents and the presence of depression on the skin of the fruits. 

The changes in firmness (shear force) were described by the following equations:  

SF (Control) = 166.5 + (13.03)*t + (-0.977)*t2, R2= 0.96   (4-66) 

SF (1.1 kGy) =  87.67 + (-2.89)*t + (0.219)*t2, R2= 0.38   (4-67) 

SF (1.6 kGy) = 112.1+ (0.84)*t + (-0.030)*t2, R2= 0.34   (4-68) 

SF (3.2 kGy) =  19.72 + (2.24)*t+  (-0.95)*t2, R2= 0.99   (4-69) 
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Figure 4-51. Changes in texture- shear force (SF) of blueberries during storage up to 14 
days at 5°C (control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high 
dose =3.2 kGy).  
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4.3.2.2.2. Toughness 

Throughout storage, no differences were found in the values of toughness for 

samples treated with low and medium doses. However, for the control fruit had a 

significant (P>0.05) increase on day seven with a subsequent decrease by the end of the 

storage. The toughness of the fruits exposed to high dose (3.2 kGy) increased on days 

three (17.1%) and fourteen (11.8%). This increase corresponded to higher values of 

shear force for these samples in these days (Figure 4-52). Softening increases as the 

ripening occurs therefore, the differences in toughness with time are related to the 

variation in maturity levels of the fruits.  

The changes in toughness are described by the following equations, 

T(Control) = 4.20+ (0.29)*t+ (-0.024)*t2, R2= 0.46    (4-70) 

T(1.1 kGy) = (0.5 4) *(t (-0.163)) + (2.97), R2= 0.97    (4-71) 

T(1.6 kGy) = (0.17) *(t (0.112)) + (2.75), R2= 0.79    (4-72) 

T(3.2 kGy) = 480.7 *(t (-0.665)) + (2.16), R2= 0.51    (4-73) 

4.3.2.3 Degradation of ascorbic acid  

Control blueberries had a significantly (P<0.05) lower (29.0%) of ascorbic acid 

contents after days seven and fourteen (figure 4-53). In addition, samples treated with 

low (1.1 kGy) dose had a decrease of 32.13% on the seventh day of storage. The samples 

exposed to medium (1.6 kGy) dose had a 27.90% increase while those samples exposed 

to the higher dose had a reduction of 2.15% over the storage time. These changes in 

ascorbic acid concentration may be associated with the formation of radiolytic products  
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Figure 4-52. Changes in texture- toughness (J) of blueberries during storage up to 14 
days at 5°C. (Control =non-irradiated, low dose =1.1 kGy, medium dose =1.6 kGy, high 
dose =3.2 kGy).  
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Figure 4-53. Effect of time of storage on ascorbic acid (AA) concentration of blueberries 
stored at 5°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, 
high dose =3.2 kGy). 
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such as dehydroascorbic acid which increases at maximum at some dosages but it 

decreases at other irradiation levels (Rosenthal, 1992). 

Zero, first order and fractional conversion kinetics models were used to evaluate 

the reaction order of the changes in ascorbic acid content of blueberries. The best 

correlation describing changes in ascorbic acid with the time was obtained with the 

fractional conversion model (Eqn 4-13) (see Figure 4-53) where ascorbic acid 

concentration is described as (AA) =
eo

e

CC
CC

−
− = Aexp (-kt) 

The reaction rate constants (k) and the initial concentration of ascorbic acid were 

calculated from the ln (C-Ce/Co-Ce) versus time plots (Figure 4-54) and presented in 

Table 4-27. 

 

 

Table 4-27 Rate constant (k) for degradation of ascorbic acid in blueberries 
stored up to 14 days at 5°C  

Treatment k (days-1) (EMS)* R2 
0.0 kGy 1.01 0.409 0.99 
1.1 kGy 0.94 8.244 0.79 
1.6 kGy 1.00 0.514 0.99 
3.2 kGy 0.77 4.571 0.82 

*Mean square error 
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Figure 4-54. Relationship between ascorbic acid content and time of storage at different 
irradiation doses applied on blueberries stored at 5°C. (Control =non-irradiated, low 
dose =1.1 kGy, medium dose =1.6 kGy, high dose =3.2 kGy). 
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The reaction rate constants (k) obtained indicated that the degradation of ascorbic 

acid over time occurred faster in the control samples and in the fruits exposed to medium 

dose than in the other treatments. In this study the ascorbic acid degraded at a slower rate 

in the fruits treated at high dose (3.2 kGy). These samples had the lowest reduction of 

ascorbic acid (2.5%) among the time. 

