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ABSTRACT 
 
 
 

Mesozoic Tectonic Inversion in the Neuquén Basin  

of West-Central Argentina. (December 2005) 

Gabriel Orlando Grimaldi Castro, B.S., Universidad Nacional de Córdoba, Argentina; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Steven L. Dorobek 

 

Mesozoic tectonic inversion in the Neuquén Basin of west-central Argentina 

produced two main fault systems: (1) deep faults that affected basement and syn-rift 

strata where preexisting faults were selectively reactivated during inversion based on 

their length and (2) shallow faults that affected post-rift and syn-inversion strata. Normal 

faults formed at high angle to the reactivated half-graben bounding fault as a result of 

hangingwall expansion and internal deformation as it accommodated to the shape of the 

curved footwall during oblique inversion. Contraction during inversion was initially 

accommodated by folding and internal deformation of syn-rift sedimentary wedges, 

followed by displacement along half-graben bounding faults. We suspect that late during 

inversion the weight of the overburden inhibited additional fault displacement and 

folding became the shortening-accommodating mechanism. 

A Middle Jurassic inversion event produced synchronous uplift of inversion 

structures across the central Neuquén Basin. Later inversion events (during Late 

Jurassic, Early Cretaceous, and Late Cretaceous time) produced an “inversion front” that 



 
 
 

iv

advanced north of the Huincul Arch. Synchroneity of fault reactivation during the 

Callovian inversion event may be related to efficient stress transmission north of the 

Huincul Arch, probably due to easy reactivation of low-dip listric fault segments. This 

required little strain accumulation along “proximal” inversion structures before 

shortening was transferred to more distal structures. Later inversion events found harder-

to-reactivate fault segments, resulting in proximal structures undergoing significant 

inversion before transferring shortening.  

The time between the end of rifting and the different inversion events may have 

affected inversion. Lithosphere was probably thermally weakened at the onset of the 

initial Callovian inversion phase, allowing stress transmission over a large distance from 

the Huincul Arch and causing synchronous inversion across the basin. Later inversion 

affected a colder and more viscous lithosphere. Significant strain needed to accumulate 

along proximal inversion structures before shortening was transferred to more distal 

parts of the basin.  

Timing of inversion events along the central Neuquén Basin suggest a mega-

regional control by right-lateral displacement motion along the Gastre Fault Zone, an 

intracontinental megashear zone thought to have been active prior to and during the 

opening of the South Atlantic Ocean. 
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CHAPTER I 

INTRODUCTION 

 
Basin inversion is defined as the compressional or transpressional deformation of 

a former extensional basin (Williams et al., 1989). This style of intracontinental 

deformation has been recognized on every continent that has been explored for 

hydrocarbons (Harding, 1985; Dellapé and Hegedus, 1995; Homovc et al., 1995; Lowell, 

1995; Manceda and Figueroa, 1995; Morley, 1995; Peroni et al., 1995; Thomas and 

Coward, 1995; Uliana et al., 1995; Welsink et al., 1995; Beauchamp et al., 1996).   

The geometry of inversion structures may make them suitable as structural traps 

for petroleum accumulations. In addition, inversion tectonics can have important effects 

on other aspects of petroleum systems. For example, inversion causes uplift of a basin, 

with consequent effects on burial history and oil generation and maturation, porosity 

evolution, fracture development, migration pathways, and alteration of fault sealing 

properties (Coward, 1994). Inversion tectonics can also have significant effects on the 

structural and stratigraphic evolution of an area, and must be carefully considered during 

regional restoration of structural cross sections, shortening estimations, assumptions 

about the nature of structures at depth, subsidence patterns, and analysis of syn-inversion 

sedimentation  (Coward, 1994; McClay, 1995). 

The following chapters comprise an integrated study of inversion tectonics that 

developed in a foreland setting. Different scales of observation, ranging from the study 

 
This dissertation follows the style and format of the American Association of Petroleum 
Geologists Bulletin. 
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of syn-inversion hangingwall internal deformation to plate-scale implications, are 

combined to present a comprehensive analysis inversion tectonics.    

Chapter II contains a three-dimensional seismic characterization of Mesozoic 

inversion structures in the Central Neuquén Basin. The main topics of this chapter are 

the documentation of the complex fault framework that characterizes inversion 

structures and the analysis of its kinematic implications. Emphasis is given to lateral 

along-strike relationships, which are generally overlooked in 2D seismic-based studies. 

The study shows that two main fault systems developed during inversion. A deep fault 

system affecting basement and syn-rift strata underwent selective reactivation during 

inversion based mainly on differences in horizontal fault length. A shallow syn-inversion 

fault system developed in association with internal hangingwall deformation during 

oblique inversion. Structural restorations of different stratigraphic levels show a multi-

stage inversion process that alternatively involves reactivation of the main half-graben 

bounding fault and internal faulting and folding of syn-rift sedimentary wedges. 

In Chapter III we examine spatial and temporal patterns of Mesozoic inversion 

occurrence and propagation across the central Neuquén Basin. Five main inversion 

structures were identified and their timing of deformation established using stratigraphic 

indicators. Results show two main stages of inversion propagation north of the Huincul 

Arch. A Middle Jurassic event resulted in synchronous uplift of inversion structures 

across the basin. Later inversion events from Late Jurassic to Late Cretaceous time are 

characterized by northward propagation of an inversion front that produces diachronous 

uplift of inversion anticlines. Different inversion propagation patterns between Callovian 
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and later inversion events may be related with the mechanical behavior of different 

segments of reverse-reactivated faults and with temporal variations in the rheology of 

the lithosphere. These variations may have affected the efficiency with which stress was 

transmitted north of the Huincul Arch and therefore controlled the timing of uplift of 

inversion structures across the Northern Sub-basin.   

In Chapter IV we present an analysis of plate-scale implications of Huincul 

Arch-related deformation and associated tectonic inversion in the central Neuquén 

Basin. An integration of published literature with observations from this study suggests 

that the evolution of the Huincul Arch is tied to widespread continental extension that 

preceded the opening of the South Atlantic Ocean. 

This study adds important insights into the complex nature of inversion tectonics 

and foreland deformation in southern South America. Results from this study have 

implications for the tectono-stratigraphic evolution of other segments of the southern 

Andean foreland or in other retroarc foreland settings.  

The detailed geometric and kinematic characterization of inversion structures in 

the Northern Sub-basin expands our knowledge about factors influencing timing and 

styles of tectonic inversion in a non-collisional retro-arc foreland setting. It also provides 

a framework for the prediction of fractured zones by defining areas subjected to 

maximum strain. 

Assessment of tectonic controls on sedimentation in the Northern Sub-basin 

during Mesozoic time contributes to the development of predictive models for 

sedimentary facies distribution and petroleum systems configuration. Integration of 
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basin-scale structural and stratigraphic analysis with mega-regional published 

interpretations contributes to our understanding of the Mesozoic tectono-stratigraphic 

evolution of southern South America.  
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CHAPTER II 

THREE-DIMENSIONAL SEISMIC CHARACTERIZATION OF MESOZOIC 

INVERSION STRUCTURES IN THE CENTRAL NEUQUÉN BASIN, 

ARGENTINA 

INTRODUCTION 

Inversion structures form when normal faults formed during an earlier stage of 

crustal extension undergo reverse displacement during later compressional deformation 

(Hayward and Graham, 1989; Coward, 1994; Sibson, 1995). Basin inversion is often 

recognized where dip-slip reversal of half-graben bounding faults produces uplift of syn- 

and post-rift sequences (Brun and Nalpas, 1996; Buiter and Pfiffner, 2003). Inverted 

parts of basins are turned inside out to become positive features (Hayward and Graham, 

1989; Buchanan and McClay, 1991).  

Several factors affect the occurrence and style of inversion structures: (1) 

capability of fault reactivation (Sibson, 1985; Etheridge, 1986; Sibson, 1995); (2) fault 

geometry (Buchanan and McClay, 1991, 1992), pre-inversion geometry of the basin 

(Butler, 1989), (3) thermal state of the lithosphere at the time of inversion (Sandiford, 

1999; Nielsen and Hansen, 2000; Sandiford et al., 2003), and (4) plate-tectonic setting 

(Kluth and Coney, 1981; Ziegler et al., 1998; Marshak et al., 2000). The interplay of 

these factors produces complex structural styles, areal distribution, and timing of 

inversion structures, as recognized in natural examples (Kluth and Coney, 1981; 

McClay, 1989; Ziegler, 1989; Homovc et al., 1995; Manceda and Figueroa, 1995; Uliana 

et al., 1995; Marshak et al., 2000; Beauchamp, 2004; Chambers et al., 2004). 

5



 

An inverted half-graben is the simplest inversion structure (Figure 2.1). This 

requires two discrete deformational episodes: an extensional phase followed by a 

contractional phase (Williams et al., 1989; Mitra, 1993). Geometries of resulting 

structures and stratigraphic relationships can be used to analyze the kinematics and 

timing of inversion. Most previous studies of basin inversion have used 2D seismic 

sections or laterally-continuous outcrops to characterize inversion styles and to estimate 

rates and amount of inversion (Hayward and Graham, 1989; Williams et al., 1989; Mitra, 

1993). Pre-, syn-, and post-rift strata can acquire diagnostic geometries during inversion 

that allow the definition of a "null point" (or “null line” in three dimensions; Turner and 

Williams, 2004), which separates fault segments showing opposite displacement. These 

segments can be used to calculate an inversion ratio (Figure 2.1; Williams, 1989).  

The development of an inverted half-graben typically involves the reactivation 

and potential propagation of pre-existing extensional faults into post-rift strata. 

Contraction is accommodated by reverse displacement along these faults, the 

development of new faults, and folding of pre- and syn-inversion strata (cf. Koopman et 

al., 1987). 

Despite the importance of inversion-related deformation relative to the 

development of petroleum system, the nature of three-dimensional inversion structures is 

poorly documented and understood. The aim of this study was to characterize, in full 3D, 

structural and stratigraphic relationships associated with tectonic inversion structures 

that formed in a retroarc foreland setting. A 3D seismic and borehole dataset over a 

series of Mesozoic inversion structures in the Neuquén Basin of west-central Argentina 

6
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Figure 2.1. Conceptual model and key terms for a classical half-graben inversion structure. (A) Sequen-
tial diagrams showing the contractional inversion of an extensional fault. The null point (NP) moves pro-
gressively downward through the syn-rift sequence with increased inversion (after Williams et al., 1989). 
(B) Generalized cross-sections of a half-graben undergoing total inversion and developing a fault-
propagation fold in the post-rift strata (modified from Bailey et al., 2002). (C) Terms of the inversion 
ratio (Ri) equation. dh is the thickness of the syn-rift section parallel to the fault; dc is the thickness of the 
partial syn-rift section in contraction; de is the thickness of the partial syn-rift section that is below the 
null point. 
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was analyzed. High-resolution time-structure maps, 3D visualization, and seismic-

attribute analysis (variance, time-dip, and amplitude) allowed the documentation of 

structural styles, fault linkage and propagation patterns, fold development, and syn-

inversion growth stratal patterns. The detailed seismic mapping that was a major part of 

this study provides perhaps one of the most detailed and thorough structural 

characterizations of several inversion structures and hopefully adds important insights 

into the complex nature of inversion. 

Fold-related growth strata have been studied extensively in outcrop, seismic, and 

borehole datasets, with most studies aimed at describing the effects of tectonics on 

stratigraphic development and sediment dispersal patterns associated with contractional 

structures (Burbank et al., 1996; Bernal and Hardy, 2002; Champel et al., 2002; van der 

Beek et al., 2002; Bernal et al., 2004; Shaw et al., 2004). Syn-tectonic growth strata have 

been used to unravel the kinematics and folding mechanisms of various fault-related 

folds, including inversion structures (Riba, 1976; Suppe et al., 1992; Ford et al., 1997; 

Poblet et al., 1997; Storti and Poblet, 1997; Casas-Sainz et al., 2002; Echavarría and 

Allmendinger, 2002; Salvini and Storti, 2002; Strayer et al., 2004). Examination of 

inversion structures and analog-model experiments indicate that these structures differ 

from other types of antiformal features in that additional structural elements and 

deformational processes (e.g., backthrusts, shortcut faults, buttressing, and internal 

sediment compaction) also affect growth stratal patterns. The resulting stratal geometries 

can, therefore, be different from those associated with typical fault-propagation or fault-
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bend folds. The three-dimensional aspects of syn-inversion growth strata also have not 

been studied in detail. 

Analog models of inversion provide insight into the kinematics and geometries of 

inversion under controlled conditions. These studies typically investigate two-

dimensional (cross-sectional) aspects of structural development as influenced by 

footwall geometry (McClay, 1989; Buchanan and McClay, 1991, 1992; Yamada and 

McClay, 2004), the mechanical properties of basin-filling sediments (Buchanan and 

McClay, 1991, 1992; Brun and Nalpas, 1996), angularity between later compressional 

and previous extensional stress directions (Brun and Nalpas, 1996; Dubois et al., 2002), 

and amounts of extension and shortening (Buchanan and McClay, 1991, 1992; Keller 

and McClay, 1995; Brun and Nalpas, 1996; Yamada and McClay, 2004). Most detailed 

descriptions of inverted half-grabens come from scaled analogs, and some of the 

documented structural styles and kinematic implications are commonly used as 

templates for seismic interpretation of inverted basins.  

Later studies utilized sandbox analog models to reproduce structural features 

associated with dip-slip inversion (Figure 2.2; McClay, 1989; Buchanan and McClay, 

1991, 1992; Mitra and Islam, 1994; Eisenstadt and Withjack, 1995; McClay, 1995). 

Other analog modeling studies have taken a pseudo 3-D approach by investigating 

structural development during inversion in both cross-sectional and plan views. Keller 

and McClay (1995) describe fault-linkage patterns on the surface of an initially extended 

sandbox when subjected to coaxial contraction and showed that the extensional fault 

fabric strongly influences inversion geometry. They also argued that transfer zones 

9
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Figure 2.2. Analog model experiments that investigated 2D aspects of structural development associated 
with inversion. Structural relationships are observed along vertical cross-sections through the scaled mod-
els. (A) Geometric and structural relationships in an inverted half-graben above a listric fault with homo-
geneous sand (above) and interlayered sand and clay fill (below) (after McClay, 1989). (B) Deformation 
in an inverted half-graben with different amounts of shortening (after Eisenstadt and Withjack, 1995). 
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between adjacent extensional faults were reactivated during inversion (Figure 2.3). 

Eisenstadt and Withjack (1995) documented variations in fault and fold localization and 

development as a function of the amount of shortening (Figure 2.3). They showed the 

limitations of quantitative and qualitative techniques (e.g., inversion ratio and 

resemblance of extensional or contractional structures) for estimating the magnitude of 

inversion. Other workers have constructed scaled models to evaluate the relationship 

between normal fault reactivation and the angle between the extension and shortening 

directions (Nalpas et al., 1995; Brun and Nalpas, 1996; Dubois et al., 2002). These 

studies found that fault reactivation is related to the extension-contraction obliquity, as 

expected from theoretical models. The amount of overburden, however, may also 

influence which faults are preferentially reactivated, a thicker basin fill favoring the 

locking-up of some pre-existing faults (Figure 2.4).  

Yamada and McClay recently investigated the structural relationships associated 

with inversion of 3-dimensional (i.e., curved in map view) listric faults (Yamada and 

McClay, 2003a, b; Yamada and McClay, 2004). Their analog models are intended to 

reproduce stratal and structural geometries associated with changes in fault strike and 

hangingwall transfer of material parallel to the fault trace. Their work shows that fault 

shape greatly influences structural development. Where extension and inversion are 

coaxial, inversion anticlines have axial traces that mimic the plan-view shape of the 

extensional bounding fault (Figure 2.5). In addition, the 3-D inversion thrust architecture 

is controlled by the geometry of the main fault and locations of maximum inversion-

related uplift and syn-rift subsidence are coincident (Yamada and McClay, 2004). 

11



Figure 2.3. Analog model experiments that investigated lateral structural relationships associated with 
inversion structures. (A) Lateral relationships between accommodation zones during extension and inver-
sion (modified from Keller and McClay, 1995); (B) Plan view of progressive development of structural 
features under different amounts of shortening following extension (after Eisenstadt and Withjack, 1995).
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Figure 2.4. Analog model experiments that investigated 2D aspects of structural development associated 
with non-coaxial extension and shortening. Structural relationships are observed along vertical cross-
sections through scaled models of symmetrical grabens. (A) Fault development during inversion where 
extension and shortening are coaxial; (B) Fault development during inversion where shortening is oblique 
to original extension direction (after Dubois et al., 2002); (C) Dip variations of normal and reverse faults 
as a function of angle between tensile and compressive directions in an entirely brittle system (after Brun 
and Nalpas, 1996).
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three-dimensional inversion structures. Experimental result and conceptual model for the influence of 
fault geometry on structural development during inversion (after Yamada and McClay, 2003).
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Numerical methods have also been used to model kinematic and thermo-

mechanical aspects of half-graben inversion (Nielsen and Hansen, 2000; Vanbrabant et 

al., 2002; Buiter and Pfiffner, 2003). These models allow the evaluation of stress 

distribution, fault mechanical properties, lithosphere rheology, erosion, and heat flow 

effects on basin inversion. Inversion tectonics may also be useful for investigating the 

thermal and mechanical structure of the lithosphere at the time of inversion (Sandiford, 

1999; Nielsen and Hansen, 2000).  

The North Sea is a “classic” location for natural examples of inverted half 

grabens (Badley et al., 1989; Cartwright, 1989; Hayward and Graham, 1989; Nalpas et 

al., 1995; Thomas and Coward, 1995). Although published studies from the North Sea 

provide basin-scale descriptions of inversion patterns, few document in detail structural 

and stratigraphic complexities of individual inversion structures. Basin inversion also 

has been described in other regions like the Alps (Gillcrist et al., 1987; Butler, 1989; 

Coward et al., 1991), Alpine Foreland (Gillcrist et al., 1987; Ziegler, 1987; Ziegler et al., 

1995; Cristallini et al., 1997; Kley and Monaldi, 2002), Atlas Mountains (Beauchamp et 

al., 1996; Beauchamp et al., 1997), Ancestral Rockies (Kluth, 1991, 1994; Marshak et 

al., 2000), Andean Foreland (Dellapé and Hegedus, 1995; Homovc et al., 1995; 

Manceda and Figueroa, 1995; Uliana et al., 1995; Welsink et al., 1995), and South China 

Sea (Letouzey et al., 1990; Olson, 2001; Chambers et al., 2004) but, again, detailed 

descriptions of the complex structural and stratigraphic relationships are rarely provided. 

Most detailed studies of inversion are outcrop-based, where limited exposure prevents a 

full three-dimensional analysis of the fault framework and syn-inversion growth strata. 
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3-D seismic data may allow more complete investigation of basin inversion. 