The changes in ascorbic acid concentrations (AA) were defined as: 

AA (control)  = -3.63exp (-1.01 t), R2 =0.99    (4-74) 

AA (1.1 kGy) =  5.26exp (-0.95 t), R2 =0.79    (4-75) 

AA (1.6 kGy) =  3.69exp (-0.99 t), R2 =0.99    (4-76) 

AA (3.2 kGy) =  4.03exp (-0.76 t), R2 =0.82    (4-77) 

The influence of dose on the reaction rate constant (k) was assumed to follow an 

Arrhenius type relationship (Eqn 4-6) but not correlation was found between the data 

(R2= 0.02) therefore, the activation energy was not calculated. 

4.3.2.4. Changes in phenolic compounds 

A decreasing trend on the phenolics content of all fruits was obtained with time. 

This reduction was 10.67% for control, 8.15% for low dose, 20.93% for medium dose, 

and 29.29% for high dose. Zero, first order and fractional conversion kinetics models 

were used to evaluate the reaction order of the changes in phenolics content of 

blueberries. The best correlation describing the changes in phenolics with time was 

obtained with the fractional conversion model (Eqn 4-13) (Figure 4-55).  

 



 

 

250

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
he

no
lic

s

0 2 4 6 8 10 12 14
Time (days)

Control
Low dose
Medium dose
High dose

 
Figure 4-55. Effect of time of storage on phenolics content of blueberries stored up to 14 
days at 5°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, high 
dose =3.2 kGy). 
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The reaction rate constants (k) for phenolics concentration were calculated using 

Eqn. 4-13 from the ln (C-Ce/Co-Ce) versus time plots (Figure 4-56) and presented in 

Table 4-28.  

 

 

Table 4-28 
Rate constant (k) and R2 for changes in phenolics of blueberries stored up to 14 
days at 5°C  

Treatment k (days-1)  (EMS)* R2 
0.0 kGy 0.86 9.9 0.80`` 
1.1 kGy 0.88 7.6 0.85 
1.6 kGy 0.57 1.55 0.92 
3.2 kGy 0.93 11.2 0.81 

*Mean square error 

 

 

The reaction rate constants indicate that in this study, the changes in phenolic 

compounds occurred faster in samples treated at high dose. The phenolics content 

decreased at a slower rate in the 1.6 kGy treated samples. This variation may be 

associated with the ripening of the fruits and therefore, differences in phenolics content. 

The concentration of phenolics decreases as the fruit matures so; it is possible that the 

fruits treated with 1.6 kGy had been more mature than those treated with the other doses. 
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Figure 4-56. Relationship between phenolics content and time of storage at different 
irradiation doses applied on blueberries stored up to 14 days at 5°C. (Control=non-
irradiated, low dose=1.1 kGy, medium dose=1.6 kGy, high dose=3.2 kGy). 
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The changes in phenolics were described by (P) =
eo

e

CC
CC

−
−

= Aexp (-kt) as, 

P(control)   = 2.28exp (-0.86t), R2 =0.80    (4-78) 

P(1.1 kGy) = 1.94exp (-0.88 t), R2 =0.85    (4-79) 

P(1.6 kGy) = 0.79exp (-0.57 t), R2 =0.92    (4-80) 

P(3.2 kGy) = 1.80exp (-0.93 t), R2 =0.81    (4-81) 

The above equations suggest a decreasing trend on phenolics content with time 

independent of the treatment. 

4.3.2.5 Changes in respiration rate  

The changes in respiration rate indicated a rapid reduction of this parameter in all 

samples from day zero until day three. From day three until the end of the storage the 

respiration rate was almost constant for all berries (Figure 4-57).  

The rate constant k was calculated from the slope (dCO2/dt) of each of the 

decreasing trend from day zero until day three. The results (Table 4-29) indicate that the 

respiration rate decreased faster in samples exposed to high dose (3.2 kGy) than in the 

other treatments. This behavior could be associated with the structural changes induced 

by irradiation which induce changes in the respiration’s mechanism. In addition, the 

decrease in respiration is associated with the variation of the maturity levels of the 

samples. In non-climacteric fruits such us blueberries there is not a raise in the 

respiration during ripening.  
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Figure 4-57. Effect of time of storage on respiration rate (mg CO2/Kg h) of blueberries 
stored up to 14 days at 5°C. (Control =non-irradiated, low dose =1.0 kGy, medium dose 
=1.5 kGy, high dose =3.2 kGy). 
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Table 4-29 
Rate constant (k) and R2 for changes in respiration rate of blueberries 
stored up to 14 days at 5°C  

Treatment k (days-1)  R2 
0.0 kGy 1.16 0.87 
1.1 kGy 1.27 0.97 
1.6 kGy 1.03 0.84 
3.2 kGy 2.01 0.96 
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CHAPTER V 

CONCLUSIONS 

 

This study was focused on determining the effect of electron beam irradiation on 

the quality attributes of mango and blueberries and the following conclusions were 

reached: 

For the application of electron beam irradiation on mangoes at low (1.0 kGy), 

medium (1.5 kGy) and high (3.1 kGy) doses: 

1. Lightness (L) increased significantly (P>0.05) by the end of storage time in all 

irradiated samples while redness (a) and yellowness (b) values increased 

significantly (P>0.05) in all treatments at the fifth day of storage. Possible 

changes in carotene content could be related to the color changes. Values of 

redness (a) of mangoes decreased in samples irradiated at high dose, meaning 

they had a greener color. These results might be associated with the delay in 

ripening due to irradiation at the higher dose. Yellowness (b) values were larger 

for the control than the irradiated samples by the end of the storage, giving an 

indication of ripening. Chroma (C) and hue (H) parameters increased 

significantly (P>0.05) with time being significant for all the irradiated samples. 

The total color difference (ΔE)) values were not affected significantly (P>0.05) 

by irradiation. The low dose (1.0 kGy) was the best irradiation dose to maintain 

fruit color quality attributes. 
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2. Irradiated mango samples were significantly (P>0.05) less firm than the control 

immediately after the irradiation treatment and throughout the storage time. 

Samples irradiated at high dose (3.1 kGy) were significantly (P>0.05) softer, 

requiring 82.7% less force to rupture than the control samples. Both the control 

and the samples irradiated with 1.0 kGy showed more resistance to rupture. The 

softness of the samples was associated with the changes in the structural cell such 

as cracks and depressions on the surface and the breakdown of the cells and its 

components. Irradiated samples were less tough and less stiff than the control 

fruit. In summary, irradiation of mango fruits with doses higher than 1.0 kGy has 

a detrimental effect on the fruit’s texture quality. 

3. The exposure of mangoes to irradiation increased the respiration rate. Doses up 

to 1.5 kGy keep respiration at a normal level and extend the fruit’s shelf life by 

approximately 3 days. 

4. Irradiation did not affect the specific gravity of mangoes. 

5. No significant (P>0.05) effect of irradiation on moisture and juiciness of 

mangoes was detected at the dose levels this study. 

6. Differences in pH values were reported during storage time but the exposure of 

mangoes to irradiation levels up to 1.5 kGy does not affect the pH and the fruit 

has an acceptable acidity level. 

7. Overall, mango samples had increased (approximately 7.0%) acidity during the 

storage time indicating the unripe stage of the samples. However, when the 
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mangoes were exposed to irradiation levels up to 1.5 kGy the acidity levels were 

normal.  

8. The total soluble solids content of mangoes was reduced (12.3%) by irradiation 

treatment during the storage time. The exposure of the fruits at 1.0 kGy 

minimizes the change. 

9. The exposure of mangoes to ionizing irradiation has an inconsistent effect in total 

sugars but it enhances the reducing sugars content of the fruit. Doses up to 1.5 

kGy keep the sugars content of mangoes within an acceptable quality. 

10. Phenolics compounds in mango significantly (P>0.05) increased with the 

irradiation treatment; concentrations were higher in samples irradiated at medium 

(27.44%) and high (18.34%) doses. This trend corresponded to the increase in the 

antioxidant activity index and the stimulation of the synthesis of phenyalalanine 

ammonia lyase (PAL). 

11. Irradiation at all levels caused a significant (P>0.05) decrease (50 to 70%) in the 

ascorbic acid content of mango during storage. However, the treatment at dose 

levels up to 1.0 kGy minimizes the ascorbic acid reduction. 

12. Irradiation of mangoes at dose levels up to 3.1 kGy raised the concentration of 

the volatile compounds which are important components to the odor and flavor 

of the fruit. 

13. The exposure of mangoes to ionizing irradiation at low (1.0 kGy) and medium 

(1.5 kGy) doses increased significantly carotenoids content of the fruits.  
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14. Irradiation of mangoes up to 1.5 kGy does not affect the sensory quality of the 

fruits. 