Masaferro et al. (2003) investigated the geometry and kinematics of an inversion 

structure in the Central Andean Foreland using a 3D seismic survey. Detailed 

documentation of the complex fault framework and construction of isochron maps for 

growth strata investigation was possible with the 3D seismic coverage over the 

structures.  

 

GEOLOGIC SETTING 

The Neuquén Basin extends from 33° to 41° S and from 67° to about 72°W 

across the Andean foreland of Argentina and neighboring Chile (Figure 2.6). The 

tectonic history of the basin is characterized by two major evolutionary stages: (1) Late 

Triassic – Early Cretaceous backarc extension followed by (2) a Late Cretaceous – 

Recent retroarc foreland setting (Dewey, 1988; Legarreta and Uliana, 1991; Uliana and 

Legarreta, 1993; Vergani et al., 1995; Franzese and Spalletti, 2001; Franzese et al., 

2003). The main Triassic normal fault trends that developed during extension are 

oriented NE-SW and ENE-WSW in the southern portion of the basin (Figure 2.7A; 

Ramos, 1978; Vergani et al., 1995). This area is tectonically dominated by the Huincul 

Arch, an E-W right-lateral shear zone characterized by transpressive uplift that was 

active from Early Jurassic to Late Cretaceous time (Orchuela et al., 1981; Ploszkiewicz 

et al., 1984; Tankard et al., 1995; Vergani et al., 1995). The Huincul Arch divides the 
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Figure 2.7. Structural configuration of the Neuqu n Basin. (A) Extensional fault systems formed during 
Late Triassic time (after Vergani et al., 1995). (B) Main structural elements of the Huincul Arch and sur-
rounding areas of the Neuqu n Basin after Mesozoic transpression. Based on Maretto and Lara (2002), 
Orchuela et al. (1981), P ngaro and Bruveris (1999), Ploszkiewicz et al. (1984), and Vergani et al. (1995). 
HF: Huincul Fault, ABF: Aguada Baguales Fault, ATF: Aguada Toledo Fault, ATS: Aguada Toledo Struc-
ture, CT: Challac  Trough, SBF: Sierra Barrosa Fault, SBS: Sierra Barrosa Structure, RCEZ: Ram n 
Castro Extension Zone, RNFZ: R o Negro Fault Zone. The Huincul Arch is the approximately 10-km wide 
deformation zone indicated by the shaded line. 
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Neuquén Basin into two main depocenters, known as the Northern and Southern Sub-

basins.  

The area investigated during this study covers the Northern Sub-basin along the 

northern flank of the Huincul deformation zone (Figures 2.6, 2.7B). In this region, Late 

Triassic half-grabens were tectonically inverted during transpressional deformation 

along a restraining bend in the Huincul Arch principal displacement zone (Ploszkiewicz 

et al., 1984; Vergani et al., 1995; Cruz et al., 2002). Compressional stress that caused the 

inversion of rift depocenters likely had a general N-S orientation. The most conspicuous 

inversion structures in the study area are the Sierra Barrosa (SBS) and Aguada Toledo 

(ATS) structures, which are the main focus of this study.  

Pre-rift basement rocks beneath the Neuquén Basin consist of a complex of early 

Paleozoic metamorphic and igneous rocks, with a thin interval of Carboniferous strata. 

Pre-rift basement is overlain by up to 7 km of Mesozoic-Cenozoic strata (Figure 2.8; 

Vergani et al., 1995). Syn-rift strata include the “pre-Cuyo” and lowest “Cuyo” groups, 

which consist mostly of siliciclastic facies that were deposited in alluvial fan, fluvial, 

and lacustrine environments (Legarreta and Gulisano, 1989; Urien and Zambrano, 1994) 

with a significant pyroclastic component.  

The post-rift succession was deposited during three main transgressive-regressive 

cycles: 1) the Toarcian-Bathonian middle to upper Cuyo Group; 2) the Callovian-

Oxfordian Lotena Group; and 3) the Kimmeridgian-Albian Mendoza and Rayoso 

Groups; (Digregorio, 1972; Digregorio and Uliana, 1980; Gulisano and Pando, 1981; 

Hinterwimmer and Jáuregui, 1985; Legarreta and Gulisano, 1989; Urien and Zambrano, 
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Figure 2.8. Composite stratigraphic column of the Northern Sub-basin (Neuqu n Basin). After Urien and 
Zambrano (1994), Vergani et al. (1995), Veiga (2002), and Cobbold and Rossello (2003).
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1994). Continental deposits of the Late Cretaceous (Cenomainan-Campanian) Neuquén 

Group cap the section in the study area. These post-rift sedimentary units are bounded by 

five major unconformities of variable areal extent and duration throughout the central 

Neuquén Basin. These unconformities, in ascending order are referred to as the Intra-

Liassic, Intra-Callovian, Intra-Malm, and intra-Valanginian, and Intra-Senonian (Figure 

2.8). The Intra-Liassic unconformity caps the syn-rift sedimentation and is associated 

with uplift and erosion previous to the first Cuyo transgression. The Intra-Callovian 

unconformity marks the first significant tectonic event along the Huincul Arch, which 

resulted in initial inversion across the study area. The Intra-Malm unconformity is 

associated with the strongest inversion event in the area. The Intra-Valanginian and 

Intra-Senonian unconformities are the result of less intense tectonic events along the 

Huincul Arch, which resulted in uplift and erosion of Lower and Upper Cretaceous 

strata, respectively. Subordinate breaks in the stratigraphic record are observed locally as 

intra-formational unconformities and reflect local response to tectonic deformation.  

 

DATA AND METHODS 

An extensive seismic and borehole dataset was made available to Texas A&M 

University by Repsol-YPF of Argentina. The seismic dataset consists of four, partially-

overlapping, 3D seismic-reflection surveys that cover an area of about 1,500 km2 in the 

southern portion of the Northern Sub-basin along the northern flank of the Huincul Arch 

shear zone (Figure 2.9).  
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3D amplitude volumes have a horizontal resolution from 15 m (Survey 1) to 30 

m (Surveys 2 to 4). Vertical resolution is determined by the frequency content and 

interval velocities, which are similar for all surveys but vary significantly for different 

stratigraphic intervals. An extraction of frequency spectra for a small seismic sub-

volume of Survey 1 allowed the estimation of vertical resolutions at different depths, 

which are considered representative of the entire dataset (Figure 2.10). Using the 

extracted frequencies and interval velocities from Well B, a vertical resolution of 27 m 

was estimated for the sand-rich strata of the Upper Mendoza Group (Centenario 

Formation; 500-900 ms TWT). Vertical resolution decreases for the carbonate- and 

marl-rich lower Mendoza Group (Quintuco and Vaca Muerta Formations; 900-1200 ms 

TWT), with an estimate of 47 m. Resolution again increases to 38 m for the interbedded 

sands and shales of the Lotena and Cuyo Groups (1200-2000 ms TWT), whereas the 

lowest values are observed in the lowest Cuyo and Pre-Cuyo intervals (52 m; 2000-2600 

ms).  

Borehole data consist of log curves (digital or paper versions of spontaneous 

potential, gamma-ray, sonic, and resistivity curves) and mud-logging reports from five 

exploratory wells that partially penetrated the Lower Jurassic section. None of the wells 

within the 3D surveys penetrated the entire Mesozoic section, although the deepest well 

(Well E) reached 4798 m below the surface. This represents about 85% of the entire 

stratigraphic thickness in this part of the basin. Well D, located about 2 km NE of the 

area covered by 3D seismic, reaches early syn-rift strata and was used as a reference for 

mapping deep stratigraphic levels (Lower Cuyo and Pre-Cuyo strata) (Figures 2.8, 2.9). 
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Figure 2.10. Estimation of vertical resolution for a sub-volume of seismic survey 1 (10 by 10 traces). 
Frequency spectra for different time-intervals are shown. DF = Dominant Frequency; AIV = Average 
Interval Velocity; VR = Vertical Resolution. Vertical resolution is estimated as 1/4 of the wavelength of 
the dominant frequency. Average interval velocities were obtained from well B sonic log.
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Repsol-YPF also provided access to proprietary reports on the regional Mesozoic 

stratigraphy of the area.  

All seismic data, log curves, and stratigraphic markers were loaded onto a Unix 

workstation from 8 mm magnetic tapes. GeoQuest™ GeoFrame™ 4.0.3 by 

Schlumberger™ was used to interpret and visualize the data. Detailed seismic mapping 

was done using IESX™ and BaseMap Plus™ seismic interpretation and gridding 

modules. WellEdit™ and WellPix™ were used to analyze, edit and correlate log curves. 

Coherency volumes of all 3D surveys were generated using Variance Cube™. The 

coherency volumes were computed using a time-window of 80 ms, inline and crossline 

ranges of 3 traces and the “×” operator, which uses all eight traces surrounding the 

center trace to calculate the coherency. The generated volumes, when combined with 

amplitude sections, enhanced the imaging of faults and facilitated fault mapping (Figure 

2.11). Additional seismic-attribute volumes were generated to aid in stratigraphic 

interpretation (e.g., instantaneous frequency and instantaneous phase attributes). 

Available checkshot surveys were used to calibrate the sonic logs and generate 

synthetic seismograms. This was achieved using the Synthetics™ module in the 

GeoFrame™ suite. Pseudo-checkshots were created in cases where a checkshot from a 

nearby well was not usable due to significant structural and stratigraphic differences. In 

these cases, known reflections were assigned a depth, which was known from well logs 

or lithology profiles. 

Checkshot surveys were available for wells C, E, and H, which are within 

seismic surveys 3 and 4 (Figure 2.9). After sonic log editing, calibration, and 
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Amplitude (left) and coherency (right) versions of a vertical seismic section and time slice from Surveys 
2 and 1, respectively, showing the increase in fault imaging quality for the coherence volume.  
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construction of synthetic seismograms (Figure 2.12), markers for key stratigraphic levels 

were then posted on the seismic data and mapped across the surveys. The wavelet used 

to compute the seismograms was statistically extracted from a seismic sub-volume 

around each well (20 x 20 traces and time interval enclosing the main units mapped), 

using zero phase, normal polarity, and a Ricker type wavelet. Seismic correlation was 

then used to extend the interpretation to adjacent surveys without well control (i.e., 

Survey 2). In the case of Survey 1, only partial data for well B was released (i.e., no 

checkshot survey), and therefore the sonic log, calibrated with a pseudo-checkshot, was 

used to generate the time-to-depth curve (Figure 2.12).  

Three-dimensional visualization was done using GeoViz™. Structural 

restorations were performed using a 2DMove™ by Midland Valley™. Selected vertical 

seismic profiles and interpreted cross-sections were converted to depth using the 

domain-conversion function in 2DMove™. This is performed by constructing a velocity 

model consisting of layer geometries, assigning a seismic velocity at the top of each 

layer, and using a rate of change in velocity with depth within each layer. Interval 

velocities used in the model were obtained from acoustic logs and checkshot surveys. 

Ages of key stratigraphic surfaces were obtained from proprietary biostrati-

graphic reports and published literature from the Neuquén Basin. Poor data resolution 

and lack of continuous reflections did not allow adequate extensive mapping of the top 

of basement and syn-rift internal stratigraphic levels, which in turn prevented 

construction of regional syn-rift time-thickness maps.    
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Figure 2.12. Synthetic seismogram generation panels for wells E and B and representative seismic sec-
tion from well locations. See Figure 2.9 for well locations. D vs T = Depth vs time curve; TVD = True 
Vertical Depth; TWT = Two-way time; RC= Reflection Coefficients; Syn = Synthetic Seismogram. 
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RESULTS 

Seismic-stratigraphic relationships 

Structural and stratigraphic mapping across the area of 3D seismic coverage 

shows that the most prominent inversion structures in the area are the Sierra Barrosa and 

Aguada Toledo structures, which are covered by Surveys 1 and 2 (Figure 2.9). These 

structures record important tectonic events that occurred during Late Triassic to Late 

Cretaceous time, which predates the main phases of the Andean orogeny. The 

interpreted tectono-stratigraphic framework for these structures was combined with 

seismic-facies analyses to identify five main tectono-stratigraphic units for the Sierra 

Barrosa and Aguada Toledo structures (Figure 2.13): pre-rift basement, syn-rift, post-

rift, syn-inversion 1, and syn-inversion 2.   

Basement is seismically identified by its relatively reflection-free to chaotic 

seismic character. It was not penetrated by wells in the study area and therefore was 

mapped based on geometrical relationships and seismic-facies recognition. The top of 

basement horizon is generally characterized as a discontinuous positive reflection.  

Syn-rift strata (Pre-Cuyo to Lowest Cuyo strata) are imaged as wedge-shaped 

intervals characterized by a complex seismic signature, where divergent continuous 

reflections are intermixed with chaotic to almost reflection-free packages that are 

bounded by faults or onlap against basement. The upper portion of the syn-rift interval is 

imaged as continuous reflections corresponding to basal strata of the Los Molles 

Formation. In outcrop, basal syn-rift strata consist of intermixed volcanic and coarse 
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Figure 2.13. Seismic character and depositional facies for Mesozoic strata in the Northern Sub-basin 
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continental siliciclastic strata that were deposited in isolated depocenters (Gulisano and 

Legarreta, 1987; Legarreta et al., 1993; Vergani et al., 1995).  

Lowermost post-rift strata correspond to the Cuyo Group (deep marine shales 

and interbedded turbiditic sandstone of the upper Los Molles Formation), which are 

overlain by southeast-to-northwest prograding shoreface and deltaic deposits of the 

Lajas Formation (Figure 2.8). 

The stratigraphic record of pulsed basin inversion exists throughout most of the 

post-rift section, and is seismically expressed by multiple angular unconformities across 

the crest of inversion highs and thin stratal packages that onlap against both limbs of 

inversion anticlines. Syn-inversion strata were divided into two units: syn-inversion 1 

(strong) and syn-inversion 2 (mild). The lower part of syn-inversion 1 strata consists of 

fluvial to deltaic deposits of the Lotena Formation (discontinuous, subparallel, and low 

amplitude reflections), which are overlain by basinal shale and NW-prograding 

carbonate facies of the Lower Mendoza Group (high-amplitude, continuous, and parallel 

reflections). More significant inversion, however, is recorded within this unit by the 

upper part of the Quintuco Formation (Lower Mendoza Group) along the limbs of the 

Sierra Barrosa and Aguada Toledo structures. Onlap of high amplitude, continuous 

upper Quintuco reflections, together with thickness changes across the anticlines’ crests, 

record inversion and uplift of the SBS and ATS during Berriasian and Valanginian time. 

Syn-inversion 1 strata are truncated by the Intra-Valanginian unconformity. Syn-

inversion 2 strata, which comprises the upper Mendoza, Rayoso, and Neuquén Groups, 

are only mildly affected by inversion-related folding and uplift and stratal patterns show 
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that the intensity of inversion deformation waned up-section (Figure 2.15). Syn-

inversion 2 strata contain another significant angular unconformity (Intra-Senonian), 

which reflects renewed folding and uplift during Cenomanian time. Sesmic facies 

consist of relatively discontinuous and low-amplitude reflections that are poorly imaged 

due to the low signal-to-noise ratio, which is characteristic of continental facies like the 

Neuquén Group (0-400 ms TWT). 

Eight horizons were mapped across the entire merged 3D-surveyed area. These 

horizons correspond to either marine flooding surfaces or unconformities and were 

chosen because of their tectono-stratigraphic significance and their lateral continuity as 

markers for kinematic analysis. These horizons are, in ascending stratigraphic order: Top 

Pre-Cuyo (TPC), Intra-Cuyo (ICY), Base Vaca Muerta (BVM), Base Quintuco (BQC), 

Intra-Quintuco 1 (IQ1), Intra-Quintuco 2 (IQ2), Intra-Quintuco 3 (IQ3), and Top 

Quintuco (TQC) (Figure 2.13). 

Description and interpretation of structural features 

General description of Sierra Barrosa and Aguada Toledo structures 

The SBS is an elongated asymmetrical inversion anticline, about 22 km long and 

a maximum of 6 km wide (Figure 2.14). The sinuous fold axis plunges gently to the west 

and east-southeast and fold amplitude decreases upsection, which results from the 

combination of parallel-style folding with significant erosion at certain stratigraphic 

levels (i.e., folded unconformities). Two substructures or areas of highest overall uplift 

within the SBS are linked by a “neck” whose width increases at higher stratigraphic 
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Figure 2.14. Time-structure maps of the Sierra Barrosa (SBS) and Aguada Toledo (ATS) inversion struc-
tures at the top of Lower Cuyo group (A) and base of Vaca Muerta Formation (B). Contour interval = 50 
ms. Note how north-south oriented faults are fewer in number, have shorter lengths in plan view, and 
have less apparent heave at shallower Vaca Muerta level than at deeper Lower Cuyo level.
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levels within the post-rift strata. The western substructure (Figures 2.14, 2.15) exhibits 

the largest amount of uplift, has a N- to NNE-dipping axial plane, and a southern limb 

cut by a southward-verging fault zone that changes from normal at depth to reverse at 

shallower levels. The southern limb of the SBS is defined by an E-W syncline, whereas 

the northern limb is locally affected by another inversion structure, the Aguada Toledo 

Structure (ATS) to the north.  

A master reverse fault cuts the southern limb of the SBS and affects both 

basement and overlying strata. The master fault is mappable as a single surface on 

seismic sections with associated shortcut faults or antithetic normal faults in some parts 

of the structure. Clear offset of post-rift strata shows the reverse character of the master 

fault zone, but the high dip of reflectors in the vicinity of the fault zone and the poor 

reflectivity of early post-rift strata prevent the clear imaging of discrete structural 

elements, with the exception of some large antithetic normal faults (Figure 2.15). The 

master fault zone does not cut completely through the steeper southern limb of the SBS 

anticline, although flattening of the fault plane is observed in some parts of the structure. 

The average dip of the master fault is about 70° to the north in the faulted uppermost 

post-rift section, although the fault is listric at depth and flattens to 45° to 60°.  

Another prominent inversion structure is located on the northern flank of the 

SBS. The Aguada Toledo Structure (ATS) is an elongated asymmetrical inversion 

anticline that extends in an E-W direction for about 10 km and has a maximum width of 

about 3 km (Figure 2.15). The fold axis, located ~5 km north of the SBS’s axis, plunges 

gently to the east and west. The amplitude of the anticline decreases up-section, mostly 
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Figure 2.15. Uninterpreted (A) and interpreted (B) seismic section A-A  through the western portion of 
the SBS, depicting some structural elements (see text for description and Fig. 2.14. for line of section).
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due to parallel-style folding (angular unconformities within the Cuyo and Mendoza 

groups are more subtle than for the SBS). A northward-dipping half-graben bounding 

fault was reactivated in a reverse sense during inversion and cuts up-section into the 

post-rift strata, resulting in an inversion-related fault-propagation fold. No displacement 

across this fault is observed at the Lower Mendoza Group level, although significant 

folding of these and shallower strata is apparent. The ATS’s main bounding fault is 

listric, with northward dips ranging from 40° to 70°, and is imaged as a thin zone of 

discrete deformation that cuts through the uppermost Cuyo Group.  