Overall, the previous results suggest that irradiation treatment of mangoes may 

lead to a stress condition which depending of the dose, may or may not cause the 

physicochemical changes that depend on the physiological parameters of the fruit. In 

general, irradiation of mangoes up to 1.5 kGy treatment maintains the overall quality of 

mangoes and may increase the shelf-life by three days (from 18 days to 21 days when 

stored at 12˚) by delaying the ripening. 

For the application of electron beam irradiation of blueberry fruits exposed at low 

(1.1 kGy), medium (1.6 kGy) and high (3.2 kGy) doses: 

1. The irradiation of blueberries at low (1.1 kGy) and medium (1.6 kGy) doses 

reduced the lightness (L) of the fruits. Redness (a) and yellowness (b) values 

were higher in samples irradiated at low dose (1.1 kGy). Chroma (C) and total 

color difference (ΔE) increased significantly (P>0.05) in all irradiated samples 

during storage time. The best dose to preserve the color quality of irradiated 

blueberries was 1.6 kGy. 

2. The shear force of blueberries decreased significantly (P>0.05) as the irradiation 

dose increased. The samples treated with a higher dose (3.2 kGy) required much 

less force to shear. Irradiation of blueberries with doses as high as 3.2 kGy will 

yield unacceptable fruits in terms of texture. However, doses up to 1.6 kGy do 

not cause any detrimental change in texture. 
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3. Irradiation induces drying of the skin of blueberries with no consistency in the 

cells shape. This effect is more severe at a high dose producing micro-cracks and 

bleeding of the surface. Irradiation causes the loss of cell structure and shape of 

the blueberry epidermis due to tissue shrinkage. 

4. Irradiation of blueberries increases the respiration rate of the fruits. However, 

doses up to 3.1 kGy keeps respiration at a normal level for shelf life preservation. 

5. The exposure of blueberries to irradiation at dose levels up to 3.2 kGy does not 

affect the density and specific gravity of the fruit.  

6. The exposure of blueberries at dose levels up to 3.2 kGy would preserve the 

moisture content of the fruit. 

7. Irradiation of blueberries at doses up to 3.2 kGy does not affect the water activity 

of the fruits and may increase their shelf-life. 

8. The pH of blueberries is not affected by irradiation doses up to 3.2 kGy. 

9. The irradiation of blueberries at doses up to 3.2 kGy maintains the acidity levels 

of the fruit. 

10. Irradiation decreases the total soluble solids (°Brix) content of blueberries, but 

the exposure of the fruits at 1.1 kGy minimizes the decrease. 

11. The exposure of blueberries to irradiation doses up to 3.2 kGy decreases the total 

and reducing sugars of the fruit. However, the exposure at dose levels up to 1.6 

kGy better maintains the sugar content of the fruit. 
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12. The exposure of blueberries at dose levels up to 1.6 kGy may enhances the 

phenolics content of the fruit and maintains their nutritional and flavor 

properties. 

13. The exposure of blueberries up to dose levels of 3.2 kGy decreases (~28.15%) 

the ascorbic acid concentration but at doses up to 1.6 kGy the reduction is 

minimized. 

14. The exposure of blueberries to irradiation levels up to 3.2 kGy enhances the 

production of the volatile compounds that characterize the aroma of the fruits. 

15. Irradiation of blueberries at doses levels up to 3.2 kGy enhances the tannins 

content of the fruits. 

16. Irradiation of blueberries up to 1.6 kGy does not affect the sensory quality of the 

fruits. 

These results support the applicability of electron beam irradiation at doses up to 1.6 

kGy to ensure and preserve the shelf-life of blueberries up to 14 days while maintaining 

the quality characteristics of the fruits. A potential benefit is the increased phenolics and 

tannins content of fruit irradiated at 1.1 kGy. 

The second part of this study focused on quantifying the main quality changes by 

using kinetics principles. According to the results, the main effect of irradiation on 

physical and chemical properties was observed in color, texture and ascorbic acid 

content. Therefore, these parameters were considered for kinetics evaluation. The 

following conclusions were reached: 
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1. For both fruits, mango and blueberry, the changes in color parameters found in 

the present study could not be described by any simple kinetics model. 

2. Radiation softening of mango was described by a first order rate process. At the 

conditions used in this study, non- irradiated fruits had less texture degradation 

than the irradiated samples. 

3. The changes in firmness followed a fractional conversional model with a faster 

reaction rate in samples treated with a high dose (3.1 kGy). 

4. Ascorbic acid degradation of irradiated mango followed a first order reaction 

kinetics. In the present study, ascorbic acid degraded faster in samples irradiated 

with a medium dose than the other treatments. 

5. Due to the limited availability of data, no single model was found to define the 

kinetics of softening in blueberries. 

6. The degradation of ascorbic acid over time in blueberries occurred faster in the 

control samples than in all the other treatments. Thus, irradiation dose slowed 

down this reaction. 

7. The changes in the phenolics compounds of blueberries occurred at a faster rate 

in the samples treated with a high dose of irradiation. 

8.  The respiration rate of blueberries decreased faster in samples exposed to high 

dose (3.2 kGy) than in the other treatments. 
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CHAPTER VI 

RECOMMENDATIONS FOR FURTHER STUDY 

 

The following are recommendations for future research in the application of electron 

beam irradiation to fruits and vegetables: 

• Evaluate different fruit maturity levels and the combined effect of the treatment 

on produce quality and safety. 

• Pre-treat the fruits by using salts and then evaluate the combined effect with 

irradiation on fruit firmness. 

• Develop an experimental design that gives the feasibility of the kinetic analyses.  

• Perform kinetics studies of the fruits evaluating different types of irradiation. 

• Determine phenolic concentrations of irradiated fruits and their antifugal activity. 

• Evaluate the starch content in the irradiated fruits. 

• Determine the ethylene production of the irradiated fruits. 

• Perform the electron scanning microscopy of the chloroplast in the tissues of the 

irradiated samples. 
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APPENDIX A-A. 

ACCEPTANCE TEST 

 

Date:     /     / 2004      Product code: ___________ 

1. Please, evaluate the overall quality of this sample. Place a mark in the box which you 
feel best describes how you like the sample. Don’t eat the sample. An honest 
expression of your personal feelings will help us. 
Thank you. 
 
          
 
Like 

extremely 
 Like 

slightly 
 Neither like 

nor dislike 
 Dislike 

slightly 
 Dislike 

extremely
 
2. Indicate by placing a mark how you feel the sample rate in each category below: 
Color 
 
          
 
Like 

extremely 
 Like 

slightly 
 Neither like 

nor dislike 
 Dislike 

slightly 
 Dislike 

extremely
Texture 
 
          
 
Firm  Slightly 

firm 
 Somewhat 

firm-soft 
 Slightly 

soft 
 Soft 

Aroma (mango/ blueberry) 
 
          
 
Strong  Moderate 

strong 
 Moderate  Slightly  None 

 
 
Comments:…………………………………………………………………………………
…………………………………………………………………………………………….. 
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Appendix A-B. Effect of irradiation on the flesh of mango stored at 12°C for 21 days. 
(Control =non-irradiated, low dose =1.0 kGy, medium dose =1.5 kGy, high dose =3.1 
kGy).  
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Table A-1. Effect of irradiation dose on texture attributes of mangoes stored up to 21 
days at 12°C 

Dose/Day 0 5 10 21  

Control* 177.94 ax 121.41 ax 119.27 ax 140.99 ax 

(0 kGy) (54.48)  (108.91)  (96.67)  (41.06)  

Low 73.50 ay 47.54 ay 82.87 axy 102.87 ay 

(1.0 kGy) (53.04)  (9.78)  (68.44)  (30.49)  

Medium 66.90 ay 16.21 by 57.78 axy 82.65 ay 

(1.5 kGy) (23.93)  (848)  (31.21)  (15.05)  

High 24.29 aby 17.13 ay 28.70 by 31.30 bz 

Fo
rc

e 
 to

 r
up

tu
re

 (N
) 

(3.1 kGy) (9.24)  (0.29)  (7.66)  (4.78)  
Dose/Day 0 5 10 21  

Control* 0.42 ax 0.37 ax 0.30 ax 0.35 ax 

(0 kGy) (0.15)  (0.44)  (0.27)  (0.11)  

Low 0.14 ay 0.06 ay 0.13 ay 0.11 ay 

(1.0 kGy) (0.11)  (0.04)  (0.20)  (0.07)  

Medium 0.12 ay 0.02 by 0.06 cy 0.08 cyz 

(1.5 kGy) (0.35)  (0.01)  (0.03)  (0.01)  

High 0.05 ay 0.03 by 0.04 aby 0.04 abz 

T
ou

gh
ne

ss
(J

) 