Fault framework for SBS and ATS 

The structural framework that developed in conjunction with extension during 

rifting and later contraction during inversion can be divided into two main fault systems. 

The “deep” fault system affects mostly basement and syn-rift strata and has a general E-

W orientation. It consists of reactivated and non-reactivated extensional faults that 

comprised the original rift fabric plus newly formed faults that accommodated the 

shortening associated with inversion (i.e., backthrusts and “shortcut” faults). Some of the 

syn-rift faults bound wedge-shaped syn-rift strata. The largest inverted half-grabens of 

the SBS are bounded by a composite extensional fault system comprised of three main 

segments and two accommodation zones (Figure 2.16). Listric half-graben bounding 

faults apparently join detachment levels at different depths. Bounding-fault segment 2 

seems to be the deepest fault and is imaged as a clear reflection that flattens into a 

horizontal detachment at about 3.75 s TWT (Figure 2.17B). Segment 2 also bounds the 

largest and thickest syn-rift depocenter and corresponds to the portion of the SBS 
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structure with maximum structural inversion. Bounding-fault segments 1 and 3 flatten at 

shallower levels based on their dip angles at the syn- and post-rift levels, although 

detachment levels are interpreted to be between 3.00 and 3.25 s TWT (Figure 2.17A, C). 

Syn-rift wedges bounded by segments 1 and 3 have similar thickness, but uplift due to 

inversion is greater for the depocenter bounded by segment 3.   

Faults at the syn-rift level are classified into three types, based on their 

interpreted kinematic history: D1 (syn-rift faults not reactivated during inversion), D2 

(syn-rift faults reactivated during inversion), and D3 (new syn-inversion faults). The 
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Figure 2.17. Uninterpreted and interpreted seismic sections through main fault segments 1, 2, and 3. 
Vertical scale is two-way time (seconds). See Figure 2.16 for location of seismic sections. 
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orientation of most faults of each type is very consistent (Figure 2.18), although the 

strikes of D1 faults show slight scatter and D3 faults deviate the least from the overall E-

W orientation.  

Fault dips for the “deep” system were measured on seismic profiles (time 

sections with minimum vertical exaggeration). Since most faults have a listric character, 

dips were consistently measured at the top of syn-rift strata. Equal-area plots for the 

three fault types (Figure 2.18) show that most syn-rift faults (i.e., D1 and D2 faults) dip 

toward the north, whereas D3 syn-inversion faults dip southward. Pole plots also show 

the larger scatter in fault attitude for D1 (syn-rift non-reactivated) faults.  

Fault lengths were measured in map view at the top of syn-rift strata. Fault-

length and fault-strike averages were determined for each fault type. These values then 

were plotted with fault-length and fault-strike standard deviations (Figure 2.19). Average 

strike for the three fault types differs slightly, with a difference of ~5° between D1 and 

D2 faults. Non-reactivated syn-rift faults (D1) are, on average, significantly shorter than 

their reactivated counterparts (D2 faults) although differences in length are smaller (i.e., 

lower standard deviation). Syn-inversion faults (D3) are the shortest and have the least 

scatter in length values. Syn-rift reactivated faults (D2) exhibit the greatest length 

variability, with a length range between 0.7 and 12.2 km. Smaller syn-rift synthetic and 

antithetic faults show the least amount of reactivation, whereas larger faults are strongly 

inverted.  

Syn-inversion faults that cut the post-rift section show marked differences in 

geometry, attitude, and distribution with respect to faults that cut the syn-rift section. 
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Figure 2.18. Rose diagrams, equal-area great circle and equal-area pole-scatter plots of faults at the syn-
rift level. Fault types were defined based on fault kinematic history and time of development. D1: non-
reactivated syn-rift  faults; D2: reactivated syn-rift faults; D3: syn-inversion faults. Rose diagrams show 
orientation of fault traces in plan view. Note larger scatter in strike values for D1 faults. Equal area plots 
show orientation of fault planes. Most pre-existing faults (reactivated and non-reactivated) dip to the 
north. Most syn-inversion faults are antithetic (dip to the south). 
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Figure 2.19: Summary plot of fault horizontal length and strike data (average and standard deviation) 
for the three fault types at the top of syn-rift strata. Note significant difference in average fault length 
between syn-rift non-reactivated (D1) and syn-rift reactivated faults (D2). Shorter syn-rift synthetic and 
antithetic faults show the least amount of reactivation, whereas longer faults are strongly inverted. Fault 
strikes for the three fault types differ by ~5 , although reactivated faults (D1 and D2) exhibit a more con-
sistent strike. Domain D3 (syn-inversion) faults are the shortest and show the least variation in length 
values. Error bars correspond to one standard deviation. 
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Post-rift strata are cut by normal faults that are oriented N-S to NNW-SSE, dip 

predominantly to the west, and are mostly restricted to the SBS’s hanging wall (Figure 

2.20). These faults are grouped into three roughly N-S-trending domains that are 

recognizable at different stratigraphic levels on time-structure maps. The westernmost 

fault domain of the SBS’s hanging wall (S1 faults; Figure 2.20) consists of NW-SE 

striking faults that extend ~10 km north of the master bounding fault. S1 faults exhibit a 

crude left-stepping en échelon pattern in map view that becomes less obvious 

southwestward, where S1 faults transition into a series of faults associated with another 

large inversion structure south of the SBS. On seismic sections perpendicular to the main 

bounding fault zone, S1 faults are imaged as upward-branching normal faults. Vertical 

displacement along the largest faults is greatest (~50 ms) at the top of Lower Cuyo 

horizon and diminishes upsection, with only minor local offset above the top of the 

Quintuco Formation. Vertical displacement on S1 faults diminishes downsection, 

becoming subseismic within basal Pre-Cuyo and basement levels (Figure 2.21).  

The S2 fault domain in the center of the SBS inversion anticline consists of faults 

arranged in a right-stepping en échelon pattern. S2 faults extend ~12 km north of the 

SBS’s master fault and flank the ATS on its western end. S2 faults are closely-spaced 

normal faults of roughly similar trace length at the top of lower Cuyo level. On vertical 

seismic sections, S2 faults are imaged as normal faults that splay upward from a 

relatively narrow but complex deformation zone at the syn-rift level (Figure 2.21). Both 

S1 and S2 fault domains converge slightly toward the south as they approach the master 

fault.  
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The closely spaced faults of the S3 fault domain at the eastern end of the SBS 

extend for about 15 km north of the master fault to the eastern side of the ATS. S3 faults 

are arranged in a left-stepping en échelon pattern on both the eastern limb of the ATS 

and close to the SBS master fault, but the pattern is less obvious in the central part of the 

faulted area. On seismic sections, S3 normal faults converge downsection into a poorly-

imaged deformation zone at the syn-rift level (Figure 2.21). Most S3 faults in the eastern 

SBS terminate upsection in lower parts of the Upper Cuyo Group. S3 faults flanking the 

eastern side of the ATS offset younger strata in the Lower Mendoza Group. The three 
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“shallow” fault domains are not restricted to regions of maximum uplift in either the 

SBS or ATS. 

Rose diagrams of fault traces in the three shallow fault domains (Figure 2.22) 

show that S1 faults have the least variance, even though the number of samples is similar 

for all cases (n = 25, 19, and 27 for S1, S2 and S3 domains, respectively). S2 faults show 

significant variance, despite having the clearest en échelon fault arrangement. The 

scatter reflects the gradual change from N-S trending faults close to the SBS master fault 

to NNW-SSE trending faults on the eastern flank of the ATS. S3 faults have the greatest 

variance in strike values, although 75% of the 27 fault strikes are between 152° and 

180°. 

Very subtle structural lineaments are also observed within the Upper Cuyo and 

Lower Mendoza Group. These features are not obvious on time-structure maps and 

vertical seismic profiles, but become prominent on time-dip maps (Figure 2.23). The 
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Figure 2.23. Unlabeled and annotated time-dip maps of the base of Vaca Muerta horizon. Darker shades 
indicate steeper dips. Main faults affecting the SBS s hangingwall are clearly visible. Subtle straight lin-
eations are best imaged in the western part of the survey area and may correspond to conjugate sets of 
small-displacement faults.  
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lineaments are fairly straight and have two principal orientations: NW-SE and SW-NE. 

They are best imaged in the western part of the study area, whereas they are obscured by 

the dense normal faulting (S1, S2, S3 faults) that characterizes the SBS’s hanging wall 

(Figure 2.23). 

Along-axis variations in structural style  

Along-axis variations in structural style are shown in seven 7 representative N-S 

oriented sections through the SBS and ATS (Figures 2.24, 2.25). Partitioning of 

contraction at the basement level changes gradually from more distributed (i.e., 

contraction accommodated by multiple shorter, small-displacement faults) in the 

structures’ eastern and western ends (Figure 2.24A, F) to more localized along large-

displacement faults in the areas of maximum uplift (Figure 2.24C, E). 

Inverted half-graben fills show complex internal deformation, where style varies 

significantly along strike. These changes in style show that the syn-rift wedges did not 

behave as rigid blocks during inversion, with displacement occurring only along the 

main bounding fault. Additional faults were necessary to accommodate internal 

deformation during contraction upon inversion. One type of such structures is comprised 

by antithetic normal faults that do not involve basement (D3 fault type). They develop in 

the central and eastern portions of the structure and are associated with regions of 

maximum uplift.  Antithetic reverse faults (back-thrusts) of the D2 and D3 fault types, 

though not the dominant mechanism, play a important role in accommodating 

contraction of the syn-rift wedges and are no necessarily restricted to areas of maximum 

uplift (Figure 2.24C-E). The central portion of the structure, around the eastern 
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Figure 2.24. Uninterpreted (left) and interpreted (right) seismic profiles A, B, and C through the SBS. 
Insets show location of seismic sections and faults at the top of syn-rift level. B = Basement; SR = Syn-
rift strata; PR = Post-rift strata; SI1 = Syn-inversion 1 strata; SI2 = Syn-inversion 2 strata.
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Figure 2.24 - Continued. Uninterpreted (left) and interpreted (right) seismic profiles D, E, and F through 
the SBS. Insets show location of seismic sections and faults at the top of syn-rift level. B = Basement; SR 
= Syn-rift strata; PR = Post-rift strata; SI1 = Syn-inversion 1 strata; SI2 = Syn-inversion 2 strata.
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Figure 2.25. Uninterpreted (A) and interpreted (B) seismic profile G, which trends along the axis of the 
SBS. Inset shows location of seismic section and faults at the top of syn-rift level. Note greatest general 
uplift in central part of SBS. B = Basement; SR = Syn-rift strata; PR = Post-rift strata; SI1 = Syn-
inversion 1 strata; SI2 = Syn-inversion 2 strata.
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accommodation zone, exhibits more ductile deformation of the syn-rift wedge with 

minimum visible displacement along major faults, as suggested by the folding of the 

structure’s core (Figure 2.24E).  

Along-dip shortening of the post-rift section is partially accommodated by the 

development of a fault-propagation fold. The curvilinear trace of both the main bounding 

fault and adjacent fold are clearly visible on time-structure maps at different 

stratigraphic levels within the post-rift section (Figures 2.14, 2.20, 2.23). This contrasts 

with the rather more rectilinear but fragmented nature of the fault trace at the syn-rift 

level, which suggests the up-section linkage of different fault segments into a single fault 

plane of sinuous character. 

Reverse displacement along the main bounding fault decreases upsection over 

the entire inversion structure, but varies significantly along strike. It is greatest in the 

two regions of highest uplift, and minimum in the center of the structure (over the 

eastern accommodation zone) and towards the structure’s ends. A significant change in 

the proportion of bounding fault with net normal displacement and net reverse 

displacement (Ri) is observed along the SBS. In some segments of the structure, where 

the inversion index is greatest, the top of basement is interpreted to have reverse offset 

(e.g., Figure 2.24D, E), showing that the syn-rift wedge has been completely inverted 

and the basement contracted beyond the pre-rift state. 

The kinematic history of structural elements and growth stratal patterns of the 

ATS are similar to those of the SBS. Along-strike variations in structural style, however, 
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are less dramatic in the ATS, with inversion-related shortening accommodated mostly by 

reverse displacement along the half-graben bounding fault (Figure 2.24D).    

Evidence for fault interactions during extension and inversion 

Careful analyses of syn-rift and syn-inversion fault systems and growth strata are 

necessary to evaluate the relative influence of preexisting faults on later inversion. In 

order to approximate the pre-inversion configuration of syn-rift half-grabens that form 

the core of the SBS, a traverse seismic section in mid-hanging wall position through the 

structure was flattened at the top of the syn-rift strata (Figure 2.26).  

Two main depocenters, separated by an accommodation zone, are obvious on the 

flattened seismic section. The western depocenter is larger. Onlap of basal syn-rift strata 

against basement is apparent on the flattened sections, as well as divergent stratal 

patterns within the syn-rift fill. The top of the syn-rift wedge was downlapped by Lower 

Cuyo strata that apparently prograded from east to west across filled half-graben 

depocenters during early post-rift stages.   

Lateral continuity of upper syn-rift strata across the eastern accommodation zone 

between the syn-rift half-graben depocenters indicates linkage of main bounding faults 

during extension. Some syn-rift deposition occurred before linkage, however, as 

indicated by onlap patterns within two distinct depocenters. This arrangement of syn-rift 

fault systems and accommodation zones contrasts with the single through-going curved 

fault zone that defines the southern boundary of the SBS inversion anticline (Figures 

2.14, 2.16, 2.23). The sinuous character of this fault zone, as well as the geometry of the 

anticline’s axial plane, however, are related to the location of the main basin-bounding 
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extensional fault segments and accommodation zones. In addition, the areas of greatest 

inversion in each substructure of the SBS and ATS coincide with the thickest parts of the 

syn-rift wedges, whereas less inversion occurred along the inferred syn-rift 

accommodation zones. 

Syn-inversion Growth strata 

Multiple unconformities and complex stratal patterns within syn-inversion 

growth strata of the SBS and ATS record the pulsed nature of inversion during Early 

Jurassic to Late Cretaceous time (Figure 2.8). The best developed growth strata are 

formed on the flanks of inversion anticlines within the Lower Mendoza Group (or 

Quintuco Formation).  

Depositional facies, stratal termination patterns, and time-thickness (or isochron) 

maps of different intervals within the Quintuco Formation were investigated in order to 

document the interactions between depositional systems and the growing inversion 

highs. The Quintuco Formation was divided into four intervals that are bounded by five 

seismic horizons (see “Seismic-stratigraphic relationships”) and referred to here as, from 

bottom to top, Quintuco I, II, III, and IV.  

Quintuco I is underlain by the shale facies of the Vaca Muerta Fm. The base of 

Quintuco I is seismic horizon BQC (Base Quintuco) and its top is IQ1 (Intra-Quintuco 

1). Horizon BQC probably corresponds to a significant flooding event, which was 

followed by SE to NW prograding outer-shelf shale and marl facies of the lowermost 

Quintuco Fm. (Figure 2.27B, C). The Quintuco I interval thickens toward the north 

(Figure 2.27A) and this suggests deepening of the basin in that direction. Quintuco I 
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Figure 2.27. Lateral thickness variations, seismic facies and stratal termination patterns for Quintuco I 
growth strata. (A) Time-thickness map of Quintuco I over the SBS and ATS (Contour Interval  = 5 ms). 
Thickness variations are evident over the SBS but do not affect the ATS. (B) Unflattened interpreted 
seismic profile representative of the facies character and stratal geometries of Quintuco I. (C) NW-
prograding clinoforms imaged on an interpreted seismic profile flattened at the top of Quintuco I (IQ1 
seismic horizon). d: Onlapping strata within Quintuco I in syncline that bounds the SBS to the south.    
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thins over the SBS’s crest and thickens into the narrow syncline that bounds the structure 

to the south. No significant thickness variations in Quintuco I are associated with the 

ATS.  

Bathymetry created by the growth of the SBS during late Tithonian to early 

Berriasian time may have caused some of the NW-prograding strata of Quintuco I to 

partially “pond” against the forelimb of the evolving structure (Figure 2.27D). The ATS, 

further north, does not seem to have been active during Quintuco I deposition, as there 

no thickness variations are observed. 

Quintuco II onlaps the IQ1 horizon along the northern flank of the SBS; the 

Intra-Quintuco 2 horizon (IQ2) is the upper bounding surface of Quintuco II (Figure 

2.28B, C). Quintuco II is characterized by strong parallel and continuous reflections that 

onlap the IQ1 horizon and are parallel to IQ2 except on the SBS’s crest, where low-

angle stratal terminations beneath IQ2 are apparent. Onlap within Quintuco II is also 

observed locally along the northern flank of the ATS (Figure 2.28D). These stratal 

relationships suggest the existence of antecedent bathymetry at the time of deposition 

and may also reflect minor syn-depositional growth of both anticlines during 

Berriasian(?) time. Most thickness variations within Quintuco II are restricted to the 

SBS, although incipient influence of the ATS is likely (Figure 2.28A). 

The relatively thinner growth strata of Quintuco III are imaged as a group of 

reflections that onlap horizon IQ2 but are apparently conformable at the top of the unit, 

which is a high-amplitude positive reflection mapped as IQ3 (Intra-Quintuco 3 horizon). 

Seismic facies within Quintuco III consist of parallel to sub-parallel, high-amplitude, and 
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Figure 2.28. Lateral thickness variations, seismic facies and stratal termination patterns for Quintuco II 
growth strata. (A) Time-thickness map of Quintuco II over the SBS and ATS (Contour Interval = 5 ms). 
Thickness variations are noticed over both SBS and ATS. (B) Unflattened interpreted seismic profile 
representative of the facies character and stratal geometries of Quintuco II, characterized by onlap to 
seismic horizon IQ1. (C) Onlap stratal terminations imaged on an interpreted seismic profile flattened 
at the top of Quintuco II (i.e., along seismic horizon IQ2). (D) Onlapping strata within Quintuco II in 
back limb of ATS.    

68  46' W68  54' W68  58' W

3
8

 
4
2
' 
S

3
8

 
4
4
' 
S

SBS

ATS

C

68  50' W

3
8

 
4
6
' 
S

25

Time- 

thickness 

(ms)

1.0

C C

II

IVBQC

IQ1

IQ2 IQ3

T
w

o

-
w

a

y
 
t
i
m

e

 
(
s
)

C C

I

II

III

IV

BQC

IQ1

IQ2

IQ3

TQC

B

1.00

1.25

T
w

o

-
w

a

y
 
t
i
m

e

 
(
s
)

I

II

III

IV

C

500 m

500 m

A

D

BQC

IQ1

IQ2 IQ3

TQC

D D

35

45

55

65

75

85

500 m

1.1

0.9

TQC

III

C

D

D

57



 

laterally continuous reflections at the base and top, which bound a group of dimmed but 

still laterally continuous parallel reflections (Figure 2.29B). Quintuco III varies in time-

thickness from 8 ms along the crest of the inversion structures to about 16 ms along their 

flanks, with a locally thicker region (up to 47 ms) over the syncline that bounds the SBS 

to the south (Figure 2.29A). The minor thickness variations and parallel internal 

reflections within Quintuco III suggest this interval was deposited during a period of 

relative tectonic quiescence. The low-amplitude character of Quintuco III reflections 

may be indicative of muddy facies which could have draped any antecedent topography 

that existed at the time of deposition. Slightly thicker Quintuco III strata on the southern 

limb of the SBS suggest subtle bathymetric relief which may have caused “ponding” of 

some sediment. 

Basal Quintuco IV reflections show low-angle onlap onto horizon IQ3. The top 

of Quintuco IV (horizon TQC) is a significant erosive unconformity (Intra-Valanginian) 

that separates the Upper and Lower Mendoza Groups (Figure 2.30B). Quintuco IV 

seismic facies are characterized by parallel to slightly divergent, high-amplitude 

reflections.  

Time-thickness variations within Quintuco IV strata are greater than for any 

other interval of growth strata, reaching values over 100 ms between the SBS’s crest and 

adjacent synclinal areas (Figure 2.30A). Quintuco IV is thickest in the syncline that 

bounds the structure to the south. Strata onlap both limbs of the syncline, especially 

along the central and eastern parts of the SBS (Figure 2.30C). Internal onlap and stratal 

truncation are also observed near the crests of the SBS and ATS Upper Quintuco strata 
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Figure 2.29. Lateral thickness variations, seismic facies and stratal termination patterns for Quintuco 
III growth strata. (A) Time-thickness map of Quintuco III over the SBS and ATS. Thickness variations 
are subtle over both SBS and ATS (note low range; Contour Interval = 5 ms). (B) Along-dip interpreted 
seismic profiles through the forelimbs of SBS (left) and ATS (right). Incipient internal onlap onto seis-
mic horizon IQ2 restricted to structural lows. 
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Figure 2.30. Lateral thickness variations, seismic facies and stratal termination patterns for Quintuco IV 
growth strata. (A) Time-thickness map of Quintuco IV over the SBS and ATS (Contour Interval = 10 ms). 
Thickness variations are significant over SBS and ATS (see time-thickness range). (B) Along-dip inter-
preted seismic profile through SBS s backlimb showing truncation at the Intra-Valanginian unconformity. 
(C) Time-thickness maxima and onlap against SBS s forelimb.  
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are highly eroded and truncated beneath the Intra-Valanginian unconformity, so 

Quintuco IV isochron map reflects the combined effects of Valanginian erosion and syn-

tectonic deposition. 

On along-strike sections, growth strata onlap the structures’ eastern and western 

terminations and exhibit reflection patterns that are similar to those observed on across-

strike sections (Figure 2.31B and C). The along-strike view shows the curved nature of 

the master bounding fault as it intersects the profile (Figure 2.31A). Laterally traceable 

onlapping reflections indicate synchronous uplift of both substructures and the 

development of accommodation space for sediments to “pond” in the frontal syncline 

between segments 2 and 3 of the SBS’s main bounding fault (Figure 2.31D).   

Section restoration and structure kinematics 

The viability of the structural interpretation of the SBS was tested by balancing 

and restoring a cross-section through the structure to its pre-extensional stage. This 

analysis contributed to a better understanding of the geological evolution of the structure 

and allowed the estimation of amounts of extension and contraction along the structure 

from Late Triassic to Late Cretaceous time. Restoration also contributed to visualizing 

stratal geometries before and during the different Mesozoic inversion events. The 

western depocenter of the SBS was chosen for restoration because the amount of 

inversion is greatest there. In addition, the shape of the master fault at depth is best 

imaged in this region, which further constrains the restoration.  
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Figure 2.31: Along-strike growth-stratal geometries. (A) Near strike-parallel section intersecting the mas-
ter fault s curved surface. Inset indicating profiles location shows fault traces at a stratigraphic level with-
in the post-rift strata. (B) Detail of onlaps within Quintuco IV on SBS s western substructure. (C) Detail 
of onlaps and truncations within Quintuco IV on SBS s eastern substructure. (D) Detail of onlaps and len-
tiform stratal packages between SBS s substructures.
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Tectonic transport directions 

A balanced cross section should be ideally constructed in the direction of tectonic 

transport, which must be estimated based on kinematic indicators or structural features. 

For inverted rift basins, however, the transport direction is especially difficult to estimate 

because syn-rift extension and syn-inversion contraction may not be coaxial. Careful 

selection of transport direction(s) minimizes the departure from the plane-strain 

constraint for two-dimensional restorations. If the angle between the restored cross 

section and the direction of extension is <25°, then the error in the estimated amount of 

extension will be <10% with respect to an ideally-oriented section (Dula, 1991; Hill and 

Cooper, 1996). Applying the same concept to both contraction and extension directions, 

a cross section can be restored for transport directions up to 50° apart, if the cross section 

bisects the angle (Hill and Cooper, 1996).  

Extension directions can be determined by analyzing the rotation or tilting of 

basement blocks (Scott et al., 1994). The true dip direction of pre-rift (or early-syn-rift) 

beds is assumed to be parallel to the extension direction regardless of fault orientation 

(cf. Scott et al., 1992; Scott et al., 1994; Cooper, 1995; Hill and Cooper, 1996).  

The 3D seismic coverage of the study area allowed measurement of dip 

directions of early syn-rift beds over the western part of the SBS. Since only true dip 

directions were determined, no depth conversion of the seismic volume was necessary. 

Seventy six dip directions were determined in non-inverted parts of the western rift 

depocenter of the SBS and in some inverted areas after flattening along the top of syn-

rift wedge (Figure 2.32A). The mean dip direction, with an azimuth of 199°, was used as 
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the extensional transport direction. This represents a clockwise rotation of ~20° with 

respect to the extensional direction that would have been estimated by assuming 

transport was perpendicular to the E-W oriented longest fault traces.   

Common criteria for determining the contractional transport direction are the 

shape and orientation of curved anticlinal crest formed by inversion (Woodward et al., 

1989; Hill and Cooper, 1996). In the case of the inverted western depocenter of the SBS, 

the roughly east-west curved anticline indicates a N-S compressional transport direction. 

Closer examination of the inverted western depocenter, however, shows that the 

structure’s crest at the top of the Pre-Cuyo syn-rift section is shifted ~1 km 

southwestward of the thickest Pre-Cuyo strata (Figure 2.32B). This offset may reflect 

NW-SE oblique contraction, which would cause the thicker portion of the syn-rift wedge 

to be obliquely displaced during inversion and to result in greater uplift within thinner 

parts of the syn-rift fill (Figure 2.33). The contractional transport direction can be then 

reasonably approximated by assuming its parallelism to a line connecting the syn-rift 

wedge’s thickness and uplift maxima, which has an azimuth of ~153° for the inverted 

western depocenter (Figure 2.32B). The contractional features associated with the SBS’s 

western substructure suggest a predominant dip-slip motion along the main bounding 

fault during inversion. The assumption then of NW-to-SE transport is reasonable and is 

in agreement with regional deformation patterns, which indicate the study area is within 

a larger zone of right-lateral transpressive deformation.  

The estimated syn-rift and syn-inversion transport directions form an angle of 

46°. A bisecting seismic section with an azimuth of 176° was selected for structural 
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restoration. Such orientation, within 25° from compression and extension directions, 

should result in restorations with small error in the estimated amount of extension and 

shortening.  

Section restoration and structure kinematics 

The seismic profile selected for structural restoration was converted to the depth 

domain using a velocity model consisting of twelve layers. Average interval velocities 

were assigned to each layer based on dominant lithology and sonic-log data from well B 

(Figures 2.9, 2.12). The 1:1 depth-converted section (Figure 2.34) was digitized and 
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Figure 2.34. Vertical section through the SBS chosen for structural restoration. (A) Uninterpreted pres-
ent-day depth-converted seismic section. (B) Color coding for main tectono-stratigraphic units sequen-
tially decompacted and restored. Section is oriented N 4  W. See Figure 2.31 for location.
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sequentially undeformed at different stratigraphic horizons to show the development of 

the hangingwall anticline and the progressive displacement along the master fault.  

Restorations were done using a combination of algorithms within the 2DMove™ 

software package. The algorithms were selected based on the need to maintain fault 

geometry and area-balance constraints, rather than assuming the folding mechanism was 

critical to the restoration. The fact that some algorithms worked better than others at a 

particular restoration stage may indicate that different deformation mechanisms were 

dominant at different stages. For example, the master fault does not cut through the 

uppermost Lower Mendoza Group. The algorithm chosen to restore the section at the top 

of Quintuco Formation (“trishear”; Erslev, 1991; Hardy and Ford, 1997) had to account 

for the unfolding only of the shallower part of the section while both unfaulting and 

unfolding the underlying strata cut by the master fault. Displacement along the master 

fault increases with depth. Inclined shear (Gibbs, 1983; Withjack and Peterson, 1993) 

was the algorithm chosen to restore the top of Vaca Muerta because it considers the 

effects of fault geometry on hangingwall deformation. After decompacting strata down 

to Lotena Formation, fault displacement had been consumed. A flexural-slip algorithm 

(Davison, 1986) was therefore needed to unfold the Cuyo and Pre-Cuyo groups without 

further displacement along the master fault.  

For successive restoration stages, part of the sedimentary column was stripped 

off and underlying units were decompacted and isostatically adjusted. The restoration 

and decompaction procedures caused slight northwestward tilting of layers in the 

footwall for the Callovian and Bathonian restoration stages. The results of nine stages of 
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restoration and backstripping are shown in Figures 2.34 and 2.35 and discussed below in 

a forward fashion to characterize the kinematic evolution of the structure from Late 

Triassic to Recent time. 

Restoration to the Late Triassic pre-extension stage (Figure 2.35H) was 

performed by removing fault displacement with an inclined-shear restoration algorithm. 

In order to facilitate footwall restoration, faults were hypothetically extended to merge 

the main detachment. Hangingwall faults, both synthetic and antithetic, were assumed to 

be the result of hangingwall deformation above a listric detachment and were therefore 

hypothetically linked with it. This fault arrangement at depth is a tool for section 

restoration purposes only, and does not intend to illustrate the real fault geometry. The 

restored section exhibits a total extension of ~14% (1.7 km) with significant topography 

at the top of Pre-Cuyo. This antecedent relief is seismically expressed by a series of 

onlaps against the seismic horizon at the top of syn-rift. 

The restoration at the top of the Middle Cuyo Group (Figure 2.35G) shows that 

no significant inversion of the SBS occurred during Early Jurassic time (Pliensbachian to 

early Aalenian). This is expressed by the constant thickness and dip of Lower to Middle 

Cuyo strata and lack of offset across the master fault. General deepening of the basin to 

the NNW is observed. During this time, the Northern Sub-basin was filled with 

prograding turbidites that were sourced mostly from the south and southwest. 

The Intra-Callovian unconformity on top of upper Cuyo strata on the SBS is 

documented in other parts of the basin and is seismically expressed in the SBS as major 

truncation surface with erosive thinning of the uppermost Cuyo interval over the 
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Figure 2.35. Restoration sequence of a depth-converted balanced cross section through the western sub-
structure of the SBS. Length of the present-day depth-converted seismic section is 12,977 km. The total 
amount of shortening during inversion is ~1 km (8 %). Total pre-inversion extension is ~1.7 km (~14%).
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Figure 2.35 - Continued. 
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structure’s crest (Figure 2.34). The restoration at the top of the Cuyo level therefore 

required reconstruction of the missing section eroded from the crest of the SBS. The 

amount of section added was based on the thickness of the Cuyo Group in non-inverted 

areas and on the trend of reflections truncated by the Intra-Callovian Unconformity 

(Figure 2.35E). The restoration was accomplished by unfolding the entire cross-section 

flattening along the top of the reconstructed Upper Cuyo Group (Figure 2.35F). This 

restoration stage shows incipient folding of Pre-Cuyo and Lower Cuyo strata, suggesting 

the initiation of inversion during Bathonian to early Callovian time. No displacement 

along the master fault is observed at the top of syn-rift strata, although the amount of 

extensional displacement at the top of Basement had been reduced. 

After the Callovian inversion event, the basin was filled with shoreface and 

deltaic facies of the late Callovian to early Kimmeridgian Lotena Formation. Further 

inversion during late Kimmeridgian time caused significant erosion of the Lotena 

Formation, expressed by the Intra-Malm unconformity. Thickness reconstruction of 

Lotena strata was needed before performing the restoration at the top of this unit (Figure 

2.35D). Increased shortening during this inversion stage was accommodated by folding 

at the top of syn-rift and early post-rift levels. Displacement along the master fault at the 

top of the syn-rift wedge still was not significant, although it is readily visible at the top 

of basement level, where the amount of original extensional displacement was further 

reduced.  

The Intra-Malm unconformity is overlain by Vaca Muerta shale facies, of 

Tithonian age. Restoration at the top of this unit (Figure 2.35C) shows the initial 
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displacement along the master fault at the top of syn-rift strata, in addition to folding of 

the entire section. Offset along the master fault increases downsection. The thickness of 

the Vaca Muerta Formation was not reconstructed, as it is fairly constant throughout the 

SBS. This unit was deposited during the most important flooding event in the basin, and 

its uniform thickness may suggest a period of tectonic quiescence during Tithonian time. 

The Quintuco Formation comprises most of the syn-inversion strata in the SBS. 

Restoration at the top of this unit required reconstruction of original Quintuco 

thicknesses to account for the strata eroded along the Intra-Valanginian unconformity. 

The missing Quintuco section was estimated based on the unit’s thickness in nearby 

areas. In addition, stratal onlap onto the SBS’s limbs indicating syn-tectonic deposition 

and thinning over the structure’s crest further constrained the thickness reconstruction 

process. Iterative forward modeling using the “trishear” algorithm in 2DMove allowed 

the estimation of a pre-erosional Quintuco Profile (Figure 2.35A). The Quintuco Fm. 

was then restored to estimate the amount of shortening and structural configuration prior 

to the Valanginian inversion (Figure 2.35B). Previous to the Quintuco bed 

reconstruction, backstripping of the Neuquén Group and restoration at the top of Rayoso 

Group (not shown) was done using an inclined shear algorithm, which accounted for the 

small displacement along the main detachment observed in Figure 2.35A. 

 

DISCUSSION 

The 3D seismic data and interpretation tools in GeoFrame were used to 

document the structural and stratigraphic relationships associated with tectonic inversion 
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in the Central Neuquén Basin. The complex structures and stratigraphic patterns 

associated with development of the SBS and ATS suggest that multiple deformation 

processes (e.g., fault linkage during extension and contraction, expansion of post-rift fill 

in the hangingwall during inversion, oblique inversion, and growth stratal development) 

played important roles in determining the final configuration of these inversion 

structures.    

Faulting associated with inversion 

Differential uplift and detachment depth 

There is significant along-strike variation in the amount of uplift in the 

substructures that comprise the SBS. This may be related to differences in detachment 

depths for the different half-graben bounding fault segments. Coincidence of the deepest 

detachment level along segment 2 (Figure 2.17B) with the region of maximum uplift is 

consistent with observations from analog models (Buchanan, 1991; Bulnes and McClay, 

1999). For deeper detachment levels, the same amount of shortening will cause a larger 

volume of material to be uplifted above the pre-inversion “regional”. For syn-rift wedges 

with similar volume, those with deeper detachments will be more strongly inverted 

(Figure 2.36). In the SBS, the apparent volume of syn-rift depocenters bounded by fault 

segments 1 and 3 are similar, but uplift is greater for the depocenter bounded by the 

deeper segment 3. Greatest uplift along segment 2 may be the combined result of a 

slightly bigger syn-rift wedge and the deepest detachment level (Figure 2.17). Different 
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detachment levels can, therefore, occur within a single inversion structure, which may be 

controlled by the original segmentation of older extensional faults. 

Trends in fault reactivation 

The two principal inversion structures identified in the study area, SBS and ATS, 

present a fault framework that combines non-reactivated structures with syn-inversion 

reactivated and newly-formed faults. The “deep” fault system is characterized by a 

significant difference in fault-trace lengths, dips, and, to a lesser degree, orientation 

between non-reactivated (D1) and reactivated (D2) syn-rift extensional faults (Figure 

2.16).  
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The occurrence of a few fault segments that are significantly larger than the rest 

is a consequence of some faults propagating and linking at the expense of others during 

extension (Kim and Sanderson, 2005). The data show that the larger syn-rift master fault 

segments were preferentially reactivated and accommodated much of the contractional 

strain during inversion, with only minimum reverse displacement along smaller faults. 

Mean fault-trace lengths of ~3 and 1.5 km for D1 faults and D2 faults, respectively 

(Figure 2.19), suggests a threshold length value between 1.5 and 3 km above which 

faults were reverse-reactivated during inversion, whereas faults smaller than the 

threshold may or may not have reactivated (Figures 2.18, 2.19). A similar trend has been 

observed, at a smaller scale (100s of meters), in outcrop studies where larger faults, 

assumed to have lower frictional strength due to the formation of a thicker fault gauge, 

are more likely to undergo reverse reactivation (Marone, 1995; Kelly et al., 1999). 

Newly-formed syn-inversion faults (D3 fault type) are consistently short throughout the 

SBS and ATS (average length ~1.2 km; Figures 2.16, 2.19). This trend suggests that 

reactivated preexisting faults controlled most of the shortening, whereas syn-inversion 

faults developed mostly to accommodate syn-rift wedges internal deformation. 

Orientation variations among different types of preexisting faults (D1 and D2) 

are not interpreted to influence fault reactivation significantly. The wider range of strike 

and dip values for syn-rift non-reactivated faults (D1), however, may contribute in part 

to their behavior, due to greater departure from optimum orientations (Figure 2.18).  

Coalescent syn-rift wedges on flattened seismic profiles through both SBS’s 

main depocenters indicate fault linkage during extension (Figure 2.26). The development 
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of accommodation zones between bounding-fault segments produced a zone of 

distributed deformation during the extensional phase. During the contractional phase, 

however, fault systems in accommodation zones evolved into a through-going reverse 

fault at post-rift and syn-inversion stratigraphic levels (Figure 2.37). The correspondence 

between master fault bends, structure’s crests, and extensional accommodation zones 

evidences the fundamental control of syn-rift fault architecture on inversion geometry. In 

this way, the displacement-transfer zones that developed during extension remained 

active during the inversion phase (Keller and McClay, 1995), resulting in regions of 

lesser uplift. 

Inversion and hangingwall deformation  

The “shallow” fault system that affects the SBS and ATS probably reflects (1) 

uplift and expansion of post-rift strata in the hangingwall during inversion and (2) 

hangingwall deformation to accommodate the curved shape of the master fault. 

Restriction of the shallow fault domains to the SBS’s hangingwall reflects their syn-

inversion origin.  