(3.1 kGy) (0.14)  (0.02)  (0.01)  (0.01)  
Dose/Day 0 5 10 21  

Control* 0.78 ax 0.53 ax 0.53 ax 0.62 aw 

(0 kGy) (0.24)  (0.48)  (0.43)  (0.18)  

Low 0.32 ay 0.21 ay 0.37 axy 0.45 ayz 
(1.1 kGy) (0.23)  (0.18)  (0.30)  (0.13)  

Medium 0.29 ay 0.07 by 0.25 axy 0.36 ayz 

(1.6 kGy) (0.11)  (0.04)  (0.14)  (0.07)  

High 0.11 aby 0.08 ay 0.13 by 0.14 bx 

St
iff

ne
ss

 (Y
ou

ng
 ‘s

 M
od

ul
us

, M
Pa

) 

(3.2 kGy) (0.04)  (0.05)  (0.03)  (0.02)  
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 95%confidence 
Values in parenthesis are the standard deviations. 
a-cMeans within a column which are not followed by a common superscript letter are significantly different 
(P<0.05). 
x-zMeans within a row which are not followed by a common superscript letter are significantly different 
(P<0.05). 
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Table A-2. Effect of irradiation dose on specific gravity of mangoes stored up to 21 days 
at 12°C 

Dose   Days      
 0  5  10  21  

Control* 1.165 ax 1.172 ax 1.161 ax 0.987 ax 
(0 kGy) (0.426)  (0.200)  (0.143)  (0.010)  

Low 1.018 ax 1.025 ax 1.037 ax 1.027 ax 
(1.0k Gy) (0.016)  (0.046)  (0.055)  (0.047)  
Medium 1.042 ax 1.015 ax 1.034 ax 1.016 ax 
(1.5 kGy) (0.032)  (0.004)  (0.029)  (0.021)  

High 1.032 ax 1.031 ax 1.084 ax 1.025 ax 
(3.1 kGy) (0.018)  (0.031)  (0.092)  (0.014)  

*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
aMeans within a column which are not followed by a common superscript letter are significantly 
different (P<0.05). 
xMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 
 
 
 
 
 
Table A-3. Effect of irradiation dose on water activity of mangoes stored up to 21 days 
at 12°C 

Day/Dose Control* Low Medium  High  
  (0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 
0 0.89ax(0.01) 0.88ax(0.02) 0.89ax(0.01) 0.89ax(0.00) 
5 0.90ax(0.00) 0.90bx(0.00) 0.91ax(0.00) 0.90ax(0.01) 
10 0.86bx(0.02) 0.91by(0.00) 0.90ay(0.00) 0.90ay(0.01) 
21 0.92cx(0.00) 0.91by(0.00) 0.92bx(0.00) 0.91bxy(0.01) 

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-cMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
x-yMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
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Table A-4. Effect of irradiation dose on pH of mangoes stored up to 21 days at 12°C 
Dose   Days      

 0  5  10  21  
Control* 3.14 ax 3.27 bx 3.33 bx 3.19 aw 
(0 kGy) (0.020)  (0.015)  (0.061)  (0.010)  

Low 3.39 ay 3.29 bx 3.19 cy 3.11 dx 
(1.0 kGy) (0.015)  (0.017)  (0.036)  (0.006)  
Medium 3.26 az 3.44 by 3.23 cy 3.15 dy 
(1.5 kGy) (0.006)  (0.021)  (0.010)  (0.000)  

High 3.24 az 3.21 bz 3.23 aby 3.28 cz 
(3.1 kGy) (0.015)  (0.010)  (0.006)  (0.010)  

 
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-dMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
w-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 

 

 

Table A-5 Ratio sugar/acid of irradiated and non-irradiated mangoes stored up to 21 
days at 12°C 

  Control* Low Medium High 
Dose/Day (0.0 kGy) (1.0 kGy) (1.5 kGy) (3.1 kGy) 

0   9.53 11.76 10.95 11.62 
5 10.54   9.50 11.44   8.75 
10 12.69   8.29   9.29   9.45 
21   9.83   8.96   8.97 10.74 

*Control, non-irradiated samples. 
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Table A-6. Effect of irradiation dose on total phenolics (mg Gallic acid/100g w.b.) and 
antioxidant activity index (% of reduction DPPH/g w.b) of mangoes stored up to 21 days 
at 12°C 

Dose/Day 0  5  10  21 

Control* 13.732 ax 24.703 bw 21.895 cw 18.824 dx 

(0 kGy) (0.372)  (0.689)  (0.392)  (0.433)  

Low 21.275 ay 18.523 bx 17.583 bx 20.495 ay 

(1.0 kGy) (0.853)  (1.520)  (0.592)  (0.355)  

Medium 17.681 az 22.167 by 20.747 by 24.370 cz 

(1.5 kGy) (0.532)  (1.783)  (0.421)  (2.590)  

High 17.725 az 20.119 bz 22.664 cz 21.707 dy 

T
ot

al
 p

he
no

lic
s (

m
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G
al

lic
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10
0g

 w
.b

.) 