The expansion of the post-rift section during inversion can be inferred from the 

formation of extensional faults within an overall contractional setting. Some of the 

extensional faults exhibit downward-decreasing displacement and terminate within 

shale-rich levels in the Lower Cuyo Group, where contraction might have been taken up 

by ductile or more widely distributed deformation. No extensional faults formed over the 

structure’s accommodation zones, which in turn experienced the least amount of uplift 

during inversion (Figure 2.20). Higher extensional fault density occurs along the 
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Figure 2.37. Conceptual models for syn-rift, post-rift, and syn-inversion fault linkage pattern for the 
SBS s main depocenters, bounded by fault segments 2 and 3. Based in part on Schlische and Anders 
(1996).  
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inverted depocenters. Syn-inversion faults, however, are not restricted to the regions of 

maximum uplift, which would be expected if only E-W tensile stress upon inversion 

would have developed. This is particularly obvious in the SBS’s western substructure 

and in the ATS, where extensional faults flank the structures rather than cutting through 

the regions of maximum elevation. Surface curvature analysis, which was not conducted 

in this study, could provide additional insights into the factors affecting syn-inversion 

fault distribution. 

The attitude of syn-inversion “shallow” extensional faults, showing en échelon 

arrangement within each domain in map view (Figure 2.20) and negative-flower-

structure geometries in cross section (Figure 2.21) suggest that a deep-rooted mechanism 

also influenced strain partitioning. Flower structures are interpreted to result from 

incipient strike-slip motion between discrete blocks within the SBS’s hangingwall as it is 

obliquely thrusted over a highly corrugated footwall. The relative motion of blocks 

allows the hangingwall to accommodate to the shape of the footwall. This mechanism 

acts in conjunction with the post-rift section expansion during inversion (Figure 2.38). 

Superimposed inversion and incipient strike-slip deformation, along with mild 

translation of the hangingwall parallel to the master fault, produces significant structural 

overprinting. This is more pronounced near the SBS’s and ATS’s axes, where 

deformation is more intense and contributes to the scatter observed in fault orientation 

within each domain (Figure 2.22). Subtle rectilinear features observed in time-dip maps 

(Figure 2.20) are interpreted as conjugate faults whose kinematics may be related to 

strike-slip displacement and could be accommodating internal block deformation.  
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Figure 2.38. Hangingwall deformation of the SBS during inversion. (A) Annotated time-structure map 
at the top of Lower Cuyo Group indicating interpreted extensional faulting in SBS s and ATS s 
hangingwalls. (B) Conceptual model for block relative motion to accommodate to curved footwall. Dis-
placement parallel to the main fault and between blocks are exaggerated for clarity.   
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Substantial hangingwall internal deformation should be expected in highly 

“three-dimensional” inversion structures, where strong overprinting may occur between 

faulting purely associated with inversion and structural features that result from 

hangingwall along-strike translation and expansion. In addition, observations from this 

study suggest the need to incorporate more complex deformation scenarios into scaled-

model experiments, like oblique inversion of curved (in plan view) faults and 

hangingwall block deformation mechanisms.  

Stratigraphic record of inversion 

Several unconformities within the post-rift strata along the SBS and ATS are 

erosive surfaces that record significant breaks in the stratigraphic record over the 

structures’ crests. These unconformities record tectonic activity with no associated syn-

kinematic strata. Other growth strata deposited during late Tithonian to early 

Valanginian time record the structural evolution of inversion features and provide 

elements to investigate deformation mechanisms and sediment dispersal patterns. 

Several models have been proposed to describe the kinematics of fault-related 

folds and the resulting growth stratal development. They can be divided into two main 

groups:  kink-band migration (Suppe and Medwedeff, 1990; Suppe et al., 1992) and 

limb-rotation models (Hardy and Poblet, 1994; Poblet et al., 1997). These two geometric 

approaches produce different stratal termination patterns on cross sections that are 

oriented perpendicular to the axes of the inversion structures. The growth strata 

associated with the SBS and ATS displays wedge-shaped packages of divergent 

reflections on along-dip profiles of both fold limbs, indicating progressive limb rotation 
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during fold development (cf. Shaw et al., 2004). Absence of kink bands and growth 

triangles (Suppe et al., 1992) suggests that the kinematics of SBS and ATS cannot be 

described by kink-band migration.  

Growth of the SBS and ATS may have affected sediment dispersal from late 

Tithonian to Valanginian time. Marine conditions predominated during deposition of the 

Quintuco Formation and the mild syn-depositional bathymetric relief that can be inferred 

from growth stratal geometries suggests that the rate of uplift of the anticlines’ crests 

slightly exceeded the rate of syn-tectonic sedimentation. This resulted in more 

accommodation space along the anticlines’ limbs and in the front synclines, where 

sediments preferentially accumulated.  

Lowest intervals of Vaca Muerta and Quintuco basinal shale and possibly distal 

carbonate turbidite facies in the central Neuquén Basin have been linked to coeval 

proximal clinoforms prograding from east and southeast of the SBS and ATS (Zilli et al., 

1979; Mitchum and Uliana, 1985; Hurley et al., 1995). Therefore, the orientation of the 

SBS and ATS with respect to the sediment source during the deposition of the Vaca 

Muerta and Lower Quintuco Formations may have caused significant sediment ponding 

against steeply dipping forelimbs of inversion anticlines. The backlimbs may dip in the 

direction of regional sediment transport, in a sort of “shadow zone” behind the growing 

anticline (Shaw et al., 2004). Periods of relatively more intense tectonic activity may 

have resulted in sediments filling in front synclines. In contrast, periods of tectonic 

quiescence would result in the anticlines’ crests being draped by background muds and 

filling of the backlimb accommodation space. According to this model, ponding 
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sediments will be coarser-grained, as sandy units would fill the lows first and pinch out 

onto fold limbs (Figure 2.39; Shaw et al., 2004). Fine-grained sediments deposited 

between pulses of tectonic activity may then drape the sands. More detailed stratigraphic 

analysis within the post-rift section is needed in order to evaluate this sediment dispersal 

model for different intervals, especially reservoir formations. 

Kinematic evolution 

The workflow employed for structural restoration in this study may result in 

significant error accumulation through its various stages, namely: (1) well data-to-

seismic correlations, (2) seismic mapping, (3) estimation of tectonic transport directions, 

(4) depth conversion, (5) decompaction and isostatic adjustment, and (6) selection of 
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restoration algorithms. After completion of all these steps, the sequential restoration also 

involves additional interpretive challenges like estimation of the original thickness of 

eroded strata, paleobathymetry, and restoration parameters. The limitations and caveats 

of this process are especially important when studying inversion structures, since the 

existence of reactivated structures adds significant complexity to the problem of 

restoration. In spite of the considerations described above, some clear trends emerged 

from the analysis. 

The earliest manifestation of inversion in the SBS occurred by Bathonian (~167 

Ma) time and is expressed by mild warping of the post-rift section above the half-graben 

but with no visible stratal offset across the master fault except for small displacement at 

the top of basement. The lack of offset within the syn- and post-rift fill cannot be 

interpreted, however, as lack of movement along the master fault during this time. 

Deeper segments of the listric master fault may have been reactivated during earliest 

stages of inversion because fault dips are lower and the fault was easier to reactivate 

there. At the same time, steep dips at shallower stratigraphic levels may cause the fault 

to lock up during reactivation so that the structure accommodates shortening by dilation 

and internal deformation of the hangingwall (Sibson, 1995). Similar patterns are 

observed in analog studies, where significant shortening is accommodated by fault-

parallel movement of particles deep in the section, whereas there may be no shallow 

manifestation of inversion (Eisenstadt and Withjack, 1995; McClay, 1995). Thus, about 

20% of the overall shortening along the SBS occurred by ~167 Ma with incipient fault 

displacement at the top of syn-rift strata (Figure 2.40). Continued shortening with 
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incipient offset of syn-rift strata is observed until early Tithonian time (~147 Ma), when 

fault offset within post-rift strata began. Most syn-inversion faults of the D3 type may 

have developed during this stage of inversion, as most shortening had to be 

accommodated by internal syn-rift wedge deformation. 
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From Tithonian time on, displacement along the steepest part of the fault 

produced most of the stratigraphic offset observed in present-day sections. This 

coincides with a sharp increase in displacement along the master fault at the top of syn-

rift (Figure 2.40). During this stage of inversion, most fault reactivation probably 

occurred (D2 fault type), as internal syn-rift wedge deformation was “consumed”. 

Upsection propagation of the master fault may have also occurred at this time.  

The master fault tip did not propagate upsection beyond the Berriasian-

Valanginian Quintuco Formation, even though folding continued and the anticline kept 

growing until Cenomanian time. This last stage of inversion is also characterized by 

reduced displacement along the main detachment at the top of syn-rift strata, probably 

due to increased resistance to displacement along the fault because of increased 

overburden (Figure 2.40). 

The amounts of extension and inversion-related shortening of the SBS are an 

order of magnitude smaller than typically suggested by analog studies of inversion 

structures. The small amounts of shortening estimated by structural restoration may 

explain the lack of pervasive backthrusting or shortcut faulting in the SBS. Backthrusts 

and shortcut faults are common in scaled models for inversion, but typically develop 

where shortening values are the same as or greater than the amount of extension 

(Eisenstadt and Withjack, 1995; McClay, 1995; Yamada and McClay, 2004). Where 

backthrusts form at relatively low amounts of shortening (Buchanan and McClay, 1991), 

they commonly nucleate at the tip of preexisting hangingwall collapse grabens that 
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formed during prior extension. The SBS and ATS do not have collapse grabens and their 

syn-rift wedge structure may be, therefore, less likely to nucleate faults as backthrusts. 

Although structural and stratigraphic relationships within the SBS and ATS are 

more complex and varied than predicted by analog model studies, the natural examples 

are similar to scaled-model results. The highly-complex faulting of the SBS and ATS 

documented in this three-dimensional study, even for mild extension and contraction 

amounts, evidences the high sensitivity of natural structures and arises concerns about 

scaling considerations in analog models.  

The definition of geometrical constraints like “null line” (Williams et al., 1989; 

Turner and Williams, 2004) or inversion ratios (Williams et al., 1989; Song, 1997) are 

based on two-dimensional descriptions and seem insufficient to characterize amounts of 

inversion. Along-strike variations in those parameters within a single inversion structure, 

such as the SBS, cast serious doubts about their usefulness as measures of inversion 

intensity. The increasing availability of 3D seismic data and computer applications for 

3D structural modeling may facilitate the use of volumetric parameters to characterize 

inversion. In the case of an inverted half-graben, for example, the ratio of volumes of 

syn-rift fill above and below a regional datum could provide more reliable estimates of 

the intensity of inversion, regardless of along-strike variations.  

 

CONCLUSIONS 

This study documented the structural style and stratigraphic relationships of 

inversion structures in the central Neuquén Basin. Interpretations were based on detailed 
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structural and stratigraphic mapping of a 3D seismic dataset, fault orientation analysis, 

and structural restorations. Observations were compared with findings from analog-

model studies in order to test the validity of assumptions used during the analyses, 

evaluate scaling relationships, and consider new ideas to parameterize and measure 

inversion.  

Conclusions from this study include: 

1) The Northern Sub-basin of the Neuquén Basin includes a series of inversion 

structures that consist of older Triassic half-grabens that underwent pulsed 

inversion between Early Jurassic and Late Cretaceous time. Two of these 

inversion structures, the Sierra Barrosa (SBS) and Aguada Toledo (ATS) 

anticlines, are some of the most prominent subsurface features in the Northern 

Sub-basin.    

2) The SBS inversion structure has two main fault systems. A deep fault system that 

affected basement and syn-rift strata was selectively reactivated during inversion. 

Larger faults that formed during extension were preferentially reverse-reactivated 

during inversion, whereas smaller faults were typically not reactivated during 

inversion.   

3) A complex set of syn-inversion normal faults formed at high angle to the master 

fault of the SBS during inversion. These faults affected both post-rift and syn-

inversion strata in the SBS. The map patterns, location, and kinematic history of 

these faults indicate that the hangingwall of the SBS expanded upon uplift and 

internally deformed as it accommodated to the shape of the curved footwall 
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during oblique inversion. Similar structures are not reported in analog-model 

studies. 

4) Within the post-rift and younger section, a single through-going but curved fault 

defines the southern boundary of the SBS inversion structure. This single fault 

changes into a series of fault segments, separated by accommodation zones, at 

depth. Fault systems in former accommodation zones that formed during 

extension became linked into a through-going reverse fault during inversion. 

5) Growth strata were deposited between late Tithonian and early Valanginian time 

on the flanks and crests of the SBS and ATS. The growth strata suggest a folding 

mechanism controlled by limb rotation with no significant kin-band migration.  

6) Folding and internal deformation were probably the dominant mechanisms that 

accommodated contraction during the SBS’s early and late stages of 

development. Initial fault “lock-up” at shallower stratigraphic and structural 

levels was due to the steep dips of the master fault at these levels, which is not 

conducive to reactivation. As internal syn-rift wedge deformation was 

“consumed”, the half-graben bounding fault became reverse-reactivated and 

propagated upsection. By Berriasian to early Valanginian time, the weight of the 

overburden inhibited additional fault displacement and folding became the main 

mechanism that accommodated shortening until late Cretaceous time. 

7) Along-strike variations in structural style are significant within the SBS and 

ATS. Structural features and intensity of inversion (position of null point and 
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inversion ratio Ri) vary significantly within these inversion structures. This 

variability emphasizes the need for volumetric descriptors of inversion. 

8) The SBS shows significant structural complexity associated with relatively small 

amounts of extension and inversion, which suggests the need to incorporate more 

complex deformation scenarios into scaled-model experiments, like oblique 

inversion of curved (in plan view) faults and hangingwall block deformation 

mechanisms. 
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CHAPTER III 

STYLES AND PATTERNS OF PROPAGATION OF MESOZOIC TECTONIC 

INVERSION IN THE CENTRAL NEUQUÉN BASIN, ARGENTINA   

INTRODUCTION 

Intraforeland deformation is commonly associated with the reactivation of 

preexisting structures (Harding, 1985; Ziegler, 1989; Dorobek et al., 1991; Coward, 

1994; Dellapé and Hegedus, 1995; Homovc et al., 1995; Lowell, 1995; Manceda and 

Figueroa, 1995; Morley, 1995; Peroni et al., 1995; Thomas and Coward, 1995; Uliana et 

al., 1995; Welsink et al., 1995; Yang and Dorobek, 1995; Beauchamp et al., 1996; 

Ramos and Aleman, 2000; Turner and Williams, 2004). Intraforeland contraction and 

uplift typically involves older extensional basins, where many of the fault systems 

associated with the basin’s early rift history are reactivated. In addition, pre-existing 

heterogeneities in foreland regions (e.g., basement lithology contrasts, suture zones, etc.) 

may concentrate stress and strain, and play a key role in subsequent deformation by 

nucleating inversion structures that may form >1000 km from orogenic fronts (Kluth and 

Coney, 1981; Badley et al., 1989; Butler, 1989; Peroni et al., 1995; Ziegler et al., 1995; 

Marshak et al., 2000; Bailey et al., 2002; Vanbrabant et al., 2002).  

Basin inversion can be defined as the compressional or transpressional 

deformation of a former extensional basin (Turner and Williams, 2004). Inversion can 

have significant effects on the structural and stratigraphic evolution of an area and must 

be carefully evaluated when dealing with regional restoration of structural cross sections, 

shortening estimations, assumptions about the nature of structures at depth, subsidence 
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patterns, and analysis of syn-inversion sedimentation  (Coward, 1994; McClay, 1995). In 

addition to the geometric characteristics that may make inversion structures suitable as 

structural traps for petroleum accumulations, inversion tectonics can have important 

effects on other aspects of petroleum systems. For example, inversion causes uplift of a 

basin, with consequent effects on burial history and oil generation and maturation, 

porosity evolution, fracture development, migration pathways, and alteration of fault 

sealing properties (Coward, 1994).  

Structural and stratigraphic relationships associated with inversion structures 

have been described elsewhere for both natural examples (Gillcrist et al., 1987; 

Cartwright, 1989; Roure et al., 1992; Hill and Cooper, 1996; Song, 1997; Bulnes and 

McClay, 1998; Betts, 2001; Bailey et al., 2002; Bjorklund and Burke, 2002) and analog 

models (Buchanan and McClay, 1991; Mitra and Islam, 1994; Eisenstadt and Withjack, 

1995; Keller and McClay, 1995; McClay, 1995; Brun and Nalpas, 1996; Dubois et al., 

2002; Yamada and McClay, 2004).  

Reactivation of syn-rift extensional faults depends on several factors, although 

orientation of these faults relative to the stress field responsible for inversion is probably 

the most critical (Sibson, 1985; Letouzey, 1990; Coward, 1994). A fault can be 

reactivated even when its orientation with respect to the stress field is not “favorable” in 

terms of Andersonian fault theory and Coulomb failure criteria. The likelihood for 

reactivation of a severely misoriented fault increases dramatically with increasing pore 

fluid pressure, which can result in a very low compressive, or even tensile, effective σ3 

(Sibson, 1990, 1995; Sibson and Xie, 1998). 
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Large-scale studies of basin inversion have examined the interaction between in-

plane stress, lithosphere rheology, and basin fill. Typically, basin inversion is associated 

with horizontal compressive stress that is generated along a convergent plate margin and 

transmitted into the plate interior where inversion occurs (Lowell, 1995). Vertical 

stresses in the lithosphere (e.g., stresses caused by mantle plumes, post-glacial isostasy, 

or basaltic underplating) might also induce or overprint basin inversion caused by in-

plane compressive stress (Platt and England, 1993; Brodie and White, 1995; Nadin et al., 

1995; Ware and Turner, 2002). Widespread basin inversion commonly develops within 

plate interiors where the lithosphere is weaker than adjacent areas (van Wees and 

Beekman, 2000), although this remains controversial (Turner and Williams, 2004).  

Spatial and temporal patterns of inversion structures across foreland regions are 

also affected by variations in the intra-plate compressive stress field which, in turn, are 

commonly controlled by forces acting along convergent plate boundaries. Thus, the 

location and kinematic history of inversion structures can provide insight into plate-scale 

tectonic events and relative influence of processes acting along plate margins. For 

example, Late Cretaceous to Cenozoic inversion structures in Western and Central 

Europe have been attributed to in-plane stresses associated with the Alpine orogeny.  

Basement blocks were uplifted and Mesozoic grabens inverted >1500 km north of the 

Alpine deformation front (Gillcrist et al., 1987; Badley et al., 1989; Cartwright, 1989; 

Chapman, 1989; Ziegler, 1989; Coward, 1994; Deeks and Thomas, 1995; Hooper et al., 

1995; Thomas and Coward, 1995; Ziegler et al., 1995; Brun and Nalpas, 1996). 

Inversion structures across Western Europe are mostly NW trending and are associated 
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with movement along pre-existing normal faults that formed during Paleozoic and 

Mesozoic extensional events. In general, the intensity of inversion shifted westward 

through time and decreased with distance from the Alpine front (Ziegler, 1989; Ziegler 

et al., 1995). The timing and location of the main inversion phases, however, may be due 

to fault orientation and contrasts in the amount of prior extension (Ziegler, 1989).  

The Ancestral Rockies and related foreland uplifts have been interpreted as an 

intra-plate response to convergent-margin development along the western, southern, and 

possibly eastern margins of North America during Carboniferous to Permian time (Kluth 

and Coney, 1981; Kluth, 1986; Yang and Dorobek, 1995; Ye et al., 1996; Kluth et al., 

1998; Marshak et al., 2003). Most workers agree that intraplate stress transmitted 

through the foreland region during late Paleozoic time caused reactivation of preexisting 

structures, which are mostly related to Precambrian extensional basins (Marshak et al., 

2000). 

The Andes are a dramatic manifestation of Late Cretaceous to Recent subduction 

of the Nazca plate beneath South America. Across the Andean foreland, stratigraphic 

and structural evidence, earthquake focal mechanisms, and in situ stress measurements 

show overall E-W oriented compression over a region extending ~ 1,000 km east of the 

Andes (Assumpção, 1992). Geologic evidence from the Brazilian craton suggests that 

Cenozoic deformation due to Andean tectonics is actually continent-wide (Assumpção, 

1998; Lima, 2000; Cobbold and Meisling, 2001; Lima, 2003).  

Late Cretaceous to Recent basin inversion has been described for various parts of 

the Andean foreland. Examples include the Golfo San Jorge Basin (Homovc et al., 1995; 
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Peroni et al., 1995; Uliana et al., 1995; Rodriguez and Littke, 2001), Santa Barbara 

System (Kley and Monaldi, 2002), Noroeste Basin (Kress, 1995; Uliana et al., 1995; 

Cristallini et al., 1997; Kley and Monaldi, 2002), Cuyo Basin (Dellapé, 1993; Dellapé 

and Hegedus, 1995), Sierras Pampeanas (Schmidt et al., 1995), Beazley Basin (Yrigoyen 

et al., 1989), Chacopampeana Region (Chebli et al., 1999), and Neuquén Basin 

(Manceda and Figueroa, 1995; Uliana et al., 1995; Vergani et al., 1995). Most of these 

basins were inverted during the main phases of the Andean Orogeny (Paleocene – 

Recent time) and were associated with transmission of in-plane stress across the foreland 

region. Few studies, however, have focused on Mesozoic inversion across the Argentine 

foreland and its relationship to coeval plate-scale tectonics.  

The Neuquén Basin of west-central Argentina is structurally complex due to 

protracted tectonic activity from Late Triassic to Recent time. Prominent structural 

features in the Neuquén Basin predate the main phases of the Andean orogeny and 

played an important role in controlling basin configuration and the development of 

petroleum systems within the basin. The most conspicuous of these structures is the 

Huincul Arch, a 200-km long right-lateral shear zone that was most active during 

Jurassic to Cretaceous time. The origin of this intra-foreland transpressional feature is 

controversial, although it has been attributed to inboard continuation of transform fault 

zones related to breakup of Gondwana and opening of the South Atlantic Ocean (Uliana 

et al., 1989; Light et al., 1993; Uliana et al., 1995; Vergani et al., 1995). A series of 

transpressive uplifts associated with a convex-to-the-north restraining bend along the 

Huincul Arch divide the Neuquén Basin into two main sub-basins, known as the 
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Southern and Northern Sub-basins (de Ferrariis, 1947). Compressive stress induced by 

the restraining bend produced shortening in a roughly north-south direction and the 

tectonic inversion of Late Triassic half-grabens in the Northern Sub-basin. These 

inversion structures had a significant influence on basin configuration, facies 

distribution, and sediment dispersal patterns from early Jurassic to Late Cretaceous time.  

No previous studies have examined relationships between Mesozoic inversion 

structures in the central Northern Sub-basin and regional deformation associated with the 

tectonic evolution of the Huincul Arch. The objective of this chapter is to investigate the 

style and kinematics of Mesozoic tectonic inversion across the central Neuquén Basin in 

order to provide insight into plate-scale deformation mechanisms and patterns of 

inversion propagation across a segment of the Argentine foreland.   

An extensive 2D and 3D seismic and borehole dataset covering the south-eastern 

portion of the Northern Sub-basin was interpreted and integrated with published 

literature on the Mesozoic tectono-stratigraphic evolution of southwestern Gondwana. 

Based on structural and stratigraphic evidence, this study proposes a model for the 

propagation of Mesozoic tectonic inversion across the central Neuquén Basin. The 

progressive, lateral migration of inversion across the Neuquén Basin shows that for a 

preexisting fault fabric with homogeneous structure orientation, progressive lock-up of 

inversion structures results in shortening being transmitted farther inboard, inverting 

other previously-inactive structures. Implications for the deformation of the Argentine 

foreland region and the Mesozoic tectonic evolution of southern South America are 

discussed. 
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GEOLOGIC SETTING AND HISTORY OF THE NEUQUÉN BASIN 

Evolution of the Neuquén Basin 

The Neuquén Basin of NW Patagonia, west-central Argentina, is a triangular- 

shaped basin in map view that extends from 33° to 41° S and from 67° to about 72°W 

across the Andean foreland of Argentina and neighboring Chile (Figure 3.1). It is 

surrounded by the North Patagonian Massif, the Sierra Pintada Massif, and the Andean 

Cordillera, and covers an area of approximately 160,000 km2 (Digregorio and Uliana, 

1980; Uliana and Legarreta, 1993; Vergani et al., 1995).  

Two major tectonic phases characterize the basin’s evolution: a Late Triassic – 

Early Cretaceous extensional backarc stage that was followed by a Late Cretaceous – 

Recent retroarc foreland-basin stage. The inception of Late Triassic rifting in the basin 

has been linked to the gravitational collapse of the Permian to Early Triassic orogenic 

belt that bordered the southwestern margin of Gondwana (Dewey, 1988; Legarreta and 

Uliana, 1991; Uliana and Legarreta, 1993; Vergani et al., 1995; Franzese and Spalletti, 

2001; Franzese et al., 2003). Extensional faulting produced a series of roughly 

subparallel, crudely en echelon, NW-trending troughs across parts of Argentina (Uliana 

et al., 1989). Principal Triassic fault trends are oriented NW-SE in the northeastern half 

of the basin and N-S in the western part (Figure 3.2A). In the southern part of the basin, 

NE-SW and ENE-WSW faults developed during backarc extension (Ramos, 1978; 

Vergani et al., 1995).  

During Hettangian (earliest Jurassic) time, a change to a more regional, but still 

fault-partitioned subsidence pattern allowed the onset of the first marine incursion from
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Figure 3.1. Location of the Neuqu n Basin in southern South America. (A) Topography and ocean 
floor bathymetry from Smith and Sandwell (1997). (B) Generalized tectonic map of the Neuqu n 
Basin showing main provinces and tectonic elements.
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the Pacific (Uliana et al., 1989; Urien and Zambrano, 1994; Vergani et al., 1995; 

Franzese et al., 2003), which flooded most of the basin (Figure 3.2B). Angular 

unconformities separate Upper Triassic continental sediments and marine Jurassic rocks 

and are related to continued extension-related block rotation during Early Jurassic time 

(Uliana et al., 1989). A gradual change to thermal subsidence began at about Late 

Toarcian time and allowed post-rift strata to cover the entire basin (Figure 3.2C; 

Digregorio, 1978; Urien and Zambrano, 1994; Vergani et al., 1995). During late 

Callovian time, general uplift and erosion occurred across the basin, but was particularly 

dramatic along the Huincul Arch. Transpressive uplift along the arch was a precursor to 

more intense late Oxfordian – early Kimmeridgian tectonic deformation. Inversion of 

syn- and post-rift deposits along the axis of the Huincul Arch resulted in erosion of more 

than 2 km of basement through Middle Jurassic strata (Ploszkiewicz et al., 1984; 

Legarreta and Uliana, 1996).  

During late Callovian – early Oxfordian time, connection with the Pacific Ocean 

was reestablished, which began another, although more areally limited, second-order 

transgressive-regressive stratigraphic cycle. The increase in basin-wide accommodation 

has been attributed to relaxation of compressional stresses by some workers (Vergani et 

al., 1995), whereas others invoke global eustasy and the onset of sea-floor spreading in 

the Central Atlantic as causes for the relative sea-level rise (Legarreta and Uliana, 1996).  

An intense period of tectonic inversion occurred during late Oxfordian-early 

Kimmeridgian time (Vergani et al., 1995) and caused the basin to become a restricted 

shallow-marine setting (Legarreta, 2002). During this tectonic event, known as the 
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Figure 3.2. Main stages of the Mesozoic structural and paleogeographic evolution of the Neuqu n Basin 
(from Vergani et al., 1995). (A) General syn-rift fault trends; (B) Late syn-rift - early post-rift depocenter 
expansion; (C) Post-rift depositional facies patterns (Upper Cuyo Group); (D) Araucanian inversion 
event along Hincul Arch and depositional facies patterns across Neuqu n Basin; (E) Mirano inversion 
event and depositional facies. 

100



 

“Araucanian” or “Inter-Malm” orogeny (Digregorio and Uliana, 1980), older extensional 

structures were selectively reactivated, especially in the western and southern parts of 

the basin and in particular the Huincul Arch (Figure 3.2D). Upper Jurassic strata were 

deeply eroded in those areas (Vergani et al., 1995). NW-SE trending transfer faults 

divide the Huincul Arch into three main segments, with the intensity of the inversion 

decreasing from west to east. Pyroclastic deposits of Late Jurassic age record the 

presence of an active volcanic arc west of the basin (Legarreta and Uliana, 1996). 

Oceanic communication was again fully restored during Tithonian time. 

Increased subsidence (attributed to relaxation of in-plane stress by Vergani et al., 1995) 

resulted in the development of a new transgressive-regressive cycle (Legarreta and 

Uliana, 1996). Another period of tectonic inversion during Valanginian time caused 

further reactivation of extensional faults along the Huincul Arch and in the western part 

of the basin. This pulse of inversion is recorded by an erosional unconformity of early 

Neocomian age (Valanginian unconformity) that extends across the arch. The inverted 

areas contributed sediment to the Southern Sub-basin (Vergani et al., 1995). Renewed 

marine transgression started during late Valanginian time and ended with general 

shallowing of the basin during late Albian time. 

The “Mirano” orogeny (also referred to as “Intra-Senonian” movements) 

describes renewed inversion during Cenomanian time and is recorded by erosion of 

Upper Cretaceous strata in the western part of the basin (Figure 3.2E; Uliana et al., 

1975). This episode of deformation apparently closed the basin to oceanic circulation 

from the Pacific Ocean (Digregorio et al., 1984). At the same time, the Andean arc 
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became the dominant sediment source area for the Neuquén Basin (Legarreta and 

Gulisano, 1989; Uliana and Legarreta, 1993). These significant changes are also 

associated with the beginning of foreland basin development in the Argentine backarc 

region. Incipient backarc thrusting to the west and emplacement of Cretaceous batholiths 

may have produced regional uplift on the Andean side of the basin (Barrio, 1990; Uliana 

and Legarreta, 1993). A progressively increasing proportion of volcaniclastic rocks 

accumulated in eastward-migrating depocenters and record the eastward migration of the 

volcanic arc (Digregorio et al., 1984; Ramos and Aleman, 2000). A marine incursion 

from the eastern side of the basin during Maastrichtian to Paleocene time led to 

deposition of shallow-marine siliciclastic, limestone and evaporite facies (Legarreta and 

Gulisano, 1989; Barrio, 1990). 

Early Eocene to Recent subsidence patterns in the Neuquén Basin are largely due 

to backarc thrusting. The main bounding faults of half-graben depocenters, as well as 

secondary faults within these basins, were reactivated to varying degrees during this 

phase (Manceda and Figueroa, 1995). Thin Eocene strata extend across most of the 

basin, which suggests only limited flexural subsidence (Uliana and Legarreta, 1993). 

Overprinting by subsequent tectonic events associated with the Cenozoic Andean 

orogeny determined the present structural configuration of the Neuquén Basin, which 

consists of: (1) a western or “internal” fold-and-thrust belt, (2) a transition zone or 

“external” fold-and-thrust belt to the east, and (3) an eastern region, known as the 

Neuquén Embayment, comprised of the Neuquén Sub-basin, Huincul Arch shear zone, 

and northeastern platform (Figure 3.1; Bracaccini, 1970; Ramos, 1978; Urien and 
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Zambrano, 1994; Vergani et al., 1995). Deformation intensity generally decreases from 

west to east with increasing distance from the Andean orogen. 

Stratigraphy of the Central Neuquén Basin 

Pre-Mesozoic basement rocks beneath the Neuquén Basin consist of a complex 

of Paleozoic metamorphic and igneous rocks, with minor Carboniferous strata. A 7 km-

thick Mesozoic-Cenozoic sedimentary succession overlies these basement rocks (Figure 

2.8).  

Early syn-rift strata in the Neuquén Basin are known as the “pre-Cuyo” cycle and 

consist mostly of siliciclastic facies that were deposited in alluvial fan, fluvial, and 

lacustrine environments (Legarreta and Gulisano, 1989; Urien and Zambrano, 1994). 

Overlying the syn-rift interval is a post-rift succession of marine and fluvial sedimentary 

rocks known as the “Cuyo Group”, which was deposited during a transgressive-

regressive cycle that lasted from Hettangian to Callovian time (Digregorio, 1972; 

Digregorio and Uliana, 1980; Gulisano and Pando, 1981; Hinterwimmer and Jáuregui, 

1985; Legarreta and Gulisano, 1989; Urien and Zambrano, 1994). 

The 1,500 m-thick Cuyo cycle is a progradational, basinward-thickening 

sequence, which consists of basal marine shales (Los Molles Formation) that grade 

laterally and upward into alluvial and deltaic deposits (Lajas Formation) (Digregorio and 

Uliana, 1980; Urien and Zambrano, 1994; Vergani et al., 1995; Legarreta, 2002). The 

early Callovian sea-level rise caused significant transgression across western Argentina 

as recorded by the upper part of the Lotena Formation, which consists of marginal 

marine siliciclastic facies that grade basinward into marine carbonate (Barda Negra 
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Formation) and evaporite (Auquilco Formation) facies (Legarreta and Gulisano, 1989; 

Urien and Zambrano, 1994; Vergani et al., 1995; Legarreta, 2002).  

Local tectonic uplift that occurred during the Araucanian inversion caused fluvial 

deposits (Lower Tordillo Formation) to be intermixed with volcanics in depositional 

lows. Siliciclastic sediments were sourced from the south, northeast, and west. Western 

units are thicker due to the contribution of pyroclastic sediment from the Andean 

volcanic arc (Vergani et al., 1995).  

Communication with the Pacific Ocean was reestablished during Thithonian 

time, with a major flooding surface between continental facies of the Tordillo Formation 

and the overlying and northwestward-prograding basinal to inner-shelf facies of the 

Tithonian-Berriasian Lower Mendoza Group (Verzi et al., 2002). The Lower Mendoza 

Group is a 1 km-thick unit that consists of the Vaca Muerta black shales (main 

petroleum source rock in the basin), and overlying, northwestward progradational 

carbonate ramp facies of the Quintuco Formation.  

Selective uplift due to inversion along the Huincul Arch during Valanginian time 

provided another sediment source to the basin, resulting in deposition of the Upper 

Mendoza Group. Continental facies (fluvial and alluvial sandstone and conglomerate 

facies of the Mulichinco Formation) along the eastern and southeastern basin margin 

grade northwestward into shoreface to outer shelf facies in the basin center (Vergani et 

al., 1995). Relative sea-level rise during late Valanginian time caused deposition of 

black shale facies (Agrio Formation) in the inner basin, which interfinger with 

prograding fluvial siliciclastic facies (Centenario Formation) in eastern parts of the 
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Northern Sub-basin. This depositional cycle ends with regional shallowing of the 

Neuquén Basin and with deposition of continental red beds of the Rayoso Group during 

Albian time. Reactivation of source areas along the Huincul Arch during the Mirano 

orogeny caused subtle erosion of Rayoso strata and accumulation of continental deposits 

with significant pyroclastic material, known as the Neuquén Group during early 

Cenomanian – late Campanian time (Legarreta and Gulisano, 1989; Vergani et al., 

1995). Continental and marine sediments of the Maastrichtian - Paleocene Malargüe 

Group comprise the last significant deposits in the Neuquén Basin.  

The Huincul Arch and the Northern Sub-basin 

The Northern Sub-basin of the Neuquén Basin is bounded to the south by the 

Huincul Arch (Cruz et al., 2002). Late Triassic rift depocenters within the Northern Sub-

basin were tectonically inverted when subjected to N-S to NW-SE compression induced 

by a convex-to-the-north restraining bend along the Huincul Arch’s principal 

displacement zone (Figure 3.3A). Consequently, Pre-Cuyo to lowest Cuyo syn-rift 

sedimentary wedges within the Northern Sub-basin were uplifted with decreasing 

intensity from south to north (Figure 3.3B). Nearby areas characterized by en échelon 

extensional faults and negative flower structures (e.g., Ramón Castro Extensional Zone; 

Figure 3.3A) are attributed to local bends along the main principal displacement zone 

(PDZ) that defines the axis of the Huincul Arch (Ploszkiewicz et al., 1984; Pángaro and 

Bruveris, 1999). The PDZ extends eastward but shows a dominantly transtensional 

character near the southeastern basin boundary (Orchuela and Ploszkiewicz, 1984).

105



�

Figure 3.3. Main structural elements of the central Neuqu n Basin. (A) Main faults associated with the 
Huincul Arch following Mesozoic transpressional tectonics. The Huincul Arch is the approximately 10-
km wide deformation zone indicated by the shaded line. RCEZ: Ram n Castro Extension Zone, HF: 
Huincul Fault, ABF: Aguada Baguales Fault, CT: Challac  Trough. ATF: Aguada Toledo Fault, SBF: 
Sierra Barrosa Fault, RNFZ: R o Negro Fault Zone. Based on Maretto and Lara (2002), Orchuela et al. 
(1981), P ngaro and Bruveris (1999), Ploszkiewicz et al. (1984), and Vergani et al. (1995). (B) Compos-
ite seismic section across the southern Neuqu n Basin showing location and style of early Mesozoic 
faults and associated inversion structures. Modified from Uliana et al. (1995). Line of section shown in A.
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DATA AND METHODS 

A 2D and 3D seismic and borehole dataset covering part of the central Neuquén 

Basin (Northern Sub-basin) was released to Texas A&M University by Repsol-YPF. The 

seismic data consist of four 3D surveys covering a total area of ~1500 km2 and ~4000 

line-km of 2D surveys covering an area of ~10,000 km2 (Figure 3.4). The borehole 

dataset consists of digital well logs from ten exploratory wells and thirty development 

wells located mostly in the central and northeastern portions of the Northern Sub-basin. 

Most “deep” exploratory wells penetrate Middle and Lower Jurassic strata, whereas the 

“shallow” development wells penetrate the Lower Cretaceous to Upper Jurassic section. 