(3.1 kGy) (0.282)  (0.523)  (0.795)  (0.351)  

Dose/Day 0  5  10  21  
Control* 4.527 ax 5.066 ax 5.956 bx 4.298 ax 

(0 kGy) (0.486)  (0.042)  (0.608)  (0.487)  
Low 4.811 ax 4.319 by 3.969 cy 4.459 bx 

(1.0 kGy) (0.262)  (0.001)  (0.159)  (0.021)  
Medium 4.465 ax 5.315 bx 4.549 ay 4.981 by 

(1.5 kGy) (0.211)  (0.077)  (0.017)  (0.187)  
High 4.308 ax 4.470 ay 5.306 bz 5.118 by A

nt
io

xi
da

nt
 in

de
x 

(%
 /g

 w
.b

.) 

(3.1 kGy) (0.233)  (0.287)  (0.192)  (0.057)  
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-dMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
w-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
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Table A-7. Effect of irradiation dose on texture attributes of blueberries stored up to 14 
days at 5°C 

Dose/Day 0 3 7 14  

Control* 163.475 ax 203.359 bx 204.251 bw 154.147 ax 

(0 kGy) (18.161)  (5.879)  (3.797)  (6.758)  

Low 118.692 ay 125.523 ay 129.586 ax 131.893 ay 

(1.1 kGy) (7.793)  (13.646)  (5.064)  (8.276)  

Medium 109.991 ay 119.189 ay 113.298 ay 118.568 ay 
(1.6 kGy) (7.372)  (4.524)  (10.739)  (9.083)  

High 83.357 az 90.542 az 71.666 az 91.270 az 

Sh
ea

r F
or

ce
  (

N
) 

(3.2 kGy) (4.266)  (4.430)  (6.617)  (7.761)  
Dose/Day 0  3  7  14  

Control* 4.171 ax 4.946 bw 5.065 bw 3.663 ax 

(0 kGy) (0.235)  (0.149)  (0.459)  (0.223)  

Low 2.968 ay 3.406 ax 3.412 ax 3.295 axy

(1.1 kGy) (0.107)  (0.301)  (0.192)  (0.148)  

Medium 2.785 ay 2.981 ay 2.884 ay 3.020 ay 

(1.6 kGy) (0.226)  (0.074)  (0.051)  (0.262)  

High 2.117 az 2.480 bz 1.994 az 2.369 bz 

To
ug

hn
es

s 
(J

) 

(3.2 kGy) (0.028)  (0.000) (0.089)  (0.204)  
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-bMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
w-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
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Table A-8. Effect of irradiation dose on specific gravity of blueberries stored up to 14 
days of at 5°C 

Dose   Day      

 0 3 7 14  
Control* 0.978 ax 0.975 ax 0.914 bx 0.979 ax 
(0 kGy) (0.017)  (0.003)  (0.010)  (0.029)  

Low 0.962 ax 0.982 abx 0.986 aby 1.025 by 
(1.1 kGy) (0.041)  (0.016)  (0.026)  (0.014)  
Medium 0.972 ax 0.980 ax 0.953 ay 0.980 ax 
(1.6 kGy) (0.022)  (0.004)  (0.011)  (0.029)  

High 0.962 ax 0.973 ax 0.985 ay 0.982 ax 
(3.2 kGy) (0.252)  (0.004)  (0.004)  (0.024)  

*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-bMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
x-yMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
 
 
 
 
Table A-9. Effect of irradiation on moisture content (%w.b.) of blueberry up to 14 days 
of storage at 5°C 

Dose   Day      
 0  3  7  14  

Control* 79.58 ax 80.81 bw 80.49 bx 79.58 ax 
(0 kGy) (0.28)  (0.21)  (0.21)  (0.21)  

Low 80.36 axy 80.40 ax 80.63 ax 81.00 ay 
(1.1 kGy) (0.38)  (0.07)  (0.10)  (0.41)  
Medium 80.66 ay 81.47 aby 81.85 by 80.75 ay 
(1.6 kGy) (0.42)  (0.29)  (0.20)  (0.58)  