Repsol-YPF also provided access to proprietary reports on the stratigraphy of the 

Northern Sub-basin. An extensive literature survey on the tectonics and stratigraphy of 

southern South America was conducted, with emphasis on Mesozoic inversion, plate-

scale features, and related tectonic events. Information from these published sources was 

integrated with interpretations from this study in order to provide a regional-scale 

tectono-stratigraphic framework for Mesozoic inversion events across the Argentine 

foreland. 

All digital data were loaded onto UNIX workstations from 8-mm tapes. 

Subsurface characterization software (GeoFrame™ by Schlumberger™) was used for 

structural and stratigraphic mapping. Coherency volumes were generated using the 

Variance Cube™ module within GeoFrame™ to improve structural mapping. Time-

structure and time-thickness maps were constructed using the gridding algorithms 

available in BaseMap Plus™. Well data was time-converted using Synthetics™.  
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RESULTS 

Well-seismic correlation 

Synthetic seismograms were constructed for all exploratory wells from available 

checkshot surveys and sonic logs (Figure 3.5). Formation tops picked on log curves were 

seismically correlated across the entire dataset.
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Six stratigraphic horizons were picked in well logs and posted on seismic data, 

including top basement, top Pre-Cuyo (syn-rift), base of Lotena, base of Vaca Muerta, 

top of Quintuco, and base of Neuquén Group. Formation tops identified in exploratory 

wells further constrained stratigraphic mapping across the study area. 

Seismic interpretation 

Inversion structures 

Basement structural level within the Neuquén Basin shallows toward the Huincul 

Arch and all Mesozoic sedimentary units show general thinning in that direction. 

Tectonic inversion along the Huincul Arch caused uplift of the southern part of the 

Northern Sub-basin (Figure 3.6A), which is an excellent setting to study the timing and 

stratigraphic response to regional patterns of inversion. Farther away from the Huincul 

Arch, the stratigraphic record is more complete, unconformities are less amalgamated, 

and seismic data of better quality, which allow identification of more detailed structural 

and stratigraphic relationships. 

Five main inversion structures associated with reverse-reactivated E-W normal 

faults were identified. From south to north, these are the Aguada Baguales, Sierra 

Barrosa, Aguada Toledo, El Cordon, and Sauzal Bonito structures (Figure 3.6B). Stratal 

relationships and ages of key horizons were used to estimate timing of deformation 

events and to identify patterns of strain distribution and inversion propagation. All 

inversion structures have a similar fault configuration at the basement level, consisting 

of inverted half-grabens with faulting and folding of the overlying stratigraphic section.
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Aguada Baguales Structure 

The “Aguada Baguales” Structure (Ploszkiewicz et al., 1984; Legarreta et al., 

1999; Gómez Omil et al., 2002) is an E-W elongated anticline, ~40 km long and 9 km 

wide that is interpreted as an inverted half graben. The back limb of this inversion 

anticline is partially imaged in the 3D seismic dataset examined during this study (Figure 

3.6B). A regional 2D seismic line cuts through the crest of this structure (Figure 3.7) and 

was used to document stratigraphic and structural relationships between this structure 

and the Sierra Barrosa structure to the north.  

The Aguada Baguales Structure is the largest and structurally highest inversion 

anticline in the study area. It is characterized by intense backthrusting, where antithetic 

faults accommodate part of the shortening as the master bounding fault locked up during 

inversion. Given the Aguada Baguales Structure’s proximity to Huincul Arch’s principal 

displacement zone, there may have been significant oblique slip along the main bound-

ing fault of this structure.  

Lack of well control along the structure’s forelimb precludes accurate estimation 

of displacement along the master fault or detailed investigation of syn-inversion growth-

stratal patterns. Amalgamated unconformities, however, reflect missing strata of the 

Cuyo, Lotena and Mendoza groups along the structure’s crest, where Late Cretaceous 

Neuquén Group deposits overlie Cuyo strata. In addition, younger strata successively 

onlap the top of Vaca Muerta horizon and within the lower Quintuco Formation on the 

structure’s backlimb (Figure 3.7), which indicates syn-inversion deposition from Titho-

nian to Berriasian time. Overlying the Mendoza Group, the Intra-Senonian unconformity 
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Figure 3.7. Uninterpreted (A) and interpreted (B) seismic sections through Aguada Baguales inversion 
structure. Sections are oriented perpendicular to the main bounding fault of this inversion structure. Sig-
nificant stratal pinch-outs and unconformity amalgamation at the structure s limbs reflect recurrent tec-
tonic activity from Middle Jurassic to Late Cretaceous time. See Figure 3.6B for location. 
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is slightly folded over the structure’s crest, reflecting mild tectonic activity during Late 

Cretaceous time. 

 

Sierra Barrosa Structure 

The Sierra Barrosa Structure (Bettini, 1984; Ploszkiewicz et al., 1984; Uliana et 

al., 1995; Gómez Omil et al., 2002; Hechem and Veiga, 2002; Schiuma et al., 2002) is 

an E-W trending, ~22 km long and 6 km wide anticline with a slightly curved crest and 

two distinct areas of maximum overall uplift (Figure 3.6B). A reverse-reactivated fault 

defines the southern flank of the anticline. The Sierra Barrosa Structure is characterized 

by a strongly-folded and uplifted syn-rift wedge with minor backthrusting affecting the 

lowest part of the syn-rift section (Figure 3.8). The structure’s hangingwall has a dense 

array of syn-inversion extensional faults that are roughly perpendicular to the master 

bounding fault (Figure 3.6B).  

No amalgamated unconformities are observed, although thinning of different 

stratigraphic units is visible over the structure’s crest. Internal onlap and reflection 

divergence within the Upper Quintuco Formation suggest syn-inversion deposition on 

both limbs of the structure during Berriasian and early Valanginian time. Lower 

Quintuco strata, however, have more uniform thickness and an internal arrangement of 

parallel and subparallel reflections (Figure 3.8C).  

The Intra-Valanginian unconformity is well imaged, although the lowest strata of 

the Upper Quintuco Formation were not completely eroded and were unconformably 
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overlain by basal strata of the Centenario and Rayoso formations, which are slightly 

folded over the structure’s crest. The Intra-Senonian unconformity is roughly horizontal. 

  

Aguada Toledo Structure 

The Aguada Toledo Structure (Ploszkiewicz et al., 1984; Hechem and Veiga, 

2002) is an E-W oriented, 10-km long and 3-km wide anticline (Figure 3.6B). The 

structure is bounded to the south by a reverse-reactivated fault. Inversion caused this 

fault to propagate upsection until it ultimately terminated within Lower Cuyo post-rift 

strata. Folding associated with fault reactivation, however, affects the entire post-rift 

section, with intensity decreasing above the Intra-Valanginian unconformity. The 

structural style of the inversion structure is characterized by mild internal deformation 

and buttressing within the syn-rift wedge, with some associated backthrusting and 

reverse reactivation of secondary syn-rift normal faults (Figure 3.9). The eastern and 

western flanks of this double-plunging anticline are affected by syn-inversion 

extensional faults with N-S orientation, which are associated with internal deformation 

of the hangingwall.  

The Intra-Callovian and Intra-Malm unconformities are expressed by mild 

truncation of Upper Cuyo and Lotena strata, respectively, with minor thinning of these 

intervals over the structure’s crest. Vaca Muerta, Lower Quintuco, and the basal portion 

of Upper Quintuco strata, however, have uniform thickness over the structure. 

Truncation of Upper Quintuco strata along the Intra-Valanginian unconformity is readily 
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Figure 3.9. Uninterpreted (A) and interpreted (B) seismic sections through Aguada Toledo inversion 
structure. Sections are oriented perpendicular to the main bounding fault of this inversion structure. Sig-
nificant erosion on structure s crest at the top of Cuyo Group (Intra-Callovian unconformity) and top of 
Quintuco Fm. (Intra-Valanginian unconformity). Minor thickness variations within Lower Quintuco Fm. 
See Figure 3.6B for location. 
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observed (Figure 3.9). The Intra-Senonian unconformity is slightly folded, with minor 

truncation of upper Rayoso strata. 

 

El Cordón Structure 

A fragmented, E-W oriented inversion anticline, informally referred to here as El 

Cordón Structure, is located ~15 km northeast of the Aguada Toledo Structure (Figure 

3.6B). This inversion structure consists of a relatively small syn-rift wedge bounded by a 

steep northward-dipping normal fault that was reverse-reactivated during inversion. 

Inversion caused the fault to propagate upward within Lower Cuyo strata and folded the 

entire overlying section up to the top of Rayoso Group level. Intensity of deformation is 

markedly less than for inversion structures to the south. 

The syn-rift wedge is only mildly-deformed with no observable backthrusting or 

buttressing. Syn-inversion normal faults perpendicular to the master fault cut post-rift 

strata (Figure 3.6B). Antithetic syn-inversion normal faults developed around the 

structure’s crest (Figure 3.10). 

Strata above and below the main unconformities across the structure are 

essentially subparallel, with only minor truncation at the top of the Cuyo Group (Intra-

Callovian unconformity). The entire Quintuco Formation, however, has uniform 

thickness over the structure, with no internal stratal geometries indicating syn-inversion 

deposition. The Inter-Senonian unconformity is folded over the structure’s crest.
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Figure 3.10. Uninterpreted (A) and interpreted (B) seismic sections through El Cord n inversion struc-
ture. Sections are oriented perpendicular to the main bounding fault of this inversion structure. Signifi-
cant erosion is observed on structure s crest at the top of Cuyo Group (Intra-Callovian unconformity) 
and top of Quintuco Fm. (Intra-Valanginian unconformity). Lower Quintuco strata has uniform thickness 
over the inversion anticline. Intra-Senonian unconformity is folded. See Figure 3.6B for location. 
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Sauzal Bonito Structure 

The Sauzal Bonito Structure is an important, but poorly understood high in the 

central Northern Sub-basin (Jalfin and Laffitte, 1996; Hechem and Veiga, 2002; Verzi et 

al., 2002). The Sauzal Bonito Structure formed, at least partly, during the Intra-

Cenomanian (Mirano) inversion phase, although its present structural style has been 

interpreted to be affected by Cenozoic (Andean) tectonics (Hechem and Veiga, 2002).   

The Sauzal Bonito Structure is an E-W oriented anticline that formed by 

inversion of a syn-rift wedge along a high-angle reverse-reactivated normal fault that 

bounds the southern flank of the structure (Figures 3.6B, 3.11). The reactivated fault cut 

to the level of the Lower Cuyo Group. Inversion caused fault propagation within Lower 

Cuyo Group and folded of the overlying section up to the Neuquén Group level.  

The core of the structure is a slightly-inverted syn-rift wedge with no significant 

internal deformation. A low-displacement shortcut fault accommodates part of the 

shortening that occurred during inversion. Pre-Cuyo and Lowest Cuyo strata were 

deformed during inversion. Syn-inversion antithetic normal faults developed around the 

structure’s crest (Figure 3.11). 

All stratigraphic intervals have apparent conformable contacts, except for some 

mild truncation at the top of the Cuyo Group (i.e., along the Intra-Callovian 

unconformity). In addition, the Quintuco Formation has uniform thickness across the 

structure’s crest and parallel to subparallel reflections internally. Upper Cretaceous strata 

and the Intra-Senonian unconformity are folded (Figure 3.11).
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unconformity). Quintuco strata have uniform thickness over the inversion anticline. Intra-Senonian 
unconformity is folded. See Figure 3.6B for location. 
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Regional tectono-stratigraphic relationships 

 Inversion structures across the study area contain important patterns of 

unconformity development, growth stratal geometries, and deformation of the overlying 

section. These regional patterns can be summarized as: (1) Size of syn-rift wedges and 

intensity of inversion decrease markedly from south to north, with proximity to the 

Huincul Arch; (2) syn-inversion growth strata within the Quintuco Formation become 

progressively younger from south to north; (3) shortening, as expressed by folding of the 

Intra-Senonian unconformity and younger strata, increases slightly from south to north; 

(4) structures closer to the Huincul Arch exhibit significant stratal angularity along the 

main unconformities. The amount of missing section and angular stratal patterns along 

the main unconformities diminishes from south to north, although the amount of section 

eroded along the Intra-Callovian unconformity seems fairly similar across all of the 

inversion structures examined during this study. 

 

DISCUSSION 

Inversion patterns in the Northern Sub-basin 

The convex-to-the-north shape of a restraining bend along the Huincul Arch 

caused the westward-moving block to act as a buttress or “mini indentor” that produced 

a localized compressive stress field across the southern part of the central Neuquén 

Basin. This N-S to NW-SE directed compressive stress resulted in significant tectonic 

inversion across the Northern Sub-basin for a distance of at least 70 km north of the 
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Huincul Arch’s principal displacement zone. The area affected by inversion is at least 

7000 km2, based on inversion structures identified in this study and others reported in the 

literature (Figure 3.12; Vergani et al., 1995; de la Colina, 1997; Berdini et al., 2002; 

Gómez Omil et al., 2002; Hechem and Veiga, 2002; Mosquera, 2002). Given that the 

total area of the extra-Andean (i.e., located east of the fold-and-thrust belt front) 

Northern Sub-Basin is ~24,000 km2, nearly one third of the Northern Sub-basin was 

affected by Huincul Arch-related Mesozoic inversion.  

Inversion structures observed in this study have similar structural styles and are 

bounded by major faults with general E-W orientations. In contrast, rift depocenters with 

NW-SE bounding faults (e.g., Entre Lomas and Bajada Vidal depocenters; Figure 3.12) 

did not undergo inversion. These structures apparently were unfavorably oriented with 

respect to the local compressive stress field across the Northern Sub-basin during Middle 

Jurassic to Late Cretaceous time.  

The axial part of the Northern Sub-basin is portrayed in the literature as lacking 

significant Late Triassic syn-rift faulting (Figure 3.12), although basement structure 

along the deepest areas of the basin are poorly imaged on seismic profiles. The inversion 

structures along the southern flank of the Northern Sub-basin, however, suggest that 

significant tectonic inversion should be expected along the deepest parts of the basin. 

The Huincul Arch is a complex strike-slip shear zone with evidence for large inverted 

rift basins. The size of inverted rift-depocenters in the Northern Sub-basin also seems to 

decrease with distance from the Huincul Arch. These trends suggest that the Huincul 

Arch may have been the zone of greater extension within the Neuquén Basin.
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Model for Mesozoic inversion propagation in the Northern Sub-basin 

The structural and stratigraphic relationships observed in inversion structures 

across the Northern Sub-basin of the Neuquén Basin can be combined into a unifying 

conceptual model for inversion propagation and strain distribution (Figure 3.13). This 

model implies that distance from the Huincul Arch is the dominant control on fault 

reactivation and basin inversion. 

An early stage of inversion occurred across the study area during early Callovian 

time after deposition of the post-rift Cuyo Group. Inversion was nearly synchronous 

across the study area as indicated by the presence of the angular Intra-Callovian 

unconformity in all inversion structures (Figure 3.13B-D). A period of relative 

quiescence and continued subsidence during late Callovian and Oxfordian time resulted 

in deposition of the Lotena Group, which contains strata that onlap and cover inversion 

highs but do not show syn-inversion growth stratal patterns (Figure 3.13D). Subsequent 

tectonic phases along the Huincul Arch during Kimmeridgian, Valanginian, and 

Cenomanian time are recorded as angular unconformities that are mostly restricted to the 

crest of each inversion structure. The amount of stratal truncation and angularity along 

these unconformities diminishes from south to north. This trend can be simply attributed 

to the decrease in deformation intensity away from the stress source.  

The diachronous character of growth strata within the Quintuco Formation 

(Figures 3.7 to 3.11) and the slight northward increase in deformation of younger strata, 

however, suggest that younger inversion-related strain progressively migrated northward 

as successive structures “locked up” and shortening was transferred to inversion 
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structures farther north from the Huincul Arch (Figure 3.13E-G). Even though minor 

shortening continued in inversion structures that are more “proximal” to the Huincul 

Arch, greater amounts of shortening clearly occurred in more “distal” structures (i.e., 

farther north from the Huincul Arch) during Early Cretaceous time. These patterns of 

northward propagation of inversion are mostly recorded by complex growth stratal 

patterns within the Quintuco Formation and by northward-increasing folding of younger 

post-Quintuco strata. 

Mechanical considerations 

The style of tectonic inversion in the Neuquén Northern Sub-basin suggests a 

strong control by pre-existing crustal discontinuities (i.e., faults) on the localization of 

intraplate shortening. The listric character and variable depths of detachment of the 

original rift faults (Figures 3.7-3.11) may have resulted in an increasing ease of 

compressional reactivation with depth (Figure 3.14; Sibson, 1995). That is, flat segments 

of basin-bounding, listric-shaped rift faults were first reactivated because of their 

subhorizontal attitude, and detachments at deeper crustal levels were more easily 

reactivated than shallower detachments. In this context, the synchroneity of fault 

reactivation across the Northern Sub-basin basin during the initial Callovian inversion 

event can be attributed to efficient transmission of N-S oriented compressive stress, 

which caused relatively easy reverse-reactivation of flat to low-dip segments of the 

original extensional faults. Relatively small amounts of shortening probably 

accumulated in “proximal” inversion structures before shortening was transferred to 
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more distal faults, resulting in almost synchronous fault reactivation of favorably-

oriented faults over a large area.  

During later inversion events (Kimmeridgian to Cenomanian), however, fault 

reactivation was more difficult, which determined that structures more proximal to the 

Huincul Arch underwent significant inversion before shortening was transferred to more 

distal structures. In essence, the easy work had been done on all flat to gently-dipping 

fault segments early on. Shortening during later inversion events had to be accomplished 

along more steeply dipping fault segments. This more difficult shortening apparently 

occurred first on more proximal inversion structures before it could be transferred to 

more distal structures. 
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The multi-stage inversion propagation patterns can also be attributed to 

thermally-driven temporal variations in lithospheric mechanical behavior. Age 

estimations for Late Triassic rifting in the central Neuquén Basin range from 210 Ma 

(Rhaetian) to 190 Ma (Pliensbachian) (Digregorio and Uliana, 1980; Gulisano et al., 

1984; Legarreta and Gulisano, 1989; Gulisano and Gutiérrez Pleimling, 1994). This 

suggests that the lithosphere was still thermally weakened at the onset of the initial 

Callovian phase of inversion, which occurred ~30 Myr after the end of rifting 

(Sandiford, 1999). Thus, initial Callovian inversion may also reflect a still warm and 

low-viscosity lithosphere that allowed stress to be transmitted over a broad region due to 

decreased shear resistance at detachment levels, resulting in widespread synchronous 

inversion. Subsequent inversion events at ~40, 55, and 95 Myr after rifting, affected a 

more thermally mature, and therefore more viscous, lithosphere. This caused significant 

contractional strain to accumulate within more proximal inversion structures before they 

locked up and transferred shortening northward to more distal structures. 

The mechanisms described here may have acted concurrently and therefore it is 

difficult to establish the predominance of one over the other. The qualitative elaborations 

presented here, however, may comprise the basis for conducting numerical models of 

half-graben inversion propagation (cf. Buiter and Pfiffner, 2003). 

 

CONCLUSIONS 

This study contained an analysis of temporal and spatial patterns of Mesozoic 

tectonic inversion across the central Neuquén Basin. A model for the propagation of 
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inversion is proposed based on structural and stratigraphic relationships recognized on a 

series of structures imaged on 2D and 3D seismic data. Mechanical aspects of the 

proposed model were discussed. The main conclusions resulting from this study are: 

1) Right-lateral Mesozoic transpression along a restraining bend in the Huincul 

Arch produced a localized compressive stress field across the southern part of the 

central Neuquén Basin. The westward-moving block acted as a buttress or “mini 

indentor” that produced N-S to NW-SE compression and caused a series of half-

graben bounding faults to undergo reverse reactivation across the Northern Sub-

basin. Inversion structures show a general E-W orientation, which is similar to 

original rift-depocenter orientations. Similar faults bounding syn-rift depocenters 

that are oriented NW to SE were not reactivated.  

2) Inversion extended across almost one third of the Northern Sub-basin’s area. 

Thus, deformation related to the tectonic evolution of the Huincul Arch was not 

restricted to a narrow zone of deformation close to the principal displacement 

zone, but affected the structural and stratigraphic evolution of a large part of the 

Neuquén Basin. 

3) Inverted structures show similarities in styles of inversion and resulting 

stratigraphic patterns. There is, however, a northward decrease in size of inverted 

depocenters and in intensity of inversion. This trend is probably related to 

variations in rift-depocenter size, which decrease with distance from the Huincul 

Arch, suggesting the existence of an ancient rift axis along the now uplifted arch. 
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4) A two-stage conceptual model for Mesozoic inversion propagation across the 

central Neuquén Basin is proposed. According to the model, an initial stage of 

inversion during Callovian time produced synchronous uplift of inversion 

anticlines across the Northern Sub-basin. Later inversion events (during 

Kimmeridgian, Valanginian, and Cenomanian time) show a more diachronous 

timing. The “inversion front” advanced northward over time as more proximal 

structures accumulated strain, locked up, and transferred shortening to the next, 

more distal structure. 

5) Synchroneity of fault reactivation during the Callovian inversion event may be 

related to efficient stress transmission north of the Huincul Arch, which can, in 

turn, be attributed to relatively easy reactivation of low-dip listric fault segments. 

This required little strain accumulation along “proximal” inversion structures 

before shortening was transferred to more distal structures. Later inversion events 

found harder-to-reactivate fault segments, resulting in proximal structures 

undergoing significant inversion before transferring shortening.  

6) The amount of time elapsed since the end of rifting may also have been an 

important factor for explaining the multi-stage inversion. Lithosphere was still 

thermally weakened at the onset of the initial Callovian inversion phase. A low-

viscosity lithosphere allowed stress to be transmitted efficiently over a large 

distance from the Huincul Arch, causing synchronous Callovian inversion across 

the basin. Later inversion events affected a colder and more viscous lithosphere. 
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Significant strain needed to accumulate along proximal inversion structures 

before shortening could be transferred to more distal parts of the basin.  
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CHAPTER IV 

PLATE-SCALE SIGNIFICANCE OF THE HUINCUL ARCH   

INTRODUCTION 

The timing and spatial patterns of Mesozoic inversion in the central Neuquén 

Basin presented in Chapter III suggest a direct link with the evolution of the Huincul 

Arch. This unique structural feature, therefore, may be fundamental for the tectonic 

evolution of the basin and perhaps all of southern South America. 

The Huincul Arch is a puzzling structural feature. It is a plate-scale, transcurrent 

shear zone that is oriented nearly perpendicular to the western margin of the South 

American Plate (Figure 4.1). It may be an important stress guide that was involved in the 

intense compression and inversion across central Neuquén Basin during a time when the 

rest of southern South America was undergoing pervasive extension.  In addition, the 

Neuquén Basin is the only basin in the Argentine foreland with Jurassic and Early 

Cretaceous tectonic inversion, which contrasts with the more widespread Cenozoic 

structural reactivation that occurred later.  

The tectono-stratigraphic significance of the Huincul Arch was first recognized 

in outcrops from western parts of the Neuquén Basin, where Upper Cretaceous red beds 

of the Neuquén Group are in angular unconformity with, and successively onlapped by, 

Upper, Middle, and Lower Jurassic strata (Windhausen, 1914; Keidel, 1925; de Ferrariis, 

1947; Suero, 1951). The Huincul Arch was initially interpreted as a normal-fault-

bounded basement high (de Ferrariis, 1947; Ramos, 1978; Digregorio and Uliana, 1980), 

but acquisition of extensive subsurface data (well logs and seismic) by the petroleum 
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industry showed that the Huincul Arch consists of a series of transpressional uplifts that 

are associated with a right-lateral strike-slip fault zone (Figures 3.3, 3.12B; Orchuela et 

al., 1981; Ploszkiewicz et al., 1984). The arch continues eastward into the subsurface of 

northern Patagonia where it becomes dominantly transtensional and is known as the Río 

Negro fault zone.  
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The scale of the basement-involved deformation caused many workers to suggest 

that the Huincul Arch is a major crustal discontinuity of plate-scale significance (Turner 

and Baldis, 1978; Digregorio and Uliana, 1980; Baldis and Febrer, 1983; Orchuela and 

Ploszkiewicz, 1984; Franzese et al., 2003; Macdonald et al., 2003). Some authors argued 

that the Huincul Arch is the inboard continental projection of fracture zones within the 

South Atlantic (Unternehr et al., 1988; Uliana et al., 1989; Uliana et al., 1995). No 

attempts have been made, however, to explain the mechanism that caused displacement 

along the Huincul Arch or how the timing of deformation along the arch relates to plate-

scale tectonic events. In this chapter we investigate the possible link between the 

evolution of the Huincul Arch and displacement along an adjacent intracontinental 

megashear zone to the south, which is known as the Gastre Fault System. 

 

PALEOZOIC STRUCTURAL FABRIC OF SOUTHERN SOUTH AMERICA 

The evolution of southern South America was strongly influenced by the 

antecedent tectonic grain that resulted in significant along-strike changes in structural 

style within the Andean thrust belt and foreland (Mpodozis and Ramos, 1990; Zalán et 

al., 1990; Tankard et al., 1995; Franzese et al., 2003; Jacques, 2003a; Macdonald et al., 

2003). The inherited tectonic fabrics resulted from the amalgamation of continental 

blocks and terranes that where accreted during Late Proterozoic to early Paleozoic time 

(Figure 4.1; Ramos, 1988; Urien et al., 1995; Campos Neto, 2000; Cordani et al., 2000; 

Milani and Thomaz Filho, 2000; Aceñolaza et al., 2002). At least nine major terranes 

can be recognized in the Argentine foreland (Figure 4.1; Mpodozis and Ramos, 1990; 
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Kley et al., 1999). Within this context, the Huincul Arch is located between the Chilenia, 

Precordillera, and Pampean terranes to the north, and the Patagonian terrane to the south. 

The precise location of inter-terrane boundaries in northwestern Patagonia is poorly 

known. Therefore, the possibility of the Huincul Arch coinciding with one or more 

terrane these boundaries cannot be ignored.  
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TIMING OF TECTONIC EVENTS 

South America underwent significant extension during Late Triassic and Early 

Jurassic time, which has been attributed to the collapse of a late Paleozoic orogenic belt 

(Uliana et al., 1989). Rift basins within the accreted basement provinces have dominant 

fault orientations that suggest reactivation of antecedent structures (Figure 4.2A). 

Extensional phases with increasing areal extent and complexity followed during Middle 

and Late Jurassic time (Figure 4.2B; Uliana et al., 1989). Both Late Triassic to Early 

Jurassic and Middle- to Late Jurassic extensional events are generally thought to be 

precursors of the opening of the South Atlantic Ocean (Ramos and Aleman, 2000). In 

that regard, pulses of increased extension are proposed for Late Jurassic (Kimmeridgian) 

and Early Cretaceous (Valanginian) time, with the later pulse coincident with continental 

breakup at ~130 Ma (Rabinowitz and LaBrecque, 1979; Tankard et al., 1995; Vergani et 

al., 1995).  

Along the Huincul Arch, Ploszkiewicz et al. (1984), Orchuela et al. (1981), and 

Bettini (1984) recognized four main unconformities that can be related to Mesozoic 

transpressive tectonic events. These are the Intra-Callovian (~155 Ma), Intra-Malm 

(~140 Ma), Intra-Valanginian (~135 Ma), and Intra-Senonian (~100 Ma) 

unconformitites. Coeval inversion events were described in Chapter III for the central 

Neuquén Basin. Most studies point to a climax of inversion along the arch during 

Kimmeridgian time (Orchuela et al., 1981; Tankard et al., 1995; Vergani et al., 1995). 

Freije et al. (2002) and Zavala and Freije (2002), however, conducted field work in the 

western part of the arch and concluded that the main deformation phase for that segment 
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occurred during Bathonian time. Other studies that utilized seismic data assign a 

Pliensbachian age (~190 Ma) to the first transpressive movements along the main axis of 

the arch (Mosquera, 2002).  

 

THE HUINCUL-GASTRE CONNECTION 

The synchroneity between main tectonic events along the Huincul Arch (e.g., 

Intra-Malm and Intra-Valanginian events) and events related to opening of the South 

Atlantic suggests a connection between the evolution of the arch and breakup of 

Gondwanaland. The kinematic link between Huincul-related inversion and South 

Atlantic extension is interpreted to be along the Gastre Fault System (Coira et al., 1975), 

a prominent NW-SE shear zone to the southeast of the Huincul Arch (Figure 4.3). The 

Gastre Fault System has been proposed as a large-scale South American onshore 

projection of the Agulhas-Falklands Fracture Zone (Figure 4.3; Rapela et al., 1991; 

Rapela and Pankhurst, 1992). This intracontinental shear zone was associated with the 

emplacement of major granite intrusions during Late Triassic to Middle Jurassic time 

(Rapela and Pankhurst, 1992) and crustal block rotations during Early Cretaceous 

(Valanginian) time (Ben-Avraham et al., 1993; Marshall, 1994; Thomson, 1998; Geuna 

et al., 2000).  

The northwestern part of the Gastre Fault System coincides with a series of 

interpreted NW-SE lineaments at ~38°S, close to the Chile-Argentina border (Rapela 

and Pankhurst, 1992) and at the westernmost manifestations of the Huincul Arch. Both 
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shear zones intersect at this point and are characterized by right-lateral shear motion 

(Figure 4.4).  

The onset of significant compressional deformation along the Huincul Arch’s 

principal displacement zone occurred during earliest Jurassic time (Zavala, 1996; Cruz et 

al., 1999; Freije et al., 2002; Gómez Omil et al., 2002; Mosquera, 2002; Zavala, 2002; 

Zavala and Freije, 2002). It is argued here that earliest to Middle Jurassic deformation 

along the Huincul Arch and development of the Intra-Callovian unconformity on 

inversion structures’ crests across the Northern Sub-basin may be related to initial 

displacement along the Gastre Fault System.  
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Figure 4.4. Geological map of southern South America showing the location of the Huincul Arch and 
the Gastre Fault System. Insets show details of the structural and igneous relationships along the pres-
ent coast of Chile and in north-central Patagonia. The Huincul Arch and the Gastre Fault System may 
have linked at the present latitude of ~ 38  S. The Huincul Arch is interpreted to be a synthetic shear to 
the Gastre Fault System, which in turn is thought to be a precursor of the Agulhas Fracture Zone. Dis-
tribution of Late Paleozoic to Tertiary igneous rocks are also shown. GFS: Gastre Fault System; HA: 
Huincul Arch. Modified from Rapela and Pankhurst (1992).
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Last stages of Mesozoic inversion in the Northern Sub-basin caused folding of 

post-Valanginian strata (Figure 3.9-3.12) and may have been driven by waning 

displacement along the Gastre Fault System during late Mesozoic and Cenozoic time 

(Rapela, 1997). Alternatively, inversion could have been triggered by increased 

mechanical coupling between the subducting and overriding plates caused by a higher 

convergence rate after Pangea breakup at ~130 Ma (Rabinowitz and LaBrecque, 1979), 

which induced compression across the Argentine foreland starting during Late 

Cretaceous time (Jacques, 2003b). The second interpretation is favored because the 

opening of the South Atlantic started being dominated by simple divergence of two rigid 

plates at ~84 Ma (Nürnberg and Müller, 1991), which could have prevented the Gastre 

Fault System from showing significant activity after that time.  

 

CONCLUSIONS 

The Huincul Arch is located in an area of significant structural complexity, 

which in part reflects the Paleozoic terrane amalgamation. Therefore, the Huincul Arch 

may coincide with one or more ancient terrane boundaries.     

Timing relationships between tectonic events along the Huincul Arch and across 

the eastern margin of the proto-South American plate suggest a link between the 

evolution of the arch, breakup of Gondwanaland, and opening of the South Atlantic 

Ocean. The Huincul Arch is interpreted to be a synthetic shear to the Gastre Fault 

System linking at ~38°S close to the western continental margin, although accurate 

linkage location is obscured by Andean-related deformation.  
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CHAPTER V 

CONCLUSIONS 

 
Tectonic inversion is an important intracontinental deformation process. The 

complexity of structural styles that result from basin inversion is significant. This 

requires, therefore, detailed structural and stratigraphic mapping and analysis. This task 

is best achieved using 3D seismic data, for it provides the lateral continuity of coverage 

that neither 2D seismic nor outcrop exposures have. 

Chapter II documents the structural style and stratigraphic relationships of 

inversion structures in the central Neuquén Basin. Interpretations are based on detailed 

mapping of 3D seismic, fault orientation analysis, and structural restorations. The study 

focuses of the analysis of Sierra Barrosa (SBS) and Aguada Toledo (ATS) anticlines, 

which are some of the most prominent subsurface features in the Northern Sub-basin.  

The SBS inversion structure has two main fault systems. A deep fault system that 

affected basement and syn-rift strata was selectively reactivated during inversion. Larger 

faults that formed during extension were preferentially reverse-reactivated during 

inversion, whereas smaller faults were typically not reactivated during inversion. A 

shallow fault system consists of syn-inversion normal faults formed at high angle to the 

master fault of the SBS during inversion. These faults affected both post-rift and syn-

inversion strata in the SBS. The map patterns, location, and kinematic history of these 

faults indicate that the hangingwall of the SBS expanded upon uplift and internally 

deformed as it accommodated to the shape of the curved footwall during oblique 

inversion. Similar structures are not reported in analog-model studies, which suggests 
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the need to incorporate more complex deformation scenarios into scaled-model 

experiments, like oblique inversion of curved (in plan view) faults allowing for 

hangingwall internal deformation.  

Extensional fault segments bounding the SBS half-graben depocenter were 

reverse-reactivated and propagated upsection during inversion, resulting in a single 

through-going but curved fault that defines the structure’s southern boundary at the post-

rift level. Fault systems in former accommodation zones that formed during extension 

became linked into a through-going reverse fault during inversion. 

Pulsed inversion along the SBS and ATS may have caused significant control on 

sediment dispersal from Early Jurassic to Late Cretaceous time. This is best documented 

for the latest Jurassic – Early Cretaceous time period, during which growth strata were 

deposited between late Tithonian and early Valanginian time on the flanks and crests of 

the SBS and ATS. The dispersal of carbonate turbidite facies that were described for the 

lowest Quintuco Formation in this part of the basin may have been affected by the 

bathymetry produced by the growing structures. The growth strata suggest a folding 

mechanism controlled by limb rotation with no significant kin-band migration.  

Structural restorations of the SBS at different stratigraphic levels show that 

folding and internal deformation were probably the dominant mechanisms that 

accommodated contraction during the SBS’s early and late stages of development. Initial 

fault “lock-up” at shallower stratigraphic and structural levels was due to the steep dips 

of the master fault at these levels, which is not conducive to reactivation. As internal 

syn-rift wedge deformation was “consumed”, the half-graben bounding fault became 
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reverse-reactivated and propagated upsection. By Berriasian to early Valanginian time, 

the weight of the overburden inhibited additional fault displacement and folding became 

the main mechanism that accommodated shortening until late Cretaceous time. 

Chapter III contains an analysis of the tectonic inversion problem from a regional 

perspective that resulted in the identification of temporal and spatial patterns of 

Mesozoic tectonic inversion across the central Neuquén Basin.  

Mesozoic transpression along the Huincul Arch, resolved as local N-S to NW-SE 

compression by strain partitioning along a restraining bend, inverted a series of half-

graben bounding faults across the Northern Sub-basin. Inversion structures show a 

general E-W orientation, whereas similar faults bounding syn-rift depocenters oriented 

NW to SE were not reverse-reactivated. This suggests a first-order selection mechanism 

for fault reactivation based on orientation. 

The intensity of inversion decreases markedly from south to north with distance 

to the Huincul Arch. Inversion, however, is not restricted to a narrow zone of 

deformation close to the principal displacement zone, but covers almost one third of the 

Northern Sub-basin’s area. This evidences that Huincul Arch-related deformation 

affected the structural and stratigraphic configuration of a large part of the Neuquén 

Basin during Early Jurassic to Late Cretaceous time. 

Timing relationships derived from the stratigraphic record preserved over 

different inversion structures allowed the proposal of a conceptual model for Mesozoic 

inversion propagation across the central Neuquén Basin. According to the model, an 

initial stage of inversion during Middle Jurassic (Callovian) time produces synchronous 
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uplift of inversion anticlines across the basin. Later inversion events that occurred from 

Late Jurassic to Late Cretaceous (Kimmeridgian, Valanginian, and Cenomanian) time 

show a more diachronous character. These events are expressed as an “inversion front” 

that advances toward the north as structures accumulate strain, lock up, and transfer 

shortening to the next distal structure. Differences in inversion propagation patterns 

between inversion stages are attributed to the initial preferential reverse-reactivation of 

flat to low-dip listric fault segments. Alternatively, an initially warm and weak 

lithosphere may have caused efficient stress transmission over a broad area during the 

early inversion event, resulting in synchronous Callovian inversion across the basin. 

Later inversion stages, however, may have affected a colder and more viscous 

lithosphere, therefore significant strain needed to accumulate along proximal inversion 

structures before shortening could be transferred to more distal parts of the basin.  

In Chapter IV we discuss the plate-scale significance of the Huincul Arch. At a 

mega-regional scale, timing of deformation events along the Northern Sub-basin suggest 

that Huincul-Arch tectonics and associated inversion structures may be controlled by 

right-lateral displacement motion along the Gastre Fault Zone to which the arch seems to 

be kinematically linked as a synthetic shear. This intracontinental megashear is thought 

to be related to Late Triassic-Early Cretaceous extension events that affected most 

southern South America previous to the opening of the South Atlantic Ocean. 
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