High 81.87 az 81.87 az 81.55 ay 81.83 az 
(3.2 kGy) (0.93)  (0.18)  (0.11) (0.90)  

*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-bMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
w-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
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Table A-10. Effect of irradiation dose on water activity of blueberries stored up to 14 
days at 5°C 

Day/Dose Control* Low Medium High 
 (0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
0 0.89ax(0.01) 0.92ax(0.00) 0.87ax(0.01) 0.87ax(0.01)
3 0.89ax(0.00) 0.89bx(0.00) 0.89bx(0.00) 0.89bx(0.00)
7 0.86ax(0.01) 0.89by(0.00) 0.89by(0.00) 0.89by(0.00)
14 0.89ax(0.00) 0.90ay(0.00) 0.91by(0.02) 0.91by(0.00)

*Control, non-irradiated samples. All analyses were made in SPSS, SNK procedure 95% 
confidence. 
Numbers in parenthesis are the standard deviation. 
a-bMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
w-yMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
 
 
 
 
 
 
 
Table A-11. Effect of irradiation dose on pH of blueberries stored up to 14 days at 5°C 
 

Dose   Day      

 0 3 7 14  
Control* 3.05 ax 3.14 bx 3.17 bcx 3.18 cx 
(0 kGy) (0.010)  (0.012)  (0.010)  (0.020)  

Low 2.99 ay 3.17 bxy 3.14 bx 3.22 cx 
(1.1 kGy) (0.021)  (0.010)  (0.021)  (0.030)  
Medium 3.04 ax 3.17 bxy 3.17 bx 3.21 cx 
(1.6 kGy) (0.000)  (0.012)  (0.006)  (0.020)  

High 2.96 az 3.19 bcy 3.17 bx 3.21 cx 
(3.2 kGy) (0.010)  (0.012)  (0.015)  (0.025)  

 
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-dMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
w-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
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Table A-12 Ratio sugar/acid of irradiated and non-irradiated blueberries stored up to 14 
days at 5°C 

 
 
 
 
 
 
 
 
 
*Control, non-irradiated samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dose/Day Control* Low Medium High 
 (0.0 kGy) (1.1 kGy) (1.6 kGy) (3.2 kGy) 
0 18.99 17.86 19.30 17.10 
3 18.69 20.24 18.94 24.06 
7 22.21 21.49 20.49 24.98 
14 21.53 21.45 22.53 21.55 
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Table A-13. Effect of irradiation dose on total phenolics (mg Gallic acid/100g w.b.) and 
antioxidant activity index (% of reduction DPPH/g w.b) of blueberries stored up to 14 
days at 5°C 

Dose/Day  0  3  7   14   

Control* 187.117 ax 132.401 bx 154.433 cx 167.153 dx 

(0 kGy) (5.073)   (3.216)   (7.440)   (8.758)   
Low 189.541 ax 159.921 by 178.359 cy 174.085 cx 
(1.1 kGy) (4.899)   (3.450)   (3.197)   (2.165)   

Medium 199.393 ay 139.171 bx 150.975 bcx 157.655 cx 
(1.6 kGy) (10.578)   (5.907)   (4.515)   (12.40)   

High 193.133 axy 120.024 bz 161.105 cz 136.563 dy 

  T
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(3.2 kGy) (4.095)   (17.399)   (5.104)   (6.503)   

Dose/Day  0   3   7   14   
Control* 13.819 ax 11.415 bx 11.967 bx 13.552 ax 
(0 kGy) (0.686)   (0.782)   (0.665)   (0.345)   
Low 13.481 ax 12.702 ax 12.471 ax 12.576 axy

(1.1 kGy) (0.523)   (0.512)   (0.699)   (1.423)   

Medium 15.250 ay 10.655 bx 11.214 bx 11.860 bxy

(1.6 kGy) (0.746)   (0.813)   (0.867)   (4.673)   
High 13.335 ax 10.200 bx 12.336 abx 10.457 by 
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.) 

(3.2 kGy) (0.655)   (1.778)   (0.371)   (0.656)   
*Control, non-irradiated samples. All analyses were made is SPSS, SNK procedure 
95%confidence 
Values in parenthesis are the standard deviations. 
a-dMeans within a column which are not followed by a common superscript letter are 
significantly different (P<0.05). 
x-zMeans within a row which are not followed by a common superscript letter are significantly 
different (P<0.05). 
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